Andrei Krokhin - Submodularity and The Complexity of CSP

Submodularity and the Complexity of Constraint Satisfaction

Andrei Krokhin Durham University, UK

Three Well-Known Problems

k-SAT: is a given k-CNF formula satisfiable?

$$F = (\neg x \lor y \lor \neg z) \land (x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z)$$

Linear Equations: does a given system of linear equations have a solution in the fixed field K?

$$\begin{cases} 2x + 2y + 3z = 1\\ 3x - 2y - 2z = 0\\ 5x - y + 10z = 2 \end{cases}$$

Graph k-colouring: given a graph, can its vertices be coloured with k colours so that adjacent vertices are different colour?

Valued Constraints

- D a fixed finite set with |D| > 1;
- $R_D^{(m)} = \{ f \mid f : D^m \to \mathbb{Q}_+ \cup \{\infty\} \}, \ R_D = \bigcup_{m=1}^{\infty} R_D^{(m)}.$

Definition 1 A valued constraint over a set of variables $V = \{x_1, x_2, ..., x_n\}$ is an expression of the form $f(\mathbf{x})$ where

- $f \in R_D^{(m)}$ is the constraint (cost) function,
- $\mathbf{x} = (x_{i_1}, \ldots, x_{i_m})$ the constraint scope.

Interpretation: when assigning values to the variables, say $\varphi(x_i) = a_i$, the constraint incurs a cost of $f(a_{i_1}, \ldots, a_{i_m})$.

Valued Constraint Satisfaction Problem

VCSP

- Instance: A collection $f_1(\mathbf{x}_1), \ldots, f_q(\mathbf{x}_q)$ of valued constraints over $V = \{x_1, \ldots, x_n\}$, possibly with weights $w_i \in \mathbb{Q}_+$ $(1 \le i \le q)$.
- **Goal:** Find an assignment $\phi: V \to D$ that minimises the total cost; in other words, minimise the function $f: D^n \to \mathbb{Q}_+ \cup \{\infty\}$ defined by

$$f(x_1,\ldots,x_n) = \sum_{i=1}^q w_i \cdot f_i(\mathbf{x}_i).$$

Special Cases

Let $f(x_1, \ldots, x_n) = \sum_{i=1}^q w_i \cdot f_i(\mathbf{x}_i)$ be an instance of VCSP

• If $\operatorname{Im}(f_i) \subseteq \{0, \infty\}$ for all i, we get CSP

- think "0 = satisfied" — can one satisfy all $f_i(\mathbf{x}_i)$?

- If $\text{Im}(f_i) \subseteq \{0, 1\}$, we get MAX CSP
 - want to satisfy maximum number of $f_i(\mathbf{x}_i)$

- will use notation $P_D = \{g \in R_D \mid \operatorname{Im}(g) \subseteq \{0, 1\}\}$

- This talk $\operatorname{Im}(f_i) \subseteq \mathbb{Q}_+$ no infinite values
 - minimisation of "weakly separable" functions

- will use notation $Q_D = \{g \in R_D \mid \operatorname{Im}(g) \subseteq \mathbb{Q}_+\}$

Parameterisation of VCSP

For a finite set $\Gamma \subseteq R_D$ (called a constraint language), VCSP(Γ) consists of all VCSP instances in which all constraint functions f_i belong to Γ .

Example 1 Let $D = \{0, 1\}$ and let $\Gamma = \{neq\}$ where neq(x, y) = a if $x \neq y$ and neq(x, y) = b (> a) otherwise. Then VCSP(Γ) is precisely MAX CUT.

Indeed, for a graph G = (V, E) with $V = \{x_1, \ldots, x_n\}$, computing maximum cut is the same as minimising

$$f(x_1,\ldots,x_n) = \sum_{e=(x_i,x_j)\in E} neq(x_i,x_j).$$

A Complexity Classification Project

How does the complexity of $VCSP(\Gamma)$ depend on Γ ?

- Sets Γ vary enormously
- Dichotomic tendency: either tractable or **NP**-hard
- Goal: identify all the tractable cases
- Goal: find a unified explanation of the tractability
- Goal: identify seeds of hardness/intractability
- Want: BIG PICTURE
- A lot of activity, powerful theory, strong results

Important Technicality: Core

Definition 2 A constraint language Γ is a core if, for any $a \in D$, there is an instance I of $VCSP(\Gamma)$ such that each optimal solution to I assigns a to some variable.

Intuition: if Γ is not a core then there is $a \in D$ such that each instance of VCSP(Γ) has an optimal solution not involving a, so VCSP(Γ) reduces to a similar problem over a smaller domain.

Example 2 For |D| = 2, Γ is not a core iff there is $a \in D$ such that $f(a, \ldots, a) \leq f(x_1, \ldots, x_n)$ for all $f \in \Gamma$. In this case VCSP(Γ) is trivial.

The Boolean Case: Submodularity!

Let $D = \{0, 1\}$. A function $f : D^n \to \mathbb{Q}_+$ is submodular iff

 $f(\mathbf{a} \vee \mathbf{b}) + f(\mathbf{a} \wedge \mathbf{b}) \le f(\mathbf{a}) + f(\mathbf{b})$ for all $\mathbf{a}, \mathbf{b} \in D^n$.

Clearly, if Γ consists of submodular functions then $VCSP(\Gamma)$ is tractable (because SFM is tractable).

Theorem 1 (Cohen, Cooper, Jeavons, AK '06) Let $D = \{0, 1\}$ and let $\Gamma \subseteq Q_D$ be a core. If each $f \in \Gamma$ is submodular then $VCSP(\Gamma)$ is tractable. Otherwise, $VCSP(\Gamma)$ is NP-hard.

More Submodularity

Submodularity can be extended to any finite D with a fixed total order (to define \lor and \land). Again, if Γ consists of submodular functions then VCSP(Γ) is tractable.

Theorem 2 (Jonsson, Klasson, AK '06) Let |D| = 3 and let $\Gamma \subseteq P_D$ be a core. If there is a total order ρ on D such that each $f \in \Gamma$ is submodular wrt ρ then $\operatorname{VCSP}(\Gamma)$ is tractable. Otherwise, it is **NP**-hard.

Theorem 3 (Kolmogorov, Živný '11) Let D be any finite set and let $P_D^{(1)} \subseteq \Gamma \subseteq Q_D$. If there is a total order ρ on D such that each $f \in \Gamma$ is submodular wrt ρ then VCSP(Γ) is tractable. Otherwise, it is **NP**-hard.

Submodularity-Like Conditions

Modify \lor and \land , using some additional structure on D

- Bisubmodularity/Directed Submodularity (Qi)
 - $-D = \{-1, 0, 1, \}$ with order -1 > 0 < 1
 - $1 \vee_0 -1 = -1 \vee_0 1 = 0$ and $x \vee_0 y = \max(x, y)$ o/w
 - $-1 \wedge_0 -1 = -1 \wedge_0 1 = 0$ and $x \wedge_0 y = \min(x, y)$ o/w
- L^{\natural} -convexity (Murota)
- Submodularity on a tree (Kolmogorov)
- Submodularity on a lattice/poset (Topkis)
- Submodularity in a bush (Madeup)

Multimorphisms

Definition 3 A tuple $\mathbf{F} = \langle F_1, \ldots, F_k \rangle$ of operations $F_i : D^m \to D$ is called a multimorphism (MM) of $f \in R_D^{(n)}$ if, for all $\mathbf{a}_1, \ldots, \mathbf{a}_m \in D^n$,

$$\frac{1}{k}\sum_{i=1}^{k}f(F_i(\mathbf{a}_1,\ldots,\mathbf{a}_m)) \leq \frac{1}{m}\sum_{j=1}^{m}f(\mathbf{a}_j).$$

In this case, one also says that \mathbf{F} improves f.

- $f \in Q_{\{0,1\}}$ is submodular iff f has MM (\min, \max) .
- $f \in Q_{\{-1,0,1\}}$ is bisubmodular iff f has MM $\langle \wedge_0, \vee_0 \rangle$.
- $f \in Q_{Z_p}$ is L^{\natural} -convex iff f has MM $\langle \lfloor \frac{x+y}{2} \rfloor, \lceil \frac{x+y}{2} \rceil \rangle$.

1-Defect Chain MM

Let \leq be a total order on D. A 1-defect chain is obtained from \leq by removing one pair (a, b) such that $a \prec b$.

A pair of operations $\langle \sqcup, \sqcap \rangle$ is a 1-defect chain MM if

- $x \sqcap y = \min(x, y)$ and $x \sqcup y = \max(x, y)$ whenever $\{x, y\} \neq \{a, b\}$
- $a \sqcap b < a \sqcup b$ and $\{a \sqcap b, a \sqcup b\} \cap \{a, b\} = \emptyset$

Bisubmodularity: $D = \{0 < 1 < -1\}$ and (a, b) = (1, -1)

Theorem 4 (Jonsson, Kuivinen, Thapper '11) Let |D| = 4 and let $\Gamma \subseteq P_D$ be a core. If Γ is submodular on some chain or has 1-defect chain MM then $VCSP(\Gamma)$ tractable. Otherwise, it is **NP**-hard.

Generalisation: Fractional Polymorphisms

Definition 4 For $1 \le i \le k$, let $0 \le \alpha_i \le 1$, $\sum_{i=1}^k \alpha_i = 1$. A tuple $\mathbf{F} = \langle (\alpha_1, F_1), \dots, (\alpha_k, F_k) \rangle$ of pairs with $F_i : D^m \to D$ is called a fractional polymorphism (FP) of a function $f \in R_D^{(n)}$ if, for all $\mathbf{a}_1, \dots, \mathbf{a}_m \in D^n$.

$$\sum_{i=1}^{k} \alpha_i \cdot f(F_i(\mathbf{a}_1, \dots, \mathbf{a}_m)) \le \frac{1}{m} \sum_{j=1}^{m} f(\mathbf{a}_j)$$

In this case, one also says that \mathbf{F} improves f.

- Each MM is an FP (with all $\alpha_i = 1/k$)
- If **F** improves each function in Γ then it also improves each instance $f = \sum_{i=1}^{q} w_i \cdot f_i(\mathbf{x}_i)$ of VCSP(Γ).

Example: α **-Bisubmodularity**

Recall bisubmodularity MM:

- $D = \{-1, 0, 1, \}$ with order -1 > 0 < 1
- $1 \vee_0 -1 = -1 \vee_0 1 = 0$ and $x \vee_0 y = \max(x, y)$ o/w
- $1 \wedge_0 -1 = -1 \wedge_0 1 = 0$ and $x \wedge_0 y = \min(x, y)$ o/w

Can also define

•
$$1 \vee_1 - 1 = -1 \vee_1 1 = 1$$
 and $x \vee_0 y = \max(x, y)$ o/w

Definition 5 For $0 < \alpha \leq 1$, a function $f \in Q_D$ is called α -bisubmodular if it has $FP\left(\left(\frac{1-\alpha}{2}, \vee_1\right), \left(\frac{\alpha}{2}, \vee_0\right), \left(\frac{1}{2}, \wedge_0\right)\right)$, i.e.

 $(1 - \alpha) \cdot f(\mathbf{a} \vee_1 \mathbf{b}) + \alpha \cdot f(\mathbf{a} \vee_0 \mathbf{b}) + f(\mathbf{a} \wedge_0 \mathbf{b}) \le f(\mathbf{a}) + f(\mathbf{b}).$

FPs in Control of Complexity

Theorem 5 (Cohen, Cooper, Jeavons '06) Let $\Gamma_1, \Gamma_2 \subseteq Q_D$ be finite. If each FP of Γ_1 is an FP of Γ_2 then $VCSP(\Gamma_2)$ poly-time reduces to $VCSP(\Gamma_1)$.

Corollary 1 If $\Gamma_1, \Gamma_2 \subseteq Q_D$ are finite and have exactly the same FPs then $VCSP(\Gamma_1)$ and $VCSP(\Gamma_2)$ are equivalent.

- Actually, FPs control expressive power of Γ
- Classification can definitely be stated in terms of FPs
- Which FPs guarantee tractability?

1-Approximate Polymorphisms

Definition 6 For $1 \le i \le k$, let $0 \le \alpha_i \le 1$, $\sum_{i=1}^k \alpha_i = 1$. A tuple $\langle (\alpha_1, F_1), \dots, (\alpha_k, F_k) \rangle$ with $F_i : D^m \to \text{Distr}(D)$ is called a 1-approximate polymorphism (1-AP) of a function $f \in Q_D^{(n)}$ if, for all $\mathbf{a}_1, \dots, \mathbf{a}_m \in D^n$,

$$\mathbb{E}[f(F_i(\mathbf{a}_1,\ldots,\mathbf{a}_m))] \le \max{\{f(\mathbf{a}_1),\ldots,f(\mathbf{a}_m)\}}.$$

• Each FP is a 1-AP, since, for functions $F_i: D_m \to D$,

$$\sum_{i=1}^{k} \alpha_i \cdot f(F_i(\ldots)) \leq \frac{1}{m} \sum_{j=1}^{m} f(\mathbf{a}_j) \leq \max_j \left\{ f(\mathbf{a}_j) \right\}$$

Raghavendra's Dichotomy Theorem

Theorem 6 (Raghavendra' 08) Let Γ be a core. Assume that, for each $\tau > 0$, there is

F_τ – a 1-AP for each function in VCSP(Γ) such that in each F_i ∈ F_τ, each coordinate "has influence ≤ τ".
Then VCSP(Γ) is tractable. Otherwise, it is UGC-hard.
This (kind of) finishes our classification project, but

- 1. Can the tractability condition be made more tangible? Simple (binary) MMs or FPs instead of many 1-APs?
- 2. Can one replace UGC-hard by NP-hardness?
- 3. Is MAX CUT the only seed of hardness in VCSP?

Answers for the 3-Element Case

Theorem 7 (Huber, AK, Powell '12) Let |D| = 3 and let $\Gamma \subseteq Q_D$ be a core. If there is a renaming of elements of D into -1, 0, 1 such that

- Γ is submodular wrt -1 < 0 < 1 or
- Γ is α -bisubmodular for some $0 < \alpha \leq 1$

then $VCSP(\Gamma)$ is tractable. Otherwise, $VCSP(\Gamma)$ can express MAX CUT, and hence is **NP**-hard.

- Tractability follows from Raghavendra's result, the above FPs easily generate the right 1-APs.
- We show how to express MAX CUT (hardness part).

Conclusion / Open Problems

- 1. VCSP: valued constraint satisfaction problem
 - Minimisation of "weakly separable" functions
 - Want: complete complexity classification
 - Dichotomy via 1-APs. Tangible small cute FPs ?
 - MAX CUT: the ultimate baddie ?
- 2. Tractability results in the value oracle model ?
 - FPFM: function minimisation with a given nice FP
 - Submodularity on lattices [AK, Larose; Kuivinen]
 - α -bisubmodular functions ?
 - k-submodular functions ? [Huber, Kolmogorov]

Expressive Power

A set $\Gamma \subseteq Q_D$ can express a function $g \in Q_D^{(n)}$ if there is an instance $f(x_1, \ldots, x_n, y_1, \ldots, y_m) = \sum_{i=1}^q w_i \cdot f_i(\mathbf{x}_i)$ of VCSP(Γ) such that

$$g(x_1,\ldots,x_n) = \min_{y_1,\ldots,y_m} f(x_1,\ldots,x_n,y_1,\ldots,y_m) + const.$$

Easy: Γ can express $g \Rightarrow VCSP(\Gamma) \simeq VCSP(\Gamma \cup \{g\})$. **Theorem 8 (Cohen, Cooper, Jeavons' 06)** For any finite $\Gamma \subseteq Q_D$ and $g \in Q_D$,

- either Γ can express g, or
- there is an FP of Γ which is not FP of g.

Which Functions are α **-Bisubmodular**?

Let $f \in Q_{\{-1,0,1\}}^{(n)}$. Say that f is submodular in each orthant if, for any $a_1, a_2, \ldots, a_n \in \{-1, 1\}$, the restriction of f to $\prod_{i=1}^n \{0, a_i\}$ is submodular.

Let U(f) denote the set of all unary functions of the form $g(x) = f(b_1, x, \dots, b_l, x, \dots, xb_n)$. A function $g \in F_D^{(1)}$ is α -bisubmodular if $(1 + \alpha) \cdot g(0) \leq \alpha \cdot g(1) + g(-1)$.

Lemma 1 (Huber, AK, Powell '12) For any $f \in Q_{\{-1,0,1\}}$, f is α -bisubmodular iff

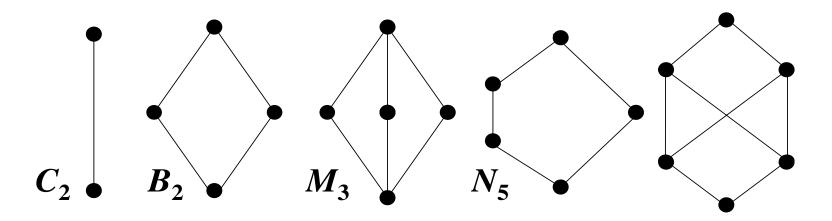
1. f is submodular in each orthant, and

2. each function in U(f) is α -bisubmodular

Lattices

A lattice \mathcal{L} is a partial order in which any $a, b \in \mathcal{L}$ have

- a least common upper bound (join) $a \sqcup b$, and
- a greatest common lower bound (meet) $a \sqcap b$



A distributive lattice is one representable by subsets of a set (or, equivalently, containing neither M_3 nor N_5).

Submodularity on lattices

Definition 7 Let \mathcal{L} be a lattice on a finite set D. A function $f: D^n \to \mathbb{Q}$ is called submodular on \mathcal{L} if

 $f(\mathbf{a}) + f(\mathbf{b}) \ge f(\mathbf{a} \sqcup \mathbf{b}) + f(\mathbf{a} \sqcap \mathbf{b}) \text{ for all } \mathbf{a}, \mathbf{b} \in D^n.$

Problem 1 Fix a finite lattice \mathcal{L} and let $SFM(\mathcal{L})$ be the problem of minimising a given n-ary submodular function on \mathcal{L} . Is there an algorithm solving $SFM(\mathcal{L})$ in polynomial time in n (in the oracle value model)?

NB. True for the two-element lattice C_2 (Grötschel et al.).