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Thanks to mamma, papà, Tea, Billo, Ma, Bice, Nicla, Andrea, Annalisa and

Pasquale for their immense love and restless support. Thanks to nonno Michele, who

would have been so glad for this goal. This thesis is too narrow to contain my love

for them.

Quando, nel 2011, decisi di iniziare l’avventura del Ph.D. a GeorgiaTech, dissi ai

miei amici di una vita, cercando di convincermene, che sarebbero stati cinque anni in

cui nulla sarebbe cambiato, come nulla o quasi era cambiato nei cinque anni precedenti

a quella partenza.

Sta finendo il 2015, e per quanto forte mi sforzi di cercare, trovo solo brandelli di

passato che siano rimasti tali da allora.

Un paese ci vuole, non fosse che per il gusto di andarsene via. Un paese vuol dire

non essere soli, sapere che nella gente, nelle piante, nella terra c’è qualcosa di tuo,
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SUMMARY

In this thesis, we study the Filippov moments solution for differential equa-

tions with discontinuous right-hand side. In particular, our aim is to define a suit-

able Filippov sliding vector field on a co-dimension 2 manifold Σ, intersection of

two co-dimension 1 manifolds with linearly independent normals, and then study

the dynamics provided by this selection. More specifically, we devote Chapter 1 to

motivate our interest in this subject, and presenting several problems from control

theory, nonsmooth dynamics, vehicle motion, and neural networks. We then intro-

duce the co-dimension 1 case and basic notation, from which we set up, in the most

general context, our specific problem. In Chapter 2, we propose and compare several

approaches in selecting a Filippov sliding vector field for the particular case of Σ

nodally attractive. In Chapter 3, we focus on moments solution, that is the main and

novel mathematical object presented and studied in this thesis. There, we extend

the validity of the moments solution to Σ attractive under general sliding conditions,

proving results about the smoothness of the Filippov sliding vector field on Σ, tangen-

tial exit at first-order exit points, and uniqueness at potential exit points among all

other admissible solutions. In Chapter 4, we propose a completely new and different

perspective from which one can look at the problems; namely, we study minimum

variation solutions for Filippov sliding vector fields in R3, taking advantage of the

relatively easy form of the Euler-Lagrange equation provided by the analysis, and of

the orbital equivalence that we have in the eventuality Σ does not have any equili-

brium points on it. We further remove this assumption and extend our results. In

Chapter 5, several examples and numerical implementations are given, with which we

corroborate our theoretical results and show that selecting a Filippov sliding vector

xiii



field on Σ without the required properties of smoothness and exit at first-order exit

points ends up dynamics that make no sense, developing undesirable singularities.

Finally, Chapter 6 presents an extension of the moments method to co-dimension 3

and higher: this is the first result which provides a unique admissible solution for this

problem.

xiv



Chapter I

INTRODUCTION AND BACKGROUND

1.1 Motivation and Scope

Discontinuous dynamical systems arise naturally in a disparate set of engineering,

physics and biological applications. For example, in control theory, open-loop bang-

bang controllers that switch discontinuously between extreme values of the bounded

inputs in order to generate minimum-time trajectories from one state to another,

or closed-loop bang-bang controllers that regulate physical states, are governed (see

[43, 44]) by discontinuous differential equations. Also, the theory of sliding mode

control has developed a systematic approach to the design of discontinuous feedback

controllers for stabilization [3, 52, 53, 54]. As Cortes highlights [11], a result due

to Brockett [8, 50] implies that many control systems, including driftless systems,

cannot be stabilized by means of continuous state-dependent feedbacks. As a result,

one is forced to consider either time-dependent or discontinuous feedback (see also

[7, 41] and Example 1.1.3 below). In non-smooth mechanics, evolution of rigid bodies

undergoing friction, slip, stick or impacts, such as suspension bridges or robotic ma-

nipulation of objects with mechanical contacts or, also, motion of vehicles, is described

by non-smooth dynamical systems [28, 29, 39, 40]. In biology, piecewise-linear models

have been successfully applied to networks of interactions, such as genetic regulatory

networks, which are not originally discontinuous, providing an insightful direction for

holding together the description and the dynamical analysis of regulatory systems

[10, 12, 30, 31, 48].
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Example 1.1.1 ([44]). Consider the system

ẍ = u, u ∈ [−1, 1],

which can represent a car with position x ∈ R2 with bounded acceleration u acting

as the control (negative acceleration corresponds to braking). If we want study the

problem of parking the car at the origin, i.e., bringing it to rest at x = 0, in minimal

time, then we will necessarily obtain that the optimal control u∗ takes only the values

±1, and switches between them at most once. The initial sign and the switching time

of course depend on the initial condition. This kind of functions is called bang-bang

control.

Example 1.1.2 ([28]). Consider a non-smooth dynamical system, the solution of

which slides on the intersection of two surfaces. In [28] the author studies a me-

chanical system composed by two blocks on a moving belt, as depicted in Figure 1.

The velocity of the belt is constant and is called the driving velocity v. Each block

is connected to a fixed support and to the other block by elastic springs. The surface

between the blocks and the belt is rough so that the belt exerts a dry friction force

on each block that sticks on the belt to the point where the elastic forces due to the

springs exceed the maximum static force. At this point the blocks start slipping and

the slipping motion will continue to the point where the velocity of the block will equal

that of the belt and the elastic forces will be equilibrated by the static friction force.

The continuous repetition of this type of motions generates a stick-slip oscillation.

This mechanical system may be described in its simplest form by the following set of

differential equations:
m1x

′′
1 = −k1x1 − k12(x1 − x2) + fk1(x′1 − v),

m2x
′′
2 = −k2x2 − k12(x2 − x1) + fk2(x′2 − v)

(1.1.1)

where xi(t) is the displacement, mi is the mass, fki(x
′
i−v) the kinetic friction force of

the i-th block, k1, k2, k12 suitable constants. The kinetic force has the form fk2(x′ −

2



m₁ m₂

k₁₂k₁
k₂

v

Figure 1: Stick-slip 2 block mechanical system described by (1.1.1).

v) = βfk1(x′ − v) with:

fk1(x′ − v) :=


1−δ

1−γ(x′−v)
+ δ + η(x′ − v)2, x′ < v,

− 1−δ
1−γ(x′−v)

− δ − η(x′ − v)2, x′ > v,

(1.1.2)

where β, γ, δ, η are suitable constants. We will analyze this specific example in

Chapter 5.

Example 1.1.3. In [8], Brockett stated the following problem:

Problem 1.1.4. Given three matrices A, B, C, what conditions ensure the existence

of a matrix K(t) such that the system
dx(t)

dt
= Ax(t) +BK(t)y(t), x ∈ Rn,

y(t) = Cx(t),
(1.1.3)

is asymptotically stable.

Stabilizing mechanical systems often necessitates to select specific matrices K(t).

These matrices could be periodic on [0, T ] and such that∫ T

0

K(t) dt = 0.

For example, let us consider a linear approximation near an equilibrium point for the

pendulum with vertically oscillating suspension point:

θ̈(t) + αθ̇(t) + (K(t)− ω2
0)θ(t) = 0, θ(0) = θ0, θ̇(0) = θ̇0, t ≥ 0. (1.1.4)

3



where α and ω0 are positive numbers. Here, the most common choice for K(t) is

β sinωt, or

K(t) =


β, t ∈

[
0, T

2

)
,

−β, t ∈
[
T
2
, T
)
.

(1.1.5)

For such functions K(t) as in (1.1.5), the effect of stabilization of the upper equili-

brium point is well known for large ω and, consequently, small T . In [41], Leonov

gives necessary and sufficient conditions for the stabilization of a system of the type

(1.1.3) by periodic piecewise constant functions K(t) that solve the Brockett’s problem

1.1.4; moreover, it is shown that low-frequency stabilization (T � 1) is possible for

(1.1.4) with K(t) of the form (1.1.5).

Also, in [7] necessary and sufficient conditions for a wider class of stabilizing matrices

K(t) relative to (1.1.3) are given.

In this thesis, we will chiefly focus on discontinuous dynamical systems with two

intersecting discontinuity surfaces, being their intersection Σ attractive for the nearby

dynamics: our main purpose is to introduce and analyze a novel way to define a sliding

vector field on Σ, that we will call Filippov moments sliding vector field, so to keep

the same smoothness on Σ of the problem initial data, and pursue smooth tangential

exits at first order exit points (see Definition 1.4.10).

The plan of this thesis is as follows. In the remainder of this chapter, we present

the general problem for the case of one surface of discontinuity (co-dimension 1) and

for the case of two intersecting sufaces (co-dimension 2). We introduce Filippov con-

vexification method and the concept of Filippov solutions. In Chapter 2, we will

compare several approaches to select Filippov sliding vector fields for the case when

Σ (co-dimension 2) is nodally attractive, and introduce the moments solution [15]. In

Chapter 3, we will completely justify the moments solution under general attractivity

conditions [18]. In Chapter 4, we will propose minimum variation solutions to our

4



problem, restricting ourselves to R3 [16, 20]. In Chapter 5, we will provide implemen-

tation and numerical results. Finally, in Chapter 6, we will propose an extension of

the moments method to the nodally attractive case in co-dimension 3 [17].

1.2 The problem and Filippov solutions

We are interested in piecewise smooth differential systems of the following type:

ẋ(t) = f(x(t)) , f(x(t)) = fi(x(t)) , x ∈ Ri , i = 1, . . . , N , t ∈ [0, T ] . (1.2.1)

Here, the Ri ⊆ Rn are open, disjoint and connected sets, so that (locally) Rn =
⋃
Ri,

and on each region Ri the function f is given by a smooth vector field fi. Further,

the regions Ri’s are separated by manifolds defined as 0-sets of smooth (at least C 2)

scalar functions hi: Σi := {x ∈ Rn : hi(x) = 0}, i = 1, . . . , p (and, for us, 2p = N).

From (1.2.1), in general the vector field is not properly defined on the boundaries

of the Ri’s, where a classical solution ceases to exist. A successful definition of

generalized solutions for problems as in (1.2.1) is due to Filippov, [26]. These are

absolute continuous functions x(t), for t ∈ [0, T ], such that ẋ(t) ∈ F(x(t)) for almost

all t ∈ [0, T ], and where F(x) is the convex hull of the values of f(x) obtained

approaching x through a region Ri. Formally:

F(x) :=
⋂
δ>0

⋂
µ(S)=0

co {f (B(x, δ)) \ S} , (1.2.2)

µ being Lebesgue measure on Rn. Under mild conditions (boundedness and upper

semicontinuity of F), existence of Filippov solutions is guaranteed, but uniqueness is

much more elusive, as it depends on the interaction of neighboring vector fields on

the boundaries of the regions Ri’s.

1.3 Co-dimension 1: attractivity, existence and uniqueness

The basic theory of Filippov (see [26]) covers fully the case of two regions separated

by a manifold Σ defined as the 0-set of a smooth scalar valued function h. One has
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the following system:

ẋ = f1(x) , x ∈ R1 , and ẋ = f2(x) , x ∈ R2 ,

Σ := {x ∈ Rn : h(x) = 0} , h : Rn → R ,
(1.3.1)

where h is a Ck function, with k ≥ 2, ∇h is bounded away from 0 for all x ∈ Σ, hence

near Σ, and (without loss of generality) we label R1 such that h(x) < 0 for x ∈ R1,

and R2 such that h(x) > 0 for x ∈ R2.

Remark 1.3.1. We stress that the direction of time, the time arrow, is crucial. In

this thesis, we will tacitly assume of proceeding forward in time. For this reason, as

we clarify below, and unlike -say- the case of a boundary value problem, we believe it is

important to take into account the attractivity properties of the discontinuity surface

Σ, and to have these reflected into the behavior of trajectories on/near Σ.

The interesting case is when trajectories reach Σ from R1 (or R2), and one has

to decide what happens next. To answer this question, it is useful to look at the

components of the two vector fields f1,2 orthogonal to Σ:

w1 := ∇h(x)>f1(x) , w2 := ∇h(x)>f2(x) , x ∈ Σ . (1.3.2)

Here, Σ is called attractive in finite time if for some positive constant c, we have

∇h(x)>f1(x) ≥ c > 0 and ∇h(x)>f2(x) ≤ −c < 0 , (1.3.3)

for x ∈ Σ and in a neighborhood of Σ. In this case, trajectories starting near Σ must

reach it, transversally, and remain there, giving rise to so-called sliding motion. A

vector field associated to sliding motion is called sliding vector field. Filippov proposal

(see (1.2.2)) is to take as sliding vector field on Σ a convex combination of f1 and f2,

fF := (1 − α)f1 + αf2, with α chosen so that fF ∈ TΣ (fF is tangent to Σ at each

x ∈ Σ):

ẋ = (1− α)f1 + αf2 , α =
∇h(x)>f1(x)

∇h(x)>
(
f1(x)− f2(x)

) . (1.3.4)
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At the same time, Filippov theory also provides first order exit conditions : whenever

α = 0, respectively α = 1, one should expect to leave Σ to enter in R1 with vector

field f1, respectively enter R2 with vector field f2. [In other words, if the sliding vector

field has aligned with either –but not both– f1 or f2, then generically (for smooth

f1, f2) we should leave Σ as above].

We note that, during sliding motion, the right-hand side of (1.3.4) is a smooth

vector field. This allows to study the dynamics during sliding motion using classical

tools from the theory of dynamical systems with smooth vector fields; in particular,

stability and bifurcation studies for equilibria on Σ, and for periodic orbits that may

lie at least partly on Σ, have been extensively studied (e.g., see [13]).

1.4 Co-dimension 2: general attractivity by subsliding

Our specific interest in this thesis is the case of (1.2.1) with N = 4. Now we will

assume that the Ri’s are (locally) separated by two intersecting smooth manifolds of

co-dimension 1. That is, we have

Σ1 = {x : h1(x) = 0} , Σ2 = {x : h2(x) = 0} , hi : Rn → R , i = 1, 2 , Σ = Σ1∩Σ2 ,

(1.4.1)

and we will also use the following notation

Σ±1 = {x : h1(x) = 0 , h2(x) ≷ 0} , Σ±2 = {x : h2(x) = 0 , h1(x) ≷ 0} . (1.4.2)

We will always assume that h1, h2 are C k functions, with k ≥ 2, that ∇h1(x) 6=

0, x ∈ Σ1, ∇h2(x) 6= 0, x ∈ Σ2, and further that ∇h1(x) and ∇h2(x) are linearly

independent for x on (and in a neighborhood of) Σ.

So, we have four different regions R1, R2, R3 and R4 with the four different smooth

vector fields fi, i = 1, . . . , 4, in these regions:

ẋ = fi(x) , x ∈ Ri , i = 1, . . . , 4 . (1.4.3)
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Figure 2: Regions Ri’s, subsurfaces Σ±1,2 and the co-dimension 2 manifold Σ.

Without loss of generality, we will label these regions as follows:

R1 : f1 when h1 < 0 , h2 < 0 , R2 : f2 when h1 < 0 , h2 > 0 ,

R3 : f3 when h1 > 0 , h2 < 0 , R4 : f4 when h1 > 0 , h2 > 0 .

(1.4.4)

We are specifically interested in the case when trajectories starting near Σ will

reach it, transversally (and in finite time), a case refereed to as having Σ attractive

for nearby dynamics. To characterize this situation, it is again convenient to consider

the components of the vector fields orthogonal to Σ. That is, we let (cfr. with (1.3.2))

w1
1 = ∇h>1 f1 , w

1
2 = ∇h>1 f2 , w

1
3 = ∇h>1 f3 , w

1
4 = ∇h>1 f4 ,

w2
1 = ∇h>2 f1 , w

2
2 = ∇h>2 f2 , w

2
3 = ∇h>2 f3 , w

2
4 = ∇h>2 f4 ,

(1.4.5)

and we will use the notation wi = (w1
i , w

2
i ) ∈ R2, i = 1, 2, 3, 4, for those four points

in R2.
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Table 1: Nodal Attractivity.

Component i = 1 i = 2 i = 3 i = 4

w1
i , i = 1 : 4 > 0 > 0 < 0 < 0

w2
i , i = 1 : 4 > 0 < 0 > 0 < 0

Example 1.4.1. The simplest case of attractive Σ is when it is nodally attractive.

This means that on each of Σ±1,2 there is sliding motion toward the intersection Σ.

These sliding motions on Σ±1,2 occur with Filippov sliding vector fields given as in

(1.3.4), henceforth labeled fF
±
1,2. Namely,

fF
+
1 = (1− α+)f2 + α+f4 , α

+ =

[
∇h>1 f2

∇h>1 (f2 − f4)

]
x∈Σ+

1

=
w1

2

w1
2 − w1

4

,

fF
−
1 = (1− α−)f1 + α−f3 , α

− =

[
∇h>1 f1

∇h>1 (f1 − f3)

]
x∈Σ−1

=
w1

1

w1
1 − w1

3

,

fF
+
2 = (1− β+)f3 + β+f4 , β

+ =

[
∇h>2 f3

∇h>2 (f3 − f4)

]
x∈Σ+

2

=
w2

3

w2
3 − w2

4

,

fF
−
2 = (1− β−)f1 + β−f2 , β

− =

[
∇h>2 f1

∇h>2 (f1 − f2)

]
x∈Σ−2

=
w2

1

w2
1 − w2

2

.

(1.4.6)

Finally, at first order, we note that nodal attractivity is guaranteed by the signs of

Table 1 for the entries of wji , i = 1, . . . , 4, j = 1, 2.

The next characterization of attractivity for Σ was called attractivity through sli-

ding in [19].

Definition 1.4.2 (Partial Nodal Attractivity; [19]). We say that Σ is partially

nodally attractive, or attractive through sliding, if the following conditions hold:

(a)

w1
j (x)

w2
j (x)

 does not have the same sign of

h1(x)

h2(x)

 for x ∈ Rj, j = 1, 2, 3, 4 ;

(b) at least one of the following conditions is satisfied on Σ, and in a neighborhood

of Σ:
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(1+) det

w1
2 w1

4

1 1

 > 0 together with (1+
a ): (1− α+)w2

2 + α+w2
4 < 0;

(1−) det

w1
3 w1

1

1 1

 < 0 together with (1−a ): (1− α−)w2
1 + α−w2

3 > 0;

(2+) det

w2
4 w2

3

1 1

 < 0 together with (2+
a ): (1− β+)w1

3 + β+w1
4 < 0;

(2−) det

w2
1 w2

2

1 1

 > 0 together with (2−a ): (1− β−)w1
1 + β−w1

2 > 0;

(c) if any of (1±) or (2±) is satisfied, then (1±a ) or (2±a ) must be satisfied as well.

Above, we note that the quantities α±, β± (as given in (1.4.6)), are well defined

whenever the relevant conditions (1±), (2±) hold.

The next result gives a handy rewriting of (1±a ), (2±a ) in Definition 1.4.2.

Lemma 1.4.3. Let any of (1±) and/or (2±) in Definition 1.4.2 hold. Then, the

corresponding conditions (1±a ), (2±a ) are equivalent, respectively, to the following:

(1̃+
a ) : det

[
w2 w4

]
< 0; (1̃−a ) : det

[
w3 w1

]
< 0;

(2̃+
a ) : det

[
w4 w3

]
< 0; (2̃−a ) : det

[
w1 w2

]
< 0.

Proof. Let us prove equivalence between (1+
a ) and (1̃+

a ). The others are analogous.

Since (1+), (1+
a ), (1.4.6), hold, we get that

−w1
4w

2
2 + w1

2w
2
4

det

w1
2 w1

4

1 1


< 0 , from which det

[
w2 w4

]
< 0 .

Conversely, if det
[
w2 w4

]
< 0, since (1+) holds, we get (1+

a ) at once.
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Remark 1.4.4. Partial nodal attractivity (which of course includes nodal attractivity

as a special case) implies that one has sliding motion on (at least) one of Σ±1,2, directed

towards Σ, and no sliding motion on any of Σ±1,2, away from Σ. A typical solution

trajectory starting near Σ will approach (in finite time) the intersection Σ, by first

sliding on one of Σ1 or Σ2, directed towards Σ (of course, a trajectory may also reach

Σ directly from within one of the regions Ri’s, but this is a less likely event).

Remark 1.4.5. We also note that partial nodal attractivity is not an exclusive cha-

racterization of attractivity of Σ. Namely, Σ may also be spirally attractive. In this

case, there is no attractivity toward Σ through sliding on any of Σ±1 , Σ±2 , and tra-

jectories reach Σ by spiraling around it. See [14] for the characterization of spirally

attractive Σ.

1.4.1 Co-dimension 2: general ambiguity

At this point, we may envision having the following scenario for a solution trajectory

of a system (1.4.3), with attractive Σ = Σ1 ∩ Σ2.

• It starts in a region Ri for some i = 1, 2, 3, 4, until

• it reaches transversally one of Σ±1,2;

• then, it begins sliding on Σ±1,2, until

• it reaches transversally the intersection Σ. What happens then?

Now, when Σ is attractive, a trajectory starting on Σ cannot leave Σ. But, how

should a solution trajectory evolve on Σ? In the class of Filippov solutions, we will

need to have that ẋ ∈ F(x) as in (1.2.2), and further that ẋ lies on the tangent plane

to Σ, for any x ∈ Σ. That is, Filippov convexification will give

ẋ ∈

{
λ1f1 + λ2f2 + λ3f3 + λ4f4 , λi ≥ 0 , i = 1, . . . , 4 ,

4∑
i=1

λ1 = 1

}
,

∇h>1 ẋ = ∇h>2 ẋ = 0 .

(1.4.7)
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But, from (1.4.7), it is apparent that there is no uniqueness of a sliding vector field

on Σ, so that sliding motion on Σ is not uniquely defined.

In this thesis, we propose a way to select a smooth sliding vector field on Σ, from

the class of Filippov convex combinations (1.4.7), whenever Σ is attractive through

sliding. In other words, we will select a smooth Filippov sliding vector field fF: for

x ∈ Σ, this is of the form

fF = λ1f1 + λ2f2 + λ3f3 + λ4f4 , λi ≥ 0 , i = 1, . . . , 4 ,
4∑
i=1

λ1 = 1 ,

∇h>1 fF = ∇h>2 fF = 0 ,

(1.4.8)

where the coefficients λi’s depend smoothly on x ∈ Σ. Therefore, with previous

notation, we will have to solve the problem (for x ∈ Σ):

W
1>

λ =


0

0

1

 , where λ :=



λ1

λ2

λ3

λ4


, W :=

w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4

 , 1 :=



1

1

1

1


. (1.4.9)

Obviously, (1.4.9) is an underdetermined linear system, reflecting the fact that the

mere requirement of fF being on TΣ is not generally sufficient to uniquely1 characterize

a convex combination of the four vector fields f1, . . . , f4. We propose the following

definition of admissible solution of (1.4.9).

Definition 1.4.6. Under the conditions of partial nodal attractivity of Definition

1.4.2, we say that a solution λ of (1.4.9) is admissible, if λ ≥ 0 and λ depends

smoothly on x ∈ Σ.

Remark 1.4.7. The problem of understanding sliding motion on Σ has been of con-

siderable interest in the last 15 years. To date, the choice that has received most

1There are special cases when the aforementioned ambiguity is not present, as when two of
the original vector fields are identical (e.g., see [47]), but in general we must expect to have an
underdetermined system.
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attention is one based on bilinear interpolation. This consists in selecting the Filip-

pov vector field below:

(a) fB := (1− α) ((1− β)f1 + βf2) + α ((1− β)f3 + βf4) ,

(b) (α, β) ∈ (0, 1)2 : WλB = 0 with λB :=



(1− α)(1− β)

(1− α)β

α(1− β)

αβ


.

(1.4.10)

This bilinear interpolation method was originally introduced in [2] for nodally attrac-

tive Σ, it was further mentioned in [13], it was later studied in [23, 19], and it is

effectively the sliding technique underpinning the singular perturbation approach of

[45] and of [37]. As proven in [19], when the conditions of Definition 1.4.2 hold, this

bilinear method gives an admissible solution λB and a smoothly varying Filippov vector

field on Σ. To be precise, and for later reference, we note that one needs to solve the

nonlinear system (1.4.10)-(b), that is WλB = 0, for (α, β). In general, this system

may have more than one admissible solution; the quoted result in [19] guarantees that

there is only one admissible solution (i.e., values of α and β in [0, 1]), whenever Σ is

attractive as in Definition 1.4.2.

Unfortunately, there are potential difficulties caused by the choice (1.4.10) of vec-

tor field. These become apparent when Σ loses attractivity at generic first order exit

points (see below), where one of the sub-sliding vector fields (on Σ1 or Σ2) has itself

become tangent to Σ. As we will see in Lemma 1.4.9, at generic exit points Σ ceases to

be attractive, and one might expect a trajectory to exit Σ on the lower co-dimension

manifold. However, as proven in [19], at generic exit points there could be two solu-

tions of (1.4.10)-(b), giving distinct (α, β) in [0, 1]2, and different vector fields. Again

referring to [19], one such solution always necessarily gives the sliding vector field on

the lower co-dimension manifold, but the other solution corresponds to the sliding

vector field that the trajectory was obeying. As a consequence, even assuming that
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one is able to obtain all roots of (1.4.10)-(b) rather than just following one by con-

tinuation, in general there is a catch: either one discontinuously changes the value of

(α, β) in order to exit from Σ (and loses smoothness), or the loss of attractivity of Σ

will go unnoticed to the bilinear vector field one is using (which remains well defined)

and one ends up sliding on Σ, even though Σ is no longer attractive (see Section 5.1

for illustration of this fact). To us, this seems undesirable, since -if perturbations off

Σ obey the dynamics of the original piecewise smooth system (1.4.3)- in general we

expect that the perturbed solution trajectories will not return to Σ, when Σ is not

attractive.

Definition 1.4.8 (First order exit points; [19]). Let ẋ be as in (1.4.7), and let fΣ±1,2

be as in (1.4.6) (whenever there is a well defined sliding motion on Σ±1,2). We say

that x ∈ Σ is a generic first order exit point if one (and just one) of the fF
±
1,2 is itself

in the class (1.4.7), that is it is tangent to Σ. The corresponding fF
±
1,2 is called an

exit vector field.

As Lemma 1.4.9 below clarifies (see also [19]), first order exit points are points

where Σ ceases to be partially nodally attractive.

Lemma 1.4.9. If a point xe ∈ Σ is a first order exit point relative to Σ+
1 , then

det
[
w2 w4

]
= 0. (1.4.11)

Analogously, if the first order exit points correspond to a sliding regime on Σ−1 we

have det
[
w3 w1

]
= 0, relatively to Σ+

2 we have det
[
w4 w3

]
= 0, and relatively to

Σ−2 have det
[
w1 w2

]
= 0.

Proof. If xe ∈ Σ is a potential exit point for subsliding on Σ+
1 , then (at xe) fF

+
1 is not
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just in the plane tangent to Σ1 but also to Σ. That is, at xe we must have

W
1>




0

λ2

0

λ4


=


0

0

1

 ,

which of course implies

[
w2 w4

]λ2

λ4

 =

0

0

 hence det
[
w2 w4

]
= 0 ,

since fF
+
1 = λ2f2 + λ4f4, λ2 + λ4 = 1, is the Filippov sliding vector field on Σ+

1 .

Similarly for the other cases.

As a consequence of Lemma 1.4.9, at a generic first order exit point for one of

the Σ±1,2, we would like a solution trajectory to leave Σ and to begin sliding (away

from Σ) on the relevant sub-manifold Σ±1,2 with corresponding exit vector field. For

this reason, we will further restrict our search for admissible λ, solutions of (1.4.9), in

such a way that they will render the exit vector field at generic first order exit points.

Definition 1.4.10 (Smooth Exits). Let λ in (1.4.8)-(1.4.9) be admissible and such

that, at a generic first order exit point, λ renders also the exit vector field 2. Then,

fF will be called a smoothly exiting vector field.

1.4.2 General form of coefficients

The following result is helpful in order to write the general form of an admissible

solution λ in (1.4.8), and will be proven, in a more generally setting, in Lemma 3.2.6.

Lemma 1.4.11 ([18]). When Σ is attractive, or we are at a generic first order exit

point, the matrix

W
1>

 in (1.4.9) has full rank 3. Furthermore, there is a nontrivial

2this means that two of the four entries of λ are 0
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vector v, as smooth as W , spanning ker

W
1>

, and v can be chosen as the eigenvector

relative to the 0-eigenvalue of

W
1>


> W

1>

.

In light of Lemma 1.4.11, clearly any admissible solution of

W
1>

λ =


0

0

1

 can

be written as

λ = µ+ cv , (1.4.12)

where µ is any (smooth) particular solution of

W
1>

µ =


0

0

1

, and v (smoothly)

spans ker

W
1>

. We note that, since 1>v = 0, then v cannot have all components of

the same sign. In particular, in order for λ to be admissible, we must have that the

function c satisfies

α ≤ c ≤ β , α := max

{
−µi
vi

: vi > 0

}
, β := min

{
−µi
vi

: vi < 0

}
, (1.4.13)

for each x in (the sliding portion of) Σ. Note that α ≤ 0 and β ≥ 0. Of course, α

and β are functions of x (since so are µ and v), and in general are only continuous

functions (even if µ and v are smooth). Finally, we note that, by the nature of the

solution set in (1.4.12), although the admissible region for c in (1.4.13) depends on

the specific choices of µ and v, the admissible set of coefficients λ does not. Further,

the topological properties (say, connectedness) of the admissibility region in (1.4.13)

are preserved by choosing different µ and v.

To sum up, in our present context, all possible admissible smooth sliding vector

fields of Filippov type (i.e., with smooth and positive coefficients) arise from (1.4.12),
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for given smooth µ and v as above, and selecting a smooth function c satisfying

(1.4.13).

In what follows, and particularly in Chapter 2 and Chapter 4, we will review or

introduce various techniques: in order to compare them, we will use the following

example, which is sufficiently simple to allow hand calculations, yet rich enough to

illustrate all desired features.

Example 1.4.12 (A model example). We take the following vector fields fi, i =

1, 2, 3, 4, taking values in R3:

f1(x) :=


2x1 + 1

−x1 + x2x3 + 1

x1 + x2 + 1

 , x ∈ R1 , f2(x) :=


2x1 − 1

−x1 + x3 − 1

x1 + x2x3 + 2

 , x ∈ R2 ,

f3(x) :=


2x1 − 3

−x1 + x2 + 2

x1 + x2x3 − 1

 , x ∈ R3 , f4(x) :=


2x1 + 2

−x1 + x3 − 2

x1 + x3 − 2

 , x ∈ R4 ,

where the regions Ri’s are as in (1.4.4) and

h1(x) := x3, h2(x) := x2 .

Therefore, Σ = {x ∈ R3 : x2 = x3 = 0}, we have the two unit normals n1(x) =
0

0

1

 , x ∈ Σ1, n2(x) =


0

1

0

 , x ∈ Σ2, and we can write the matrix W for x ∈ Σ as:

W (x)

1>

 =


x1 + 1 x1 + 2 x1 − 1 x1 − 2

−x1 + 1 −x1 − 1 −x1 + 2 −x1 − 2

1 1 1 1

 . (1.4.14)

Observe that the sign pattern of Table 1 for nodal attractivity holds for x1 ∈ (−1, 1).

At the same time, we also note that the more comprehensive attractivity conditions
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Figure 3: Admissible region (x1, c) in (1.4.15).

of Definition 1.4.2 hold also outside of this interval, namely for |x1| ≤ 1.2, and that

when x1 = ±1.2 the exit conditions of Definition 1.4.8 hold, Σ is no longer attractive,

and one should exit Σ by sliding on Σ1, respectively Σ2. On account of this, we

would surely value any technique able to provide smoothly varying solutions λ for all

|x1| ≤ 1.2, relatively to the present example, and further one which when x1 = ±1.2

renders two coefficients in λ equal to 0. As we will see below, there are not many such

choices. Finally, one can easily obtain the general form of the admissible solutions

(1.4.12), for example written as

λ =



2
3
− 5

9
x1

0

2
3
x1

1
3
− 1

9
x1


+ c



−5
3

1

1

−1
3


, (1.4.15)

which is admissible for (x1, c) in the shaded region in Figure 3
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Chapter II

A COMPARISON OF FILIPPOV SLIDING VECTOR

FIELDS IN CO-DIMENSION 2

In this chapter, we consider several possibilities on how to define a Filippov sliding

vector field on a co-dimension 2 singularity surface Σ, intersection on two co-dimension

1 surfaces. As underlying assumption, we consider the case of nodally attractive Σ.

We broadly classify the various possibilities in two groups: algebraic/analytic and

geometric. In the first group, we consider three possible ways to define a Filippov

vector field: a mean-field formulation, two approaches based on minimizing the 2-

norm, and two different averaging techniques.

The geometric approaches we consider are a generally viable mean to select a Filippov

sliding vector field. In particular, the techniques which can be cast in the framework

of “barycentric coordinates” methods deliver a uniquely defined and smoothly varying

vector field on a nodally attractive Σ. Specifically, we reinterpret the bilinear method

as introduced in (1.4.10) (that has been extensively analyzed in [19, 23] under general

attractivity assumptions on Σ), introduce the moments method and review other

techniques already present in literature.

2.1 Analytic-Algebraic methods

In this section, we introduce some techniques to select λ in (1.4.12) for the case of

Σ nodally attractive. As far as we know, the construction behind the method(s) of

Section 2.1.1 is new. The idea of Section 2.1.2.1 is patterned on general minimum va-

riation principles, and the second method in that section is already in [1]. Finally, the

techniques examined in Section 2.1.3 are patterned after a successful interpretation
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of the Filippov sliding vector field in co-dimension 1.

2.1.1 Mean field methods

Given the form of (1.4.12), and the restriction on c given by (1.4.13), we define a

uniform mean field method by selecting c to be the midpoint of [a, b] (recall that a

and b depend on µ, v, and x ∈ Σ):

λMF := µ+
a+ b

2
v . (2.1.1)

Note that, in (2.1.1), we are taking the expected value of the random variable Ξ

according to the uniform distribution over [a, b]. This suggests a useful generalization,

based on the following definition.

Definition 2.1.1 (Mean Field Methods). Let µ be a particular solution of (1.4.9),

and v be also given. Assume that the random variable Ξ obeys a probability distribution

over [a, b], with pdf (probability density function) g(ξ). Then, we define the family of

mean field methods according to

c :=

∫ b

a

ξg(ξ) dξ and λg := µ+

(∫ b

a

ξg(ξ) dξ

)
v . (2.1.2)

We have the following result, telling us that the (pointwise) value of λg is inde-

pendent of µ.

Lemma 2.1.2. For given v, the value of λg in (2.1.2) is independent of the particular

solution µ. Moreover, choosing c and λg as in (2.1.2) always gives an admissible

solution.

Proof. Suppose that we have chosen c as in (2.1.2) for a given µ, and let µ̃ be another

solution of (1.4.9), giving admissibility interval c̃ ∈ [ã, b̃].

Then, there exists a value τ ∈ [a, b] such that µ̃ = µ+ τv. But

µ̃+ c̃v ≥ 0⇔ µ+ (c̃+ τ)v ≥ 0⇔ c̃+ τ ∈ [a, b]⇔ c̃ ∈ [a− τ, b− τ ] .
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In particular, [ã, b̃] and [a, b] have the same length. From this, it follows that if ξ has

pdf g(ξ) over [a, b], then ξ̃ will have pdf g̃(ξ̃) := g(ξ̃ + τ), ξ̃ ∈ [ã, b̃] = [a − τ, b − τ ].

Therefore, by (2.1.2),

λ̃g = µ̃+

(∫ b−τ

a−τ
ξ̃g̃(ξ̃) dξ̃

)
v

= µ̃+

(∫ b−τ

a−τ
ξ̃g(ξ̃ + τ) dξ̃

)
v

= µ̃+

(∫ b

a

(ξ − τ)g(ξ) dξ

)
v

= µ̃+

(∫ b

a

ξg(ξ) dξ − τ
∫ b

a

g(ξ) dξ

)
v

= µ̃− τv +

(∫ b

a

ξg(ξ) dξ

)
v

= µ+

(∫ b

a

ξg(ξ) dξ

)
v

= λg .

Finally, that choosing c and λg as in (2.1.2) produces an admissible solution is

clear.

The following example shows that, in general, λMF (i.e., where the probability

distribution function is the uniform distribution), although obviously admissible, and

trivially continuous in case µ is, is not as smooth as W .

Example 2.1.3. Let us refer to Example 1.4.12. By the configuration of this problem,

it is easy to obtain

a(x1) + b(x1)

2
=


1
6
x1 − 1

15
, if x1 ∈

[
−6

5
, 0
]
,

1
18
x1 − 1

15
, if x1 ∈

[
0, 6

5

]
,

which gives λMF not differentiable at x1 = 0, whereas W is analytic for all x1 ∈[
−6

5
, 6

5

]
.

So, it is natural to ask: “How can we choose a distribution function g in order to

make λg in (2.1.2) as smooth as W? ”
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We propose to consider the following family of distribution functions:

gα(ξ) :=
α(ξ − a)α−1

(b− a)α
, ξ ∈ [a, b], α ∈ (0,+∞) . (2.1.3)

This family of pdf’s belongs to the Beta distribution family with parameters (α, 1),

and we restrict to this family of pdf’s because of their natural formulation on compact

intervals.

For (2.1.3), we have

gα ≥ 0,

∫ b

a

gα(ξ)dξ = 1,

∫ b

a

ξgα(ξ)dξ =
1

α + 1
a+

α

1 + α
b,

from which c in (2.1.2) is given by

c = (1− γ)a+ γb , γ =
α

α + 1
, (2.1.4)

that is, for every α ∈ (0,+∞), the expectation of the random variable ξ with measure

gα(ξ) is the convex combination of a, b with weights 1
α

, α
1+α

.

Although not necessarily any choice of α in (2.1.3) gives an admissible solution as

smooth as W (e.g., taking α = 1 gives λMF), we will see in Section 2.2 that in fact it

is possible to choose α to obtain a smoothly varying, admissible, λg.

2.1.2 Minimum norm

Here we look at two very natural approaches: to choose the Filippov sliding vector

field fF in such a way to minimize ‖λ‖, or to minimize ‖fF‖ directly. Below, the

norm is the 2-norm.

2.1.2.1 Minimizing λ

Here we seek the minimum norm solution of (1.4.9).

Without directly imposing the positivity constraints, it is simple to obtain the

minimum 2-norm solution; e.g., by using the SVD (singular value decomposition) of
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W
1>

:

W
1>

 = USV >,

where U ∈ R3×3 and V ∈ R4×4 are orthogonal and S = [Σ, 0] with Σ = diag(σi, i =

1, 2, 3) (note, σi 6= 0):

λmin = V y , y =



u1/σ1

u2/σ2

u3/σ3

0


, u := U>


0

0

1

 ,

which can also be rewritten from the form (1.4.12) as

λmin := (I − vv>)µ . (2.1.5)

It can be shown that λmin is as smooth as W .1 However, this solution may be not

admissible (i.e., it is not generally true that λmin ≥ 0).

Using again the structure (1.4.12), the min 2-norm admissible solution λ̂min is

simply given by λmin above if λmin is admissible, and by whichever of µ+av or µ+ bv

gives minimum 2-norm otherwise. Unfortunately, in this case λ̂min may fail to vary

smoothly.

Example 2.1.4. Take Example 1.4.12, at x1 = −0.9.

Then, λmin =



1
4

11
20

− 1
20

1
4


, which is clearly not admissible. In this case, the admissible

1Use the argument in the proof of Lemma 1.4.11
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Figure 4: Components of λ̂min for Example 1.4.12.

solution of minimum 2-norm is λ̂min =



1
6

3
5

0

7
30


, with fmin =


−1.7667

0

0

. (Coinciden-

tally, these correspond to λave and fave as in Example 2.1.11). However, as can be

seen in Figure 4, λ̂min is not as smooth as W .

2.1.2.2 Minimizing f

[Minimum Variation] This approach was already suggested in [1]. The goal is to find

f as in (1.4.8) of minimal norm. That is, one solves

min ‖f‖2, subject to

W
1>

λ =


0

0

1

 .
Writing λ = µ+ cv as in (1.4.12), then we have to determine the minimum of

‖Fµ‖2 + 2cF>µ Fv + c2‖Fv‖2 , where Fµ :=
4∑
i=1

µifi , Fv :=
4∑
i=1

vifi .
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Figure 5: Components of λ for (2.1.7).

The minimum is attained for c = −F>µ Fv
‖Fv‖2 , and so the vector field afforded by this

approach is

fMV := F>µ

(
I − Fv
‖Fv‖

F>v
‖Fv‖

)
Fµ , (2.1.6)

which can be fit into the class of vector fields (1.4.8) by taking

λMV = µ−
F>µ Fv

‖Fv‖2
v . (2.1.7)

Unfortunately, this approach is also affected by similar limitations as those encoun-

tered for λmin. To be precise, now it may happen that fMV is not a Filippov vector

field (in the sense that λMV in (2.1.7) is not admissible), and by restricting the mini-

mization search so that λMV is admissible may render a non-smooth fMV.

Example 2.1.5. Consider again Example 1.4.12. Here, the resulting fMV = 0.

Looking at the λMV components in Figure 5, we notice that they are smooth, but not

always positive for x1 ∈ (−1, 1). By imposing positivity constraints, that is solving

min ‖f‖2, subject to

W
1>

λ =


0

0

1

 , λ ≥ 0 , (2.1.8)
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Figure 6: Components of λ for (2.1.8).

we highlight in the Figures 6 and 7 how this generally produces a lack of smoothness

in λ and a resulting lack of smoothness in f .

For completeness, we remark that –in general– it is not true that fMV = 0 even

without imposing the admissibility constraints.

Remark 2.1.6. A natural, related problem about the minimization techniques pre-

sented above is the selection of a suitable norm so to obtain a smoothly varying ad-

missible solution for the definition of a Filippov sliding vector field on Σ. A refined

approach would be using a norm more demanding on the regularity of the minimum

variation solution. This approach seems indeed to be promising, and requires a deeper

and more specific analysis: we dedicate Chapter 4 to this task. There, we will analyze

minimum variation techniques with respect to the H1-norm.

2.1.3 Averaging

Here we attempt to indirectly define a Filippov sliding vector field by averaging the

dynamics near Σ in a similar way to what has proven to be successful in the case of
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sliding motion on a co-dimension 1 surface.

We recall that when Σ has co-dimension 1, a simple averaging process of the

Euler discretization method converges to the Filippov sliding vector field in (1.3.4).

In that case, the idea seems to have been originally introduced by Utkin in [54] (see

also [24, 49] for added generality). The idea is simple, but we need to re-interpret it

appropriately in order to appreciate how we may extend it.

Let x0 ∈ Σ, let n(x0) be the (unit) normal to Σ at x0 and represent points in a

δ-neighborhood of x0, of base point x0 (i.e., whose orthogonal projection is x0), as

{x ∈ Rn : x = x0 + n(x0)c(x)}, where the scalar valued function c(x) represent the

distance along the normal direction, hence c(x) = h(x). This way we can define a

strip C of width 2δ around Σ.

Now, suppose we have fields f1 and f2, defined on and around Σ. Take a point

x(0) ∈ R1, of base point x0 ∈ Σ, such that h(x(0)) = −δ, and consider the value given

by a Euler step, x(1) = x(0) + τ0f1(x(0)), with τ0 chosen so that x(1) is in R2 and

h(x(1)) = δ (this is always possible, given that hTx f1 > 0). From x(1), we take another

Euler step, x(2) = x(1) + τ1f2(x(1)), with τ1 so that x(2) ∈ R1 and h(x(2)) = −δ. Now
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Figure 8: Euler steps as explained in Remarks 2.1.7.

consider (x(2) − x(0))/(τ0 + τ1) = τ0
τ0+τ1

f1(x(0)) + τ1
τ0+τ1

f2(x(1)). A standard calculation

(e.g., see [24]) gives that

lim
δ→0

(x(2) − x(0))/(τ0 + τ1) = αf1(x0) + (1− α)f2(x0) ,

α = hT (x0)f1(x0)/(hT (x0)(f1(x0)− f2(x0)) ,

that is (1.3.4).

Remarks 2.1.7.

(i) We note that this averaging process is logically one-dimensional, since the ite-

rates are effectively controlled by the scalar values h(x), rather than by x.

(ii) We also note that the limiting value is the same for any point at distance δ

from Σ, relatively to the same base point x0 ∈ Σ. In other words, we could have

started just as well from the point x0 + n(x0)δ.

(iii) Finally, we stress that the process is (and must be) stopped after two Euler steps.

We can visualize this process as if it is taking place on an interval of length 2δ for

the h-axis around the origin (h = 0), and we bounce from one end of the interval to

the other. See Figure 8.

In co-dimension 2, we attempt to generalize the above approach by working with

the Euclidean distance. So, we consider a “cylinder-like” region C surrounding Σ
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(which serves as the “axis” of the cylinder) and “radius” δ, as defined by the require-

ment that

x ∈ C ⇐⇒ ‖h(x)‖2 = (h1(x))2 + (h2(x))2 = δ2 .

It will be useful to better explain the structure of C by considering points within

distance δ from a base point x0 ∈ Σ. In other words, if N(x0) = [n1, n2]x0 represent

the matrix of the unit normals at x0 ∈ Σ, we will have x = x0 + N(x0)c(x), and

‖x − x0‖2 ≤ δ2. Hence, all points in C (hence, at distance δ from Σ), of same base

point (orthogonal projection) x0 ∈ Σ, will belong to a section Rδ(x0) of C, for which

we will have

c = δ
(
NT (x0)N(x0)

)−1

cos θ

sin θ

 , θ ∈ S1 . (2.1.9)

Through (2.1.9), we can thus bijectively map all points in C of same base point x0 to

points on the unit circle, i.e., to angles θ. [Note that, in general, the neighborhood is

ellipsoidal].

Example 2.1.8. Consider Example 1.4.12. Here, Σ is a plane, and the two normals

are n1 = e3 and n2 = e2. From (2.1.9) we get c = δ

cos θ

sin θ

, that is a circular

neighborhood. All points in C are distinguished by the value of the first component x1,

and by the angle θ, and the vector fields, evaluated on C, assume the form

f1(x) =


2x1 + 1

−x1 + 1 + δ2 cos θ sin θ

x1 + 1 + δ cos θ

 , f2(x) =


2x1 − 1

−x1 − 1 + δ sin θ

x1 + 2 + δ2 cos θ sin θ

 ,

f3(x) =


2x1 − 3

−x1 + 2 + δ cos θ

x1 − 1 + δ2 cos θ sin θ

 , f4(x) =


2x1 + 2

−x1 − 2 + δ sin θ

x1 − 2 + δ sin θ

 .

With the above in mind, we will now distinguish between two different averaging

processes: (i) averaging the dynamics induced by the original vector fields f1,2,3,4, or
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(ii) averaging the dynamics induced by the sub-sliding vector fields of (1.4.6), f±F1,2
.

2.1.3.1 Averaging Original Dynamics

Here we look at the dynamics of the Euler map under the original vector fields, by

requiring successive iterates to remain in C.

We generate points on C by the following iterative process.

Algorithm 1.

(i) Given a point x(0) ∈ C, let x(0) ∈ Ri0 (one of the regions R1, R2, R3, R4) and let

fi0 be the corresponding vector field. Then, take a Euler step with stepsize τ0

so that the value

x(1) = x(0) + τ0fi0(x
(0)) (2.1.10)

is also in C (see Lemma 2.1.9 below). [In the (measure 0) eventuality that x(0)

or one of the iterates below is on Σ1 or Σ2, we modify this construction by

taking the Filippov sliding vector field f±F1,2
on these co-dimension 1 surfaces.]

(ii) Repeat this process. That is, for k = 0, 1, 2, . . . , let

x(k+1) = x(k) + τkfik(x
(k)) , τk : ‖h(x(k+1))‖2 = δ . (2.1.11)

Lemma 2.1.9. Let the assumptions on Σ of Table 1 hold. Then, for given δ > 0, the

iteration (2.1.11) is well defined, and hence, there exists a unique τk > 0 in (2.1.11).

Proof. We consider the first step, assuming that x(0) is not on either of Σ1, Σ2.

The other steps, as well as the case of x(0) ∈ Σ1,2, are handled similarly. We have

‖h(x(0))‖2 = δ2, and seek τ0 such that ‖h(x(1))‖2 = δ2. From Taylor expansion with

remainder in Lagrange form, we have

h(x(1)) = h(x(0)) + τ0∇hT (η0)fi0(η0) , (η0)j ∈
[
(x(0))j, (x

(1))j
]
, j = 1, . . . , n .

Now, requiring h(x(1))Th(x(1)) = δ2, gives τ0 = 0, which is unacceptable, or

τ0 = −2δ
hT (x(0))

[
∇hT (η0)fi0(η0)

]
‖∇hT (η0)fi0(η0)‖2

,
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Figure 9: Iterative process as in Lemma 2.1.9.

which is strictly positive on account of Table 1 and of the labeling of the regions

R1, . . . , R4.

It is insightful to visualize this iterative process as if we bounce from point to

point on a circle of radius δ around the origin by taking Euler steps of appropriate

stepsizes; see Figure 9. In order to obtain an average vector field from the above

iteration, we now collect together in four different groups all stepsizes generated in

(2.1.11) above, according to which one is the vector field for which they are being

Euler steps. That is, from (2.1.11) we will call τk = τ
(1)
k , if fik = f1, and similarly for

τ
(2)
k , τ

(3)
k , τ

(4)
k , with the obvious modification required if we are using one of the f±F1,2

.

It must be appreciated that the values of the τk’s depend on δ.

Suppose2 that the trajectory generated by x(0) is periodic in the angle θ; that is,

suppose that we generate iterates whose associated angles satisfy θ(x(0)), . . . , θ(x(N0−1)),

θ(x(N0)) = θ(x(0)), and note that N0 itself generally may depend on δ. Under this

2We conjecture that, for fixed δ > 0, and constant vector fields, this supposition is correct, but
lack a complete proof of this fact; based on what follows, we lack motivation to embark in such
possible proof.
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situation, it is reasonable to consider the following quantity:

λiave(x
(0), δ) :=

∑N0−1
k=0 τ

(i)
k∑N0−1

k=0 τk
, i = 1, 2, 3, 4 . (2.1.12)

Note that this would give an admissible solution. But, as we said, we need the orbits

to be periodic. Moreover, we must demand that (2.1.12) has a limit as δ → 0, a

property which is not clear at all if it is true. In fact, both periodicity and existence

of the limit are quite hard to prove in general and/or to verify in a practical problem.

Furthermore, as we see in Example 2.1.10 below, even if the orbit is periodic and the

limit exists, in general the value of points in C with same projection x0 ∈ Σ differ.

As a consequence, this averaging technique turns out to be unsatisfactory as a way

to define a Filippov sliding vector field. We say this because an obvious requirement

of this way of proceeding must be that the limiting values of λave(x
(0), δ) be the same

for all x(0) ∈ Rδ(x0).

Example 2.1.10. Consider Example 1.4.12, with x1 = 0.5 there; so, we let x0 =

(0.5, 0, 0) ∈ Σ. We take two different points in Rδ(x0), namely (see Example 2.1.8)

corresponding to: (a) θ = eps, and (b) θ = 0.7815 (here, eps is the machine precision,

and eps ≈ 2.2204e − 016). In these cases, the generated orbits are periodic and for

λave given in (2.1.12) the limiting values as δ → 0 exist and give:

(a)



0

0.2333

0.5667

0.2000


, (b)



0.3889

0

0.3333

0.2778


,

with average periods of 95.2704 and 96.2323 respectively.

To move out of the impasse above, we also considered a second averaging process,

over the angle θ, for all points with same base point on Σ. That is, calling x(θ) the

points in C with same base point x0, and subject to the same limitations previously
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Figure 10: Components of λave for Example 1.4.12.

mentioned on the proper definition of λave(x(θ)), we considered the following quantity,

λave(x0) :=
1

2π

∫ 2π

0

λave(x(θ)) dθ , (2.1.13)

which –as long as it is well defined– is surely giving an admissible solution, identical

for all points in C with same base point x0. Alas, even when well defined, the above

turns out to be unsatisfactory.

Example 2.1.11. Let us refer again to Example 1.4.12, with x1 = −0.9.

In this case we obtain fave =


−1.7667

0

0

, and λave =



0.1667

0.6000

0

0.2333


, which is surely

admissible. But, as Figure 10 exemplifies, this λave solution is clearly not differentiable

in x1, despite W being analytic in it. As a consequence, this possible way to interpret

how to select a Filippov sliding vector field does not appear to be a viable choice.
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2.1.3.2 Averaging Sub-Sliding Dynamics

In the nodally attractive case considered in this work, we can take also an alternative

point in view in order to build an average sliding vector field. As before, we consider

the 2-norm to define the cylinder C around Σ, of radius δ.

The point of the construction below is to realize that –because of nodal attractivity–

a trajectory of the dynamical system (1.2.1) starting at a point in C will typically hit

one of the sub-sliding surfaces Σ±1,2 before reaching Σ itself. This allows us to effec-

tively reduce the dimensionality of the averaging process, by looking at the points in

C which end up first on one of Σ±1,2. At that point, the averaging process will be the

same as we had in co-dimension 1.

Recalling (1.4.6), we will look for a sliding vector field on Σ of the following form

f := c+
1 fF+

1
+ c−1 fF−1 + c+

2 fF+
2

+ c−2 fF−2 . (2.1.14)

To understand how to select the coefficients c±1,2, we reason as follows.

Let x0 ∈ Σ be given, and consider the δ-section Rδ(x0) in C, defined as before;

see (2.1.9). For fixed value of δ, consider the Euler segments starting at a point

x(0) ∈ Rδ(x0), defined so to remain in C, but monitoring the first time that any such

segment crosses one of the Σ±1,2. In other words, we define (see (2.1.10)) x(1)(τ) =

x(0) + τfi0(x
(0)), τ ≤ τ0; if this segment reaches C without first having crossed one of

the Σ±1,2, then we take τ = τ0 as in (2.1.10), and continue by taking Euler segments

(see (2.1.11)) to generate x(k+1)(τ) = x(k) + τfik(x
(k)), τ ≤ τk, until the first time one

of these segments crosses one of the Σ±1,2. [The probability 0 eventuality that one of

these segments first reaches Σ directly is presently ignored, and see Remark 2.1.12-(i)

below.] It is quite easy to see that, because of nodal attractivity, for any starting

point in Rδ(x0) there is a first Euler segment crossing one of Σ±1,2. We stress that this

process generally depends on δ.

By doing what described above, and recalling the form of Rδ(x0), we effectively
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obtain a partition of S1, that is of [0, 2π], into arcs: an angle from each of these

arcs is associated to whichever sub-surface Σ±1,2 is reached first by the Euler segments

starting from that angle in Rδ(x0). So, for given δ, we will have four arc-lengths,

which we call θ±1,2; e.g., θ+
1 is the length of the arc of S1 whose associated points have

a Euler segment first reaching Σ+
1 , etc.. Again, let us stress that these θ±1,2 generally

depend on δ.

Now, as soon as one of the sub-surfaces Σ±1,2 is reached by a Euler segment, we

reduce the dimensionality of the process and go back to the case of co-dimension

1. For example, suppose that for a certain angle θ, the Euler iterates starting with

x(0) ∈ Rδ(x0) reach Σ+
1 first; then, we restrict consideration to the co-dimension 1

surface Σ1, with Filippov vector fields given by f+
F1

and f−F1
in (1.4.6); but, in co-

dimension 1 the averaging process is well understood, and in this case it will give a

Filippov sliding vector field at x0 ∈ Σ. With this, we will now have (all quantities

below generally depend on δ)

fF1 := (1− a1)fF+
1

+ a1fF−1 , fF2 := (1− a2)fF+
2

+ a2fF−2 ,

a1 :=
n>2 fF+

1

n>2 (fF+
1
− fF−1 )

, a2 :=
n>1 fF+

2

n>1 (fF+
2
− fF−2 )

.
(2.1.15)

Next, we compute the following ratios, defining the percentage of points in Rδ(x0)

contributing to fF1 , respectively to fF2 , see Figure 11. We make the dependence on

δ explicit:

L1(δ) :=
θ+

1 (δ) + θ−1 (δ)

2π
,

L2(δ) :=
θ+

2 (δ) + θ−2 (δ)

2π
.

(2.1.16)

Finally, we let δ → 0, and propose taking

L1 = lim
δ→0

L1(δ) , L2 = lim
δ→0

L2(δ) , (2.1.17)

and from this the overall sliding vector field at x0 ∈ Σ as

fmean = L1fF1 + L2fF2 .
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Figure 11: Geometric visualization for L1, L2.

With this rewriting, the coefficients c±1,2 in (2.1.14) are:

c+
1 := L1(1− a1) , c−1 := L1a1 , c+

2 := L2(1− a2) , c−2 := L2a2 . (2.1.18)

Therefore, by making definition (2.1.14) explicit in terms of the fi’s, this “average”

solution of (1.4.9) is

λmean :=



(1− α−)c−1 + (1− β−)c−2

(1− α+)c+
1 + β−c−2

α−c−1 + (1− β+)c+
2

α+c+
1 + β+c+

2


. (2.1.19)

Remarks 2.1.12.

(i) The case in which a Euler segment crosses Σ directly, ahead of crossing either

(but not both) Σ1 or Σ2, is not a concern in defining the values in (2.1.16), and

then (2.1.17), because, for each given δ, there are just four angles giving this

eventuality. Hence, they do not contribute to the arc lengths we used.

(ii) The limit in (2.1.17) as δ → 0 exists as consequence of the fact that (for any

i = 1, 2, 3, 4) ‖fi(x)− fi(x0)‖ is arbitrarily small for x ∈ Rδ(x0).
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Figure 12: Components of λmean for Example 1.4.12.

(iii) In principle, it is possible to attempt averaging for neighborhoods of Σ defined

by norms other than the 2-norm we used. We made some (limited) experiments

also with the∞-norm and the 1-norm, and our results were qualitatively similar

to those we reported for the 2-norm.

Example 2.1.13. Let us consider again Example 1.4.12, with x1 = −0.9.

In this case we obtain

c+
1

c−1

c+
2

c−2


=



0.1992

0.0383

0.2179

0.5446


, λmean =



0.0636

0.6618

0.0618

0.2127


and

fmean =


−2.1582

0

0

 ,
whereas a plot of all components of λmean in function of x1 is given on the right. As

Figure 12 makes clear, the components vary smoothly as long as the nodal attractivity

assumptions hold; i.e., x1 ∈ (−1, 1). But, they do not extend nicely outside of this

interval, a fact which appears to limit this averaging process and the construction of

λmean to purely nodally attractive configurations.
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2.2 Geometric methods

Here we look at techniques which can be naturally framed within the context of

rebuilding polygons in the plane, and finding a representation (i.e., coordinates) for

points internal to the polygon in terms of convex combination of the vertices. As it

turns out, these are the most interesting techniques. Chapter 3 will be devoted to

completely justify and analyze this geometric construction.

The idea is to think of the values wij, i = 1, 2, j = 1, 2, 3, 4, in (1.4.5) as giving

the four different points wj = (w1
j , w

2
j ), j = 1, 2, 3, 4, then consider the polygon made

up by joining the vertices in the following order

Π := w1w2w4w3 .

Given our assumptions on the wij’s, it is easy to realize that the origin is inside the

polygon. Thus, our task is to find the coordinates of the origin with respect to the

given vertices.

Although not derived from this interpretation, the technique in [23, 19] belongs

to this class of methods. The appropriate framework within which to interpret these

techniques, and to derive another very promising one, turns out to be that of barycen-

tric coordinates, widely used in computer graphics.

Definition 2.2.1 (Barycentric Coordinates). Let Ω be a closed convex polygon in the

plane, with vertices w1, . . . , wn, n ≥ 3, and let z ∈ Ω. The functions λi : Ω→ R, i =

1, . . . , n, are called barycentric coordinates for z, if they satisfy the three properties

of positivity, convexity, and interpolation:

(a) λi(z) ≥ 0, i = 1, . . . , n, (b)
n∑
i=1

λi(z) = 1, (c)
n∑
i=1

λi(z)wi = z. (2.2.1)

In the special case of n = 3, barycentric coordinates are unique and are called

triangular coordinates. For n ≥ 4, there is no unique choice of barycentric coordinates.

In the context of interest to us, we have n = 4, z = 0, and we seek λi(0) to be smoothly

varying functions of the vertices w1, . . . , w4.
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Even though barycentric coordinates are not unique for n ≥ 4, they share some

general properties that follow from the three defining axioms (2.2.1). In particular,

they satisfy the Lagrange property λi(wj) = δij, and they are linear along each edge

of Ω. To see this, observe that the axioms (2.2.1) imply linear precision, i.e. for any

linear function f one has
∑n

i=1 λi(z)f(wi) = f(z).

Below, we will look at three instances of quadrilateral barycentric coordinates of

the origin relatively to the polygon of vertices w1, w2, w4, w3 (in this order). Note

that, under nodal attractivity assumption, the origin is inside the polygon.

2.2.1 Bilinear interpolation

An important choice of barycentric coordinates is based upon bilinear interpolation.

In this case, one seeks λ in (2.2.1) of the form:

λ =



(1− α)(1− β)

(1− α)β

α(1− β)

αβ


, α, β ∈ [0, 1]. (2.2.2)

We will call λB the choice above. In our context, this choice was first proposed in

[2], and then throughly investigated and justified in [19], where it was proven to give

a smoothly varying solution λ so that the Filippov sliding vector field in (1.4.8) is

well defined. [The results in [19] validate this choice under more general attractivity

assumptions than just nodal attractivity.]

Quite clearly, the structure (2.2.2) derives from the convexity requirement on the

solution components,

(λ1 + λ2) + (λ3 + λ4) = (1− α) + α

= (1− α)(1− β) + (1− α)β + α(1− γ) + αγ,

where α, β, γ ∈ [0, 1], and then λB is obtained by selecting γ = β. This choice can

be understood as a (nonlinear) regularization of the system (1.4.9), as below.
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Definition 2.2.2. A vector λ ∈ R4 is said to satisfy the B-condition if λ1λ4 = λ2λ3.

Equivalently, letting R :=



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


, one has λ>Rλ = 0.

Lemma 2.2.3. A solution λ of (1.4.9) is λB if and only it satisfies the B condition.

Proof. It is straightforward from the construction that λB satisfies the B condition.

Now, suppose λ verifies the B condition. Then, let us define

α :=
λ3

λ1 + λ3

, β :=
λ2

λ1 + λ2

.

A trivial computation gives

(1− α)(1− β) =
λ1

λ1 + λ3

λ1

λ1 + λ2

=
(λ1)2

(λ1 + λ2)(λ1 + λ3)
= λ1,

and similarly for the other components.

This λB can be also obtained by appropriate choices of c in (1.4.12), and as a

mean field solution associated to a special value of α in the pdf (2.1.3).

Theorem 2.2.4. Consider the form (1.4.12), λ = µ + cv, where µ is any particular

solution of (1.4.9), v spans ker

W
1>

, and c ∈ [a, b] (admissibility interval). Then,

the bilinear interpolant solution λB is obtained with c =
−µ>Rv±

√
(µ>Rv)2−(µ>Rµ)(v>Rv)

v>Rv
,

and it is the mean-field solution associated to the pdf (2.1.3) with α = γ/(1 − γ),

γ := − 1
b−a

(
a+ µ>Rµ

v>Rv

)
.

Proof. One needs to solve for c from the relation λ>BRλB = 0. This gives the quadratic

equation for c:

c2v>Rv + 2cµ>Rv + µ>Rµ = 0 ,

and the appropriate root is the one identified above.
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Figure 13: Components of λB for Example 1.4.12.

Example 2.2.5. In Example 1.4.12 with x1 = −0.9 we have

λB =



0.1056

0.6367

0.0367

0.2211


and fB =


−1.9989

0

0

 ,

whereas a plot of λB as function of x1 is shown in Figure 13. Note that two of the

components of λB vanish at ±1.2 (see Example 1.4.12).

2.2.2 Moments solution: mean value coordinates

Another instance of barycentric coordinates is obtained upon selecting the λi’s in

such a way that the total moment of w1, w3 equals the total moment of w2, w4, all

taken with respect to the origin. More precisely, we regularize (1.4.9) by adding to it

the following condition:

d1λ1 − d2λ2 − d3λ3 + d4λ4 = 0 , where di :=
√

(w1
i )

2 + (w2
i )

2 , i = 1, . . . , 4.
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So, we are looking for a solution of the system

w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4

d1 −d2 −d3 d4

1 1 1 1


λ =



0

0

0

1


or


W

d>

1>

λ =



0

0

0

1


. (2.2.3)

Below, we will show that there is always a unique solution of (2.2.3), as smooth as

W . We will call this solution the moments solution and label it as λM.

First, we have the following Lemma.

Lemma 2.2.6. Under the nodal attractivity assumptions of Table 1, the matrix

W
d>


has full rank 3, and thus its kernel is 1-dimensional.

Proof. The sign pattern of the above matrix is
+ + − −

+ − + −

+ − − +

 .

Then, we claim that any linear combination with coefficients a1, a2 of the first and

second rows cannot match the third row. Obviously, the claim is correct if either of

a1 or a2 is 0. Now, if a1, a2 > 0, then d4 cannot be obtained; if a1 > 0, a2 < 0, then

d2 cannot be obtained; if a1 < 0, a2 > 0, then it is d3 that cannot be obtained, and

if a1, a2 < 0, then d1 cannot be obtained.

To prove that (2.2.3) gives an admissible solution, it is convenient to establish the

equivalence of (2.2.3) to the so-called mean value coordinates introduced by Floater;

see [27].

Definition 2.2.7 (Mean Value Coordinates). Let Ω be a planar polygon of vertices
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w1, . . . , wn. For x ∈ Ω, let

λi(x) :=
νi(x)
n∑
j=1

νj(x)

, νi(x) :=
tan
(
αi−1(x)

2

)
+ tan

(
αi(x)

2

)
‖wi − x‖

, (2.2.4)

and αi(x) is the angle at x in the triangle [x,wi, wi+1]. Then, the λi(x) are called

mean value coordinates of x.

We refer to the cited work of Floater [27] for a proof that mean value coordinates

are well defined for points inside the polygon. Here, we show that they are equivalent

to the moments solution in our context, where we have the polygon of vertices w1,

w2, w4 and w3, and seek mean value coordinates of the origin.

Lemma 2.2.8. The mean value coordinates satisfy (2.2.3).

Proof. We already know that the mean value coordinates verify (1.4.9), so we are left

to prove that they fulfill the third equation of (2.2.3). But this follows immediately

from (2.2.4), by noting that

d1λ1 − d2λ2 − d3λ3 + d4λ4 = tan
(α2

2

)
+ tan

(α1

2

)
−
(

tan
(α4

2

)
+ tan

(α2

2

))
−
(

tan
(α1

2

)
+ tan

(α3

2

))
+
(

tan
(α3

2

)
+ tan

(α4

2

))
= 0.

Finally, we have

Theorem 2.2.9. The mean value coordinates (2.2.4) are the unique solution of

(2.2.3). In particular, (2.2.3) is a nonsingular system.
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Proof. From Lemma 2.2.8, we know that the mean value coordinates vector λM is a

solution of (2.2.3), with positive components, and –in particular– it is a nontrivial

solution of

W
d>

λ = 0. Hence, see Lemma 2.2.6, λM spans the kernel of

W
d>

. Since

any solution µ of (2.2.3) must satisfy µ ∈ ker


W
d>


, and 1>µ = 1, then (2.2.3)

has the unique solution λM.

Remarks 2.2.10.

(i) An important consequence of the above is that λM is as smooth as W . In fact,

λM is solution of (2.2.3), which –on account of Theorem 2.2.9– is an invertible

linear system, and so its solution is as smooth as the coefficients, that is as W .

See also Example 2.2.12.

(ii) In light of the above equivalence, we favor implementing the moments method as

we proposed in this work, that is solving (2.2.3), rather than by forming (2.2.4).

Indeed, in the present context, solving (2.2.3) is much simpler.

The following result summarizes the relation between the moments solution, the

general form of admissible solution in (1.4.12), and the mean field solution associated

to a special value of α in the pdf (2.1.3).

Theorem 2.2.11. Consider the form (1.4.12), λ = µ+ cv, where µ is any particular

solution of (1.4.9), v spans ker

W
1>

, and c ∈ [a, b] (admissibility interval). Then,

the moments solution λM is obtained with c = −d>µ
d>v

, where d :=



d1

−d2

−d3

d4


, in (1.4.12),
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Figure 14: Components of λM for Example 1.4.12.

and is the mean-field solution associated to the pdf (2.1.3) with α = γ/(1 − γ),

γ := − 1
b−a

(
a+ d>µ

d>v

)
.

Proof. Since λM is a solution of (1.4.9), then d>λM = 0. Therefore, the value of c in

(1.4.12) is −d>µ
d>v

, as stated.

From (2.1.4) and the above, we must then have (1−γ)a+γb = −d>µ
d>v

, from which

the result follows.

Example 2.2.12. Let us consider Example 1.4.12, with x1 = −0.9.

In this case we get

λM =



0.0949

0.6431

0.0431

0.2190


, fM =


−2.0395

0

0

 ,

whereas a plot of λM in function of x1 is shown in Figure 14. Note that two of the

components of λM vanish at ±1.2 (see Example 1.4.12).

2.2.3 Wachspress solution

Another choice of planar barycentric coordinates is due to Wachspress (see [27, 55]).

Rephrased in our context, this gives an admissible value of λ in (1.4.9), which we will
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Figure 15: Figure for the definition of Wachspress solution

call λW, defined by the requirement (see Figure 15):

λi =
µi

4∑
i=1

µi

, µ1 :=
cot γ3 + cot β1

d2
1

, etc. . (2.2.5)

We refer to the original derivation of Wachspress [55] for a justification of this choice.

Example 2.2.13. Let us consider Example 1.4.12, with x1 = −0.9.

In this case we get

λW =



0.0832

0.6483

0.0506

0.2180


, fW =


−2.0833

0

0

 ,

whereas a plot of λW in function of x1 is shown in Figure 16. We note that Wachspress

coordinates extend smoothly beyond the nodal attractivity interval (−1, 1), but the plot

of the third component betrays that Wachspress coordinates are not well defined when

the origin belongs to a side of the polygon, a fact already remarked by Floater in

[27]. This fact makes λW less appealing than λB and λM beyond the case of nodally

attractive Σ.
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Figure 16: Components of λW for Example 1.4.12.

2.2.4 Another geometric solution

A final choice of geometric coordinates is the one based on the construction adopted

in [22]. This choice does not generally give a Filippov solution (that is, it does not

select a value of λ in (1.4.9)), but still selects a value of λ giving a smoothly varying

vector field on Σ. The difference with respect to the standard Filippov choice is that

one first projects the vector fields onto the tangent plane at x0 ∈ Σ, then seeks a

convex combination of the same. In our notation, calling λP the resulting values of

these convex coefficients, one proceeds as follows.

One seeks a sliding vector field (not necessarily of Filippov type) of the form

fP :=
4∑
i=1

λivi , vi = fi −N(N>N)−1wi , N =

[
∇h1 ∇h2

]
.

In its simplest form, in [22], selection of λ was done as follows:

λi =
µi∑
j µj

, where µi =

∏
j 6=i a

>
j wj∏

j 6=i a
>
j wj − a>i wi

, i = 1, . . . , 4

a1 =

1

1

 , a2 =

−1

1

 , a3 =

 1

−1

 , a4 =

1

1

 .

Example 2.2.14. Let us consider again Example 1.4.12, with x1 = −0.9.
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Figure 17: Components of λP for Example 1.4.12.

In this case we get λP =



0.2789

0.2940

0.2021

0.2250


, and fP =


−1.9713

0

0

, whereas a plot of λP in

function of x1 is shown in Figure 17: we note that these coordinates extend smoothly

beyond the nodal attractivity interval (−1, 1). However, note that none of the com-

ponents of λP is 0 at ±1.2 (see Example 1.4.12). So, although this choice does not

generally give a Filippov sliding vector field, it may be of some (limited) interest in

the nodally attractive case.

2.3 Nodal attractivity and stochastic basis

In this final section, we adopt the rewriting of a Filippov vector field in terms of the

sub-sliding vector fields (cfr. (2.1.14)). Indeed, we can rewrite λ as:

λ = Sq , where q :=



c+
1

c−1

c+
2

c−2


, and S :=



0 1− α− 0 1− β−

1− α+ 0 0 β−

0 α− 1− β+ 0

α+ 0 β+ 0


.

48



Observe that S is column stochastic, hence we may call any λ derived from this form

a stochastic subsliding solution.

This implies that we can obtain a solution of (1.4.9) by solving the following

problem:

B



c+
1

c−1

c+
2

c−2


=


0

0

1

 , s.t. λ = S



c+
1

c−1

c+
2

c−2


> 0, (2.3.1)

where B :=

W
1>

S. Moreover, letting for i, j = 1, 2, i < j, Dij := det

[
wi wj

]
,

then B can be written as

B :=


0 0 −b13 b14

−b21 b22 0 0

1 1 1 1

 ,
where

b13 :=
D34

w2
3 − w2

4

, b14 := − D12

w2
1 − w2

2

, b21 := − D24

w1
2 − w1

4

, b22 :=
D13

w1
1 − w1

3

.

Under nodal attractivity assumption, Table 1 assures that these bij’s are positive, so

that the sign pattern of B results


0 0 − +

− + 0 0

1 1 1 1

, and obviously rank(B) = 3. So,

from (2.3.1) we have

c+
1 = xb22 , c

−
1 = xb21 , c

+
2 = yb14 , c

−
2 = yb13 ,

for some x and y such that

(b13 + b14)y + (b21 + b22)x = 1,

and thus, for some γ ∈ R, y =
1− γ
b13 + b14

, x =
γ

b21 + b22

.
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In particular, we can write every solution of (2.3.1) as

q =



0

0

b14
b13+b14

b13
b13+b14


+ γ



b22
b21+b22

b21
b21+b22

− b14
b13+b14

− b13
b13+b14


= (1− γ)



0

0

b14
b13+b14

b13
b13+b14


+ γ



b22
b21+b22

b21
b21+b22

0

0


. (2.3.2)

Setting

s1 :=



0

0

b14
b13+b14

b13
b13+b14


, s2 :=



b22
b21+b22

b21
b21+b22

0

0


,

then (2.3.2) rewrites as

q = (1− γ)s1 + γs2. (2.3.3)

Now, let us determine the largest admissibility interval for γ. From (2.3.3), we have

Sq = Ss1 + γS(s2 − s1). (2.3.4)

But, both Ss1 and Ss2 are admissible solutions of (1.4.9), and so S(s2 − s1) belongs

to ker

W
1>

. Therefore, we can use (1.4.12) with

µ := Ss1,

v := S(s2 − s1).

From this, we can find the admissibility interval for c: λ = µ + cv, call it (aS, bS),

see (1.4.13). Hence, from (2.3.4) we get that γ ∈ (aS, bS) if and only if q as in (2.3.3)

provides a strictly positive solution Sq of (1.4.9).

Example 2.3.1. Consider again Example 1.4.12, with x1 = −0.9. We have (aS, bS) =

(−0.3039..., 1.1144...) and the values of γ giving all the solutions we have derived so
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far are:

γB = 0.5944,

γMF = 0.4052,

γmin = 1.8235,

γm = 0.5034,

γmean = 0.2375,

γW = 0.4052,

γP = 1.4690.

Note that γmean = L1 in (2.1.16). Also, note that γmin and γP produce values outside of

the admissibility interval, betraying that the corresponding approaches either produce

Filippov solutions which are not admissible (namely, λmin), or do not produce Filippov

solutions (namely, λP).
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Chapter III

THE MOMENTS SLIDING VECTOR FIELD ON THE

INTERSECTION OF TWO MANIFOLDS

3.1 Introduction

In Section 2.2.2, we have introduced the moments method in (2.2.3), and showed it

is well defined under nodal attractivity of Σ. Let us stress that our proposal was

based on a rather general principle: To regularize the system (1.4.9) by adding to it

one extra condition, linear in λ, so to obtain an invertible system giving a solution λ

enjoying specific properties . For our scopes, these properties amount to having that

λ be positive and smooth.

For later convenience, let us repeat that we consider the following system (cfr.

with (1.4.9) and (2.2.3)) to be satisfied for x ∈ Σ:

Mλ =



0

0

1

0


, where M :=


W

1>

d>

 , (3.1.1)

with W defined in (1.4.9) and

d :=



d1

−d2

−d3

d4


, where di := ‖wi‖2 , i = 1, . . . , 4 . (3.1.2)

Definition 3.1.1 (Moments method). We call moments method the method resulting

from solving (3.1.1) for λ, and using this in the selection of sliding vector field in
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(1.4.8). We call moments solution the solution λ of (3.1.1), call moments vector

field the resulting vector field (1.4.8), and call moments trajectory the solution of the

differential equation on Σ obtained when using the moments vector field.

Below, we validate the moments method, by showing that, for x ∈ Σ and Σ

attractive as in Definition 1.4.2, the matrix M in (3.1.1) is non-singular, that the

unique solution of (3.1.1) is admissible, and that the resulting smoothly varying

Filippov sliding vector field fF is further smoothly exiting at generic first order exit

points. Let us emphasize that our construction will give a Filippov solution (1.4.8) of

the general piecewise smooth system (1.4.3). Let us also emphasize that the overall

solution trajectory, in general, will only be piecewise smooth: our concern is that it

be smooth on the intersection Σ, but of course –in general– it will be only continuous

at entry points in a sliding region.

Remark 3.1.2. Of course, the formulation of the moments method we validate in

this paper is valid precisely for the case of Σ of co-dimension 2 examined herein. The

extension of the moments method to the case of Σ of co-dimension 3 (intersection of

three co-dimension 1 surfaces) requires an appropriately modified formulation; details

are in [17].

A plan of Chapter 3 is as follows. In Section 3.2, we associate a quadrilateral

to the attractivity configuration of Σ, extending and rigorously explaining what we

have already done in Section 2.2. In Section 3.3, this geometrical configuration is

exploited to prove invertibility of the matrix M in (3.1.1), and admissibility of the

unique solution λ. In Section 3.4, we rigorously prove that the moments vector field

is smoothly exiting at generic first order exit points, and we briefly discuss other

possibilities enjoying this property.
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3.2 Geometrical pattern for the dynamical problem

In this section, we give a useful geometrical reinterpretation of the algebraic problem

(1.4.9), when Σ is attractive. Later, this configuration will be exploited to establish

solvability of the system (3.1.1).

We begin by observing that the general Filippov convexification construction

based on (1.4.8)-(1.4.9) is effectively saying that the origin must be in the convex

hull of the four points wi, i = 1, . . . , 4. However, the convex hull of the four points

wi’s is a very large set, and may fail to give a good geometrical correspondence with

the dynamics of the problem.

Example 3.2.1. Consider the following model problem of the type (1.4.3):

ẋ = fi(x) , i = 1, 2, 3, 4, where

f1 =


x3 − 1

x3

x1 − 1

 , f2 =


2

−1

x2 − 1

 , f3 =


−1

2

x1x2 − 1

 , f4 =


−1

−1

−1

 ,

where (see (1.4.1)) Σ1 = {x1 = 0}, Σ2 = {x2 = 0}, and so Σ = {x1 = x2 = 0}, and

therefore (see (1.4.5))

w1 =

x3 − 1

x3

 , w2 =

 2

−1

 , w3 =

−1

2

 , w4 =

−1

−1

 .

In this case, on Σ, there is a unique Filippov sliding vector field: ẋ3 = −1.

Consider the initial condition (0, 0, 2) and the time interval 0 ≤ t ≤ 2. In Figure

18, we show the four snapshots of the vertices wi’s, at times t = 0, t = 1, t = 5/3,

and t = 9/5. For t = 0, we are in a configuration of nodal attractivity, which persists

for as long as t < 1. However, as soon as t ≥ 1, the vertex w1 plays no role in the

convex hull of the four points (dotted segment). Also, observe that as soon as t > 5/3,

Σ is no longer attracting nearby trajectories (hence, a perturbation off Σ will move

away from Σ), though the convex hull has not changed.
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Figure 18: Dynamics of Example 3.2.1: Convex hull versus quadrilateral Q.

Motivated by the above, our goal is to consider a geometric configuration that

better reflects the dynamics of the problem (and attractivity of Σ). To this end, we

propose to consider the quadrilateral Q, determined by w1, w2, w4, w3, in this order.

Accordingly, we are proposing to reinterpret an admissible Filippov solution as one

that obtains weights λ to be put on the vertices of Q in such a way that the origin be

the barycenter of Q relative to λ 1. For later reference, we summarize our proposal

of quadrilateral Q.

Definition 3.2.2. Given the four points w1, w2, w3, w4, as in (1.4.5), we define the

quadrilateral Q associated to W to be the quadrilateral obtained by joining the four

points in the order w1 to w2, to w4, to w3, and back to w1.

The following result is a simple consequence of the characterizations of attractivity

of Σ and the definition of quadrilateral Q. [For part (i), in the case of Σ attractive

1In this context, we can reinterpret (3.1.1) as a physical equilibrium requirement about the
moments provided by the weights λ with respect to origin, hence the proposed name of moments
method we adopted for our technique.
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through sliding, the result follows at once from Definition 1.4.2. In the case of spiral

attractivity, it follows immediately from [14, Table 3 or 4]). For part (ii), see Lemma

1.4.3.] Also, note that, in case (i), sliding motion on Σ should be taking place.

Lemma 3.2.3. Let W and Q be defined as above, for x ∈ Σ.

(i) If Σ is attractive (through sliding, or by spiraling), then the origin is in the

interior of Q. In particular, if the origin is external to Q, then Σ cannot be

attractive.

(ii) If x is a generic first order exit point, then the origin belongs to one side (and

one only) of Q.

We emphasize that that the quadrilateral Q tells us that “if 0 /∈ Q̄ then Σ is not

attractive, and a trajectory with initial conditions off Σ will not be attracted to Σ”:

this is our key reason to consider Q.

Below, we give some results on the interplay between the quadrilateral Q and

the algebraic problem (3.1.1). These results will be used in Section 3.3 to establish

solvability of (3.1.1).

Definition 3.2.4. The quadrilateral Q is called non-degenerate, if and only if these

two conditions hold:

(a) the vertices are not all aligned (equivalently, at most three vertices are aligned),

and

(b) if one vertex of Q is at the origin, then there cannot be two other vertices aligned

with it; in particular, no two vertices can be at the origin.

Remark 3.2.5. In agreement with Lemma 3.2.3, it is an important observation that,

in each of the sliding configurations allowed by Definition 1.4.2,2 the points wi, i =

2there are 13, not equivalent ones, [19]
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1, . . . ,, will always give that Q is non-degenerate. In fact, the origin is always in the

interior of Q. Furthermore, at generic first order exit points, the origin is along one

edge (and one only) of Q, and in particular the origin cannot be a vertex of Q.

Next, we give a key algebraic result that will be used in Section 3.3.

Lemma 3.2.6. If Q is non-degenerate, then the matrix

W
1>

 in (1.4.9) has full rank

3. Furthermore, there is a nontrivial vector v, as smooth as W , spanning ker

W
1>

.

Proof. Since we are assuming the quadrilateral relative to W to be non-degenerate,

then there exist three vectors in {wi : i = 1, 2, 3, 4} such that the corresponding

triangle has nonzero area: this implies that the columns corresponding to those three

vectors in

W
1>

 are linearly independent. The statement about the span of ker

W
1>


is because the symmetric function

[
W> 1

]W
1>

 has exactly one zero eigenvalue

which is simple (of algebraic multiplicity 1). Therefore, the eigenvector associated

to this 0 eigenvalue can be chosen smooth (e.g., see [36]), and it provides a basis for

ker

W
1>

.

We next give a more precise algebraic characterization of the vector v ∈ ker

W
1>


relatively to non-degenerate quadrilaterals. This result will be used in Section 3.4.

Notation 3.2.7. We will write Aijk for the signed area of the triangle of vertices wi,

wj, wk, in this order, i, j, k = 1, 2, 3, 4, and where the indices are distinct. For exam-

ple, A123 = 1
2

det

w1 w2 w3

1 1 1

, and the sign of the determinant indicates whether

the triangle is traced clockwise or counterclockwise.
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Lemma 3.2.8. Let Q be non-degenerate, and let W be the usual matrix: W =

[w1 w2 w3 w4]. Then, if v ∈ ker

W
1>

, v can have at most one zero component.

Proof. By Lemma 3.2.6, there is at least one triangle determined by vertices of Q

with nonzero area: without loss of generality, we assume it to be A123. Therefore, by

Cramer’s rule (and elementary rules of the determinant), we can write this vector v

as

v =



A243

A134

A142

A123


. (3.2.1)

If, by contradiction, more than one of these components were zero, then the four

vertices would be aligned: but this contradicts that Q be non-degenerate.

Additionally, (3.2.1) also shows smoothness of v, because the (signed) area of a

triangle is a smooth function of the triangle vertices (that is, the determinant is a

smooth function of the matrix entries).

Remark 3.2.9. In light of Lemmata 3.2.6 and 3.2.8, clearly any solution of

W
1>

λ =


0

0

1

 can be written as

λ = λp + cv ,

where λp is any particular solution, and v ∈ ker

W
1>

, and thus we note that v cannot

have all components of the same sign. Therefore, in particular, if λp is admissible

(hence λp ≥ 0), in order for λ to be admissible we must have a ≤ c ≤ b, where a ≤ 0
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and b ≥ 0 are defined as (see 1.4.13)

a := max

{
−λp,i
vi

: vi > 0

}
, b := min

{
−λp,i
vi

: vi < 0

}
.

3.3 Moments Solution under general attractivity conditions

Assume that the quadrilateral Q is non-degenerate and the origin is internal to it or

on at most one of its edges. In particular, this is the situation when Σ is attractive

through sliding. Then, we will show thatM in (3.1.1) is nonsingular, and the moments

solution λ is admissible. In Section 3.4, we will further show that the moments vector

field is smoothly exiting at generic first order exit points.

Consider system (3.1.1), repeated here for convenience:

Mλ =



0

0

1

0


, where M :=


W

1>

d>

 , (3.3.1)

and recall that, see Lemma 3.2.6, ker

W
1>

 has dimension 1 and it is smoothly

spanned by a vector v, which we will take as in (3.2.1).

The following general result will be used below.

Lemma 3.3.1. Let A ∈ R(n−1)×n be of rank (n− 1), and let its null space be spanned

by the vector v. Let d ∈ Rn be given and consider the matrix B =

A
d>

. Then, B is

nonsingular if and only if d>v 6= 0.

Proof. Suppose B is nonsingular, and by contradiction that d>v = 0. Then Bv = 0,

and hence B would be singular. If d>v 6= 0, since ker(A) is spanned just by v, then

there cannot be any vector y ∈ Rn such that By = 0.
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Using Lemma 3.3.1 and Laplace expansion of the determinant with respect to the

fourth row of M , from (6.1.10) we get (for v in (3.2.1)):

detM = d>v . (3.3.2)

Now, let Madj be the adjugate3 of M . Since MMadj = MadjM = det(M)I, if M

is invertible, to obtain the unique solution of (6.1.10) we must look at the third row,

Madj(3, :), of Madj.

Direct computation gives

Madj(3, :) =

[
det
[
w2 w3 w4

−d2 −d3 d4

]
, − det

[
w1 w3 w4

d1 −d3 d4

]
, det

[
w1 w2 w4

d1 −d2 d4

]
, − det

[
w1 w2 w3

d1 −d2 −d3

]]
,

and further
4∑
j=1

Madj(3, j) = d>v = detM ,

and therefore the unique solution of (6.1.10), if indeed it exists unique, must be given

by

λM :=
1

d>v
Madj(3, :)

> . (3.3.3)

What we will prove below is that each entry in Madj(3, :) has the same sign (some

entries may be 0, but not all of them can be), from which it will follow that detM 6= 0,

and further that the entries of λM are all nonnegative (and sum to 1), which is what

we had set out to prove.

We use a geometrical technique. To begin with, assume that for all i = 1, 2, 3, 4,

wi 6= 0, and express each wi in polar coordinates:

wi = diŵi, ŵi :=

cos θi

sin θi

 , i = 1, 2, 3, 4 . (3.3.4)

Note that just as the original vertices wi’s gave us the quadrilateral Q, now we have

obtained the quadrilateral Q̂ defined by the vertices ŵ1, ŵ2, ŵ4, ŵ3 (in this order)

3the transpose of the matrix of cofactors of M
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on the unit circle; in so doing, we have respected the signs of the original vertices

coordinates. In particular, if Q was non-degenerate, so is the associated quadrilateral

Q̂ on the unit circle, and if the origin was internal to Q, it is still internal to the new

quadrilateral Q̂.

In this new notation, we have (note the changes of sign on the second equality)

Madj(3, :)
> =



d2d3d4 det


cos θ2 cos θ3 cos θ4

sin θ2 sin θ3 sin θ4

−1 −1 1



−d1d3d4 det


cos θ1 cos θ3 cos θ4

sin θ1 sin θ3 sin θ4

1 −1 1



d1d2d4 det


cos θ1 cos θ2 cos θ4

sin θ1 sin θ2 sin θ4

1 −1 1



−d1d2d3 det


cos θ1 cos θ2 cos θ3

sin θ1 sin θ2 sin θ3

1 −1 −1





=



d2d3d4 det

−ŵ2 −ŵ3 ŵ4

1 1 1


d1d3d4 det

ŵ1 −ŵ3 ŵ4

1 1 1


−d1d2d4 det

ŵ1 −ŵ2 ŵ4

1 1 1


−d1d2d3 det

ŵ1 −ŵ2 −ŵ3

1 1 1





,

from which (again, note the changes of sign) we get

Madj(3, :)
> =



−d2d3d4 det

−ŵ2 ŵ4 −ŵ3

1 1 1


−d1d3d4 det

ŵ1 ŵ4 −ŵ3

1 1 1


−d1d2d4 det

ŵ1 −ŵ2 ŵ4

1 1 1


−d1d2d3 det

ŵ1 −ŵ2 −ŵ3

1 1 1





. (3.3.5)
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Now, each determinant in the components of the vector in (3.3.5) above represents

the (signed) area of one of the four triangles in which the quadrilateral on the unit

circle ŵ1ŵ2ŵ4ŵ3 is divided by its diagonals. We want to show that they all have the

same signs.

The following result from convex geometry will be helpful to us.

Proposition 3.3.2. [46, Theorem 4.4.1 and Exercise 4.4.1] A non-degenerate qua-

drilateral Q is convex if and only if its diagonals intersect in its closure.

Next, we prove that, for any given quadrilateral on the unit circle, containing the

origin and non-degenerate, its transformed quadrilateral obtained by reflecting one

of its diagonals with respect to the origin is always convex. See Figure 19 for an

illustration of this fact.
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Figure 19: Illustration of Proposition 3.3.3. Transformation of the quadrilateral: left,
convex case, right, nonconvex case.

Proposition 3.3.3. Given a non-degenerate quadrilateral Q̂ = ABCD with vertices

on the unit circle, and containing the origin, the transformed quadrilateral Q̃ :=

A(−B)C(−D) is convex.

Proof. Note that if Q reduces to a triangle, the result is trivially true. So, let us

assume that all vertices of Q are distinct.

If Q̂ is convex, the reflected diagonal (−B)(−D) still intersects the other diagonal

AC in the closure of Q̃.
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If Q̂ is not convex, then it is necessarily self-intersecting (on the unit circle we can

connect four points in two different ways only: to create a convex quadrilateral fol-

lowing any clockwise direction, or a self-intersecting one). Up to relabeling, we can

assume that the origin is inside the triangle ABD. Call B̃ := −B, D̃ := −D, and

consider the quadrilateral of vertices A, D̃, C, B̃, in this order.

Now, since the two angles AB̂C and A ˆ̃DC subtend the same arc AC, being the

origin inside the triangle ABD, then

AB̂C = A ˆ̃DC = α + β ,

where α is the angle at B in the right triangle ABB̃, and β is the angle in B in the

right triangle CBB̃. Therefore:

A ˆ̃BB =
π

2
− α , C ˆ̃BB =

π

2
− β ,

and so

A ˆ̃BC = A ˆ̃BB +B ˆ̃BC = π − (α + β) ,

whereas A ˆ̃DC = α+β. Therefore B̃ and D̃ are on opposite sides with respect to AC

because, otherwise, it would be A ˆ̃BC = A ˆ̃DC: so AC intersects B̃D̃ in the closure

of Q̃. By Proposition 3.3.2, Q̃ is convex.

With the help of Proposition 3.3.3, we can now give our main result.

Theorem 3.3.4. Let Σ be defined in (1.4.1), wi, i = 1, . . . , 4, be given in (1.4.5), and

let Q be the quadrilateral of Definition 3.2.2. Assume that Q is non-degenerate, that

wi 6= 0, for all i = 1, . . . , 4, and that 0 ∈ Q, as x ∈ Σ. Then, the matrix M of the

moments method in (3.1.1) is nonsingular and the moments solution λM of (3.3.3) is

admissible as x varies in Σ.

Proof. Since Q is non-degenerate, the origin is not a vertex, and 0 ∈ Q, then the

quadrilateral Q̂ on the unit circle obtained by using the polar representation of (3.3.4)
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is non-degenerate and the origin is either internal to Q̂ or on just one edge. Recall

that Q̂ is the quadrilateral ŵ1, ŵ2, ŵ4, ŵ3.

From Proposition 3.3.3, the quadrilateral obtained from Q̂ reflecting with respect

to the origin the diagonal joining ŵ2 and ŵ3 is convex. That is, the quadrilateral of

vertices ŵ1,−ŵ2, ŵ4,−ŵ3, is convex. This means that the signed areas of the triangles

(ŵ1,−ŵ2,−ŵ3), (ŵ1,−ŵ2, ŵ4), (ŵ1, ŵ4,−ŵ3), and (−ŵ2, ŵ4,−ŵ3), all have the same

sign. [Since Q̂ is non-degenerate, some but not all of these areas may be 0].

By looking at the determinants appearing in (3.3.5), we recognize them exactly

as the areas of the aforementioned triangles, and therefore all the components of

Madj(3, :) have the same sign, and then, by (3.3.3), λM is the unique solution of

(6.1.10), further admissible since
∑4

j=1Madj(3, j) = d>v.

The fact that λM varies smoothly with x ∈ Σ is a consequence of the smoothness

of the determinant with respect to the matrix entries.

Corollary 3.3.5. If the quadrilateral Q is non-degenerate, and the origin is internal

to Q, then λM > 0; i.e., all components of λM are positive.

Proof. Let the origin be in the interior of Q. By Theorem 3.3.4, λM is therefore

admissible. Let us assume, by contradiction, that for some i = 1, 2, 3, 4, (λM)i = 0:

without loss of generality, let (λM)1 = 0. Looking at (3.3.5), this happens if and only

if the area of the triangle on the unit circle with vertices −ŵ2, ŵ4, −ŵ3 is zero; but

this is equivalent to say that either −ŵ2 = ŵ4 or ŵ4 = −ŵ3, which in turn is true if

and only if the origin belongs to either w2w4 or w4w3, that is to the boundary of Q,

which contradicts the assumption.

A similar argument holds for the other cases.

Remark 3.3.6. Suppose that the origin is on the segment w1w2 and it is not a vertex

(similarly, for any other side of the quadrilateral). Then, the unique solution of
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(6.1.10), under the assumptions of Theorem 3.3.4, is

λ :=



d2
d1+d2

d1
d1+d2

0

0


.

Remark 3.3.7. As we said, our motivation was in validating the moments method

under the conditions of partial nodal attractivity. Theorem 3.3.4 does achieve this.

But in fact, it does more, only needing nondegeneracy of Q and that the origin be

either inside Q or on at most one edge. In particular, Theorem 3.3.4 validates the

moments method also in the case of Σ being spirally attractive, see [14]. This is simply

because, when Σ is spirally attractive, the origin is inside Q, see Lemma 3.2.3.

As a consequence of Theorem 3.3.4, we have the following result, which will be

useful in Section 3.4.

Theorem 3.3.8. Let x ∈ Σ, let wi, i = 1, . . . , 4, be given in (1.4.5) (these vertices of

course depend on x), let Q be the quadrilateral of Definition 3.2.2, and let M be given

in (3.1.1). Assume that Q is non-degenerate and that wi 6= 0, for all i = 1, . . . , 4.

Then, for each ε > 0 sufficiently small, if dist(0, Q) := miny∈Q ‖y‖ < ε, the matrix

M in (3.1.1) is invertible. Moreover, if 0 /∈ Q, then the unique solution of (3.1.1) is

not admissible.

Proof. Since the determinant function is continuous as a function of the entries of W ,

and det(M) 6= 0 as 0 ∈ Q, then det(M) 6= 0 if 0 is sufficiently close to Q.

If 0 /∈ Q, then since M is nonsingular the unique solution λM of (3.1.1) is still given

by (3.3.3). But, looking at the signed areas in (3.3.5), we see that two of them are

negative, making λM not admissible.
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3.3.1 One vertex of Q at the origin

Our results, particularly the construction of the quadrilateral Q̂ and therefore Theo-

rem 3.3.4, have relied on the assumption that wi 6= 0, for every i = 1, 2, 3, 4. As we

will clarify below, this is a very mild and natural assumption, both in terms of the

problem dynamics and of the geometrical interpretation of the same. At the same

time, let us consider here the case when this assumption is violated, and what it

implies.

First of all, if two or more of the wi’s were zero, then the quadrilateral Q would

be degenerate, and as a consequence (see (1.4.9) and (6.1.10)) W would be of rank 2,

and M would be singular; so, the moments regularization would not be of any use.

Moreover, the problem dynamics would be inherently ambiguous since two of the wi’s

being 0 (say w1 = w2 = 0), implies that there are two admissible exit vector fields in

two different regions Ri’s (say, in R1 and R2). Finally, note that this case of two wi’s

equal to 0 is a co-dimension 4 phenomenon.

Suppose now that there is just one index i = 1, 2, 3, 4, for which wi = 0. In this

case, something more can be said. Without loss of generality, suppose that we are at

a point x ∈ Σ where w1 = 0, and wi 6= 0, i = 2, 3, 4.

(a) In terms of the problem’s dynamics, w1 = 0 means that the vector field f1 is

itself tangent to Σ, and therefore f1 is an exit vector field. Clearly, this is not

a first order exit condition (which is a co-dimension 1 phenomenon), and it is a

co-dimension 2 phenomenon. Moreover, it is not clear that we can predict the

dynamics after this situation occurs. See Example 3.3.11 below.

(b) In terms of the quadrilateral Q, if Q is non-degenerate, then there is still a

unique solution to (3.1.1), as we show below.
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Lemma 3.3.9. If w1 = 0, and Q is non-degenerate, then the matrix

N =

 w2 w3 w4

−d2 −d3 d4


is invertible.

Proof. Suppose not. Then, without loss of generality we have

 w2

−d2

 = α

 w3

−d3

 +

β

w4

d4

 for some α, β, not both 0. Then, we have w2 = αw3 + βw4 and −d2 =

αd3 + βd4. From the first relation, we get

d2
2 = α2d2

3 + β2d2
4 + 2αβw>3 w4

and from the second one we get

d2
2 = α2d2

3 + β2d2
4 − 2αβd3d4 .

Comparing these two expressions for d2
2, we get the following.

(i) If both α and β are nonzero, then we must have w>3 w4 = −d3d4. From the

Cauchy-Schwartz inequality, this implies that w3 and w4 are aligned with 0 and

so Q would be degenerate, which is a contradiction.

(ii) Now suppose just one of α or β is 0. If α = 0, then w2 and w4 would need to be

aligned with the origin. If β = 0, then w2 and w3 would need to be aligned with

the origin. Either way, Q would be degenerate and we reach a contradiction.

As a consequence of Lemma 3.3.9, we have the following result.

Theorem 3.3.10. Let x ∈ Σ and wi, i = 1, 2, 3, 4, and Q be defined as usual. Suppose

that, at such x, wi = 0 for an index i, and wj 6= 0, j 6= i, and let Q be non-degenerate.
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Then, the moments matrix M is invertible, and (3.1.1) has a unique admissible

solution λM:

(λM)j =


0, if j 6= i,

1, if j = i,

, j = 1, 2, 3, 4.

Moreover, as long as Q remains non-degenerate, the solution λM is continuous, but

not differentiable, in x ∈ Σ.

Proof. Without loss of generality, let w1 = 0, so that (3.1.1) rewrites as:


0 w2 w3 w4

1 1 1 1

0 −d2 −d3 d4

λ =



0

0

1

0


.

Clearly, λM =



1

0

0

0


solves this system. The solution is further unique since N (defined

as in Lemma 3.3.9) is invertible.

Continuity of λM is a consequence of continuity and invertibility of M with respect

to x. Lack of differentiability is due to lack of smoothness at the origin for the square

root function (viz., for ‖ · ‖).

The above lack of smoothness is responsible for the difficulties one may have in

locating an exit point where w1 = 0, and hence to properly predict the dynamics past

such an exit point.

Example 3.3.11. Consider the dynamics on Σ embodied by the points

w1 =

−t
t

 , w2 =

 1
2

−1

 , w3 =

−1

3

 , w4 =

−2

−1

 , and − 1 ≤ t ≤ 0.5 .

(3.3.6)
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As long as t < 0, Σ is attractive and we have well defined sliding motion on Σ.

At t = 0, w1 = 0 and for t > 0 the origin exits the quadrilateral Q: attractivity

is violated, and a co-dimension 2 exit phenomenon from Σ into R1 should be taking

place. However, suppose we continue following the trajectory on Σ (this can be done

because of Theorem 3.3.8). The components of the moments solution λM behave as in

Figure 20, and we observe that two of them (here, λ3 and λ4) change of sign through

this non-generic exit point. A naive application of Theorem 3.4.7 below may lead us

to believe that exiting and sliding on Σ−2 with fΣ−2
should be taking place past the exit

point, rather than exiting onto R1.
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Figure 20: Solution components of λM for the dynamics given by (3.3.6).

3.4 Smooth exits for the moments method and extensions

In this section, we first show that –at generic first order exit points on Σ– the moments

solution renders (automatically) the coefficients for the exit vector field. Then, we

briefly discuss other possibilities to regularize the underdetermined system (1.4.9), by
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appending to it a linear constraint, similarly to what we did in (3.1.1), and ascertain

when/how this will render an admissible solution λ.

3.4.1 Smooth exits

As shown in Figure 25 relative to the Example 5.1.1, when the moments trajectory

reached a generic first order exit point, two components of the moments solution (i.e.,

of the vector λM ) became zero, and the other two gave the coefficients of cthe exit

vector field. In fact, more was observed to be true. Since the matrix M remained

invertible (see Theorem 3.3.8), the solution of (6.1.10) could be continued past the

exit point, and a trajectory sliding on Σ according to fM continued to exist; however,

the moments solution was no longer admissible, since the two components that had

become 0 at the exit point eventually became negative. This is a general behavior,

that here we are going to justify rigorously. It is also a very important and useful fact,

because it allows us to detect that an exit point is reached, and thus to eventually

leave Σ smoothly at the exit point.

First, we have the following simple result.

Lemma 3.4.1. Let T = ABC be a planar triangle of vertices A, B, and C, joined

in this order. Then,

sgnA(ABĈ) = −sgnA(ABC) ,

where Ĉ is the reflection of C with respect to the origin, and A indicates the signed

area.

Proof. The result follows from the fact that if ABC proceeds clockwise, then ABĈ

has counterclockwise ordering, and vice versa.

Next, we need the following concept.

Definition 3.4.2 (Origin exiting along an edge). Let x(t), 0 ≤ t ≤ T , be the smooth

trajectory on Σ associated to the moments vector field, where the time interval is a
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time interval for which the trajectory is well defined (i.e., the associated matrix M in

(3.1.1) is invertible). Assume that there is a neighborhood of the trajectory, U(x), such

that Σ∩U(x) is attractive for values of t in some interval 0 ≤ t ≤ t0, 0 < t0 ≤ T . Let

Q(x(·)) be the quadrilateral associated to this trajectory, and let Q be non-degenerate,

and such that that none of the vertices of Q be at the origin.

Then, we say that the origin is exiting Q along the edge w1w2 if and only if, by

definition, the following occur:

(i) there exists a time te > 0 such that x(te) ∈ Σ, A120(x(te)) = 0, and for all t :

0 ≤ t < te, A120(x(t)) 6= 0, A240(x(t)) 6= 0, A430(x(t)) 6= 0, and A310(x(t)) 6= 0.

Here, A120 is the signed area of the triangle with vertices w1, w2 and the origin,

and similarly for A240 and so forth;

(ii) there exists an open interval Ie centered at te and contained in [0, T ], such that

for all t1, t2 ∈ Ie, with t1 < te < t2, then the following inequality holds:

A120(x(t1)) < 0 < A120(x(t2)) ; (3.4.1)

(iii) for all t ∈ Ie, A240(x(t)) 6= 0, A430(x(t)) 6= 0, and A310(x(t)) 6= 0.

Analogous definitions hold for the origin exiting along the other edges of the quadri-

lateral Q, that is along w2w4, w4w3, w3w1. The value of te above is called (first) exit

time for the moments trajectory.

Remark 3.4.3. The above definition characterizes the situation when –following the

moments solution trajectory on Σ– the origin ends up outside the quadrilateral Q

after having encountered a first order exit point. In this case, since at te we have

wi(te) 6= 0, i = 1, 2, 3, 4, then it is meaningful to determine along which edge of Q the

origin exited. See Lemmata 1.4.3 and 1.4.9 for motivation on the inequality (3.4.1).

In the Lemma below, we will use normalized barycentric coordinates of the origin

with respect to a triangle. Let us recall these.
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Notation 3.4.4. For a given planar triangle TABC of distinct vertices A ≡ (xA, yA),

B ≡ (xB, yB), C ≡ (xC , yC), the normalized barycentric coordinates of the origin are

given by the triplet (τA, τB, τC) satisfying the system
τA

xA
yA

+ τB

xB
yB

+ τc

xC
yC

 =

0

0


τA + τB + τC = 1 .

(3.4.2)

In particular, all coordinates are in [0, 1] whenever 0 ∈ TABC, and if any of them is

negative then 0 is external to the triangle. Finally, if we need to specify the coordinates

of a vertex with respect to the specific triangle TABC, we will write (τABCA , τABCB , τABCC ).

Lemma 3.4.5. With the notation of Definition 3.4.2, suppose that the origin exited

Q along w1w2. Let t ∈ Ie, t > te, so that 0 /∈ Q(x(t)). For any such t, let wi,

i = 1, 2, 3, 4, be the vertices of Q, and let Tijk be the triangles of vertices wi, wj, wk

(in this order), for different indices i, j, k ∈ 1, 2, 3, 4.

Then:

0 ∈ T 123† , or 0 ∈ T 124† ,

where w†3 and w†4 are, respectively, the reflections of w4 and w3 with respect to the

origin.

Proof. For simplicity, below we will omit writing the dependence on the point x(t),

and simply write Q for Q(x(t)), and so forth.

Since Q is not degenerate, and 0 /∈ Q, then 0 /∈ T 123 or 0 /∈ T 124 (both could be

true, of course). Suppose that 0 /∈ T 123.

Consider the triangle T124† of vertices w1, w2, w
†
4, and look at the normalized

barycentric coordinates of the origin with respect to T124† . Note that T124† can-

not be degenerate. (In fact, assume it was: then w†4 ∈ w1w2, and hence the entire

segment with extrema w†4 and its transformed with respect to the origin, that is w3,
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would be contained in T123. In particular, this would imply that 0 ∈ T123, which is a

contradiction.)

Therefore, from (3.4.2), using Cramer’s rule and Lemma 3.4.1, we get

τ 124†

4† =

det

w1 w2 0

1 1 1


A(w1w2w

†
4)

=

det

w1 w2 0

1 1 1


|A(w1w2w

†
4)|sgnA(w1w2w

†
4)

=

= −|A(w1w2w3)|
|A(w1w2w

†
4)|

det

w1 w2 0

1 1 1


|A(w1w2w3)|sgnA(w1w2w3)

= −|A(w1w2w3)|
|A(w1w2w

†
4)|
τ 123

3 > 0 ,

since τ 123
3 < 0, being 0 /∈ T 123. Similarly for the other possibilities.

Corollary 3.4.6. With same notation as in Lemma 3.4.5, let 0 /∈ Q and assume

the origin exited along w1w2. Then, the origin is in the interior of Q̂, where Q̂ has

vertices w1, w2, w†4, w†3, and w†3, w†4 are, respectively, the reflections of w4, w3 with

respect to the origin.

Proof. This is a direct consequence of Lemma 3.4.5, and the fact that the origin

cannot be on the edge w1w2.

We are now ready for the anticipated result, stating that two components of

λM change sign as the moments’ trajectory continues on Σ past an exit point (cfr.

Theorem 3.3.8).

Theorem 3.4.7. With the notation of Definition 3.4.2, suppose that the origin exited

Q along w1w2, relatively to a moments solution trajectory x(·).

Let t ∈ Ie, t > te, and sufficiently close to te, so that 0 /∈ Q(x(t)). Then, the 3rd

and 4th components of λM are negative at such t: λM,3 < 0 and λM,4 < 0.

Proof. For ease of notation, we omit writing the explicit dependence of t, but all

quantities below must be understood to be relative to the value x(t) of the trajectory.
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We prove the result by contradiction. In particular, we assume that λM,3 < 0 and

λM,4 ≥ 0; the other two cases are dealt with analogously (i.e., λM,3 ≥ 0 and λM,4 < 0,

or λM,3 ≥ 0 and λM,4 ≥ 0).

As usual, belowM is the matrix of the moments’ method: M =


w1 w2 w3 w4

1 1 1 1

d1 −d2 −d3 d4

,

which under the stated assumptions is invertible. Therefore, there is a unique solu-

tion λM =



λM,1

λM,2

λM,3

λM,4


to (3.1.1), for which, in particular, λM,3 < 0 and λM,4 ≥ 0. Next,

consider the matrix

M̂ :=


w1 w2 −w4 −w3

1 1 1 1

d1 −d2 −d4 d3

 ,
and let Q̂ be the quadrilateral associated to w1, w2,−w3,−w4 (taken in this order).

By Corollary 3.4.6, the origin is in the interior of Q̂, and so (by Theorem 3.3.4)

there exists a unique admissible moments solution λ̂ such that M̂λ̂ =



0

0

1

0


, which by

Corollary 3.3.5 has all components strictly positive.

Now, set λ̃ :=



λM,1

λM,2

−λM,4

−λM,3


, and note that

w1 w2 −w4 −w3

d1 −d2 −d4 d3

 λ̃ =


0

0

0

 .
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Since the origin is exiting along w1w2, and at te we have λM,3 = λM,4 = 0, by continuity

of λM, possibly restricting the interval Ie, we can assume that

λM,3 + λM,4 <
1

2
,

so that

λM,1 + λM,2 − λM,3 − λM,4 > 0.

Thus,

˜̃λ :=
1

λM,1 + λM,2 − λM,3 − λM,4

λ̃

is solution of

M̂ ˜̃λ =



0

0

1

0


.

But M̂ is non-singular, and so we get ˜̃λ = λ̂, which contradicts the fact that λ̂ is

positive, whereas λ̂3 = ˜̃λ3 = −λM,4 ≤ 0.

3.4.2 Extensions

Here we consider other possible regularizations, besides that giving the moments

method, of the system (1.4.9), still obtained enlarging the system (1.4.9) by appending

to it a linear constraint (as we did in (3.1.1)). Namely, for x ∈ Σ, we consider the

enlarged system 
W

1>

a>

λ =



0

0

1

0


, (3.4.3)

where a is a smoothly varying function of x ∈ Σ, taking values in R4.

First, we have the following result, which restricts the search for possible functions

a, in order to obtain an admissible solution λ of (3.4.3).
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Theorem 3.4.8. Let the quadrilateral Q be defined as usual, let it be non-degenerate,

and assume that 0 ∈ Q. Define

A := {a : 03 ∈ TWa} ,

where TWa is the tetrahedron with vertices the columns of Wa, and

Wa :=

W
a>

 .

Let λ be any solution of the underdetermined system (1.4.9).

Then, λ is admissible if and only if there exists a ∈ A such that a>λ = 0.

Proof. Let λ be any given solution of the underdetermined system (1.4.9).

If there is a ∈ A such that a>λ = 0, then λ is a solution of

Maλ =



0

0

1

0


, where Ma =


W

1>

a>

 . (3.4.4)

Looking at the third row of the adjugate of Ma, similarly to what we did in Section 3.3,

we observe that its entries are the volumes of the tetrahedra that any three vertices

of TWa form with the origin of R3. Since 0 ∈ TWa , these entries are all positive, hence

Ma is invertible, and there is a unique solution, call it λa, of (3.4.4), which is further

admissible (nonnegative entries, and smoothly varying).

Next, suppose that λ is an admissible solution of (1.4.9). Therefore, since

W
1>

λ =


0

0

1

, and

W
1>

 has rank 3, there exists a smoothly varying function a such that

a>λ = 0. Further, since λ is admissible, from λ ≥ 0, one has that 0 ∈ TWa , hence

a ∈ A.
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Below, call λa the solution of (3.4.3). In Theorem 3.4.9, we consider λa at generic

first order exit points, and show that λa has to be the moments solution λM, if this

λa renders the exit vector field.

Theorem 3.4.9. Let the quadrilateral Q be defined as usual, and let it be non-

degenerate. Let v span ker

W
1>

, and let a in (3.4.3) be such that a>v 6= 0. Then,

considering the unique solution λa of (3.4.3), there holds one of the following alter-

natives:

1. either λa is not admissible; or

2. if λa is admissible, and if xe is a generic first order exit point, then at xe either

λa = λM , or λa does not give the exit vector field, hence the trajectory associated

to λa cannot exit Σ smoothly at xe.

Proof. For any given x ∈ Σ, since a>v 6= 0, by Lemma 3.3.1, (3.4.3) has a unique

solution. Therefore, there exists a unique ca ∈ R (of course, ca depends on x) such

that

λa = λM + cav ,

where λM is the moments’ solution associated to (3.1.1). Denote with [aM , bM ] the

admissibility interval determined by λM (note that aM < 0 and bM > 0):

aM := max

{
−λM,i

vi
: vi > 0

}
, bM := min

{
−λM,i

vi
: vi < 0

}
.

Since a>λa = 0 and d>λM = 0, then ca is uniquely determined as

ca =
d>λa
d>v

= −a
>λM
a>v

.

Therefore, if ca /∈ [aM , bM ], then λa is not admissible.

If ca ∈ [aM , bM ], and λa is admissible, let xe be a generic first order exit point,

and without loss of generality 4 let fF
−
2 be the associated exit vector field, that is

4of course, any other choice of exit vector field is handled similarly
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Figure 21: Solution components of λM for Example 3.4.11, using ‖ · ‖i, i = 2, . . . , 100.

0 ∈ w1w2. Suppose by contradiction that λa 6= λM (at xe), but that λa leads to the

exit vector field fF
−
2 at xe. Then, λa,3 = λa,4 = 0, and, as we know, we also have

λM,3 = λM,4 = 0. By Lemma 3.2.8, either v3 6= 0 or v4 6= 0, and therefore ca = 0,

giving λa = λM , which is a contradiction.

Remark 3.4.10. Of course, Theorem 3.4.9 does not say that there are no other

solutions as in (3.4.3) –beside the moments solution– which enjoy the property of

rendering the exit vector field at a first order generic exit point. Indeed, we regularized

(1.4.9) with a vector d as in (3.1.2), using the Euclidean distance from the origin of

the vertices of Q (i.e., the 2-norm), but we could have used different norms. We

illustrate this in Example 3.4.11 below.
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Example 3.4.11. With usual notation, consider fi, i = 1, 2, 3, 4, below:

f1(x) :=


2x1 + 1

−x1 + x2x3 + 1

x1 + x2 + 1

 , x ∈ R1 , f2(x) :=


2x1 − 1

−x1 + x3 − 1

x1 + x2x3 + 2

 , x ∈ R2 ,

f3(x) :=


2x1 − 3

−x1 + x2 + 2

x1 + x2x3 − 1

 , x ∈ R3 , f4(x) :=


2x1 + 2

−x1 + x3 − 2

x1 + x3 − 2

 , x ∈ R4 ,

where

h1(x) := x3, h2(x) := x2 .

Here Σ is the x1-axis, and the matrix W for x ∈ Σ is:

W (x) =

 x1 + 1 x1 + 2 x1 − 1 x1 − 2

−x1 + 1 −x1 − 1 −x1 + 2 −x1 − 2

 .

There is attractive sliding motion (in the direction of increasing x1) for |x1| ≤ 1.2.

The value x1 = 1.2 is a first order exit point, and one should exit Σ at x1 = 1.2, with

exit vector field fF
+
2 .

As illustration, consider the following family of regularizations of (1.4.9):


W

1>

a>

λ =



0

0

1

0


where a =



‖w1‖p

−‖w2‖p

−‖w3‖p

‖w4‖p


, p ≥ 2 .

In Figure 21, we show the plots of the solutions λ of this system, relative to different

choices of the p-norm, for p = 2, . . . , 100. Clearly, the qualitative behavior of different

solutions λ’s relative to different norms is quite similar.

In conclusion, although there are alternatives to using the 2-norm when forming

the vector d in (3.1.2), for the class of regularized system of the type (3.4.3) it seems
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natural to simply use d as we did in (3.1.2), using ‖·‖2, and compute λM. This choice

allowed us to retain the geometrical flavor of “moments” for the entries of λM.
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Chapter IV

MINIMUM VARIATION SOLUTIONS FOR SLIDING

VECTOR FIELDS ON THE INTERSECTION OF TWO

SURFACES IN R3

In Chapter 2, we have started the study of minimum variation techniques to select

a smooth varying admissible solution of (1.4.9) (see also [1, 15]). As highlighted

in Remark 2.1.6, though, this approach is challenging and requires a careful analy-

sis. Chapter 4 is devoted to this task, suggesting novel techniques susceptible for

generalization to approach the problem in a more general setting, being it largely

unexplored.

Here, we restrict ourselves to model scenarios in R3 in order to understand how to

properly define a smooth minimum variation sliding vector field in the case of sliding

on a co-dimension 2 discontinuity manifold Σ, intersection of two co-dimension 1

discontinuity surfaces. Whereas our model problems are sufficiently simple to allow

explicit computations, the process we propose is rather general. All the results and

theorems presented here will be clarified, through several examples, in Chapter 5.

Our idea is to select a smooth Filippov sliding vector field as solution of a minimum

variation problem. As far as we know, in this context, this idea is new. At the same

time, minimum variation techniques have proven quite powerful in Mathematics and

Engineering studies, notably in Optimal Control applications (see [33, 50]), and in

studying stick-slip motion phenomena for solid/solid interactions (see [5, 6]).

We will be interested in the situation in which Σ is an arc which attracts the

dynamics of the given piecewise smooth system, with endpoints corresponding to

isolated values where Σ ceases to be attractive (generic first order exit points). This
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way, we will be able to set up the boundary value problem corresponding to the

minimality conditions of a minimum variation solution (Euler-Lagrange equation).

4.1 An example: Minimum variation solutions

Here we consider the model problem in R3 introduced in Example 1.4.12, and give

details of the construction of a minimum variation Filippov solution for it. Later,

we will consider a different model, and give a new interpretation of other admissible

Filippov solutions also as minimum variation solutions, but with respect to a different

minimization task and ultimately with respect to a different parametrization of time.

For convenience, let us recall here the setup of Example 1.4.12.

Example 4.1.1. We have fi, i = 1, 2, 3, 4, taking values in R3:

f1(x) :=


2x1 + 1

−x1 + x2x3 + 1

x1 + x2 + 1

 , x ∈ R1 , f2(x) :=


2x1 − 1

−x1 + x3 − 1

x1 + x2x3 + 2

 , x ∈ R2 ,

f3(x) :=


2x1 − 3

−x1 + x2 + 2

x1 + x2x3 − 1

 , x ∈ R3 , f4(x) :=


2x1 + 2

−x1 + x3 − 2

x1 + x3 − 2

 , x ∈ R4 ,

where Σ1 = {x : x3 = 0}, Σ2 = {x : x2 = 0}, so that Σ = Σ1 ∩ Σ2 is the x1-axis.

Here, the matrix W of (1.4.5) is

W (x) =

 x1 + 1 x1 + 2 x1 − 1 x1 − 2

−x1 + 1 −x1 − 1 −x1 + 2 −x1 − 2

 , (4.1.1)

and it is simple to verify that Σ is attractive in the segment |x1| < 1.2 and the values

x1 = ±1.2 are generic first order exit points, at which point Σ is no longer attractive.

Since W (−1.2) =

−0.2 0.8 −2.2 −3.2

2.2 0.2 3.2 −0.8

 then one should exit Σ at x = −1.2 by
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sliding on Σ+
1 ; similarly, since W (1.2) =

 2.2 3.2 0.2 −0.8

−0.2 −2.2 0.8 −3.2

 then one should

exit Σ at x = 1.2 by sliding on Σ+
2 .

The general form of the solution λ to Wλ =


0

0

1

 can be written as

λ = µ+ cv or, explicitly: λ =



2
3
− 5

9
x1

0

2
3
x1

1
3
− 1

9
x1


+ c



−5
3

1

1

−1
3


, (4.1.2)

which is admissible for (x1, c) in the triangular region in Figure 22.

Note that, in particular, we must have c(−1.2) = 0.8 and c(1.2) = 0. For any

admissible λ, we will get a Filippov sliding vector field of the form:

fF = λ1f1 + λ2f2 + λ3f3 + λ4f4 , or

fF =


λ1(2x1 + 1) + λ2(2x1 − 1) + λ3(2x1 − 3) + λ4(2x1 + 2)

0

0

 .
(4.1.3)

Hence, on Σ, the differential equation to solve is simply:

ẋ1 =
4

3
− 7

9
x1 −

19

3
c , (4.1.4)

and we observe that there is an equilibrium on Σ at the value x1 for which c(x1) =

4
19
− 7

57
x1. Given the admissibility region of Figure 22, any smooth selection of c will

give an equilibrium, which will be unstable. Different ways to select c, in general will

give a different location for the equilibrium.

Both the moments and bilinear solutions of (3.1.1), (1.4.10), are well defined for

this problem, exit smoothly at x = ±1.2, and select (similar) c-curves; see Figure
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22 below. For this problem, there is also another obvious solution, the so-called

triangular solution, namely the solution obtained choosing for c the straight line

segment ctr(x1) = 8
20
− x1

3
, −1.2 ≤ x1 ≤ 1.2, joining the boundary values, that is the

longest side of the triangle in Figure 22.

Next, we consider new types of solutions, still on Example 4.1.1, obtained via a

variational formulation.

4.1.1 Minimum variation solutions for model problem

Recall that we want to have c (hence λ) smooth functions of x1. Further, recall that

we have a family of solutions, depending on how we select an admissible function c.

The choice of an admissible c impacts the choice of the coefficients λi’s, and clearly

the resulting sliding vector field in (4.1.4).

So, a natural idea is to seek an admissible function c that, for −1.2 ≤ x1 ≤ 1.2,

minimizes the H1-norm of either λ or of the sliding vector field itself.

Remark 4.1.2. A version of Weierstrass’ Theorem (e.g., see [38]) states that, if

A ⊂ Rn is closed and f : A −→ R is continuous and coercive, then f has a minimum

in A. This justifies all the minimization problems we examine below. In particular,

the well posedness of Problems (4.1.5) and (4.1.8) below, as well as (4.2.5) and (4.2.9)

in Section 4.2. This is because all of these problems amount to minimization of the

functional given by ‖·‖H1 over the compact set of λ ∈ R4 with nonnegative components

adding to 1.

4.1.1.1 Minimum variation for λ

Accounting for the fact that we want the solution to be defined from x1 = −1.2 to

x1 = 1.2, we seek the value of the function c such that the following functional is

minimized:

min
λ∈C 1,λ≥0

∫ b

a

[
‖λ(x1)‖2 + ‖λ′(x1)‖2

]
dx1 , a = −1.2 , b = 1.2 . (4.1.5)
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Figure 22: Admissible region (x1, c) in (4.1.2), and moments, bilinear, triangular, and
minimum variations values of c.

With the Lagrangian given by the integrand, next we write down the Euler-Lagrange

equation:

∂L
∂c
− d

dx1

∂L
∂c′

= 0 .

With a little algebra, and using the exit conditions, this gives the boundary value

problem for c:

c′′ − c = x1/3− 1/4 , c(−1.2) = 0.8 , c(1.2) = 0 , (4.1.6)

which has the solution

c ≡ cMV,λ(x1) =
0.15

e1.2 + e−1.2

(
ex1 + e−x1

)
− x1

3
+

1

4
. (4.1.7)

With this value of cMV,λ, we obtain what we call minimum variation solution with

respect to λ. See Figure 22 for a plot of cMV,λ.

4.1.1.2 Minimum variation for fF

Now we consider the general form of the smooth sliding vector field fF and seek the

function c in order to minimize the H1 norm of fF, still considering the model problem

of Example 4.1.1.
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In other words, we seek the (smooth) function c such that the following functional

is minimized among smooth admissible functions c:

min
c

∫ b

a

[
‖fF(x1)‖2 + ‖fF

′(x1)‖2
]

dx1 , a = −1.2 , b = 1.2 . (4.1.8)

Given the simple expression (4.1.4), this reduces to minimizing∫ b

a

L(x1, c, c
′)dx1 , L =

(
4

3
− 7

9
x1 −

19

3
c

)2

+

(
7

9
+

19

3
c′
)2

.

The Euler-Lagrange equation gives the following boundary value problem for c:

c′′ − c =
7

57
x1 −

12

57
, c(−1.2) = 0.8 , c(1.2) = 0 , (4.1.9)

which has the solution

c ≡ cMV,fF(x1) = A1e
x1 +B1e

−x1 +
12− 7x1

57
,A1

B1

 =
6

95(e−2.4 − e2.4)

 7e−1.2 + e1.2

−e−1.2 − 7e1.2

 .
(4.1.10)

With this value of cMV,fF , we obtain what we call minimum variation solution

with respect to the H1-variation of fF. See Figure 22 for a plot of cMV,fF .

Remark 4.1.3. It is a simple computation to verify that the minimum variation

solutions we obtained, both with respect to λ and with respect to the vector field fF,

in the end give parameters values λ, in an independent way of how we chose µ and v

in (4.1.2).

Questions 4.1.4. The above example suggests several questions, which we will ad-

dress in the next section.

(i) In Example 4.1.1, in spite of the different expressions for the functions c we

obtained, in the end all sliding vector fields have a similar behavior: there is an

equilibrium on Σ, and –depending on where one enters Σ– motion goes to the

right/left until an exit point is reached. Different choices of admissible functions

c determine the position of the equilibrium. See Figure 23.
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Figure 23: Sliding vector fields for moments, bilinear, triangular, and minimum vari-
ations solutions. All have an equilibrium.

(ii) Below, we will consider a similar model, for which no smooth Filippov vector

field has an equilibrium on Σ. In this case, according to the results in [20], we

know that all possible smooth Filippov sliding motions are orbitally equivalent.

Are there functionals, related to the change of time variable in the aforemen-

tioned orbital equivalency, whose minimizers give –say– the moments, or the

bilinear solutions?

(iii) Finally, how can one extend our construction to a broader class of problems?

4.2 Orbital equivalence and weighted minimum variation

In this section, we consider another pattern of sliding motion, which has the key

features outlined below.

Conditions 4.2.1.

(a) The state space is R3.

(b) The sliding surface Σ is a smooth arc: Σ = {x ∈ R3 : x = γ(s) , a ≤ s ≤ b}.
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(c) For a < s < b, Σ is attractive, there are no equilibria on Σ for any smooth

Filippov sliding vector field, and motion on Σ proceeds from xa := γ(a) to

xb := γ(b).

(d) The point xb is a generic first order exit point, and the point xa is a generic

first order exit point for the time reversed problem.

When Conditions 4.2.1 hold (in particular Σ is attractive), the function W (which

depends solely on the parameter s), is of full rank. Therefore, the general form of an

admissible solution λ in (1.4.8), can be written as (see Section 1.4.2)

λ(s) = µ(s) + c(s)v(s) , a ≤ s ≤ b , (4.2.1)

where µ is any given (smooth) particular solution, v is a given (smooth) vector span-

ning ker

W
1>

, and the function c is subject to restrictions as in (1.4.13).

Note. We will want to select an admissible function c(s), a ≤ s ≤ b, so that the

resulting λ(s) in (4.2.1) at the endpoints s = a and s = b gives the respective “exiting”

vector fields. We know that this is possible, since it is achieved, for example, by the

moments method. Indeed, as proved elsewhere (see [18] and [19]), both moments and

bilinear solutions give well defined Filippov sliding vector fields, the moments vector

field further being guaranteed to give coefficients that render the exit vector field at

first order exit points. Below, we show how to formally define a minimum variation

solution in this general case.

Now, in light of the results in [20], for a problem with the above characteristics,

all smooth sliding vector fields on Σ are orbitally equivalent. That is, if we have two

different smooth sliding vector fields, say fF1 and fF2, then the solutions associated

to these vector fields are tracing the same orbit, but at different speeds. In other

words, we must have

fF1 = ω(x)fF2 , ω ∈ C 1 , ω > 0 , (4.2.2)
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and therefore

dx

dt
= fF1 ⇐⇒

dx

dτ
= fF2 and ω(x) =

dt

dτ
.

This being the case, and the system being autonomous, it means that we can interpret

the two distinct vector fields above as follows:

If fF1 = λ1f1 + λ2f2 + λ3f3 + λ4f4 ,

then fF2 = λ1(ωf1) + λ2(ωf2) + λ3(ωf3) + λ4(ωf4) ,

(4.2.3)

which means that “Any sliding vector field can be interpreted as having modified all

vector fields fi, i = 1, 2, 3, 4, through the reparametrization of time”.

Observe that –under Conditions 4.2.1– we can assume that ω is parametrized by s.

Therefore, for all orbitally equivalent smooth vector fields, further smoothly aligning

at the exit points with the exit vector fields, we must have ω|s=a = ω|s=b = 1.

4.2.1 Weighted Minimum Variation

Motivated by the above, we are thus lead to consider a generalization of the approach

in Section 4.1.1.2, and seek minimization of functionals more general than those in

Section 4.1.1.2. Namely, we will seek the function c so that in the end we will minimize

either

(i) the H1-variation of wλ, or

(ii) the H1-variation of the sliding vector field wfF.

Above, the function w –which we will call weight function– is required to satisfy these

properties:

(i) w is smooth (at least C 2) ∀s ∈ (a, b)

(ii) w > 0 ∀s ∈ [a, b] , and w|s=a = w|s=b = 1 .

(4.2.4)

Each of the above H1-minimization tasks has its merits, though minimization of

‖wfF‖H1 is more in tune with the previously mentioned reparametrization of time.
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Remark 4.2.2. In all cases, the value of c will be required to take the values c(a) =

ca, and c(b) = cb, specified so that λ(a) and λ(b) give the exiting vector fields at

γ(a) and γ(b). Therefore, we emphasize that, with the choices we made for the weight

function w and the values of c(a) and c(b), the solutions of our minimization problems

(when solvable) will give smoothly exiting solutions.

4.2.1.1 Minimum variation for λ

With the function w as in (4.2.4), we seek c such that

min
c

∫ b

a

[
‖wλ‖2 + ‖(wλ)′‖2

]
ds , c(a) = ca , c(b) = cb . (4.2.5)

Consider the Lagrangian associated to (4.2.5), that is

L(s, c, c′) = ‖wλ‖2 + ‖(wλ)′‖2 = w2‖λ‖2 + (w′)2‖λ‖2 + w2‖λ′‖2 + 2ww′λ>λ′ .

The Euler-Lagrange equation on this functional (with some algebra), gives the

following boundary value problem to be solved for c (note that ‖v‖ 6= 0)



[
c′′w‖v‖2 + 2c′

(
w′‖v‖2 + w(v>v′)

)
−

c
(
(w − w′′)‖v‖2 − w(v>v′′)− 2w′(v>v′)

)]
=

(w − w′′)(v>µ)− wv>µ′′ − 2w′(v>µ′) ,

c(a) = ca , c(b) = cb .

(4.2.6)

Remark 4.2.3. In general, it is not clear how to obtain the exact solution of the

boundary value problem (4.2.6). However, there is an important special case where

(4.2.6) can be solved exactly. This is when the null vector v ∈ ker

W
1>

 is constant.

In fact, in this case (4.2.6) becomes

c′′w‖v‖2 + 2c′w′‖v‖2 − c(w − w′′)‖v‖2 =

(w − w′′)v>µ− wv>µ′′ − 2w′v>µ′ , c(a) = ca , c(b) = cb .

(4.2.7)
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The differential equation in (4.2.7) rewrites as

y′′ = y + g(s) , where y = cw‖v‖2 + wv>µ , and g(s) = 2v>µ′(w′ − w′′) .

For this, letting y1(s) = es and y2(s) = e−s, the solution can be written as

y(s) = Ay1(s) +By2(s) + yp(s) .

The associated Wronskian is det

y1 y2

y′1 y′2

 = −2, and using the variation of constants

formula gives

yp(s) =
1

2

[
es
∫
e−sg(s)ds− e−s

∫
esg(s)ds

]
,

from which one can obtain the solution of (4.2.7):
c(s) =

Aes +Be−s + yp(s)− w(s)v>(s)µ(s)

w(s)‖v(s)‖2
, a ≤ s ≤ b ,

A,B : c(a) = ca , c(b) = cb .

(4.2.8)

Observe that since w(a) = w(b) = 1, the values of A and B in (4.2.8) are independent

of the weight function w.

4.2.1.2 Minimum variation for fF

Now, with the weight function w as above, we seek c such that

min
c

∫ b

a

[
‖wfF‖2 + ‖(wfF)′‖2

]
ds , c(a) = ca , c(b) = cb . (4.2.9)

Again, c(a) = ca, and c(b) = cb, must be assigned to make sure that λ(a) and λ(b)

give the exiting vector fields at γ(a) and γ(b).

For a general sliding vector field fF, given the form of λ (4.2.1), we will use the

notation

fF = Fµ + cFv ,

where Fµ = µ1f1 + µ2f2 + µ3f3 + µ4f4, and Fv = v1f1 + v2f2 + v3f3 + v4f4.

91



We will assume that Fv 6= 0, for all s ∈ [a, b] (see Remark 4.2.8 below when this

is violated).

The Lagrangian associated to (4.2.9) is

L(s, c, c′) = ‖wfF‖2 + ‖(wfF)′‖2 = w2‖fF‖2 + (w′)2‖fF‖2 + w2‖fF
′‖2 + 2ww′fF

>fF
′ .

The Euler-Lagrange equation on this functional (with some algebra), gives the fol-

lowing boundary value problem to be solved for c:

[
c′′w‖Fv‖2 + 2c′

(
w′‖Fv‖2 + w(F>v F

′
v)
)
−

c
(
(w − w′′)‖Fv‖2 − w(F>v F

′′
v )− 2w′(F>v F

′
v)
)]

=

(w − w′′)(F>v Fµ)− wF>v F ′′µ − 2w′(F>v F
′
µ) ,

c(a) = ca , c(b) = cb .

(4.2.10)

Remark 4.2.4. Again, in general, it is not clear how to obtain the exact solution

of the boundary value problem (4.2.10). However, there is an important special case

when in fact it can be solved exactly, that is when the discontinuity surfaces Σ1 and

Σ2 are given by coordinates’ planes1.

So, without loss of generality, in this case we can take Σ1 = {x : x2 = 0} and

Σ2 = {x : x3 = 0}. Then, Σ is (a segment on) the x1-axis, and one has that both Fv

and Fµ have only the first components different from 0, on Σ:

Fµ =


fµ

0

0

 , Fv =


fv

0

0

 ,

and we are requiring that fv 6= 0 for all x1 ∈ [a, b].

Using this in (4.2.10), and dividing by fv, we get the boundary value problem

1In fact, through a simple change of variable, the same reasoning holds true whenever Σ1,2 are
planes. More complicated discontinuity surfaces would require a nonlinear change of variable.
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(differentiation is with respect to x1):

c′′wfv + 2c′
(
w′fv + wf ′v

)
− c
(
(w − w′′)fv − wf ′′v − 2w′f ′v

)
=

(w − w′′)fµ − wf ′′µ − 2w′f ′µ , c(a) = ca , c(b) = cb .

(4.2.11)

The point is that now the differential equation in (4.2.11) rewrites as

[
(cwfv) + (wfµ)

]′′
= (cwfv) + (wfµ) ,

from which we get the solution of (4.2.11):
c(x1) =

Aex1 +Be−x1 − w(x1)fµ(x1)

w(x1)fv(x1)
, a ≤ x1 ≤ b ,

A,B : c(a) = ca , c(b) = cb .

(4.2.12)

Note that since w(a) = w(b) = 1, the values of A and B in (4.2.12) are independent

of the weight function w. Also, note that, as long as the value of c in (4.2.12) is

admissible, and hence λ as in (4.2.1) gives an admissible Filippov sliding vector field,

then we must have

Aex1 +Be−x1 6= 0, for all x1 ∈ [a, b] , (4.2.13)

as otherwise the resulting vector field would be 0 at some point, giving an equilibrium,

which is excluded.

Now, with respect to either of the above minimization tasks (that is, minimizing

either the H1 norm of wλ or of wfF), the following questions are natural.

Questions 4.2.5.

(i) Can we choose w so that the solution of (4.2.5)-(4.2.9) gives us the bilinear

and moments solutions? More generally, can we interpret a given admissible

solution as the minimum variation solution of (4.2.5)-(4.2.9) for some w?

(ii) Can we relate to each other the weight w and the reparametrization of time

performed by ω?
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As already remarked, in general, the boundary value problems (4.2.6) and (4.2.10)

do not appear to be easy to solve exactly, and probably one would need to solve them

numerically. However, in the important special cases of Remarks 4.2.3 and 4.2.4

they can be solved exactly. We will clarify in Example 5.2.1 how we use these exact

solutions to derive minimum variation solutions, and answer the above questions on

that concrete Example.

4.2.2 General result

As Example 5.2.1 will make clear, the process used there is fully general, and it can

be leveraged, for example, anytime the situation of Remark 4.2.4 applies.

With the previous notation, we then state and prove following theorem.

Theorem 4.2.6. Let Conditions 4.2.1 hold. Let Σ1 = {x : x2 = 0}, Σ2 = {x : x3 =

0}. In the notation of Conditions 4.2.1, let Σ be the segment (a, b) on the x1-axis.

Let the general solution for λ be as in (1.4.12), with the particular solution µ and the

vector v smoothly varying in Σ (for example, µ could be the moments solution λM),

and let the smooth function c in (1.4.12) be subject to the constraints α(x1) ≤ c(x1) ≤

β(x1), for all a ≤ x1 ≤ b. Let f̂F be any smooth Filippov sliding vector field on Σ,

obtained from smooth, admissible coefficients (for example, the moments’ vector field

fM), in particular with a smooth admissible function ĉ in (1.4.12) so that λ̂ = µ+ ĉv

at the exit points render the coefficients of the smoothly exiting Filippov vector field.

Assume that fv 6= 0 on Σ, and consider the boundary value problem (4.2.11) with

solution (4.2.12), and with A and B as there. Assume that (4.2.13) holds.

(i) If
(
Aex1 +Be−x1

) (
f̂F(x1)

)
1
> 0, for all x1 ∈ Σ, then the function

ŵ(x1) =
Aex1 +Be−x1(

f̂F(x1)
)

1

, (4.2.14)

is the weight function associated to f̂F. That is, this weight function ŵ is such
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that the H1 minimization problem for wfF gives the function ĉ as solution of

(4.2.11).

(ii) On the other hand, let w be an arbitrary weight function as in (4.2.4), and let

c be the smooth function in (4.2.12). This will be admissible if and only if, for

all x1 ∈ Σ, we have

ĉ(x1) + ŵ(x1)
fµ(x1)

fv(x1)
− β(x1) ≤ w(x1)

fµ(x1)

fv(x1)
≤ ĉ(x1) + ŵ(x1)

fµ(x1)

fv(x1)
− α(x1) ,

(4.2.15)

where ŵ and ĉ are an admissible weight and its associated solution in (4.2.11).

When c is admissible, the resulting vector field is orbitally equivalent to that

associated to ĉ, with orbital equivalence factor 1/w.

(iii) If (4.2.13) is violated, that is
(
Aex1 + Be−x1

)
= 0 at some x1 ∈ Σ, then there

is no admissible sliding vector field obtained as solution of the Euler Lagrange

equation, by minimization of the H1 norm of wfF, for any weight function w.

Proof. Statement (i) holds by construction. Indeed, since
(
f̂F(x1)

)
1

= fµ + ĉfv, we

seek the function ŵ for which (4.2.11) holds. That is, we want ŵ such that

ĉ(x1) =
Aex1 +Be−x1 − ŵ(x1)fµ(x1)

ŵ(x1)fv(x1)
,

which gives (4.2.14). Note that, since ĉ is admissible and the resulting λ̂ at the

exit points give the coefficients of the smoothly exiting vector fields, then we have

w(a) = w(b) = 1 because of the way A and B were found.

To verify (4.2.15), we need to check whether or not the function c one finds is

admissible. Because of (4.2.12), we always have (for all x1 ∈ Σ):

(c(x1)fv(x1) + fµ(x1))w(x1) = Aex1 +Be−x1 , and

(ĉ(x1)fv(x1) + fµ(x1)) ŵ(x1) = Aex1 +Be−x1 .

from which we get

c(x1) = (ŵ(x1)− w(x1))
fµ(x1)

fv(x1)
+ ĉ(x1) .
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The constraint α(x1) ≤ c(x1) ≤ β(x1) can thus be rewritten as in (4.2.15). The

statement on orbital equivalence is obvious.

Finally, validity of the statement (iii) is simply because in case (4.2.13) is violated

the resulting minimum variation vector field would give an equilibrium, which is

excluded.

Remark 4.2.7. We note that the point (iii) of Theorem 4.2.6 does not contradict Re-

mark 4.1.2. In fact, in order to find a minimum solution for (4.2.9), we have solved

its associated Euler-Lagrange equation without enforcing the constraint on c (ensu-

ring that the corresponding λ = µ + cv has nonnegative components adding to one).

Therefore, it could happen that the unconstrained solution does not lie completely in

the admissibility set, as it happens when, as proven above, (4.2.13) is violated. In

other words, the unique solution of the constrained minimization problem would be

a boundary solution with respect to the admissibility set, thus not solving the Euler-

Lagrange equation associated to the unconstrained problem.

Remark 4.2.8. When Fv = 0 in (4.2.10), and in particular fv = 0 in (4.2.11), the

technique based on minimization of the H1-norm of wfF gives a singular differential

equation. We have not explored in details this situation (which would require analyzing

the nature of the singular points), but observe that in the case of Fv ≡ 0 for all

a ≤ s ≤ b in (4.2.10), then the minimization task for wfF is surely ill-posed. Example

5.2.2 in Chapter 5 will clarify this statement.

4.2.3 Revisiting Example 4.1.1: Singular weights

We conclude our discussion on minimization of the H1 variation of admissible solu-

tions, with some considerations on the case of sliding vector fields with equilibria on

Σ. In particular, we reconsider Example 4.1.1. That was a situation where -unlike the

scenario of Conditions 4.2.1- every smooth sliding vector field of Filippov type had an
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equilibrium on Σ. Suppose that this is indeed the case, and thus consider the following

scenario, still in R3, and still considering as discontinuity surfaces Σ1 = {x : x2 = 0},

and Σ2 = {x : x3 = 0} (see Remark 4.2.4).

Conditions 4.2.9 (Equilibrium on Σ).

(i) The sliding surface is the segment Σ = {x1 : a ≤ x1 ≤ b}.

(ii) For a < x1 < b, Σ is attractive, any smooth Filippov sliding vector field fF has

one -and just one- equilibrium x̄ on Σ (the value of x̄ depends on the choice of

vector field), which is unstable and generic 2. Let x̄ =


x̄1

0

0

, so that motion

on Σ proceeds from any left neighborhood of x̄1 to a (right-to-left) and from any

right neighborhood of x̄1 to b (left-to-right).

(iii) The points x1 = a and x1 = b are generic first order exit points.

Obviously, under Conditions 4.2.9, different sliding vector fields cannot be orbitally

equivalent, and the dynamics on Σ differ (unless all possible sliding vector field share

the same equilibrium). Indeed, in the case of Conditions 4.2.9, and with the above

notation, we have this result.

Theorem 4.2.10. Assume that fv 6= 0 for x1 ∈ [a, b], and that, for w = 1, the

solution cMV,fF in (4.2.12) of the boundary value problem (4.2.11) is well defined and

gives an admissible smooth Filippov sliding vector field fF1. Then, the following holds.

(i) The function

Aex1 +Be−x1

is 0 at the point x̄1, equilibrium of (fF1)1 (cfr. with (4.2.13)).

2By this, we mean that d
dx1

(fF)1

∣∣∣
x1=x̄1

6= 0
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Figure 24: Moments and triangular orbital pseudo-equivalence factors, with respect
to fF1 for Example 4.1.1.

(ii) The only admissible weight functions w, satisfying (4.2.4) and giving an admis-

sible solution c of (4.2.12), are those for which the resulting vector field has the

equilibrium at x̄.

(iii) To any other sliding vector field fF formed from an admissible c, we can asso-

ciate a singular weight w, namely one which goes through 0 and changes sign

at the value x̄1, and that has a first order pole at the zero of (fF)1. As a conse-

quence, there is a singular orbital pseudo-equivalence factor ω, relating fF and

fF1, given by 1/w; ω is 0 at the equilibrium of (fF)1 and has a first order pole

at x̄1.

Proof. By hypothesis, we have that cMV,fF = Aex1+Be−x1−fµ(x1)

fv(x1)
, and therefore,

fF1 =


fµ(x1) + cMV,fF(x1)fv(x1)

0

0

 =


Aex1 +Be−x1

0

0

 ,

from which point (i) follows.
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To verify point (ii), suppose there were a weight function w satisfying (4.2.4),

giving an admissible solution cw of (4.2.12), and such that the resulting vector field

has an equilibrium at a point different from x̄. Then, we must have

w(x1) =
Aex1 +Be−x1

fµ(x1) + cw(x1)fv(x1)
. (4.2.16)

But, the denominator of this expression vanishes at the equilibrium of the vector field

fµ(x1) + cw(x1)fv(x1), and since -by hypothesis- this is different from (x̄)1, we reach

the contradiction that w satisfies (4.2.4), and the claim follows.

Finally, point (iii) follows at once from the expression (4.2.16).

In Figure 24 we illustrate Theorem 4.2.10, by considering the orbital pseudo-

equivalence factors for the moments and the triangular solutions of Example 4.1.1.
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Chapter V

IMPLEMENTATION AND NUMERICAL RESULTS

This chapter is devoted to examples and numerical implementations that will explain

and validate our theoretical results stated and proven in previous chapters; in par-

ticular, in the first section of this chapter we will exemplify on results from Chapter

2 and Chapter 3, where we have introduced and completely justified the moments

solution: aim of these examples will be to show that selecting different vector fields

(namely, for us, the bilinear solution) could make dynamics develop undesirable sin-

gularities. In the second section of this chapter, we present motivating examples for

the techniques and results on minimum variation solutions from Chapter 4.

5.1 Examples: Comparing bilinear and moments solutions

Our purpose in this section is to show some numerical experiments with the moments

method and compare it (qualitatively) to the bilinear interpolation technique (see

Remark 1.4.7) insofar as sliding on Σ.

The basic numerical integration scheme is a 4th order embedded Runge-Kutta pair

based on the 3
8
-th Runge-Kutta method, with Butcher’s tableau

0 0 0 0 0 0

1/3 1/3 0 0 0 0

2/3 −1/3 1 0 0 0

1 1 −1 1 0 0

b 1/8 3/8 3/8 1/8 0

1 1/8 3/8 3/8 3/8 0

b̂ 1/12 1/2 1/4 0 1/6

.
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Adaptive step size control is done as suggested in [34]:

hnew := h ·min

{
facmax,max

{
facmin, fac ·

(
1

err

) 1
q+1

}}
,

where h is the current step size, q := min{p, p̂}, being p the order of the Runge-Kutta

scheme and p̂ the order of the error estimator, and we have chosen

facmax = 5 , facmin = eps (≈ 10−16) , fac = 0.8 ,

and

Err :=

(
|xi − x̂i|

1 + |xi| · tol

)
i=1:n

, err := ‖Err‖∞ ,

where tol is a given error tolerance (below, tol = 10−6).

The overall method is an event driven method (according to the naming in [1]),

whereby different regimes (entering and exiting from the discontinuity manifolds)

are monitored, and the appropriate vector fields are integrated. Integration in the

regions Ri’s (i = 1, 2, 3, 4) is standard, and follows the above scheme. Integration

during sliding motion is done with a projected version of the basic integration scheme

to guarantee that the stage values and the computed approximations remain on the

discontinuity manifold(s).

More precisely, we can have two different possibilities:

1. after a previously fixed time Tmax, we remain in R1;

2. we hit either Σ1,Σ2 or Σ.

In the first case, the algorithm stops.

In the second case, the algorithm precisely locates the event point at which the

dynamics enters on, say, Σ1: this detection uses the one-sided numerical method

developed in [25]. Once we get Σ1 at x1, we need to figure out what to do next: it

is necessary to analyze the behaviors of the two vector fields, f1 and f2, acting on

x1: if transversal intersection occurs, then we need to integrate one step further the
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dynamics, and go back to the previous case, namely integration in one of the regions

Ri’s.

If sliding mode occurs, then, following Filippov theory, we construct fF as in (1.3.4),

and integrate over Σ1 using the chosen projected Runge-Kutta scheme presented

above. Once the dynamics evolves on Σ1, each stage and each step of the method is

projected on it to avoid the numerical solution to prematurely leave the surface (see

[22]).

Now, if within Tmax the numerical solution does not hit Σ or any potential exit point,

the algorithm stops.

If a potential exit points is reached, then we are back to the previous case, and we

need to continue integration in some region Ri.

If Σ is reached, we choose to slide on it following the moments solution, and the

integration proceeds until Tmax is reached, or a tangential exit point is detected. The

location of potential exit points on Σ is based on Theorem 3.4.7 (see also [18]). If

Tmax is attained, the algorithm stops.

Otherwise, it accurately locates the tangential exit point and follows the correct

sliding vector field, that will lead the dynamics on the correct co-dimension 1 surface.

At this point, if Tmax has not been reached yet, we are back to one of the previous

cases, and the algorithm restarts.

For our purposes, and to better visualize the differences between the method

proposed here and other different ones, in all problems below integration on Σ = Σ1∩

Σ2 will proceed according to two different choices of convex combination coefficients,

and the associated vector fields: the coefficients λB used to form the bilinear vector

field in (1.4.10)-(a), and the moments coefficients λM used to form the moments vector

field. Let us stress that λB is found by solving the nonlinear system (1.4.10)-(b) for

α and β; as the bilinear trajectory evolves on Σ, the coefficients α, β, are updated by

continuation with respect to the value at the previous integration step.
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Example 5.1.1. This is a problem in R3. We have (1.4.3) with x(0) =


−0.1

−0.1

−0.1

,

Σ1 := {x ∈ R3 : h1(x) := x1 = 0}, Σ2 := {x ∈ R3 : h2(x) := x2 = 0}, and

Σ := Σ1 ∩ Σ2 is just the x3-axis. The vector fields are given by

f1(x) :=


√

2
8

sin
(
π
4
− x2

3

)
√

2
8

cos
(
π
4
− x2

3

)
x2

1 + x2
2 + 1

 , f2(x) :=


2
√

2 sin
(

3
4
π − x2

3

)
√

2 cos
(

3
4
π − x2

3

)
x2

1 + x2
2 + 1

 ,

f3(x) :=


√

2 sin
(
π
4
− 2x2

3

)
√

2 cos
(
π
4
− 2x2

3

)
x2

1 + x2
2 + 1

 , f4(x) :=


−2

−1

x2
1 + x2

2 + 1

 .

Since x(0) ∈ R1, we integrate ẋ = f1(x), until we hit Σ−2 transversally at ξ1 ≈
−0.0208

0

0.6320

. Notice that Σ−2 is attractive, since (see (1.3.3))

f1(ξ1) ≈


0.0665

0.1638

1.0004

 , f2(ξ1) ≈


2.6204

−0.5324

1.0004

 .

Thus, from ξ1, the trajectory starts sliding on Σ−2 directed towards Σ with vector field

fΣ−2
(x) := (1− αΣ−2

(x))f1(x) + αΣ−2
(x)f2(x) , αΣ−2

(x) :=
w2

1(x)

w2
1(x)− w2

2(x)
.

At ξ2 ≈


0.0000

0.0000

0.6619

, the trajectory reaches Σ transversally. At this point, Σ is nodally

attractive, since

W (ξ2) ≈

0.0602 2.6596 −0.1285 −2

0.1662 −0.4812 1.4084 −1

 .
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Observe that there is a unique Filippov sliding vector field (1.4.8) on Σ, namely

ẋ3 = 1; however, λB and λM are different.

With both the bilinear and moments methods the solution trajectory eventually

reaches the first order exit point

ξ3 =


0

0√
π
2

 , where W (ξ3) =

−1
8

2 −1 −2

1
8

1 −1 −1

 .

For values of x3 greater than
√

π
2
, Σ looses attractivity, and thus, past this value

forward integration (i.e., sliding) on Σ does not make much sense anymore. For this

reason, at ξ3 we should leave Σ sliding on Σ+
1 . Depending on whether we have λB or

λM, however, we witness very different behaviors as we reach ξ3.

As Figure 25 shows, at ξ3 the bilinear solution λB has all positive components.

Instead, the moments solution λM at ξ3 has its first and third components equal to

zero: these are exactly the components of λ that do not play a role when sliding on

Σ+
1 starts; indeed, at ξ3, λM provides the exit vector field on the sub-manifold Σ+

1 ,

that is fF+
1

(see (1.4.6)). Moreover, we note that if we force integration on Σ past

ξ3 for the moments trajectory (note that the moments’ matrix remains invertible, at

least near ξ3, because of Theorem 3.3.8), then the first and third components become

negative past the exit point, hence the moments solution is not admissible. [This

fact provides a powerful characterization of first order exit points, and a very useful

criterion to detect them numerically.]

As far as the bilinear solution, at ξ3 (1.4.10)-(b) must have multiple roots (see

[19]): the solution (α∗, β∗) we had been following (which gives λB in Figure 25), and

a new one, necessarily being (α+, 1) which has “entered” the admissible region. As

shown in [19], the nonlinear system (1.4.10)-(b) reduces to a quadratic equation in β,

with the two roots β∗ and 1. We stress that, by solving the nonlinear system (1.4.10)-

(b) by continuation, the “new entering” root goes unnoticed. To sum up, assuming
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Figure 25: Moments and bilinear solutions for x3 ∈ [0.6619..., 1.275].

that, somehow, all roots of the nonlinear system (1.4.10)-(b) are monitored, one

could force the trajectory to exit at ξ3, but following the solution (α∗, β∗) we have

been continuing gives no indication that a first order exit point has been reached;

all components of λB remain positive past ξ3, even though Σ is no longer attracting.

Moreover, as Figure 26 shows, if we do not exit Σ at ξ3 and continue integrating on

Σ with fB (using the continuation of (α∗, β∗)), then the bilinear solution develops a

singularity. Namely, at xs ≈


0

0

1.4163

, λB becomes complex valued, and motion on

Σ with fB ceases to make sense. [This last fact is easy to explain, since the roots of

the above parabola in β collide and become complex valued.]

Remark 5.1.2. In Example 5.1.1, we have a system in R3, Σ is a straight line, and

all sliding trajectories satisfy ẋ3 = 1. In particular, using either λB or λM, a sliding

trajectory must reach the point ξ3 above. Although, in principle, both bilinear and
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Figure 26: Moments and bilinear trajectories for Example 5.1.1.

moments trajectories could exit at ξ3, there is a major difference in what happens to

λB or λM if we let the trajectory continue on Σ past ξ3. At first, λB has all components

positive and seemingly well behaved, and it does not betray that the origin has gone

outside of the quadrilateral Q. On the other hand, λM has two components going to

0 at ξ3, and then becoming negative. This is an important fact, which betrays that

the origin has exited the quadrilateral Q, and that allows automatic detection of exit

points, as we have elaborated in Section 3.4.

In the next example, we show that, in general (that is, when the phase space is not

R3, nor R2), even when they seemingly are both well defined and exit smoothly, the

moments and bilinear methods lead to different dynamics, and –again– the bilinear

solution may again eventually develops a singularity, similarly to Example 5.1.1.

Example 5.1.3. We have (1.4.3) with x(0) =



−0.1

−0.1

−0.1

0.1


, Σ1 := {x ∈ R4 : h1(x) :=
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x1 = 0}, Σ2 := {x ∈ R4 : h2(x) := x2 = 0}, and Σ := Σ1 ∩ Σ2 is the (x3, x4) plane.

The vector fields are given by

f1(x) :=



√
2

8
sin
(
π
4
− x4x

2
3

)
√

2
8

cos
(
π
4
− x2

3

)
x2

1 + x2
2 + 1

x1 + x2 + x3 + x2
4


, f2(x) :=



2
√

2 sin
(

3
4
π − x2

3

)
√

2 cos
(

3
4
π − x4x

2
3

)
x4x

2
1 + x2

2 + 1

ex1 + x2 + x2
3 + x4


,

f3(x) :=



√
2 sin

(
π
4
− 2x2

3

)
√

2 cos
(
π
4
− 2x2

3

)
x2

1 + x2
2 + 1

x1 + ex2 + x3x4


, f4(x) :=



−2

−1

x1 + x2

x3x
2
4 + 1


.

We integrate ẋ = f1(x) until the trajectory reaches Σ−2 transversally at ξ1 ≈

−0.0108

0

0.6319

0.2256


, where Σ−2 is attractive, since (see (1.3.3))

f1(ξ1) ≈



0.1132

0.1638

1.0001

0.6721


, f2(ξ1) ≈



2.6203

−0.9060

1.0000

1.6142


.

There is sliding motion on Σ−2 directed towards Σ, with vector field

fΣ−2
(x) := (1− αΣ−2

(x))f1(x) + αΣ−2
(x)f2(x) , αΣ−2

(x) :=
w2

1(x)

w2
1(x)− w2

2(x)
.

At ξ2 ≈



0.0000

0.0000

0.6533

0.2436


, the trajectory reaches Σ transversally (see Figure 27). Since at
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Figure 27: First enter on Σ of moments and bilinear trajectories.

ξ2 we have

W (ξ2) =

0.1114 2.6486 −0.0966 −2

0.1655 −0.8908 1.4110 −1

 ,
then Σ is (at least, near ξ2) nodally attractive. We slide on Σ using either fB or fM.

The respective solution trajectories now follow different paths on Σ, but eventually

both reach the curve of first order exit points given by

x4 = −1 +
π

x2
3

.

Remark 5.1.4. For this problem, exit curves on Σ are directly computable, and are

given by:

x4 = 1− π + 4kπ

2x2
3

, k ∈ Z , and x4 = −1 +
π + 2kπ

x2
3

, k ∈ Z .

As Figure 28 shows, the moments and the bilinear trajectories exit (both of them

smoothly) at different positions on the same exit curve. Namely, the moments and
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Figure 28: Projection of moments and bilinear trajectories in the (x3, x4) plane during
sliding motion.

bilinear trajectories exit at

ξ
(M)
3 ≈



0.0000

0.0000

1.1725

1.2851


, respectively ξ

(B)
3 ≈



0.0000

0.0000

1.1285

1.4670


,

with coefficients

λM(ξ
(M)
3 ) ≈



0

0.4596

0

0.5404


, respectively λB(ξ

(B)
3 ) ≈



0

0.4446

0

0.5554


.

After they exit, as shown in Figure 29, trajectories evolve in Σ+
1 until both of them

again reach Σ transversally, but at different points: namely, the moments trajectory

enters Σ at ξ
(M)
4 ≈



0

0

1.2923

2.4231


, whereas the bilinear trajectory enters Σ at ξ

(B)
4 ≈
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Figure 29: Solution components of moments and bilinear trajectories.



0

0

1.2236

2.4714


. After a short sliding regime on Σ, the moments trajectory exits Σ smoothly

at ξ
(M)
5 ≈



0

0

1.3050

2.5150


, where λM

(
ξ

(M)
5

)
≈



0.9195

0

0.0805

0


. On the other hand, during this

second sliding motion on Σ, the bilinear trajectory passes through a first order exit

point, and eventually the coefficients become complex valued1 at ξ
(B)
5 ≈



0

0

1.3874

4.3001


.

See Figure 30 for a magnification of this phenomenon.

1The explanation of why the bilinear trajectory we are following does not notice the generic first
order exit point, and why the bilinear coefficients eventually become complex valued, is much like
the explanation we provided in Example 5.1.1
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Figure 30: Second sliding on Σ: moments trajectory evolves properly, whereas bilinear
trajectory develops a singularity after passing through a first order exit point.

After ξ
(M)
5 , the moments trajectory begins sliding on Σ−1 , from where it exits at

0

−0.0427

1.4022

3.2765


, entering R3; once there, the moments trajectory eventually reaches Σ+

2

transversally at ξ
(M)
6 ≈



0.3529

0

1.9684

8.6016


. Then, after sliding on Σ+

2 , it exits from there at

ξ
(M)
7 ≈



0.1363

0

2.0794

164.9307


moving into R3. At ξ

(M)
8 ≈



0

−0.0737

2.1942

210.5975


the moments trajectory

reaches transversally Σ−1 , slides on it and leaves it at ξ
(M)
9 ≈



0

−0.0738

2.1953

266.7981


and enters

in R3 again.
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The right selection of a sliding vector field on Σ and the automatic detection of

first order exit points is fundamental in cases where the piecewise smooth dynamical

system is expected to provide a periodic orbit. Next example shows that a periodic

orbit could be completely destroyed if one does not select a suitable sliding vector

field when the dynamics is forced to slide at co-dimension 2.

Example 5.1.5. This example is a slight, but crucial, modification of Example 16 in

[20]. We have (1.4.3) with x(0) =


0.995

0.2

0.4

, Σ1 := {x ∈ R3 : h1(x) := x2 − v1 = 0},

Σ2 := {x ∈ R3 : h2(x) := x3 − v2 = 0}, where v1 := 0.2, v2 := 0.4, and Σ := Σ1 ∩ Σ2

is just the x1-axis. The vector fields are given by

f1(x) :=


x2+x3

2

−x1 + 1
1−(x2−v1)

−x1 + 1
1+η−(x3−v2)

 , f2(x) :=


x2+x3

2

−x1 + 1
1−(x2−v1)

−x1 − 1
1+(x3−v2)

 ,

f3(x) :=


x2+x3

2

−x1 − 1
1+(x2−v1)

+ 3

−x1 + 1
1−(x3−v2)

+ 44
37

 , f4(x) :=


x2+x3

2
+ x1(x2 + 0.8)(x3 + 0.6)

−x1 − 1
1+(x2−v1)

−x1 − 1
1+(x3−v2)

 ,

where is chosen to be η = −0.1. In this case, as shown in [20], Σ is attractive for

−1 < x1 < 1.

We have compared different solution trajectories according to different selections of

the sliding vector field on Σ. Starting at x(0), the solution trajectory slides on Σ

according to the moments method, and reaches x1 ≈


1.004

0.2

0.4

, then exits Σ on Σ−2 ;

after sliding there, at x2 ≈


1.112

0.1756

0.4

 it exits Σ−2 and starts evolving in R1, eventually
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Figure 31: Periodic orbit when the Moments method is selected on Σ.

reaching Σ−2 at x3 ≈


−0.1456

−0.6536

0.4

; after a co-dimension 1 sliding there, the solution

trajectory hits x4 ≈


−0.07399

0.2

0.4

. From now on, sliding according to the moments

vector field on Σ, the sliding leads the trajectory reaching x(0) and a periodic orbit

arises; see Figure 31.

If we choose to slide on Σ using the bilinear sliding vector field, we can see in Fi-

gure 32 that, without enforcing the exit at the first order exit point x1, the solutions

trajectory passes it and the bilinear solution λB eventually develops a singularity at

x5 ≈


1.503

0.2

0.4

.
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Figure 32: The bilinear method on Σ does not detect the exit point automatically
and the corresponding solution develops a singularity at x5 = (1.503, 0.2, 0.4).

5.2 Motivating examples for minimum variation techniques

In this section, we present and detailedly analyze the theoretical problems that have

led us in studying the minimum variation solutions to determine Filippov sliding vec-

tor fields showed in Chapter 4. Example 5.2.1 is a slight modification of Example

4.1.1, where we avoid equilibria on Σ in order to relate the weighted H1-norm to the

reparametrization of time, that is a natural phenomenon for co-dimension 2 manifolds

in R3, as explained in [20].

Example 5.2.2 shows what happens to the minimum variation solutions when ente-

ring or exiting the admissibility region does not happen through points, but through

admissibility intervals for c at a and b.

Example 5.2.1 (Another model problem). This is very similar to Example 4.1.1, ex-

cept for the first component of the vector fields, chosen so that there are no equilibria
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on the sliding segment. We have fi, i = 1, 2, 3, 4, taking values in R3:

f1(x) :=


e−x1 + 1

−x1 + x2x3 + 1

x1 + x2 + 1

 , x ∈ R1 , f2(x) :=


e−x1 − 1

−x1 + x3 − 1

x1 + x2x3 + 2

 , x ∈ R2 ,

f3(x) :=


−e−x1 + 1

−x1 + x2 + 2

x1 + x2x3 − 1

 , x ∈ R3 , f4(x) :=


−e−x1 + 2

−x1 + x3 − 2

x1 + x3 − 2

 , x ∈ R4 ,

where Σ1 = {x : x3 = 0}, Σ2 = {x : x2 = 0}, and so Σ = Σ1 ∩ Σ2 is the x1-axis.

The admissible region for c is the same as in Example 4.1.1, that is the triangle of

Figure 22, hence we have a = −1.2, b = 1.2, and ca = 0.8, cb = 0, and λ = µ+ cv as

in (4.1.2). There is sliding motion on Σ from a to b.

(a) The minimum variation solution with weight w ≡ 1, with respect to λ, that is

the solution in (4.2.8), is

cMV,λ =
1

‖v‖2

(
Aex1 +Be−x1 − v>µ

)
,

with v>µ = 44
27
x1− 11

9
, ‖v‖2 = 44

9
, and the constants A,B, so that cMV,λ(−1.2) =

0.8 and cMV,λ(1.2) = 0.

(b) The minimum variation solution with weight w ≡ 1, with respect to fF, that is

the the solution in (4.2.12) is

cMV,fF =
1

fv

(
Aex1 +Be−x1 − fµ(x1)

)
,

with fv = −4
3
e−x1− 7

3
and fµ = −10

9
x1e
−x1 + 1

3
e−x1− 1

9
x1 + 4

3
, and the constants

A,B, so that cMV,fF(−1.2) = 0.8 and cMV,fF(1.2) = 0.

In Figure 33 we show the five functions c we discussed for this problem: moments,

bilinear, triangular, and the two minimum variation solutions (with weight w = 1).
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Figure 33: Admissible region (x1, c) and moments, bilinear, triangular, broken-line,
and minimum variation solutions of c.

We also show the “broken-line” solution, corresponding to the selection of c given

by the path along the two other sides of the triangular region. In this case, all

these solutions are admissible (all smooth, except the broken line solution), and give

different Filippov sliding vector fields, all smoothly exiting. The corresponding vector

fields are shown in Figure 34.

We are finally ready to answer in the positive, on this example, Questions 4.2.5.

The reason why we can answer positively those questions is that there are no equi-

libria, and thus: (
Aex1 +Be−x1

)
(fF)1 > 0 ,

where (fF)1 is the first component of any of the above vector fields (the second and

third components being 0 in the present case).

(i) In light of the above, we can choose the weight w so that the solution of (4.2.9)

gives us any of the above solutions. In fact, for any admissible c giving us a

sliding vector field fF, we define the weight w, which gives c as the minimum
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Figure 34: Sliding vector fields for moments, bilinear, triangular, broken-line, and
minimum variation solutions.

variation of (4.2.9), from

w(x) =
Aex1 +Be−x1

(fF)1

. (5.2.1)

By construction, using this weight w in the minimization of (4.2.9) will give

us the function c which gave fF. In particular, also the bilinear, triangular,

and moments solutions are in fact weighted minimum variation solutions. The

“broken line” solution, not being smooth, cannot be obtained as solution of

(4.2.9) with smooth w; nonetheless, we still formally define its associated weight

as above (it is attainable as the limit of smooth solutions).

(ii) As we know, the previously displayed vector fields (see Figure 34) are all or-

bitally equivalent. In particular, it must be true that any of the vector field is

a multiple of the vector field obtained as minimum variation with respect to fF

with weight 1. Because of (5.2.1), thus we must have

ω(x) =
1

w(x)
, (5.2.2)
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where w(x) is the weight associated to the specific choice of fF under considera-

tion; see (5.2.1). (In other words, in (4.2.2) we are using fF1 = fMV -minimum

variation with respect to fF with weight w = 1- and fF2 any of the previously

obtained sliding vector fields). In Figure 35 we show the values of ω for the

vector fields above. We observe that the moments and bilinear solutions give

quite similar functions ω. Also, observe that the broken-line solution gives (as

expected) a non-smooth factor ω. Looking at Figure 35, we conclude that all

possible values of ω must be within the upper and lower curves, that is in

between the functions ω of the triangular and broken-line solutions.

To conclude our discussion on this example, we observe that the broken-line solution

takes the least amount of “time” to travel from a to b:

tbroken ≈ 1.93 < tm ≈ 2.76 < tb ≈ 2.76 < tMV,fF ≈ 2.96 < tMV,λ ≈ 3.85 < ttr ≈ 6.55

This was predictable, since –being all vector fields orbitally equivalent– we have that

with respect to the time t given by selecting cMV,fF , all other times come from dτ =

1
ω

dt, and therefore “the larger ω, the shorter the time” (see Figure 35). The fact that

the broken-line solution gives the shortest time is also consistent with the general

flavor of results in optimal control theory, whereby it is known that, for linear problems

with constraints, the optimal control (here, the value of c giving the minimal time

solution) lies on the boundary of the admissible region (see [44]). In a specular way,

the admissible solution taking the longest time is the triangular solution.
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Figure 35: Orbital equivalence factors ω for moments, bilinear, triangular, broken-
line, and minimum variation with respect to λ.

Example 5.2.2 ([18]). Consider the following problem in R3:

f1(x) :=


√

2
8

sin
(
π
4
− x2

3

)
√

2
8

cos
(
π
4
− x2

3

)
x2

1 + x2
2 + 1

 , f2(x) :=


2
√

2 sin
(

3
4
π − x2

3

)
√

2 cos
(

3
4
π − x2

3

)
x2

1 + x2
2 + 1

 ,

f3(x) :=


√

2 sin
(
π
4
− 2x2

3

)
√

2 cos
(
π
4
− 2x2

3

)
x2

1 + x2
2 + 1

 , f4(x) :=


−2

−1

x2
1 + x2

2 + 1

 ,

Σ1 := {x ∈ R3 : x1 = 0}, Σ2 := {x ∈ R3 : x2 = 0} and Σ := Σ1 ∩ Σ2 is just the

x3-axis, which is in particular attractive in the segment γ := {−
√
π/2 < x3 <

√
π/2}

(the endpoints being generic first order exit points).

In this problem, we stress that fv(x3) = 0 for all x3 ∈ γ:[
x2

1 + x2
2 + 1 x2

1 + x2
2 + 1 x2

1 + x2
2 + 1 x2

1 + x2
2 + 1

] ∣∣∣∣∣
x∈Σ

v = 1>v = 0 ,

and further –no matter what choice of coefficients we make– all sliding vector fields will
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Figure 36: Curves of α(x3), β(x3) defining the admissible region (1.4.13) for Example
5.2.2, and moments and bilinear solutions.

always be: fF(x) =


0

0

1

 (that is, ẋ3 = 1). As a consequence, the minimum variation

requirement in (4.2.9) is ill-posed, as any λ solution of (1.4.9) would provide the same

sliding vector field. The minimum variation solution requirement in (4.2.5) is feasible,

though, and indeed not all different choices of λ will provide sets of coefficients that

render the exiting vector fields.

The admissibility region for this problem (found from (1.4.13) using the moments

solution as particular solution and the smooth eigenvector v of Lemma 3.2.6), is

the region comprised between the two curves in Figure 36 (these are α and β in

(1.4.13)). Looking at Figure 36, it is clear that, when the dynamics enters or exits

from sliding motion on Σ, there are intervals of admissible values for c in (1.4.12).

At the same time, for a Filippov vector field to exit smoothly from Σ, it is necessary

that its corresponding λ coefficient coincides with λM at first order exit points (see

[18]). Therefore, there is only one way to enter/exit smoothly from Σ in this specific

problem, and it is given by the end values of c selected by the moments solution
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in Figure 36. For comparison, we also show the values of c selected by the bilinear

solution; since the end values do not coincide with those of the moments solution, we

infer that the bilinear solution cannot be a minimum variation solution nor can be

smoothly exiting.

5.3 A piecewise smooth dynamical system with a periodic
orbit

In this section, we analyze in details Example 5.3.1 introduced in Chapter 1. For

convenience, we recall it below.

Example 5.3.1 ([28]). Let us consider a non-smooth dynamical system, the solution

of which slides on the intersection of two surfaces. In [28] the author studies a me-

chanical system composed by two blocks on a moving belt, as depicted in Figure 1.

The velocity of the belt is constant and is called the driving velocity v. Each block

is connected to a fixed support and to the other block by elastic springs. The surface

between the blocks and the belt is rough so that the belt exerts a dry friction force

on each block that sticks on the belt to the point where the elastic forces due to the

springs exceed the maximum static force. At this point the blocks start slipping and

the slipping motion will continue to the point where the velocity of the block will equal

that of the belt and the elastic forces will be equilibrated by the static friction force.

The continuous repetition of this type of motions generates a stick-slip oscillation.

This mechanical system may be described in its simplest form by the following set of

differential equations:
m1x

′′
1 = −k1x1 − k12(x1 − x2) + fk1(x′1 − v),

m2x
′′
2 = −k2x2 − k12(x2 − x1) + fk2(x′2 − v)

(5.3.1)

where xi(t) is the displacement, mi is the mass, fki(x
′
i−v) the kinetic friction force of

the i-th block, k1, k2, k12 suitable constants. The kinetic force has the form fk2(x′ −
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v) = βfk1(x′ − v) with:

fk1(x′ − v) :=


1−δ

1−γ(x′−v)
+ δ + η(x′ − v)2, x′ < v,

− 1−δ
1−γ(x′−v)

− δ − η(x′ − v)2, x′ > v.

(5.3.2)

Now, we fix m1 = m2 = k1 = k2 = −k12 = 1, δ = 0, γ = 3, η = 0, v = 0.295,

β = 1.301. Therefore, with these selections, the system in Figure 1 is described by

ẋ =



f1(x), x3 < v and x4 < v,

f2(x), x3 < v and x4 > v,

f3(x), x3 > v and x4 < v,

f4(x), x3 > v and x4 > v,

(5.3.3)

where fi, i = 1, 2, 3, 4, are given by:

f1 =



x3

x4

−2x1 + x2 + 1
1−3(x3−v)

x1 − 2x2 + β
1−3(x4−v)


, f2 =



x3

x4

−2x1 + x2 + 1
1−3(x3−v)

x1 − 2x2 − β
1−3(x4−v)


,

f3 =



x3

x4

−2x1 + x2 − 1
1−3(x3−v)

x1 − 2x2 + β
1−3(x4−v)


, f4 =



x3

x4

−2x1 + x2 − 1
1−3(x3−v)

x1 − 2x2 − β
1−3(x4−v)


.

(5.3.4)

It will be useful for what follows to compute the attractivity region of (5.3.3), as

sketched in Figure 37. In order to do so, we will analyze when the four subsliding

vector fields fΣ±1,2
, determined from (5.3.4), point towards Σ altogether. Computations
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Figure 37: Attractivity region of (5.3.3).

provide the following vector fields:

fΣ−1
=



v

x4

0

x1 − 2x2 + β
1−3(x4−v)


,

fΣ+
1

=



v

x4

0

x1 − 2x2 − β
1−3(x4−v)


,

fΣ−2
=



x3

v

−2x1 + x2 + 1
1−3(x3−v)

0


,

fΣ+
2

=



x3

v

−2x1 + x2 − 1
1−3(x3−v)

0


.

123



−1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5
−1.5

−1

−0.5

0

0.5

x
1

x
2

x 4

Figure 38: Projected periodic orbit, in the x1 − x2 − x4 phase space, for the system
(5.3.3) starting at (0, 0, 0).

If we then look at fΣ±1
and fΣ±2

, for the nature of (5.3.4), attractivity of Σ requires

that

Σ−1 : x1 − 2x2 + β > 0,

Σ+
1 : x1 − 2x2 − β < 0,

Σ−2 : −2x1 + x2 + 1 > 0,

Σ+
2 : −2x1 + x2 − 1 < 0.

We are going to prove that (5.3.3) provides one periodic orbit, as also shown in Figure

38.

Before embarking in proving the claimed result, we need a technical result.

Lemma 5.3.2. Let xE ∈ Rn. Then xE ∈ Σ is an exit point in R1, i.e. λM,1(xE) = 1

and λM,i(xE) = 0 for all i 6= 1, if and only if w1(xE) = 0.

Proof. Let us assume that w1(xE) = 0: then d1(xE) = 0. Since the moments matrix
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at xE, M(xE), is nonsingular and λM =



1

0

0

0


is the unique solution for the moments

system, then xE is an exit point.

Let us assume that λM,1(xE) = 1, λM,i(xE) = 0 for i 6= 1. Therefore, because the

moments matrix is nonsingular, λM is the unique solution to the moments system

Mλ =



0

0

1

0


.

Looking at the last row of the moments system, we get d1(xE) = 0, from which

w1(xE) = 0.

Lemma 5.3.3. The problem (5.3.3) has four distinct first-order exit points on Σ.

Proof. Straightforward computations, in light of Lemma 5.3.2, give that

E1 :=



β+2
3

2β+1
3

v

v


, E2 :=



2−β
3

1−2β
3

v

v


, E3 :=



β−2
3

2β−1
3

v

v


, E4 :=



−β+2
3

−2β+1
3

v

v


,

are the only first-order exit points that provide exits, respectively, in R1, R2, R3 and

R4.

Lemma 5.3.4. If a solution trajectory hits the attractivity region of (5.3.3), then it

slides on the line

x2 − x1 =
β − 1

3
,

that passes through the exit point E1.
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Proof. Let us assume that the solution trajectory x(t) reaches Σ in its attractvity

region (see Figure 37), in a point B: there the Filippov sliding vector field is

fΣ =



v

v

0

0


.

Let us stress that x1, x2 are monotonically increasing. Because of attractivity in B,

it must hold that 
n>2 fΣ−1

> 0,

n>2 fΣ+
1
< 0,

that is 
x1 − 2x2 + β > 0,

x1 − 2x2 − β < 0,

(5.3.5)

where the evaluation is at B. These relations comes from the fact that

fΣ = (1− αΣ1)fΣ−1
+ αΣ1fΣ+

1
, (5.3.6)

where

αΣ1
:=

n>2 fΣ−1

n>2 (fΣ−1
− fΣ+

1
)
. (5.3.7)

Further, it also holds, in Σ attractivity region, that
n>1 fΣ−2

> 0,

n>1 fΣ+
2
< 0,

or, equivalently, 
−2x1 + x2 + 1 > 0,

−2x1 + x2 − 1 < 0,

(5.3.8)

where the evaluation is at B. These relations come from the fact that

fΣ = (1− αΣ2)fΣ−2
+ αΣ2fΣ+

2
, (5.3.9)
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where

αΣ2
:=

n>1 fΣ−2

n>1 (fΣ−2
− fΣ+

2
)
. (5.3.10)

Since

x1(t) = B1 + vt, (5.3.11a)

x2(t) = B2 + vt, (5.3.11b)

then, at some time TB > 0, first relation in (5.3.5) will be verified as an equality (the

second being satisfied for all times):

B1 − 2B2 − vTB + β = 0. (5.3.12)

This says that Σ is loosing attractivity: fΣ, viewed as in (5.3.6), is aligning with some

vector field exiting Σ in R1, R3 or on Σ−1 (see (5.3.7)). Since fΣ is uniquely defined

on Σ, at the same time TB, looking at fΣ as in (5.3.9) says that we would get

−2B1 +B2 − vTB + 1 = 0 (5.3.13)

from combining (5.3.8) and (5.3.11): let us stress that second condition in (5.3.8) is

satisfied at all times on Σ. From (5.3.12) and (5.3.13), we deduce that

B1 −B2 =
1− β

3
.

Since E1 as in Lemma 5.3.3 belongs to the same line, and dynamics on Σ is governed

by (5.3.11), we conclude that the solution trajectory will slide from B towards E1,

where it will exit Σ, entering the region R1.

5.3.1 Analysis of the dynamics given by (5.3.3)

We are now able to show that the dynamics given by (5.3.3) provides a periodic orbit

that passes through E1: we will make also use of plots obtained from a computer-

graphics routine. More specifically, we are going to prove the following steps:
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Figure 39: Behaviors of vector fields in the dynamical system (5.3.14).

1. Starting at E1, the dynamics reaches Σ−1 in a region R that contains the point

A ≈



−0.6539

−0.7457

0.295

−0.4383


and that is attracted towards Σ;

2. starting in R, the dynamics reaches Σ in a point B where Σ is attractive;

3. the dynamics continues on a line passing through E1, moving towards it.

We refer to Lemma 5.3.3 for the notations below.

1. We first prove that, starting at E1, that represents an exit point in R1 for (5.3.3),

we reach Σ−1 . Let us then stress that we are looking at the dynamical system

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = −2x1 + x2 +
1

1− 3(x3 − v)
,

ẋ4 = x1 − 2x2 +
β

1− 3(x4 − v)
,
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with initial condition E1 =

[
β+2

3
2β+1

3
v v

]>
. Applying the change of coor-

dinates

y1 := 2x1 − x2,

y2 :=
1

β
(−x1 + 2x2),

y3 := x3 − v,

y4 := x4 − v,

provides 

ẏ1 = 2y3 − y4 + v,

βẏ2 = 2y4 − y3 + v,

ẏ3 = −y1 +
1

1− 3y3

,

1

β
ẏ4 = −y2 +

1

1− 3y4

,

(5.3.14)

with initial condition

[
1 1 0 0

]>
. We can think to split (5.3.14) into two

coupled nonlinear oscillators

ẏ1 = 2y3 − y4 + v,

ẏ3 = −y1 +
1

1− 3y3

,

y1(0) = 1,

y3(0) = 0,



βẏ2 = 2y4 − y3 + v,

1

β
ẏ4 = −y2 +

1

1− 3y4

,

y2(0) = 1,

y4(0) = 0,

In a sufficiently small neighborhood V of (1, 0), since the vector field acting

there is

v
0

 for both dynamics, we have that

ẏ3 < ẏ4 < 0 on V, (5.3.15)

being β > 1; therefore, because of the initial conditions, y3 < 0 and y4 < 0 in V ;

since we have already pointed out in (5.3.15) that y3, y4 are strictly decreasing
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then, in some finite time t1, it will be

ẏ1(t1) = 2y3(t1)− y4(t1) + v = 0, and after t1 : ẏ1 < 0,

βẏ2(t1) = 2y4(t1)− y3(t1) + v > 0.

Therefore, at some time t2 > t1, ẏ1(t2) > 0, while ẏ2 = 0: thus, after t2, y2

starts decreasing, whereas y3 starting increasing hereafter for similar reasons;

then, at some other time t3 > t2, y1 will become decreasing, as well as y2; now,

by monotonicity, there will exist T1 > t3 such that

y3(T1) = 0, y4(T1) < 0,

or, in terms of the original coordinates,

x3(T1) = v, x4(T1) < v,

that is, the solution trajectory has reached Σ−1 . Further, this event happens

when ẏ4 < 0 (see Figure 39), so that ϕT1(E1) ∈ U , where U := Ũ ∩ Σ−1 , being

Ũ :=

{
x ∈ R4 : x1 − 2x2 +

β

1− 3(x4 − v)
> 0

}
.

It is then evident that Ũ contains A, as defined above, and that it is an attractive

subregion for Σ in Σ−1 .

2. Starting at A =



−0.6539

−0.7457

0.295

−0.4383


, the dynamics is governed by

ẋ =



v

x4

0

x1 − 2x2 + β
1−3(x4−v)


.
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Figure 40: Vector field given by (5.3.16) in y2−y4 plane. Point in red is the projection
of A in the new coordinates.
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Figure 41: Vector field given by (5.3.16) in the y1− y2− y4 space. Point in red is the
projection of A in the new coordinates.
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Let us now define the following:

y1 := 2x1 − x2,

y2 := −x1 + 2x2,

y3 := x3 − v,

y4 := x4 − v.

In these new coordinates, dynamics becomes

ẏ1 = v − y4,

ẏ2 = 2y4 + v,

ẏ3 = 0,

ẏ4 = −y2 +
β

1− 3y4

,

(5.3.16)

and Ay =



−0.5621

−0.8375

0

−0.7333


.

We want to prove that, the point where the solution trajectory reaches Σ belongs

to its attractivity region: this is the case if and only if −1 < 2x1 − x2 < 1 and

−β < −x1 + 2x2 < β, or, in new coordinates,

−1 <y1 < 1,

−β <y2 < β.

As we can see in Figure 40, dynamics of component y2 from a neighborhood

of A is led to reach the interval [−β, β] on y2-axis. From Figure 41, it is also

predictable that y1 will fall into [−1, 1]. These facts say that, starting at A ∈ Σ−1 ,

the solution trajectory will reach Σ in its attractive region.

3. This step comes directly from Lemma 5.3.4.
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Chapter VI

MOMENTS SLIDING VECTOR FIELD ON THE

INTERSECTION OF THREE MANIFOLDS: NODALLY

ATTRACTIVE CASE

In this Chapter we propose and prove an extension the moments’ method to the

co-dimension 3 case, under nodal attractivity conditions; we attempt, further, a defi-

nition of general attractivity by subsliding for the co-dimension 3 case. We also prove

that our extension of the moments’ method, under nodal attractivity conditions, can

be further generalized to any co-dimension.

6.1 Introduction

Consider the following piecewise smooth system,

x′(t) = fi(x), x ∈ Ri, i = 1, . . . , 8, (6.1.1)

where the regions Ri’s are open, disjoint and connected sets of Rn, so that Rn =
⋃
Ri,

and on each region Ri the function fi is smooth.

Moreover, the regions Ri’s are separated by manifolds defined as 0-sets of smooth

(at least C 2) scalar functions hi: Σi := {x ∈ Rn : hi(x) = 0}, i = 1, 2, 3, which

intersect pairwise and all three of them. For notational convenience, we use

Σ1,2 := Σ1 ∩ Σ2 , Σ1,3 := Σ1 ∩ Σ3 , Σ2,3 := Σ2 ∩ Σ3 ,

to describe the three possible co-dimension 2 discontinuity manifolds, and further

Σ±1,2 := {x ∈ Σ1 ∩ Σ2 : h3(x) ≷ 0}

and similarly for Σ±1,3 and Σ±2,3. Finally,

Σ := Σ1 ∩ Σ2 ∩ Σ3
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will be the co-dimension 3 manifold of interest to us.

Without loss of generality, we label the regions Ri’s as follows (see Figure 42 for

an illustration of the situation)

R1 := {x ∈ Rn : h1(x) < 0, h2(x) < 0, h3(x) < 0},

R2 := {x ∈ Rn : h1(x) < 0, h2(x) < 0, h3(x) > 0},

R3 := {x ∈ Rn : h1(x) < 0, h2(x) > 0, h3(x) < 0},

R4 := {x ∈ Rn : h1(x) < 0, h2(x) > 0, h3(x) > 0},

R5 := {x ∈ Rn : h1(x) > 0, h2(x) < 0, h3(x) < 0},

R6 := {x ∈ Rn : h1(x) > 0, h2(x) < 0, h3(x) > 0},

R7 := {x ∈ Rn : h1(x) > 0, h2(x) > 0, h3(x) < 0},

R8 := {x ∈ Rn : h1(x) > 0, h2(x) > 0, h3(x) > 0} .

Σ₂

Σ₁

Σ₃

Σ₁₂

Σ₁₃

Σ₂₃

R₁

R₂

R₄

R₃

R₅

R₇

R₈

Σ

R₆

Figure 42: Regions and discontinuity surfaces.
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Our goal is to describe a Filippov sliding vector field on Σ, which extends the

moments vector field we proposed in [18] in the co-dimension 2 case.

6.1.1 Sliding vector field

We assume that {∇hi(x)}i=1,2,3 is a linearly independent set at any x ∈ Σ and in a

neighborhood of Σ.

For x ∈ Σ, define the projections of the vector fields fi, i = 1, . . . , 8, onto the

normal directions to the three manifolds:

wi =


w1
i

w2
i

w3
i

 :=


∇h>1 fi

∇h>2 fi

∇h>3 fi

 , i = 1, . . . , 8 . (6.1.2)

Consider the matrix W ∈ R3×8 (which depends smoothly on x):

W =

[
w1 w2 w3 w4 w5 w6 w7 w8

]
. (6.1.3)

Next, we assume that the manifold Σ is nodally attractive, which we characterize

by the following first order condition, that of course depends on the regions’ labeling.

Definition 6.1.1. We say that Σ is nodally attractive if the matrix W has the fol-

lowing sign pattern: 
+ + + + − − − −

+ + − − + + − −

+ − + − + − + −

 . (6.1.4)

On Σ, we are interested in Filippov solutions of (6.1.1). In particular, we seek a

sliding vector field of the form

fF = λ1f1 + λ2f2 + λ3f3 + λ4f4 + λ5f5 + λ6f6 + λ7f7 + λ8f8 (6.1.5)
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with positive coefficients λi’s adding to 1. Imposing that fF is tangent to Σ, gives the

following underdetermined linear system

W
1>

λ =



0

0

0

1


, (6.1.6)

where W ∈ R3×8 is defined as in (6.1.3). It is evident that (6.1.6) is an underdeter-

mined system. In Corollary 6.1.7 below we will show that the matrix

W
1>

 has a

four dimensional kernel; hence, to select a unique Filippov sliding vector field on Σ,

the issue is how “to fix” the four available degrees of freedom. Again, we stress that

we are specifically interested in smooth vector fields on Σ; for this reason, we seek

solutions of (6.1.6) with positive components, and with the λi’s smoothly varying

with x ∈ Σ, which we will call admissible solutions.

6.1.1.1 Trilinear (interpolant) vector field

A possible choice to determine an admissible solution of (6.1.6), and a vector field as

in (6.1.5), is to select λ ∈ R8 of the form

λ =



(1− α)(1− β)(1− γ)

(1− α)(1− β)γ

(1− α)β(1− γ)

1− α)βγ

α(1− β)(1− γ)

α(1− β)γ

αβ(1− γ)

αβγ



, (6.1.7)

where α, β, γ ∈ (0, 1). Since the choice (6.1.7) clearly gives
∑

i λi = 1, one would

need that α, β, γ ∈ [0, 1] to have an admissible solution. Now, the relation (6.1.6)
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gives a nonlinear system of three equations in the three unknowns α, β, γ. As proven

in [23], when Σ is nodally attractive, this nonlinear system always has a solution

α, β, γ ∈ (0, 1). The choice (6.1.7) is the “natural” extension to the co-dimension

3 case of the bilinear interpolant method, and it is important to observe that the

choice (6.1.7) is consistent with the bilinear interpolant technique on the lower co-

dimension manifolds; indeed, alternately setting one of α, β, γ, to be 0 or 1, gives the

6 possible combinations needed for a sliding vector field on the relevant co-dimension

2 manifolds (namely, on Σ±1,2,Σ
±
1,3,Σ

±
2,3). For example, when γ = 0, one obtains the

bilinear vector field on Σ−12, namely

(1− α) [(1− β)f1 + βf3] + α [(1− β)f5 + βf7] . (6.1.8)

However, there is a difficulty with the formulation (6.1.7): even when Σ is nodally

attractive, in general there is more than one admissible solution of the nonlinear

system; see Example 6.1.2 below.

Example 6.1.2. Consider the following matrix W , which corresponds to a nodally

attractive discontinuity surface Σ (see Definition 6.1.1 and the sign pattern of (6.1.4))

W :=


1 3 1 11 −7 −1 −3 −5

1 1 −11 −3 3 11 −1 −1

1 −9 5 −1 1 −5 9 −1

 .
As reported in [21], searching for the trilinear solution (6.1.7) relative to the system

Wλ = 03 , (6.1.9)

gives two distinct solutions, associated to (α, β, γ) = (1/2, 1/2, 1/2) and to (α, β, γ) ≈
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(0.3316, 0.2913, 0.3080), namely

λ =



1/8

1/8

1/8

1/8

1/8

1/8

1/8

1/8



and λ ≈



0.3268

0.1459

0.1347

0.06

0.1626

0.0724

0.0668

0.0298



.

(The Jacobian of the nonlinear system in (α, β, γ) associated to the first root is sin-

gular, as that root is double).

6.1.2 Moments method

In case of a discontinuity manifold of co-dimension 2 (intersection of two co-dimension

1 manifolds), in [18] we proposed a methodology to select a uniquely defined sliding

vector field of Filippov type, and we called the resulting method the moments’ method .

Here we propose an extension of the moments’ method as a mean to provide a sliding

vector field in case Σ is of co-dimension 3.

Let us recall that, if Σ from (6.1.1) is a co-dimension 2 manifold, intersection of

two co-dimension 1 manifolds Σ1, Σ2, then computing the moments’ solution amounts

to solving the linear system

Mλ =



0

0

1

0


, (6.1.10)
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where

M :=


W

1>

d>

 , W :=

[
w1 w2 w3 w4

]
, d :=



‖w1‖

−‖w2‖

−‖w3‖

‖w4‖


, (6.1.11)

with

wji := ∇h>j fi, i = 1, 2, 3, 4, j = 1, 2,

being h1 and h2 the event functions of which Σ1, and Σ2, are the 0-sets.

In [18] it is proven that M is invertible whenever Σ is attractive by subsliding, in

particular when Σ is nodally attractive, and that (6.1.10) provides a unique admissible

solution λM. For later reference, we summarize this special case in the following

theorem.

Theorem 6.1.3 ([18]). Let W =

w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4

 ∈ R2×4 have the following sign

pattern: + + − −

+ − + −

 , (6.1.12)

and let M be defined as in (6.1.11). Then the linear system (6.1.10) is nonsingular

and has a unique admissible solution.

At this point, the key to understand how to provide the extension of the mo-

ments’ method is to realize that –alongside the co-dimension 3 manifold Σ– there

are also several lower co-dimension manifolds where solution trajectories can slide,

approaching Σ. Specifically, in a neighborhood of Σ, there are three co-dimension

1 manifolds (namely, Σ1, Σ2, Σ3), and three co-dimension 2 manifolds, namely Σ1,2,

Σ1,3, Σ2,3. Now, under the assumption of nodal attractivity of Σ, there is a unique

Filippov sliding vector field on the co-dimension 1 manifolds, but there is an ambi-

guity of how to select a Filippov sliding vector field on the co-dimension 2 manifolds.
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Therefore, to arrive at an appropriate extension of the moments’ method, we will

need to insist that on the co-dimension 2 manifolds we are using the moments’ vector

field as sliding vector field. We will need to further make sure that an appropriate

distinction is made between the cases of Σ+
1,2 and Σ−1,2, since different vector fields

enter in the convex combination defining the moments sliding vector field in these

cases (and similarly for Σ+
13 and Σ−1,3, and Σ+

2,3 and Σ−2,3).

Guided by the above consideration, our idea is to normalize (6.1.6) in the same

fashion of co-dimension 2 which leads to consider precisely the matrix of “signed”

partial distances (6.1.13). To witness, consider the sub-surface Σ2,3, that is the subset

of x ∈ R3 for which h2(x) = 0 and h3(x) = 0. Looking at the sign pattern of W in

(6.1.4), we notice that two natural sets of vertices wi’s arise, namely {w1, w2, w3, w4}

and {w5, w6, w7, w8}, according to the sign of their first component: the first four

vertices have w1
i > 0, i = 1, 2, 3, 4; the last four vertices have w1

i < 0, i = 5, 6, 7, 8.

Moreover, the sign pattern of

w2
1 w2

2 w2
3 w2

4

w3
1 w3

2 w3
3 w3

4

 and

w2
5 w2

6 w2
7 w2

8

w3
5 w3

6 w3
7 w3

8

 is the same

as that in (6.1.12), that is the nodal attractivity sign pattern in co-dimension 2.

This implies that the two sets {w1, w2, w3, w4} and {w5, w6, w7, w8} are determining

subsliding towards Σ, on Σ+
2,3 and Σ−2,3 respectively. From Theorem 6.1.3, we know

that the moments vector fields on Σ±2,3 is well defined. This means that, on Σ+
2,3, there

are unique admissible solutions of

w2
1 w2

2 w2
3 w2

4

w3
1 w3

2 w3
3 w3

4

1 1 1 1

δ23
1 −δ23

2 −δ23
3 δ23

4


λ =



0

0

1

0


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and of 

w2
5 w2

6 w2
7 w2

8

w3
5 w3

6 w3
7 w3

8

1 1 1 1

δ23
5 −δ23

6 −δ23
7 δ23

8


λ =



0

0

1

0


,

where δ23
i :=

√
(w2

i )
2 + (w3

i )
2, i = 1, . . . , 8. This implies that –within the moments’

method framework– we must regularize those two blocks with the corresponding par-

tial distance vector relative to Σ2,3: we then choose to append the row[
δ23

1 −δ23
2 −δ23

3 δ23
4 δ23

5 −δ23
6 −δ23

7 δ23
8

]

to

W
1>

 in order to obtain consistency with the moments solution on Σ2,3. Analogous

reasoning relative to Σ±1,2 and Σ±1,3 leads us to regularize

W
1>

 by appending to it the

matrix

∆ :=


δ23

1 −δ23
2 −δ23

3 δ23
4 δ23

5 −δ23
6 −δ23

7 δ23
8

δ13
1 −δ13

2 δ13
3 −δ13

4 −δ13
5 δ13

6 −δ13
7 δ13

8

δ12
1 δ12

2 −δ12
3 −δ12

4 −δ12
5 −δ12

6 δ12
7 δ12

8

 , (6.1.13)

where, for each i = 1, . . . , 8,

δ23
i :=

√
(w2

i )
2 + (w3

i )
2 , δ13

i :=
√

(w1
i )

2 + (w3
i )

2 , δ12
i :=

√
(w1

i )
2 + (w2

i )
2 .

Notice that, when δjki 6= 0 for all i = 1, . . . , 8 and j, k = 1, 2, 3 (e.g., this is

guaranteed when (6.1.4) holds for the signs of the entries of W ), the sign pattern of

∆ is 
+ − − + + − − +

+ − + − − + − +

+ + − − − − + +

 . (6.1.14)

141



Finally, we assemble the matrix

M :=



W

∆

d>

1>


, (6.1.15)

where 1 ∈ R8 is the vector of all 1’s, reflecting the convexity requirement, and

d> :=

[
d1 −d2 −d3 d4 −d5 d6 d7 −d8

]
,

di := ‖wi‖2, i = 1, . . . , 8 ,

(6.1.16)

formally expresses our proposal of weights to place on the vertices wi’s, i = 1, . . . , 8,

to maintain the geometrical flavor of moments (so to make the origin the barycenter

of the polytope).

Definition 6.1.4. The matrix M (6.1.15) is called the moments matrix, and the

moments’ method (on Σ) consists in solving

Mλ =


0
0
0
0
0
0
0
1

 (6.1.17)

for λ, and then using this λ in the construction of the sliding vector field (6.1.5),

which will be called moments vector field.

Before stating and proving the fundamental results relative to this construction,

we need some preliminary results.

Lemma 6.1.5. Let A ∈ Rn×m, n < m, be full rank, and let b ∈ Rn. Consider the

system

Ax = b , (6.1.18)

and let d ∈ Rm be a nonzero vector.
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If there exist x and y solutions of (6.1.18), such that

d>x = ξ , and d>y = η ,

with ξ 6= η, then

A
d>

 has rank n+ 1.

Proof. By hypothesis, dim ker(A) = m − n. Let then V ∈ Rm×(m−n) be such that

range(V ) = ker(A), and by contradiction suppose that d ∈ range(A>). Then we must

have

d>V c = 0,

for all c ∈ Rm−n. Since both x and y are solutions of (6.1.18), then there exists

c ∈ Rm−n such that

y = x+ V c.

Therefore

η = d>y = d>x+ d>V c = ξ ,

and this contradicts the assumption ξ 6= η. Hence,

A
d>

 has full rank n+ 1.

Next, we have the following simple result.

Lemma 6.1.6. Let W satisfy the sign pattern of (6.1.4). Then

rankW = 3.

Proof. By the sign pattern of W (2 : 3, 1 : 2), rankW ≥ 2. If, by contradiction,

rankW = 2, then wi ∈ span{w1, w2} for all i = 3, . . . , 8; nonetheless, no linear

combination of w1, w2 can match the signs of all wi, i = 3, . . . , 8, at once.

Finally, we have the anticipated result.

Corollary 6.1.7. Let W̃ :=

W
1>

. Then rank W̃ = 4, hence ker(W̃ ) is 4-dimensional.

143



Proof. Because of Theorem 6.1.3, the matrix


w2

w3

1>

 contains a non-singular subma-

trix, hence it must have rank 3. Let us then consider the system
w2

w3

1>

λ =


0

0

1

 .
By Theorem 6.1.3, considering the first four columns and the last four columns of
w2

w3

1>

, there exist the two corresponding moments solutions λ and µ to these system

with the following structures:

λ =


∗
∗
∗
∗
0
0
0
0

 , µ =


0
0
0
0
∗
∗
∗
∗

 ,

and all their entries are nonnegative. Therefore, considering the extended matrix

W̃ =



w1

w2

w3

1>


and exploiting the sign pattern of W in (6.1.4), we obtain that

W̃λ =



> 0

0

0

1


, W̃µ =



< 0

0

0

1


.

Thus, using Lemma 6.1.5, we get that W̃ has rank 4.

The following results completely justify the moments’ method for the co-dimension

3 case under nodal attractivity conditions.
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Theorem 6.1.8. Let wi =

[
w1
i

w2
i

w3
i

]
, i = 1, . . . , 8, be eight vectors in R3, and consider

the matrix W ∈ R3×8 given by

W :=

[
w1 w2 w3 w4 w5 w6 w7 w8

]
. (6.1.19)

Assume that the entries of W are nonzero and have the sign pattern as in (6.1.4).

Then, the matrix M as in (6.1.15) is invertible.

Proof. For i = 1, . . . , 8, let vi be the i-th column of


W

∆

d>

. Our proof will consist of

showing that the vi’s are affinely independent.

Let also define v̂i to be the columns given by sign(vi), i = 1, . . . , 8; e.g., v̂1 =


1

...

1

.

Observe that the v̂i’s are affinely independent, since the matrix

v̂1 v̂2 · · · v̂8

1 1 · · · 1

 is

trivially invertible. Indeed, it is immediate to realize that
∑8

i=1 v̂i = 0 and –a fortiori–

1
8

∑8
i=1 v̂i = 0. Also, observe that v̂>i vi = ‖vi‖1 > 0, i = 1, . . . , 8. Define

A := {x ∈ R7 : ṽ>i x ≤ 1, i = 1, . . . , 8} ,

where

ṽi :=
v̂i
v̂>i vi

.

Observe that vi ∈ A, i = 1, . . . , 8. To show that the vi’s are affinely independent, our

task will be to show that A is a 7-simplex, from which the result will then follow.

To reach our scope, we resort to the relation between A and the dual of the set B

defined next.

Let

B := conv{ṽi : i = 1, . . . , 8} .
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Claim 6.1.9. The vectors ṽi, i = 1, . . . , 8, are affinely independent.

Proof of Claim 6.1.9.

(i) Consider the matrices V̂ =

[
v̂1 · · · v̂8

]
∈ R7×8, which is of rank 7, and Ṽ =[

ṽ1 · · · ṽ8

]
. By the definition of the vectors ṽi’s, it follows that Ṽ = V̂ D−1,

with D = diag (‖vi‖1, i = 1, . . . 8), and hence Ṽ is also of rank 7.

(ii) We know that 0 = (1/8)
∑8

i=1 v̂i, and therefore also 0 =
∑8

i=1 τiṽi, with τi =

‖vi‖1∑8
j=1 ‖vj‖1

, i = 1 . . . , 8. Let τ :=

[ τ1
...
τ8

]
, so that Ṽ τ = 07, and also σ := 2τ . Since

1 = 1>τ 6= 1>σ = 2, then using Lemma 6.1.5, the matrix

 Ṽ
1>

 is invertible,

and the claim follows.

Naturally, from Claim 6.1.9 it follows that B is a 7-simplex.

Next, consider B◦, the polar of B (see [4]):

B◦ := {x ∈ R7 : y>x ≤ 1, ∀ y ∈ B}.

We claim that B◦ = A. To verify this claim, observe that straightforwardly B◦ ⊆ A.

On the other hand, let x ∈ A and pick an arbitrary y ∈ B: then y =
∑8

i=1 ξiṽi, with∑8
i=1 ξi = 1, ξi ≥ 0, i = 1, . . . , 8, and further

y>x =
8∑
i=1

ξiṽ
>
i x ≤

8∑
i=1

ξi = 1

saying that A ⊆ B◦, and the claim is verified.

Next, following Grünbaum, [32, pag.48, Exercise 5.(vii)], we claim that A is

bounded if and only if 0 ∈ intconvB. In fact, let us first prove that, for any set

C ∈ Rd,

C is bounded ⇐⇒ 0 ∈ intC◦. (6.1.20)
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If C is bounded, then there exists δ > 0 such that C ⊆ Bδ(0), and by a property of

the polar mapping, B 1
δ
(0) ⊆ C◦, from which 0 ∈ intC◦. Viceversa, if 0 ∈ intC◦, then

there exists δ > 0 such that Bδ(0) ⊆ C◦, from which C ⊆ C◦◦ ⊆ B 1
δ
(0), meaning that

C is bounded.

From this result, using A◦ instead of C, we can conclude that A◦ is bounded if and

only if 0 ∈ intA◦◦. Since A◦◦ = clconv(A ∪ {0}), then intA◦◦ = intconvA.

Therefore, since 0 ∈ intB, then A is a bounded polyhedron, and therefore is a

polytope. Next, we will establish that A is a 7-simplex.

To begin with, since B is bounded, then (see (6.1.20)) 07 ∈ intB◦, and so 07 ∈ intA

and hence A is 7-dimensional. A simple computation also shows that A is convex,

containing the straight line segment between any of its two points. Therefore, from

the Krein-Millman theorem (see [4]), A is the convex hull of m vertices (and m ≥ 8).

Next, since B is a 7-simplex, then it is a polyhedron with 8 facets, and can thus be

expressed as

B = {x ∈ R7 : s>i x ≤ 1, i = 1, . . . , 8} .

Referring to Barvinok (see [4, p.144, problem 3]), we have that if B := {x ∈ R7 :

s>i x ≤ 1, i = 1, . . . , 8}, then B◦ = conv(s1, . . . , s8, 0)1. Using this result, since for us

B◦ = A and 07 ∈ intA, then we have that A = conv{s1, . . . , s8}. As we already know

that dimA = 7, it follows that s1, . . . , s8, are affinely independent, and therefore A is

a 7-simplex, and si, i = 1, . . . , 8, are its vertices.

Finally, we are going to show that the vectors vi, = 1, . . . , 8, are affinely indepen-

dent.

Since each vi is in A, and it is a convex combination of the si’s (which are affinely

independent), then we claim that the vi’s must also be affinely independent. In fact,

1In fact, let B := {x ∈ R7 : s>i x ≤ 1, i = 1, . . . , 8} and A := conv(s1, . . . , s8, 0). Then A◦ = B
by a previous result, and so B◦ = A◦◦ = clconv(A ∪ {0}) = conv{s1, . . . , s8, 0} = A.
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for all i = 1, . . . , 8, let

vi =
8∑
j=1

µ
(i)
j sj, µ

(i)
j ≥ 0,

8∑
j=1

µ
(i)
j = 1 .

Let, by contradiction, {vi : i = 1, . . . , 8} be affinely dependent: then there exist

ξ1, . . . , ξ8, not all of them zero, such that
∑8

i=1 ξi = 0 and
∑8

i=1 ξivi = 0. Therefore

8∑
i=1

ξi

(
8∑
j=1

µ
(i)
j sj

)
= 0,

and then
8∑
j=1

(
8∑
i=1

ξiµ
(i)
j

)
sj = 0.

Moreover
8∑
j=1

8∑
i=1

ξiµ
(i)
j =

8∑
i=1

ξi

(
8∑
j=1

µ
(i)
j

)
=

8∑
i=1

ξi = 0 ,

which implies that {sj : j = 1, . . . , 8} is affinely dependent, which is not true.

Therefore, since the vectors vi, i = 1, . . . , 8, are affinely independent, the matrix

(see (6.1.15))

M =



W

∆

d>

1>


is invertible, and the proof of Theorem 6.1.8 is completed.

From Theorem 6.1.8, (6.1.17) has a unique solution λM . We further notice that

this solution can be written using Madj, the adjugate of M , as

λM =
1

detM
Madj(8, :)

> ,
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where

Madj(8, :)
> =



det

[ w2 w3 w4 w5 w6 w7 w8
∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8
−d2 −d3 d4 −d5 d6 d7 −d8

]
− det

[ w1 w3 w4 w5 w6 w7 w8
∆1 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8
d1 −d3 d4 −d5 d6 d7 −d8

]
det

[ w1 w2 w4 w5 w6 w7 w8
∆1 ∆2 ∆4 ∆5 ∆6 ∆7 ∆8
d1 −d2 d4 −d5 d6 d7 −d8

]
− det

[ w1 w2 w3 w5 w6 w7 w8
∆1 ∆2 ∆3 ∆5 ∆6 ∆7 ∆8
d1 −d2 −d3 −d5 d6 d7 −d8

]
det

[ w1 w2 w3 w4 w6 w7 w8
∆1 ∆2 ∆3 ∆4 ∆6 ∆7 ∆8
d1 −d2 −d3 d4 d6 d7 −d8

]
− det

[ w1 w2 w3 w4 w5 w7 w8
∆1 ∆2 ∆3 ∆4 ∆5 ∆7 ∆8
d1 −d2 −d3 d4 −d5 d7 −d8

]
det

[ w1 w2 w3 w4 w5 w6 w8
∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆8
d1 −d2 −d3 d4 −d5 d6 −d8

]
− det

[ w1 w2 w3 w4 w5 w6 w7
∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7
d1 −d2 −d3 d4 −d5 d6 d7

]



.

In light of this expression, we have the following result.

Lemma 6.1.10. When W has the sign pattern of (6.1.4) (i.e., when Σ is nodally

attractive), it holds that

λM,i 6= 0, ∀i = 1, . . . , 8.

Proof. Since M is nonsingular by Theorem 6.1.8, then any collection of seven of its

columns is linearly independent, and this remains true once their eight-th component

equal to one is removed. This implies that none of the entries of Madj(8, :)
> can be

zero, that is λM,i 6= 0 for all i = 1, . . . , 8.

Theorem 6.1.11. With M as in Theorem 6.1.8, consider λM the unique solution of

(6.1.17). Then, λM has all positive components: λM,i > 0, i = 1 . . . , 8.

Proof. Define the homotopy

W̃ (t) := (1− t)Ŵ + tW , 0 ≤ t ≤ 1 ,

where W is the matrix of our problem (see (6.1.19)), and Ŵ is the matrix with the

same sign pattern of W , but all entries equal to 1 in absolute value: Ŵ = signW .

Naturally, for all t ∈ [0, 1], W̃ (t) has the same sign pattern (6.1.4) as the given W .
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According to the definition of W̃ (t), we define the function

M̃(t) :=



W̃

∆̃

d̃ >

1>


where ∆̃ and d̃ are defined just as ∆ and d were, but relative to W̃ . Let M̂ = M̃(0)

and note that M̃(1) = M , the given original moments matrix.

Now, M̂ is nonsingular because of Theorem 6.1.8, and the unique solution of

M̂λ̂ =

07

1


is easily found to be

λ̂i =
1

8
, i = 1, . . . , 8.

Moreover, since M̃ is continuous in t, and M̃ corresponds to a moments’ matrix

relative to a nodally attractive configuration, not only M̃ is invertible for all t ∈ [0, 1],

but because of Lemma 6.1.10 no component of the solution λ̃(t) of

M̃(t)λ̃(t) =

07

1


can be 0 for any t ∈ [0, 1], and thus have to be positive (since they are so at t = 0).

But, since M̃(1) is exactly the moments’ matrix M in which we are interested, we

thus obtain that

λM,i > 0, i = 1, . . . , 8,

which concludes the proof of Theorem 6.1.11.

Remark 6.1.12. There are several works in linear algebra about sign-invertibility of

a matrix, that is relying solely on the signs of the entries of the given matrix; see

the works of Thomassen, [51], and the comprehensive treatment in [9]. For example,
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if the matrix M in (6.1.15) were an L-matrix, then it would be possible to establish

its invertibility and signs of the entries of the inverse by appealing to these results.

Unfortunately, however, our matrix M in (6.1.15) is not an L-matrix, and none of

the existing results on sign-invertibility of matrices can be used to establish that M is

invertible (Theorem 6.1.8) nor of course that the solution of the system in Theorem

6.1.11 is positive. For this reason, and motivated by the specific geometric structure

of our problems, we have resorted to a proof which uses tools from convex geometry.

Remark 6.1.13. Our proof of Theorem 6.1.8 (from which Theorem 6.1.11 followed as

well) hinged on the key fact that the vectors v̂i, i = 1, . . . , 8, were affinely independent,

and that the associated vectors ṽi’s were so as well (see Claim 6.1.9). For us, affine

independence of the v̂i’s and ṽi’s, was a consequence of nodal attractivity of Σ, and

this was the only property we have used that came from the dynamics of the differential

system under study. Because of these considerations, the result (i.e., invertibility of

the matrix M =



W

∆

d>

1>


) would still hold true every time one has a matrix W leading to

affinely independent vectors v̂i’s and ṽi’s. This includes many more cases of attractive

Σ than just that of nodally attractive Σ.

As a consequence of Theorems 6.1.8 and 6.1.11, and under the assumptions

therein, we thus have that the moments’ method selects a unique solution λ with

positive entries, and a unique sliding vector field (further, varying smoothly, since so

do the entries of the matrix M).

Example 6.1.14. With the matrix W as in Example 6.1.2, and forming M as in

(6.1.15), the unique moments solution λM, computed according to Theorem 6.1.11 and
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relative to (6.1.9), is given by

λM ≈



0.4492

0.0502

0.0327

0.1019

0.0492

0.0279

0.0321

0.2569



.

Remark 6.1.15. In the present case of Σ of co-dimension 3, to prove our results on

the feasibility of the moments method, we are assuming that Σ is nodally attractive.

Extensive computational evidence indicates that the method proposed herein continues

to provide a unique solution with nonnegative entries also under more general attrac-

tivity configurations of Σ. Although we have not attempted a complete proof to include

all other possible cases, we note that the proof of Theorem 6.1.8 (and thus also Theo-

rem 6.1.11) holds under more generous assumptions that those of nodal attractivity

only; see Remark 6.1.13

6.2 Extensions

6.2.1 General attractivity by subsliding

We want now propose a definition for general attractivity by subsliding for co-dimension

3, generalizing the same one given for co-dimension 2 presented in [18]. We first label

each subportion of Σi:

Σ−−1 := {x ∈ Σ1 : h2(x) < 0, h3(x) < 0},

Σ−+
1 := {x ∈ Σ1 : h2(x) < 0, h3(x) > 0},

and similarly for the remaining ten cases.
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Definition 6.2.1. We say that Σ, related to (6.1.1), is partially nodally attractive,

or attractive through sliding, if the following conditions hold:

(a)


w1
j (x)

w2
j (x)

w3
j

 does not have the same sign of


h1(x)

h2(x)

h3(x)

 for x ∈ Rj, j = 1, . . . , 16 ;

(b) at least one co-dimension 1 subsliding is taking place on Σ∗∗i , and in a neighbor-

hood of Σ∗∗i , i = 1, 2, 3, towards at least one adjacent co-dimension 2 manifold:

(1−−) det

w1
1 w1

5

1 1

 > 0 together with at least one of the following two condi-

tions:

(1−−2 ) (1− αΣ−−1
)w2

1 + αΣ−−1
w2

5 > 0,

(1−−3 ) (1− αΣ−−1
)w3

1 + αΣ−−1
w3

5 > 0;

(1−+) det

w1
2 w1

6

1 1

 > 0 together with at least one of the following two condi-

tions:

(1−+
2 ) (1− αΣ−+

1
)w2

2 + αΣ−+
1
w2

6 > 0,

(1−+
3 ) (1− αΣ−+

1
)w3

2 + αΣ−+
1
w3

6 > 0;

similarly for the remaining ten cases;

(c) at least one co-dimension 2 subsliding is taking place on Σ∗ij, and in a neighbor-

hood of Σ∗∗i , i, j = 1, 2, 3, i < j, towards Σ:

(23−) the solution to

MΣ−23
λM =



0

0

1

0


, MΣ−23

:=



w2
1 w2

2 w2
3 w2

4

w3
1 w3

2 w3
3 w3

4

1 1 1 1

δ23
1 −δ23

2 −δ23
3 δ23

4


,
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is admissible, together with:

(23−1 ) :
4∑
i=1

λM,iw
1
i > 0;

(23+) the solution to

MΣ+
23
λM =



0

0

1

0


, MΣ+

23
:=



w2
5 w2

6 w2
7 w2

8

w3
5 w3

6 w3
7 w3

8

1 1 1 1

δ23
5 −δ23

6 −δ23
7 δ23

8


,

is admissible, together with:

(23+
1 ) :

8∑
i=5

λM,iw
1
i < 0;

and similarly for the remaining four cases;

(d) if any of the conditions in (b) is satisfied, then the corresponding condition in (c)

must be satisfied as well.

6.2.2 Extension to co-dimension 4 and higher

In this section, we propose the extension of the moments solution to any co-dimension

p ≥ 1, under nodal attractivity conditions. Before doing that, we introduce the

differential problem associated to it.

Consider the piecewise smooth system

x′(t) = fi(x), x ∈ Ri, i = 1, . . . , 2p, (6.2.1)

where the regions Ri’s are open, disjoint and connected sets of Rn, so that Rn =
⋃
Ri,

and on each region Ri the function fi is smooth.

The regions Ri’s are separated by manifolds defined as 0-sets of C 2 scalar functions

hi: Σi := {x ∈ Rn : hi(x) = 0}, i = 1, . . . , p. Assume that the normals ∇hi’s are

linearly independent on (hence in a neighborhood of) Σ, and let

Σ :=

p⋂
i=1

Σi (6.2.2)
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be the co-dimension p manifold of interest to us. Letting

wji := ∇hj(x)>fi(x), i = 1, . . . , 2p, j = 1, . . . , p,

we associate the matrix W = (wji ) ∈ Rp×2p to (6.2.1). As before, the linear system to

solve in order to determine a sliding vector field on Σ is given byW
1>

λ =

0p

1

 . (6.2.3)

Obviously, this is an undetermined linear system, and in Lemma 6.2.4 and Corollary

6.2.5 we will see that
[
W
1>

]
has rank p+ 1, under appropriate attractivity conditions

of Σ. It is this system that we will regularize according to the moments’ technique.

Once more, we stress that we are interested in admissible solutions of (6.2.3), hence

positive and smoothly varying with x ∈ Σ.

Let us first recall the sign pattern of W characterizing nodally attractive condi-

tions, as in [23].

Definition 6.2.2. We say that Σ in (6.2.2) is nodally attractive, or equivalently

that W satisfies nodally attractive conditions, if the sign pattern of W is given by

the following recursion relations:

S(1) =

[
1 −1

]
,

S(k) =

 1>2k−1 −1>
2k−1

S(k−1) S(k−1)

 , k = 2, . . . , p.

In [23], the authors proved that –when Σ is nodally attractive– there always exits

a multilinear (interpolant) solution λ to the system Wλ = 0. For later reference, we

summarize this result without proof.

Lemma 6.2.3 ([23]). Suppose that W ∈ Rp×2p satisfies nodally attractive conditions.

Then, for any p ≥ 1, there exist α1, . . . , αp, all in (0, 1), such that the vector λ ∈ R2p
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defined as

λ =



(1−α1)(1−α2)...(1−αp−1)(1−αp)
(1−α1)(1−α2)...(1−αp−1)αp
(1−α1)(1−α2)...αp−1(1−αp)

(1−α1)(1−α2)...αp−1αp

...
(1−α1)α2...(1−αp−1)(1−αp)

...
(1−α1)α2...αp−1αp

α1(1−α2)...(1−αp−1)(1−αp)

...
α1α2...αp−1αp


solves the system Wλ = 0p, and

∑2p

i=1 λi = 1.

With the help of Lemma 6.2.3 we can prove the following.

Lemma 6.2.4. For any k ≥ 1, consider W (k) ∈ Rk×2k satisfying the sign pattern of

Definition 6.2.2. Then

rankW (k) = k .

Proof. The proof is by induction on k. The case k = 1 is in [26] (k = 2 is in [?], and

k = 3 is Corollary 6.1.7).

Let us assume the result true for k, and let us consider W (k+1) with sign pattern

given as in Definition 6.2.2. Let us pick w1, . . . , w2k , the first half of the columns of

W (k+1). By Lemma 6.2.3, there exist λ1, . . . , λ2k ∈ (0, 1), such that

2k∑
i=1

λi


w2
i

...

wk+1
i

 = 0k ,

and since w1
i > 0 for i = 1 . . . , 2k, we also have

2k∑
i=1

λiw
1
i > 0 .

Using this linear combination to replace the (k + 1)-st column of W (k+1) gives the
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matrix

Ŵ (k+1) :=


w1 · · · wk

> 0

0

...

0


.

Now, we have that

sign
(

det Ŵ (k+1)
)

= sign

det


w2

1 · · · w2
k

...
...

wk+1
1 · · · wk+1

k


 6= 0 ,

where the last inference comes from the inductive hypothesis, since


w2

1 · · · w2
k

...
...

wk+1
1 · · · wk+1

k


has the sign pattern of the first k columns of W (k), which is supposed to be full rank.

This in turn implies that rankW (k+1) = k + 1.

Finally, we have

Corollary 6.2.5. For any k ≥ 1, consider W̃ (k) :=

W (k)

1>

, where W (k) ∈ Rk×2k sat-

isfies the sign pattern of Definition 6.2.2. Then rank W̃ (k) = k+ 1, hence ker
(
W̃ (k)

)
is (2k − k − 1)-dimensional.

Proof. The case k = 1 is elementary. So, proceeding by induction, let k ≥ 2 be

fixed and –using Lemma 6.2.3, and because of the nodally attractive sign pattern–

consider multilinear interpolant solutions λ(1) and λ(2) associated, respectively, to

the submatrices



w2
1 · · · w2

2k

...
...

wk+1
1 · · · wk+1

2k

1 · · · 1


, and



w2
2k+1

· · · w2
2k+1

...
...

wk+1
2k+1

· · · wk+1
2k+1

1 · · · 1


, of W̃ (k+1). Note that
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λ(1) =



∗
...

∗

0

...

0


and λ(2) =



0

...

0

∗
...

∗


. Then W̃ (k+1)λ(1) =



> 0

0

...

0

1


, W̃ (k+1)λ(2) =



< 0

0

...

0

1


.

From inductive hypothesis, since the two submatrices

w2
1 · · · w2

2k

...
...

wk+1
1 · · · wk+1

2k

1 · · · 1


and



w2
2k+1

· · · w2
2k+1

...
...

wk+1
2k+1

· · · wk+1
2k+1

1 · · · 1



are full rank k + 1 having the same sign pattern as W̃ (k) =

W (k)

1>

, using Lemma

6.1.5 gives

rank

W (k+1)

1>

 = k + 2 .

Remark 6.2.6. On account of Corollary 6.2.5, for nodally attractive Σ, it follows

that the linear system (6.2.3), W
1>

λ =

0p

1

 ,

has rank p+ 1, therefore providing a family of solutions depending on (2p−p−1) free

parameters. From Lemma 6.2.3, one possibility to fix these is by using the multilinear

interpolant approach. Needless to say (as already observed in Example 6.1.2 for the

case of p = 3), there is severe lack of uniqueness of solutions in this case. Below, we

will propose the moments regularization.
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The moments regularization requires to append a matrix ∆ of signed partial di-

stances and a row d> of full distances of w1, . . . , w2p to

W
1>

. The matrix ∆ will

manage all the subslidings at lower co-dimensions: they happen from co-dimension 2

all the way to co-dimension p− 1. Therefore, we have

p−1∑
k=2

(
p

k

)
= 2p − p− 2

rows of partial distances: thus ∆ ∈ R(2p−p−2)×2p . Adding the row d>, gives 2p− p− 1

extra equations, as desired.

In order to decide the sign pattern of ∆, it is necessary to recognize the entire sub-

structures of lower co-dimensions nested within it when a partial distance is selected:

then, the sign of each entry is determined by the sign product of the components

considered to compute the partial distance. This is better explained by looking at

Example 6.2.7 below for the case of co-dimension 4, which clearly indicates how one

will proceed in general. About the sign pattern of d>, our proposal is to consider the

following recursion:

R1 :=

1

−1

 ,
Rk+1 :=

Rk

−Rk

 , k = 1, . . . , p− 1,

and then define

d := Rp


‖w1‖

...

‖w2p‖

 . (6.2.4)

Observe that this sign pattern is the same as considering the sign product of all the

components in the vectors

wi
∆i

, i = 1, . . . , 2p.
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Example 6.2.7. In co-dimension 4, the sign pattern of W is given by

sign(W ) =

[
+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −

.

]
We split ∆, the matrix of partial distances, as

∆ =

sign(∆III)�∆III

sign(∆II)�∆II

 ,
where � is the Hadamard (componentwise) product, ∆III contains the rows of partial

distances over three components of wji at the time, and ∆II contains the rows of partial

distances over two components of wji at the time. Therefore, choosing components

2, 3, 4 for the first row, 1, 3, 4 for the second row, 1, 2, 4 for the third row, 1, 2, 3 for

the fourth row, we get that the sign pattern of ∆III is

sign(∆III) =

[
+ − − + − + + − + − − + − + + −
+ − − + + − − + − + + − − + + −
+ − + − − + − + − + − + + − + −
+ + − − − − + + − − + + + + − −

]
,

with

∆III =



δ2,3,4(1) · · · δ2,3,4(16)

δ1,3,4(1) · · · δ1,3,4(16)

δ1,2,4(1) · · · δ1,2,4(16)

δ1,2,3(1) · · · δ1,2,3(16)


,

where, for any h = 1, . . . , 16 and suitably chosen i, j, k = 1, 2, 3, 4,

δi,j,k(h) :=
√

(whi )2 + (whj )2 + (whk)2 .

Notice that the sign pattern of the first row in ∆III is determined this way: since we

are considering components 2, 3, 4, then we look at second, third and fourth row of

W ; those rows present the sign pattern from co-dimension 3 in columns 1, . . . , 8 and

9, . . . , 16: we then select the sign pattern of d from the co-dimension 3 case in the

corresponding columns. The same (selecting the corresponding suitable columns) has

to be done for the other rows.
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The same rationale needs to be followed for determining the sign pattern of ∆II,

using the sign pattern of d from the co-dimension 2 case (that is

[
+ − − +

]
)

in the corresponding columns giving the co-dimension 2 sign pattern, after we have

selected the components to compute the partial distance. Therefore, the sign pattern

of ∆II is

sign(∆II) =

 + + + + − − − − − − − − + + + +
+ + − − + + − − − − + + − − + +
+ − + − + − + − − + − + − + − +
+ + − − − − + + + + − − − − + +
+ − + − − + − + + − + − − + − +
+ − − + + − − + + − − + + − − +

 ,
with

∆II =



δ1,2(1) · · · δ1,2(16)

δ1,3(1) · · · δ1,3(16)

δ1,4(1) · · · δ1,4(16)

δ2,3(1) · · · δ2,3(16)

δ2,4(1) · · · δ2,4(16)

δ3,4(1) · · · δ3,4(16)


,

where, for any h = 1, . . . , 16 and suitably chosen i, j = 1, 2, 3, 4,

δi,j(h) :=
√

(whi )2 + (whj )2 .

Finally, according to (6.2.4),

sign(d>) = [ + − − + − + + − − + + − + − − + ] .

Putting everything together, the sign pattern of the moments matrix M4 in co-dimension

4 is 

+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −
+ − − + − + + − + − − + − + + −
+ − − + + − − + − + + − − + + −
+ − + − − + − + − + − + + − + −
+ + − − − − + + − − + + + + − −
+ + + + − − − − − − − − + + + +
+ + − − + + − − − − + + − − + +
+ − + − + − + − − + − + − + − +
+ + − − − − + + + + − − − − + +
+ − + − − + − + + − + − − + − +
+ − − + + − − + + − − + + − − +
+ − − + − + + − − + + − + − − +
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

The proof of invertibility of this matrix, and the fact that the solution of M4λM =015

1

 has all positive components, proceed precisely like the case of co-dimension
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3 proved in this paper. In particular, the proof of Theorem 6.1.8 when p = 4 holds

unchanged, aside from the obvious changes in the dimensions (we have now 16 vectors

v̂′is, etc.).
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Chapter VII

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH

In this thesis, we have introduced and studied the moments Filippov sliding vector

field for a co-dimension 2 discontinuity surface under general attractivity condtions

by subsliding.

In Chapter 2, we have considered several possibilities on how to define a Filippov

sliding vector field on a co-dimension 2 singularity surface Σ, intersection of two co-

dimension 1 surfaces. As underlying assumption, we considered the case of nodally

attractive Σ.

We broadly classified the various possibilities in two groups: algebraic/analytic and

geometric. In the first group, we considered three possible ways to define a Filippov

vector field: a mean-field formulation, two approaches based on minimizing the 2-

norm, and two different averaging techniques. The mean-field approaches depend on

the underlying probability density function (pdf), and produce a smoothly varying

vector field on Σ for an appropriate pdf. The minimization techniques we considered,

in general (even if well defined) fail to produce a smoothly varying Filippov sliding

vector field. The two averaging techniques we considered behave very differently:

(i) averaging the original dynamics appear to have serious difficulties of convergence

and smoothness, (ii) averaging the sub-sliding vector fields, instead, delivers a well

defined selection; however, this specific interpretation appears to be limited to the

case of nodally attractive Σ.

The geometric approaches we considered are a generally viable mean to select

a Filippov sliding vector field. In particular, the techniques which can be cast in
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the framework of “barycentric coordinates” methods deliver a uniquely defined and

smoothly varying vector field on a nodally attractive Σ. Specifically, we reinterpreted

a method based on bilinear interpolation, introduced one which we called moments

method, and reviewed Wachspress method. Finally, we also revisited a method intro-

duced in [22].

The most interesting approaches, among all of these, have been the bilinear in-

terpolant and the moments method. The bilinear interpolant method has been ex-

tensively analyzed in recent works (e.g., see [19, 23]), under general (not only nodal)

attractivity assumptions on Σ. The moments method, instead, appear to be new in

the present context (i.e., to define a Filippov sliding vector field); we further proved

that this method is equivalent to the so-called mean value coordinates with which

name has been used successfully in the last 10 years in the computer graphics com-

munity (see [27, 35]). From the computational point of view, the expense associated

with forming the moments and bilinear solution is comparable: the bulk of it is

forming the values wij’s, which is required for both methods; then, for the moments

solution, we need to solve the linear system (3.1.1), whereas for the bilinear solution

we need to solve a quadratic equation.

In Chapter 3, we showed that –whenever Σ is attractive– the moments regulari-

zation gives a well-defined, smoothly varying sets of coefficients, rendering a smooth

Filippov sliding vector field on Σ, which further leads to smooth exits at generic first

order exit points. In the process, we introduced (and exploited) a quadrilateral Q

which proved to be a useful tool to study sliding vector fields on a co-dimension 2

manifold. We also showed, by numerical experiments presented in Chapter 5, the

behavior of the moments method, and the potential dangers associated to selecting

a solution λ (and an associated sliding vector field) that does not smoothly render

the exit vector field at a first order exit point. Finally, we discussed the case of

non-generic exit points, and further generalizations of our approach.
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To date (and with the exception of trivial modifications), we know of no other

constructive technique that provably gives admissible (positive and smooth) coeffi-

cients, under general attractivity conditions of Σ, and that further leads to smooth

exits at generic first order exit points. For a relevant result about piecewise linear

vector fields, see [42].

In Chapter 4, we have reformulated the problem as one in which we seek a mi-

nimum variation solution in the H1-norm for either the coefficients entering in the

convex combination, or for the sliding vector field itself. We explicitly solved the re-

sulting Euler-Lagrange equation on some model problems, and compared the resulting

minimum variation solution(s) to other sliding vector fields previously considered in

the literature (most notably, the bilinear and moments solutions). Moreover, we have

also proved, under suitable assumptions, that a properly weighted minimum variation

solution coincides with other smoothly varying sliding vector fields (say, the moments

method), the weight itself providing a time reparametrization from one vector field

to the other. We have exemplified on these concepts in Chapter 5.

Although the methodology proposed in Chapter 4 does not seem to be of trivial,

nor universal, applicability (already in R3), it provides a promising alternative to

existing approaches in case the “entry” and “exit” points of sliding motion are known.

In fact, it is our opinion that the present minimum-variation ideas can eventually

provide insight into appropriate minimality properties of a Filippov sliding vector

field.

The extension of our approach to the case of systems in R4 (and beyond) presents

some very interesting and challenging mathematical and modeling issues.

In Chapter 6, we have proposed an extension of the moments method to the case

of a nodally attractive co-dimension 3 discontinuity manifold Σ. This is still a work

in progress, and we still lack complete proofs for our conjectures. Moreover, we have

described how to compute the moments solution, under nodally attractive conditions,
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at any co-dimension. We also claim that the moments solution, as proposed here for

the co-dimension 3 in nodal attractivity, remains well defined under conditions in

Definition 6.2.2, further providing smooth exits at first and second order exit points.

A mostly unexplored problem is to understand and extend minimum variation

solutions to problems with a co-dimension 2 discontinuity manifold embedded in R4

or higher dimensional phase space. Our approach in R3 suggests a path to follow that

seems promising, but little is still known about it.

Further, numerical integration of Filippov systems is getting even more and more

attention, and an interesting problem, at the present under investigation, is how to

use Newton-type methods to compute periodic solutions for boundary-value problems

of Filippov-type. Finally, uniqueness and admissibility of the moments solutions in

co-dimension 3 has been proven for the nodally attractive case, but still lacks for the

case of general attractivity conditions: we do not know if our proposed definition of

these conditions is sufficient to prove the same results as in the nodally attractive

case. We think that this could be an appealing problem to pursue, since a full proof

for it is not known yet.
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