
The Information Mural:

Increasing Information Bandwidth in Visualizations

Dean F. Jerding and John T. Stasko

Graphics, Visualization, and Usability Center

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

fdfj,staskog@cc.gatech.edu

Technical Report GIT-GVU-96-25

October 1996

Abstract

Information visualizations must allow users to browse information spaces and focus quickly on

items of interest. Being able to see some representation of the entire information space provides

an initial gestalt overview and gives context to support browsing and search tasks. However, the

limited number of pixels on the screen constrain the information bandwidth and make it di�cult to

completely display large information spaces. The Information Mural is a two-dimensional, reduced

representation of an entire information space that �ts entirely within a display window or screen.

The mural creates a miniature version of the information space using visual attributes such as

grayscale shading, intensity, color, and pixel size, along with anti-aliased compression techniques.

Information Murals can be used as stand-alone visualizations or in global navigational views. We

have built several prototypes to demonstrate the use of Information Murals in visualization appli-

cations; subject matter for these views includes computer software, scienti�c data, text documents,

and geographic information.

Keywords: information visualization, software visualization, data visualization



1 Information Murals

Although large quantities of information are becoming available on-line, the information itself is

useless without e�ective display and access mechanisms. Information visualizations can utilize

visual and audible channels to convey information to the observer. The visual channels include

attributes such as size, shape, color, intensity, texture, font, etc. Independent of the visual channels

used, visual bandwidth is limited by the number and size of pixels on the screen.

The design of a particular information visualization is very much dependent on the task(s) it

is intended to support. Plaisant, Carr, and Shneiderman have categorized di�erent types of tasks,

including image generation, open-ended exploration, diagnostic, navigation, and monitoring[18].

For many of these applications, a global view of the information is important as a navigational aid

or as an analysis tool. Global views are used to provide context for more detailed views, to help

formulate a search, identify patterns, or make a gestalt overview.

As the information visualization �eld matures, visualizations must scale to larger and more

complex information spaces. Di�erent visualization techniques have been proposed to increase the

amount of information that can be displayed on the screen at the same time, both to create global

views and to portray focus+context simultaneously[25, 21, 5, 1, 2, 13, 17, 4, 24, 22, 23, 16, 27, 14].

However, all visualizations must be created using the limited number of pixels on the screen; this

often severely constrains a designer's ability to create global overviews of large information spaces.

Our Information Mural technique allows 2D visual representations of large information spaces

to be created even when the number of informational elements greatly outnumbers the available

pixels. Current methods for depicting such large information spaces typically utilize abstraction,

over-plotting, or sampling to create a view of the entire space. Or, scrollbars are used to allow

access to di�erent parts of the information. All of these techniques result in a loss of information

that might be useful to the observer.

Our technique increases the visual information bandwidth available to visualization applications.

An Information Mural is a 2D, miniature representation of an entire information space that uses

visual attributes such as color and intensity along with an anti-aliasing like compression technique

to portray attributes and density of information. The goals of our technique can be summarized

as follows:

� Create a representation of an entire (large) information space that �ts completely within a

display window or screen.

� Mimic what the original visual representation of the information would look like if it could

be viewed in its entirety, ie. containing the same visual patterns.

� Minimize the loss of information in the compressed view, irregardless of the size of the com-

pressed representation.

There are several di�erent types of information spaces which can be represented using informa-

tion murals:

� Graphs of data often require some compression technique to �t on the screen. Scaling and

rounding of data values is often necessary to draw the entire graph. Other alternatives are

to display an average of the data values, or only a subset of the data.

1



� Time-oriented visualizations often span many computer screens if laid out completely. These

types of views are particularly prevalent in software visualization[19] and monitoring appli-

cations.

� Visualizations which contain miniature representations of information are forced to make

tradeo�s in deciding what visual attributes of the information can be included at small scales.

� A text �le or document usually does not �t entirely on the screen, because its vertical dimen-

sion far exceeds its horizontal dimension. Displays of textual information thus often utilize

scrollbars to provide navigation through a document.

� Images might be represented using Information Murals. Although an image usually �ts on a

screen, it is often desirable to change the size of the image. As an image is shrunk, information

in the image is inevitably lost.

Information Murals allow global views of large information spaces to be constructed. Such

contextual information directly supports analytical and navigational tasks that a user performs

while interacting with informational displays.

The next section of this document describes the Information Mural technique in detail. Fol-

lowing this, visualization applications which utilize Information Murals are presented, along with

discussion of existing visualization systems which might take advantage of the technique.

2 Technique

Imagine some visual representation of a large information space, made up of distinct elements each

with their own representation. An Information Mural of this information is to �t in some area of

I x J pixels; assume there is a \bin" associated with each pixel. The position of each information

element is �rst scaled to �t into the available space. As each element is \drawn" in the mural

using an imaginary pen, di�erent amounts of \ink" fall into di�erent bins, in a manner similar to

anti-aliasing strategies in computer graphics. As each subsequent element is drawn, the amount of

ink will build up in di�erent bins, depending on the amount of overlap of the elements.

The resulting Information Mural is created by mapping the amount of ink in each bin (the

information density) to some visual attribute. In a grayscale mural, the shade of each pixel corre-

sponds proportionally to the amount of ink in each bin. Instead of using grayscale variation, an

equalized intensity variation over the entire color scale can also be used. With the raindrop mural,

the amount of ink in each bin makes a \puddle" centered around that pixel, so pixels with more

ink will appear larger. Color can then be added to the mural to convey other attributes of the

informational elements, while still preserving the density mapping.

Information Murals of certain information spaces may be inappropriate. The distribution of

information in the original image may be such that a useful Information Mural cannot be created.

For example, a grayscale mural showing a graph of a symmetric function with a short period will

be a dark bar with a thickness equal to the amplitude of the data.

2.1 Basic Algorithm

The basic algorithm for creating an Information Mural is listed below. The algorithm takes an image

of M x N elements and scales it into a mural of I x J pixels. In addition to the data structures

2



which store the information, the algorithm requires an I x J array of 
oats. The algorithm listed

below does not handle attribute colors on top of the density representation.

1. for each i; j set mural array[i][j] to zero

2. for each element m;n of information

a. compute x = n=N � J, y = m=M � I

b. determine the proportion of this point that lies in each of the four surrounding mural array

entries (totals to 1.0):

mural array[floor(x)][floor(y)]
mural array[floor(x)][ceil(y)]
mural array[ceil(x)][floor(y)]
mural array[ceil(x)][ceil(y)]

c. add each of the proportions determined in the previous step to the existing values of each

corresponding mural array entry

i. update max mural array value to keep track of the maximum mural array[][] value

3. for each i; j in the mural array

a. map the value mural array[i][j]=max mural array value

to a grayscale or color intensity varying scale, or to pixel size,

depending on the type of mural being created

b. color and draw the pixel at i; j of the mural based on mapping

computed in the previous step

For improved e�ciency, steps 2b and 2c can replaced by a single step which adds 1.0 to

mural array[floor(x)][floor(y)] and updates the max mural array value. This avoids having

to compute a number of 
oor's and ceil's and the percentages lying in each surrounding pixel,

e�ectively eliminating the anti-aliasing aspect from the mural. For many applications, the gain in

performance from using the aliased mural outweighs any slight changes in appearance.

2.2 Advanced Algorithm

We considered two alternative ways that attribute colors could be added to an Information Mural.

Before discussing the positives and negatives of each approach, it should be recognized that band-

width limitations imposed by each pixel mean that the mural may not be able to show attribute

colors for every piece of data at the same time. While the Information Mural technique increases

information bandwidth by changing intensity or size of pixels to represent density, a pixel is by

de�nition a single color. What if the mural compresses 50 data points into the same pixel, 5 of

which are to be colored blue, 13 red, 6 yellow, and so on{how should that pixel be rendered? It

does not make sense to mix rgb values, because an observer might be confused if equal parts of red

and green data values make a yellow pixel. Thus, we choose to color each pixel according to the

attribute color that occurs most frequently at that point in the mural.

One way to compute this would be to keep track of the intensity for each color separately,

requiring a mural array of 
oats for each di�erent attribute color. Note that just keeping a red,

green, and blue array would not work, because colors should not be mixed for the reason mentioned

above. Besides the large space requirements, another problem is determining which maximum

intensity value should be used to compute the resulting pixel density mapping: the maximum for

the resulting pixel color? the maximum of all colors? The only way that really makes sense is to

treat the intensity at each pixel uniformly (cumulatively over all colors), and compute the mapping

with respect to the maximum of intensity as is done in the basic algorithm.

This leads to the alternative for computing attribute colors that we have chosen to implement.

To reduce space requirements, a single mural array of 
oats is used to keep track of overall infor-

mation density at each pixel. A list of shorts, one for each possible attribute color, is kept with

each mural array entry to record how many points of each attribute color have been drawn. The

tradeo� here is that in keeping a single intensity value and a count of colors, we could end up with

3



an inaccurate re
ection of exactly how much of the intensity is due to each color. For example,

�ve anti-aliased blue points each contributing 0.1 intensity to a pixel and one anti-aliased red point

contributing 1.0 intensity would result in a blue pixel of 1.5 intensity. This problem only arises in

building an anti-aliased mural, because when anti-aliasing is not done each point always contributes

1.0 intensity to a single pixel.

To solve the attribute color bandwidth limitation mentioned above, di�erent options could be

added to an implementation. For example, pixels could be rendered cyclically through all attribute

colors which they contain, or selectively displayed if they contain a particular attribute color.

2.3 Implementation

While the previous sections on the Information Mural algorithm mentioned many implementation

considerations, this section will discuss how Information Murals can be included in visualization

applications.

We have implemented an Information Mural as an abstract widget which can be used by an

application just like a scrollbar, drawing area, or other graphical widget. The widget can be used

purely for output, to display an Information Mural. Additionally, it can act as a global view for

more detailed views by providing a \navigation rectangle" which can be panned and zoomed by the

user. The implementations built have been in C++ on top of X Windows and Motif, with some also

utilizing the Vz visualization framework1. The Mural class provides a basic application interface to

create, layout, and draw a mural. Client applications must inherit from the Mural Client class to

receive interaction noti�cation methods which the application may choose to implement.

When an instance of a Mural is created, the application de�nes the coordinate system in which

the Information Mural will be drawn. If the Mural's navigation capabilities are to be used, the

initial position and size of the navigation rectangle must also be set. All of the drawing methods

(MuralDrawPoint(), MuralDrawLine(), MuralFrameRectangle(), etc.) are passed coordinates in

the application de�ned coordinate system. Whenever the Mural needs to be redrawn, it calls the

application's MuralRedrawNeededCB() callback method. Additionally, whenever the navigation

rectangle is moved or the Mural is zoomed by the user, the application's MuralValueChangedCB()

and MuralZoomedCB() are called, respectively.

In this way, the application draws the Information Mural in its own coordinate space with

respect to the information being displayed, and the Mural handles the rendering of the mural in

whatever space it has on the screen. User's manipulations of the Mural widget are passed back to

the application in the application-de�ned coordinate space as well. The next section gives many

examples of applications using both stand-alone Mural widgets, and applications which use the

Mural as a global view through which the user can navigate more detailed views.

3 Applications

Information Murals can be used as global views of information spaces, both for analysis purposes

and for navigation. Without a good visual representation, a global view cannot serve as an e�ective

navigation tool. Furthermore, the usefulness of a visualization tool often depends on the e�ective-

ness of its navigation capabilities: Can the user navigate quickly to locate an area of particular

interest? Used as a background in a navigational widget, murals provide informational context

1
Vz is a proprietary cross-platform visualization framework developed by Bell Laboratories, Naperville, IL.

4



to support panning and zooming of more detailed focus views. By adding panning and zooming

within the global view itself, an Information Mural can be used as a stand-alone visualization.

Below are some snapshots from visualization applications we have built using Information Mu-

rals. These applications contain many di�erent forms of information, from software to data to text

documents, some of which were mentioned in [11]. The following discussion also mentions related

visualization work which could take advantage of the extra information bandwidth provided by

Information Murals.

3.1 Software Visualization

The Information Mural technique originated in our software visualization research into visualization

of object-oriented (OO) program executions[9, 10]. Murals are currently being used in a suite of

views to support program understanding during design recovery, validation, and reengineering

tasks[12].

3.1.1 Object-Oriented Message Traces

Imagine an event trace diagram for object-oriented message sequences turned on its side, such that

classes are assigned rows on the vertical axis and a message from one class to another is drawn as

a vertical line connecting the source and destination classes. The horizontal axis then represents

time, or the sequence of messages. Now imagine that you can see an event trace diagram of an

entire program execution, which might contain hundreds of thousands of messages. Fig. 1a shows

a grayscale, aliased Information Mural of a message trace from a bubble sort algorithm animation

built using the Polka toolkit [26], containing around 20 classes on the vertical axis and over 90,000

messages on the horizontal. Drawing this image in a window 500 pixels wide results in a horizontal

information compression ratio of over 180:1. For comparison, the same representation without the

mural technique (drawn by scaling each message to the nearest column of pixels and drawing a

vertical line with the appropriate end-points) is shown in Fig. 1b.

One of the views from our prototype OO program visualization suite is called the Execution

Mural (Fig. 2). This view is used to examine message traces from object-oriented programs[10].

The upper portion of the view is the focus area where a subset of the messages can be examined

in detail. The bottom portion of the view is a navigational area that includes a mural of the entire

message trace, and a navigation rectangle indicating where the focus area �ts in the entire execution.

Notice that the color of several di�erent messages has been set in the focus area. The Information

Mural technique allows the coloring of information attributes using varied color intensity which

still re
ects the underlying information density, as is evident by the colored areas in the mural.

The mural gives a quick insight into various phases in the execution, including very repetitive

patterns. In fact, being able to construct and observe global views of various message traces gave

us insight into the existence of message patterns and sub-patterns in object-oriented programs. It

was this observation which motivated the work described in [12] where we treat repeated sequences

of messages as higher-level abstractions that correspond to design-level scenarios or language-level

idioms. The message coloring in the Execution Mural view also allows the location of particular

messages in the execution to be identi�ed; without a global view that can actually \show" every

message, it would be di�cult to �nd obscure messages in a lengthy message trace.

Other software visualization tools utilize miniature time-line views to portray execution infor-

mation. Typically a scrolling view is used which shows a subset of the execution that can �t in

5



(a)

(b)

Figure 1: (a) Mural of object-oriented message trace of over 50,000 messages, drawn in an area 500

pixels wide. (b) Same diagram drawn by just over-plotting (without the mural technique).

Figure 2: Execution Mural view of bubble sort algorithm animation built using the Polka animation

toolkit.

6



Figure 3: Pattern Matrix view of message patterns identi�ed in an execution of the bubble sort

algorithm animation, shown at two di�erent sizes. Rows in the matrix are the classes in the program

and columns are marked to indicate class membership in identi�ed patterns. In the larger version,

each matrix entry is allocated 4 pixels, while in the smaller version, more than one entry occupies

a single pixel.

the available pixels, or over-plotting occurs as the execution time grows larger. For example, the

HotWired visual debugger for C++ and Smalltalk provides both object views and a scripting lan-

guage to create simple program visualizations[16]. A recording strip view is used to portray instance

activation over time. The Information Mural technique could be utilized to increase the amount of

historical information that can be displayed. As another example, the PV program visualization

system provides concurrent, coordinated, and multi-layered views of program behavior[15]. The

time-oriented system and process state information views use pixel-level color strips which extend

over time to present state history. These views scroll to the right as the program executes, and can

be zoomed in to decrease the scale of the strips. Other memory views use colored pixel bands to

represent the contents of di�erent memory locations. The Information Mural technique could be

used in these views to help alleviate over-plotting problems and allow the views to depict occluded

information density when fully zoomed out.

Another view in our OO visualization prototype shows how the Information Mural technique

can be used to create scalable matrix views. Our visualization tools identify repeated message

sequences in OO program executions. Information about these message patterns is displayed in the

Pattern Matrix view. The matrix shows patterns as columns and indicates classes and messages

that are \members" of observed patterns as entries in the rows. Because there may be several

hundred classes and thousands of messages, as well as hundreds of message patterns, there could

be more rows or columns than there are pixels in the view.

Entries in the matrix automatically take up available space as the view is resized. So, if there

are 50 classes and 500 pixels available in the vertical dimension, each row can take up 10 pixels.

However, entry size takes into consideration the scale along both axes, so if there are a large

number of message patterns requiring a very small horizontal resolution the vertical resolution will

be reduced so as not to render an entry as a vertical line. Fig. 3 shows the same Pattern Matrix

view at two di�erent sizes.

An information visualization which could take advantage of Information Murals in a similar way

7



(a)

(b)

Figure 4: (a) Mural of parallel program message trace of the kernel integer sort benchmark. (b)

Same diagram drawn by just over-plotting (without the mural technique).

is the Table Lens[20]. The Table Lens applies �sh-eye viewing techniques to table-oriented data

like a spreadsheet. By combining symbolic and graphical representations, the Table Lens can show

various rows, columns, or cells at di�erent levels of focus. When rows or columns are collapsed to

their minimum size, they are allocated a single row or column of pixels. The Information Mural

technique would allow the Table Lens to compress the representation beyond this limit so that

multiple rows or columns could be compressed into the same row or column of pixels. This would

give the Table Lens more room to display entries in focus, especially for very large spreadsheets.

3.1.2 Parallel Processor Message Passing

Visualizations of the message passing during executions of programs on parallel architectures be-

come very unclear when long durations of time are shown. The aliased mural of Fig. 4a shows the

kernel integer sort benchmark executing on 16 PVM processors, generated using the PVaniM system

built at Georgia Tech[28]. Each processor is assigned a row on the vertical axis, and a message is

drawn as a line from one processor to another at the appropriate time coordinates. This particular

view uses wall clock timestamps. As is evident from the traditional over-plotted representation

shown if Fig. 4b, the mural gives a much better resolution to the image.

As was done in the Execution Mural view, a mural can be used in the background of a global

overview to allow more detailed examination of the message passing. Fig. 5 shows the same message

trace, this time with messages colored according to message type. The global overview provided

by the mural gives an immediate indication of the phases and sub-phases of the algorithm, as well

as showing anomalies such as network blockage or processors waiting for others to complete.

8



Figure 5: View of message passing in kernel integer sort parallel processor benchmark, with focus

area and global overview created using the Information Mural technique.

9



Figure 6: ParaGraph space-time view of message passing in kernel integer sort parallel processor

benchmark.

The space-time view of the PVM kernel integer sort benchmark shown using ParaGraph[7], a

parallel program visualization system, is included as Fig. 6. When the entire run is compressed

into the view, messages blur together and make overall patterns less clear. Additionally, if message

attribute colors are overlaid in this view, those messages which are drawn \on top" occlude the

attributes of those \below". The Information Mural technique would help minimize these e�ects by

automatically computing the correct attribute color and intensity for each pixel after all messages

have been drawn.

3.2 Data Visualization

The Information Mural technique is useful for revealing the underlying density of data while viewing

very large data sets. Traditional plotting techniques typically over-plot points that happen to lie

in the same pixel. Our technique shows the actual density of the information. Incorporated into

a data visualization, murals can support one- or two-dimensional navigation through large data

spaces. Much of this data was obtained from the StatLib server at Carnegie Mellon University.

3.2.1 Sun Spots

Astronomers have been recording the number of sun spots since the 1700s. Because this is such a

large dataset, it is typically plotted by showing the monthly averages. Fig. 7 is a plot of the average

number of sun spots per month recorded from 1850-1993.

Using the Information Mural technique, we do not have to worry about the size of the dataset.

Fig. 8 shows an anti-aliased mural of the number of sun spots recorded daily from 1850-1993, over

52,000 readings. Instead of using grayscale to depict density, a color scale which goes from dark

blue (lowest data density) to bright white (highest data density) is used because it is easier to see

outliers using color.

Plotting statistics such as averages is commonly done to analyze large amounts of data. However,

in the monthly view we do not see the band of \missing" values between zero and about 10 sun

spots, nor do we notice that a large number of zero values were recorded (bright spots at bottom

of Fig. 8).

With the stand-alone Information Mural views, it is also possible to incrementally zoom in

on sections of the mural or to sweep out a rectangle to zoom. Fig. 9 shows the sun spot mural

zoomed in on a small area. Fig. 10 shows how the mural of the entire data set can be placed in the

10



Figure 7: Plot of average number of sun spots recorded per month, 1850-1993.

Figure 8: Mural of the number of sun spots recorded daily, 1850-1993.

11



Figure 9: Mural of the number of sun spots recorded daily, 1850-1993, zoomed in on a small area.

background of a slider, giving context to a more detailed view of the data.

3.2.2 River Flow Data

Another interesting large data set is the mean daily Saugeen river 
ows, from Jan 1, 1915 to Dec

31, 1979. The anti-aliased mural of this data shows a periodic pattern, with concentrations at the

lower values. At �rst glance, some bright spots occur seemingly randomly above the lower portion

of the mural shown in Fig. 11a. Zooming in on a small area at the bottom, we �nd that the bright

spots in the mural are due to single values that occur repetitively (Fig. 11b). We hypothesize that

these might be weeks or months in the data where a single value was extrapolated across the entire

period to create the daily values. Here the mural technique gives us some quick insight into the

structure of the data.

3.2.3 Automobile Data

The Information Mural technique can be used to create parallel coordinate data displays. A data set

from the Committee on Statistical Graphics of the American Statistical Association (ASA) Second

(1983) Exposition of Statistical Graphics Technology contains 406 observations on the following 8

variables: MPG (miles per gallon), number of cylinders, engine displacement (cu. inches), horse-

power, vehicle weight (lbs.), time to accelerate from O to 60 mph (sec.), model year (modulo 100),

and origin of car (1. American, 2. European, 3. Japanese). Fig. 12a shows a parallel coordinate

mural of a subset of the data, including MPG, displacement, horsepower, weight, acceleration, and

model year. Part (b) of Fig. 12 shows the standard parallel coordinate view without the mural.

In Fig. 12c, color has been overlaid on the mural according to the number of cylinders attribute.

Notice how the data tuples with fewer cylinders tend to have higher MPG, smaller displacement,

less horsepower, and longer acceleration times.

The value of the mural technique in this example is probably not worth the overhead of including

it in a parallel coordinate display. The technique does, however, eliminate the \last one drawn

appears on top" ordering e�ect that occurs when drawing colored lines (similar to the problem

with the ParaGraph view described above).

12



Figure 10: View of sun spots showing focus area and mural of entire data set at the bottom.

3.3 Information Visualization

Many other forms of information can be displayed using Information Murals. Two such applications,

geographic data and text documents, are described below.

3.3.1 Geographic Information

The U.S. Census Bureau creates maps of various census statistics such as population distributions.

While their techniques work well for wall-sized maps, the overwhelming scale reduction to display

the information on a computer screen causes their algorithm to produce inaccurate results. The

Information Mural technique computes information density automatically, making the display of a

population density map on a computer screen almost trivial (Fig. 13). The data was obtained from

the Tiger Mapping Service U.S. Places File, created from the Census �le STF-1A.

3.3.2 Text Documents

While SeeSoft[4] from AT&T's Bell Laboratories introduced a revolutionary miniature representa-

tion for text documents, it did have a limit. One row of pixels (or part of a row in later versions)

is required for every line in the �le. The Information Mural technique can go beyond this limit,

allowing many lines in a �le to map to a single row of pixels in the miniature representation. On

top of a grayscale mural representation of a document, color can be used to indicate attributes of

the text, such as comments, sections, or keywords.

Fig. 14 is a sample text editor with a mural in the background of the scrollbar. Color is used

to indicate sections in the Latex document being browsed. The mural is constructed by examining

the position of each character in the �le, scaling that position into the scrollbar, and mapping the

resulting density of characters to the intensity scale.

Several previous visualization systems have used the background of a scrollbar to display in-

13



(a)

(b)

Figure 11: (a) Mural of the mean daily river 
ow rates of the Saugeen river, 1915-1979. (b) Part

(a) zoomed on small area at the bottom of the mural.

14



(a)

(b)

(c)

Figure 12: (a) Mural of a parallel coordinate view of automobile data showing MPG, engine dis-

placement, horsepower, weight, acceleration, and model year (1970-1982). (b) Standard parallel

coordinate view of the data. (c) Color overlaid for number of cylinders (3 = red, 4 = orange, 5 =

yellow, 6 = green, 8 = cyan).

15



Figure 13: Mural of population density distribution, using data from the 1990 census.

Figure 14: Text editor containing Latex document. Mural of the entire �le is shown in the back-

ground of the scrollbar, with text colored according to section.

16



(a) (b) (c)

Figure 15: Murals showing keyword distribution for search on \visualization" (yellow), \object-

oriented" (green), and \OO" (cyan) in three documents.

formation about textual documents. The Edit Wear and Read Wear technique colored lines in

a scrollbar to represent the reading and writing history of lines in a text �le[8]. It is not clear

how attributes of lines in large �les would be displayed, as one attribute could occlude another.

The Information Mural technique would help an application such as this display attributes for �les

which have more lines than there are rows of pixels in the scrollbar. Chimera's Value Bars have a

similar problem when trying to display attributes of lists with more members than there are rows

of pixels in the display[3].

Information Murals can also be used to visualize the distribution of keywords in a set of docu-

ments retrieved from a search. Fig. 15a-c show the distribution of keywords in three papers after

a search for visualization (yellow), object-oriented (green), and OO (cyan) was performed.

The document in Fig. 15a seems to be about visualization, and talks a little about object-

oriented in the beginning. Fig. 15b talks about both visualization and object-oriented throughout

the document, and Fig. 15c discusses object-oriented and visualization in the beginning and in the

end. Miniature views such as these could be utilized in search applications to display the results of

a search and give users more information about the documents retrieved. This information would

aid a user in determining document relevance, in addition to a simple numerical ranking.

The TileBar visualization technique uses grayscale tile images which correspond to a thematic

breakdown of a document to visually display relevance information to a keyword search[6]. This

technique is more complicated and can require more space than just visually depicting the location

of the keywords using an Information Mural. It does, however, make the direct comparison of

keyword locations possible across documents of di�erent lengths.

4 Conclusion

An Information Mural is a 2D, graphical representation of a large information space which �ts en-

tirely within a display window or screen. The miniature representation is drawn using anti-aliasing

compression techniques and intensity shading or varying pixel size, and is useful for visualizing

trends and patterns in the overall distribution of information. By adding panning and zooming

capabilities to Information Murals, they can be used as stand-alone visualizations or as global views

along with more detailed informational displays.

The Information Mural technique can be integrated into various information visualization ap-

plications to help display large information spaces. In browsing information or examining a large

17



data set, it is always useful to start with a global overview of the information. Information Murals

convey more information about large data spaces than traditional techniques, and allow overviews

of certain types of information spaces to be created when before they could not. Information Mu-

rals increase the visual bandwidth available to visualization applications. Another advantage of the

Information Mural technique is that the application need not concern itself with how much space is

available to render the information{the density and attribute mappings are computed automatically

based on the available screen space for the view.

References

[1] D. V. Beard and J. Q. W. II. Navigational techniques to improve the display of large two-dimensional
spaces. Behaviour and Information Technology, 9(6):451{466, 1990.

[2] S. K. Card, G. G. Robertson, and J. Mackinlay. The Information Visualizer, an information workspace.
In Proceedings of the ACM SIGCHI '91 Conference on Human Factors in Computing Systems, pages
181{188, New Orleans, LA, May 1991.

[3] R. Chimera. Value Bars: An information visualization and navigation tool for multiattribute listings
(demo summary). In Proceedings of the ACM SIGCHI '92 Conference on Human Factors in Computing

Systems, pages 293{294, 1992.

[4] S. G. Eick, J. L. Ste�en, and E. E. S. Jr. SeeSoft|A tool for visualizing line oriented software statistics.
IEEE Transactions on Software Engineering, 18(11):957{968, Nov. 1992.

[5] G. W. Furnas. Generalized �sheye views. In Proceedings of the ACM SIGCHI '86 Conference on Human

Factors in Computing Systems, pages 16{23, Boston, MA, Apr. 1986.

[6] M. A. Hearst. TileBars: Visualization of term distribution in full text information access. In Proceedings

of ACM SIGCHI '95 Conference on Human Factors in Computing Systems, pages 59{66, Denver, CO,
1995.

[7] M. T. Heath and J. A. Etheridge. Visualizing the performance of parallel programs. IEEE Software,
8(5):29{39, Sept. 1991.

[8] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless. Edit wear and read wear. In Proceedings

of the Conference on Human Factors in Computing Systems (CHI), pages 3{9, May 1992.

[9] D. F. Jerding and J. T. Stasko. Using visualization to foster object-oriented program understanding.
Technical Report GIT-GVU-94-33, Georgia Institute of Technology, July 1994.

[10] D. F. Jerding and J. T. Stasko. The Information Mural: A technique for displaying and navigating
large information spaces. In Proceedings of the IEEE Visualization `95 Symposium on Information

Visualization, pages 43{50, Atlanta, GA, October 1995.

[11] D. F. Jerding and J. T. Stasko. Using Information Murals in visualization applications. In Proceedings

of the 1995 Symposium on User Interface Software and Technology (Demonstration), pages 73{74,
Pittsburgh, PA, November 1995.

[12] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing message patterns in object-oriented program
executions. Technical Report GIT-GVU-96-15, Georgia Institute of Technology, May 1996.

[13] B. Johnson and B. Shneiderman. Tree-maps: A space �lling approach to the visualization of hierarchical
information structures. In Proceedings of the IEEE Visualization '91, pages 284{291, San Diego, CA,
Oct. 1991.

[14] D. A. Keim, H.-P. Kriegel, and M. Ankerst. Recursive Pattern: A technique fo visualizing very large
amounts of data. In Proceedings of IEEE Visualization '95 Conference, pages 279{286, Atlanta, GA,
October 1995.

18



[15] D. Kimelman and B. Rosenburg. Strata-Various: Multi-layer visualization of dynamics in software
system behavior. In Proceedings of the IEEE Visualization '94 Conference, Oct. 1994.

[16] J. Lamping and R. Rao. Laying out and visualizing large trees using a hyperbolic space. In Proceedings

of the 1994 ACM Symposium on User Interface Software and Technology, pages 13{14, Marina del Rey,
CA, November 1994.

[17] J. Mackinlay, G. G. Robertson, and S. K. Card. The Perspective Wall: Detail and context smoothely
integrated. In Proceedings of the ACM SIGCHI '91 Conference on Human Factors in Computing

Systems, pages 173{180, New Orleans, LA, May 1991.

[18] C. Plaisant, D. Carr, and B. Shneiderman. Image-browser taxonomy and guidelines for designers. IEEE
Software, 12(2):21{32, March 1995.

[19] B. A. Price, R. M. Baecker, and I. S. Small. A principled taxonomy of software visualization. Journal
of Visual Languages and Computing, 4(3):211{266, Sept. 1993.

[20] R. Rao and S. K. Card. The Table Lens: Merging graphical and symbolic representations in an
interactive focus+context visualization for tabluar information. In Proceedings of the ACM SIGCHI '94

Conference on Human Factors in Computing Systems, pages 318{322, Boston, MA, April 1992.

[21] S. P. Reiss. PECAN: Program development systems that support multiple views. IEEE Transactions

on Software Engineering, SE-11(3):276{85, March 1985.

[22] S. P. Reiss. A framework for abstract 3D visualization. In Proceedings of the 1993 IEEE Symposium

on Visual Languages, pages 108{115, Bergen, Norway, Aug. 1993.

[23] G. G. Robertson and J. D. Mackinlay. The Document Lens. In Proceedings of the 1993 ACM Symposium

on User Interface Software and Technology, pages 101{108, Atlanta, GA, Nov. 1993.

[24] M. Sarkar and M. H. Brown. Graphical �sheye views of graphs. In Proceedings of ACM SIGCHI '92

Conference on Human Factors in Computing Systems, pages 83{91, May 1992.

[25] R. Spence and M. Apperley. Data base navigation: an o�ce environment for the professional. Behaviour
and Information Technology, 1(1):43{54, 1982.

[26] J. T. Stasko and E. Kraemer. A methodology for building application-speci�c visualizations of parallel
programs. Journal of Parallel and Distributed Computing, 18(2):258{264, June 1993.

[27] M. C. Stone, K. Fishkin, and E. A. Bier. The movable �lter as a user interface tool. In Proceedings of

the ACM SIGCHI '94 Conference on Human Factors in Computing Systems, pages 306{312, Boston,
MA, April 1992.

[28] B. Topol, J. T. Stasko, and V. S. Sunderam. Monitoring and visualization in cluster environments.
Technical Report GIT-GVU-96-10, Georgia Institute of Technology, March 1996.

19


