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SUMMARY

Existing residential and small commercial buildingsw represent the greatest
opportunity to improve building energy efficien@uilding energy simulation analysis is
becoming increasingly important because the armlgssults can assist the decision
makers to make decisions on improving building gpeefficiency and reducing
environmental impacts. However, manually measurasgis conditions of building
envelops including geometry and thermal valueilsastabor-intensive, costly, and slow
process. Thus, the primary objective of this redeavas to automatically collect and
extract the as-is geometry and thermal data ofbthiling envelope components and
create a gbXML-based building geometry model.

In the proposed methodology, a rapid and low-cagh ccollection hardware
system was designed by integrating 3D laser scanaed an infrared (IR) camera.
Secondly, several algorithms were created to auioally recognize various
components of building envelope as objects frontectdd raw data. The extracted 3D
semantic geometric model was then automaticallyedaas an industry standard file
format for data interoperability. The feasibility the proposed method was validated
through three case studies.

The contributions of this research include 1) at@muized low-cost hybrid data
collection system development to fuse various dat@a a thermal point cloud; 2) an
automatic method of extracting building envelopenponents and its geometry data to
generate gbXML-based building geometry model. Traader impacts of this research

are that it could offer a new way to collect ashigilding data without impeding

Xi



occupants’ daily life, and provide an easier wayl&ypeople to understand the energy

performance of their buildings via 3D thermal paildud visualization.

Xii



CHAPTER 1

INTRODUCTION

1.1 Background

Energy efficiency has been a significant issue tfer whole world since the
energy crisis in the late 1970’s (Maldague 200d)the United States, buildings sector
currently accounts for approximate 41% of the primenergy usage (Brass 2007; U.S.
DOE 2011; EIA 2009), as shown in Figure 1.1, conuaérbuildings and residential
buildings consume 19% and 22% of the total U.S.rggneonsumption. The U.S.
Department of Energy’s Build America Program (NREL08) set a goal of reducing the
average energy use in housing by 40% to 70%. Ryes@bama also launched the Better
Building Challenge which asks leading organizatitm€ommit to reducing the energy
use of their buildings by 20% by the year 2020.blrldings sector, around 95% of
buildings (over 120 million) are existing residetbuildings, which represent the single
largest contributor to U.S. energy consumption gnelenhouse gas emissions (over
50%). Since existing residential buildings are $ivegle largest contributor to the U.S.
energy consumption, conducting retrofits on thesting residential buildings, especially
on those aged buildings, will have the greatesemal to improve building energy
efficiency and reduce environmental impacts andtttal energy consumption in the

U.S.
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Figure 1.1: Energy consumption by sector (U.S. DOE011)

To help retrofits of existing residential buildinga detailed building energy
performance assessment is desired for the buiktadgeholders for their decision making
process. Building energy performance assessmeniresgnformation about buildings,
such as their geometry, material, internal loads] weather conditions (Azhar and
Brown 2009). It is important to obtain accuratasadata about the buildings because this
information directly affects the building energyrfsemance assessment results. For the
existing buildings, sometimes this as-is data areegord, but it may be inaccurate due to
the building’s renovation, insulation aging, andm® owner’'s lack of technical
knowledge. Among all the desired as-is data, ctilgcas-is geometry data about the
building envelope components is a more labor-intenscostly, and time-consuming
process.

Recently, with the development of the as-is maodetechnique, 3D as-is point
cloud can be collected by using laser scanner otoginammetry technique. Point cloud
is composed of millions of individual points in whi each one has a 3D relative

coordinate information. Tang et al. (2010) reviewhd current related techniques for
2



automatic reconstruction of as-is building inforrmatmodels from point clouds. Figure
1.2 shows an example of 3D as-is point cloud ctdi&érom a 3D laser scanner, and the
color was rendered based on the distance to timelgcation. The 3D building envelope
can be well visualized in the collected point clobdwever, the collected point cloud is
not useful for building energy analysis until adislding data being extracted. Current
as-is building data extraction is mostly done tigltomanual processes, and few research

efforts have been done to automate this manuakpsoc

Figure 1.2: An example of point cloud data collecttfrom a building (Tang et al.

2010)

1.2 Research Hypothesis
The hypothesis of this research was that the iatey of as-is point cloud data

with as-is infrared (IR) thermography data can iower the automated 3D semantic

3



geometric modeling process. With the abovementioreskarch hypothesis, several
research questions were proposed in the followings,
Research Question 1: How can the as-is point cloud and thermal datanbe-

invasively collected, fused and visualized?

Research Question 2: How can the semantic data be automatically exédct

from the collected raw data?

Research Question 3: How can the extracted semantic data be storeénmg of

data interoperability?

1.3 Research Objectives and Scopes

Theprimary objective of this research was to automatically collect artiact the
as-is geometry and thermal data of the buildingeape components and auto-generate a
gbXML-based building geometry model.

The specific research objectives were:

Objective #1: Design and identify a hybrid data collection amdgessing system

which non-invasively collects and fuses as-is polatd and thermal information

from a building envelope.

Objective #2: Create algorithms which can automatically recogniarious
components of building envelope as objects fronect#d raw data. Evaluate the

precision, recall, and accuracy of the proposedratgns.



Objective #3: Identify a method which can automatically convewrtracted
building geometry and thermal data to a file forniedt is interoperable with the

energy simulation tool.

In this research, the test subjects were resi@ehtiuses or small commercial
buildings, and it was assumed that the completsdystered point clouds of buildings for
testing proposed framework and algorithms werelabks using all existing advanced
data collection technologies (e.g., Unmanned Ae&viahicle (UAV), photogrammetry,
videogrammetry, etc.) in addition to the hybridadabllection system developed in this
research. The scope of this research included dhylaia collection system design, data
fusion and semantic data extraction, gbXML geometogleling and data interoperability
of extracted semantic data. An energy simulatiah {Autodesk Ecotect Analysis 2011)
was used to test the semantic gbXML data interdgléra and whether the semantic data
can be successfully imported or not was evaluatedither energy simulation analyses
(e.g., energy annual consumption, thermal & liginhudations) nor comparisons with

existing energy auditing methods were part of #s®arch scope.

1.4 Dissertation Organization
This research aimed to investigate a method ohfupoint clouds with thermal
data for gbXML-based building geometry model geherma Table 1 provided a brief

description of the contents of each chapter.



Table 1.1: Title

and description of each dissertatin chapter

Chapter

Description

1) Introduction

This chapter introduces backgroymwblem statement,
research hypothesis, research objectives and scope.

2) Literature Reviews

This chapter reviews the alpsrelated research
conducted by other researchers on the technology an
development of as-is thermal building modeling.

3) Overview of The
Proposed Methodology

A brief overview and the framework of the proposed
methodology are presented.

4) Non-invasive  As-Is
Thermal Modeling

The main objective of this chapter is to develdpyhrid
data collection system that can non-invasivelyemland
fuse 3D point cloud and temperature data from st
buildings.

5) Automated gbXML-
based Building Geometr
Model Generation

The primary objective of this chapter is to provide
ypreliminary solution that automatically and rapidly
extracts building envelope components of existing
buildings from point cloud data that can be further
utilized for gpXML-based geometry model generation.

6) Conclusions

This chapter summarizes the reseéiratings and
concludes the dissertation. Future research extessi
and opportunities of this research are discussetisas
limitations.




CHAPTER 2

LITERATURE REVIEWS

The object of this chapter is to review the clgsellated research conducted by
other researchers on the technology and developofes-is thermal building modeling.
In order to develop this study, three categoriesthef existing literature have been
reviewed, including: 1) As-is point cloud creatiorethods; 2) As-is thermal modeling

methods; and 3) Object recognition from point ckud

2.1 State-of-the-art Point Cloud Collection Methods

A point cloud is a set of data points in which legmoint has its relative
coordinates, and often is intended to represenéxbernal surface of an object. It may be
created by photogrammetric method or 3D laser sranh point cloud can be post-
processed to render real-size objects or envirohdgmegistering all individual scans
onto the same coordinates. Point cloud registrasiatefined as registering multiple point
clouds scanned from different viewpoints into omenmon coordinate system. Recent
studies have been made on how the as-is point dande created to represent existing

buildings.

2.1.1. Stereo vision and photogrammetry



A stereo imaging system comprises multiple passdi® imaging sensors
(cameras) with fixed or regularly calibrated imagiparameters. Imaging parameters
include the interior orientation parameters of anee depicting the projection and
imaging geometry, and the exterior orientation peaters depicting the relative position
and orientation relationships among multiple camdjiander 2003). With the stereo
imageries and these parameters, a photogrammégacitam can extract and match
feature points across images composed of overlgppagions, and reconstruct 3D
measurements on these regions (Linder 2003). Sexegaarchers have explored the
application of such systems to construction pragresonitoring and management
(Brilakis et al. 2010; Dai and Lu 2010). While stgtthe limitations of requiring interior
and exterior parameters to be known, some studies éxplored approaches capable of
automatically estimating the interior and exteriparameters of cameras for 3D
reconstruction based on unordered photographs lumiked interior parameters known
(Golparvar-Fard et al. 2009b). Digital videogramme(Figure 2.1) has also been
demonstrated as being advantageous in some sitaaliowever, it is currently restricted

to fixed camera positions (Brilakis et al. 2010).



Figure 2.1: Representation for modeling process usy digital videogrammetry

(Brilakis et al. 2010)

Photographs provide large amounts of informatiorouabthe progress of
construction. The information provided may be awdboally processed and converted
(Navon 2007; Brilakis and Soibelman 2008, Golpa#vard and Pefia-Mora 2007; Wu
and Kim 2004; Abeid et al. 2003). Furthermore, camed to other data collection
techniques, photographs do not hinder efficientjgmto management processes by
requiring significant data collection efforts (Gatpar-Fard et al. 2009a; Bhatla et al.
2012). Golparvar-Fard et al. (2009b) introduced iarage-based as-built modeling
technique based on computing from the images theesehe photographer’s locations
and orientations, and a sparse 3D geometric repassn of the as-built scene using
daily progress photographs (Figure 2.2). The madvantages of photogrammetric
systems include fast data collection rates (tersutadreds of 1024 x 1024 pixel frames
per second), and acquisition of rich color andusdtinformation of workspace objects
for appearance based object recognition. Publiskedarch results show that most of
these systems can be used to model a workspacgeti-aontrolled environment such as

structured indoor manufacturing. However, this rodtthas a number of limitations:

9



Different lighting and weather conditions makeiffidult to use time-lapse photography
for performing consistent image analysis at ocdudend dynamic site conditions
(Golparver-Fard et al. 2011; Golparvar-Fard et2809a, Golparvar-Fard et al. 2009b,
Bohn and Teizer 2010). Further, the geometry ofattea will be overlooked if common
features from multiple images cannot be foundhéfré has been significant construction
progress and photographs were not taken or soneetslwere moved (e.g., equipment or
scaffoldings) during that period, it would be ckaljing to find common feature points in
photographs. In addition, manually taken photosnoancompletely avoid spatial
information discontinuity (Golparvar-Fard et al. 1AQ Golparvar-Fard et al. 2009a).
Bhatla et al. have also shown that the technologysi present state is not suitable for

modeling infrastructure projects (Bhatla et al. 201

Figure 2.2: An example of the reconstructed sparsscene of as-built site point cloud

data by processing site images (Golparvar-Frad eti.a2009b)

2.1.2. Laser scanners
A laser scanning system is composed of a photorcedbat emits a continuous

laser signal or a series of laser pulses, mechaooaponents for rotating the photon
10



source vertically and horizontally to scan the scefith a laser, and a timing system for
deriving the time-of-flight and determining ranges. scanning system sequentially
collects 3D points while rotating the photon soutbereby generating 3D points column
by column to form a panoramic range image of thenec(Farid and Sammut 2012).
State-of-the-art laser scanning technology providgproximately 4 mm distance
accuracy and 6 mm positional accuracy at up to Sfistance for a single measurement.
In construction applications, the accuracy of lesmmned data depends on a number of
factors beyond the underlying sensor accuracy. g f@sors include object dimension,
surface orientation, surface reflectivity, and eowmental lighting and temperature

conditions (Akinci et al. 2006).

Compared to photography, laser scanners facilitédie-range measurements at
higher resolutions and accuracies, and are gewearatl limited by ambient conditions
during operation (Anil et al. 2013). Laser scanntag also better holistically address all
of the listed inefficiencies associated with therent practice of progress monitoring
through rapid and detailed geometric data collestithan other 3D remote sensing
technologies (Golparvar-Fard 2011). In the domaafs construction and facility
management, researchers have conducted varioussstndestigating the issues related
to utilizing laser scanners for a wide range ofposges, including fast workspace
modeling (Cho et al. 2002; Kwon et al. 2004), re@ale safety management on site
(Bhatla et al. 2012), construction progress momtpBosche and Haas 2008; Bosche
and Haas 2007; ElI-Omari and Moselhi 2008; Rebolalet2008, Xiong et al. 2013),
defect detection (Akinci et al. 2006; Gordon andn&k2005), as-built modeling (Cheok

et al. 2000; Heinz et al. 2001; Kim et al. 2005;lA al. 2011; Adan and Huber 2011),

11



deflection assessments of bridges (Gordon et 84, 2aselski et al. 2005; Jaselskis et al.
2006; Xiong et al. 2013; Tang and Akinci 2008; Taal. 2007; Tang et al. 2011), and
pavement thickness assessments (Jaselskis eD&). 20

Depending on the types of signals emitted fromptheton source and the timing
mechanism for deriving distances, two types of rlag=anning systems exist on the
market. Time-of-Flight (TOF) systems use photonrees emitting discrete laser signals,
and directly measure the time difference betweenliag and receiving the signals for
deriving the distances. Phase-Shift systems emiiramous modulated laser signals with
certain light wave shapes, and use the phaseistiifteen the sent and received light
wave for deriving the travel time of the laser aatiermining the distances. Both systems
have their advantages and disadvantages for real-tionstruction applications. Two
main issues that influence such applications agedtita collection rate and the range of
the scanner. Generally, a scanner with fast ddtaction rate is preferred for real-time
applications, but a long range scanner can coVarga area at one station as long as the
occlusions are not serious on jobsites, so thainergs can save time for moving the
scanner on jobsites.

TOF scanning systemshe principle behind a TOF system is that the laser
pulsed several thousand times per second (up @060with some recently released
models) for range detections.

Once the scanner has calculated the distance,tbethorizontal angle and the
vertical angle are measured to yield the 3D polnt.this case, the distance and

coordinates of the reflecting object are determimgthe following Equation 2.1

12
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p 2
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Equation 2.1

Where,p=distance, c=light speed, ant=time interval a=horizontal angle, and
B=vertical angle.

Typical TOF scanners have a data collection ratethousands to tens of
thousands points per second. One scan will lagtdmst a few minutes to several hours,
depending on the frequency of the photon source taedspatial resolution of the
collected data. Most terrestrial TOF scanners hiwey data collection ranges of
hundreds of meters. Some TOF scanners can reaahthaor 1km for monitoring extra-
large infrastructure systems, such as dams or ésidglba et al. 2006). For all TOF
systems, the reflectivity of targeted objects iafines the data quality so that the actual
range with data qualities meeting most domain reguents vary with the reflectivity of

objects of interest.

13



Figure 2.3: An Example of TOF laser scanners (Leic&can Station C10) (Leica

2014)

Figure 2.3 shows a Leica Scan Station C10 whicanisexample of TOF laser
scanners. The major limitation of TOF scanning eyst is their relatively low data
collection rates. Even with the fastest TOF scaonethe market today, a panoramic scan
with a spatial resolution of 2 cm at 100 m needsuabvo and half hours to be completed
based on the authors’ experimental results. Thi$ ifadicates that for capturing any
objects as small as 2 cm at 100m, the data caledtime for the whole scene would be
inacceptable for real-time monitoring of most comstion operations. It is necessary to
develop methods for better utilizing the data ailten capability to obtain all needed

data under time constraints.

14



Phase-shift scanning systenibe phase-shift scanning systems use a different
distance measuring principle to achieve a muchdrigata collection rate compared with
TOF systems. Unlike a TOF scanner which pulseda$er, a phase-shift scanner uses a
modulated laser light that is always on. The phatource emits a continuous laser wave
with a modulated frequency and wavelength. Thiginaous laser signal then bounces
off objects, and returns to the photon receivethef scanner with a shift in phase when
compared against the leaving signal. This phadé-stm be measured for deriving the
light travelling time (Equation 2.2) and then thstdnce. Once the distance is calculated,
the azimuth and elevation angle measurements ateedpo produce the 3D coordinates
(Kemeny and Turner 2008).

Time of Flight = PhaseShift / (27 C Modulation Frequency),
Equation 2.2

Figure 2.4: An Example of Phase-shift scanning syats (FARO 2014)

Phase-shift systems can capture hundreds of thdsiganmillions of 3D points
15



per second, which is about ten times faster thast MOF scanning systems (Tang et al
2009; FARO 2010). As shown in Figure 2.4, FARO Fo8D is an example of Phase-
shift scanning system. The best working range fostnphase-shift scanners is less than
100 m. Beyond that range, range ambiguity issueméSet al 2004), mixed pixels (Tang
et al 2009), and other technical difficulties naffisiently resolved yet would result in
noisy data, so that valid and accurate 3D measuresnveould be few. In addition, the
impact of low reflectivity on phase-shift data walsserved to be more significant than
that of TOF data according to the experiences efatthors. For improving the data
gualities of phase-shift systems, multiple modolatirequencies are being explored, but
the improved results have not yet achieved the dawet of data quality as TOF systems

(Kemeny and Turner 2008).

The limitations of phase-shift systems include tekatively limited ranges and
the data quality issues caused by special refiectof dark or specular objects, and
spatial discontinuities. Many objects on the jodssitsuch as steel, glasses, and aluminum
frames, would not be captured with high precisiod details, since most data points on
them are noisy and should be removed by noiserififealgorithms. For cluttered
jobsites, noisy data at object boundaries can caesmurate measurement of object
dimensions and may mislead decisions about cortgtnuoperations (Tang et al 2009).
As a result, even with high data collection rat@staining all needed information from

phase-shift data still requires improvements ofdherall data quality.

Flash LADAR Systemaiso called 3D range cameras, are also basededimtb-
of-flight measurement principle using laser. Indt® sequentially collecting 3D points

while scanning, a Flash LADAR flood-illuminates tiseene with laser flashes, and
16



captures a range image for each flash (also knasva #lash frame). The estimated
absolute positioning accuracy with one pixel okaently released Flash LADAR is +/-
1.5 cm with up to 50 frames per second (FPS) umgsi-controlled indoor lighting
conditions. That flash LADAR system’s non-ambiguityeasurement ranges from 0.8 to
5 meters (Mesa Imaging 2010). Compared to lasemseg systems, a flash LADAR is
smaller, less expensive, and forms 3D images ihtirea. The disadvantages include a
relatively limited field of view compared with theanoramic field of view of a laser
scanning system, and lower accuracy and spatialutgsn. In addition, flash LADAR
systems are designed mainly for indoor applicatisimee the associated noise level
makes it impossible to work in direct sunlight, wdndight shielding may be needed to
suppress background illuminations (Mesa Imaging 020Cho and Martinez 2009;

Anderson et al 2005). Figure 2.5 shows an exanigfiéagh LADAR.
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Figure 2.5: An Example of Flash LADAR (SR-3000) (Hgde ad Ye)

Self-Positioning Handheld Laser Scanneéelf-positioning handheld laser

scanners are being used by many industries, suclaeasspace, manufacturing,
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multimedia, and medicine, as they provide an easlyfast way to acquire 3D geometries
(Smithm 2011). These mobile scanners utilize phatmgnetric processing, automatic
calibration, and automatic referencing for selfiposing. Several companies market
such self-positioning handheld laser scannersudmaty Z Corporation, NDI, Creaform,
Nikon, Hexagon, Romer, Leica, and Steinbichler ¢bindustry 2010). This type of
scanner uses the subject part being scanned tolisistés spatial reference. The self-
positioning mechanism of these scanners elimindgeseed for fixed-position tripods,
bulky mechanical arms or external positioning desicausing accessibility problems.
Uniquely object-referenced, they also allow theyéarobject to move during scanning,
and allow the viewing of a real-time image of theface being scanned. These scanners
generate one continuous scan rather than multipnss from multiple positions,

eliminating post-processing time for registeringltingcans.

In a series of studies conducted by the authoiGporation’s ZScanner 700

was tested to explore its usability for construttamplications. The results show that this
scanner’'s accuracy can achieve 40um (microns), itaml possible to detect 50 um
changes in surface height from the collected polotds. This scanner can capture
18,000-25,000 3D measurements per second. To &chigkier self-positioning accuracy
and overall data quality, it optionally uses refiee targets, which can be quickly and
randomly applied to the surfaces of the objectsescanned and/or the area adjacent to
these surfaces. During the scanning process, thensclocates and captures the
reflective positioning targets by a stereo camessich estimates 3D positions of these

targets in real time. These positions are calcdlataeference to the scanner’s line laser
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and then recorded in the scanner. As the targatoraly applied on the object create
unique perspective-dependent patterns recognizablbe scanner, the scanner will be
able to position itself in the same way that GP8as use known satellites to establish

their position on Earth (Z Corporation 2011).

Figure 2.6: Example of incomplete scan due to a cqiex feature (e.g., ear)

Due to its portability and very high accuracy, g@sitioning handheld scanners
can be used in reverse engineering in structuralpoment design, quality control for
prefabricated materials, building damage inspectrapid prototyping, and education.
The real-time and continuous scanning mechanisnblemasuch scanners to capture
geometries of moving objects, which are importamtreal-time construction operation
monitoring. The major limitation of such scannesghat most of them have very short
measurement ranges (< 1 m). In addition, if thensed objects are not visible from any
one of the two cameras of its stereo camera systecannot derive complex surface
geometries well due to occlusions. In such cabesstereo camera system of the scanner
can just see the targeted object with one “eyeSulteng in an incomplete shape. An

example of this problem is shown in Figure 2.6. Tdrege limitation and the necessity of
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a clear stereo view of the targeted objects sdgiolimit the applicability of these
scanners on clutter construction jobsites with dempgeometries and occlusion
conditions. Table 2.1 below summarizes the advastaand disadvantages of various

data collection and processing techniques reviawdus subsection.

Table 2.1: Summary of advantages and disadvantage$various 3D data collection and

processing techniques

Category Advantages Disadvantages

Stereo Imaging » Real-time capturing color and « Sensitive to lighting conditions
and textural information * Challenging for acquiring detailed
Photogrammetric * Semi-real-time generation of  geometries of surface lacking
Systems sparse 3D measurements feature points

» Challenging for reliably
reconstructing 3D geometries of
surfaces with repetitive patterns

TOF Laser * Long range for covering large ¢ Relatively low data collection rate,
Scanning Systems open space making it impractical for real-time
 High accuracy for individual workspace monitoring
points

Phase-Shift Laser e« Fast data collection rate for « Relatively low data qualities
Scanning Systems capturing detailed geometries compared with TOF data,
in minutes within short ranges especially on dark, specular
(tens of meters) surfaces, and at spatial
discontinuities
Relatively short range compared
with TOF systems

Flash LADAR * Capturing 3D snapshots of a  Limited field of view
Systems scene with moving objects < Relatively low positioning accuracy
with high frequencies (e.g., 50« Relatively low spatial resolution of
FPS) each scan (3D frame)
» Small sizes « Relatively more sensitive to
* Less expensive outdoor lighting conditions
Self-Positioning  « Very high positioning « Very short data collection ranges (<
Handheld Laser accuracies (um-level) im)
Scanner * Portability * Require the targeted objects to be

« Capturing moving objects with visible in both cameras of the stereo
continuous scanning and self- camera system embedded in the

positioning mechanisms, scanner, causing challenges for
eliminating data registration modeling complex geometries with
needs a lot of occlusions
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2.1.3 Point cloud data structure

The point clouds collected from various devices t® categorized as either
organized or unorganized. An organized point clbad a data structure that is similar to
an image or a matrix, and each point of the pdoua has its index in rows and columns.
Such point clouds include data collected from ster@meras or time-of-flight cameras.
The advantage of the organized point cloud oveuti@ganized point cloud is that data
processing is more efficient because the relatipnsatween adjacent points or nearest
neighbors is known. In unorganized point clouds,data structure or point reference
exists between points because of varied sizeslutests, densities, and point sequences.

As a result, more time is usually consumed proogssnorganized point cloud data.

2.2 As-is 3D Thermal Modeling Methods

Most commercial survey-level laser scanners enaleinternal or external
camera to capture digital images of the scannedeseed map image textures onto
corresponding points in point clouds, assigningheaaint values for position (X, y, z)
and color (R, G, B). Unlike applications using ithj cameras, there have been few
efforts to map thermal images taken from an IR canoato point clouds, although the
IR thermography technique has long been used asannasive approach to diagnose
buildings and infrastructure (Balaras and Argird01). This section discusses state-of-
the-art 3D thermal model creation techniques fastang buildings. Generally, there are
three classes of 3D thermal modeling approachessifrired (IR) image mapping to 3D
models; 2) image fusion and matching by IR image @igital image; and 3) IR image

mapping to 3D point clouds. The following subseasiowill introduce these three
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categories of techniques, and discuss the remaitengnical gaps in 3D thermal

modeling for existing buildings.

2.2.1 Infrared Image Mapping to 3D Models

Schreyer and Hoque (2009) presented a methodetdecthermography-textured
3D digital models of buildings using IR images &@kktchUp. In this method, the 3D
model of the building was created with SketchUp #re IR images were attached to the
surfaces of the models as texture (Figure 2.7).l&Vthis method shows very clear
thermal color distribution on the 3D model surfatehas these limitations: 1) a 3D
model does not represent an as-built (or, as-isigde?2) it is difficult to correctly align
the IR image with the model without calibrating & camera; and 3) the final model
shows only relative color differences based on tapire ranges but does not provide

numerical temperature information.

3D Infrared Visualization
Single Family House

Figure 2.7: Infrared Image Mapping to SketchUp Modds (Schreyer and Hoque

2009)
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2.2.2 Image Fusion and Matching by Infrared Imagd &hotogrammetry

A thermographic 3D modeling method using imageofusand image matching
techniques for building inspection was presentedLbygtiela et al. (2011a). In this
research, a digital image and an infrared imagehefsame building were collected
individually and images were matched using the gdp@ammetry technique (Luhmann et
al. 2006). Using the known measurements of tweadces in the facade, the relative
coordinates of four points were calculated. Theskies were needed for both image
fusion and 3D modeling. While this technique pd®d good visual information to
detect thermal differences in the building enveldpe temperature data captured by an
IR camera were lost in the 3D thermal model. Beeatlne thermal color of objects
captured by an IR camera is determined relativéhéo surrounding environment, the
same object (e.g., a wall) can be differently oedbif the temperature range is different
from another capture. In addition, the thermogra@ modeling method requires that
the images be captured with the camera paralleltht® facade to obtain an
orthothermogram of the fagcade, which limits thel@agion of this method.

Another 3D thermal modeling system, Energy Perforce Augmented Reality
(EPAR), was introduced by Ham and Golparvar-Fa@d 2. In this method, a handheld
IR camera with a built-in digital camera was usedallect thermal and digital images
simultaneously. Then a 3D thermal point cloud (Figw) was created by integrating
visualization of both 2D thermal and digital imageslizing a 3D reconstruction
technique called bundle adjustment or structurenfrootion (SFM) (Golparvar-Fard et
al. 2009b; Borrmann et al. 2012b). This method wWooé useful for modeling plain

indoor or confined spaces due to its good portglénd mobility. Since the 2D image-
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based 3D reconstruction approach needs to redmtedreds of thermal and digital
images, it requires up to six hours to create apterd 3D point cloud of a building
(about 2.5M points; Ham and Golparvar-Fard 2012) #us is useful only when
modeling time is not pressing. As another limitataf this approach, the accuracy of the
model is sensitive to lighting conditions, meanagligital camera can collect building
exterior data only in the daytime to reconstru@abuilding model. However, thermal
data need to be collected at night. Borrmann €Ral2b) state that even diffuse sunlight
on a cloudy day distorts the thermal measuremengs way that a meaningful analysis

becomes impossible.

Thermal
Camera Location

e 22°C (b)

¥Digital
Camera Location

Camera Location (C) '.'. g

Digital - Saﬁw Camera as in
| (c),{d)

11°C —ZZ:C
" Same Camera as in (f), (g}

e
Thermal \ "% (- s ;’

Camera Location Camera Frustum

Figure 2.8: 3D As-is building and thermal models (ldm and Golparvar-Fard 2012)
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2.2.3 Infrared Image Mapping to 3D Point Cloud

Alba et al. (2011) developed a bi-camera systensisting of IR camera, digital
camera, and 3D laser scanner to acquire and inéegffarmation for building diagnostic
and restoration applications. The thermal datathadpoint clouds were fused by using
control points that were measured manually by daligamera and a laser scanner. A
methodology for registering thermographies in poiotids was introduced by Lagiela et
al. (2011b). An IR camera was calibrated to avaidge distortion before merging the
thermographies into point clouds. The thermograplaied point clouds were collected
and registered separately, then merged togetheig usbmmon control points. This
method could merge the temperature data with thieegponding points in the point
clouds and reduce the image distortion. However,céiptured temperature value is lost
after it is merged with the point cloud; only th@lar difference based on a temperature
range can be visualized. Also, the data collegbirggess is limited by two conditions: 1)
the shooting direction of the IR camera has to &pendicular to the facade; and 2) an
overlap of 50% between consecutive thermograpkiaseéded for image registration.

Against color-coded temperature data, thermal oreasent with absolute
temperature values in °C or °F provides more usaefafmation for diagnosing building
materials for their energy efficiency.

Borrmann et al. (2012b, 2012c) developed a 3Dmihémodeling method using
LIDAR and a low resolution IR camera (160 x120 ps¥enounted on a mobile robot
Irma3D to expedite scanning and registration preegsThe thermal data were matched
to the corresponding point clouds, which were auwiiocally registered using the 6D

simultaneous localization and mapping (SLAM) teque (Borrmann et al. 2012a).
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However, this system cannot collect data over 16@ical degrees due to the limited
camera field of view (360°*100°); thus a tall burld needs to be scanned from a far
distance, which would result in a low-resolutiorertinal 3D model. In the thermal

mapping process, the thermal color other than teatpe values was merged with the

point cloud.

oNSTRUCTl'ON

Figure 2.9: A building image (left) and an IR thermal image of the building (right)

From previous efforts, the research team devel@pethtegration method which
projects an infrared thermal image onto the pdimiids by calculating distance, position
and orientation between corresponding common pdékitgire 2.9). Similar to Tsai and
Lin's (2004) work, this approach merely merges théiometric images to a 3D point-
clouds model (Figure 2.10). While it is still goetsual information to detect thermal
differences of building materials, however, thetoegd temperature information by an
infrared camera is lost in the 3D thermal modehe Thermal color of captured objects is
relatively determined by the surrounded environmerdn IR camera. The same object

(e.g., wall) can be differently colored if the teengture range is different from another
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capture. Thus, the thermal measurement which pesvabsolute temperature values in
°C or °F is more accurate information to diagnose buildimgterials for their energy-

efficiency.

&k ADScanner - [testresull]
(5} Fle Edt  view Window Control FLIR System Data Functions  Filters  Help

(I = | B (=

Ready

Figure 2.10: IR image projected onto point cloudsfothe building (overlay)

2.3 Object Recognition from Point Clouds

2.3.1 Existing Commercial Software

Manually creating 3D model from point cloud is @dr-intensive and time-
consuming process. Many commercial software program plug-ins have been
developed to accelerate this manual process. Fongbe,Leica CloudWorxLeica 2014)
is able to automatically create a pipe center based on manually selected pipe, and
then the pipe can be manually created followingc#ter linejntergraph Smart 3D for
Plants(Intergraph 2014) can automatically model pipasraiser identifying the scanned

piping axis of symmetryAutodesk Plant 3D®&Autodesk 2014) an&ubit PointSense
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(Kubit 2014)Plantenable user for manually choosing two points faammage of a pipe,
and the corresponding 3D point cloud between the pwints can be automatically
located and modele&ubit PointSense Buildin@Kubit 2014) can automatically generate
2D building plan (wall, floor, ceiling) from 3D las scanner data, but with manual
openings (window, door) creatioAVEVA Laser Model Interfal (AVEVA Continual
Progression 2014)rimble RealWork¢Trimble 2014) andClearEdge3D(ClearEdge3D,
2014) are designed to automatically create 3D mbgehanually segmenting the point
cloud and choose the corresponding catalogs foh eagment of point cloud. The
abovementioned programs (see Figure 2.11) aremilautomated, and most of them are
for industrial application only. Therefore, thesea need for a method of fully automated
model creation from point cloud, especially for |lding envelope modeling which is

important to building energy simulation.

2.3.2 Recent Research Efforts towards AutomateddDBjecognition

To recognize objects and extract useful objectrmédion from point clouds,
object recognition techniques have frequently baeplied in recent studies in the
AEC/FM domain. Tang et al. introduced a method dfaeting geometric information
items of bridges from point cloud data, collectedni a laser scanner, for bridge
management (Tang and Akinci, 2012; Anil et al., 20B5ite laser scans have also been
processed for 3D status visualization and constmgirogress monitoring. In (Bosche,
2010; Bosche et al.,, 2009), a new approach fornaatic 3D CAD recognition and
registration of steel structures was validated bycessing the point cloud data of the

steel structures. Advanced techniques and improntsmi@ devices have resulted in
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textured point cloud data becoming available. Smhkim (2010) proposed a method for
efficient, automated 3D structural component redomgmnand modeling from point cloud
data with RGB color acquired from a stereo visigatem. Point cloud data with RGB
color can also be obtained by processing hundreghaiographs (Golparvar-Fard et al.,
2009b) for construction performance monitoring 4bdas-is model creation.

Another set of approaches presented to assist itgildacility management and
performance analysis include the proposal by Puarsselman (2009). They proposed a
knowledge based method for reconstructing buildimaplels from laser scanner data. In
their method, they extract the features and thdéineubf the building and make the
geometric model of the building based on seversi@ptions because only facades on
the street side are scanned. Xiong et al. (2018pgsed a context-based modeling
algorithm for creating semantic 3D as-is buildingduals of the interior of buildings.
Their context-based modeling algorithm was ablalémtify and model the main visible
structural components of an indoor environment, dauld not recognize components
with irregular shapes that are frequently seen ftbenexterior of the building envelope.
The components of the building envelope are essdoti building performance analysis.
As a result, rapid and efficient extraction of kiinlg envelope geometric information is a

challenging emerging topic.
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Table 2.2: Literature review of the current as-is BM recognition techniques
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2.4 Points of Departure
The literature review provided an overview of 1%-i& point cloud creation
methods; 2) As-is thermal modeling methods; andOB)ect recognition from point
clouds. For the existing research on automaticsdekermal model creation of existing
buildings, the remaining limitations of the curret@ichnologies are summarized as
follows:
1) Lack of visual perception-based rapid and low-ctzt collection system for as-
is thermal modeling of existing buildings.
2) Lack of method that can automatically and rapidkgract building envelope

geometry information from point clouds.
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CHAPTER 3

OVERVIEW OF THE PROPOSED METHODOLOGY

The overall framework of the proposed methodolisgshown in Figure 3.1. First,
a hybrid 3D laser scanner system designed in dsisarch simultaneously collected point
clouds and temperature data from the envelope istieg buildings. Then temperature
data were automatically fused with correspondingngsoduring the data collection
process. After registering all individual thermabimt clouds, a building envelope
recognition algorithm was applied to automaticaligate an as-is 3D geometric model.
The as-is model can be imported into energy armbaitware through being saved as an
industry standard file format. Finally, the feabipi of the proposed method was
validated through testing on two residential housed a small bank building, and the
performance of the proposed method was evaluatedigh calculating the precision,

recall, and accuracy of the case studies.
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Figure 3.1: Framework of the proposed methodology
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CHAPTER 4
NON-INVASIVE AS-IS BUILDING CONDITION DATA

COLLECTION AND FUSION

Each aforementioned data collection method ini@e@.2 has advantages and
disadvantages in terms of usability, lighting caieei, modeling time, accuracy, and
resolution. Through literature review, as-is 3Drthal modeling of existing building
envelopes for energy performance analysis has ebtgen fully recognized. Most
especially, none of the current methods has rehlize importance of thermal modeling
of transparent windows, which are among the mogtomant components affecting a
building’s heating and cooling loads. Thermal dataa window cannot be mapped to
the point cloud because a laser scanner or a ld@gitaera cannot recognize transparent
glazing, resulting in a 3D thermal building modethamany empty openings.

To address all the limitations mentioned abovwebatic hybrid thermal modeling
approach was identified to directly fuse the terapee values, other than RGB values,
with corresponding point cloud data to create éhmagolution 3D thermal model that
overcomes the low-resolution characteristics oflRncamera. To generate complete
thermal information about the building envelopeg thissing points on glazing areas
need to be virtually created.

The main objective of this chapter was to designletic hybrid data collection
system that can non-invasively collect and fusg8int cloud and temperature data from
existing buildings. In addition, two window detexti algorithms are proposed to

successfully fuse temperature data from transpamémtiow glass, which cannot be
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detected by a laser scanner or a digital camera.fd@llowing sections first present the
design of the developed hybrid data collection eaystand the 3D thermal modeling
approach of the hybrid system is then discussedhé&w results of the two preliminary

tests on a residential house and a commercialibgilate presented.

4.1 The Framework for Non-Invasive As-Is Building @ndition Data Collection and
Fusion

The overall framework of the proposed thermal nliadeprocess for retrofit
decision support is shown in Figure 4.1. Firstobotic hybrid data collection system
designed in this study simultaneously collectechpolouds and temperature data from
the envelope of existing buildings. Temperatureadatre automatically fused with
corresponding points during the data collectioncpss. A noise filtering algorithm was
then applied to each fused thermal point cloudlitaieate noisy geometric data which
were defined as the points with fewer neighboriogts than a preset threshold. After
registering all individual thermal point cloudswandow detection algorithm was applied
to create virtual thermal points on window glassexe the laser scanner is unable to
collect geometric data from transparent objectaaliyy, a 3D thermal point cloud was
generated and visualized in a graphical user mter{GUI), and it was rendered with
normalized thermal colors based on absolute terperaalues. Further, the thermal
point cloud can be imported into web-based geogcaplprograms so that retrofit
decision makers can have easy access to the adasadd utilize it in their decision

making process.
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Figure 4.1: Framework for 3D thermal modeling for retrofit decision support

4.2 Robotic Hybrid Data Collection System

Thermography offers a rapid and cost-effectivehmetof investigation that does
not require any contact with surface materialstarcture. Since it is a non-contact, non-
destructive technique, thermography has been awwnaitilized in the assessment of
buildings, infrastructure, monuments, and ancidgnictures (Rao 2007; Ocafa et al.
2004; Rosina and Spodek 2003).

In this study, an innovative robotic hybrid systess developed, integrating a 3D
LIDAR scanner and an IR camera (320 x 240 pix@ls)shown in Figure 4.2. A GUI was
developed using Visual C ++. The GUI controls theelr scanner and the IR camera, and
visualizes the captured 3D model.

As a main sensor of the hybrid system, a lightghti3D LIDAR was built

consisting of a laser source, a spinning mirroreacoder, and a pan and tilt unit (PTU).
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Based on previous research (Cho and Martinez 2068; et al. 2012), this lightweight
3D LIDAR would be more flexible in hardware conteoid software programming than a
commercial laser scanner. Based on the currenhtimguconfiguration, multiple degree-
of-freedom (DOF) kinematics was solved to obtaig-z-coordinates from the LIDAR,
and corresponding temperature data were obtaineth fthe IR camera. The
transformation matrices for the LIDAR and the IRnema share the first two frames and
split into two different kinematics frames at thieird matrix (Figure 4.3). This

kinematics frame allows more optical sensors, sasctigital video or still cameras, to be

added.
Figure 4.2: Prototype | of the hybrid data collecton system
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mirror ] aser T m=— ¥
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Figure 4.3: Integrated kinematics frame for the hylid data collection system
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4.3 3D Thermal Modeling Approach

4.3.1 IR Camera Calibration

Camera calibration is an essential process in oatenpvision and 3D
measurement applications because it corrects irdeggertion. Among types of image
distortion, radial and tangential distortions dre worst (Ma et al. 2003). There are two
categories of camera calibration variables: 1)ineic parameters that include focal
length, principal point, skew coefficient, and dision coefficients; and 2) extrinsic
parameters that include rotation and translationriraalo reduce distortions, the IR
camera should be calibrated in advance to obtanrtninsic parameters (Heikkila and
Silven 1997; Bouguet 2010). Several camera caldranethods have been introduced
elsewhere (Ma et al. 2003; Heikkila and Silven 19Bduguet 2010). In this study,
Bouguet's (2010) camera calibration method was ®mibpA black and white
checkerboard was used as an object for testingfuhetion. During the calibration
process, the edge detection algorithms were appbedentify the structure of the
checkerboard based on the different colors or gles; then the camera parameters
could be accurately calculated (Drennan 2010).Kerdi normal digital camera, however,
an IR camera cannot recognize different colorshenseame material because the color or
gray scale difference of the IR image can be disished only when a temperature
difference on the image exists. Many researchelibrate their IR cameras by taking
thermographies on a calibration field consistingadfoard with several light bulbs (e.g.,

LED lights) on it (Laguela et al. 2011b; Ham andgaovar-Fard 2012; Nuchter 2012).
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To simplify the calibration process and lower thmaterial cost, this study
proposed the following IR camera calibration meth@a@ut-out checkerboard was made
and placed in front of a human subject to makectiexkered pattern recognizable in the
IR images using heat radiation from a human bodlge areas where the heat radiation
was blocked by the checkerboard were renderedderlacolor in the IR images. Figure
4.4 shows the eight images that were taken astsatgebe tested with the calibration

program. The corner extraction process of the ifinstge is demonstrated.

Y (in camera frams)

Xc fin camera framel

Figure 4.4: IR camera calibration using heat radiaton from the human body
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4.3.2 Temperature Data Fusion

The data fusion process is similar to texture mapp method for adding images
as texture to the surfaces of the 3D models. Thia mifference in the proposed data
fusion process is that the temperature data froth & image pixel — instead of RGB
pixel values — are directly extracted and assigogabints as non-graphic values. Thus,
each point is considered an object containing wiffe types of data, such as x-y-z
coordinates, intensity, temperature, RGB, etc.

In order to map the temperature data to the pmoud correctly, the relationship
between 2D temperature data and the 3D point dhawldto be built. First, the concept of
perspective projection was introduced into the,testl a reference test was made to
create a reference plane for the 3D projectionirguthe reference test, a 120cmx90cm
rectangular object was used as a target, and betlaser rangefinder and the IR camera
were placed parallel to the object. The distandevéen object and system was adjusted
to make sure that the object completely filled lRecamera’s view. As shown in Figure
8(a), the distance between object and camdrg; i@ is the IR camera view angle, and,(
Y., Z ) represent the coordination of the point claudhe system coordinate system.

After calculations, several variables could be oigtd as Equation 4.1:

frep = 166cm, 8 =39.7°,  Pixel Unit =

=~ =2-=0375 (Equation 4.1)

320 2z

Having the reference plane, all the objects pdradléhe system could be

correctly mapped with temperature data accordirgcioation 4.2:
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Pixel Unitx—— Pixel Unitx——t
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where X_ and ¥, are the coordinates of the point obtained wheraber is in its default
position. X, and ¥, are the coordinates of a pixel in the 2D IR ima@ace the

coordinates of the corresponding pixel were fouhd,temperature data was fused to the
point in the 3D point cloud.

As shown in Figure 4.5(b), the camera was panndilted to obtain temperature
data of another part of the point cloud. Under tisumstance, the reference plane is no
longer parallel to the object. Due to the effecthwd perspective projection, objects in the
distance appear smaller than objects close by.h&svis in Figure 4.5(c), if a simple
interpolation were used and steps were equallyesp&m compute pixel coordinates, a
distorted image map would result. To avoid suchrablem, the perspective correction
method was used in this research. Perspective atimmemapping interpolates after

dividing by depthz,, then uses the interpolated reciprocal to recawer correct

coordinate (Hill and Kelley 2006):

r Hg, Ap
',_l—ﬂ:::'z—a+ﬂcz .
X =————=, where0<a <1 (Equation 4.3)

= 'il—rx}z‘;+ﬂ:£
a

When the camera is rotated, the area of the canm@nravaries based on the angle
at which the camera is rotated. The coordinateaeketdge points in the IR image can be

calculated using Equation 4.4:

X, =X_+Z_tan (rx - g),xb =X_+Z_tan [:a: + E) (Equation 4.4)
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When the objects are not parallel to the cameexgetbre, the temperature data

can be mapped to the 3D point cloud using theotig equation:

¥i=¥g

X, = fim%a v, =
pix o m] s i N ETE
Pixsl Unit ni——x— Pixel Unitx e

.Fref ke fref o

(Equation 4.5)

120cm
el
Reference Plane

1z

(@) (b)

Farther from
the IR camera

Closer to the
IR camera

(©)

Figure 4.5: Illustration of data fusion process
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Figure 4.6: Flowchart of temperature mapping proces

During the scan, each point collected by the systes considered as an object to

find the corresponding temperature value accordinghe abovementioned equations.
Figure 4.6 shows a flow chart of the proposed teatpee fusion process with point
clouds. The temperature fusion process continuéis alhthe points have temperature
values assigned. If a point does not contain teatpe¥ value, the program computes the

angleg to determine if the object is parallel to the refeee plane when the data are
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collected. If it is parallel, Equation 4.2 is ustm calculatex,,. andy, otherwise

pix

Equation 4.5 will be used. Then the temperatureesabrresponding t&,,. and¥,,, in

the temperature matrix is assigned to the poirterAd loop, if any points remain without

assigned temperature value, the IR camera is atitmiy panned or tilted to collect data.

4.3.3 Mapping Temperature Data to Window

As mentioned earlier, it is difficult to map temaemre data to a clear window
because the beam passes through a transparent gdamgass. Similarly, the
photogrammetry approach has the same problem maitisparent windows since a digital
camera cannot detect a clear window either. Inptieposed method, the empty areas in
point clouds that are unmatched with thermal degarecognized as panes of glass, and
virtual points are created on the surfaces of tlassgon which thermal data can be
mapped.

In the created 3D thermal point cloud, each point&stical coordinate is
compared with its last vertical neighboring poiifithe absolute value of the difference
between them is greater than 20 units, the posdlfitand its neighboring point are
respectively marked as lower and upper window baongoints. Then virtual windows
can be created according to these window boundamytg Clear windows can be

recognized in this way as shown in Figure 4.7.
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@) (b) (€)

Figure 4.7: (a) Digital image of clear windows; (bEdge detection of the clear

windows from a point cloud; (c) Creation of virtual points on clear windows

(@) (b) (€)

Figure 4.8: (a) Digital image of blinded windows; l§) Blinds surface as recognized

from the point cloud; (c) Creation of blinded window areas

When collecting data from blinded windows, the ftabeam went through the
transparent glass and was reflected from the hliid® different surfaces were created,
one from exterior walls and the other from the diéinand the difference between these
two surfaces could be used to recognize the blindetlow glass. Based on the
empirical value obtained through multiple experitserihe surfaces are recognized as
two different surfaces if the absolute value of thiference between two surfaces is

greater than 5 units and smaller than 10 unitshasvn in Figure 4.8. Walls and blinds
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are recognized as two different surfaces and rexdby two different colors, allowing
the blinds area to be recognized as blinded winglass.

In the proposed method, all the threshold valuesewdetermined based on
empirical analyses. To use the threshold effegtivielr a smaller window, higher
resolution of point clouds is necessary to accilyatecognize the window frame
boundaries. For the complicated type of window,italtal algorithms are needed to be
added to make the proposed method more robust.

Once window areas were recognized, virtual poiisict be created inside the
window frame according to certain vertical and honital interval values. Then, all the
created virtual points could be fused with the esponding temperature data as

described in the sectidfremperature Data Fusion.

4.4 Full Field Tests and Discussion

Preliminary field test subjects were a "living labimry" residential house called
the Zero Net Energy Testing Home (ZNETH), showirigure 4.9 (a), and a part of the
Peter Kiewit Institute (PKI) building at the Uniwtty of Nebraska, shown in Figure 4.10
(a). The test on the ZNETH house was conducted dwotaand sunny day. Multiple
thermal and laser scans were made to cover theewholding envelope. The captured
thermal data were automatically registered andedtdo point clouds on the building
surface. After all the point clouds with thermatalavere registered, they were rendered
by different colors according to the normalized pemature value that was calculated by
projecting lowest-highest temperature to 0-1. HBrstands for blue, 1 stands for red. A

simple mouse click on any point in the point cloudsm the GUI shows x-y-z
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coordinates and temperature value. For exampiat gooint selected in Figure 4.9 (c)
shows 39.568C. The window detection algorithm was applied te #NETH thermal
model as shown in Figure 4.9 (c), which can be amegbto the 3D thermal point cloud
without windows detection in Figure 4.9 (b). Premisand recall (Olson and Delon 2008)
were estimated to evaluate the performance of @tection algorithm. As shown in
Table 4.1, True Positive (TP) indicates the nuniddezorrectly recognized components,
False Positive (FP) means the number of wronglpgeized components, and False
Negative (FN) is the number of components that wererecognized. Six same size
windows in the front wall of ZNETH were analyzeddompare the actual window size
with the modeled window size. It can be seen froabld 4.2 that the average error

difference is 6.30% for width and 10.85% for length
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Point: 55.080,436.988,-994.459

(b) (c)
Figure 4.9: (a) Digital image of ZNETH; (b) 3D poirt cloud of ZNETH; (c) 3D
thermal point cloud rendered by different colors baed on normalized temperature

values
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Table 4.1: Precision and recall of windows recogrian

Precision (%) Recall (%)
Component| TP FP\FN | 1o /rpsrpy | TRITP+FN)
Windows 211 O 4 100 84

Table 4.2: Error analysis of windows recognition

_ . Actual Size | Recognized Size| Difference
Component | Dimension
(cm) (cm) (%)
Width 50.80 47.60 6.30
Window
Length 139.70 124.54 10.85

Another set of tests was conducted with the PKldng to study the solar
radiation effect. The tests were conducted duregday (2 pm) and at night (4 am). As
shown in Figure 4.10, during the day, the sameriextbuilding facade shows significant
temperature differences because of solar radi@mhshade. Points A and B in Figure
4.10 were randomly picked from each building facdtean be seen from Table 4.3 that
the shaded facade had a lower temperature. Therdateémperature difference between
point A and B was about 76, but the nighttime difference was only about°C.8
Through the comparison, the effect of solar radiratvas well observed, confirming that

the building envelope’s thermal data should beectdld after the building cools off at

night.
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(@) (b)

(©) (d)

Figure 4.10: (a) Daytime digital image of PKI buildng; (b) 3D thermal model
created during the daytime; (c) Digital image of PK building at night; (d) 3D

thermal model created at night

Table 4.3: Temperature value of points A and B at adytime and nighttime

Point A CC) Point B (C) A-B (°C)
Daytime 39.167 31.622 7.545
Nighttime 24.431 22.661 1.770
Daytime -Nighttime 14.736 8.961 NA
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A 3D thermal building model is ready to view as s@s the data are captured,
which allows onsite modeling quality assurance. pha@posed system is able to collect
data at night to avoid the thermal effects of sodatiation and to accurately detect heat
transferred through a building envelope. This &rang advantage over the system that
uses digital camera images. Also, the propose@sys designed to collect thermal data
simultaneously while the laser scans a buildingpfeed by immediate data fusion. It
took about 20 minutes for each scan, including tiommove and set up the system. After
all the scans were finished, the only process neimguwas to automatically register those
sets of 3D thermal point clouds using the develapegstration algorithm, which will be
introduced in a future publication. Table 4.4 sumges the differences among the

proposed method and other state-of-the-art appesach
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Table 4.4: Summarized differences between the proped method and existing

methods
EPAR Bi-Camera Irma3D Proposed Hybrid
(Ham et al. 2012) (Alba et al. (Borrmann et al. LIDAR
2012) 2012b, 2012c)
Data Handheld IR IR cameras Fixed IR camera 2 DOF robotic IR
collection camera with built-in| (320x240, (160x120) camera (320x240)
equipment digital camera 640x480) digital| mounted on a | integrated with a

(320x240)

camera and 3D
laser scanner

3D laser scanne

I laser scanner

Thermal data | Automatic; IR Manual; IR Automatic; IR Automatic;
fusion image to digital image and image to 3D absolute
process image; 3D digital image to | point cloud temperature value
reconstruction 3D point cloud; to 3D point cloud
using SFM or 3D (no image used)
reconstruction
with images
using SFM
Data Daytime Daytime Nighttime Nighttime
collection
time
Thermal data | Color Color Color Color and text
reading
Lower equipment | Flexible to Fast and real- | Fast and real —time
cost; low man upgrade IR or | time data fusion] data fusion; high
power; good digital camera; | robotic point resolution of
mobility; relatively | two sets of data| clouds thermal model due
lower model group fusion registration; to robotic scanning
resolution and (thermal images| limited vertical | mechanism;
Other accuracy than laser & digital images| field of view thermal modeling
performances| scan-based + point clouds &| due to the fixed | for transparent
approach; limited | digital images) | camera position| windows
flexibility to (complete thermal
upgrade IR or modeling of
digital camera building)

4.5 Web-based Thermal Model Map

To improve connectivity between building energyfpenance information and

the decision makers, a web-based geospatial progvam utilized to display a 3D

thermal map created from the proposed approachransfer the 3D thermal model to

the geospatial program, a translation and rotatm@trices were calculated to convert
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point cloud data in the Cartesian coordinate sydteitme geospatial coordinate system
(latitude, longitude, and attitude) (Im et al. 2R1Po provide better visualization for the

decision makers, ZNETH’s BIM was imported into Geogarth Pro™.

The point cloud’s Cartesian coordinates (X, y, @¢dto be converted to latitude,
longitude, and altitude (LLA) coordinates in orderbe imported to Google Earth Pro™
through using transformation between LLA and eaghtered, earth-fixed (ECEF)

coordinates as shown in Figure 4.11.

——\\
Point 1 Point 1
\—
r———
Point 2 Point 2
IECE
b || el = | (=
—
—————
Point 3
ECEF
——
/ Point Cloud
Point2 | - {LLA)
= )
Point 3 ECEFILLA
Point Cloud
{ECEF}

Point Cloud
{PC3D)} I:!I]:

Figure 4.11: The process of converting Cartesian oodinates to LLA coordinates

Firstly, three LLA coordinates are measured by gisirGPS receiver; meanwhile,
three corresponding Cartesian coordinates of pauitts the same location in the point
cloud are measured and stored. Then, these LLAdowies are converted into ECEF

coordinates through using the LLA2ECEF algorithmegdér 2005). As a result, three
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corresponding coordinates in two different coortBngystems are obtained, which are
Cartesian coordinates and ECEF coordinates.

All the points in the point cloud are then convdrte ECEF coordinates through
applying the rotation matrix and translation matrAfter being converted to ECEF
coordinates, all the points are converted to LLArdinates through using ECEF2LLA
algorithm (Kleder 2006). At last, all the Cartesiemordinates in the point cloud are
converted to LLA coordinates.

As shown in Figure 4.12, the 3D thermal point clamdl ZNETH’s BIM were
successfully imported into Google Earth Pro™, alidhe thermal data were retained.

The thermal data can be visualized by simply malisking the corresponding point.

o Ilatuge [412453 | G
; Zlongitude [-25.0127] i
IHeight (368715

[ Temperature [15 148 |

& ® m B .
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ot ML X .'.:r.'.,.n.';l.’};_vn

Figure 4.12: 3D thermal BIM model of ZNETH in Googk Earth Pro™
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4.6 Summary

This chapter introduces a rapid measurement sygiem thermal 3D model of
existing buildings. To rapidly and accurately measthe 3D geometries of a building
envelope, a hybrid data collection system was @pesl. An IR camera was integrated
into the 3D laser scanner to measure the temperatuthe building surface. Multiple
degrees of freedom (DOF) kinematics were solveidtegrate the two units to obtain x-
y-z coordinates and corresponding temperaturefdatach point. A GUI was developed
to control the hardware units (laser scanner, Rand, IR camera) for data collection and
to edit and visualize 3D thermal point clouds. Wiw detection algorithms were
introduced to create virtual thermal points on $parent window glasses and blinded
windows. The technical feasibility of the develogedrid system has been successfully
demonstrated through two field experiments on &eesial house and a commercial

building.
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CHAPTER 5
AUTOMATED GBXML-BASED BUILDING GEOMETRIC MODEL

GENERATION

Although much work has been done on the processingpint cloud data for
progress in construction and safety monitoring f@olar-Fard et al. 2009a),
performance visualization (Golparvar-Fard et aD2if), and bridge management (Tang
and Akinci 2012; Anil et al. 2013), not much worashbeen done to facilitate simulation
of building performance. Further, as regards peabiiity, the current point clouds
processing technologies are still in the very eardges.

The primary objective of this chapter was to pdeva preliminary solution that
automatically and rapidly extracts building enveloppmponents of existing buildings
from the thermal point cloud data that can be frthtilized for building energy
simulation applications. The thermal point cloudadeollected from the hybrid 3D laser
scanner system was processed to recognize diffbtalding envelope components such
as windows, doors, walls, and roof as individuajeots for gbXML-based geometry
model generation. In the ensuing sections, thidysfuist reviews the framework of the
proposed approach, and then introduced the detailemmated geometric model creation

process. Finally, field test results were discussedilidate the proposed framework.

5.1 The Framework for Automated As-Is Semantic Buding Geometric Model

Creation
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The proposed method comprises four main steps; fivs collected raw data was
pre-processed by removing noise data and downsihaglata. On the completion of
data pre-processing, the region growing plane satatien algorithm was applied to
divide the raw data into segments of point cloudcWiwere located at the same plane.
Then, a boundary detection algorithm was introdutmedecognize boundary points in
each segment of point cloud. Further, all the detkboundary points were categorized
into their own building component category and diniy geometry was successfully
extracted. Figure 5.1 shows the flowchart for tiheppsed method. The four steps are

explained in detail in the ensuing sub-sections.

( Start )

Input \

o * Pre- |
processing
Segmented
A i‘ Point Cloudg

=== 1 Plane | |
| | Segmentatioh
| Boundary | |
| |
\/\ |
: = — A
| |
. | Boundary
| I S -
: CRelings : Detection
| \_/\ |
_____ p=——=-
| \
' Building Components
_————— > o —
Classification
v
End

Figure 5.1: Flowchart for the proposed method
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5.2: Data Pre-processing

The point cloud data collected by a laser scanren fan outdoor environment
usually contain noise, which can result in a falwr inaccurate result if not being
reduced or eliminated. A tensor voting algorithmniket al. 2013) was employed in this
paper to distinguish and remove the isolated pdnot®: the collected point cloud. The
goal of data downsizing is to increase the datagssing speed by reducing the amount
of overly dense data being processed. The raw tooid data are imported into a 3D
space where the data structure is a 3D uniformhgrxe (Figure 5.2 (a)). Each voxel has
its own specific boundary according to the size get After they are placed in their
corresponding voxels, all the points present insime voxel are removed and a centroid
point for the point group is created (Moravec 19@6gyure 5.2 (b), (c)). Thus, the bigger
the voxel is, the more points are eliminated. Teelyg downsized data are then passed to

the next step as input.

>

NP

(a) (b) (©)

Figure 5.2: (a) 3D uniform voxel grid structure; (b) a voxel and the points located in
it; (c) one estimated point left after data downsiing (lllustration adapted from
(Moravec 1996))
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5.3 Region Growing Plane Segmentation

In this research, existing residential buildingssorall commercial buildings are
mainly studied. Due to a difficulty of foundatiomrin design and cost, most of the
residential building envelope components have plawfaces. Thus, a plane
segmentation algorithm is then applied on pre-@see data to segment it into a set of
disjoint point clouds which are located on the sgsteme. The region growing plane
segmentation algorithm (Farid and Sammut 2012;dFand Sammut 2013) was chosen
in this research because of its desirable progersach as conceptually simple and
allowing applications in a wide range of settinghis algorithm can merge the points
that are close enough to each other in terms o$ith@thness constraint into one plane
cluster. The algorithm sorts the points by thenvature value, and the region begins its
growth from pointP with a minimum curvature value. This poldts chosen and added
to the set called seed points. For each seed ploasen, the algorithm finds its neighbor

points{Pn} and tests each neighbor paints {£,} for the angle between its normal and

the normal of the current seed poifibe current seed point is added to the currenbmneg
if the angle is less than the threshold valyeFurther, the curvature value of its neighbor
point is compared with the value of the seed pdirthe curvature value is less than the
threshold valueCy, this neighbor point is added to the set of sesdtp and the current
tested seed point is removed from the set. Thei#hgo repeats this process until the set
of seed points is empty, signifying that the altfori has grown the entire region and all
points have been labeled. The output of this segatien algorithm is a set of segmented
point cloud clusters, where points in the sametetuare considered to be part of the
same plane.
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Figure 5.3: Segmented point cloud clusters

5.4 Edge and Boundary Point Extraction
Point cloud data cannot be collected from materiladg have low reflectivity,

such as black objects and glass, owing to the ctarstics of the laser beam.
Consequently, there is no point showing in the wimdjlass area. The edge points of the
window frames can be separated from the joined @aynpoints on the basis that the
boundary points of the window frame surround an tgnapndow glass area. In the third
step, an edge and boundary detection algorithmuRtal. 2007, Bae and Lichti 2004) is
used to isolate edge and boundary points fromeke The results of the region growing
plane segmentation process are a set of segmeatedgoud clusters, in which each
point contains X, Y, Z coordinates together with mormal and curvature flatness. As
illustrated in (Bae and Lichti 2004), the edges$haf objects can be extracted based on the
curvature information because they are characterlze high changes in curvature.
However, the boundary points residing on the obtarder of the point cloud cannot be
found based on curvature data as there is no chfandgkese points. Since all points in
each cluster are on the same plane, the point @dande projected onto a 2D plane. In
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2D plane, the boundary points can be easily idedtibecause the maximal angle formed
by the vectors towards the neighboring pointsngdafor boundary points than for points
are on the inside of the object. For point cloutadaf buildings, the edge points and
boundary points are correspondingly referred to ¢lage of the openings and the
boundaries of walls or roofs (see Figure 5.4). && ¢dge and boundary points of all
clusters being recognized, all the component sesfazan be created by applying 2D

concave hull algorithm (Zhou 2005).
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Figure 5.4: Outer boundary and inner boundary recogition
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5.5 Rule-based Building Envelope Component Classtion

In the final step of the proposed method, the Imgicenvelope components were
automatically identified through the surfaces aledi from the previous sub-section. All
surfaces recognized from the previous steps weoeepsed through a rule-based
classification system. The following rules were eleped based on the understanding of
the building features, and only the building comgrais covered in the gbXML schema
were considered in this research to be an objeptdognize. First, all vertical surfaces
were defined as wall components, then openings segarated from the recognized wall
components. In this paper, it was assumed thaipahings were closed when the data
was collected. For each opening, if there was aessine of surface parallel and adjacent
to it, then this paralleled surface can either loar panel or window-blinds. Together
with the location of the openings, the openingsenlabeled as a door if it was close to
the bottom boundary of its wall surface, otherwits@as recognized as a window. The
door components were further categorized into nbduar and glass door according to
the existence of the door panel. The window comptneere also categorized into clear
window and blinded window based on the existenca afindow-blinds. Figure 5.5
shows how an example of the recognized wall, windd@or, and door panel surfaces.
Then, the wall category was divided into two clas@xterior wall and foundation wall)
by the rule that the foundation wall surface wabwea door surface, and the exterior
wall surface was not (Figure 5.6). The partialrfidation wall surface could also be
completed according to the user input. Becauseabiewas usually above the walls and
adjacent to at least one exterior wall, it can beognized once the exterior wall

components are defined (Figure 5.7). Lastly, thelagsified surfaces were categorized
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into raised floor and shade based on the rulesrtiisgd floor surface was horizontal and
below a door surface, and shade surface was natedjto the space formed by wall

surfaces. Table 5.1 shows the organized classditatiles.

Windows

Figure 5.5: Exterior wall surface and door panel stface (a) Front view. (b) Side

view
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Table 5.1 Proposed classification rules

Component Classification Rules
wall Exterior Wall Vertical surfaces
Foundation Wall Vertical surfaces, below a dooface
Bottom of the opening close to the boundary of th
Panel Door . :
wall, panel surface behind the opening
Door -
Bottom of the opening close to the boundary of th
Glass Door :
wall, no panel recognized
Window Blinded Window| Non-door opening, blind surface lmehihe opening
Clear Window Non-door opening, non-blinded window

Roof

Above and adjacent to exterior wall, non-\caiti

Raised Floor

Horizontal, below door surface

Shade

Surface not adjacent to any spaces

Figure 5.6: Exterior wall and foundation wall
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Figure 5.7: Roof classification

5.6 Geometry Size Fitting

Because the laser scanner has a limited scarutespland is unable to obtain
thickness data of the envelope components. In Ei§8, it can be seen there are gaps
between the recognized surfaces. Energy simulaéquires a closed space as an input,
therefore a geometry size fitting algorithm is regedo fill in those gaps. The proposed
algorithm extended the surfaces of all walls, rpafsd raised floor, and replaced their

surface edges with the intersection lines if ergs{iFigure 5.9).
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Figure 5.8: Gaps between surfaces

ion lines ==

/ Intersect

Figure 5.9: Intersection lines extracted after surice extension
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5.7 Data Conversion

The output of the building component classificatialgorithm was a set of
boundary points of the envelope components. Foh éadividual component, all its
boundary points were saved in a text file in whio first line of data was its surface ID,
and followed by its surface type on the same IBiRrting from the second line, there
were three columns of data on each line, and tbpyesented one point’s x, y, and z
coordinates. To be useful for energy simulatior, fike has to be converted to another
file format that can be imported. In this reseatble,gb XML open schema was chosen to
help facilitate the transfer of the data to engimge analysis tools. Figure 5.10 is a
structure chart of element “Surface” in gbXML scleeifversion 5.0.1). This element
was used to interpret the extracted componentsh Bacface requires a unique ID,
surface type, and geometry. Surface type includésrior wall, exterior wall, roof,
ceiling, and etc. In this paper, exterior wall amef were assigned to corresponding
surface. PlannarGeometry specifies the locatiothefsurface, and lists all vertexes of
the surface to define a loop. Attribute “Opening”added if there is any opening in the
surface. The extracted as-is data were first sagetéxt files, as shown in Figure 5.11,
and then were converted into gbXML file accordirg the corresponding gbXML

schema.
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Figure 5.10: The gbXML schema of the elements usaad data exchange
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Figure 5.11 Data exchange from text data (left) tgbXML data (right)
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5.8 Field Tests and Results

Validation of the proposed methodology was impleteéron three small existing
buildings, and two of which are residential houses] one is a small bank building. In
all case studies, the point clouds of the buildiwgse as completely as possible collected
and used as raw input data. In the first cast sttidy same residential house (ZNETH)
that was tested in Chapter 4 was used as a tegcsubhe collected raw data (Figure
5.12(a)) containing 1,061,637 points were first gessed by the data downsizing
algorithm. In the algorithm, the leaf size of thessel was set at 0.05m which is five
times of the resolutions (0.01m) of the raw datg.ulilizing data sizing algorithm, the
data size was decreased to 541,003 points whiabast half size of the raw data. The
decreased data size can significantly reduce tloeepsing time in the following
processes. Then, the downsized point cloud dat@ wegmented into a set of plane
clusters (Figure 5.12(b)). For each segmented pdomid cluster, the inner and outer
boundary points were extracted by a boundary agé pdints detection algorithm.

The output of the boundary points detection alpanitvas a set of outer and inner
boundary surfaces. Then, the rule-based buildingelepe component classification
algorithm followed to categorize each boundary azefinto its corresponding category.
Figure 5.12(c) shows the results of the proposethode There were total 2 door
components, 39 window components, 4 roof componefitsunderground wall
component, 1 raised floor component, and 10 exterall components being recognized
from the set of boundary surfaces. Precision, reral accuracy (Olson and Delen 2008)
were measured to evaluate the performance of thanent classification (Table 5.2).

In this case study, all recognized components d@gdepne window were correctly
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categorized. The area dimensions of the recogmaetgonents were also compared with
the manually measured area dimensions of the h@mskthe absolute difference was
calculated for each recognized component. Tabletio8vs the comparison results of the
recognized geometry of each envelope component. ddug category was the most
accurately recognized in terms of the area size.rdbf and exterior wall categories have

a lower accuracy because the incompleteness ohthéata.
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Figure 5.12: Test results of case study 1 (ZNETHja) Raw data; (b) Segmented

point cloud clusters; (c) Created semantic modeld) Geometry size fitting
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Table 5.2: Evaluation of the extracted envelope conmonents for case study 1
Precision = TP / (TP+FP), Recall = TP / (TP+FN),

Accuracy = (TP+TN) / (TP+TN+FP+FN)

TP FP FN TN | Precision| Recall Accuracy
Exterior Walll 10 0 0 46 | 100.00% 100.00% 100.00¢
Window 39 0 1 17 100.00% 97.50%  98.25%
Door 2 0 0 54 | 100.00%| 100.00% 100.00¢
Foundation wall 1 0 0 55 | 100.00% 100.00% 100.00¢9
Raised Floor 1 0 0 55 | 100.00%| 100.00% 100.00¢
Roof 4 0 0 52 | 100.00% 100.00% 100.00¢9

Table 5.3 Comparison between the recognized and timeanually measured envelope

components for case study 1

Measured Recognized
Dimension (nf) Dimens?on () Error (m?) | Error (%)
Exterior Wall 355.25 363.95 8.71 2.45
Door 3.90 4.27 0.37 9.49
Window 18.48 15.29 3.19 17.26
Roof 156.74 143.48 13.26 8.46
Raised Floor 19.74 16.41 3.33 16.87
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Figure 5.13: Test results of case study 2 (ZNETH JI (a) Raw data; (b) Segmented

point cloud clusters; (c) Created semantic modeld) Geometry size fitting
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To further validate the robustness of the propasethodology, two more case
studies were conducted. As shown in Figure 5.18(a) Figure 5.14(a), one is a one-
story residential house, the other is a one-stagkbbuilding. Following the same
process, the results of these two case studiesamerespondingly visualized in Figure 5.
13 and Figure 5.14. The evaluation results of tragonent recognition were also shown
in Table 5.5-5.7. In case study 2, one exterion watl one door were falsely classified,
and most components were recognized with around dmor. There was 11.10 °m
difference between the measured and the recogmizefd components. This is also
caused by the data incompleteness. In case stuiig 3ested bank building has a more
complicated roof containing 12 plane segments. @asethe evaluation results shown in
Table 5.6, 3 out of 24 windows were not succesgfidbognized from the point cloud
data. The dimension evaluation results in Tablesh@ws that the recognized exterior
wall and roof categories had greater absolute difeexence compared with the manually
measured one.

In Figure 5.15, all recognized component categandkree case studies were put
together to analysis the relationship between ther @nd the measured area size of the
component. It can be summarized from Figure 5.55 tine greater errors mostly came
from the greater size of the component. Figure SHdws the error range frequency, and
total 50% of the recognized component categoriek lass than 2.5fmerror, and total
about 71% had less than 1Derror. Figure 5.16 shows the error range frequeand
total 50% of the recognized component categoriek lass than 2.5fmerror, and total
about 71% had less than 1Derror. Through a joint analysis with Tables 5.% &nd

5.7, it can be seen that the recognized comporsagaries with greater than 10error
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are roof and exterior wall. This is because thenppdioud data are usually difficult to be

completely collected from these two componentstduge building height or occlusion.

Table 5.4: Evaluation of the extracted envelope coponents for case study 2
Precision = TP / (TP+FP), Recall = TP / (TP+FN),

Accuracy = (TP+TN) / (TP+TN+FP+FN)

TP FP FN TN | Precision Recall Accuracy
Exterior Wall 4 1 0 20 80% 100% 96%
Window 14 0 0 11 100% 100% 100%
Door 2 1 0 22 67% 100% 96%
Roof 4 0 0 21 100% 100% 100%
Raised Floor 1 0 0 24 100% 100% 100%

Table 5.5 Comparison between the recognized and timanually measured envelope

components for case study 2

Measured Recognized
Dimension (nf) Dimens?on (nf) Error (m®) | Error (%)
Exterior Wall 127.30 128.75 1.45 1.14
Door 2.97 3.89 0.92 3.10
Window 10.81 11.83 1.02 9.44
Roof 137.50 148.60 11.10 8.07
Raised Floor 10.41 10.19 0.21 2.02

Table 5.6: Evaluation of the extracted envelope coponents for case study 3
Precision = TP / (TP+FP), Recall = TP / (TP+FN),

Accuracy = (TP+TN) / (TP+TN+FP+FN)

TP FP FN TN | Precision Recall Accuracy
Exterior Wall 14 0 0 42 100% 100% 100%
Window 27 0 3 26 100% 90% 95%
Door 3 0 0 53 100% 100% 100%
Roof 12 0 0 44 100% 100% 100%
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Figure 5.14: Test results of case study 3 (Bankp) Raw data; (b) Segmented point

cloud clusters; (c) Created semantic model; (d) Geeetry size fitting

Table 5.7 Comparison between the recognized and timeanually measured envelope

components for case study 3

Measured Recognized
Dimension (nf) Dimens?on (nf) Error (m®) | Error (%)
Exterior Walll 347.70 324.74 22.97 6.61
Door 4.63 5.92 1.29 27.86
Window 76.01 77.53 1.52 2.00
Roof 1036.90 1054.00 17.11 1.65
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5.9 Feasibility Validation
In previous sections, this study discussed abowut twocollect 3D thermal point

cloud data, and how to automatically extract buaiddenvelope geometry from the point
cloud data. The output from the previous sectioas &n auto-generated gbXML file.
The intent of this section was to validate the itahty of using the auto-generated
gbXML file as an input in the energy simulation d-igure 5.14 shows the preliminary
result that the auto-generated gbXML file of theecatudy 1 was successfully imported
into a building energy simulation tool (Autodeskoext Analysis 2011 was tested for

validation in this study.).
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5.10 Summary

In this chapter, this research proposed and demadedta method for automatic
building geometry extraction from unorganized pastdguds collected from a 3D laser
scanner. In the proposed method, raw data weteefirsinated to reduce the data size so
as to increase the processing speed while maintaatgcuracy. The downsized data were
then processed through boundary detection algosittand building components finally
recognized by processing the boundary points. Tiopgsed method was tested and
validated on three collected as-is building datae Test results show that the proposed
method can successfully extract semantic informaftiom the raw point cloud data, and
convert the extracted data into a gbXML format tbah be imported into the energy
simulation tools. Precision, recall, accuracy & dtomponent recognition algorithm, and

dimension error of each component were all evatusi¢his chapter.
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CHAPTER 6

CONCLUSIONS

The intent of this chapter is to summarize andragtencluding remarks for this
research. The chapter specifically addresses #eareh needs statement as well as the
research questions presented in Chapter 1 ofd@hesarch. Major findings of the research,
identified limitations, and future research extensof this work are discussed in this

concluding chapter.

6.1 Concluding Remarks

This research proposed a non-invasive methodologgutomate the as-is 3D
semantic geometric model creation process. Thregareh questions were presented in
Chapter 1, and these research questions and a sim@thdiscussion were presented in

the following:

Research Question 1: How can the as-is point cloud and thermal datanbe-

invasively collected, fused and visualized?

A hybrid data collection system was developed tegrating 2D laser
scanners and IR camera. The laser scanner an® tb@mera collected 3D point
clod data and temperature data simultaneously.nDuhe data fusion phase, the
IR camera was calibrated and the kinematics of d&em were solved to
automatically map the collected temperature dat8DAthermal point cloud can
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be successfully created, and each point possessesrresponding coordinates
and temperature data. This study also discusseeffibets of the sun radiation on
the temperature data collection process, and cdadlthat it's best to collect data

at dawn to avoid the sun radiation.

Research Question 2: How can the semantic data be automatically exédct

from the collected raw data?

A rule-based building envelope component recogmitalgorithm was
proposed and created in this research. Using théh&bmal point cloud as an
input, this algorithm first downsampled the sizetloé input to reduce the total
processing time. The downsampled point cloud dateewhen processed by a
regional growing plane segmentation algorithm, imsl algorithm segmented the
downsampled point cloud data into a few clustersyhich all points have similar
normal vector. Furthermore, an edge and boundatgctien algorithm was
introduced to extract boundary points in each elusFinally, a rule-based
building component classification algorithm was eleped to divide all plane
segments into their corresponding categories, asatxterior walls, underground
walls, windows, doors, roofs, shades, and raisedrdl Field tests on selected
residential houses were conducted to validate #asilbility of the proposed
methodology and evaluate its performance as wélkk fEst results showed that

the precision, recall and accuracy of most of tkieaeted components can reach
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95%, and the total about 71% of the recognized corepts had less than 16m

error.

Research Question 3: How can the extracted semantic data be storeénmg of

data interoperability?

The extract components were first processed bgangtry size fitting
algorithm to fill in the gaps between all the plaswefaces in order to create a
closed space. All the extracted geometry data efbiilding components were
originally saved as a text file, in which it incled its component ID, adjacent
component ID, and a set of boundary points. Basethe gbXML schema, this
text data was automatically converted into a gbXMé. In the auto-generated
gbXML file, the “surface” element stands for theampé segment. The auto-
generated gbXML was also validated with the setbatemmercial building
energy simulation software tools. The gbXML filesnsuccessfully imported, and

all elements were correctly transported into tineusation tools.

6.2 Research Contributions

The contributions of this research include 1) atmuszed low-cost hybrid data
collection system development to fuse various dat@a a thermal point cloud; 2) an
automatic method of extracting building envelopenponents and its geometry data to
generate gbXML-based building geometry model. Trteader impacts of this research

are that it could offer a new way to collect ashigilding data without impeding
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occupants’ daily life, and provide an easier wayl&ypeople to understand the energy

performance of their buildings via 3D thermal paildud visualization.

6.3 Limitations and Future Research

Despite of the demonstrated promising resultssitstill inevitable that this
research has a few limitations,

(1) The success of the proposed methodology totallgmnidp on the completeness
of the collected data. It's hard to recognize ddmg component that was
occluded during the data collection or that hasymaoisy data

(2) The collected data usually contains other non-edlaibjects, such as trees,
other buildings, grounds, and cars. In this methmglg the unrelated data
were manually filtered at the start.

(3) Compared to commercial buildings, the residentiaude has small and
various shapes, which may challenge the robustok$lsis research. More
case studies need to be conducted to increaseslibbility of the proposed
system.

In future work, this study will focus on improvirthe accuracy of processing
incomplete data because it was identified that @oyuprimarily relies on the integrity of
the data. The data downsizing process can causes drecause it replaces the points in
each voxel with an estimated point. Incomplete dstanother factor that can reduce
accuracy (e.g., the incomplete roof of the residéhbuse and the parts blocked by trees
and bushes). Therefore, how to complete the datdilser the unrelated data will also be

an emerging topic. This research also plans tchéurenhance the robustness of the
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proposed methods so that it can be implementeduaed for several different types of
object recognition and extraction activities forkaslt modeling in the AEC/FM domain.
Automatic indoor room zone creation will also beastigated in the future research, and
it will be helpful for those buildings with moreah one thermal zone. Lastly, the auto-
generated gbXML files should be evaluated throumhmaring its simulation results with
traditional method. In the long run, the future e@sh outcomes are expected to
stimulate decision makers to improve their buildingy providing reliable, visual
information about their building’s energy performan thus benefiting the economy,

society, and the environment.
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