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When yesterday is vanished in the past,

And morrow lingers in the future vast,

To neither give a thought but prize the hour,

For that is all you have and time flies fast...

Omar Khayyam (1048-1131)
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SUMMARY

The modeling of thermal convection in porous media is a challenging task due to the

inherent structural and thermophysical heterogeneities that permeate over several scales. In

the present thesis, I address several issues relevant to buoyancy-driven thermal convection

in porous media. The central question we address is how to develop a macroscopic model

of heat transfer in porous media that incorporates the pore-scale physics in a consistent

manner. Our approach is based on establishing a multi-scale framework built on knowledge

accrued by theoretical, numerical and experimental methods.

In Chapter 2, we develop a pore-scale computational tool based on a lattice Boltz-

mann (LB) model. This computational tool enables us to tackle thermal convection from

a pore-scale perspective and to provide benchmarks for the development of an appropriate

continuum-scale models. In Chapter 3, we use our LB model and conduct high-resolution

direct numerical simulation at the pore scale. The objective is to evaluate the underlying

assumptions of upscaled thermal models and to assess the role of thermophysical hetero-

geneties on heat transfer. We benefit from the insights gained from our pore-scale results

and propose a new upscaled energy model for thermal convection in Chapter 4. The pro-

posed model is based on a fractional-order advective term, which models the influence of

thermal heterogeneities in a flexible and consistent way. In Chapter 5, we used a combina-

tion of theoretical and experimental approaches to calculate a new metric, basin stability,

for quantifying the respective relative stability of coexisting convection modes in porous

media. We show that transition between convective modes predicted by the basin stability

analysis agrees well with the experiments from our IR thermography visualization setup.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

Thermal convection in porous media is central to a large variety of geophysical and indus-

trial systems [1]. Heat from deep within the Earth drives underground thermal convection

that is crucial for the extraction of geothermal energy [2, 3], while convective currents in

both the continental and the oceanic lithosphere play a major role in the heat budget of the

Earth. The nature of large scale free convective flows of ground water and carbon diox-

ide within the Earth’s crust is important for understanding the release of heat and carbon

dioxide into the hydrosphere and atmosphere [3]. Thus, the understanding of such convec-

tive flow processes has become closely tied to better constraining the response of soils and

groundwater systems to climate change. From a mathematical viewpoint, convection is a

complex nonlinear process that provides a rich set of dynamical regimes for the study of

chaotic and turbulent dynamics, bifurcations, and emergent patterns [4], which strongly

influence the associated rate of heat transfer in and out of these porous media [5].

In recent years, there has been particular interest in better understanding the effect of

thermal convection on the long-term development and sustainability of geothermal systems

[3], which has been widely proposed as one of the most promosing green and renewable en-

ergy resources [6]. Geothermal systems utilize a working fluid to transport and harvest the

thermal energy from the temperature difference between the Earth’s hot subsurface layers

and the cooler surface, caused by Earth’s geotherm (temperature profile in the Earth). While

conventional geothermal systems utilize water/brine as the working fluid (hence called hy-

drothermal systems), several studies in recent years proposed the idea of using supercriti-

cal CO2 as a promising alternative [7, 8]. Compared with water-based geothermal systems,

CO2 offers several advantages. First, the use of CO2 as the working fluid in geothermal

reserviors provides an efficient way for CO2 geological storage, one of the important el-
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ements of greenhouse gas reduction strategies [7, 8, 9, 10]. And second, it addresses the

limitations of water availibility for long-term operation of water-based geothermal systems

[10, 11]. In particular, several studies on CO2-plume geothermal systems have indicated

that, the large thermal expansivity and substantial change in the density of supercritical

CO2 under typical geothermal reservoir and surface conditions, result in buoyancy-driven

convective currents for the natural extraction of geothermal energy [8, 12].

While current mathematical modeling of geothermal systems is based on the concepts

of fluid flow and heat transfer within porous media [2, 6], there are several experimental

studies showing the failure of the available models in providing accurate thermal predic-

tions for the strength of the convective currents [2, 13, 14]. The reported discrepencies

between the predictions of experimental data and thermal models are mainly for fluid-

solid matrix combinations with a considerable difference in thermophysical properties [2,

13]. In the context of geothermal systems, this latter point becomes important if we take

into account the difference in thermal conductivities of supercritical CO2 (kscCO2 ≈ 0.048

W/m.K) and water (kw ≈ 0.70 W/m.K) with those from typical sedimentary rocks (krock ≈

2.1 W/m.K), resulting in solid-to-fluid thermal conductivity ratios of kscCO2/krock ≈ 43 and

kw/krock ≈ 3 in typical reservoir conditions. Therefore, a comprehensive understanding

of the convective heat transfer characteristics of supercritical CO2 or water in the com-

plex subsurface structures is crucial for building a reliable and accurate numerical model

of geothermal systems, with the ultimate aim of assessing the potential convective heat

flux available at the surface and predicting the structure of subsurface temperature and flow

profiles for geothermal design objectives [6].

In this thesis, we study thermal convection in a porous medium subjected to an adverse

temperature gradient schematically shown in Fig. 1.1. This problem, which is the ana-

log of Rayleigh-Bénard (RB) convection for a fluid-saturated porous layer, has been first

investigated by Horton and Rogers [15] and Lapwood [16], hereafter called Horton-Rogers-

Lapwood (HRL) convection. Due to the natural occurence of an adverse temperature gra-
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Figure 1.1: Schematic of the Horton-Rogers-Lapwood problem, showing a solid matrix
(circular disks) saturated with fluid, which is experiencing a thermal convection due to the
vertical temperature gradient (shown in colored lines).

dient in the geotherm, HRL has been studied extensively in the context of geophysical

applications [2, 3, 1], as a tractable benchmark problem for understanding the underlying

physics that drive the thermal convective currents in subsurface media. The temperature

difference (∆T ) across the fluid-saturated porous layer gives rise to density differences,

as regions of fluid near the bottom (top) boundary are warmed (cooled) and hence expand

(contract). The density differences in turn result in a net buoyancy force, which acts to re-

organize the lighter fluid at the top boundary (and heavier fluid at the bottom) to minimize

potential energy. For small ∆T , the fluid remains motionless; heat is transferred across the

fluid through conduction, with a linear temperature profile across the fluid layer. Therefore,

the strength and dynamics of HRL convection strongly depends on the interplay between

the driving buoyancy force and the inhibiting dissipative effects of diffusion and viscosity

in the fluid-satured porous layer. The competition of these governing forces is character-

ized by a dimensionless parameter called Rayleigh number Ra. Beyond a certain critical

Ra value, the previously stationary layer becomes unstable and convection initiates.
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In Section 1.1, we introduce the inherent multi-scale nature of thermal convection in

porous media. We distinguish pore-scale vs. continuum-scale modeling approaches, with

an emphasis on closure relationships required by upscaling. In Section 1.2, we give a

brief overview of the mathematical components of thermal convection in porous media. In

Section 1.3, we outline the motivation and research objectives of the present thesis and in

Section 1.4, we lay out the structure of the thesis.

1.1 Multi-scale nature of HRL convection

The modeling of HRL convection in natural systems is a challenging task due to the in-

herent structural heterogeneities that permeate over several spatial and temporal scales,

schematically shown in Fig. 1.2. Moreover, the complex interfaces between solid and

fluid phases (of different thermophysical properties) render a porous medium into a ther-

mophysically heterogeneous system [17, 18, 19]. From a computational perspective, it is

extremely challenging to model these multi-scale systems in an adequate way accounting

for the spatially varying and scale-dependent character of thermal processes.

To address these issues, one can express the essential physical behavior that is present

at the fine scale in an averaged sense at the macroscopic scale without the need to model

all details at the pore-scale [20, 21]. In this so-called upscaling approach, one recovers the

upscaled governing equations through a mathematical homogenization procedure, such as

volume-averaging [20, 22] (schematically shown in Fig. 1.3). The resulting upscaled equa-

tions solve for average values < . > of flow and heat transfer in a new continuum (< . >

refers to spatial average over a representative elementry volume (REV) [22]). The con-

venience of dealing with the averaged physical quantities in an upscaled equation comes

at the cost of the emergence of unknown closure terms, which require constitutive mod-

els. Since the interfacial interactions at the pore scale are responsible for the observable

macroscopic thermal behaviors, it is clear that the successful modeling of an upscaled heat

transfer model lies on the systematic transfer of information over the hierarchy of temporal
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and spatial scales and incorporating these interfacial interactions in the closure modeling

of the unknown quantities. Without a good insight into such interfacial coupling, sound

macroscopic energy models cannot be developed.

1.2 Mathematical formulation

In what follows, we introduce the continuum-scale governing equations of the flow and

temperature fields for HRL convection and we then provide the details of the mathematical

formulation of the pore-scale analysis of HRL problem.

1.2.1 Continuum-scale Approach

Fluid flow model

Throughout the present thesis, we assume that the continuum-scale flow field in porous

media follows Darcy’s law for an incompressible fluid, which relates the driving pressure

and buoyancy forces to the viscous drag imparted by the medium on the pore scale [1]:

∇ · q = 0, (1.1)

µ

K
q = −∇P + ρg, (1.2)

where ρ is the fluid density, K is the permeability of the porous medium, P is the pres-

sure, µ is the dynamic viscosity of the fluid and q is the Darcy velocity (average velocity

over both the solid matrix and the pore space in a representative volume). ρg is the body

force (buoyancy term) driving the fluid motion in HRL convection. Throughout this thesis,

we assume that the fluid density satisfy the Boussinesq approximation [1], i.e. density is

assumed to be constant except in the buoyancy term, where it becomes:
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Figure 1.2: Illustration of the hierarchy of scales for natural porous media
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Figure 1.3: Continuum-approach vs. pore-scale approach for modeling transport phenom-
ena in porous media. The homogenization or spatial averaging is performed over a rep-
resentative elementary volume (REV) chosen from the pore-scale domain. The resulting
spatially averaged values of a physical quantity < φ > represents the corresponding values
in a new continuum-scale domain.

ρ = ρ0(1− β(T − Tref )), (1.3)

where ρ0 is the density at the reference temperature Tref , and β is the thermal expansion

coefficient of the fluid.

By using Darcy’s law, we assume that the medium is fully saturated by the fluid, and

inertia is assumed to be negligible compared to viscous drag. While there are multiple

variations of Darcy’s law [1], the results of the pore-scale calculations in Chapter 3 confirm

the validity of our assumption for the cases investigated in the thesis.
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Energy models

The upscaled models of heat transfer in porous media offer a convenient way for calculating

the average tempreature field in the domain. However, the drawback is in the emergence

of unknown terms in the course of homogenization, which again requires closure. Since

heat transfer occurs in at least two phases in a porous medium, we can adopt two different

scenarios in applying the homogenization procedure over an averaging volume. First, we

can assume that the phase-averaged temperature of fluid and solid phases are locally equal

in the corresponding averaging volume. In other words, both phases are experiencing local

thermal equilibrium (LTE) condition (schematically shown in Fig. 1.4). Therefore, the

upscaled energy formulation leads to a single equation holding for both phases and it takes

the following form:

(ρc)m
∂T

∂t
+ (ρc)fq · ∇T +∇ · ((ρc)fT ′q′) = km∇2T , (1.4)

where T is the local temperature averaged over both phases, c is the specific heat and ρ is

the density. The subscripts m and f refer to the properties of the solid/fluid mixture and the

fluid, respectively. T ′ and q′ refer to the fluctuations in the temperature and velocity fields,

compared to the average values [23].

There are situations where LTE assumptions do not hold, such as in a medium where

the fluid and solid thermophysical properties are very different and where fluid experiences

high local velocities [24, 19, 25]. Thermal non-equilibrium between solid and fluid phases

stems from a delay in the interaction between the fluid and solid phases [25]. Under lo-

cal thermal non-equilibrium (LTNE) conditions, two separate equations for the average

temperatures of each phase are required (schematically shown in Fig. 1.5). The simplest

equations that are now used routinely under LTNE assumption are [25, 1]:
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Figure 1.4: Schematic of the continuum energy model under LTE assumption.

ϕ(ρc)f
∂Tf

∂t
+ (ρc)fq · ∇Tf +∇ · ((ρc)fT ′q′) = ϕkf∇2Tf + h(Ts − Tf ), (1.5)

(1− ϕ)(ρc)s
∂Ts

∂t
= (1− ϕ)ks∇2Ts − h(Ts − Tf ). (1.6)

Since solid and fluid phases are exchanging heat through interfaces, the two averaged

energy equations are coupled through the inter-phase heat transfer coefficient h, which is

responsible for capturing the non-equilibrium heat transfer between the different phases.

Here, ϕ is the porosity of the medium and subscripts s and f refer to properties of the solid

and fluid phase properties, respectively.

In Eqs. 1.4 and 1.5, the∇· ((ρc)fT ′q′) is referred to as the thermal dispersion term, and

it accounts for the contribution of the fluctuations in the temperature and velocity fields on

the total thermal convection [23]. The thermal dispersion term is a byproduct of upscaling

and, as such, it is based on average-scale temperature and velocity fields, i.e. T and q [23].
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Figure 1.5: Schematic of the continuum energy model under LTNE assumption.

1.2.2 Pore-scale Approach

In pore-scale simulations, we solve the momentum and energy equations in both solid and

fluid phases comprising the porous domain (refer to the schematic pore-scale domains in

Fig. 1.3). While being more computationally intensive compared to the upscaled models,

the pore-scale analysis does not require the use of closure models. Therefore, the simula-

tion results of the pore-scale analysis can serve as an accurate solution for verifying and

evaluating the performance of any continuum-scale models.

For the fluid phase, we numerically solve the Navier-Stokes and the energy equations

for the flow and temperature fields, respectively:

∇ · u = 0, (1.7)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P + ν∇2u + gβ(T − Tref ), (1.8)
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(ρc)f
∂T

∂t
+∇ · ((ρc)fuT ) = ∇ · (kf∇T ), (1.9)

where u is the pore-scale velocity field, P is the pressure, T is the temperature, ν is the

kinematic viscosity of the fluid, β is the thermal expansion coefficient, g is the gravitational

acceleration, k refers to thermal conductivity, c is the specific heat and ρ the density of the

fluid phase (subscript f). For the solid phase, the energy equation reduces to:

(ρc)s
∂T

∂t
= ∇ · (ks∇T ), (1.10)

where the subscript s refers to the properties of the solid phase. Across a fluid-solid inter-

face I, the no-slip boundary condition holds and the continuity of temperature and normal

heat flux yield [24]:

u = 0, no-slip at all solid walls, (1.11)

T I,+ = T I,−,

n · (k∇T + ρcuT )I,+ = n · (k∇T + ρcuT )I,−,

(1.12)

where n is normal to the interface and + and − denote the different sides of the interface.

In order to compare the pore-scale results with the continuum-scale predictions, we

compute the Darcy-Rayleigh number Ra* and average Nusselt number Nu* which are de-

fined as:
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Ra∗ =
gβ(TH − TC)KH

αmνf
= Raf · Da ·

kf
km

,

Raf =
gβ(TH − TC)H3

αfνf
, Da =

K

H2
,

Nu∗ = 1 +
1

A

∫
A
uy · T dA

αm∆T/H
,

αm =
km

(ρc)f
,

(1.13)

where Raf is the conventional Rayleigh number based on the fluid properties. In Ra*, K

is the permeability of the porous medium, αm is the thermal diffusivity based on stagnant

thermal conductivity of the solid matrix and hosted fluid km, and H is the characteristic

length of the porous domain. ∆T = TH−TC is the temperature difference between the hot

and cold horizontal surfaces and Da is the Darcy number of the porous medium. In Nu*, A

is the horizontal cross sectional area of the domain and uy is the vertical component of the

velocity field.

1.3 Motivation and research objectives

The conventional approach for studying HRL convection is based on using the upscaled

(volume-averaged) formulation of fluid flow and energy equations. While the HRL con-

vection has been studied extensively in the literature [1], there are several theoretical and

experimental studies showing that the available upscaled models are not able to provide a

consistent prediction for the thermal behavior of HRL convection [26, 2, 27, 13, 28, 14, 29].

Also, understanding the role of the solid matrix on the dynamics of thermal convection and

the associated enhancement of the heat transport (represented by the dimensionless Nusselt

number Nu) still requires reassessing the available upscaled models [28, 14].

The reported departures between the theoretical predictions and experimental observa-

tions mainly involve three different features of HRL convection. Figure 1.6 schematically
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Figure 1.6: Schematic showing three main features of the inconsistency between upscaled
models (dashed line) and experimental data (solid line). The first inconsistency is associ-
ated with the shift in the onset of convection. The second inconsistency is related to the
change in the Nu − Ra scaling (slope of the curve). The third inconsistency is related to
the presence of a kink in the Nu−Ra curve at some values of the Rayleigh number.

depicts these three aspects in a typical heat transfer curve of HRL convection. The figure

shows the variation of the average amount of heat transfer, represented by the dimension-

less Nusselt number Nu, against the thermal loading across the porous layer, represented

by the dimensionless Rayleigh number Ra. Nu = 1 represents conditions where the heat

is transferred only by conduction, which occur at low temperature differences between

the bottom hot and top cold surface of the porous layer. Beyond the critical value Racr,

convection initiates, and accordingly the Nusselt number becomes greater than 1.

The features in Fig. 1.6 are summarized as below:

1. Shift in the onset of convection, i.e. the critical value of the Rayleigh number at

which convection initiates. Several studies have reported that the critical Rayleigh

number observed experimentally does not agree [13, 14] with the value predicted by

linear stability analysis of the available continuum-scale models.

2. Change in theNu−Ra scaling or the slope of the heat transfer curve. The experimen-
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tal data in [2, 13] show that for certain combinations of pore fluid and solid matrix

properties, the measured Nusselt number can be lower than the value predicted by

the continuum scale models.

3. At some values of Rayleigh number, kinks in the slope of the Nu − Ra have been

experimentally observed [26, 27, 13]. While several explanations have been provided

to explain this feature [30, 31, 29], it still lacks a proper understanding.

To date, there exists no comprehensive explanation for the three features summarized in

Fig. 1.6. The research presented in this thesis has been motivated by a desire to provide a

clear picture of the thermal behavior of HRL convection, with an ultimate goal of providing

new explanations for the reported inconsistencies discussed above. In the present thesis,

we postulate that the failure of the available upscaled formulations in providing consistent

predictions of HRL convection originates from the lack of a clear understanding of the

underlying physical interactions at the pore-scale and how they manifest at the macroscopic

scale.

1.4 Thesis layout

In the present thesis, we devise a multi-scale framework for studying HRL convection,

which benefits from the insight gained from a pore-scale analysis in developing a consistent

upscaled formulation for thermal convection in porous media. The structure of the thesis

is:

• In Chapter 2, we develop a pore-scale computational tool based on a lattice Boltz-

mann (LB) model. This computational tool enables us to tackle HRL convection

from a pore-scale perspective. The approach is based on reformulating the lattice

Boltzmann equation for solving the conservative form of the energy equation. This

leads to the appearance of a source term, which introduces the jump conditions at

the interface (Eqs. 1.12) between two phases or components with different thermal
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properties. The simple implementation of the source term approach avoids any cor-

rection of distribution functions neighboring the interface in the LB procedure and

provides an algorithm that is independent from the topology of the interface. More-

over, our approach is independent of the choice of lattice discretization and can be

easily applied to different advection-diffusion LB solvers. We test the model against

several benchmark problems including steady-state convection-diffusion within two

fluid layers with parallel and normal interfaces with respect to the flow direction,

unsteady conduction in a three-layer stratified domain, and steady conduction in a

two-layer annulus. The LBM results are in excellent agreement with analytical so-

lution. Error analysis shows that the proposed LB model is first-order accurate in

space, but an extension to a second-order scheme is straightforward. The results con-

firm the reliability of our model in simulating complex coupled fluid and thermal

dynamics in complex geometries.

• In Chapter 3, we perform a pore-scale analysis of HRL convection. The objective

of this pore-scale analysis is to provide insights on the source of inconsistencies

(1) and (2) in Fig. 1.6. We conduct high-resolution direct numerical simulation at

the pore scale in a two-dimensional regular porous structure by means of our ther-

mal lattice-Boltzmann model. We perform a combination of linear stability analysis

of continuum-scale heat transfer models, and pore-scale and continuum-scale sim-

ulations to study the role of thermal conductivity contrasts among phases on HRL

convection. The detailed temperature fields from the pore-scale analysis enable us

to directly quantify the amount of thermal disequilibrium between solid and fluid

phases in HRL convection. While previous studies relate inconsistencies (1) and (2)

between experiments and theory shown in Fig. 1.6 to a possible lack of thermal

equilibrium between the average solid and fluid temperatures [13], our pore-scale

results invalidate this argument. We show instead that these inconsistencies result

from a new thermal dispersion phenomena in HRL convection, which is caused by
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the thermophysical heterogeneities in the porous domain. This thermal dispersion

phenomena has not been identified before and can not be captured by the available

thermal dispersion models. We argue for the need to revisit the closure modeling of

the thermal dispersion term (∇·((ρc)fT ′q′) in Eqs. 1.4-1.6) in the available upscaled

models.

• In Chapter 4, we develop a new upscaled model for HRL convection which consis-

tently models the observed features #(1) and #(2) in Fig. 1.6. We extend the classical

upscaled models of heat transfer in porous media by including a fractional-order

advective-dispersive term to account for the role of thermophysical heterogeneities

in shifting the thermal instability point. The proposed fractional-order model over-

comes limitations of the common closure approaches for the thermal dispersion term

by replacing the diffusive assumption with a fractional-order model. Through a linear

stability analysis and Galerkin procedure, we derive an analytical formula for the crit-

ical Rayleigh number as a function of the fractional model parameters. The resulting

critical Rayleigh number reduces to the classical value in the absence of thermophys-

ical heterogeneities when solid and fluid phases have similar thermal conductivities.

Numerical simulations of the coupled flow equation with the fractional-order energy

model near the primary bifurcation point confirm our analytical results. Moreover,

data from pore-scale simulations are used to examine the potential of the proposed

fractional-order model in predicting the amount of heat transfer across the porous

enclosure. The linear stability and numerical results show that, unlike the classical

upscaled models, the fractional-order model captures the shift in the onset of convec-

tion in porous media and provides correct scalings for the average heat transfer in a

thermophysically heterogeneous medium.

• Chapter 5 attemps to provide a new insight into the nature of the kink in the avail-

able experimental data (feature #(3) in Fig. 1.6). While previous studies relate this
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change in Nu − Ra scaling to a thermal dispersion process [30, 31], we conduct

experiments and show that the observed kink in the Nu−Ra curve is due to a transi-

tional behavior of stable convective patterns in HRL convection; a dynamical feature

of HRL convection that has not been previously taken into account in the classical

bifurcation analysis of HRL problem. Our experimental setup is based on an IR-

thermography pattern visualization, which enables us to identify the transition point

from the single- to double-cell pattern in a two-dimensional porous medium. We

theoretically complement our experimental observations by introducing a new con-

cept in the dynamical behavior of HRL convection, namely basin stability. This new

metric enables us to assess the relative stability of different convective modes. We

develop a basin stability diagram for HRL convection, which not only provides the

domains of coexistence of different modes, but it also shows that the likelihood of

finding convective patterns depends strongly on the Rayleigh number. The experi-

mentally observed transition point from single- to double-cell mode agrees well with

the stochastically preferred mode inferred from the basin stability diagram.
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CHAPTER 2

LATTICE BOLTZMANN MODEL FOR CONJUGATE HEAT TRANSFER

In this chapter, we develop a pore-scale computational tool that enables us to tackle HRL

convection from a pore-scale perspective. The inherent thermophysically heterogeneous

nature of a porous medium requires a new computational model, which can handle the

interfacial interactions between the solid and fluid phases correctly. For this purpose, we

develop a new thermal lattice Boltzmann (LB) model for studying heat transfer in heteroge-

neous media. The material contained in this chapter has been published in Physical Review

E, under the title ’Lattice Boltzmann formulation for conjugate heat transfer in heteroge-

neous media’ [32].

2.1 Introduction

Heat transfer in multicomponent or multiphase systems has numerous applications in sci-

entific and engineering problems [17, 33, 1]. Accurate microscale modeling in complex

multicomponent or multiphase media is necessary to constrain heat transfer at the discrete

scale and ultimately develop improved upscaling schemes [34]. In the past few years, the

lattice Boltzmann method (LBM) has proven to be a promising numerical tool for studying

diverse physical problems. The major advantage of LBM resides in its simple formula-

tion and implementation of boundary conditions, which makes it ideally suited to study

complex flows and multiphase or multicomponent systems [35, 36, 37]. These important

numerical features encouraged researchers to apply LBM to modeling heat transfer pro-

cesses. As we outlined in Section 1.2.2, when dealing with heat transfer in heterogeneous

media, one needs to consider continuity conditions at the interface between two phases

or components, which are often referred to as conjugate conditions. Applying conjugate

boundary conditions is not trivial in heterogeneous systems with multiple interfaces. The
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situation becomes more complicated when the interfaces change or evolve over time in re-

sponse to chemical reactions, phase change, or the relative motion of a phase with respect

to the other.

Studying conjugate heat transfer is rather new with LBM. An excellent review of the

existing approaches for treating conjugate heat transfer using LBM is provided in [38].

Originally LBM studies were limited to steady-state conjugate heat transfer problems [39,

40]. Under steady conditions, only the thermal conductivity k plays a role in the steady-

state solution for the temperature distribution. Since only the steady-state solutions were

sought, the heat capacitance C (the product of the density ρ and heat capacity c) of the two

materials is not relevant and one can, for simplicity, assume C to be identical in all compo-

nents. Therefore, the ratio of thermal conductivities becomes equal to the ratio of thermal

diffusivity α = k/ρc and steady-state solutions can easily be retrieved from standard LBM

advection-diffusion models [41]. It is, however, important to note that under transient con-

ditions a general conjugate heat transfer solution involves two independent and possible

heterogeneous scalar fields, the thermal conductivity and heat capacitance. For that reason,

the validity of heat diffusion models that do not account for spatial variations of the heat

capacitance are limited to steady-state solutions. This point will be explained in more detail

in the next section.

To overcome this limitation, recent studies based on LBM implemented conjugate

boundary conditions by correcting distribution functions crossing interfaces between two

media with different thermal properties [42, 43, 44]. This approach works well for both

steady and transient conditions. However, it is limited to simple interfaces. Very recently,

[38] extended their previous work on boundary conditions for thermal LBM [45] to con-

jugate boundary conditions. Their approach is a general treatment of jump conditions at

the interface, which works both for planar and curved interfaces under transient and steady

conditions. They also showed that the approach is second-order accurate in space.

Common to all of the previous approaches that solve both transient and steady-state
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problems is the correction of the incoming distribution function at interface nodes to sat-

isfy the conjugate conditions. This procedure is necessary for straight [42, 43, 44] as well

as curved interfaces [38]. The proposed methods then require the identification of interface

points and the angle between the lattice velocity components and the normal to the inter-

face. In multiphase or multicomponent systems with complex (time-dependent) interfaces,

this becomes computationally demanding.

In this chapter, we introduce an alternative LBM formulation which solves the con-

servative form of the energy equation and does not require tracking and correcting for the

presence of interfaces. Solving the conservation form of the energy equation instead of

an advection-diffusion equation offers valuable advantages. It conserves conductive and

advective flux simultaneously. Moreover, because the conjugate heat transfer solution pro-

cedure is independent of the interface topology, the model we propose remains efficient

even for natural systems with complex and moving interfaces. Section 2.2 gives a brief

introduction to LBM for typical advection-diffusion problems. In Section 2.3, we recover

the conservation form of the energy equation from the advection-diffusion equation. We

proceed with a description of the LBM formulation for conjugate heat transfer and discuss

different approximations for the source term. In Section 2.4, we present several numerical

tests that allow us to examine the efficiency of our model under steady-state and transient

heat transfer conditions using both simple and complex interfaces. Section 2.5 provides

a detailed analysis of the proposed model and discusses possible generalizations of the

method for future studies.

2.2 LBM for advection-diffusion equation

In the present paper, we use the following single-relaxation time (BGK) lattice Boltzmann

equation for an advection-diffusion problem [46]:
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fi(x + eiδt, t+ δt)− fi(x, t) = −1

τ
[fi(x, t)− fieq(x, t)] + δt · Fi, (2.1)

where fi is the distribution function in direction i, x is the spatial coordinate, t is time, τ is

the dimensionless relaxation time, δt is the time step in lattice units, ei is the microscopic

velocity in the lattice direction i, and F is the vector that accounts for external forces and

sources. In the present study, we use the following linear local equilibrium distribution

function [47, 48, 49]:

fi
eq(x, t) = ωiφ(x, t)

[
1 +

ei · u
cs2

]
, (2.2)

where u is the advection velocity vector, ωi are the lattice weights, and cs is the dimension-

less speed of sound of the lattice. It should be mentioned that the source term formulation

presented in the next section is not limited to this specific linear equilibrium advection-

diffusion model. It can be similarly implemented in any other advection-diffusion LB

models using two relaxation times (TRTs), multiple relaxation times (MRTs), and using

quadratic equilibrium functions (see, for example, [50, 51] and the references cited therein).

However, for the problems covered in the present study, the authors found the BGK model

with linear equilibrium model sufficient.

By using a Chapman-Enskog expansion, this lattice Boltzmann model retrieves the

following advection-diffusion equation:

∂φ

∂t
+∇ · (φu) = ∇ · (α∇φ) + S. (2.3)

where φ is the macroscopic scalar field and is defined as
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φ(x, t) =
∑
i

fi. (2.4)

u represents the velocity field variables, α is the diffusivity coefficient, and S is a source

term. The link between the evolution of the distribution functions in Eq. 2.1 and the

macroscopic advection-diffusion in Eq. 2.3 is established through the following relation

between diffusivity α and relaxation time τ :

α = cs
2

(
τ − 1

2

)
∂t. (2.5)

Equation 2.3 is generally referred to as the conservation form (divergence form) of

the advection-diffusion equation for the scalar variable φ. In other words, the advective-

diffusive flux J = −α∇φ + φu is conserved in the equation. As mentioned in Sec. I, the

objective of the present paper is to present a LBM formulation for solving the conservation

form of the energy equation which takes the following form:

ρc
∂T

∂t
+∇ · (ρcuT ) = ∇ · (k∇T ) + S, (2.6)

where k, ρ, and c are, respectively, the thermal conductivity, density, and specific heat.

In general, for a heterogeneous medium, additional boundary conditions should be ap-

plied at the interface between the phases or components to ensure continuity of temperature

and normal heat flux in the following form:

T I,+ = T I,−, (2.7)
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n · (k∇T + ρcuT )I,+ = n · (k∇T + ρcuT )I,−, (2.8)

where I represents the interface, n is normal to the interface, and + and - denote parameters

on either sides of the interface. As shown by Eq. 2.8, the conserved total flux consists of

two parts: (1) the conductive and (2) the advective or transport heat flux. However, since

the solid phase is generally considered at rest in most cases, the heat flux at the interfaces

is considered purely conductive. But when considering heat transfer between a moving

discrete solid particle immerged in a fluid or in fluid-fluid systems such as two immiscible

fluids, the total heat flux must be conserved at the interface. This general condition limits

the applicability of previously reported conjugate heat transfer models to solid-fluid sys-

tems since they all conserve conductive heat flux rather than total heat flux at the interface.

2.3 LBM for conservation form of energy equation

In this section, we explain the details for deriving the conservative form of the heat transfer

equation 2.6 from the conservative form of the advection-diffusion equation 2.3.

2.3.1 Conjugate treatment

First, consider the problem of pure one-dimensional (1D) heat conduction in a two-layered

stratified system shown in Fig. 1, where two materials with different thermophysical prop-

erties are in perfect thermal contact. The medium shown in Fig. 2.1 is initially set at a

uniform temperature T0 = 0. At time t > 0, the upper boundary is elevated to Th > T0,

while the lower boundary is kept at Tc = T0, and vertical walls are adiabatic. We contrast

two different equations for solving the heat conduction problem in this benchmark test.

The first equation is the conservative form of the heat conduction equation [Eq. 2.9], and

second is the conservative form of the diffusion equation [Eq. 2.10]:
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Figure 2.1: Schematic of two-layer stratified medium.

∂T

∂t
=

1

ρc

∂

∂x

(
k
∂T

∂x

)
, (2.9)

∂T

∂t
=

∂

∂x

(
α
∂T

∂x

)
. (2.10)

It can be easily shown that, without applying any interface boundary condition, the

finite-difference solution of the first conservative equations [Eq. 2.9] will match the ana-

lytical solution provided that some care is used to construct the computational mesh. In

other words, as long as we are discretizing the conservative form of the energy equation

and the interface geometry is straight, we retrieve the correct solution (temperature distri-

bution) without applying any conjugate boundary conditions at the interface of a composite

medium. On the other hand, the conservative diffusive form 2.10 can only deal with con-

trasts in thermal diffusivity. The temperature distribution that results from solving Eq.

2.10 is solely controlled by the contrast in thermal diffusivity. In other words, the diffu-

sion equation does not provide a correct solution to conjugate heat transfer if the ratio of

thermal conductivities does not match the ratio of thermal diffusivities. This is the direct
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Figure 2.2: Comparison of LBM solution with analytical solutions for two-layered strati-
fied medium.

consequence of conserving flux based on diffusivity α and not conductivity k in the second

conservative formulation.

As an illustration, we use the advection-diffusion LBM model [Eq. 2.1] for solving heat

conduction in a two-layer medium (Fig. 2.1) without using conjugate boundary conditions

at the interface. The LBM results are compared with two analytical steady-state solutions

based on conservative heat conduction and conservative diffusion equations in Fig. 2.2

(k1/k2 = 4 and α1/α2 = 0.25). The figure shows the profile of the dimensionless tempera-

ture θ = (T −Tc)/(Th−Tc), and we see that the standard advection-diffusion LBM model

solves the conservative form of the diffusion equation, i.e., Eq. 2.10. Therefore, even heat

conduction in a simple composite medium with a straight interface geometry requires a

specific treatment for the conjugate conditions at the interface.

In order to solve the conservative form of the energy equation 2.6, we first recast it from

the advection-diffusion equation 2.3 by adding a source or sink term:
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(2.11)

By inserting these two terms in Eq. 2.3, we recover the terms for conservation of energy

equation 2.6. Rearranging the terms finally yields:

∂T

∂t
+

∂

∂xj
(Tuj) =

∂

∂xj

(
α
∂T

∂xj

)
+

∂

∂xj

(
1

ρc

)(
−k ∂T

∂xj
+ ρcujT

)
︸ ︷︷ ︸

Sconj

+S, (2.12)

where α = k/ρc is the thermal diffusivity of each phase. As it can be seen from Eq. 2.12,

the conservative form of the energy equation is equivalent to solving the conservative form

of the advection-diffusion equation with a source term. Therefore, we can use advection-

diffusion LBM models and introduce spatial variations in thermophysical properties that

arise at the components interfaces as a forcing term. The direct consequence of this inter-

face treatment is that in geometries with a straight (or staircased) interface, it will provide

a correct temperature distribution based of heat flux automatically without any further in-

terface treatment and correction of incoming distribution functions for transient and steady

conditions.

2.3.2 Source term treatment

The source term in Eq. 2.12 consists of the product of the gradient of 1/ρc with the total

heat flux qi = −k∂T/∂xi + ρcuiT . One of the important features of LBM is that the flux

vector can be calculated locally [43, 51]:

qj = (ρc)

[(
1− 1

2τ

)∑
j

(fj − fjeq) ej + ujT

]
. (2.13)
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The remaining term to be calculated in the source term is the gradient of 1/ρc. For this

purpose, we first assume that the interface is located halfway between two adjacent lattice

nodes. Then, we use the one-sided finite-difference approximation for calculating this term

at each lattice point k, according to:

(ρc)avg =
(ρc)k + (ρc)k+1

2
,

∂

∂xj

(
1

ρc

)
k

=

1
(ρc)k
− 1

(ρc)avg
∆xj

2

.

(2.14)

ρcavg is the average value of heat capacitance at the center point between lattice nodes

k and k +1 and xj is the lattice grid spacing. According to Eq. 2.14, away from interfaces,

ρcavg will be constant and the source or sink term vanishes. The only place where it has

a finite value is at lattice points adjacent to an interface, where the heat capacitance is

heterogeneous. Therefore, the final source term used for treating the conjugate conditions

at the interface becomes:

Sconj =
∂

∂xj

(
1

ρc

)
· qj. (2.15)

Here, we will use the following relation for adding the source term Sconj in advection-

diffusion lattice Boltzmann formulation:

Fi = ωiSconj. (2.16)

Sconj can be calculated for the whole computational domain. Its value will be zero

everywhere except at the interface where it experiences a jump in heat capacitance. It

should be mentioned that approximating a source term in LBM using a finite-difference

method has been recently used successfully in several studies [52, 53, 54, 55].
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In previous interface treatments for conjugate heat transfer, the distribution functions

coming from the interface require a correction either during the collision or streaming pro-

cess. The primary advantage of treating conjugate conditions as a source term is that it

avoids any specific treatment that depends on the interface topology. This advantage be-

comes significant when dealing with physical domains with a large interface surface area

between phases or components. Another context where the approach presented here pro-

vides a definite advantage is when one considers heat transfer in media with evolving mi-

crostructures in which the boundaries and interfaces change over time (melting or precip-

itation [56, 47]). In these cases, the present LBM formulation relies on a flag variable for

each phase that is generally retrieved from the flow field simulation, but does not require

additional constraints. The algorithm presented here is independent from the choice of

lattice in LBM. Interface treatment based on the correction of distributions that cross the

interface needs to be modified when applied to different lattices such as D2Q5, D2Q9, or

their three-dimensional (3D) counterparts. Neither the calculation of heat flux in Eq. 2.13,

nor the finite-difference approximation in Eq. 2.14 changes for different lattice arrange-

ments. As we demonstrate in the next section, the present approach can be directly applied

for straight interface geometries.

2.4 Numerical tests

In this section, six test cases are investigated. The first test is a steady-state convection-

diffusion study in a horizontal channel in which a uniform velocity field is set parallel to

the interface between two fluid layers. The second case study is steady-state convection-

diffusion in a channel where the uniform velocity field is set normal to the interface be-

tween two fluid layers. In the third case study, we investigate transient and steady-state

heat conduction in a three-layered stratified medium. We then examine the performance

of the model on curved boundaries in a steady-state heat conduction problem in concen-

tric disks. In all cases, the LBM solution is compared to analytical solutions. The next
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Figure 2.3: Schematic of 2D convective channel with horizontal interface.

case consists of heat conduction in a heterogeneous medium with random microstructures.

The final application of the model considers natural heat convection in a square enclosure

with discrete solid obstacles characterized by thermal properties that differ from the fluid.

Since the present source term treatment has been formulated for a composite or multiphase

medium with different thermophysical properties, different values for the ratios of thermal

conductivities and thermal diffusivities will be used in all test cases.

2.4.1 Steady-state convection-diffusion in a channel with horizontal interface

We consider heat transfer in a horizontal channel where two fluids with different thermo-

physical properties are flowing with a constant uniform velocity U along the x direction. A

schematic of the setup is shown in Fig. 2.3 where the interface is represented by a dashed

line.

Vertical boundaries are subjected to periodic conditions. Horizontal walls have fixed

sinusoidal temperatures (Dirichlet boundary conditions):

T (x, y = 0) = T (x, y = H) = cos(ωx), ω = 2π/L. (2.17)

The analytical solution to the steady-state temperature distribution under these condi-

tions is provided in Li et al. [38].
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(a) (b)

Figure 2.4: Comparison of LBM with the analytical solution: (a) temperature, (b) vertical
heat flux, for H = L = 1, L/x = 60, k2/k1 = 10, α2/α1 = 1.0, and τ1 = τ2 = 0.75.

Figure 2.4 shows comparisons of the LBM solution with the analytical solution at differ-

ent positions along x for k2/k1 = 10, α2/α1 = 1.0, and Peclet number Pe = UH/α1 = 20.

Both temperature fields and heat flux qy = k∂T/∂y are in good agreement with the analyt-

ical solution.

The experimental order of convergence (EOC) of the present approach has been deter-

mined based on the L2-norm error EL2 of the temperature field and is displayed in Fig. 2.5.

The present approach possesses a first-order EOC, which is due to the first-order finite-

difference approximation of the heat capacitance gradient in the source term.

2.4.2 Steady-state convection-diffusion in a channel with vertical interface

In the previous problem, since the velocity field was parallel to the interface, the part of the

conjugate source term related to advective heat flux was null. That explains why a strategy

that only conserves the conductive heat flux at the interface can be successful. The purpose

of the present case study is to test the model for a more general condition where both

advective and conductive heat flux must be conserved at the interface. For this purpose, we

consider the convective channel shown in Fig. 2.6 in which two different fluids, separated
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Figure 2.5: EOC based on L2-norm error for convection diffusion in a horizontal channel.

by a vertical interface at x = L/2, flow with uniform velocity U along x. The vertical walls

at x = 0 and x = L are maintained at constant temperature T1 = 0 and T2 = 1, respectively.

Symmetry boundary conditions are applied to the horizontal walls at y = 0 and y = H .

The analytical solution for the temperature then becomes:

T (x) = −λ1

U
α1 + λ2e

Uα1x, 0 ≤ x ≤ xint, (2.18)

T (x) = −λ3

U
α2 + λ4e

Uα1xinteUα2(x−xint), xint ≤ x ≤ L, (2.19)

where
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Figure 2.6: Schematic of convective channel with with uniform velocity normal to the
vertical interface between both components.

λ1 =
−T1e

−xint/γ1 + T2/e
−(L−xint)/γ2

γ1(1− e−xint/γ1) + γ2(1/e−(L−xint)/γ2 − 1)(k1/k2)
,

λ2 = T1 − γ1λ1,

λ3 = (k1/k2)λ1,

λ4 =
T2 − γ2λ3

e−xint/γ1e−(L−xint)/γ2
,

γ1 = −α1

U
,

γ2 = −α2

U
.

(2.20)

Figure 2.7 shows the comparison of the analytical temperature distribution with the

LBM solution for the case of k1/k2 = 5, α1/α2 = 0.05, and U = 1. We observe that

our model solution, which considers both advective and conductive flux in the source term

formulation, predicts the correct temperature profile, while conserving only the conductive

flux leads to a poor fit to the analytical solution and, especially, no kink at the interface.
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Figure 2.7: Comparison of LBM solutions with the analytical solution for H = L = 1,
L/x = 50, k1/k2 = 5, α1/α2 = 0.05, τ1 = 0.55, and τ2 = 1.5.

2.4.3 Transient conduction in three-layered stratified medium

The purpose of this case study is to test our model’s ability to deal with transient conjugate

heat transfer. We investigate the transient heat conduction in the three-layer composite

medium shown in Fig. 2.8. The thermophysical parameters used in the calculations are

k1,3 = 1.0, k2 = 0.1, α1,3 = 1.0, and α2 = 3.0. The whole medium is initially set at a

uniform temperature T0 = 0. At time t > 0, the lower boundary temperature is elevated to

Th > T0 while the upper boundary is kept at T0 and the boundary condition on the vertical

walls is adiabatic.

In Fig. 2.9, we show a succession of profiles for the dimensionless temperature θ =

(T − T0)/(Th − Tc) that captures the transient evolution of the heat transfer in the domain.

The comparison of our numerical results with the analytical solution from Sun and Wich-

man [57] confirms that the model simulates accurately both transient and steady-state heat

transfer problems. The EOC for these calculations is determined from Fig. 2.10.
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Figure 2.8: Three-layer stratified medium.

Figure 2.9: Analytical vs. LBM solution for transient heat conduction in a three-layer
stratified medium.
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Figure 2.10: EOC based onL2-norm error for conduction in a three-layer stratified medium.

2.4.4 Steady-state conduction in two-layer annulus

The two previous tests considered straight interfaces; the present case is designed to test

our model against curved boundaries. Consider two concentric circular disks with different

thermophysical properties as illustrated in Fig. 11. The outer boundary is subjected to the

following Dirichlet condition:

T (r = R2, ϕ) = cos(nϕ), (2.21)

where n is an integer number. For imposing Dirichlet boundary conditions 2.21 on the

outer boundary, we employ the boundary treatment presented in Li et al. [45]. Because our

source model does not yet include spatial interpolation to deal with curved and off-lattice

interfaces, our aim here is to test the accuracy and behavior of the source sink term in

conditions where the interface is no longer coplanar with the lattice. In other words, we

approximate the curved interface with a staircase geometry. This first-order approximation

is consistent with the order of the discretization for the heat capacitance in the source term.

We note, however, that the source model we propose for interface conjugate heat transfer

is general and can be refined to higher-order approximation if necessary.
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Figure 2.11: Schematic of a two-layer annulus.

The results from our LBM calculations, at steady state, are shown in Fig. 2.12 along

with analytical solution from Li et al. [38]. The comparison is based on the following values

for the parameters: n = 2; R2/R1 = 2, k1 = k2 = 1, α1 = 0.2, α2 = 1.0, R2/∆x = 150,

and τ1 = 0.6 and τ2 = 1. Results show that the radial distribution of temperature and heat

flux along ϕ1 = 0 and ϕ2 = π/2 match the analytical solutions. For reference, we also

show the solution with no interface treatment (S conj = 0). As expected, for S conj = 0,

the LBM solution converges to the analytical solution based on the thermal diffusivity ratio

[Eq. 2.10].

Our source term approach to conjugate heat transfer predicts a correct temperature and

heat flux distribution for curved boundaries. The solution procedure does not require the

correction of distribution functions at or near the interface and the calculations are indepen-

dent of the domains geometry. This property makes this algorithm ideally suited to handle

large calculations in complex natural heterogeneous media. We provide an example with a

random microstructure in the next section.
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(a) (b)

Figure 2.12: Radial distribution of (a) temperature, (b) heat flux in in the two-layer annulus
domain.

2.4.5 Heat conduction in a heterogeneous media with random microstructures

Consider the two-component medium (inclusion and continuum phases) with random mi-

crostructures shown in Fig. 2.13. The microstructure has been generated by a simulated

annealing stochastic optimization technique [58, 59]. The volume fraction of the inclusion

phase is equal to 0.4. The choice of thermophysical properties for the inclusion and contin-

uum phases are such that kinc/kcont = 1.0, and αinc/αcont = 0.1. The medium is initially

set at temperature Ti = 0. At t > 0, the lower boundary is elevated to Th = 1.0 while the

upper boundary is kept at Ti. The vertical walls are set as no flux boundaries. Since thermal

conductivities are the same for both phases, at steady state, the temperature solution should

be a homogeneous temperature gradient from the lower to top boundary. For illustrative

purposes, we show the temperature contours at steady state in Fig. 2.14 for two cases: with

or without interface treatment (S conj = 0). We observe that the source term correction for

heterogeneous heat capacitance allows our model to better fit the linear temperature profile

expected as the system approaches steady state.

For a better comparison, temperature profiles perpendicular to the heat flux are shown

for different vertical positions in Fig. 2.15-(a), along with theoretical profiles shown as
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Figure 2.13: Constructed random heterogeneous medium (computational domain size:
100× 100 grid points).

(a) (b)

Figure 2.14: Temperature contour (a) by using S conj, (b) without using S conj.
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(a) (b)

Figure 2.15: Temperature profile at (a) different vertical positions (from top to bottom: y =
0.4, 0.6, 0.8) with S conj (�, ◦,�) and without S conj (N,H,+); (b) horizontal position
(x = 0.5) with S conj (◦), and without S conj (H).

solid lines. The profiles show that the proposed interface treatment predicts the correct

temperature profile. Since thermal diffusivities of the two phases are different, the LBM

solution with S conj = 0 is far from a uniform profile along each horizontal transect. Figure

2.15-(b) shows the temperature profile along a vertical transect at x = 0.5. The small

discrepancies of our results with the source term correction with the linear profile are due

to the spatial resolution.

2.4.6 Application: Natural convection in porous enclosure

In order to show the potential of the present LBM model to simulate advective heat transfer

in heterogeneous media, we consider the problem of natural convection in a square enclo-

sure containing solid obstacles with different thermal properties. This problem leads to

the coupling of the momentum and energy equations through the buoyancy term and re-

quires simultaneous solution of momentum and the energy equations. The details on mod-

eling natural convection using LBM can be found, for example, in Mohamad and Kuzmin

[60]. Here, we use the bounce-back scheme for no-slip flow conditions and complement

it with our model for conjugate interface conditions between solid and fluid phases. For
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Figure 2.16: Schematic of porous enclosure.

this purpose, we consider the physical system shown in Fig. 16. The porous enclosure is

heated from the left side (constant hot and cold temperatures on left and right walls, re-

spectively), while horizontal walls are kept insulated. The porous medium shown in this

configuration has numerous scientific and technological applications and has been studied

extensively [1]. The numerical simulations are performed for a Rayleigh number equal to

Ra = gβH3(TH − TC)/ναf = 105, where g and β are gravitational acceleration and ther-

mal expansion coefficient of the fluid, respectively. H is the height of the square enclosure.

ν and αf are the kinematic viscosity and thermal diffusivity of the fluid phase. For the pur-

pose of validation, the Nusselt number computed at the hot wall is compared with values

computed with numerical simulation using the finite-volume method reported in Merrikh

and Lage [61], Raji et al. [62]. The Nusselt number is defined as:

Nu =

∫ H

0

∂θ

∂x
dy, (2.22)

where θ = (T − TC)/(TH − TC). For the buoyancy force in the hydrodynamic lattice

Boltzmann model, we selected Scheme I in Mohamad and Kuzmin [60]. The results of our

calculations are summarized in Table 2.1. The comparison of the averaged Nusselt number

of our LBM model with those calculated from the finite-volume models of Merrikh and
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(a) (b) (c)

Figure 2.17: Streamlines for Ra = 105: (a) ks/kf = 0.1; (b) ks/kf = 10; (c) ks/kf = 100.

(a) (b) (c)

Figure 2.18: Isotherms for Ra = 105: (a) ks/kf = 0.1; (b) ks/kf = 10; (c) ks/kf = 100.

Lage [61], Raji et al. [62] shows that our algorithm is successful for simulating natural

convection in complex geometries over a wide range of thermophysical properties between

phases. This has been further verified with the results listed in Table 2.2 where we present

the average Nu for the case of ks/kf = 100 and different heat capacitance ratios. We

observe that a wide contrast in thermophysical properties of solid and fluid phases, which

can be achieved in real materials, can be modeled accurately with the present source term

formulation. The streamlines and isotherms for the cases mentioned in Table 2.1 have been

shown in Figs. 2.17 and 2.18, respectively.

2.5 Discussion

LBM has proven to be an efficient computational tool for studying fluid flow in complex

geometries due to the efficiency of the bounce-back boundary condition. However, from
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Table 2.1: comparison of averaged Nusselt number, Ra = 105, Pr = ν/αf = 1, αs/αf =
1.

ks/kf [61] [62] Present LBM model
0.1 0.813 0.785 0.7969
1 1.233 1.193 1.185

10 2.030 2.066 2.031
100 2.313 2.394 2.4506

Table 2.2: Comparison of averaged Nusselt number, Ra = 105, Pr = ν/αf = 1, ks/kf =
100.

(ρc)s/(ρc)f 100 500 1000
Nu 2.4506 2.4405 2.4421

a heat transfer standpoint, satisfying conjugate or jump boundary conditions is more com-

plicated and generally relies on orientation-dependent internal boundary conditions. The

central objective of the present study was to revisit the original conservation form of the dif-

ferential equation that LBM solves in general convection-diffusion problems. Discretizing

the conservation form of the energy equation automatically eliminates the need for applying

the continuity of normal heat flux and temperature for straight interfaces. However, since

LBM works with the conservation form of the advectiondiffusion equation rather than the

energy equation, we need to apply jump conditions even for straight interfaces. This is

due to the fact that flux conservation is based on the diffusivity α instead of the thermal

conductivity k in the original LBM formulation. We propose a model where the conser-

vation of energy is retrieved from the advection-diffusion equation with a source term. In

essence, our algorithm replaces internal boundary conditions at interfaces with a source

term that does not require any treatment specific to the interface geometry and orientation.

The source term involves the gradient of the heat capacitance; we observe that the choice

of finite difference approximation for that gradient controls the order of the overall scheme
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(LBM is inherently second order in the absence of boundary conditions). The proposed

model can easily accommodate higher-order discretizations as well as the introduction of

curved boundaries (e.g., with the immersed boundary method), although these refinements

are left for future studies. The results presented in previous sections highlight the following

features:

1. EOC of the present interface treatment has been shown to be first order because of

the finite-difference approximation in Eq. 2.14. Using higher-order computational

stencils in Eq. 2.14 will increase the order of accuracy of the method.

2. The replacement of internal boundary conditions with a source term avoids calculat-

ing the local normal to the interface, and correcting distribution functions at adjacent

grid nodes. This significantly reduces the computational demand of the algorithm.

As we show with the random heterogeneous microstructure calculations, our model

leads to an efficient and yet simple approach for studying heat transfer in complex

geometries. The present model works well as long as curved boundaries can be ap-

proximated with staircase geometries. This in turn requires higher spatial resolution

for capturing sharp curves. A hybrid implementation of the present formulation of

LBM for the conservative energy equation with recently developed techniques on lo-

cal grid refinements [63, 64, 65] and curve boundary treatment [45, 66] seems to be

very promising for heat transfer problems in complex geometries.

3. The benefit of a model for heat transfer that is independent of the topology of the

different components becomes significant in problems with evolving microstructure

where interface boundaries change over time due to melting or solidification, for

example. The present LBM model only uses the information from the main flow

field and interface-tracking or front-tracking solver and adds no more computational

steps by itself. Therefore, the present source term treatment can be implemented in

any available hydrodynamic and advection-diffusion LBM models for evolving and
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moving boundary problems.

4. The present source term formulation is not restricted to two-phase or two-component

media. For the case of multiphase or multicomponent problems, the source term

treatment can be used without any further modification.

5. The source term formulation for the jump condition in thermal properties is indepen-

dent of lattice arrangements. It can be applied similarly to any lattice arrangements

in 2D or 3D using any LBM models for advection diffusion with a proper evaluation

of the heat flux in Eq. 2.13. The conjugate heat transfer approach presented here can

also be naturally extended to multiple-relaxation thermal lattice Boltzmann models

[67, 68, 69].

2.6 Conclusions

Based on reformulating the conservation form of the energy equation, we present a lattice

Boltzmann model for heat transfer in heterogeneous material. The jump conditions appear

as a source term in LBM formulations. The replacement of a specific interface treatment

with a source term in the collision step offers several advantages. The advantages come

from the fact that the proposed LBM formulation directly solves the conservation form

of the energy equation. The reliablity of the model has been validated with several heat

transfer problems under both steady-state and transient conditions.

44



CHAPTER 3

PORE-SCALE ANALYSIS OF HRL CONVECTION

In the previous chapter, we developed a numerical model based on the lattice Boltzmann

method to solve for conjugate heat transfer within porous media subjected to thermal flows.

This model solves the conservation equations at the pore-scale and therefore does not re-

quire the closure terms associated with homogenization procedures. We are therefore now

in a position to contrast the performance of continuum-scale thermal flow models for natu-

ral convection in porous media with the outputs of the lattice Boltzmann pore-scale model

and discuss the validity and limitations of the two most common formulations for the

continuum-scale energy conservation equation. The content of this chapter is published

in Physical Review E, under the title ’Role of thermal disequilibrium on natural convection

in porous media: Insights from pore-scale study’ [70].

3.1 Introduction

Modeling Horton-Rogers-Lapwood (HRL) convection is generally based on using average-

scale formulations for the momentum and energy equations. Darcy and extended Darcy

models such as Dupuit-Darcy (sometimes known as Forchheimer’s model) and Brinkman-

Darcy are the most commonly used models to simulate fluid flow through a porous medium

[1]. The formulation of the average-scale energy equation depends on the assumption of

local thermal equilibrium among the different phases [1]. Assuming a local thermal equi-

librium (LTE) allows us to recast the statement of energy conservation into a single tem-

perature equation, while the absence of local thermal equilibrium requires coupled energy

equations - one for each phase (LTNE). The degree of disequilibrium between phases dur-

ing natural thermal convection has therefore a significant effect on heat transfer and con-

vective patterns.
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In this chapter, we consider a fluid-saturated porous medium subjected to a vertical tem-

perature gradient. This problem, which is analogous to Rayleigh-Bénard convection was

first studied by Horton and Rogers [15] and Lapwood [16] (hereafter called HRL convec-

tion). They performed a linear stability analysis and identified the condition under which

convective patterns emerge. The transition is generally parameterized by a modified criti-

cal Rayleigh number that is predicted to be Racr = 4π2 for a horizontally infinite porous

domain, and for 2-dimensional square box. This critical value is valid as long as the mo-

mentum equation follows Darcy’s law and the phases are locally in thermal equilibrium

(LTE).

Several experimental studies reported values of heat transfer (Nusselt number) and criti-

cal Rayleigh number that deviate from the theoretical predictions made for HRL convection

with the Darcy-LTE model e.g. [2, 71, 13]. These experiments also suggest that the contrast

in thermal conductivity between the solid and liquid phases exacerbates the discrepancy.

We focus on constraining the role of the solid-to-fluid thermal conductivity ratio to test

which model is better suited for the energy conservation in the context of HRL convection

in porous media. The knowledge of the pore-scale temperature distribution in both fluid

and solid phases is necessary to assess the existence or absence of local thermal equilib-

rium between phases. For this purpose, we conduct direct numerical simulation (DNS)

at the pore-scale level over a 2D porous structure consisting of regular arrangements of

solid blocks. The advantage of these pore-scale calculations is that they allow us to con-

sider a range of solid-to-fluid thermal conductivity ratios and also it does not rely on a

homogenization model for the energy equation (LTE versus LTNE, for example) where

the pore-scale information is filtered out. The DNS calculations are thus designed to test

the validity of continuum-scale models under different conditions. The numerical model is

based on the lattice Boltzmann method (LBM) that has been presented in Chapter 2.

We first analyze the performance of LTNE models to assess the role of local thermal

disequilibrium on heat transfer around and beyond the critical Rayleigh number Racr. We
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perform a linear stability analysis to calculate the critical Rayleigh number, as well as the

convective mode at the onset of convection for a range of inter-phase heat transfer coef-

ficient values. We then conduct DNS simulations over a range of Rayleigh numbers for

various solid-to-fluid thermal conductivity ratios to find: (1) the degree of local thermal

disequilibrium under steady conditions, (2) the prevailing convective mode near the onset

of convection, (3) the critical Rayleigh number where convection starts, and (4) the rela-

tionship between heat transfer (Nusselt number Nu) and thermal forcing as represented by

Nu-Ra curves.

The organization of the chapter is as follows: In section 3.2, we present the mathe-

matical formulation of the pore-scale and continuum-scale models for HRL convection.

Section 3.3 presents the thermal performance of LTNE models. Section 3.4 provides the

results of pore-scale DNS calculations for HRL convection and the comparison of the re-

sults with the corresponding LTE and LTNE models. Finally, we discuss possible causes

for the mismatch between continuum and pore-scale models in section 3.5.

3.2 Mathematical Formulation

3.2.1 Pore-scale

We consider the 2-dimensional porous media shown in Figure 3.1 as our pore-scale physi-

cal domains. The 2-dimensional porous enclosure has the aspect ratio of one, Γ = height

(H)/width (W)=1. The domain consists of 10×10, 15×15 and 20×20 regular and identical

unit cells containing square solid blocks of dimension d such that H /d ranges from 14.1

to 28.2. In Figure 3.1, the solid blocks are represented by the gray pixels, while the white

pixels between the blocks represent the fluid pahse. The porosity of the medium is ϕ = 0.5

for all pore-scale domains. The choice of 20 layers in our study is solely based on the

compromise between the computational cost (due to the computationally intensive simula-

tions for detailed pore-scale analyses) and retrieving a statistically relevant set of results to

interpret at the continuum scale. Since we intentionally designed our domain to be a priori
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(a) (b)

(c)

(d)

Figure 3.1: Physical domains in the pore-scale study: (a) 10 × 10 unit cells, (b) 15 × 15
unit cells, (c) 20× 20 unit cells, (d) unit cell (dashed line showing the periodicity)

periodic, it becomes natural to select the unit cell to be the representative volume element

(RVE) and also the averaging volume [22] and it thus eliminates the uncertainty in defin-

ing the representative averaging volume. The same procedure has been used extensively in

similar studies, see for example in [24, 19, 72, 73, 22]. We show later in Section 3.5 that

the pore-scale simulations successfully recover the important physical features of the HRL

convection and the results are independent of the coarsness of the solid blocks.

The pore-scale analysis of HRL convection is based on the direct numerical simulation

of conservation equations for both constituents for the 2-dimensional porous media shown

in figure 3.1. For the fluid phase, the Navier-Stokes and energy equations are (using the

Boussinesq approximation):
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∇ · u = 0, (3.1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P + ν∇2u + gβ(T − Tref ), (3.2)

(ρc)f
∂T

∂t
+∇ · ((ρc)fuT ) = ∇ · (kf∇T ), (3.3)

where u is the pore-scale velocity field, P is the pressure, T is the temperature, ν is the

kinematic viscosity of the fluid, β is the thermal expansion coefficient, g is the gravitational

acceleration, k refers to thermal conductivity, c is the specific heat and ρ the density of the

fluid phase (subscript f). For the solid phase, the energy equation reduces to:

(ρc)s
∂T

∂t
= ∇ · (ks∇T ), (3.4)

where the subscript s refers to the properties of the solid phase. Across a fluid-solid inter-

face I, the continuity of temperature and normal heat flux yields:

T I,+ = T I,− (3.5)

n · (k∇T + ρcuT )I,+ = n · (k∇T + ρcuT )I,−,

where n is normal to the interface and + and − denote the different sides of the interface.

The hydrodynamic and thermal boundary conditions are those for HRL convection and are

set with:
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(u, v) = 0, T = TH , for y = 0, for all x , (3.6)

(u, v) = 0, T = TC , for y = H , for all x , (3.7)

(u, v) = 0,
∂T

∂x
= 0, for x = 0, 1, for all y . (3.8)

These governing equations are solved with the lattice Boltzmann method (LBM) [74,

35, 36]. However, since the fluid-saturated porous matrix at the pore-scale level comprises

a thermally heterogeneous system due to different thermophysical properties between solid

and fluid, we resort to a thermal LBM model designed to satisfy the conjugate interface

boundary conditions described by (3.5). In recent years, several thermal LBM models have

been developed for solving the conjugate heat transfer problems [38, 75, 76, 77, 78, 79, 80,

81, 82], the present calculations follow the procedure described in Chapter 2 for the ther-

mal energy equation. We used a single-relaxation time D2Q9 lattice Boltzmann model for

both the velocity and temperature distribution functions. There are several approaches for

applying the no-slip boundary condition [83, 84]. In the present study, Zou-He’s bounce-

back scheme of the nonequilibrium part of the particle distribution functions [84] is used

to implement no-slip conditions at solid boundaries, and the thermal counter-slip method is

applied to enforce both Dirichlet and Neumann boundary conditions for the energy equa-

tion [85, 86]. In the pore-scale simulations, we used 60 × 60 grid points resolution over

each unit cell. The lattice Boltzmann parameters were selected such that the Mach number

is sufficiently small to stay within the incompressibility limit.

The regular configuration of repeated unit cells provides us with a straightforward test

for the LTE and LTNE assumptions. We can compute local phase averages 〈Ti〉i over each
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unit cell with:

〈Tf〉f =
1

Vf

∫
V

Tf dV =
1

φV

∫
V

Tf dV,

〈Ts〉s =
1

Vs

∫
V

Ts dV =
1

(1− φ)V

∫
V

Ts dV.

(3.9)

In order to compare the pore-scale results with the continuum-scale predictions, we

need to compute the Darcy-Rayleigh number Ra* and average Nusselt number Nu* which

are defined as:

Ra∗ =
gβ(TH − TC)KH

αmνf
= Raf · Da ·

kf
km

,

Raf =
gβ(TH − TC)H3

αfνf
, Da =

K

H2
,

Nu∗ = 1 +
1

A

∫
A
uy · T dA

αm∆T/H
,

αm =
km

(ρc)f
.

(3.10)

Raf is the conventional Rayleigh number based on the fluid properties. In Ra*, K is

the permeability of the porous medium and αm is the thermal diffusivity based on stagnant

thermal conductivity of the solid matrix and hosted fluid km. Da is the Darcy number of

the porous medium. We use our LBM model to compute the permeability and average

properties of the heterogeneous media from the pore-scale calculations.

3.2.2 Continuum-scale

Assuming local thermal equilibrium, HRL convection at the continuum scale is described

by:
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∇ · q = 0, (3.11)

µ

K
q = −∇P + ρg, (3.12)

(ρc)m
∂T

∂t
+ (ρc)fq · ∇T = km∇2T , (3.13)

where T is the local temperature averaged over both phases, c is the specific heat and ρ is

the density. K is the permeability of the porous medium, P is the pressure, µ is the dynamic

viscosity of the fluid and q is the seepage velocity (Darcy flux). The subscripts m and f

refer to the properties of the solid/fluid mixture and the fluid, respectively. Equations 3.12

and 3.13 are coupled through the Boussinesq approximation (i.e. Eq. 1.3). It should be

mentioned that km is not only a function of the thermal conductivity of each phase but it

depends strongly on the structure of the porous medium. This structural control has been

studied extensively both theoretically and experimentally and it is found that km cannot

be defined simply as the volumetric arithematic or harmonic mean of the fluid and solid

thermal conductivities [34, 87].

We can relax the local thermal equilibrium assumption by developing a model where

the energy conservation for each phase is considered separately and coupled through an

inter-phase heat exchange term [1]. This allows the two phases to experience different

temperatures locally, which may appear more consistent with convection in porous me-

dia where the fluid and solid thermo-physical properties are different and the advection of

heat may be highly spatially heterogeneous [1]. There are multiple derivations for the two-

temperature models and the reader is referred to Rees and Pop [25] for an overview of the

recent developments with LTNE approaches. In the present study, we consider two com-
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mon models, which will be referred to as LTNE-1 and LTNE-2. The difference between

the two models stems from the way they were developed. The LTNE-1 model, which is the

simplest two-temperature model, is based on the following set of equations [1, 25]:

ϕ(ρc)f
∂Tf

∂t
+ (ρc)fq · ∇Tf = ϕkf∇2Tf + h(Ts − Tf ), (3.14)

(1− ϕ)(ρc)s
∂Ts

∂t
= (1− ϕ)ks∇2Ts − h(Ts − Tf ), (3.15)

where h is the inter-phase heat transfer coefficient responsible for the non-equilibrium heat

transfer between the different phases and ϕ is the porosity of the medium. The subscript

s and f refer to solid and fluid phase properties, respectively. Summing Eqs. 3.14 and

3.15 and assuming thermal equilibrium, reduces the model to the single temperature (LTE)

model with an effective mixture thermal conductivity km = ϕkf + (1 − ϕ)ks which is

a volumetric average and not a true stagnant conductivity. This is one of the inconsis-

tencies of the LTNE-1 model in the LTE limit. On the other hand, if we apply volume-

averaging over the microscale energy equation, extra coupling terms between solid and

fluid phases appear which are ignored in this (LTNE-1) formulation. Even for the case of

pure heat diffusion, it has been shown that these extra coupling terms cannot be omitted

from the general energy equation [24]. Keeping this in mind, Nakayama et al. [88] used the

volume-averaging process and extended the previous works for heat conduction [24, 89] to

convection-conduction heat transfer and derived the following LTNE-2 equations:

ϕ(ρc)f
∂Tf

∂t
+ (ρc)fq · ∇Tf =∇ · [(ϕkf + kfG + kdis)∇Tf ]

+ (−ksG)∇2Ts + h(Ts − Tf ),
(3.16)
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(1− ϕ)(ρc)s
∂Ts

∂t
=∇ · [((1− ϕ)ks + kfGκ)∇Ts ]

+ (−ksG)∇2Tf − h(Ts − Tf ),
(3.17)

where kdis is the thermal dispersion conductivity, κ = ks/kf and G is the tortuosity parame-

ter [89]. The following equation has been proposed for calculating the tortuosity parameter

G [89]:

G =
km/kf − ϕ− (1− ϕ)κ

(κ− 1)2
, (3.18)

which always gives a negative value for G and recovers the true stagnant thermal conduc-

tivity of the medium km. This can be easily verified by summing up Eqs. 3.16 and 3.17

together and assuming local thermal equilibrium, which yields km = ϕkf + (1 − ϕ)ks +

kf (1− κ)2G . Therefore, by knowing the thermophysical properties of each phase and also

the stagnant thermal conductivity of the medium, we can find the value of the tortuosity

parameter.

A critical aspect of using both LTNE formulations lies in the determination of the appro-

priate value of h. In general, h is known to depend on many factors including the detailed

geometry of the porous medium, the porosity, the phase conductivities and diffusivities and

also the pore-scale velocity field [90, 91].

3.3 LTNE Results

We perform a linear stability analysis for both LTNE models (details are provided in Ap-

pendix A) to find the critical mode and the critical Rayleigh number at the onset of con-

vection. Figure 3.2 presents the results for the LTNE-1 model. Panel (a) shows how the

critical Rayleigh number Racr of the horizontal wave-modes m = 1 and 2 changes with the

dimensionless inter-phase heat transfer coefficient H (defined in the Appendix- Eq. A.9).
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The critical Rayleigh number at the onset of convection for each H is the minimum of the

corresponding values for the two modes (m = 1, 2; higher modes yield even greater Racr,

not shown here). HRL convection is a multi-stable thermal system, meaning that different

convection modes may co-exist at a given Rayleigh number. One of the distinguishing fea-

tures of convective patterns with different horizontal mode m is the amount of heat that is

transferred through the domain. Therefore, it is crucial that continuum-scale formulations,

such as LTNE-1 and LTNE-2 models, predict a consistent and correct mode.

Figure 3.2-(a) shows that for the LTNE-1 model, in the limitH →∞, i.e local thermal

equilibrium between solid and fluid phases, the single-cell convection mode m = 1 is

selected at the onset of convection and Racr is higher than 4π2, the critical Rayleigh number

based on Darcy-LTE model for a horizontally infinite domain or a square box (aspect ratio

1). The inconsistency here results from the mixture effective thermal conductivity km to

differ from the true stagnant thermal conductivity of the medium in the LTNE-1 model.

On the other hand, as H → 0, i.e extreme local thermal disequilibrium between solid and

fluid phases, Racr is lower than 4π2, indicating that convection initiates at lower Ra than

predicted by the LTE model. In both limiting cases ofH → 0 and∞, m = 1 is the critical

mode at the onset of convection. However, for intermediate values of H, Figure 3.2 shows

that the second horizontal mode m = 2 becomes the favored mode. This explains the

local peak in Nu(H) for a fixed Ra (here 50) shown in Fig. 3.2-(b). At high values of H,

since Racr is larger than 50, convection is absent and the Nusselt number is equal to 1 as

expected.

The behavior of the LTNE-2 model is different from LTNE-1, as shown in Fig. 3.3.

Panel (a) shows the dependence of Racr on H. First for the whole range of H values, the

dominant horizontal mode at the onset of convection is m = 1. Second, we can observe

that, in contrast with LTNE-1, the critical Rayleigh number recovers the correct value in

the LTE regime (H →∞). On the other hand, we find Racr to be always smaller than 4π2

over the whole range of interphase heat transfer coefficient and decreases with the degree
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Figure 3.2: LTNE-1: (a) Variation of critical Rayleigh number Racr for the horizontal
wave modes m = 1 and 2 with dimensionless inter-phase heat transfer coefficient H; (b)
variation of Nusselt number Nu withH for Ra = 50.

of disequilibrium between phases. This suggests that, under local thermal disequilibrium

conditions, the onset of convection is expected to occur at lower Ra with model LTNE-2

than LTE would predict, which also affects the Nusselt number (higher than expected from

LTE model) as observed in Fig. 3.3-(b).

3.4 Pore-scale Results

3.4.1 Degree of local thermal disequilibrium

Figures 3.4 and 3.5 illustrate respectively the pore-scale temperature and velocity maps of

20 × 20 unit cells for different ratios of solid-to-fluid thermal conductivities κ = ks/kf

at Ra∗ = 80. The detailed temperature and velocity maps in the pore-scale simulations

of figures 3.4 and 3.5 enable us to image and study small (pore) scale flow and tempera-

ture distributions and test several average-scale assumptions including local thermal equi-

librium and non-Darcian effects. We use Equations 3.9 and calculate the phase-averaged

temperatures 〈Tf〉f and 〈Ts〉s over each unit-cell (shown in Figure 3.1-(d)) in the pore-scale

temperature solution in Figure 3.4. This allows us to quantify the degree of local thermal

disequilibrium between phase-averaged temperatures for each unit cell.
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Figure 3.3: LTNE-2: (a) Variation of critical Rayleigh number Racr for the horizontal
wave modes m = 1 and 2 with dimensionless inter-phase heat transfer coefficient H; (b)
variation of Nusselt number Nu withH for Ra = 50.
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Figure 3.4: Steady temperature maps at Ra∗ = 80 for 20× 20 of unit cells; (a): κ = 1, (b):
κ = 50 and (c) 1/13.
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Figure 3.5: Steady velocity magnitude maps at Ra∗ = 80 for 20 × 20 of unit cells; (a):
κ = 1, (b): κ = 50 and (c) 1/13.

Figure 3.6 shows the maximum disequilibrium between phase-averaged temperatures

observed at each Rayleigh number and for different thermal conductivity ratios. The max-

imum observed disequilibrium is below 2% for all κ values.

In order to quantify the significance of this level of thermal disequilibrium, we use the

pore-scale data for the case where the solid matrix and fluid have the same thermal con-

ductivity, i.e. κ = 1. Since κ = 1, the stagnant thermal conductivity of the porous medium

is equal to the thermal conductivities of solid/fluid, i.e. km = ks = kf . In other words, the

unit-cell is thermally homogeneous at the pore-scale level. We can use this case for com-

paring the pore-scale data with the corresponding Darcy-LTE solution to verify whether

a thermal disequilibrium of . 2% leads to departure from LTE assumption or not. For

comparison with the average-scale solution, the Darcy number of the porous structures in

Figure 3.4 is calculated from our LBM model and is found to be Da = 2.435 × 10−5,

Da = 1.195 × 10−5 and Da = 7.594 × 10−6 for 10 × 10, 15 × 15 and 20 × 20 domains,

respectively. Figure 3.7 shows the comparison of the pore-scale heat transfer data with

those from the average-scale formulations of [92] for a square box. The average-scale so-

lution of Henry et al. [92] is based on a Darcian description of the momentum conservation

with a single temperature energy equation, i.e. Equations 3.12 and 3.13. There is an ex-

cellent agreement between the pore-scale data for κ = 1 and the continuum-scale solution
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Figure 3.6: Percentage of the maximum amount of thermal disequilibrium (|DTmax|) in the
DNS results for the 20× 20 of unit cells; (a): κ = 1 and 50, (b): κ = 1 and 1/13.

of Henry et al. [92]. The current pore-scale results for the case of κ = 1 show that the

onset of convection agrees with the theoretical value of Ra∗ = 4π2 and that the average

heat transfer behavior after the onset of convection follows the one predicted by the classi-

cal Darcy-LTE formulations. This justifies that the local thermal disequilibrium of . 2%

observed at the pore-scale is not significant and a single-energy model at the average-scale

provides accurate description of the thermal behavior.

The excellent agreement between the pore-scale data and the LTE-Darcy solution in

figure 3.7 further confirms that the calculated permeability of the medium by using LBM

is accurate and that non-Darcian effects are negligible for the present porous configuration

(small Darcy number). The calculated pore-scale Reynolds number is also smaller than 1,

further confirming that our simulations satisfy the Darcian regime.

3.4.2 Nu*-Ra* scaling when κ 6= 1

We now turn our attention on the effect of thermal conductivity contrasts between the solid

and fluid on the average heat flux in the domain. Figure 3.8 summarizes the results for the

average Nusselt number for κ = 50 and κ = 1/13 over a range of Ra around the onset of

convection for the case of 20 × 20 unit cells. Recalling that κ = ks/kf , the data on Fig.
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κ = 1.

3.8 shows that when solid is more conductive than the fluid, for example in κ = 50, the

average Nusselt number falls below the results for κ = 1, the values predicted by Darcy-

LTE solutions. The opposite trend is observed when the fluid is more conductive than the

solid, i.e. κ = 1/13. This discrepancy between LTE Nu∗ − Ra∗ results and our pore-scale

calculations is not caused by local thermal disequilibrium between phases, as the latter

is found to be small and comparable to what we observed for simulations with κ = 1,

which matched accurately with the LTE predictions. If we setH in both LTNE models to a

value corresponding to about 2− 3% of thermal disequilibrium between the fluid and solid

phases, we find that both LTNE models are not able to match the observed heat transfer

(Nu∗) found in the pore-scale simulations (Figure 3.8).

Comparing the pore-scale data in Figure 3.8 with those from κ = 1 displayed in Figure

3.7 shows that, not only the Nu∗(Ra∗) scaling for κ 6= 1 deviates from the LTE solution,

but also the onset of convection departs from the classical value of Ra∗ = 4π2. We define

the critical Rayleigh number as the point where a sudden change in the slope of Nu∗ −
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Ra∗ curve occurs. When the solid and fluid have similar thermal conductivities, critical

point defines the Rayleigh number value above which Nu∗>1. However, when the thermal

properties of the solid and fluid are different, Nu∗ is not necessarily equal to 1 below Ra∗cr

because of small-scale fluid motion around each cell can slightly perturb the heat transfer

(uncritical convection). For κ = 1/13, convection initiates well before 4π2, while it is

shifted to slightly higher values than 4π2 for κ = 50. Our pore-scale simulations show that

the critical Rayleigh number for κ = 1/13, and 50 are Ra∗cr ' 35 and 42, respectively.

Although we argued that we do not expect this discrepancy to arise because of a lack

of local thermal equilibrium between phases, it is worthwhile to contrast our pore-scale

results with LTNE models and test whether any of the two LTNE models presented here

can reconcile the spread in Nu∗(Ra∗) and the shift in Ra∗cr observed. According to figure

3.2, explaining the early initiation of convection for κ = 1/13 (Ra∗cr ' 35) based on

the LTNE-1 model first, would require a significant degree of thermal disequilibrium, and

second, would predict that the critical horizontal mode just at the onset of convection is

m = 2. These two outcomes from the LTNE-1 model disagree with our pore-scale results.

Similar issues arise when trying to explain the pore-scale simulation results with the

LTNE-2 model. According to figure 3.3-(a), if we select anH value which provides a crit-

ical Rayleigh number around 35 (similar to pore-scale observations for κ = 1/13), then

the numerical solution of LTNE-2 model predicts a significant local thermal disequilibrium

and would also yield Nusselt number values in excess of the LTE (κ = 1) model. In sum-

mary, neither LTNE-1 and LTNE-2 models can explain the shift in the onset of convection

and the Nu∗(Ra∗) dependence self-consistently.

In the absence of consistent description of the pore-scale results with LTE and LTNE

models, the discussions in the next section try to provide an interpretation in terms of a

new thermal dispersion phenomena in HRL convection which arises from the contrast in

thermal conductivity between different phases.
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Figure 3.8: Nusselt number Nu∗ versus Rayleigh number Ra∗ for 20×20 unit cells, κ = 50
and 1/13; For comparison, the results for the LTE and LTNE models and κ = 1 are shown
respectively in gray symbols and black lines.

3.5 Discussions and Conclusions

3.5.1 Effect of coarseness

When convection initiates, boundary layers build up at the top and bottom boundaries.

As the Rayleigh number increase, these boundary layers shrink in size, resulting in larger

temperature gradients and heat flux next to the top and bottom boundaries. Using the

continuum-scale equations for modeling HRL convection is valid as long as the pore size of

the medium is smaller than any length-scale of the flow; specially thermal boundary-layer

thickness in HRL convection [93]. Therefore, it is crucial to verify whether the coarseness

of the domain in our pore-scale simulation allows us to retrieve averages solution in the

continuum limit and resolves the boundary layers accurately.

Figure 3.9 illustrates the horizontally averaged temperatures in the pore-scale tempera-

ture fields of various coarseness using arrays with 10 × 10, 15 × 15 and 20 × 20 of solid

blocks (Figure 3.1). We observe that as the Rayleigh number increases, the boundary layer
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becomes more localized, thus resulting in higher Nusselt numbers. It also shows that us-

ing a coarser number of solid blocks in 10 × 10 and 15 × 15 cases results in a similar

horizontally-averaged temperature profiles to 20 × 20 case. Therefore, different number

of solid blocks offer a similar average thermal behavior which is further illustrated in the

Nu∗(Ra∗) curves of Figure 3.10.

The data in Figures 3.9 and 3.10 shows that, the observed shift in the onset of convection

and the Nu∗(Ra∗) scalings for different κ and Ra∗ values are robust over the range of

coarseness studied here, which suggest that the resolution and coarseness used are suitable

to compare DNS results with continuum model predictions. Figure 3.11 shows that, for

κ = 1 and Ra∗ = 100 in the 20 × 20 case, the thickness of the boundary layer is at

least four times larger than the size of the unit cell, which is the true averaging volume for

the regular configuration of solid blocks in the pore-scale domain. For Rayleigh numbers

larger than the values studied here, however, finer configurations of solid blocks would be

required.

3.5.2 Thermal dispersion

The deviations between the pore-scale observations and Darcy-LTE predictions can origi-

nate from three factors: LTNE effects, non-Darcian effects and thermal dispersion effects.

In the previous sections, we showed that the first two factors are negligible for the range of

κ and Ra∗ numbers investigated in the pore-scale study. In the present section, we try to

investigate the role of thermal dispersion on the observed shift in the onset of convection

and the Nu∗(Ra∗) scalings.

In applying the volume-averaging approach for developing the continuum-scale energy

equation (LTE or LTNE models) from the exact pore-scale energy equations, the thermal

dispersion term ∇ · (−(ρc)f〈T ′u′f〉f ) appears, where T ′ and u′f are local temperature

and velocity fluctuation fields (for the detailed derivations, reader is refered to [23, 94]

for example). For continuum-scale energy equations such as LTE and LTNE models to
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Figure 3.9: Horizontally-averaged temperatures for 20 × 20 unit cells; (a): κ = 1, (b):
κ = 50 and (c) κ = 1/13.
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be applicable, we need to provide a closure model for the resulting thermal dispersion

contribution.

Thermal disperstion is historically modeled as a pseudo-diffusive term [95, 96, 97], i.e.

∇ · (−(ρc)f〈T ′u′f〉f ) = ∇ · (kdisp∇〈Tf〉f ) or equivalently:

−(ρc)f〈T ′u′f〉f = kdisp∇〈Tf〉f (3.19)

where kdisp is the dispersion conductivity of the porous medium.

Several studies provided models for kdisp in porous media based on the theoretical

derivations [95, 96, 97, 98] and numerical simulations over a periodic single unit-cell [99,

100, 101]. The available models for the dispersion conductivity can be represented by the

kdisp = C · qn, where C is a constant, n is some exponent and q is the local Darcy velocity

(or equivalently as kdisp = f(Pe or Re), where Pe and Re are the pore-scale Peclet and

Reynolds number based on the local average velocity of the fluid).

The inherent pseudo-diffusive assumption for the thermal dispersion term and its de-

pendence on the local average velocity bears important implications in HRL convection.

First, thermal dispersion becomes a nonlinear term in the continuum-scale energy models,

therefore it cannot influence the onset of convection [102, 30, 103]. Second, previous stud-

ies [30, 31] showed that the inclusion of thermal dispersion lowers the heat transport for

lower values of Ra∗ but increases Nu∗ as Ra∗ is increased. In summary, the available clo-

sure models for kdisp cannot explain the shift in the onset of convection and the consistently

lower/higher Nu∗(Ra∗) scalings when solid is more/less conductive than the fluid phase.

There are several experimental findings for HRL convection that qualitatively support

the present pore-scale results. Cheng [2] and Kladias and Prasad [13] reported that for a

porous system with solid matrix being more conductive than the fluid phase, the measured

Nusselt numbers are lower than the one predicted by Darcy-LTE and Non-Darcy-LTE mod-
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els. Kladias and Prasad [13] further showed that the inclusion of thermal dispersion term

does not resolve the issue of a lower heat transfer than the LTE case for larger thermal con-

ductivity ratios. The same authors then propose that local thermal disequilibrium may be

the cause for the observed deviations between experimetal data and theoretical predictions.

Lister [103] also observed an early initiation of convection at Ra∗ = 33 in the HRL convec-

tion when the fluid is more conductive than the solid phase, although the author manually

shifted the experimental data to start the convection at 4π2.

The present pore-scale study provides significant insights into the nature of thermal

disequilibrium and dispersion in HRL convection. The detailed pore-scale temperature

fields reveals that, on one hand, deviations from predicted critical Rayleigh number and

amount of heat transfer can occur even in the presence of local thermal equilibrium. On

the other hand, we posit that a non-traditional thermal dispersion effect is responsible for

the discrepancy between pore-scale and continuum models. According to the pore-scale

observations, ∇ · (−(ρc)f〈T ′u′f〉f ) is directly linked to the contrast in thermal conductiv-

ities between the solid and fluid phases, and its contribution disappears when both phases

share the same thermal conductivity. Also, the present results prompt a reassessment of the

pseudo-diffusive model of thermal dispersion in HRL convection. This latter point relaxes

the resulting nonlinear nature of the thermal dispersion which subsequently explains the

shift in the onset of convection when solid and fluid phases have different conductivities.
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CHAPTER 4

FRACTIONAL-ORDER THERMAL DISPERSION MODEL

In Chapter 3, we conducted direct numerical simulations of HRL convection at the pore-

scale and showed that the scatter in predictions of the macroscopic models originate from

the thermophysical heterogeneities, resulting in the emergence of a new type of thermal

dispersion not previously taken into account. In this chapter, we use this insight from our

pore-scale results and propose a new upscaled energy model for HRL convection. We

extend the classical model of heat transfer in porous media by including a fractional-order

advective-dispersive term to account for the role of thermophysical heterogeneities. The

content of this chapter has been submitted for publication in Physical Review E, under the

title ’Onset of fractional-order thermal convection in porous media’.

4.1 Introduction

The dynamics of transport processes in porous media is usually characterized by early/late

arrivals (heavy tails) in the breakthrough curves of the advective species [104] and a nonlin-

ear mean-squared displacement (MSD) for the growth of the spreading entities in diffusive

systems [105, 106, 107]. These features of transport behaviors have been observed in nat-

ural and engineered heterogeneous systems, including the transport of passive tracers in

subsurface media [108, 109], diffusion in gels [110, 111], MRI diffusion processes in bi-

ological tissues [112, 113], infiltration of moisture in porous media [114, 115, 116], and

Turing pattern formation in reaction-diffusion systems [117, 118, 119]. The heterogeneous

and disordered microstructure in these media creates complex transport pathways, such as

low mobility zones, dead ends and preferential paths. The upscaling of these localized

retardation and enhancement transport zones leads to anomalous transport behaviors that

deviate from the classical advection-dispersion regimes.
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Heat transfer processes in porous media, such as forced thermal convection and natural

thermally-driven flows, can also exhibit anomalous behaviors. In the former, in analogy

with solute transport in porous media, Continuous Time Random Walk (CTRW) models

[90, 120] and fractional-order energy models [121, 122] have been developed and tested for

modeling the experimentally and numerically observed heavy-tailed thermal breakthrough

curves due to structural heterogeneities. In the buoyancy-driven thermal convection, also

known as Horton-Rogers-Lapwood convection [15, 16] (in short HRL), the anomalous be-

havior, however, can occur even in a ordered homogeneous and isotropic porous matrix

and it manifests itself in shifts for (1) the critical Rayleigh number at the onset of thermal

instability, and (2) the average heat transfer represented by the Nusselt-Rayleigh number

correlation [2, 13]. In the absence of an inclusive model that can explain these two de-

viations from the standard solution for HRL convection, we argued in Chapter 3 for the

need to revisit the closure of the thermal dispersion term, which arises from upscaling of

the velocity and temperature fluctuation fields [94, 23]. Thermal dispersion is historically

modeled as a diffusive formulation (originally suggested by Taylor [95] and later extended

by Aris [123], Saffman [124, 96], Poreh [97]).

In analogy with the fractional-order advection-dispersion models for anomalous solute

transport regimes in porous media [108, 125, 126], one can use a fractional-order thermal

advection-dispersion model for describing HRL convection. The main difference is that, in

solute transport in porous media, the anomalous dispersion due to the velocity and concen-

tration fluctuations originates from the structural disorder and heterogeneties, while in HRL

convection, the thermophysical heterogeneity, i.e. contrast in thermal conductivities of the

solid and fluid phases, can also be responsible for the resulting anomalous thermal be-

haviors. Thermophysical heterogeneities are ubiquitous in almost every multi-component

and multi-phase system, and are responsible for partitioning of energy among the different

constituents.

This chapter investigates how a fractional-order energy model influences the onset of
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instability in HRL convection. We perform a linear stability analysis and derive an an-

alytical expression for the critical Rayleigh number as a function of the fractional-order

parameters that govern the conservation equation. We also solve numerically the original

nonlinear coupled equations of motion and fractional heat transfer and verify the robust-

ness of the linear stability results. The linear stability and numerical results show that the

fractional-order energy formulation can be successfully and consistently used for modeling

the scatter of the onset of instability in HRL convection observed experimentally in Cheng

[2], Kladias and Prasad [13] and observed in our direct numerical simulations presented in

Chapter 3.

4.2 Mathematical Formulation

We consider a two-dimensional fluid-saturated porous square domain with dimensions 0 <

x < d and 0 < y < d, where d is the height/length of the porous enclosure. While the linear

stability analysis can be naturally exended to three-dimensions, in order to benefit from the

results of an equivalent pore-scale study presented in Chapter 3, we limit our analysis to

two dimensions. Assuming a Darcian regime, then the continuity and momentum equations

of a Boussinesq fluid in an isotropic porous medium are described, at the continuum scale,

by [1]:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u = −K
µ

∂P

∂x
, (4.2)

v = −K
µ

∂P

∂y
+
ρgβK

µ
(T − Tref ), (4.3)
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where u and v are Darcy-scale macroscopic velocities in the x- and y-directions, respec-

tively. T and Tref are local average-scale temperature and reference temperatures, respec-

tively. Also, ρ, β, K and g are the fluid density, thermal expansion coefficient, permeability

of the porous medium and and acceleration of gravity; P is pressure and µ is the dynamic

viscosity of the fluid.

Under the assumption of local thermal equilibrium between the solid and fluid phases,

the average-scale energy equation for HRL convection takes the following form:

(ρc)m
∂T

∂t
+ (ρc)fV · ∇T + (ρc)f∇·(< V′T ′ >f ) = km∇2T , (4.4)

where V is the velocity vector (u, v), c is the specific heat, km is the stagnant thermal

conductivity of the solid/fluid mixture. The subscripts m and f refer to the properties of the

solid/fluid mixture and the fluid, respectively. The ∇·((ρc)f < V′T ′ >f ) term describes

the thermal dispersion term, with the primes indicating the fluctuating fields with respect to

the fluid-phase averaged value of the local temperature and velocity fields (for the detailed

derivations, the reader is referred to Refs. [23, 94]). Closure models for thermal dispersion

often assume a pseudo-diffusive behavior [95, 124, 96, 97], i.e. ∇·[(ρc)f < V′T ′ >f ] =

∇·(−kdis∇T ). Here, kdis is the dispersive conductivity of the porous media, which is

generally a nonlinear function of the pore-scale Péclet or Reynolds number based on the

local average velocity of the fluid [95, 124, 96, 97].

In the present study, in analogy with the fractional-order advective-dispersive solute

transport equation, we replace Eq. 4.4 with the following energy equation with a fractional-

order advective term:

(ρc)m
∂T

∂t
+ (ρc)f ĈdisV · ∇αT = km∇2T . (4.5)
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Ĉdis ([Lα−1]) is the dispersive coefficient and α is the fractional-derivative index based

on the Riemann-Liouville definition [127]:

dαΦ

dzα
=

dn

dzn

∫ z

0

(z − ξ)n−α−1

Γ(n− α)
Φdξ, (4.6)

where n− 1 < α < n and n is the integer and Γ(.) is the Gamma function.

The rationale behind using a fractional-order advective-dispersive equation is to relax

the a priori pseudo-diffusive assumption for the thermal dispersion term. We assume that

the contribution of∇·((ρc)f < V′T ′ >f ) is to enhance or impede the overall average-scale

advective thermal flux and is modeled through a fractional-order index α, which can con-

veniently range from advective to diffusive regimes in a flexible manner. In light of the

pore-scale results presented in Chapter 3, we argue that the fractional-order parameters

Ĉdis and α are functions of the degree of thermophysical heterogeneity, i.e. solid-to-fluid

thermal conductivity ratio ks/kf , where ks and kf are thermal conductivities of the solid

and fluid phases, respectively. Furthermore, Eq. 4.5 implies that the conductive part is con-

sistently captured through the definition of stagnant thermal conductivity of the medium

km. This allows Eq. 4.5 to successfully recover the exact conduction solution for Rayleigh

numbers below the critical value.

We define the following dimensionless variables in order to recast the governing equa-

tions 4.1-4.5 in a dimensionless form:

t∗ = t
αm
H2σ

, (u, v)∗ = (u, v)
H

αm
,

(x, y)∗ = (x, y)
1

H
, ,

σ =
(ρc)m
(ρc)f

, θ =
T − Tref
Th − Tc

,

(4.7)

where αm = km/(ρc) is the thermal diffusivity of the porous medium based on the stagnant
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thermal conductivity km. Also, H is the characteristic height of the porous enclosure.

We use the stream function ψ and normalize lengths, velocity, time and temperature

based on the dimensionless variables in Eq. 4.7 to retrieve the following dimensionless

momentum and energy equations (dropping asterisk for simplicity):

∂2ψ

∂x 2
+
∂2ψ

∂y2
= Ra

∂θ

∂x
, (4.8)

∂θ

∂t
+ Cdis(u

∂αθ

∂xα
+ v

∂αθ

∂yα
) =

∂2θ

∂x 2
+
∂2θ

∂y2
, (4.9)

where

Cdis = Ĉdis
H2

H1+α

V = (u, v) = (−∂ψ
∂y
,
∂ψ

∂x
),

(4.10)

and the Rayleigh number (Ra) is defined as:

Ra =
ρgβ∆TKH

µαm
. (4.11)

Without losing generality, we perform the linear stability analysis of the fractional-

order HRL convection for a square box. Figure 4.1 shows the schematic of the problem.

The hydrodynamic and thermal boundary conditions are as follows:

(u, v) = 0, θ = 1, for y = 0, for all x , (4.12)

(u, v) = 0, θ = 0, for y = 1, for all x , (4.13)
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Figure 4.1: Schematic showing a saturated porous square enclosure and the choice of ther-
mal boundary conditions. No-slip velocity i.e. (u, v=0) is applied at all the walls.

(u, v) = 0,
∂θ

∂x
= 0, for x = 0, 1, for all y . (4.14)

In addition to the linear stability analysis, we solve the dimensionless coupled nonlin-

ear Eqs. 4.8 and 4.9 numerically to verify the linear stability analysis. For this purpose,

we use the numerical approach based on a fast Fourier transform detailed in Chapter 5.

For ψ, we use a central finite difference scheme on space derivatives and treat the source

term in Eq. 4.8 explicitly. The same procedure is used for the temperature field by treat-

ing the advective terms in Eq. 4.9 explicitly and the diffusion term implicitly. There are

several ways to discretize the fractional-order advective terms in Eq. 4.9. We employ the

Grünwald-Letnikov discretized representation of the Riemann-Liouville operators in Eq.

4.9 [127]:

dαΦ

dxα
≈ ∆x−α

N∑
l=0

ωlΦ(x− l∆x), (4.15)
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where ∆x is the spatial grid size, and the coefficients ωl are calculated through the follow-

ing formula [127]:

ωl =
(−1)lΓ(α + 1)

Γ(α− l + 1)l!
, l = 0, 1, 2, ..., N. (4.16)

Based on the resulting steady-state temperature and velocity fields of the dimensionless

equations 4.8 and 4.9 at each Rayleigh number, we calculate the average amount of heat

transfer across the porous enclosure through the dimensionless Nusselt number:

Nu =

∫ 1

0

−∂T
∂y

∣∣∣∣
wall

dx, (4.17)

where the partial derivatives are evaluated at the horizontal bottom boundary of the porous

domain.

4.3 linear stability analysis

For Rayleigh numbers below a critical value, only the conduction solution with a linear tem-

perature profile can exist as a stable state in HRL problem (Fig. 4.2-(a)). As the Rayleigh

number goes beyond the critical value, convection initiates (Fig. 4.2-(b) illustrates the 1st

stable convection mode). Similar to Rayleigh-Bénard convection, HRL convection allows

multiplicity of stable states; meaning that several stable convection states with different

wave-modes can co-exist [128, 129, 130, 5, 92]. In the present stability study of HRL

convection, we are interested in identifying the primary bifurcation point for the onset of

convection from the conduction state.
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(a) conduction state: Ra < Racr (b) convection state: Ra > Racr

Figure 4.2: Schematic showing the conduction (panel (a)) and convection stable states
(panel (b)) for Rayleigh numbers below and above the critical value, respectively.

Linearization

In the absence of convection, Eqs. 4.8 and 4.9 admit the following basic conduction solu-

tion:

ψ = 0, θ = 1− y. (4.18)

In order to investigate the onset of convection, we consider the stability of the basic

conduction solution with respect to perturbations of the form:

ψ = Ψ, θ = 1− y + Θ. (4.19)
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Inserting these perturbed velocity and temperature fields into Eqs. 4.8-4.9 and lineariz-

ing the nonlinear advective terms gives the following set of linearized equations:

∂2Ψ

∂x2 +
∂2Ψ

∂y2 = Ra
∂Θ

∂x
, (4.20)

∂Θ

∂t
− Cdis

∂Ψ

∂y

∂α(1− y)

∂xα
+ Cdis

∂Ψ

∂x

∂α(1− y)

∂yα

=
∂2Θ

∂x2 +
∂2Θ

∂y2 .

(4.21)

Compared with the classical integer-order counterpart, introducing a Riemann-Liouville

fractional-order advective term results in an additional linearized advective term in Eq.

4.21. This is due to the fact that the fractional-order derivative of a constant is not zero in

the Riemann-Liouville definition [127]; in other words, α− order derivative of a (1 − y)

with respect to x has nonzero values. More specifically, the analytical relations for the

fractional-order derivative terms in Eq. 4.21 are [127]:

∂α(1− y)

∂xα
= (1− y)

x−α

Γ(1− α)
, (4.22)

∂α(1− y)

∂yα
=

y−α

Γ(1− α)
− y−α+1

Γ(2− α)
. (4.23)

Galerkin method

We find the onset of the convective instability by solving for the eigenvalue of the coupled

partial differential equations 4.20 and 4.21. Because of the variable coefficients for the

advective terms in Eq. 4.21, we select the Galerkin procedure to solve this eigenvalue
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problem [131, 132]. We use the following trial functions for the velocity and temperature

fields, which automatically satisfy the thermal and hydrodynamic boundary conditions in

Eqs. 4.12-4.14:

Ψ =
M∑
m=1

N∑
n=1

amn sin(mπx) sin(nπy),

Θ =
M∑
m=1

N∑
n=1

bmn cos(mπx) sin(nπy).

(4.24)

We substitute these trial functions in the linearized perturbation Eqs. 4.20 and 4.21 to

find the residuals. We then orthogonalize the residuals (in the spatial domain) with respect

to each trial functions, which provides the generalized algebraic eigenvalue problem, where

the lowest eigenvalue is the critical Rayleigh number.

We initially limit the analysis to the first order approximation of the Galerkin method,

since it conveniently provides a closed form relation for the critical Rayleigh number. The

details for the second order approximation are provided in the Appendix. In the results

section, we will show that the first term approximation provides accurate values.

Considering only the lowest order values for M and N in Eq. 4.24 (M = N = 1), we

retrieve:

Ψ = a11 sin(πx) sin(πy),

Θ = b11 cos(πx) sin(πy).

(4.25)

Inserting these relations into the linearized perturbed equations and using their orthog-

onality property (details can be found for example in [132]), we arrive at the following

generalized eigenvalue problem:
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2π2 −Raπ

C2π −2C1π
2


a11

b11

 =

0

0

 , (4.26)

where

C1 =

∫ 1

0

∫ 1

0

(sin(πy) cos(πx))2dxdy = 1/4, (4.27)

C2 = Cdis

[
1

Γ(1− α)

∫ 1

0

∫ 1

0

1− y
xα

(sin(πx) cos(πy))(sin(πy) cos(πx))dxdy

− 1

Γ(1− α)

∫ 1

0

∫ 1

0

1

yα
(sin(πy) cos(πx))2dxdy

+
1

Γ(2− α)

∫ 1

0

∫ 1

0

1

yα−1
(sin(πy) cos(πx))2dxdy

]
,

(4.28)

where C2 accounts for the influence of the nonlocal advective terms. For each value of the

fractional-order derivative α, C2 can be calculated in a straight-forward way.

The critical Rayleigh number can be determined by setting the determinant of the matrix

in Eq. 4.26 to zero, which yields:

Racr =
C14π2

C2

. (4.29)

The closed form relation for Racr in Eq. 4.29 allows us to measure the effect of the

fractional order of the advective operator on the onset of thermal convection and compare

it with 4π2, which is the Racr in the classical HRL convection in a square box [15, 16, 133,

92].
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Figure 4.3: Comparison of the predicted Racr for different values of α based on single-
term (lines) and two-term approximation (symbols) in the Galerkin procedure; (—, 2) for
Cdis=1.0, and (−−,◦) for Cdis=0.8. The horizontal dotted line indicates the classical value
of 4π2 based on integer-order HRL problem.

4.4 Results

In Fig. 4.3, we compare the linear stability results of HRL convection based on single- and

two-term approximations in the Galerkin procedure (Eqs. B.2 and B.3). Having a maxi-

mum deviation of less than 1% confirms that the formula for the critical Rayleigh number

in Eq. 4.29 based on the single-term Galerkin approximation provides accurate results. In

all the cases studied here for HRL convection in a square box, the critical convection mode

was always observed to be the first mode, i.e. the one shown schematically in Fig. 4.2-(b).

Therefore, we focus on the single-term Galerkin solution 4.29 as the linear stability result

of the fractional-order HRL problem. We notice in Fig. 4.3 that the fractional-order param-

eters α and Cdis can significantly shift the bifurcation point away from the 4π2 value of the

classical HRL convection in a square box, i.e for the case of Cdis = α = 1.

This is more clearly illustrated by Fig. 4.4 where we show the map of Racr for a range

of fractional-order parameters. There is a general trend of increasing Racr as we move

to lower values of α for a given Cdis. A similar trend occurs if α is fixed, and increasing

values of Cdis result in shifting the critical Rayleigh number to lower values.
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Figure 4.4: map showing the variation of Racr for different values of α and Cdis

As mentioned previously, experimental studies and pore-scale numerical simulations

have reported shifts in the onset of convection (Racr) and the heat transfer predicted at a

given Ra number. The pore-scale results in Chapter 3 suggest that, for HRL convection in

a homogeneous and isotropic porous medium, α and Cdis are related to the thermal conduc-

tivity difference between the solid and fluid phases. Based on Fig. 4.4, one can get a similar

Racr at the onset of convection for different combinations of fractional model parameters α

and Cdis. However, we can provide further insight into the valid ranges of these parameters

by solving numerically the coupled nonlinear equations of motion and energy, i.e. Eqs. 4.8

and 4.9 (following the procedure outlined in Section 4.2), and comparing the resulting Nus-

selt number at each Ra with those from the equivalent pore-scale observations presented in

Chapter 3. Figure 4.5 shows the comparison of the critical Rayleigh numbers obtained with

linear stability with those retrieved numerically. The maximum relative deviation of less

than 3% between the critical Rayleigh numbers from the linear stability analysis and those

from the numerical solution confirms once more the accuracy of the first-term Galerkin

approximation.
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Figure 4.5: Comparison of the predictedRacr for different dispersivity Cdis based on linear
stability analysis (lines) and numerical solution of the nonlinear equations (symbols)

We extend our numerical analysis to Rayleigh numbers greater than Racr and observe

how the fractional model parameters α and Cdis influence the thermal behavior represented

by the Nusselt-Rayleigh curve. In Fig. 4.6-(a), we compare the predictions from the frac-

tional model with those from the pore-scale analysis of Chapter 3 for three different values

of ks/kf . While the pore-scale results for ks/kf = 1 recover the classical predictions of

HRL convection with α = Cdis = 1, the condition ks/kf > 1 shifts the onset of con-

vection to higher Rayleigh numbers than 4π2 and lower Nusselt numbers compared with

the classical predictions. In contrast, when ks/kf < 1 results in earlier initiation of con-

vection, i.e. Racr smaller than 4π2 and higher Nusselt numbers compared to the classical

predictions. Figure 4.6-(a) shows these two features for two sample sets of α and Cdis,

each qualitatively agreeing with the corresponding pore-scale calculations. We observed

that among different combinations of fractional model parameters, α < 1 and Cdis > 1

leads to thermal behaviors which satisfy those observed for ks/kf > 1. On the other hand,

when α > 1 and Cdis < 1, the thermal behavior for the onset of convection and Nusselt-

Rayleigh curve agrees with those cases where ks/kf < 1. We can apply these constraints to
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(a) (b)

Figure 4.6: Panel (a): the dependency of the observed anomalous behaviors in Racr and
Nusselt-Rayleigh curves on the solid-to-fluid thermal conductivity ratio ks/kf . The solid
line in Panel (a) is associated with the predictions based on the classical HRL problem with
Cdis = α = 1.0, agreeing with the pore-scale simulations for ks/kf = 1 (� symbols). The
dashed and dotted curves are the predictions of the fractional-order model qualitatively
agreeing with the anomalous behaviors observed in pore-scale results for ks/kf < 1 (2
symbols) and ks/kf > 1 (◦ symbols), respectively. Panel (b): valid ranges of Cdis and
α for satisfying both aspects of anomalous behaviors observed in the pore-scale results
for different solid-to-fluid thermal conductivity ratio ks/kf . The gray regions in Panel (b)
indicate the values of α and Cdis out of the suitable ranges for ks/kf < 1 and ks/kf > 1
cases.

identify the suitable ranges of fractional model parameters α and Cdis for HRL convection

in a homogeneous and isotropic porous medium, which is illustrated in Fig. 4.6-(b).

Based on the present linear stability and the numerical results, we can summarize the

variations of α and Cdis with the thermal conductivity ratio in the following form:

α ∝ (ks/kf )
−1,

Cdis ∝ (ks/kf ),

(4.30)

For ks/kf = 1, we will have α = Cdis = ks/kf = 1 when solid and fluid phases have

similar thermal conductivities. In other words, the fractional thermal model recovers the

classical solution of HRL convection when the contributions from the thermal dispersion

due to the thermophysical heterogeneities disappear in HRL convection.
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4.5 Discussion

In the classical advection-diffusion formulation of convection in porous media, the thermal

dispersion term∇·((ρc)f < V′T ′ >f ) in Eq. 4.4 appears as the byproduct of the upscaling

and homogenization of the advective transport flux. Despite mathematically having an ad-

vective form, closure modeling of the thermal dispersion is commonly based on a nonlinear

diffusive term. It can be easily shown that the contribution of a pseudo-diffusive thermal

dispersion disappears in the linear stability analysis, therefore it cannot influence the onset

of convection [102, 30, 103]. Also, the available closure formulations cannot model the

consistently lower/higher Nusselt numbers in thermophysically heterogeneous media [30,

31].

The idea behind the fractional-order formulation in Eq. 4.5 is twofold: (1) we do not

assume any a priori closure nature to the macroscopic behavior of thermal dispersion, i.e

neither pure advective nor pure diffusive but rather a fractional-order term that models the

intermediate behaviors in a flexible and consistent manner, and (2) we assume that the

macroscopic contribution of thermal dispersion in HRL convection, which originates from

the upscaling of the advective flux, is to enhance/retard the total advective heat flux due to

the thermophysical heterogeneities; a process which cannot be otherwise modeled by the

classical advection-diffusion formulation.

The present linear stability and numerical results confirm that including the contribution

from the thermal dispersion into a fractional-order advective term not only enables us to

model the shift in the onset of convection, but also it successfully provides correct Nusselt-

Rayleigh scalings in thermophysically heterogeneous media, in agreement with the pore-

scale observations.

While the present linear stability study only accounts for the role of thermophysical

heterogeneities on the onset of HRL convection, subsurface systems also include struc-

tural and geometrical heterogeneities such as fracture networks. The combined effect of
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thermophysical and structural heterogeneities will add complexity to the nature of thermal

dispersion in HRL convection. It is therefore important to perform theoretical studies and

direct numerical simulations for cases where both permeability and thermophysical proper-

ties are varying over space, and to investigate how this coupled spatial variation influences

the dynamics of HRL convection.

4.6 Conclusion

This study introduces a fractional-order energy model for studying heat transfer in a density-

driven convection in an isotropic and homogeneous porous medium. The fractional-order

closure model characterizes the intermediate behaviors between advective and diffusive

regimes and accounts for the complex macroscopic realization of transport processes by the

thermal dispersion term. We conduct a linear stability analysis to show that the fractional-

order generalization of HRL convection is suitable for modeling the shift on the onset of

convection due to the thermophysical heterogeneities in a porous medium; a feature that

cannot be captured by the classical formulation of the energy equation. The numerical

solution of the complete nonlinear governing flow and temperature equations confirm the

validity of the critical Rayleigh numbers found through the linear stability study. To the best

of our knowledge, the present thermal fractional-order model is the first of its kind that (1)

introduces a new formulation for the macroscopic characterization of thermal dispersion

in HRL convection and (2) provides consistent predictions for both the critical Rayleigh

number and also Nusselt-Rayleigh scalings in a thermophysically heterogeneous porous

medium.
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CHAPTER 5

TRANSITIONAL BEHAVIOR OF CONVECTIVE PATTERNS

In this chapter, we use a combination of theoretical and experimental approaches to provide

a new insight into the cause of the commonly observed kink in the Nusselt-Rayleigh curve

in HRL convection. We use a dynamical system theory and show that the observed kink is

due to a transitional behavior of stable convective patterns in HRL convection; a dynamical

feature of HRL convection which has not been previously taken into account in the classical

bifurcation analysis of HRL convection. The material contained in this chapter has been

published in the Journal of Fluid Mechanics, under the title ’Transitional behaviour of

convective patterns in free convection in porous media’ [134].

5.1 Introduction

The emergence of flow patterns is omnipresent in nature and is observed in numerous

hydrodynamical systems such as thermal convection, convection in binary mixtures, sur-

face waves, rotating fluids and Taylor-Couette flow [4]. The problem of free convection

in a fluid-saturated porous medium subjected to an adverse temperature gradient, which is

known as HortonRogersLapwood (HRL) convection, is an example of a dynamical system

showing multiplicity of flow patterns [129, 135, 128, 130, 5, 136, 92]. HRL convection

was first studied by Horton and Rogers [15] and Lapwood [16], who performed linear sta-

bility analysis aimed at identifying the critical conditions for the onset of convection in a

horizontally infinite porous layer. Beck [133] extended the linear stability analysis of these

pioneering studies to confined porous enclosures. Several numerical studies later confirmed

the multiplicity of convection solutions [129, 135, 128] at supercritical Rayleigh number

values. The results showed that, depending on the initial perturbation, different convection

patterns can occur and remain stable at a given Rayleigh number. A significant research
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activity has followed to identify these multiple convection solutions in HRL convection

[130, 5, 136, 92]. The bifurcation analysis of Riley and Winters [5] is one of the first sys-

tematic studies that characterized the different convection modes in a 2D saturated porous

cavity using methods developed for dynamical system theory. Recently, Henry et al. [92]

extended this work using a continuation technique for tracking the first four stable convec-

tion modes from the steady bifurcation point up to the corresponding oscillatory (Hopf)

bifurcation point of each mode.

The standard bifurcation analysis of HRL convection using linear stability analysis and

continuation techniques, is based on the assumption that the system is subjected to in-

finitesimal perturbations. These techniques enable the detection of bifurcation points and

smoothly track each stable convection mode over a range of Rayleigh number. The main

drawback, however, is that they only provide local information about the (range of) ex-

istence, and any possible co-existence of different convection modes. It is now well un-

derstood that multi-stable dynamical systems exhibit complex interactions, such as transi-

tion and switching between the dominant states. Therefore, knowing the local information

about their existence only provides a partial understanding of the overall behavior of a

multi-stable system [137, 138].

The main idea of this chapter is to apply a new approach for HRL Convection, which

not only provides the local information about the (co-)existence of different patterns, but

also, determines their relative stability as well as how the basin stability of these modes

contract or expands as the Rayleigh number varies. The strategy we are adopting here is

first to provide new experimental evidences on the transition from a single-cell to double-

cell convection mode in a 2D HRL problem. The transition happens at a Rayleigh number

at which both modes can co-exist as stable patterns, according to bifurcation analysis. In

order to explain the observed modal transtion, we perform a basin stability analysis [139] on

a 2D HRL convection. Menck et al. [139] showed how, in a multi-stable dynamical system,

the volume of an attractor’s basin, provides a universal measure for quantifying the degree
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of stability of a state to random perturbations. Thus, in addition to identifying the range

of existence of each mode, the resulting basin stability diagram carries information about

how the likelihood of finding each mode varies with the Rayleigh number; a dynamical

characteristic of HRL convection that cannot be inferred from bifurcation diagrams.

The chapter is organized as follows: the mathematical formulation of the HRL prob-

lem is introduced in section 5.2. Details on the experimental setup and the corresponding

experimental results bearing on the transition between modes are presented in Section 5.3.

We develop a basin stability analysis for HRL convection in Section 5.4.

5.2 Mathematical formulation

For an isotropic porous medium subjected to a uniform cold temperature TC from the top

boundary and hot temperature TH from the bottom surface, we choose H, αm/H , H 2/αm

and θ = (T−TC)/(TH−TC) as the dimensionless variables for lengths, velocity, time and

temperature, respectively, where H is the height of the porous layer, and αm = km/(ρc)f is

the effective diffusivity of the medium based on the stagnant thermal conductivity km and

fluid heat capacitance (ρc)f . The momentum and energy conservation equations take the

following dimensionless form in terms of the stream function ψ [1]:

∇2ψ = Ra · ∂θ
∂x
, (5.1)

∂θ

∂t
+ V · ∇θ = ∇2θ, (5.2)

where V = (u, v) = (−∂ψ/∂y , ∂ψ/∂x ) and Ra is the Rayleigh number defined as:

Ra =
gβ(TH − TC)KH

αmνf
, (5.3)
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where K is the isotropic permeability of the medium, νf is the kinematic viscosity of the

fluid, β is the thermal expansion coefficient, g is the gravitational acceleration. The ap-

propriate boundary conditions are constant temperature and zero flux for the horizontal and

vertical surfaces, respectively, while a no slip condition is applied at the surface of the solid:

ψ = 0, θ = 1, for y = 0, for all x , (5.4)

ψ = 0, θ = 0, for y = 1, for all x , (5.5)

ψ = 0,
∂θ

∂x
= 0, for x = 0, 1, for all y . (5.6)

In this chapter, we use the average-scale equations 5.1 and 5.2 for the basin stability

analysis of HRL convection in a square enclosure. For this purpose, a fast computational

algorithm is necessary for performing the Monte-Carlo simulations over a large number of

runs subjected to random initial conditions.

We rewrite the temperature equation based on the departure from the conduction state,

i.e. θnew = θ − (1 − y). This converts the non-homogeneous boundary condition at the

bottom surface to a homogeneous one. The dimensionless energy equation then becomes

(dropping the subscript for convenience):

∂θ

∂t
+ u

∂θ

∂x
+ v(

∂θ

∂y
− 1) = ∇2θ, (5.7)

where θ is now the deviation from the conduction state. This change of variable makes

the governing equations suitable for using a fast Poisson solver based on discrete Fourier

transforms. For the ψ field, we use a central finite difference scheme on space derivatives
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and treat the source term in 5.1 explicitly. The same procedure is used for the temperature

field by treating the advective terms in 5.7 explicitly and the diffusion term implicitly.

5.3 Experimental study

5.3.1 Experimental design

For the experimental study, we designed a pseudo-two dimensional experimental setup us-

ing a non-invasive visualization technique based on the Infrared (IR) thermography. A

schematic of the setup is shown in Figure 5.1. We perform the visualization of the temper-

ature field with a FLIR long-range IR (LWIR) thermal camera within a spectral range of

7.5 and 13 µm. The experimental domain consists of a 10 × 10 array of acrylic rods and

it is filled with 20 cSt silicone oil. The thermal conductivity of the silicone oil and acrylic

are 0.142 and 0.19 (W/m.K), respectively. The porosity is 0.5 and the size of the cell is

45 × 45 × 10 mm3. The domain is heated from below with power resistors and cooled

from the top with a thermoelectric module. Using copper plates with very high thermal

conductivity compared to acrylic and silicon oil at the bottom and top boundaries allows us

to assume a constant temperature boundary condition, which was tested continuously with

a set of K-type thermocouples attached to both copper plates. Additionally, a PID-based

temperature controller is used to control the temperature on the two horizontal plates.

The choice of 10 × 10 array is based on a detailed pore-scale numerical simulations

over a 2-dimensional domain (presented in Chapter 3) similar to the one shown in Figure

5.1. The pore-scale simulations show that, the average thermal behavior of a 10 × 10

pore-scale domain is analogous to a Darcian homogeneous porous medium and satisfies

the local thermal equilibrium assumption between the solid and fluid phases over the range

of Rayleigh number values considered here. Figure 5.2-(a) shows that the average Nusselt

number computed from the pore-scale 10 × 10 simulations, agrees with the average-scale

solution for both single and double cell convection modes. Panel (b) in Figure 5.2 also

shows that, increasing the resolution from 10× 10 to 20× 20 does not affect the simulated
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temperature profiles over the domain. We used the same lattice Boltzmann model and

calculated the Darcy number of the porous enclosure to be Da = K/H2 = 2.435× 10−5.

In the present pseudo-two-dimensional setup, we used thick insulating materials at the

side walls of the porous enclosure. The visulatization from the front side requires an IR-

transparent window while limiting the amount of heat loss from this side. For this pur-

pose, we use an amorphous material transmitting infrared radiation optic, also commer-

cially known as AMTIR, which has a low thermal conductivity of about 0.25 (W/mK). The

window is treated with Anti-Reflective (AR) coatings on both sides. In order to further

minimize the heat loss from the front side, two of these AMTIR optics of 2mm thickness

have been assembled to form a double-pane IR window (Figure 5.1 part (b)). The IR cam-

era reads the temperature field of the outermost layer of the convection cell which is in

contact with the IR optic. This comprises both the fluid phase and the solid blocks. The

contact between the square blocks with the IR optic was made with a thin (submilimeter)

layer of a thermally conductive paste.

Since the ratio of the convection cell depth to its height and width is 4.5 times smaller

than the frontal aspect ratio, i.e. 1, we can assume that, for the range of Rayleigh numbers

studied experimentally, the effects of the third dimension is relatively negligible. There-

fore, we can assume that the flow patterns are mostly 2-dimensional. The heat transfer

readings presented in the next section confirm this assumption. The amount of heat trans-

fer characterized by the average Nusselt number is calculated from the net electrical power

input:

Nu =
[net power input]
A · km(TH − TC)/H

, (5.8)

where A is the surface area of the bottom hot surface.
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(a) sketch of the cell

(b) side view

Figure 5.1: schematic of the experimental convection cell (not to scale); part (a) shows only
the fluid-filled area without the solid square rods for clarity.
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Figure 5.2: (a) comparison of heat transfer data between pore-scale simulations of 10× 10
solid blocks and average-scale solution of Henry et al. [92] for single- and double-cell
patterns, (b) horizontally-averaged temperatures of the pore-scale simulations for 10× 10,
15× 15 and 20× 20 solid blocks.

92



5.3.2 Experimental results

We conduct a series of experiments where we ramp up Ra by sequentially increasing the

temperature difference between the hot and cold plates and letting the system relax to reach

a steady-state at each step. At steady state, we record the average heat flux (Nu) and

flow patterns for each experiment. In other words, for each convection case, the initial

conditions are always the steady flow reached at the previous Rayleigh number. Figure 5.3

illustrates the observed steady patterns for several Rayleigh numbers shown as black and

white fringes. At Ra=32, which is under the critical value of 4π2, Figure 5.3-(a) shows

that heat conduction prevails, i.e. the isotherms are horizontal. The curvature in the lower

left part of the isotherms in Figure 5.3-(a) is due to a very small gap between the lower

left square acrylic rod and the IR optic, resulting in the imperfect horizontal isotherms in

that region. The maximum Rayleigh number explored is Ra=221, higher values have been

avoided due to the high bottom boundary temperature.

Taking a closer look at the steady-state patterns in Figure 5.3 reveals that the stable

mode is a single-cell pattern with a counter clockwise rotation for Ra=46-108. Then the

stable mode switches naturally from single-cell at Ra=108 to double-cell at Ra=119 which

remains the dominant mode for the rest of the Rayleigh numbers explored. The same

behavior has been observed when the Rayleigh number has been decreased from Ra=221

to Ra=46 with the transition point happening exactly at the same point and no signs of

hysteresis or triple-cell pattern were found.

In order to identify the point of transition more accurately, we applied a smaller heating

step at Ra=108 and recovered a single-cell mode at Ra=115. Further increase from Ra=115

to Ra=119 resulted in the transition from single-cell to double-cell convection. Figure 5.4

shows the snapshots of the reorganization of the convection cells from single- to double-

cell during the transition from Ra=115 to Ra=119. The step’s magnitude of ∆Ra = 4

was the minimum that could be reached in the current experimental setup and any effort to

recover the single-cell mode beyond Ra=115 led to the transition to double-cell pattern.
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We complemented this series of experiments with a different heating scenario. The

goal of this new set of experiments is to verify whether the point of transition is sensitive

to the magnitude of the applied thermal loading ∆Ra. Figure 5.5 presents the summary of

the results for both large and small heating size ∆Ra and reveals that, using a large ∆Ra

and starting off from the steady state pattern at Ra=52, leads to a single-cell convection

mode at Ra=108 and 115. The transition to double-cell mode occurs again at Ra=119,

similar to the case with small ∆Ra (see Figure 5.5(b)). The only observed difference in

the transition under small and large thermal loading ∆Ra is that, the former happens in a

significantly shorter time compared to the latter; i.e. about 3 hours compared to about 9

hours, respectively.

Figure 5.6 shows the comparison between the correlation of heat transfer data Nu and

the thermal forcing Ra in the experiments with those from the numerical solution offered

by Henry et al. [92] for HRL convection in a 2-D square container. The Ra at which

the change in modality of convection is experimentally observed to occur is marked by

an arrow. A good agreement is observed between the data points and the average-scale

solution of Henry et al. [92]. The main discrepancy occurs at higher Ra values where the

increase in the heat loss from the front-side of the setup with the double-pane window

becomes significant.

At the experimentally found transition point, the bifurcation analysis of HRL convec-

tion tells us that both single and double-cell patterns can co-exist [92]. However, natural

transition from single-cell to double-cell mode under different heating scenarios shows

that, although both modes are stable, they possess different extent of stability in the face of

random perturbations which is responsible for hopping from one stable pattern to another.

Therefore, the multiplicity of HRL convection calls for a new metric which characterizes

the relative stability of different stable patterns. The basin stability analysis of HRL con-

vection provides the details of this characteristic in the next section.
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(a) Ra=32 (b) Ra=46 (c) Ra=52 (d) Ra=68

(e) Ra=88 (f) Ra=98 (g) Ra=108 (h) Ra=119

(i) Ra=132 (j) Ra=144 (k) Ra=156 (l) Ra=168

(m) Ra=182 (n) Ra=190 (o) Ra=206 (p) Ra=221

Figure 5.3: steady-state patterns at different Ra.

Figure 5.4: Experimental snapshots (IR images) of transition from single-cell mode at
Ra = 115 (leftmost pattern) to double-cell mode at Ra = 119 (rightmost pattern).
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Figure 5.5: summary of transitional behavior from single-cell to double-cell in our experi-
ments; (a): large ∆Ra, (b) small ∆Ra.
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Figure 5.6: Nu measured experimentally for single- and double-cell modes; lines: average
scale solution based on Darcy-single temperature models of [92], symbols: experimental
data; The arrow shows the transition point between single-cell to double-cell pattern ob-
served experimentally.

96



5.4 Basin stability analysis of HRL convection

We use a basin stability analysis [139] for finding the relative stability of different convec-

tive modes when the system is subjected to random perturbations. Basin stability analysis

links the volume of the basin of attraction in a multi-stable system to the likelihood of

finding the system under a certain steady-state [139].

The detailed continuum-scale bifurcation analysis of Henry et al. [92] shows that the

first four modes in HRL convection are stable below Ra=382.93. In this section, we extend

the results of Henry et al. [92] by not only providing the information about the range of ex-

istence, but also showing how the basin of attraction of each mode varies with the Rayleigh

number, and how this results in different probabilities of occurence.

To perform the basin stability analysis for HRL convection, it is necessary to calculate

the basin of attraction for each stable convective mode. A basin of attraction is the set of all

the points in the phase space, chosen as random initial conditions, which return the system

to a specific attractor. In realistic porous media, the factors influencing the final asymptotic

stable convective modes may originate from different sources, such as imperfect bound-

aries, uncertainties in thermo-physical properties, uncertainties in the initial conditions and

uncontrolled noises from the environment. In the present study, we focus on the contribu-

tion of random initial conditions on the selection of stable modes. As pointed out in Venturi

et al. [140], the complete formulation of initial perturbations in real physical systems in-

volves the incorporation of an infinite number of wave-modes, which makes the problem

computationally prohibitive. Here, since Equation 5.1 is a boundary value problem and that

fluid inertia is negligible, we assume that the initial perturbation applies only to the conduc-

tion solution of the temperature field and involves only a finite number n of wave-modes,

in the following form:
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θpert(x, y, t = 0) =
n∑
k=1

ak cos(kπx) sin(πy), (5.9)

where ak ∈ [−1, 1] is a random variable based on a uniform probability distribution. We

consider multiple values for the number of wave-modes n to investigate how different

modes in the initial perturbation contribute to the asymptotic final stable state within the

range of Ra studied here.

The basin stability at a given Rayleigh number is computed using the continuum-scale

Equations (5.1) and (5.7) with homogeneous boundary conditions and subjected to random

initial perturbations defined as in Equation 5.9. We determine the basin stability (or equiv-

alently the probability of occurrence) of each mode by counting their relative proportion of

realizations that led to a given cell pattern under steady conditions.

Figures 5.7-5.9 show the basin of attraction of different convective modes. In these

Figures, a1 to a4 are the prefactors of the first four wave-modes indicating the relative con-

tribution of each in the initial perturbation field in Equation 5.9. The basins of attraction at

Ra=100 shown in Figure 5.7 clearly illustrate that, although single- and double-cell modes

coexist at this Rayleigh number, the first convective mode possesses a larger basin of at-

traction. However, Figure 5.8 shows how the basin of attraction of the first mode shrinks

considerably in size, as the Rayleigh number increases from 100 to 150. We observe that

for Rayleigh number values 100 and 150, only the first and second convectives modes are

stable, which is consistent with the bifurcation analysis of Henry et al. [92]. Also, the basin

of attractions in Figures 5.7 and 5.8 show a strong dependency of the stable convection

mode on the prefactors a1 and a2, and a weak dependency on a3 and a4. This behavior,

however, changes for Ra = 250, where the triple cell mode emerges, as shown in Figure

5.9, and a3 impacts the mode selection process.

Figures 5.7-5.9 illustrate that the coexistence of the single-, double-, and triple-cell

98



modes is accompanied by a large difference in the size of the corresponding basin of at-

traction, and that the relative size of the basins of attraction is a strong function of the

Rayleigh number. We compare the relative size (volume) of the basins of attraction of each

mode to the total size of the basin, which provides a measure for the likelihood of finding

a convective mode at a certain Rayleigh number [139].

Figure 5.10(a) shows the probability of formation of the first and second convection

modes based on the number of wave-modes n=2 and 4 in Equation 5.9. There is only

a slight difference between considering n=2 and 4 in the initial perturbation. In order to

show the role of higher-order wave-modes, the probability of each mode is shown in Figure

5.10(b) for a wide range of Rayleigh numbers. The figure shows that increasing the number

of wave-modes from n=4 to 10 has an insignificant effect on the probability trends. In

other words, higher order wave-modes have smaller contribution on the steady-state stable

convection mode over this range of Rayleigh numbers. The overall number of realizations

conducted at each Rayleigh number is chosen so as to provide statistically robust results (at

least 50000 realizations, see Figure 5.11).

The steady bifurcation points for the first four stable convective modes in the basin

stability diagram of Figure 5.10(b) agree well with the bifurcation analysis (Table 3 in

Henry et al. [92]). However, according to the basin stability diagram of Figure 5.10(b), the

domains of co-existence of multiple modes are strongly influenced by their respective basin

stability. For example, the probability of finding the first convection mode drops suddenly

as the double-cell mode emerges and in fact, it falls below 10% for Ra & 200. At the

same time, the formation of double convection becomes more likely and at Ra ∼ 112, it

overtakes the single-cell mode and remains stochastically the most probable mode for a

wide range of Rayleigh number starting from Ra ' 120. Regarding the triple-cell mode,

we observe from Figure 5.10(b) that, the probability of finding the triple-cell mode is less

than 10% for Ra . 210, beyond which, it increases considerably up to Ra ' 315. On

the other hand, Figure 5.10(b) informs us that the probability of occurence of the four-cell
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Figure 5.7: Basins of attraction for 1st and 2nd convective modes based on superposition of
4-modes in initial perturbation, Ra = 100.
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Figure 5.8: Basins of attraction for 1st and 2nd convective modes based on superposition of
4-modes in the initial perturbation, Ra = 150.

mode remains below 1% from it’s steady bifurcation point at Ra ' 263.7 (consistent with

the bifurcation analysis of Henry et al. [92]) up to the maximum Rayleigh number studied

here. Therefore, the present bifurcation diagram clearly shows that the sole knowledge

of the range of (co)-existence of different modes in the multi-stable HRL convection only

provides a partial understanding about the complex dynamics of the system.

The star symbols in Figure 5.10(b) show the Rayleigh number where we experimentally

observed the transition from single-cell mode to double-cell pattern. The transition point

inferred experimentally agrees well with the point where the double-cell mode becomes

stochastically preferred over the single-cell mode. For Rayleigh numbers beyond the tran-

sition point, we observed experimentally that the double-cell pattern remains the dominant

mode, which is consistent with the basin stability diagram.
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Figure 5.9: Basins of attraction for 1st, 2nd and 3rd convective modes based on superposi-
tion of 4-modes in the initial perturbation, Ra = 250.
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Figure 5.10: Basin stability diagrams: (a): effect of the first 2 wave-modes (lines) and
4 wave-modes (line-symbols) on the probability of formation; 1st mode: (—, − ◦ −),
2nd mode: (· −,· · · �), (b) effect of the first 4 wave-modes (lines) and 10 wave-modes
(symbols) on the probability of formation; 1st mode: (—,�), 2nd mode: (−−,◦), 3rd mode:
(· −,�), 4th mode: (· · · ,M); The stars show the experimentally observed transition point
from single-cell to double-cell pattern.
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Figure 5.11: Variation of probability of occurrence with the number of realizations; 1st

mode: (—), 2nd mode: (−−), 3rd mode: (· −), 4th mode: (· · · ).
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5.5 Summary

The present study investigates the basin stability analysis of Horton-Rogers-Lapwood con-

vection in porous media. The resulting basin stability diagram provides information on

the relative stability of different steady convection modes. The results show that, although

different modes co-exist over a given range of Rayleigh number, their probability of occur-

rence varies with Rayleigh number as the relative size of their basin of attraction grows or

decreases. Experiments confirm that the transition from single to double cell convection

patterns occurs when the size of the respective stability basins crossover. The numerical

study of Schubert and Straus [129] confirmed that the prefered convective pattern does

not necessarily maximize the heat transfer. The present study further suggests that, under

random perturbations/noise, the most likely patterns to emerge are the ones that have the

greater basin at that Rayleigh number. Figure 5.12 compares the transtion points from the

present basin stability analysis and experimental observations with the patterns that would

maximize the heat transfer (refer to Figure caption for details). This comparison confirms

that, while the transition point predicted by the basin stability analysis agrees well with

the one observed experimentally, the transition point based on the maximization of heat

transfer occurs at a higher Rayleigh number.
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Figure 5.12: Transition points from single-cell to double cell mode; horizontal arrows
showing the experimentally observed patterns; colored regions indicate the stochastically
prefered patterns; the vertical dashed line shows the transition point based on the maxi-
mization of heat transfer.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

6.1 Conclusions

In the present thesis, several issues relevant to buoyancy-driven thermal convection in

porous media were addressed. We developed theoretical, numerical and experimental

methods to study the Horton-Rogers-Lapwood convection. In contrast to previous studies,

our approach was based on a pore-scale perspective. We establieshed a multi-scale frame-

work, which benefits from the insights gained from our pore-scale analysis for developing

a consistent upscaled model for HRL convection.

The work contained in Chapters 2 and 3 was concerned primarily with the numerical

aspect of our multi-scale framework. In Chapter 2, we developed the computational tool

required for our pore-scale analysis. The inherent thermophysically heterogeneous nature

of a porous medium required a new computational model, which can handle the interfacial

interactions between the solid and fluid phases correctly. For this purpose, we developed

a new thermal lattice Boltzmann (LB) model for studying heat transfer in heterogeneous

media. In contrast to previously available thermal LB models, our approach was based

on retrieving the correct conservative form of the energy equation. This offered a huge

computational advantage for pore-scale modeling of HRL convection, since it does not

require any specific boundary treatment at the interface of the solid and fluid phases. We

validated the reliablity of our LB model with several heat transfer problems under both

steady-state and transient conditions.

In Chapter 3, we performed a pore-scale analysis of HRL convection over 2-dimensional

porous domains. The goal was to evaluate the underlying assumptions behind the available

upscaled thermal models for HRL convection by comparing their predictions with the re-
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sults from our pore-scale analysis. For the first time, we quantified the level of thermal

disequilibrium between the solid and fluid phases and assessed the role of thermophysical

heterogeneties on the thermal behavior of HRL convection. Our pore-scale results revealed

that, as opposed to the arguments reported in previous studies, the observed deviations for

lower Nusselt values and shift in the onset of convection are not due to the lack of thermal

equilibrium between the solid and fluid phases. We showed that these deviations originate

from the thermophysical heterogeneities in HRL convection, resulting in the emergence of

a new type of thermal dispersion not previously taken into account.

We used this insight from our pore-scale results and proposed a new upscaled energy

model for HRL convection in Chapter 4. The proposed model is based on a fractional-

order advective term, which models the influence of thermal heterogeneities in a flexible

and consistent way. We performed a linear stability analysis and showed that the pro-

posed fractional-order energy model successfully models the shift in the onset of convec-

tion caused by the thermophysical heterogeneities. We provided a closed-form analytical

formula for the critical Rayleigh number of the fractional-order model and verified the

predicted values with numerical solutions of the complete coupled nonlinear governing

equations. We further investigated the thermal beahvior of our fractional-order model for

Rayleigh numbers beyond the onset of convection. We calculated the corresponding Nus-

selt number for different values of the model parameters, and showed that the different

Nusselt-Rayleigh scalings that we observed in pore-scale calculations can be consistently

modeled by the proposed frcational-order model.

In Chapter 5, we used a combination of theoretical and experimental approaches to pro-

vide a new insight into the cause of the commonly observed kink in the Nusselt-Rayleigh

curve. We calculated a new metric, namely basin stability, for quantifying the respective

stability of coexisting convection modes and transition in convection patterns. The transi-

tion predicted by the basin stability analysis agrees well with the experiments from our IR

thermography visualization setup. For the first time, we provided a basin stability diagram
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for HRL convection, which not only informs us about the (co)existence of stable patterns,

but also provides a quantitative measure about the relative probability of formation of dif-

ferent stable modes in HRL convection.

6.2 Recommendations for Future Directions

In different parts of this research, we have arrived at results that deserve further investiga-

tion.

In Chapter 2, the method we propose for treating conjugate boundary conditions with

the lattice Boltzmann method is based on a finite-difference approximation. One important

future direction would be to extend this approach and propose a thermal lattice Boltzmann

model which benefits from recovering the conservative form of the energy equation through

the derivation of a new equilibrium distribution function. A great computational advantage

would then come from the fully local nature of the resulting lattice Boltzmann model,

compared with the present finite-difference based approximation.

In Chapter 3, our pore-scale analysis of HRL convection was focused on the role of

thermophysical heterogeneities on the thermal behavior of HRL convection at Rayleigh

numbers around the critical value at the onset of convection (with stationary convective

modes). Since the present research is one of the first studies to systematically investigate

HRL convection from the pore-scale perspective, several important future directions can be

defined.

• HRL convection in engineering and natural systems often takes place at higher values

of Rayleigh number, mainly in the (non-stationary) periodic and chaotic regimes.

How can the thermophysical heterogeneities influence the thermal behavior of HRL

convection at those higher Rayleigh values? More specifically, how will the Nusselt-

Rayleigh scaling change as we move toward higher Rayleigh values?

• We only considered three thermal conductivity ratios in the present thesis. Perform-
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ing a similar pore-scale analysis for several other values of thermal conductivity ra-

tios would provide a more complete set of pore-scale data points, which could be

used for verification purposes of any new upscaled models of HRL convection.

• The effect of the microstructure of the unit cell will be a challenging extension of

the present study. We only considered a uniform array of solid square blocks. How

the geometry of the solid blocks and their arrangements in the domain influence the

resulting thermal behavior? How sensitive is the dimensionless Nusselt-Rayleigh

scaling on the microstructure of the porous domain?

In Chapter 4, we showed that our proposed fractional-order upscaled energy equation

reproduces successfully the results obtained from the pore-scale simulations. We used an

inverse approach and found the numerical values of model parameters Cdis and α for the

three thermal conductivity ratios by using a least squares parameter estimation technique.

However, the direct relation between fractional transport parameters and pore scale dynam-

ics remains elusive.

• Can we design a pore-scale strategy for calculating Cdis and α for any given unit cell

or averaging volume, without resorting to perform curve-fitting over a large number

of pore-scale data points?

The novel experimental and theoretical approaches adopted in Chapter 5 offer the fol-

lowing important future directions:

• The pattern visualization experiments were limited to Rayleigh number below Ra '

220, where all the stable modes are stationary. Since our basin stability diagram of-

fers interesting features regarding the relative probability of different stable modes at

Rayleigh numbers higher than 220, it would be important to investigate how different

stable patterns compete in a real experiment. This would require a novel design of

the pattern visualization convection cell, with a proper combination of solid and fluid
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phases which would work up to higher temperature differences between the hot and

cold plate.

• Our basin stability diagram provides only the relative probability between the stable

stationary modes. Since in practical applications, periodic (non-stationary) modes

emerge at higher Rayleigh numbers, it would be important to extend the basin sta-

bility analysis to higher Rayleigh numbers and see how the co-existence of multiple

stationary and periodic modes influence the stochastic dynamics of HRL convection

under random initial perturbations.

• The basin stability analysis was limited to solid-to-fluid thermal conductivity ratio 1,

where the classical formulation of HRL convection applies. A natural question would

be: How will the presence of thermophysical heterogeneities influence the relative

probability of formation of different stable modes? In other words, what would the

basin stability diagram of the proposed fractional-order energy equation look like?

108



Appendices

109



APPENDIX A

LINEAR STABILITY ANALYSIS OF LTNE MODELS

In this section, we provide a comprehensive linear stability analysis of LTNE-1 and LTNE-

2 models. Banu and Rees [141] were the first to investigate the effect of local thermal

disequilibrium on the onset of convection with the LTNE-1 model (Eqs. 3.14 and 3.15).

They showed that for finite values of h, the onset of convection deviates significantly from

the classical value of 4π2. As h →∞, LTNE recovers LTE and satisfies the classical value

4π2. However, the definition of the critical Rayleigh number used in their study (Eq. (11)

and Figure (3) in Banu and Rees [141]) is based on a volumetric average for the effective

thermal conductivity km,max = ϕkf + (1−ϕ)ks. As discussed earlier, the stagnant thermal

conductivity is generally significantly lower than this value. The original derivation of

the critical Rayleigh number 4π2 is based on the true stagnant thermal conductivity of the

medium and so is the common Nu*-Ra* correlation. For these reasons, we decided to

conduct the linear stability analysis on model LTNE-2 (Eqs. 3.16 and 3.17), and we will

find that LTNE-1 model corresponds to a special case of that more general analysis. In

order to have a consistent set of formulations for the stability analysis, we rewrite LTNE-

1 and LTNE-2 models in the following general form (assuming that kdis at the onset of

convection can be considered uniform):

ϕ(ρc)f
∂Tf

∂t
+ (ρc)fq · ∇Tf = kff∇2Tf + kfs∇2Ts + h(Ts − Tf ) (A.1)

(1− ϕ)(ρc)s
∂Ts

∂t
= kss∇2Ts + ksf∇2Tf − h(Ts − Tf ) (A.2)
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For the LTNE-1 model, the thermal conductivities are defined as:

kff = ϕkf

kfs = ksf = 0

kss = (1− ϕ)ks

(A.3)

while for the LTNE-2 model, they are defined as:

kff = ϕkf + Gkf + kdis

kfs = ksf = −Gks

kss = (1− ϕ)ks + Gksκ

(A.4)

We define the following dimensionless variables:

t∗ = t
αm
H2ϕ

, (u, v)∗ = (qx, qy)
∗ H

αm

(x, y)∗ = (x, y)
1

H
,

θs =
Ts − Tc
Th − Tc

, θf =
Tf − Tc
Th − Tc

(A.5)

We can recast equations 3.12, A.1 and A.2 with the stream function ψ and normalize

lengths, velocity, time and temperature based on the dimensionless variables in Eq. A.5 to

retrieve the following dimensionless governing equations:

∇2ψ = Ra∗ · ∂θf
∂x

(A.6)

∂θf
∂t

+ V · ∇θf = γ∇2θf + σ∇2θs +H(θs − θf ) (A.7)

∂θs
∂t

= ηλ∇2θs + σλ∇2θs −H(θs − θf ) (A.8)
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where

γ =
kff
km

, η =
kss
km

, σ =
ksf
km

=
kfs
km

H =
Hh2

km
λ =

ϕ

1− ϕ
(ρc)f
(ρc)s

V = (u, v) = (−∂ψ
∂y
,
∂ψ

∂x
)

(A.9)

and Ra* is defined as:

Ra∗ =
ρgβ∆TKH

νfαm
(A.10)

which is now based on true αm, as opposed to the modified Rayleigh number based on

km,max = ϕkf + (1− ϕ)ks. We follow the same procedure as Banu and Rees [141] for the

linear stability analysis. The basic solution (conductive state) has the following form:

ψ = 0, θf = θs = 1− y (A.11)

which is perturbed and becomes:

ψ = Ψ, θf = 1− y + Θf , θs = 1− y + Θs (A.12)

Inserting this expression into Eqs. A.6-A.8 and linearizing the nonlinear advective terms

gives the following set of linearized equations:

∇2Ψ = Ra∗ · ∂Θf

∂x
(A.13)

∂Θf

∂t
= γ∇2Θf + σ∇2Θs −

∂Ψ

∂x
+H(Θs −Θf ) (A.14)
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∂Θs

∂t
= ηλ∇2Θs + σλ∇2Θs −H(Θs −Θf ) (A.15)

We can assume the following solution form for the velocity and temperature fields:

Ψ = A1 sinnπy sinmπx,

Θf = A2 sinnπy cosmπx,

Θs = A3 sinnπy cosmπx

(A.16)

where m and n are the horizontal and vertical cell numbers, respectively. Inserting these

expressions in the linearized governing equations yields:


m2π2 + n2π2 Ra∗mπ 0

mπ γ(m2π2 + n2π2) +H σ(m2π2 + n2π2)−H

0 σλ(m2π2 + n2π2)−Hλ ηλ(m2π2 + n2π2) +Hλ

×

A1

A2

A3

 =


0

0

0


The critical Rayleigh number Ra∗ can then be found by setting the determinant of the

matrix to zero:

Ra∗ =
π2(m2 + n2)2

m2

[(m2π2 + n2π2)(γη − σ2) +H(γ + η + 2σ)]

[η(m2π2 + n2π2) +H]
(A.17)

Equation A.17 can now be used for analyzing both LTNE models at the onset of

convection. By setting σ = 0, equation A.17 recovers the stability behavior of LTNE-

1 model. First, by temporarily setting km to be equal to the upper limit value namely

km,max = ϕkf + (1 − ϕ)ks, our analysis should recover the results from Banu and Rees

[141]. This is shown in Fig. A.1 where we observe that the critical Rayleigh number for the

onset of convection is always lower than the classical 4π2 value for the whole range of nor-

malized inter-phase heat transfer coefficient H. The true stagnant thermal conductivity of
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Figure A.1: Recovering the results of Banu and Rees [141] for km = φkf + (1 − φ)ks in
LTNE-1 model

the porous medium takes values lower than this upper limit, whose effect is to raise the crit-

ical Rayleigh number at the LTE limit, which has been shown in Fig. 3.2-(a). Comparing

Figures A.1 and 3.2-(a) shows the fact that correcting the value of the stagnant thermal con-

ductivity from the upper limit value of km,max to the correct value km significantly changes

the value of the critical Rayleigh number.
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APPENDIX B

SECOND APPROXIMATION GALERKIN SOLUTION

For the second order approximation, the trial functions take the following form:

Ψ = a11 sin(πx) sin(πy) + a21 sin(2πx) sin(πy) + a12 sin(πx) sin(2πy) + a22 sin(2πx) sin(2πy),

Θ = b11 cos(πx) sin(πy) + b21 cos(2πx) sin(πy) + b12 cos(πx) sin(2πy) + b22 cos(2πx) sin(2πy).

(B.1)

We first insert the trial functions B.1 in the linearized perturbed equations 4.20 and 4.21

to develop the residual equations. We then orthogonalize the residual equations to solve the

associated 8×8 generalized eigenvalue problem. The first four equations from the velocity

equation are as follows:

(m2 + n2)π2amn = mπRabmn, m, n = 1, 2. (B.2)

And the resulting four equations from the energy equation become:

−bk,l
(k2 + l2)π2

4
+

Cdis
Γ(1− α)

2∑
m=1

2∑
n=1

nπamn

∫ 1

0

∫ 1

0

(1− y)x−α(sin(mπx) cos(nπy))(cos(kπx) sin(lπy))dxdy

− Cdis
Γ(1− α)

akl
kπ

2

∫ 1

0

y−α sin(lπy)2dy +
Cdis

Γ(2− α)
akl
kπ

2

∫ 1

0

y−α+1 sin(lπy)2dy = 0, k, l = 1, 2.

(B.3)

The set of equations in B.2 and B.3 results in an 8× 8 generalized eigenvalue problem.

We use a global search minimization algorithm which identifies the smallest eigenvalue

corresponding to the critical Rayleigh number for any set of parameters Cdis and α.
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APPENDIX C

NOTATION LIST FOR CHAPTER 3

A cross-sectional area of the porous domain

c specific heat

d square solid block dimension

Da dimensionless Darcy number

g gravitational acceleration (9.8 m2/s)

G tortuosity parameter used in calculating km

h interface heat transfer coefficient in LTNE models

H height of the porous domain

H dimensionless interface heat transfer coefficient in LTNE models

kdisp dispersive thermal conductivity

kf thermal conductivity of fluid phase

km stagnant thermal conductivity of porous domain

ks thermal conductivity of solid phase

K permeability of porous domain

m horizontal convective wave-mode in linear stability analysis

n exponent in kdisp

n normal to solid-fluid interface

Nu∗ average Nusselt number for porous domain

P pressure

q seepage velocity (Darcy flux)

Ra∗ porous Rayleigh number

Ra∗cr critical porous Rayleigh number
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T temperature

Tf average fluid temperature

TC cold surface temperature

TH hot surface temperature

Ts average solid temperature

u pore-scale velocity

V volume of the unit cell

W width of the porous domain

α thermal diffusivity

β thermal expansivity

ρ density

κ ks/kf

ϕ porosity

µ dynamic viscosity

ν kinematic viscosity (µ/ρ)

Γ porous domain aspect ratio (H/W )

∆T temperature difference across the porous domain (TH − TC)

< . > average values over unit cell
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APPENDIX D

NOTATION LIST FOR CHAPTER 4

c specific heat

Cdis dimensionless dispersive coefficient

Ĉdis dispersive coefficient

d size of porous enclosure

g gravitational acceleration (9.8 m2/s)

H characteristic height of the porous enclosure

kdis dispersive thermal conductivity

km stagnant thermal conductivity of porous domain

K permeability of porous domain

Nu average Nusselt number for porous domain

P pressure

Ra porous Rayleigh number

Racr critical porous Rayleigh number

T temperature

Th temperature of hot boundary

Tc temperature of cold boundary

Tref reference temperature used in Boussinesq approximation

u Darcy-scale velocity in x−direction

v Darcy-scale velocity in y−direction

V velocity vector (u, v)

α fractional-derivative order

αm thermal diffusivity of porous domain
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β thermal expansivity

ρ density

µ dynamic viscosity

ν kinematic viscosity (µ/ρ)

ψ stream function

θ dimensionless temperature

Θ perturbation in temperature field θ

Ψ perturbation in ψ field

Γ Gamma function

∆T temperature difference between hot and cold boundaries (Th − Tc)

∆x spatial grid size

ω coefficients in Grünwald-Letnikov definition
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APPENDIX E

NOTATION LIST FOR CHAPTER 5

A surface area of hot surface

c specific heat

Da Darcy number (K/H2)

g gravitational acceleration (9.8 m2/s)

H characteristic height of the porous enclosure

km stagnant thermal conductivity of porous domain

K permeability of porous domain

Nu average Nusselt number for porous domain

P pressure

Ra porous Rayleigh number

Racr critical porous Rayleigh number

T temperature

TH temperature of hot boundary

TC temperature of cold boundary

Tref reference temperature used in Boussinesq approximation

u Darcy-scale velocity in x−direction

v Darcy-scale velocity in y−direction

V velocity vector (u, v)

αm thermal diffusivity of porous domain

β thermal expansivity

ρ density

µ dynamic viscosity
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ν kinematic viscosity (µ/ρ)

ψ stream function

θ dimensionless temperature

∆T temperature difference between hot and cold boundaries (TH − TC)
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