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SUMMARY 

 

The purpose of this research is to determine the feasibility of creating an 

affordable and durable neutron detector for usage in the field surveys, site inspections, 

and transportation hub monitoring.  Currently, organic scintillating detectors are an 

established method of detecting neutrons but are either costly, fragile solids like stilbene, 

or flammable liquids like benzene.  In this work, several scintillation mixtures were 

tested with a PuBe source, which emits both neutrons and gamma rays.  The pulse shape 

discrimination method was utilized to separate the signal pulses created from the mixed 

radiation field of the PuBe source.  Two candidate mixtures were selected for 

solidification with elastomers for their verified neutron detection capabilities.  The solid 

detectors measured high energy neutrons and gamma rays from the PuBe source.  The 

solidified detectors have a Figure of Merit for separating neutrons of 0.859 ±0.419 and 

cost $0.13 per gram, while commercially available stilbene separates neutrons from 

gammas with a Figure of Merit of 4.70 and costs $64.36 per gram.  This research shows 

that it is feasible to create affordable solid organic scintillators sensitive to high energy 

neutrons. 

 

 

 

 



 

 

CHAPTER 1 

INTRODUCTION 

Background 

 In today’s world, nuclear power negotiations are a reoccurring but serious dispute 

between nations.  One of the reasons negotiations are necessary and prudent is to prevent 

the proliferation of Special Nuclear Materials (SNM).  SNM are the isotopes uranium-

233, uranium-235, and all plutonium isotopes due to their usage in nuclear weapons 

production.
1
  The availability of SNM is a matter of national security and safety because 

of the potential for mass destruction if it is abused.  One manner of preventing the 

proliferation of SNM is the employment of robust, versatile, and mobile inspection 

equipment.   

 On August 30
th

, 2015, the U.S. Energy Secretary Ernest Moniz gave a speech at 

the University of Colorado calling for continued research and development of SNM 

detectors in order to “form the basis of a new era for nonproliferation verification.”
2
  

Secretary Moniz argued that nuclear inspections are an effective deterrence against covert 

pathways to a nuclear bomb by verifying the safe handling and secure storage of SNM. 

He argued that accurate and precise radiation detectors will improve the tracking and 

quantifying of SNM during the nuclear fuel cycle and prevent diversion for illicit 

purposes.  Additionally, the U.S. Department of Energy’s 2014 Strategic Plan lists their 

second goal, of three, as “Nuclear Security” with the stated objectives of “strengthen key 

science, technology, and engineering capabilities and modernize the national security 

infrastructure” and “reduce global nuclear security threats.”
2
  Thus, developing detectors 

and systems for nuclear inspections are essential for promoting nuclear power 

transparency and meeting the goals of the DoE by ushering in a new era of 

nonproliferation. 
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 One type of detector that could provide a robust, versatile, and mobile system is a 

liquid scintillation (LS) detector.  LS detectors provide inspectors with a versatile system 

because various mixtures can be utilized and replaced in order to choose the optimal 

mixture for their mission.  LS detectors are potent gamma ray and neutron detectors and 

commonly utilized for neutrino observatories.
3
  Unfortunately, LS mixtures are not 

durable and need to be stored away from sources of heat in inert containers, due to their 

solvent and flammable properties.  The low vapor points, a flammable property, of LS 

detectors cause the mixtures to evaporate quickly when not contained properly.   

 Similarly, a solid organic scintillation detector may provide effective, versatile 

detection systems.  Solid organic or plastic detectors have been utilized as effective 

thermal and fast neutron detectors since the 1990s, because they do not spill if 

mishandled and are less flammable compared to liquid detectors.
4
  The disadvantages of 

solid organic detectors are general brittleness, thermal gradient cracking, and cost.  A 1 

cm x 1 cm x 8 cm prism of scintillating plastic can cost as much as $500, or $62.50 per 

cm
3
.  If an effective, cheap solid plastic detector can be developed that is not brittle or 

sensitive to temperatures, then a viable solid detector can meet the stated goals of the 

DoE. 

 

Motivation 

 In this work, new solid neutron detectors were developed in an attempt to create 

affordable detectors and accomplish the security goals of Secretary Moniz.  More cost 

efficient neutron detectors are desired because Helium-3 detectors are becoming more 

expensive.  The rising cost of He-3 is important because He-3 neutron detectors are 

considered one of the most advantageous neutron detectors because their neutron-proton 

reaction has a higher cross section than that of neutron capture by boron and other 

isotopes.
4
  In a 2014 study, one metric ton of He-3 was valued to be $3.7 billion.

5
  The 

cost of He-3 is increasing because the most common source of He-3 is from dismantling 



 3 

warheads, and fewer and fewer nuclear warheads are being dismantled.
6
   Due to this 

high cost, researchers have continued experimenting with ways to create inexpensive 

alternatives to He-3 detectors.   

 Current areas of alternative detectors are LS detectors, stilbene crystal detectors, 

hybrid detectors, and solidified LS mixtures.  The innovative solidified LS detectors have 

inspired this thesis by attempting to create new solid detectors by mixing a liquid 

scintillator with a solidifying agent.  The new solid detectors made during this project are 

an attempt to make affordable, effective, and field-capable detectors.  If successful, these 

detectors may provide a method of easily detecting covert nuclear programs and 

degrading the risk of SNM proliferation. 

 

Prior and Current Approaches to Neutron Detection 

 Significant neutron radiation detection experiments began in 1940 when Barshall 

and Kanner studied the energy distribution of scattered neutrons.  By colliding neutrons 

with a hydrogen target, they were able to demonstrate that neutrons, below 10 MeV, have 

isotropic scattering, in a center of mass system, and that the energy distribution of recoil 

protons is uniform from 0 to the neutron’s kinetic energy.
7
  The significance of the recoil 

energy distribution discovery is that (n,p) scattering, or elastic scattering, can transfer the 

maximum amount of energy to the nucleus at the same probability of any other fraction 

of the neutron’s energy. 

 Building upon the studies of elastic scattering in organic solvents, Kallman and 

Furst proved that organic liquid solutions were feasible for neutron radiation detection by 

increasing the concentration of their solvent.  In 1950, they conducted an experiment in 

which a beaker was filled with different organic solutions, sealed, and exposed to various 

radiation sources.  They were able to demonstrate that organic solvents were transferring 

energy to fluorescent dopants dissolved in the solvent and that the concentration of fluors 

were directly related to light output.
7
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 In 1964, two groups of scientists constructed He-3 proportional counters in order 

to improve spectroscopy and detection of fast neutrons.  Like other proportional counters, 

the He-3 proportional counter is filled with He-3 and an inert gas where incident neutrons 

create hydrogen ions and a charge is built inside the gas chamber for collection and 

analysis.
4
  When a neutron interacts with a He-3 nucleus there is a relatively large chance 

of producing a tritium molecule and a free proton.
4
  The Q value of the He-3 (n,p) 

reaction is 0.764 MeV.
4
  The following reaction equation demonstrates this: 

                                             Equation 1 

The He-3 (n,p) reaction enables a He-3 proportional counter to collect the kinetic energy 

of the reaction products.
4 

 

 

 

 
Figure 1. Differential energy spectrum from fast neutrons on a He-3 detector.

4 

 

 

 

The effectiveness of the He-3 (n,p) reaction, shown in Figure 1, compelled the He-3 

detectors to be accepted as the reliable He-3 neutron detector.
4
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 The ability of solid organic detectors to detect neutrons through scintillation was 

observed as early as 1962, but methods to begin discriminating between scintillations 

caused neutron and gamma rays did not start being used until the 1990s.
4
  The most 

common method has come to be known as Pulse Shape Discrimination (PSD), in which 

the differences in rise and fall times of scintillation pulses are analyzed.  Because gamma 

rays induce scintillation by fast electron generation and neutrons cause scintillation by 

recoiling protons, their respective scintillation pulses have different timing 

characteristics.
4
   In stilbene, gamma ray pulses have a larger fraction of light in their 

prompt component as compared to recoil protons caused by neutrons.
4
  Using PSD, 

organic scintillators can become more useful neutron detectors. 

 One particular area of interest in current organic scintillation is the transformation 

of effective liquid scintillators into solid neutron detectors.  At Lawrence Livermore 

National Laboratory, many liquid organic scintillators with dopants were mixed into a 

polyvinyl toluene (PVT) matrix to create solid detectors.
8
  The mixtures were prepared in 

nitrogen filled containers, removing the oxygen, and mixed to various weight percentages 

with the PVT matrix.
8
  After mixing, the mixtures were poured into glass containers and 

placed into an oven for curing.  Once solid, the glass container was broken to retrieve the 

solid scintillators.  The Figure of Merit (FOM), a measure of the separation of neutron 

and gamma ray curves, of the solidified detectors was determined and compared to the 

commercially available neutron detectors EJ-301, a liquid, and stilbene.  
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Figure 2. Scintillator FOM Comparison of two solidified LS mixtures in PVT, EJ 301, 

and Stilbene.
8 

 

 

 

The results in Fig. 2 demonstrate that one of the produced solid scintillators had a greater 

FOM than EJ 301, but not larger than stilbene.  These results are promising because these 

“liquid-to-solid” scintillators are more effective than some liquids and cheaper than solid 

stilbene.   

 Another research group at the Laboratoie Capteurs et Architectures Électroniques, 

(CEA), has successfully created solids from liquid scintillation mixtures.  They have been 

able to create solids that are 28.6% scintillator by weight with a FOM of approximately 

1.
9
  These solid detectors were made by mixing styrene and vinyl toluene monomers with 

5-Phenyl-2-[4-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole (POPOP) and diphenyl 

oxazole (PPO) in an argon-filled environment.
9
  Dr. Zaitseva’s and CEA’s research into 
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manufacturing affordable, durable, and effective solid neutron detectors are the 

inspiration for this work. 

 

Thesis Objectives 

 The objective of the research is to experimentally fabricate an effective liquid 

scintillator mixture, to develop it into a solidified detector, and characterize the neutron 

detection capabilities of the detector.  Affordable solid detectors can meet the security 

demands in future nuclear power program inspections to identify covert diversions of 

fissile material.  If the research is successful, a prototype solidified detector will 

demonstrate the feasibility of fissile material in a mixed radiation field from nuclear 

power reactors or nuclear fuel storage facilities. 
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CHAPTER 2 

THEORY 

Gamma Ray Properties and Interactions 

 Gamma rays are powerful photons that are not visible to the naked eye, but 

contain enough energy to free electrons from the orbits of atoms, or ionize atoms.  

Gamma rays are created through positron-electron annihilation, de-excitation of nuclei, or 

nuclear reactions.  All annihilation gamma rays have an energy of 0.511 MeV.  The 

gamma rays emit during de-excitation of nuclei and defined energies as the nucleus 

transitions to a lower energy state.
4
  Unlike positron annihilation, the energies of de-

excitation gamma ray are various and dependent upon the transition the nuclei. Similar to 

nuclear de-excitation, gamma rays emitted from nuclear reactions are characteristic to 

their reaction and of a much higher energy.  C-13 emits a 6.130 MeV gamma ray when it 

absorbs an alpha particle.
4
  These characteristic gamma rays are significant because they 

are used to identify the radioactive material which emitted it.   

 Gamma rays interact with matter through three major mechanisms: photo-electric 

absorption, Compton scattering, and pair production.  The probability of how an incident 

gamma ray will interact in matter with is dependent upon the size of the nucleus, Z or 

number of nucleons, and the energy of the gamma ray. 
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Figure 3. Relative importance diagram of the three major types of gamma ray 

interaction.
4 

 

 

 

Figure 3 shows that low Z materials are dominated by the Compton effect and that 

moderate and high Z materials experiences all three mechanisms.  In most materials, the 

dominant interacting mechanism goes from photoelectric, Compton scattering, to pair 

production as the gamma ray energy is increased. 

 Photoelectric absorption is a process that results in the ejection of an electron 

from an atom’s electron cloud.  In this process, the energy of gamma ray is transferred to 

the ejected electron, minus the electron’s binding energy, and the gamma ray is 

absorbed.
4
  After the electron is expelled, the remaining atom is ionized and has a hole in 

one of its electron shells.  The hole is filled quickly by the surrounding medium and the 

electron rearrangement emits one or more characteristic x-rays photons.
4
  The 

characteristic x-rays are generally absorbed near their emission site, but can interfere with 

detectors if they escape.
4
  While the photo-electric effect is dominant with low energy 

gamma rays, gamma rays begin to interact through Compton scattering within the range 

of 0.5 to 5 MeV. 
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 Compton scattering is a process in which the incident photon interacts with an 

atom’s electron, unlike the photo-electric effect.  In Compton scattering, the incident 

photon interacts with a loosely bound electron, which is considered free, creating a recoil 

electron and a scattered photon.  The incident photon is deflected, or scattered, by an 

electron through an angle and the gamma ray transfers a portion of its energy to the 

electron, which recoils it out of the atom.
4
  The third major mechanism of gamma rays 

interacting with matter is pair production. 

 If a gamma ray’s energy exceeds 1.02 MeV, or twice the rest-mass energy of an 

electron, the gamma ray has met the energy threshold for this pair production.  In pair 

production, the gamma ray interacts with the atom’s nucleus and is converted into a 

positron and an electron of equal kinetic energies, minus the 1.02 MeV threshold.
4
  The 

electron will travel until it is absorbed by another atom.  The positron will travel until it is 

slowed enough by the absorbing medium for positron annihilation.  The positron will 

annihilate itself with an absorbing electron and create two distinct gamma rays of 0.511 

MeV.
7 

 

Gamma Ray Detection Theory 

 In organic scintillators, gamma rays are detected by their energy deposition into 

matter.  The matter of the organic scintillator is excited by gamma rays through the 

mechanisms of photo-electric absorption, Compton scattering, and pair production.  Each 

of these events ionize and excite the material, and eventually leads the scintillator to 

convert the energy of these events into fluorescence emission.
7
  The charged particles 

produced by the gamma ray interactions impart their kinetic energy into the surrounding 

organic molecules’ electron clouds and nucleus as they pass nearby and eventually stop.
4
  

The absorbed kinetic energy is transformed by the molecules into vibrational energy and 

its electrons enter into higher energy states.  In order to de-excite, fluorescence emission 
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occurs in the organic molecule, instead of within the crystalline lattice of inorganics like 

sodium iodide.
4
   

 Organic molecules respond to incident radiation different than inorganics due to 

the unique structure of the carbon, C, atom.  Organic molecules contain double C to C 

bonds, or π-bonds, and form molecular rings, shown by Fig. 4.  Benzene, C6H6, is a 

common organic scintillator because it can contain 3 π-bonds. 

 

 

 

 
Figure 4. Benzene ring molecule diagram with 3 π-bonds.

10
 

 

 

 

Π-electrons are significant for scintillation because they are treated as orbitals of free 

electrons around the molecular perimeter.  Their unique orbit creates a plethora of 

discrete energy levels that are dependent upon the molecular perimeter, the electron spin, 

and the orbital quantum number.
7
  These energy levels are called π-energy states and are 

spaced 0.16 eV apart and are shown in Fig. 5.  
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Figure 5.  Π-electron energy levels of an organic molecule.

7 

 

 

 

Benzene creates discrete detectable light as the molecule transitions from high π-energy 

states to lower states.
7 

 The electrons emit light either by the processes of fluorescence or 

phosphorescence.  Fluorescence is the prompt process of light emission as an organic 

molecule transitions down from an excited state to the one the ground vibrational states.
4
   

Phosphorescence occurs in organic molecules if the molecule changes into a triplet state 

through a process called the inter-system crossing and then decays to the ground states.
4
  

Fluorescence in organic molecules occurs on the nanosecond scale and delayed 

phosphorescence occurs on the millisecond scale.
4
   

 An important characteristic of organic scintillators is the absorption and 

quenching of scintillation occurring within the medium. Organic scintillators absorb a 

portion of the light they emit because there is an overlap in the wavelength spectrum of 

light that they absorb and emit.  This overlap is called the “Stokes Shift.”
4
  Quenching is 

the de-excitation of organic molecules through “lightless” processes which degrade by 
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heat and not fluourescence.
4
  To counter quenching and the Stokes Shift, wavelength 

shifters are included in organic scintillators.  Wavelength shifters assist the fluor by 

“shifting” the light emitted by the primary scintillator to a longer wavelength that will not 

be absorbed and reducing the occurrence of quenching.
4
   

 

Neutron Properties and Interactions 

 Neutrons being energetically ejected from a nucleus are a unique radioactive 

decay signature of fissile isotopes, like SNM, and fission products. Organic scintillators 

are occasionally referred to as proton recoil scintillators when used to detect neutrons..  

They are called proton recoil detectors because it is through neutrons recoiling protons, 

which cause the scintillations as they deposit energy in the surrounding medium.  Unlike 

gamma rays which mainly interact with electrons, neutrons are more likely to interact 

with the nucleus.  Neutrons interacting with hydrogen are of particular interest because 

neutrons have the same probability of scattering at 0 degrees as 90 degrees off of 

hydrogen atoms and can impart their full energy into the proton.
7
   Since organic 

materials contain multiple atoms of hydrogen for each molecule, like benzene, the 

probability to detect neutrons is increased.   Another important property of neutron-

proton collisions is that the probability of transferring any fraction or all of the neutron 

energy into the recoil proton is the same.  Thus, the energy distribution of recoil protons 

is the same from 0 MeV to the energy of the neutron.
7
  By measuring the energy 

spectrum of incident neutrons the average energy of emitted neutrons can be determined. 

 Neutrons interact with matter by inelastic scattering, fission, and absorption.  

When a neutron inelastically scatters with a recoil nuclei, the transferred energy is not all 

converted into kinetic energy and the nucleus is elevated to a higher state.  In this higher 

state, the nucleus de-excites by emitting a gamma-ray.
7
  When a neutron is absorbed into 

a nucleus, the mass number of the nucleus increases and produces a stable or unstable 

isotope.  A stable isotope will not have any further reaction, but an unstable isotope will 
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decay respectively to its characteristics.  A common absorption reaction used to detect 

neutrons is the Li-6(n,α) reaction which has a Q-value of 4.78 MeV.
4
  Nuclear fission is 

when an unstable atom accepts a neutron and immediately splits its nucleus into two or 

more pieces and releases heat, gamma rays, and neutrons.  Fissions most often occur in 

fissile materials, like U-235, which undergo prompt fission when they absorb a thermal 

neutron.  Some neutron detectors utilize neutron absorption reactions and fission as a 

means to detect neutrons instead of scattering. 

 

Organic Scintillation Detection Theory 

 In both liquid and solid organic scintillators, the process of producing detectable 

light is the same.  Both mediums use a solvent or solid material which consists of a high 

concentration of hydrogen molecules for neutron interactions and electrons for gamma 

ray interactions.  When the solvent and fluor molecules are excited by the moving 

charged recoil protons or ejected electrons, the molecules de-excite by isotropically 

emitting light.  The wavelength shifters absorb the emitted light and “shift” it to a longer 

wavelength.  Fig. 6 is a visual representation of the process. 

 

 

 

 
Figure 6. Organic Scintillation diagram. 
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 The components of the plastic and liquid mixture are of extreme importance and 

have been thoroughly studied, because they determine the probability of radiation 

interactions and efficiency of the scintillation process.
7
  The efficiency of the scintillation 

process can be affected in many ways, but the most significant one is the concentration of 

the fluor to the solvent.  In 1959, Brown, Furst, and Kallman observed that the efficiency 

of energy transfer from their solvent, Xylene, to their fluor, PPO was a function of the 

PPO concentration.  The higher the PPO concentration, the higher the energy transfer 

percentage.
7
  Additionally, the determined that once a fluor saturation limit was reached 

then the transfer percentage decreased, and that impurities like dissolved oxygen 

quenched their mixture and reduced efficiency.
7
  Surfactants are an uncommon additive 

for organic detectors.  Surfactants or emulsifiers, like Triton-X, assist in the dissolving of 

fluors other additives, but can be detrimental through quenching and reducing 

scintillation efficiency.  If a solution is using a neutron absorbing dopant, like 

gadolinium, then a surfactant might be used to increase the concentration of the dopants.  

Gadolinium and other neutron absorbers are used in both liquid and solid organic 

detectors due to their significant neutron absorption cross section.  With an absorption 

dopant, an exact signal can used to detect neutrons being absorbed instead of neutrons 

interacting with a scintillator.  

 An important characteristic of radiation detectors is the linear dependence upon 

the energy of the charged particle moving within the detector and the light output.
4
  

Linear dependence of light output is essential for analyzing the energy of neutrons and 

gamma rays through spectroscopy.  Due to deposited energy linear dependence, organic 

scintillators form count peaks of light intensity when exposed to gamma rays of distinct 

energy and count shoulders when mono-energetic neutrons interact with the scintillator.  
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Compton scattering of gamma rays within the detector’s medium form a shoulder called 

the Compton edge.  The Compton edge’s maximum energy is limited by an electron 

backscattered and the largest amount of energy is transferred to the electron as the 

gamma ray scatters away.
4
  If both the gamma ray and Compton scattered electron are 

absorbed within the medium, then a full energy count can be collected, but if the gamma 

ray escapes then a count will occur within the Compton edge.    

 

 

 

 
Figure 7. Gamma ray histogram depicting Compton edge and escape peaks.

4 

 

Figure 7 visually demonstrates how a Compton edge and full energy peak appear with the 

single and double escape peaks from pair production.  Single and double escape peaks are 

products of pair production in the detecting medium and are a function of whether the 

two positron annihilation photons absorb or escape.   

 The ability of organic scintillators to scintillate for neutrons and gamma rays, 

their fast response, and low Z-value constituents make them candidates to detect the fast 

neutrons of SNM.  The specific properties of organic scintillators that provide an 

effective means of fast neutron detection are:
4
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1. The high hydrogen content which has a hydrogen to carbon ratio greater than 

one. 

2. Organic scintillators that produce at least 50 percent of the light output of the 

organic crystal anthracene. 

3. The wavelength of emission is detectable in the range of the visible and ultra-

violet wavelength spectral response, between 300-500 nm. 

4. The medium’s transparency to the wavelength of its own emission, with or 

without wavelength shifters to minimize optical absorption, and an acceptable 

index of refraction near glass (~1.5). 

5. The conversion of deposited energy to light output is linear and proportional. 

6. The decay time of the scintillations should be short to enable fast signal pulse 

generation. 

 

Pulse Shape Discrimination Theory 

 Organic scintillators exhibit varying intensities of fast and slow components of 

light yield according to the mass and energy of incident particles.  These different 

components are dependent upon the specific ionizations of the particle.  Specifically, 

gamma-ray induced scintillation light from fast electrons have a greater proportion of 

their scintillation light generated within the prompt component as compared to recoiled 

protons from neutrons.
4
  The differing scintillation decay curves of three particles are 

shown in Fig 8. 
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Figure 8. Time dependence of scintillation intensity for stilbene scintillator.

11
 

 

 

 

The varying ratios of the slow component and the prompt component for fast neutrons, 

alpha particles, and gamma rays are due to the intensity ratio of the slow component after 

the ionizing event occurs.  By analyzing the prompt and slow component ratios of the 

light pulses, it is possible to determine which ionizing particle created the light pulse.  

Many methods have been developed for discriminating the events, but the most common 

one is the charge integration method, in digital systems. 

 The charge integration method is where the pulse amplitude of a signal pulse is 

integrated over two intervals or gates.  The long gate is a time interval that spans the 

entire pulse signal, and the short gate spans the fast component of the signal.  Figure 9 is 

a graphic representation of the gating of a pulse signal. 
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Figure 9. Representation of gating intervals in PSD.

12
 

 

 

Next, the charge integrals of the long gate, Qlong, and the short gate, Qshort, are subtracted 

and divided by the charge of the entire pulse to calculate the PSD parameter.  The PSD 

parameter is a measure of the ratio of the slow component’s charge compared to the total 

collected charge.
12

 

                     Equation 2 

After the PSD parameter is calculated to each pulse, identification of neutrons from 

gamma rays can begin.   

 A common method of using the PSD parameter to identify neutrons and gamma 

rays is to separate the particles by their PSD ratio, which can change by the detector type.  

Using a 2-D histogram, the limits in the PSD ratio for specific particle types can be 

observed.  Figure 10 shows a 2-D histogram distribution of the pulses by energy output 

and PSD parameter with an overlay of the respective regions of neutrons and gamma 

rays.    
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Figure 10. Two dimensional histogram of the energy versus PSD Parameter by EJ 309 

measuring an AmBe source.
13

 

 

 

 

The overlay on Fig. 10 demonstrates how low and high energy neutrons and gamma rays 

align and can be separated when evaluated with the PSD parameter.  Then an energy 

filter and PSD ratio thresholds are applied to properly identify neutrons and gamma rays. 

 The conventional method of evaluating the reliability of PSD in a detector is 

analyzing the separation of the peaks of the gamma ray and neutron histogram curves.  In 

order to do quantify the degree of separation a Figure of Merit, FOM, is calculated.  The 

FOM is determined with the following equation: 

                  Equation 3 

where the distance between the peaks of the neutrons, Pn, and the gamma rays, Pγ, is 

divided by the full-width-half-max (FWHM) of each respective curve.
13

  The peaks and 

FWHMs are usually determined by fitting Gaussian curves to the data.  EJ 309 detectors 
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generally have FOM of 1.8 and stilbene crystals have a FOM of 4.70.
8,14

  Current 

research of liquid to solid neutron detectors, which are more affordable than stilbene, 

have a FOM of 3.31.
8
 

 

Solidification Theory 

 In this work the method chosen to solidify liquid mixtures is to dissolve a 

scintillation mixture into a relatively inert elastomer. The material selected for this 

research is Polydimethylsiloxane (PDMS).  PDMS is a widely used organic polymer.  Its 

applications range from contact lenses and medical devices and to solar panel arrays.  

PDMS is a colorless material that has a refractive index of 1.4; water has a refractive 

index of 1.0 and glass’s is 1.5.
15

  It is inert, hydrophobic, non-toxic, and non-flammable, 

unlike most organic scintillators like benzene.
15

  These characteristics along with the 

remaining in a solid state from -45 to 200 
o
C, makes PDMS a suitable candidate for 

attempting to make a solid neutron detector.
15

 

 The chemical formula for PDMS is (H3C)3SiO[Si(CH3)2O]nSi(CH3)3, where n is 

the number of the repeating  monomer [SiO(CH3)2].  A typical PDMS elastomer base is 

mixed with its curing agent in a 10:1 ratio, but it can be vary as widely as 5:1 or 33:1.
16

  

The curing agent for PDMS is generally a form of hydrochloric acid.
17

  When the curing 

agent and the elastomer base are mixed, the polymerization process of cross-linking 

begins.  Cross-linking, also known as biconjugation, is the process of chemically 

combining the ends of two or more molecules with a covalent bond.
18

  Cross linking 

molecules contain at least two reactive ends that can attach to each other to form the 

macromolecules.
19

  Heat may be applied to the elastomer mix in order to hasten the 

polymerization process, but crosslinking will still occur at room temperature, 25 
o
C.

15
  

Macromolecules consist of multiple repetitions of molecule chains of relatively low 

molecular mass, such as plastics and hydro-carbon chains.
19

  When the PDMS’ cross-

linking process is complete, then a solidified polymer is formed out of the 
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macromolecules.
19

  With PDMS solids mixed with liquid scintillator, neutron detection 

may be possible, and capabilities similar to the findings of the previously mentioned 

styrene and PVT detectors mixed with other liquid scintillators. 
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CHAPTER 3 

LIQUID EXPERIMENTAL APPROACH AND RESULTS 

Liquid Mixture Selection 

 Before any scintillation mixtures were made a review of current liquid mixtures 

was conducted for select candidate mixtures for the research.  The focus of the review 

was the key components of an organic scintillation mixture: solvent, primary fluor, and 

wave-length shifter.  The selected mixtures will be tested for neutron detection 

capabilities and then developed into candidates for the solidified detectors.  Reference 

mixtures from Dr. Zaitseva’s work and the proposed Low Energy Neutrino Astronomy 

(LENA) observatory were selected after reviewing the neutron detection results of their 

mixtures.
13,20

  The chosen components were the solvents xylene and linear alkyl benzene 

(LAB), the selected primary fluors were phenyl-mesityle-pyrazolin (PMP) and PPO, the 

wave-length shifter bis-methylstyryl-benzene (MSB), and the dopant lithium oxide 

additive phenyl salicylic acid (Li-3-PSA).  The purchasable liquid scintillation mixture 

EJ-309 was selected as a standard to compare the other mixtures to.  The proposed 

mixtures are in the following table. 

 

 

 

Table 1.  Proposed LS Mixtures. 

Solvent/ 

Mixture 

Primary 

Solute 
Concentration 

Secondary 

Solute 
Conc. Dopant Conc. 

LAB PPO 2 g/L MSB 
20 

mg/L 
- - 

LAB PMP 2 g/L - - - - 

Phenyl 

Xylene 
PPO 30% wt MSB 

0.2% 

wt 
Li-3-PSA * 5% wt 

EJ309 N/A N/A N/A N/A N/A N/A 

 

 



 24 

Once the initial mixtures were decided upon, a review of the emission spectra of the 

components was undertaken in order to select a PMT that matches the expected 

scintillation emission wavelength from the wavelength shifter.  An Electron Tube 9266B 

PMT was selected due to its low dark noise signal and high quantum efficiency of 30% at 

a wavelength of 370 nm.
21

  The light absorption and emission spectra of the mixture 

components was tabulated, shown in Table 2, to verify that the solutions matched the 

PMT and that the wavelength shifter, fluors, and solvents overlapped. 

 

 

 

Table 2. Light Absorption and Emission Wavelength comparison. 

Material 

Absorption Spectrum 

Max 

Emission Spectrum 

Max 

Xylene 270 nm 290 nm 

LAB 260 nm 283 nm 

PPO 303 nm 365 nm 

MSB 365 nm 420 nm 

PMP 294 nm 415 nm 

EJ 309 N/A 424 nm 

 

 

 

 After ensuring the emission wavelengths matched the PMT, supplies were 

gathered to make the mixtures.  Two challenges were encountered while gathering 

materials: obtaining un-sulfonated LAB in reasonable quantities and the relatively high 

costs of PMP and Li-3-PSA.  PMP and Li-3-PSA were deemed too expensive and were 

removed as components for an affordable neutron detector.  The solvent LAB was 

removed because no vendor could be found to supply a suitable quantity for this research, 

because most LAB is sold by the shipping container or by drum barrels.  Therefore, two 

final mixtures remained for testing and are listed in Table 3.  
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Table 3.  Final LS Mixtures. 

Name Solvent/ 

Mixture 

Primary 

Solute 
Concentration 

Secondary 

Solute 
Conc. 

Xy 1 Phenyl 

Xylene 
PPO 2 g/L MSB 

20 

mg/L 

EJ EJ309 N/A N/A N/A N/A 

 

   

 

 The next step in the research was the design and purchasing of a flask to evaluate 

the detection characteristics of the liquid scintillation mixtures.  The desired qualities for 

the flask are transparency, low reactivity, and precise dimensions.  A quartz glass flask 

was selected because of its transparency, general inertness, and precision of manufacture.  

A flask with a neck of 53mm in inner diameter and a length of 88mm was ordered to 

allow the PMT’s face to rest on the spherical cavity in the bulb.  The bulb of the quartz 

flask can hold 500ml.  Once the flask was received, it was wrapped in 

polytetrafluoroethylene (PTFE) tape for reflecting the scintillation light and then covered 

in electrical tape to light proof the flask from outside light.  The inside of the flask was 

left bare. 

 

Liquid Experimental Approach 

 The candidate mixtures were tested at the Radiological Science and Engineering 

Laboratory (RSEL) facility in the Boggs Building at the Georgia Institute of Technology.  

The gamma ray and neutron sources utilized for measuring the responses of the mixtures 

were cesium-137, sodium-22, cobalt-60, thorium-232, and plutonium-beryllium.  The 

PuBe source is of special interest because it produces a mixed radiation field of neutrons 

and gamma rays.  PuBe’s emitted neutrons have an average energy of 3.2 MeV and the 

source emits 4.43 MeV gamma rays.
22

   Most non-PuBe measurements were taken in a 

nearby laboratory within the Boggs Building.  All measurements of the PuBe source were 
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performed in a shielded room in the RSEL, due to the high dose rate of the source.  The 

dose rate for the PuBe at one foot away was 23mrem/hr and outside the entrance behind a 

closed door it was 0.1 μrem/hr.  The PuBe source was placed in a concrete box for further 

shielding.  The equipment and software for the experiments used were an ET 9266B 

PMT, Canberra Model 2007 preamplifier base, Canberra DT-7730B digitizer, CAEN 

NDT1470 power supply, CAEN DPP-PSD software, and MATLAB software. 

 The initial measurements were sequential counts of Co-60 as the Xy 1 solution 

was mixed.  The first count was only with the base solvent of xylene in the flask and the 

source placed directly on the midpoint of the bulb.  Ten minute measurements were taken 

at each stage of mixing the solution as PPO, MSB, and Triton-X were added.  Triton-X 

was added in an early version of Xy 1 in order to observe the effects of adding a 

surfactant, but was excluded in the rest of the mixtures.  After these early measurements, 

gamma ray counts were conducted with the Na-22, Cs-137, Co-60, and Th-232 sources.  

Energy calibration for the detector was conducted with a Na-22 source.  Na-22 produces 

two energies of gamma rays by positron emission: 0.511 MeV annihilation gamma rays 

and a 1.275 gamma ray.  The information from these counts was used to observe the 

gamma ray detection characteristics of the mixtures. 

 The high voltage supply was set to 1000 volts and the amplifier was set for low 

gain runs.  The signal from the PMT was routed from the anode of the amplifier to the 

digitizer.  The amplifier and digitizer shape the signal and route it to a laptop for analysis 

in the DPP-PSD software.   
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Figure 11. Diagram of data acquisition for scintillator measurements. 

 

 

 

Figure 11 is a diagram of the entire data acquisition system.  The time gating within the 

DPP-PSD software was set at a total gate of 128 ns. 

 For the PuBe measurements, a vise suspended the detector and was placed within 

a concrete box.  The source was placed 27.2 cm away from the detector in the opposite 

corner.  The PuBe source was located in the middle of an aluminum source holder, where 

the wall thickness was 3.1 cm.  The space between the detector and source was used to 

add lead bricks, 5 cm thick each, and borated-polyethylene sheets, 2.5 cm thick each, in 

order to shield gamma rays and neutrons, respectively, as shown in Fig. 12. 
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Figure 12. Photograph of experimental setup with polyethylene shielding. 

 

 

 

Borated polyethylene, 5% by weight, was selected for the neutron shield because boron 

absorbs, instead of moderates, neutrons.  Lead shielding was chosen for its high density 

and large atomic number which produces a high cross section for photo electric 

absorption of gamma rays of 0.5 MeV and higher energies.
4 

 

Liquid Experimental Results 

 Initial gamma ray measurements of the LS detectors were analyzed using the 

energy histogram capability of CAEN’s DPP-PSD software and MATLAB.  Step-by-step 

measurements were taken of the Xy 1 LS mixture in order to observe the effects of each 

component and are displayed in Fig. 13. 
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Figure 13. 10 minute step-by-step Co-60 energy histogram by Xy 1. 

 

 

 

Figure 13 shows that the organic solvent Xylene is inert by itself, but a dramatic increase 

in responsiveness occurs when the primary fluor PPO is added.  The increase occurs 

because the scintillation wavelength of the fluor matches the PMT.  When the fluor is 

combined a combined gamma ray peak for Co-60’s 1.17 and 1.33 MeV gamma ray 

emissions is formed.  The addition of the wavelength shifter MSB lengthened the energy 

spectrum of the response by causing the LS mixture to be more sensitive to differing 

gamma ray energies.  MSB increased the total response and energy sensitivity of the 

mixture; the total counts increased 6.16% .  Whereas the surfactant Triton-X reduced 

energy sensitivity and total counts by 3.35%.  Due to these results, adding surfactants to 

xylene mixtures was halted. 

 After confirming that Xy 1was responsive to gamma rays, measurements of the 

three other gamma ray sources Th-232, Cs-137, and Na-22 were conducted.  The counts 
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were normalized respectfully to each source’s activity and the ADC Channels were 

linearly calibrated with known gamma ray energies in order to compare the energy 

resolution of the gamma ray in Fig. 14. 

 

 

 

 
Figure 14.  Calibrated and normalized energy histogram of Xy 1 measuring four sources. 

 

 

 

In Figure 14, the Na-22 curve does not appear normalized, but at 0.33 MeV it reaches its 

maximum in one channel (channel 129), but the MATLAB graphing software did not 

show it.  While Xy 1 is able to detect the relative energy of gamma ray edges, Xy 1 does 

not have the energy resolution to separate the edges of Co-60’s two gamma rays in Fig. 

14.   

 A linear energy calibration for Xy 1, and all later organic detectors, is applied 

with the measurements of Th-232’s 2.617 and Cs-137’s 0.661MeV gamma ray emissions 

and the following method.   Because the peaks forming in the histogram are the Compton 

Edge of the incident gamma ray and the full energy peaks, Eo, are un-noticeable, Equation 
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4 is used to calculate the energy of each gamma ray’s Compton Edge, E’.
4
   

             Equation 4 

The Compton Edge energies for Th-232 and Cs-137 are 2.384 MeV and .477 MeV.  

Next, the midway point between the two half heights of the peaks was used to select the 

channel number for the corresponding Compton Edge energy.  Then a linear fit, shown in 

Fig. 15, is applied between these channel numbers to convert the remaining channels into 

specific gamma ray energies.  

 

 

 

 
Figure 15. Linear energy calibration plot of Xy 1 with Th-232’s and Cs-137’s Compton 

Edge measurements. 

 

 

 

Using energy calibration, the energy resolution of the scintillation detector can be 

assessed.  The percent energy resolution, %R, is given in Eq. 5, using the FWHM and 
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energy of the Compton Edge.                                   

                                                Equation 5 

The energy resolution of Xy 1 for the Na-22 edge is 32.6%, which is poor compared to 

EJ-309 which has an energy resolution of 20.6%.
23

  

 After confirming that Xy 1 was able to detect gamma rays and their respective 

energies, PuBe neutron measurements were initiated.  Using the DPP-PSD software a 

series of trials were conducted in order to determine the optimal gating for Xy 1.  First, a 

rough gating was selected while observing the pulses in oscilloscope mode by comparing 

the short gamma ray pulses to the longer neutron pulses.  Next, 2-D histogram plots of 

different gatings were assessed in order to determine the optimal gating for Xy 1.   
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Figure 16. Energy Channel vs. PSD parameter 2-D histogram comparison of liquid Xy 

1’s trial 8 (a) and trial 11 (b). 

 

 

 

The trials which demonstrated a visible separation between two signals, like plot b in Fig. 

16, had their respective FOM’s compared to each other to find the optimal gating.  Trial 3 

demonstrated the greatest separation between the two curves with a long gate of 228 ns 

and short gate of 40 ns.  With the gating established, an one hour, unshielded 

measurement of the PuBe was taken to determine the FOM and error of Xy 1. The FOM 

error, ƠFOM, was calculated by applying error propagation to the FOM equation, Eq. 2.
9
    

 

                Equation 6 
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For Equation 6, the abbreviation FWHM has been reduced to FM, D represents the 

distance between the maximum peaks of the gamma ray and neutron Gaussian fitted 

curves.  Equation 6 displays the known deviation of a Gaussian curve.
 4

 

                Equation 7.
 

Utilizing MATLAB, two Gaussian curves were fitted to the date shown in the PSD 

histograms of Fig. 17. 

 

 

 
Figure 17.  Calibrated PSD plot of an hour long measurement of unshielded PuBe by Xy 

1 with Gaussian fits. 
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Additionally, the overlaid curves were assumed to be gamma rays and neutrons as seen in 

previous work.  The FOM of Xy 1 was calculated to be 0.25 ±0.138, with the FOM and 

ƠFOM equations.
 

 Next, the shielded measurements of PuBe was begun in order to confirm or deny 

whether the neutrons and gamma rays are being separated.  The two visible curves shown 

in Fig. 17 visualize two distinct pulse signals that differ in how much of their light 

intensity is prompt or delayed.   Previous work and theory have shown that the pulses 

with a higher PSD parameter, or more delayed light, are created by neutrons, and that the 

pulses with the lower PSD parameter are created by gamma rays.  To verify that the 

“higher” curve is neutrons and that the “lower” curve is gamma rays, a series of 

measurements were taken using lead and borated polyethylene shielding.  

 

 

 

 
Figure 18. Xy 1 PSD plot, from DPP-PSD, of a bare PuBe source. 
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Figure 19. Xy 1 PSD plot, from DPP-PSD, of PuBe shielded with 10 cm of lead. 

 

 

 

 
Figure 20. Xy 1 PSD plot, from DPP-PSD, of a PuBe source shielded by 5 cm of borated 

polyethylene shield. 

 

 

 

The lead shielding disproportionally reduced the lower curve’s high and low energy 

gamma rays, when comparing Fig. 18 to Fig. 19.  The borated polyethylene absorbed a 

portion of neutron, as presented in Fig. 20.  These results confirm that the two curves are 

not the same particle but are distinctly neutrons and gamma rays.   
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 The confirmation of separating neutrons and gamma rays by the pulse’s PSD 

parameter then allowed the analysis of neutrons and gamma rays without interference 

from the other particle.  The relative minimum in the combined Gaussian fit was selected 

as the value of the PSD parameter for a PSD parameter filter and then applied in order to 

plot the energy histograms of the two particles in Fig. 21.    

 

 

 

 
Figure 21. Energy histogram plots of Xy 1’s detected gamma rays (a) and neutrons (b) 

separated by a PSD parameter filter. 

 

 

 

The Compton Edge of PuBe’s 4.43 MeV gamma ray is observable in Fig. 21a, but no 

discernable energy peaks or shoulders are observed in the neutron histogram.  The 

gamma ray spectroscopy capability of Xy 1 is retained while being exposed to high 

energy neutrons.  After finalizing the measurements of PuBe, Xy 1 was replaced 

with EJ 309 and the next iteration of liquid experiments began.  

 For this round of measurements, the same four gamma ray sources and the PuBe 

sources were used along with the same equipment and setup.  A step-by-step gamma ray 
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plot was not possible since EJ 309 is sold pre-made, therefore counts of the four gamma 

rays sources was first.   

 

 

 

 
Figure 22. Normalized energy histogram of liquid EJ 309 measuring four gamma sources. 

 

 

 

Figure 22 shows that the energy resolution of EJ 309 is slightly better than Xy 1 but the 

two individual edges or peaks of Co-60 were not pronounced.  Following the gamma ray 

tests, PuBe PSD measurements with EJ 309 were conducted along with FOM 

calculations.   



 39 

 
Figure 23. 1 hour PSD parameter histogram of liquid EJ 309 with Gaussian fit curves. 

 

 

 

The FOM of the Gaussian fits from the 30 minute PuBe measurement in Fig. 23 was 

0.531 ±0.188.  The FOM of EJ 309 is slightly more than twice of Xy 1, which is evident 

in the pronounced gap observed in Fig. 23 when compared to Xy 1’s separation in Fig. 

17. 

 After defining the Gaussian PSD curves of EJ 309, a PSD parameter filter was 

applied to the data.  Energy histograms of the detected neutrons and gamma rays were 

plotted in Fig. 24.   
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Figure 24. 1 hour EJ 309 liquid energy histogram plots of gamma rays (a) and neutrons 

(b) separated by a PSD parameter filter. 

 

 

 

With a similar PSD parameter filter applied to the Xy 1 mixture, the Compton Edge for 

PuBe’s 4.43 MeV gamma ray is observable.  The ability to isolate the 4.43 MeV gamma 

ray’s Compton Edge was expected because the edge appeared in the lower curve in the 2-

D PSD histogram plot in Fig. 25. 
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Figure 25. 2-D PSD histogram plot of a 1 hour measurement of PuBe with liquid EJ 309. 

 

 

 

Thus, gamma ray energy spectroscopy of EJ 309 and Xy 1 are still observable in when 

the neutron counts are filtered out 

 After compiling the results of the liquid experiments, the EJ 309 LS mixture 

appears to be more effective at separating neutrons and clearer energy resolution.  Table 

4 is a summary of the results of the LS mixtures with results from a characterization 

study of EJ 309. 

 

 

 

Table 4. Summary of energy resolutions and FOMs of LS mixtures and reference 

mixture. 

Mixture 
Resolution 

(%) 
FOM 

FOM Error 
(+/-) 

Xy 1 32.64 0.25 0.138 

EJ 309 20.61 0.530 0.197 

EJ 30923 16.00 0.8 N/A 
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The results of EJ 309 in this work compared to another researcher’s findings is promising 

due to the energy resolution results being similar, but the FOM results are not close. 
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CHAPTER 4 

SOLID EXPERIMENTAL APPROACH AND RESULTS 

Solidification Process 

 The next step in the work was the solidification of the liquid candidates. For this 

research, a ratio of 10:1 for the Sylgard 184 PDMS base to curing agent was selected 

because it is the recommended ratio from the supplier.
15

  The steps utilized for making a 

solid sample are: mixing a 10:1 ratio of the base and curing agent, mixing the desired 

scintillator amount, removing air bubbles with a vacuum pump, and then cured at the 

desired temperature.  Figure 26, below, is a visual representation of the process of mixing 

a LS mixture with an elastomer to make a solid detector mold. 

 

 

 

 
Figure 26.  Solidification procedure step diagram. 

 

 

 

 Two in., five cm, diameter petri dishes were used as the container for the small 20 

g samples.  These samples measured approximately 0.25 cm in thickness.  Plastic pipets 

and a mass scale were used to ensure the precision of the mixture ratios.  An enclosed 

vacuum pump workbench pulled air bubbles that formed while mixing the scintillator and 

PDMS, and an incubator cured samples at temperatures above room temperature.   
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 The curing temperatures ranging from room temperature, 25
o
C, to 80

o
C were 

tested to determine the optimum curing temperature.  After many trials, room temperature 

was determined to be the optimal curing temperature due to three problems encountered 

with the application of heat.  The three problems aggravated from higher curing 

temperatures were the evaporation of a significant portion of the liquid scintillator out of 

the mixture which degraded scintillation output, severe concave and convex faces on the 

molds from +90% LS evaporation that were unable to be coupled to the PMT face, and 

LS vapors weakening and dissolving the lid and side walls into the mold as it solidified.  

At room temperature the scintillation output returned and no more concave and convex 

faces were formed. Unfortunately, the dissolving of the petri dish into the molds at room 

temperature was still a persistent challenge, though less severe.  Figure 27 is a picture of 

the organic solvents damaging a scintillating mold with its container and a later working 

sample.  

 

 

 

 
Figure 27. Photograph of a melted mold (left) and successful Xy 1 mold with cm ruler. 
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The persistent dissolving of the petri dishes showed that the heating of the mixtures only 

exacerbated the melting of the dishes and was not the cause.  The solvent bases of Xy 1 

and EJ 309 were suspected of being the foundation of the issue because of their organic 

solvent properties.  After a review, it was discovered that the dishes were made of 

polystyrene and not the assumed polyethylene.  This distinction is important because 

polystyrene is a plastic that is soluble in organic solvents.  To correct this, two methods 

were selected to protect future small solid samples: aluminum foil lining or a polyacrylic 

acid (PAA) lining.  After new samples were made with both methods, the aluminum foil 

method produced intact solid samples and jagged samples were extracted from dishes 

lined with PAA due to gaps, formed while drying, that adhered tightly to the mold.  The 

method of lining the petri dishes with aluminum foil was chosen for producing all 

remaining small solid molds. 

 The method employed to protect the mixture as it cured focused on maintaining 

the optical integrity of the mold.  For each mold, one piece of aluminum foil was cut, 

shaped, and folded in order to minimize wrinkles on the circumference of the dish and 

prevent the mixture from touching any polystyrene.  A tight lid was then applied which 

pinched any wrinkles which formed.  Wrinkles left “un-pinched” caused capillary action 

in earlier foil molds and a majority of the scintillation mixture was erroneously 

transferred out of the dish.  The “pinching” of the aluminum foil was the last adjustment 

for the small sample solidification process.  Table 5 is a summary of the small Xy 1 

samples highlighting their main corrective action, curing outcome, and LS:PDMS ratio. 
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Table 5. Summary of Xy 1 small samples. 

Name 
Production 

Date 
LS:PDMS 

Ratio 
Result Corrective Action 

1 6-Oct-15 50/50 Melted Use room temp 

2 6-Oct-15 25/75 Melted 60 C 

3 6-Oct-15 15/85 Cured Increase LS ratio 

1 remake 13-Oct-15 50/50 Melted Aluminum foil 

2 remake 13-Oct-15 25/75 Melted PAA liner 

4 13-Oct-15 25/75 
Partial 
cure 

PAA liner 

2 remake 28-Oct-15 25/75 Cured 
Refine aluminum 

liner 

2 remake 1-Nov-15 25/75 Cured Enlargen sample 

1 remake 9-Nov 50/50 
Partial 
cure 

Stopped 50/50 
ratio 

2 Larger 13-Nov-15 25/75 
Partial 
cure 

Reduce capillary 
action 

2 Larger 17-Nov-15 25/75 Cured Ordered larger dish 
 

 

 

PDMS and EJ 309 samples were created once the production process was refined.  After 

the small solid sample production was refined the next step was to apply the working 

process on larger samples.  For creating larger samples, the polystyrene dishes were 

replaced PTFE dishes were chosen for their known and verified inactivity with benzene 

and xylene. 

 The larger samples were produced in 3.5 in. wide, 250 mL PTFE dishes.  The 

same solidification process was used except for using an aluminum liner.  The aluminum 

liner was unnecessary due to PTFE being insoluble in the organic solvents.  Three large 

samples were made: two EJ 309 molds and a Xy 1 mold.  The first EJ 309 mold was 

rendered un-usable by a chemical reaction between the PDMS and EJ 309 where the 

reaction clouded the mixture and made the mold opaque. The reaction between the two 

solutions is unknown due to the recipe for EJ 309 not being published.  This was 

unexpected because the ratio of EJ 309 to PDMS, 25%/75%, was used in earlier small 
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samples which did not experience this issue. The next EJ 309 sample reduced the EJ 309 

content from 25% to 6.25% of the whole mixture and successfully cured into a useable 

mold.  The large Xy 1 mold was unusable due to 79.4% of the LS evaporating out of the 

mixture before solidification.  

 Finally, a cost analysis of the detectors was completed for assessing the feasibility 

of fielding the solidified detectors and comparing them to currently available detectors.  

The material cost of each mixture component of the detector was utilized to determine the 

cost of each mold.  The total cost was divided by the final mass of the detector.  Shipping 

costs and taxes were not included.    The results of this method depict the material costs 

of the final mold in Table 6.   

 

 

 

Table 6. Cost comparison of solidified detectors. 

Detector 
Cost per gram 

($/g) 

EJ 309 

(small) 
$ 0.179 

EJ 309 

(large) 
 $ 0.127  

Xy 1 

(small) 
 $ 0.133 

Stilbene 

(vendor) 
 $ 64.357  

EJ 309 

(vendor) 
 $ 0.255  

 

 

 

Solid Experimental Approach 

 A similar experimental approach of the liquid detectors was replicated for the 

solid detectors.  The same equipment was used except for the large EJ 309 mold, where a 
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larger PMT was utilized.  A RCA 8054 PMT was selected for the large 3.5 in mold.  The 

switch was made because the large molds were difficult to properly wrap for a 2 in. PMT 

face.  The 3 in. face of the RCA 8054 assisted by significantly reducing the exposed 

surface area of the mold coupled to the PMT face.  The smaller amount of exposed 

surface area on the underside of the mold eased the application of PTFE reflective tape.  

The applied voltage was increased from 1000 V to 1800 V for the large mold and RCA 

8054 PMT.  The RCA 8054 has a quantum efficiency of 18% at 440 nm.
24

  The last 

change was placing the gamma ray sources directly on top of the origin of the circular 

mold, instead of on the flask’s midpoint.  For the PuBe measurements, the geometry was 

maintained precisely between the liquid and solid experiments.   

 

Solid Sample Results 

 The successful molds were wrapped with PTFE and light proofed before the 

measurements were taken.  The initial measurements of all small molds were with the 

same four gamma ray sources of Na-22, Cs-137, Co-60, and Th-232.  The results differed 

from the LS detectors in which shoulders were formed instead of clear gamma ray 

Compton edges.  Since gamma ray edges did not form for the small molds, energy 

calibration of their ADC channels was not performed. 
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Figure 28. Normalized four source plot of small solid Xy 1 mold. 

 

 

 

 
Figure 29.  Normalized four source plot of small solid EJ 309 mold. 
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The results of the small EJ309 and Xy 1 molds in Figs. 28 and 29 are similar, but the 

large EJ 309 mold was different.  The large EJ 309 mold began to form edges after 

clearing a 0.5 MeV threshold.  A rough energy calibration was performed on the 

combined 1.25 MeV edge of Co-60 and the 0.667 edge of Cs-137 and applied to Fig. 30b. 

 

 

 

 
Figure 30. Uncalibrated four source plot of large solid EJ 309 mold (a) and calibrated 

four source plot (b). 

 

 

 

The energy calibration of the large EJ 309 detector is not to be relied upon, because many 

of the low energy counts and dark noise was converted into negative gamma ray energy 

counts.  In addition, a pure PDMS mold was formed in order to confirm or deny the 

interference in the signal created in the solid detectors.  The PDMS only mold was 

exposed to the same gamma source and geometry. 
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Figure 31.  Normalized four source plot of a PDMS only. 

 

 

 

In Figure 31, the background was included in the count normalization in order to observe 

the source created signal compared to the background.  While the Th-232 source showed 

a sizable signal compared to the background with the PDMS only solid detector, this 

signal is still relatively small compared to the responses of the Xy 1 and EJ 309 molds.  

The PDMS mold measurements demonstrate that the Xy 1 and EJ 309 molds are not 

notably affected by their PDMS component.  

 Once the gamma ray measurements were complete, the PuBe PSD measurements 

were conducted.   The initial PuBe measurements with the molds did not form two 

distinct PSD parameter curves.  Instead, a large low energy signal dominated the base of 

the 2-D plot, but two faint high energy Gaussian curves were noticeable.  In Figure 32, a 

2-D PSD histogram is displayed with a super imposed line marking the  boundary 

between the two curves.    
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Figure 32. A one hour DPP-PSD 2-D plot measurement of the PuBe source by the small 

EJ 309 mold. 

 

 

 

 A series of increasing energy filters was applied upon the data to remove the noise 

of the low energy signal and uncover the Gaussian curves for the neutron and gamma ray 

signals.  An energy filter of Qlong, or the total charge collected within the long gate of the 

pulse, was selected in order to focus on the total energy of the signal and not the prompt 

charge collected within the short gate.  Figure 33 illustrates the change in the PSD 

parameter histogram plot as the lower energy signals are filtered out and the two signal 

curves emerge. 

 

 

 



 53 

 
Figure 33.  Series of PSD parameter histograms as the energy filter is increased to 

separate high energy neutrons and gamma rays in the small EJ 309 mold. 

 

 

 

 With a functioning energy filter which uncovers the gamma ray and neutron 

curves, shielded measurements of the PuBe are begun in order to verify the separation of 

gamma rays and neutrons.  In Figure 34, an energy filter of Qlong 2400 is applied to 
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measurements of a PuBe source with no shield, 7.5 cm of borated polyethylene shielding, 

and 10 cm of lead shielding. 

 

 

 

 
Figure 34.  Comparison of the small EJ 309 mold PSD histograms with different 

shielding during one hour counts: unfiltered and bare (a), filtered and bare (b), filtered 

with 7.5 cm of poly shielding (c), filtered with 10 cm lead shielding (d). 
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Figure 34c illustrates a large drop in counts for the curve on the right with polyethylene 

shielding and Fig. 34d shows a large decrease in the counts of the left curve, when 

compared to the unshielded source in Fig. 34b.  The disproportionate reductions in counts 

of the EJ 309 mold by shielding parallels the results of shielding Xy 1 with lead and 

borated polyethylene, in Figs. 18-20.   The observed reductions of separated signals in 

Fig. 34 confirm that the two signal curves are gamma rays and neutrons.  Occasionally an 

energy filter uncovered the Gaussian signal curves with the bare source but not with the 

lead shielded PuBe source.  Increasing the threshold of the Qlong filter corrected this.  

Figure 35 illustrates the same effect polyethylene and lead shielding has upon the large 

EJ 309 mold. 

 

 

 

 
Figures 35.  Comparison of the large EJ 309 mold PSD histograms with different 

shielding during two hour counts: bare (a), 7.5 cm of poly (b), 15 cm of lead (c). 
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 With the verification of gamma ray and neutron separation with the shielded 

measurements, the FOM of the solids was determined with the energy filter.  Figure 36 is 

a plot of the FOM of the three solid detectors as a function of the filter’s Qlong setting. 

 

 

 

 
Figure 36.  Energy filter threshold vs. Unshielded FOM plot. 

 

 

 

Every solid’s FOM generally increases to a maximum as the threshold of the energy filter 

is increased.  The FOM then reaches a peak and subsequently falls to zero.  The FOM 

“function” initially rises in all cases because the filter is reducing the inseparable low 

energy noise and signals and leaves the separable high energy signals.  Eventually, the 

FOM calculation drastically drops as the entire gamma ray curve is reduced and only the 

neutron Gaussian curve is left.  This response is expected because PuBe emits 4.43 MeV 

gamma rays, but also emits 8 and 10 MeV neutrons that are still detected by the molds.
22

  

The energy filter is not calibrated because the measurements with the molds did not yield 

discernable edges and each mold’s response was not the same to each energy.  If each 
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solid detector is able to calibrated, then their respective FOM calculations can be 

compared by gamma ray energy.  

 After refining the PSD of the molds, the PSD parameter filter was applied to the 

data and an energy histogram was plotted.   

 

 

 

 
Figure 37.  Gamma ray energy histograms of PuBe with Xy 1 (a) and large EJ 309 (b) 

molds. 

 

 

 

Unfortunately, the 4.43 MeV gamma ray Compton Edge of PuBe did not form in any of 

the molds as shown in Fig. 37.  This was expected because only shoulders formed for the 

solid detectors from the pure gamma source measurements. 

 The results of the solid detectors are promising for future neutron detectors when 

compared to their previous liquid performance.  The solid detectors are hydrophobic, less 

flammable, and separate neutrons from gamma rays, but their energy resolution was 

greatly reduced.  Surprisingly, the small EJ 309 mold had the greatest separation of 

between the neutron and gamma ray curves, shown in Table 7.  
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Table 7.  FOM summary of solid molds. 

LS 

Mixture 

Volume 

(cm
3
) 

LS 

Ratio 

% 

Initial 

mass 

(g) 

Cured 

mass 

(g) 

Peak 

Unshielded 

FOM 

FOM 

Error 

(+/-) 

Duration 

of FOM 

Run (hr) 

Xy 1 

(small) 
8.11 25 20.00 18.00 0.673 0.214 3 

EJ 309 

(small) 
8.11 25 16.27 13.63 0.859 0.419 1 

EJ 309 

(large) 
99.31 6.25 93.50 93.27 0.608 0.196 2 

PDMS 

(only) 
8.11 0 8.03 7.02 N/A N/A N/A 

 

 

 

The large EJ 309 mold had the lowest degree of separation of the curves and this might 

be due to the PMT face not covering the entire surface area of the its mold and the 

reduced LS ratio. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

Conclusion 

 In this work, solidified organic scintillator detection systems accurately performed 

PSD in order to separate neutrons and gamma rays.  MATLAB software was 

implemented to separate the signals with an applied energy filter.  Measurements of Co-

60, Na-22, Cs-137, and Th-232 were conducted to confirm gamma ray detection before 

proceeding to neutron detection.  The performances of the systems were verified by 

measurements of unmoderated PuBe, lead shielded PuBe, and borated polyethylene 

PuBe.  The goal of this thesis work was to produce a working neutron detector usable in a 

field environment from LS mixtures.  The goal was achieved by the small and large EJ 

309 solidified detectors.  These detectors can be placed into a mixed radiation field and 

detect high energy neutrons.  These results are encouraging but more work needs to be 

done. 

 

Future Work 

  

 This work has not completed the research necessary for developing a cheap and 

durable neutron detector.  The following may assist in the development of neutron 

detectors or aid in the methods of development: 

 Other LS mixtures should be explored, especially LAB and solvents other than 

xylene.  

 An automated system or code of establishing energy filters for solidified detectors 

will expedite the testing other molds and mixtures.   

 Constructing a LS system which can produce improved energy resolution of 

gamma rays and neutrons will assist in assessing the effectiveness of test LS 

solutions. 
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 Automation of finding optimum energy filter for the large solid detectors 

 Experiments to determine the cause of EJ 309 reacting with Sylgard 184 in order 

to increase the percentage of EJ 309 in the mold.  
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