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SUMMARY 

Existing residential and small commercial buildings now represent the greatest 

opportunity to improve building energy efficiency. Building energy simulation analysis is 

becoming increasingly important because the analysis results can assist the decision 

makers to make decisions on improving building energy efficiency and reducing 

environmental impacts. However, manually measuring as-is conditions of building 

envelops including geometry and thermal value is still a labor-intensive, costly, and slow 

process. Thus, the primary objective of this research was to automatically collect and 

extract the as-is geometry and thermal data of the building envelope components and 

create a gbXML-based building geometry model. 

In the proposed methodology, a rapid and low-cost data collection hardware 

system was designed by integrating 3D laser scanners and an infrared (IR) camera. 

Secondly, several algorithms were created to automatically recognize various 

components of building envelope as objects from collected raw data. The extracted 3D 

semantic geometric model was then automatically saved as an industry standard file 

format for data interoperability. The feasibility of the proposed method was validated 

through three case studies.  

The contributions of this research include 1) a customized low-cost hybrid data 

collection system development to fuse various data into a thermal point cloud; 2) an 

automatic method of extracting  building envelope components and its geometry data to 

generate gbXML-based building geometry model. The broader impacts of this research 

are that it could offer a new way to collect as is building data without impeding 
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occupants’ daily life, and provide an easier way for laypeople to understand the energy 

performance of their buildings via 3D thermal point cloud visualization. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Energy efficiency has been a significant issue for the whole world since the 

energy crisis in the late 1970’s (Maldague 2001). In the United States, buildings sector 

currently accounts for approximate 41% of the primary energy usage (Brass 2007; U.S. 

DOE 2011; EIA 2009), as shown in Figure 1.1, commercial buildings and residential 

buildings consume 19% and 22% of the total U.S. energy consumption. The U.S. 

Department of Energy’s Build America Program (NREL 2008) set a goal of reducing the 

average energy use in housing by 40% to 70%. President Obama also launched the Better 

Building Challenge which asks leading organizations to commit to reducing the energy 

use of their buildings by 20% by the year 2020. In buildings sector, around 95% of 

buildings (over 120 million) are existing residential buildings, which represent the single 

largest contributor to U.S. energy consumption and greenhouse gas emissions (over 

50%). Since existing residential buildings are the single largest contributor to the U.S. 

energy consumption, conducting retrofits on the existing residential buildings, especially 

on those aged buildings, will have the greatest potential to improve building energy 

efficiency and reduce environmental impacts and the total energy consumption in the 

U.S. 
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Figure 1.1: Energy consumption by sector (U.S. DOE 2011) 

  

To help retrofits of existing residential buildings, a detailed building energy 

performance assessment is desired for the building stakeholders for their decision making 

process. Building energy performance assessment requires information about buildings, 

such as their geometry, material, internal loads, and weather conditions (Azhar and 

Brown 2009). It is important to obtain accurate as-is data about the buildings because this 

information directly affects the building energy performance assessment results. For the 

existing buildings, sometimes this as-is data are on record, but it may be inaccurate due to 

the building’s renovation, insulation aging, and home owner’s lack of technical 

knowledge. Among all the desired as-is data, collecting as-is geometry data about the 

building envelope components is a more labor-intensive, costly, and time-consuming 

process.  

 Recently, with the development of the as-is modeling technique, 3D as-is point 

cloud can be collected by using laser scanner or photogrammetry technique. Point cloud 

is composed of millions of individual points in which each one has a 3D relative 

coordinate information. Tang et al. (2010) reviewed the current related techniques for 
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automatic reconstruction of as-is building information models from point clouds. Figure 

1.2 shows an example of 3D as-is point cloud collected from a 3D laser scanner, and the 

color was rendered based on the distance to the scan location. The 3D building envelope 

can be well visualized in the collected point cloud. However, the collected point cloud is 

not useful for building energy analysis until as-is building data being extracted. Current 

as-is building data extraction is mostly done through manual processes, and few research 

efforts have been done to automate this manual process. 

 

 

Figure 1.2: An example of point cloud data collected from a building (Tang et al. 

2010) 

 

1.2 Research Hypothesis 

 The hypothesis of this research was that the integration of as-is point cloud data 

with as-is infrared (IR) thermography data can improve the automated 3D semantic 
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geometric modeling process. With the abovementioned research hypothesis, several 

research questions were proposed in the followings, 

Research Question 1: How can the as-is point cloud and thermal data be non-

invasively collected, fused and visualized? 

 

Research Question 2: How can the semantic data be automatically extracted 

from the collected raw data? 

 

Research Question 3: How can the extracted semantic data be stored in terms of 

data interoperability? 

 

1.3 Research Objectives and Scopes 

The primary objective of this research was to automatically collect and extract the 

as-is geometry and thermal data of the building envelope components and auto-generate a 

gbXML-based building geometry model.  

 The specific research objectives were: 

Objective #1: Design and identify a hybrid data collection and processing system 

which non-invasively collects and fuses as-is point cloud and thermal information 

from a building envelope. 

 

Objective #2: Create algorithms which can automatically recognize various 

components of building envelope as objects from collected raw data. Evaluate the 

precision, recall, and accuracy of the proposed algorithms. 
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Objective #3: Identify a method which can automatically convert extracted 

building geometry and thermal data to a file format that is interoperable with the 

energy simulation tool. 

 

 In this research, the test subjects were residential houses or small commercial 

buildings, and it was assumed that the completely registered point clouds of buildings for 

testing proposed framework and algorithms were available using all existing advanced 

data collection technologies (e.g., Unmanned Aerial Vehicle (UAV), photogrammetry, 

videogrammetry, etc.) in addition to the hybrid data collection system developed in this 

research. The scope of this research included hybrid data collection system design, data 

fusion and semantic data extraction, gbXML geometry modeling and data interoperability 

of extracted semantic data. An energy simulation tool (Autodesk Ecotect Analysis 2011) 

was used to test the semantic gbXML data interoperability, and whether the semantic data 

can be successfully imported or not was evaluated.  Neither energy simulation analyses 

(e.g., energy annual consumption, thermal & light simulations) nor comparisons with 

existing energy auditing methods were part of the research scope. 

 

1.4 Dissertation Organization 

This research aimed to investigate a method of fusing point clouds with thermal 

data for gbXML-based building geometry model generation. Table 1 provided a brief 

description of the contents of each chapter. 
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Table 1.1: Title and description of each dissertation chapter 

Chapter Description 
1) Introduction This chapter introduces background, problem statement, 

research hypothesis, research objectives and scope. 
2) Literature Reviews This chapter reviews the closely related research 

conducted by other researchers on the technology and 
development of as-is thermal building modeling. 

3) Overview of The 
Proposed Methodology 

A brief overview and the framework of the proposed 
methodology are presented. 

4) Non-invasive As-Is 
Thermal Modeling 

The main objective of this chapter is to develop a hybrid 
data collection system that can non-invasively collect and 
fuse 3D point cloud and temperature data from existing 
buildings. 

5) Automated gbXML-
based Building Geometry 
Model Generation 

The primary objective of this chapter is to provide a 
preliminary solution that automatically and rapidly 
extracts building envelope components of existing 
buildings from point cloud data that can be further 
utilized for gbXML-based geometry model generation. 

6) Conclusions This chapter summarizes the research findings and 
concludes the dissertation. Future research extensions 
and opportunities of this research are discussed as well as 
limitations. 
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CHAPTER 2  

LITERATURE REVIEWS 

  

 The object of this chapter is to review the closely related research conducted by 

other researchers on the technology and development of as-is thermal building modeling. 

In order to develop this study, three categories of the existing literature have been 

reviewed, including: 1) As-is point cloud creation methods; 2) As-is thermal modeling 

methods; and 3) Object recognition from point clouds. 

 

2.1 State-of-the-art Point Cloud Collection Methods 

 

 A point cloud is a set of data points in which each point has its relative 

coordinates, and often is intended to represent the external surface of an object. It may be 

created by photogrammetric method or 3D laser scanner. A point cloud can be post-

processed to render real-size objects or environment by registering all individual scans 

onto the same coordinates. Point cloud registration is defined as registering multiple point 

clouds scanned from different viewpoints into one common coordinate system. Recent 

studies have been made on how the as-is point cloud can be created to represent existing 

buildings. 

 

2.1.1. Stereo vision and photogrammetry 
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A stereo imaging system comprises multiple passive 2D imaging sensors 

(cameras) with fixed or regularly calibrated imaging parameters. Imaging parameters 

include the interior orientation parameters of a camera depicting the projection and 

imaging geometry, and the exterior orientation parameters depicting the relative position 

and orientation relationships among multiple cameras (Linder 2003). With the stereo 

imageries and these parameters, a photogrammetric algorithm can extract and match 

feature points across images composed of overlapping regions, and reconstruct 3D 

measurements on these regions (Linder 2003). Several researchers have explored the 

application of such systems to construction progress monitoring and management 

(Brilakis et al. 2010; Dai and Lu 2010). While stating the limitations of requiring interior 

and exterior parameters to be known, some studies have explored approaches capable of 

automatically estimating the interior and exterior parameters of cameras for 3D 

reconstruction based on unordered photographs with limited interior parameters known 

(Golparvar-Fard et al. 2009b). Digital videogrammetry (Figure 2.1) has also been 

demonstrated as being advantageous in some situations; however, it is currently restricted 

to fixed camera positions (Brilakis et al. 2010). 
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Figure 2.1: Representation for modeling process using digital videogrammetry 

(Brilakis et al. 2010) 

Photographs provide large amounts of information about the progress of 

construction. The information provided may be automatically processed and converted 

(Navon 2007; Brilakis and Soibelman 2008, Golparvar-Fard and Peña-Mora 2007; Wu 

and Kim 2004; Abeid et al. 2003). Furthermore, compared to other data collection 

techniques, photographs do not hinder efficient project management processes by 

requiring significant data collection efforts (Golparvar-Fard et al. 2009a; Bhatla et al. 

2012). Golparvar-Fard et al. (2009b) introduced an image-based as-built modeling 

technique based on computing from the images themselves, the photographer’s locations 

and orientations, and a sparse 3D geometric representation of the as-built scene using 

daily progress photographs (Figure 2.2). The major advantages of photogrammetric 

systems include fast data collection rates (tens to hundreds of 1024 × 1024 pixel frames 

per second), and acquisition of rich color and textural information of workspace objects 

for appearance based object recognition. Published research results show that most of 

these systems can be used to model a workspace in a well-controlled environment such as 

structured indoor manufacturing. However, this method has a number of limitations: 
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Different lighting and weather conditions make it difficult to use time-lapse photography 

for performing consistent image analysis at occluded and dynamic site conditions 

(Golparver-Fard et al. 2011; Golparvar-Fard et al. 2009a, Golparvar-Fard et al. 2009b, 

Bohn and Teizer 2010). Further, the geometry of the area will be overlooked if common 

features from multiple images cannot be found. If there has been significant construction 

progress and photographs were not taken or some objects were moved (e.g., equipment or 

scaffoldings) during that period, it would be challenging to find common feature points in 

photographs. In addition, manually taken photos cannot completely avoid spatial 

information discontinuity (Golparvar-Fard et al. 2011; Golparvar-Fard et al. 2009a). 

Bhatla et al. have also shown that the technology in its present state is not suitable for 

modeling infrastructure projects (Bhatla et al. 2012).  

 

Figure 2.2: An example of the reconstructed sparse scene of as-built site point cloud 

data by processing site images (Golparvar-Frad et al. 2009b) 

 

2.1.2. Laser scanners 

A laser scanning system is composed of a photon source that emits a continuous 

laser signal or a series of laser pulses, mechanical components for rotating the photon 
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source vertically and horizontally to scan the scene with a laser, and a timing system for 

deriving the time-of-flight and determining ranges. A scanning system sequentially 

collects 3D points while rotating the photon source, thereby generating 3D points column 

by column to form a panoramic range image of the scene (Farid and Sammut 2012). 

State-of-the-art laser scanning technology provides approximately 4 mm distance 

accuracy and 6 mm positional accuracy at up to 50 m distance for a single measurement. 

In construction applications, the accuracy of laser-scanned data depends on a number of 

factors beyond the underlying sensor accuracy. These factors include object dimension, 

surface orientation, surface reflectivity, and environmental lighting and temperature 

conditions (Akinci et al. 2006). 

Compared to photography, laser scanners facilitate wide-range measurements at 

higher resolutions and accuracies, and are generally not limited by ambient conditions 

during operation (Anil et al. 2013). Laser scanning can also better holistically address all 

of the listed inefficiencies associated with the current practice of progress monitoring 

through rapid and detailed geometric data collections than other 3D remote sensing 

technologies (Golparvar-Fard 2011). In the domains of construction and facility 

management, researchers have conducted various studies investigating the issues related 

to utilizing laser scanners for a wide range of purposes, including fast workspace 

modeling (Cho et al. 2002; Kwon et al. 2004), real-time safety management on site 

(Bhatla et al. 2012), construction progress monitoring (Bosche and Haas 2008; Bosche 

and Haas 2007; El-Omari and Moselhi 2008; Reboli et al. 2008, Xiong et al. 2013), 

defect detection (Akinci et al. 2006; Gordon and Akinci 2005), as-built modeling (Cheok 

et al. 2000; Heinz et al. 2001; Kim et al. 2005; Anil et al. 2011; Adan and Huber 2011), 
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deflection assessments of bridges (Gordon et al. 2004; Jaselski et al. 2005; Jaselskis et al. 

2006; Xiong et al. 2013; Tang and Akinci 2008; Tang et al. 2007; Tang et al. 2011), and 

pavement thickness assessments (Jaselskis et al. 2006).  

Depending on the types of signals emitted from the photon source and the timing 

mechanism for deriving distances, two types of laser scanning systems exist on the 

market. Time-of-Flight (TOF) systems use photon sources emitting discrete laser signals, 

and directly measure the time difference between sending and receiving the signals for 

deriving the distances. Phase-Shift systems emit continuous modulated laser signals with 

certain light wave shapes, and use the phase-shift between the sent and received light 

wave for deriving the travel time of the laser and determining the distances. Both systems 

have their advantages and disadvantages for real-time construction applications. Two 

main issues that influence such applications are the data collection rate and the range of 

the scanner. Generally, a scanner with fast data collection rate is preferred for real-time 

applications, but a long range scanner can cover a large area at one station as long as the 

occlusions are not serious on jobsites, so that engineers can save time for moving the 

scanner on jobsites. 

TOF scanning systems: the principle behind a TOF system is that the laser is 

pulsed several thousand times per second (up to 50,000 with some recently released 

models) for range detections.  

Once the scanner has calculated the distance, both the horizontal angle and the 

vertical angle are measured to yield the 3D point. In this case, the distance and 

coordinates of the reflecting object are determined by the following Equation 2.1: 
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                          Equation 2.1 

Where, ρ=distance, c=light speed, and ∆t=time interval, α=horizontal angle, and 

β=vertical angle. 

Typical TOF scanners have a data collection rate of thousands to tens of 

thousands points per second. One scan will last between a few minutes to several hours, 

depending on the frequency of the photon source and the spatial resolution of the 

collected data. Most terrestrial TOF scanners have long data collection ranges of 

hundreds of meters. Some TOF scanners can reach more than 1km for monitoring extra-

large infrastructure systems, such as dams or bridges (Alba et al. 2006). For all TOF 

systems, the reflectivity of targeted objects influences the data quality so that the actual 

range with data qualities meeting most domain requirements vary with the reflectivity of 

objects of interest.  
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Figure 2.3: An Example of TOF laser scanners (Leica Scan Station C10) (Leica 

2014) 

Figure 2.3 shows a Leica Scan Station C10 which is an example of TOF laser 

scanners. The major limitation of TOF scanning systems is their relatively low data 

collection rates. Even with the fastest TOF scanner on the market today, a panoramic scan 

with a spatial resolution of 2 cm at 100 m needs about two and half hours to be completed 

based on the authors’ experimental results. This fact indicates that for capturing any 

objects as small as 2 cm at 100m, the data collection time for the whole scene would be 

inacceptable for real-time monitoring of most construction operations. It is necessary to 

develop methods for better utilizing the data collection capability to obtain all needed 

data under time constraints. 
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Phase-shift scanning systems: the phase-shift scanning systems use a different 

distance measuring principle to achieve a much higher data collection rate compared with 

TOF systems. Unlike a TOF scanner which pulses the laser, a phase-shift scanner uses a 

modulated laser light that is always on. The photon source emits a continuous laser wave 

with a modulated frequency and wavelength. This continuous laser signal then bounces 

off objects, and returns to the photon receiver of the scanner with a shift in phase when 

compared against the leaving signal. This phase-shift can be measured for deriving the 

light travelling time (Equation 2.2) and then the distance. Once the distance is calculated, 

the azimuth and elevation angle measurements are applied to produce the 3D coordinates 

(Kemeny and Turner 2008). 

,Frequency Modulation2Shift  / PhaseFlight of Time ）（ ∗= π
            

Equation 2.2 

 

Figure 2.4: An Example of Phase-shift scanning systems (FARO 2014) 

Phase-shift systems can capture hundreds of thousands to millions of 3D points 
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per second, which is about ten times faster than most TOF scanning systems (Tang et al 

2009; FARO 2010). As shown in Figure 2.4, FARO Focus 3D is an example of Phase-

shift scanning system. The best working range for most phase-shift scanners is less than 

100 m. Beyond that range, range ambiguity issues (Stone et al 2004), mixed pixels (Tang 

et al 2009), and other technical difficulties not sufficiently resolved yet would result in 

noisy data, so that valid and accurate 3D measurements would be few. In addition, the 

impact of low reflectivity on phase-shift data was observed to be more significant than 

that of TOF data according to the experiences of the authors. For improving the data 

qualities of phase-shift systems, multiple modulation frequencies are being explored, but 

the improved results have not yet achieved the same level of data quality as TOF systems 

(Kemeny and Turner 2008).  

The limitations of phase-shift systems include the relatively limited ranges and 

the data quality issues caused by special reflectivity of dark or specular objects, and 

spatial discontinuities. Many objects on the jobsites, such as steel, glasses, and aluminum 

frames, would not be captured with high precision and details, since most data points on 

them are noisy and should be removed by noise filtering algorithms. For cluttered 

jobsites, noisy data at object boundaries can cause inaccurate measurement of object 

dimensions and may mislead decisions about construction operations (Tang et al 2009). 

As a result, even with high data collection rates, obtaining all needed information from 

phase-shift data still requires improvements of the overall data quality. 

Flash LADAR Systems: also called 3D range cameras, are also based on the time-

of-flight measurement principle using laser. Instead of sequentially collecting 3D points 

while scanning, a Flash LADAR flood-illuminates the scene with laser flashes, and 
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captures a range image for each flash (also known as a flash frame). The estimated 

absolute positioning accuracy with one pixel of a recently released Flash LADAR is +/- 

1.5 cm with up to 50 frames per second (FPS) under well-controlled indoor lighting 

conditions. That flash LADAR system’s non-ambiguity measurement ranges from 0.8 to 

5 meters (Mesa Imaging 2010). Compared to laser scanning systems, a flash LADAR is 

smaller, less expensive, and forms 3D images in real time. The disadvantages include a 

relatively limited field of view compared with the panoramic field of view of a laser 

scanning system, and lower accuracy and spatial resolution. In addition, flash LADAR 

systems are designed mainly for indoor applications since the associated noise level 

makes it impossible to work in direct sunlight, where light shielding may be needed to 

suppress background illuminations (Mesa Imaging 2010; Cho and Martinez 2009; 

Anderson et al 2005). Figure 2.5 shows an example of Flash LADAR. 

 

Figure 2.5: An Example of Flash LADAR (SR-3000) (Hegde ad Ye) 

 Self-Positioning Handheld  Laser Scanner: Self-positioning handheld laser 

scanners are being used by many industries, such as aerospace, manufacturing, 
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multimedia, and medicine, as they provide an easy and fast way to acquire 3D geometries 

(Smithm 2011). These mobile scanners utilize photogrammetric processing, automatic 

calibration, and automatic referencing for self-positioning. Several companies market 

such self-positioning handheld laser scanners, including Z Corporation, NDI, Creaform, 

Nikon, Hexagon, Romer, Leica, and Steinbichler (DirectIndustry 2010). This type of 

scanner uses the subject part being scanned to establish its spatial reference. The self-

positioning mechanism of these scanners eliminates the need for fixed-position tripods, 

bulky mechanical arms or external positioning devices causing accessibility problems. 

Uniquely object-referenced, they also allow the target object to move during scanning, 

and allow the viewing of a real-time image of the surface being scanned. These scanners 

generate one continuous scan rather than multiple scans from multiple positions, 

eliminating post-processing time for registering multi-scans.  

In a series of studies conducted by the authors, Z Corporation’s ZScanner 700™ 

was tested to explore its usability for construction applications. The results show that this 

scanner’s accuracy can achieve 40µm (microns), and it is possible to detect 50 µm 

changes in surface height from the collected point clouds. This scanner can capture 

18,000-25,000 3D measurements per second. To achieve higher self-positioning accuracy 

and overall data quality, it optionally uses reflective targets, which can be quickly and 

randomly applied to the surfaces of the objects to be scanned and/or the area adjacent to 

these surfaces. During the scanning process, the scanner locates and captures the 

reflective positioning targets by a stereo camera, which estimates 3D positions of these 

targets in real time. These positions are calculated in reference to the scanner’s line laser 
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and then recorded in the scanner. As the targets randomly applied on the object create 

unique perspective-dependent patterns recognizable by the scanner, the scanner will be 

able to position itself in the same way that GPS devices use known satellites to establish 

their position on Earth (Z Corporation 2011).  

 

Figure 2.6: Example of incomplete scan due to a complex feature (e.g., ear) 

 

Due to its portability and very high accuracy, self-positioning handheld scanners 

can be used in reverse engineering in structural component design, quality control for 

prefabricated materials, building damage inspection, rapid prototyping, and education. 

The real-time and continuous scanning mechanism enables such scanners to capture 

geometries of moving objects, which are important for real-time construction operation 

monitoring. The major limitation of such scanners is that most of them have very short 

measurement ranges (< 1 m). In addition, if the scanned objects are not visible from any 

one of the two cameras of its stereo camera system, it cannot derive complex surface 

geometries well due to occlusions. In such cases, the stereo camera system of the scanner 

can just see the targeted object with one “eye”, resulting in an incomplete shape. An 

example of this problem is shown in Figure 2.6. The range limitation and the necessity of 
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a clear stereo view of the targeted objects seriously limit the applicability of these 

scanners on clutter construction jobsites with complex geometries and occlusion 

conditions. Table 2.1 below summarizes the advantages and disadvantages of various 

data collection and processing techniques reviewed in this subsection. 

 

Table 2.1:  Summary of advantages and disadvantages of various 3D data collection and 

processing techniques 

Category Advantages Disadvantages 
Stereo Imaging 
and 
Photogrammetric 
Systems 

• Real-time capturing color and 
textural information 

• Semi-real-time generation of 
sparse 3D measurements 

• Sensitive to lighting conditions 
• Challenging for acquiring detailed 

geometries of surface lacking 
feature points 

• Challenging for reliably 
reconstructing 3D geometries of 
surfaces with repetitive patterns 

TOF Laser 
Scanning Systems 

• Long range for covering large 
open space 

• High accuracy for individual 
points 

• Relatively low data collection rate, 
making it impractical for real-time 
workspace monitoring 

Phase-Shift Laser 
Scanning Systems 

• Fast data collection rate for 
capturing detailed geometries 
in minutes within short ranges 
(tens of meters) 

• Relatively low data qualities 
compared with TOF data, 
especially on dark, specular 
surfaces, and at spatial 
discontinuities 

• Relatively short range compared 
with TOF systems 

Flash LADAR 
Systems 

• Capturing 3D snapshots of a 
scene with moving objects 
with high frequencies (e.g., 50 
FPS) 

• Small sizes 
• Less expensive 

• Limited field of view 
• Relatively low positioning accuracy 
• Relatively low spatial resolution of 

each scan (3D frame) 
• Relatively more sensitive to 

outdoor lighting conditions 
Self-Positioning 
Handheld  Laser 
Scanner 

• Very high positioning 
accuracies (µm-level) 

• Portability 
• Capturing moving objects with 

continuous scanning and self-
positioning mechanisms, 
eliminating data registration 
needs 

• Very short data collection ranges (< 
1m) 

• Require the targeted objects to be 
visible in both cameras of the stereo 
camera system embedded in the 
scanner, causing challenges for 
modeling complex geometries with 
a lot of occlusions 
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2.1.3 Point cloud data structure 

 The point clouds collected from various devices can be categorized as either 

organized or unorganized. An organized point cloud has a data structure that is similar to 

an image or a matrix, and each point of the point cloud has its index in rows and columns. 

Such point clouds include data collected from stereo cameras or time-of-flight cameras. 

The advantage of the organized point cloud over the unorganized point cloud is that data 

processing is more efficient because the relationship between adjacent points or nearest 

neighbors is known. In unorganized point clouds, no data structure or point reference 

exists between points because of varied sizes, resolutions, densities, and point sequences. 

As a result, more time is usually consumed processing unorganized point cloud data.  

 

2.2 As-is 3D Thermal Modeling Methods 

 Most commercial survey-level laser scanners enable an internal or external  

camera to capture digital images of the scanned scene and map image textures onto 

corresponding points in point clouds, assigning each point values for position (x, y, z) 

and color (R, G, B).  Unlike applications using digital cameras, there have been few 

efforts to map thermal images taken from an IR camera onto point clouds, although the 

IR thermography technique has long been used as a non-invasive approach to diagnose 

buildings and infrastructure (Balaras and Argiriou 2001). This section discusses state-of-

the-art 3D thermal model creation techniques for existing buildings. Generally, there are 

three classes of 3D thermal modeling approaches: 1) infrared (IR) image mapping to 3D 

models; 2) image fusion and matching by IR image and digital image; and 3) IR image 

mapping to 3D point clouds. The following subsections will introduce these three 
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categories of techniques, and discuss the remaining technical gaps in 3D thermal 

modeling for existing buildings. 

 

2.2.1 Infrared Image Mapping to 3D Models 

 Schreyer and Hoque (2009) presented a method to create thermography-textured 

3D digital models of buildings using IR images and SketchUp. In this method, the 3D 

model of the building was created with SketchUp, and the IR images were attached to the 

surfaces of the models as texture (Figure 2.7). While this method shows very clear 

thermal color distribution on the 3D model surface, it has these limitations: 1) a 3D 

model does not represent an as-built (or, as-is) design; 2) it is difficult to correctly align 

the IR image with the model without calibrating an IR camera; and 3) the final model 

shows only relative color differences based on temperature ranges but does not provide 

numerical temperature information.  

 

Figure 2.7: Infrared Image Mapping to SketchUp Models (Schreyer and Hoque 

2009) 
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2.2.2 Image Fusion and Matching by Infrared Image and Photogrammetry 

 A thermographic 3D modeling method using image fusion and image matching 

techniques for building inspection was presented by Lagüela et al. (2011a). In this 

research, a digital image and an infrared image of the same building were collected 

individually and images were matched using the photogrammetry technique (Luhmann et 

al. 2006).  Using the known measurements of two distances in the façade, the relative 

coordinates of four points were calculated. These values were needed for both image 

fusion and 3D modeling.  While this technique provided good visual information to 

detect thermal differences in the building envelope, the temperature data captured by an 

IR camera were lost in the 3D thermal model.  Because the thermal color of objects 

captured by an IR camera is determined relative to the surrounding environment, the 

same object (e.g., a wall) can be differently colored if the temperature range is different 

from another capture. In addition, the thermographic 3D modeling method requires that 

the images be captured with the camera parallel to the façade to obtain an 

orthothermogram of the façade, which limits the application of this method.  

 Another 3D thermal modeling system, Energy Performance Augmented Reality 

(EPAR), was introduced by Ham and Golparvar-Fard (2012). In this method, a handheld 

IR camera with a built-in digital camera was used to collect thermal and digital images 

simultaneously. Then a 3D thermal point cloud (Figur 2.7) was created by integrating 

visualization of both 2D thermal and digital images utilizing a 3D reconstruction 

technique called bundle adjustment or structure from motion (SFM) (Golparvar-Fard et 

al. 2009b; Borrmann et al. 2012b). This method would be useful for modeling plain 

indoor or confined spaces due to its good portability and mobility.  Since the 2D image-
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based 3D reconstruction approach needs to register hundreds of thermal and digital 

images, it requires up to six hours to create a complete 3D point cloud of a building 

(about 2.5M points; Ham and Golparvar-Fard 2012), and thus is useful only when 

modeling time is not pressing. As another limitation of this approach, the accuracy of the 

model is sensitive to lighting conditions, meaning a digital camera can collect building 

exterior data only in the daytime to reconstruct a 3D building model. However, thermal 

data need to be collected at night. Borrmann et al. (2012b) state that even diffuse sunlight 

on a cloudy day distorts the thermal measurements in a way that a meaningful analysis 

becomes impossible. 

 

Figure 2.8: 3D As-is building and thermal models (Ham and Golparvar-Fard 2012) 
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2.2.3 Infrared Image Mapping to 3D Point Cloud 

 Alba et al. (2011) developed a bi-camera system consisting of IR camera, digital 

camera, and 3D laser scanner to acquire and integrate information for building diagnostic 

and restoration applications.  The thermal data and the point clouds were fused by using 

control points that were measured manually by a digital camera and a laser scanner. A 

methodology for registering thermographies in point clouds was introduced by Lagüela et 

al. (2011b). An IR camera was calibrated to avoid image distortion before merging the 

thermographies into point clouds. The thermographies and point clouds were collected 

and registered separately, then merged together using common control points. This 

method could merge the temperature data with the corresponding points in the point 

clouds and reduce the image distortion. However, the captured temperature value is lost 

after it is merged with the point cloud; only the color difference based on a temperature 

range can be visualized. Also, the data collecting process is limited by two conditions: 1) 

the shooting direction of the IR camera has to be perpendicular to the facade; and 2) an 

overlap of 50% between consecutive thermographies is needed for image registration. 

 Against color-coded temperature data, thermal measurement with absolute 

temperature values in °C or °F provides more useful information for diagnosing building 

materials for their energy efficiency. 

 Borrmann et al. (2012b, 2012c) developed a 3D thermal modeling method using 

LIDAR and a low resolution IR camera (160 x120 pixels) mounted on a mobile robot 

Irma3D to expedite scanning and registration processes. The thermal data were matched 

to the corresponding point clouds, which were automatically registered using the 6D 

simultaneous localization and mapping (SLAM) technique (Borrmann et al. 2012a). 
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However, this system cannot collect data over 100 vertical degrees due to the limited 

camera field of view (360°*100°); thus a tall building needs to be scanned from a far 

distance, which would result in a low-resolution thermal 3D model. In the thermal 

mapping process, the thermal color other than temperature values was merged with the 

point cloud. 

 

    

Figure 2.9: A building image (left) and an IR thermal image of the building (right) 

  

 From previous efforts, the research team developed an integration method which 

projects an infrared thermal image onto the point clouds by calculating distance, position 

and orientation between corresponding common points (Figure 2.9). Similar to Tsai and 

Lin’s (2004) work, this approach merely merges the radiometric images to a 3D point-

clouds model (Figure 2.10). While it is still good visual information to detect thermal 

differences of building materials, however, the captured temperature information by an 

infrared camera is lost in the 3D thermal model.  The thermal color of captured objects is 

relatively determined by the surrounded environment in an IR camera. The same object 

(e.g., wall) can be differently colored if the temperature range is different from another 
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capture. Thus, the thermal measurement which provides absolute temperature values in 

°C or °F is more accurate information to diagnose building materials for their energy-

efficiency. 

 

 

Figure 2.10: IR image projected onto point clouds of the building (overlay) 

 

2.3 Object Recognition from Point Clouds 

 

2.3.1 Existing Commercial Software 

 Manually creating 3D model from point cloud is a labor-intensive and time-

consuming process. Many commercial software programs or plug-ins have been 

developed to accelerate this manual process. For example, Leica CloudWorx (Leica 2014) 

is able to automatically create a pipe center line based on manually selected pipe, and 

then the pipe can be manually created following the center line; Intergraph Smart 3D for 

Plants (Intergraph 2014) can automatically model pipes after user identifying the scanned 

piping axis of symmetry; Autodesk Plant 3D® (Autodesk 2014) and Kubit PointSense 
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(Kubit 2014) Plant enable user for manually choosing two points from an image of a pipe, 

and the corresponding 3D point cloud between the two points can be automatically 

located and modeled; Kubit PointSense Building (Kubit 2014) can automatically generate 

2D building plan (wall, floor, ceiling) from 3D laser scanner data, but with manual 

openings (window, door) creation; AVEVA Laser Model InterfaceTM (AVEVA Continual 

Progression 2014), Trimble RealWorks (Trimble 2014) and ClearEdge3D (ClearEdge3D, 

2014) are designed to automatically create 3D model by manually segmenting the point 

cloud and choose the corresponding catalogs for each segment of point cloud. The 

abovementioned programs (see Figure 2.11) are all semi-automated, and most of them are 

for industrial application only. Therefore, there is a need for a method of fully automated 

model creation from point cloud, especially for building envelope modeling which is 

important to building energy simulation.  

 

2.3.2 Recent Research Efforts towards Automated Object Recognition 

To recognize objects and extract useful object information from point clouds, 

object recognition techniques have frequently been applied in recent studies in the 

AEC/FM domain. Tang et al. introduced a method of extracting geometric information 

items of bridges from point cloud data, collected from a laser scanner, for bridge 

management (Tang and Akinci, 2012; Anil et al., 2013). Site laser scans have also been 

processed for 3D status visualization and construction progress monitoring. In (Bosche, 

2010; Bosche et al., 2009), a new approach for automatic 3D CAD recognition and 

registration of steel structures was validated by processing the point cloud data of the 

steel structures. Advanced techniques and improvements in devices have resulted in 
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textured point cloud data becoming available. Son and Kim (2010) proposed a method for 

efficient, automated 3D structural component recognition and modeling from point cloud 

data with RGB color acquired from a stereo vision system. Point cloud data with RGB 

color can also be obtained by processing hundreds of photographs (Golparvar-Fard et al., 

2009b) for construction performance monitoring and 4D as-is model creation. 

Another set of approaches presented to assist building facility management and 

performance analysis include the proposal by Pu and Vosselman (2009). They proposed a 

knowledge based method for reconstructing building models from laser scanner data. In 

their method, they extract the features and the outline of the building and make the 

geometric model of the building based on several assumptions because only facades on 

the street side are scanned. Xiong et al. (2013) proposed a context-based modeling 

algorithm for creating semantic 3D as-is building models of the interior of buildings. 

Their context-based modeling algorithm was able to identify and model the main visible 

structural components of an indoor environment, but could not recognize components 

with irregular shapes that are frequently seen from the exterior of the building envelope. 

The components of the building envelope are essential for building performance analysis. 

As a result, rapid and efficient extraction of building envelope geometric information is a 

challenging emerging topic. 
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Table 2.2: Literature review of the current as-is BIM recognition techniques 
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2.4 Points of Departure 

 The literature review provided an overview of 1) As-is point cloud creation 

methods; 2) As-is thermal modeling methods; and 3) Object recognition from point 

clouds. For the existing research on automatic as-is thermal model creation of existing 

buildings, the remaining limitations of the current technologies are summarized as 

follows: 

1) Lack of visual perception-based rapid and low-cost data collection system for as-

is thermal modeling of existing buildings. 

2) Lack of method that can automatically and rapidly extract building envelope 

geometry information from point clouds. 
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CHAPTER 3  

OVERVIEW OF THE PROPOSED METHODOLOGY  

 

 The overall framework of the proposed methodology is shown in Figure 3.1. First, 

a hybrid 3D laser scanner system designed in this research simultaneously collected point 

clouds and temperature data from the envelope of existing buildings. Then temperature 

data were automatically fused with corresponding points during the data collection 

process. After registering all individual thermal point clouds, a building envelope 

recognition algorithm was applied to automatically create an as-is 3D geometric model. 

The as-is model can be imported into energy analysis software through being saved as an 

industry standard file format. Finally, the feasibility of the proposed method was 

validated through testing on two residential houses and a small bank building, and the 

performance of the proposed method was evaluated through calculating the precision, 

recall, and accuracy of the case studies. 
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Figure 3.1: Framework of the proposed methodology 
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CHAPTER 4  

NON-INVASIVE AS-IS BUILDING CONDITION DATA 

COLLECTION AND FUSION 

  

 Each aforementioned data collection method in Section 2.2 has advantages and 

disadvantages in terms of usability, lighting condition, modeling time, accuracy, and 

resolution. Through literature review, as-is 3D thermal modeling of existing building 

envelopes for energy performance analysis has not yet been fully recognized.  Most 

especially, none of the current methods has realized the importance of thermal modeling 

of transparent windows, which are among the most important components affecting a 

building’s heating and cooling loads.  Thermal data on a window cannot be mapped to 

the point cloud because a laser scanner or a digital camera cannot recognize transparent 

glazing, resulting in a 3D thermal building model with many empty openings.  

 To address all the limitations mentioned above, a robotic hybrid thermal modeling 

approach was identified to directly fuse the temperature values, other than RGB values, 

with corresponding point cloud data to create a high-resolution 3D thermal model that 

overcomes the low-resolution characteristics of an IR camera. To generate complete 

thermal information about the building envelope, the missing points on glazing areas 

need to be virtually created.  

 The main objective of this chapter was to design a robotic hybrid data collection 

system that can non-invasively collect and fuse 3D point cloud and temperature data from 

existing buildings. In addition, two window detection algorithms are proposed to 

successfully fuse temperature data from transparent window glass, which cannot be 
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detected by a laser scanner or a digital camera. The following sections first present the 

design of the developed hybrid data collection system, and the 3D thermal modeling 

approach of the hybrid system is then discussed. Further, results of the two preliminary 

tests on a residential house and a commercial building are presented. 

 

4.1 The Framework for Non-Invasive As-Is Building Condition Data Collection and 

Fusion 

 The overall framework of the proposed thermal modeling process for retrofit 

decision support is shown in Figure 4.1. First, a robotic hybrid data collection system 

designed in this study simultaneously collected point clouds and temperature data from 

the envelope of existing buildings. Temperature data were automatically fused with 

corresponding points during the data collection process. A noise filtering algorithm was 

then applied to each fused thermal point cloud to eliminate noisy geometric data which 

were defined as the points with fewer neighboring points than a preset threshold. After 

registering all individual thermal point clouds, a window detection algorithm was applied 

to create virtual thermal points on window glasses since the laser scanner is unable to 

collect geometric data from transparent objects. Finally, a 3D thermal point cloud was 

generated and visualized in a graphical user interface (GUI), and it was rendered with 

normalized thermal colors based on absolute temperature values. Further, the thermal 

point cloud can be imported into web-based geographical programs so that retrofit 

decision makers can have easy access to the as-is data and utilize it in their decision 

making process. 
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Figure 4.1: Framework for 3D thermal modeling for retrofit decision support  

 

4.2 Robotic Hybrid Data Collection System 

 Thermography offers a rapid and cost-effective method of investigation that does 

not require any contact with surface materials or structure. Since it is a non-contact, non-

destructive technique, thermography has been extensively utilized in the assessment of 

buildings, infrastructure, monuments, and ancient structures (Rao 2007; Ocaña et al. 

2004; Rosina and Spodek 2003).  

 In this study, an innovative robotic hybrid system was developed, integrating a 3D 

LIDAR scanner and an IR camera (320 x 240 pixels), as shown in Figure 4.2. A GUI was 

developed using Visual C ++. The GUI controls the laser scanner and the IR camera, and 

visualizes the captured 3D model.  

 As a main sensor of the hybrid system, a light-weight 3D LIDAR was built 

consisting of a laser source, a spinning mirror, an encoder, and a pan and tilt unit (PTU). 
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Based on previous research (Cho and Martinez 2009; Cho et al. 2012), this lightweight 

3D LIDAR would be more flexible in hardware control and software programming than a 

commercial laser scanner.  Based on the current mounting configuration, multiple degree-

of-freedom (DOF) kinematics was solved to obtain x-y-z coordinates from the LIDAR, 

and corresponding temperature data were obtained from the IR camera.  The 

transformation matrices for the LIDAR and the IR camera share the first two frames and 

split into two different kinematics frames at the third matrix (Figure 4.3).  This 

kinematics frame allows more optical sensors, such as digital video or still cameras, to be 

added. 

 

Figure 4.2: Prototype I of the hybrid data collection system 

 

Figure 4.3: Integrated kinematics frame for the hybrid data collection system 
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4.3 3D Thermal Modeling Approach 

 

4.3.1 IR Camera Calibration 

 Camera calibration is an essential process in computer vision and 3D 

measurement applications because it corrects image distortion. Among types of image 

distortion, radial and tangential distortions are the worst (Ma et al. 2003). There are two 

categories of camera calibration variables: 1) intrinsic parameters that include focal 

length, principal point, skew coefficient, and distortion coefficients; and 2) extrinsic 

parameters that include rotation and translation matrix. To reduce distortions, the IR 

camera should be calibrated in advance to obtain the intrinsic parameters (Heikkila and 

Silven 1997; Bouguet 2010). Several camera calibration methods have been introduced 

elsewhere (Ma et al. 2003; Heikkila and Silven 1997; Bouguet 2010). In this study, 

Bouguet’s (2010) camera calibration method was adopted. A black and white 

checkerboard was used as an object for testing the function. During the calibration 

process, the edge detection algorithms were applied to identify the structure of the 

checkerboard based on the different colors or gray scales; then the camera parameters 

could be accurately calculated (Drennan 2010). Unlike a normal digital camera, however, 

an IR camera cannot recognize different colors on the same material because the color or 

gray scale difference of the IR image can be distinguished only when a temperature 

difference on the image exists. Many researchers calibrate their IR cameras by taking 

thermographies on a calibration field consisting of a board with several light bulbs (e.g., 

LED lights) on it (Lagüela et al. 2011b; Ham and Golparvar-Fard 2012; Nüchter 2012). 
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 To simplify the calibration process and lower the material cost, this study 

proposed the following IR camera calibration method: a cut-out checkerboard was made 

and placed in front of a human subject to make the checkered pattern recognizable in the 

IR images using heat radiation from a human body.  The areas where the heat radiation 

was blocked by the checkerboard were rendered to a dark color in the IR images. Figure 

4.4 shows the eight images that were taken as targets to be tested with the calibration 

program. The corner extraction process of the first image is demonstrated. 

 

Figure 4.4: IR camera calibration using heat radiation from the human body 
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4.3.2 Temperature Data Fusion 

 The data fusion process is similar to texture mapping, a method for adding images 

as texture to the surfaces of the 3D models. The main difference in the proposed data 

fusion process is that the temperature data from each IR image pixel – instead of RGB 

pixel values – are directly extracted and assigned to points as non-graphic values.  Thus, 

each point is considered an object containing different types of data, such as x-y-z 

coordinates, intensity, temperature, RGB, etc.  

 In order to map the temperature data to the point cloud correctly, the relationship 

between 2D temperature data and the 3D point cloud had to be built. First, the concept of 

perspective projection was introduced into the test, and a reference test was made to 

create a reference plane for the 3D projection. During the reference test, a 120cm×90cm 

rectangular object was used as a target, and both the laser rangefinder and the IR camera 

were placed parallel to the object. The distance between object and system was adjusted 

to make sure that the object completely filled the IR camera’s view. As shown in Figure 

8(a), the distance between object and camera is fref; θ is the IR camera view angle, and (Xi, 

Yi, Zi )   represent the coordination of the point cloud in the system coordinate system. 

After calculations, several variables could be obtained as Equation 4.1: 

, ,     (Equation 4.1) 

Having the reference plane, all the objects parallel to the system could be 

correctly mapped with temperature data according to Equation 4.2: 

 



 

41 

 

,                          (Equation 4.2) 

where are the coordinates of the point obtained when the laser is in its default 

position.  are the coordinates of a pixel in the 2D IR image. Once the 

coordinates of the corresponding pixel were found, the temperature data was fused to the 

point in the 3D point cloud. 

As shown in Figure 4.5(b), the camera was panned or tilted to obtain temperature 

data of another part of the point cloud. Under this circumstance, the reference plane is no 

longer parallel to the object. Due to the effect of the perspective projection, objects in the 

distance appear smaller than objects close by. As shown in Figure 4.5(c), if a simple 

interpolation were used and steps were equally spaced to compute pixel coordinates, a 

distorted image map would result. To avoid such a problem, the perspective correction 

method was used in this research. Perspective correction mapping interpolates after 

dividing by depth , then uses the interpolated reciprocal to recover the correct 

coordinate (Hill and Kelley 2006): 

                         (Equation 4.3) 

When the camera is rotated, the area of the camera view varies based on the angle 

at which the camera is rotated. The coordinates of the edge points in the IR image can be 

calculated using Equation 4.4: 

         (Equation 4.4) 
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When the objects are not parallel to the camera, therefore, the temperature data 

can be mapped to the 3D point cloud using the following equation: 

 

,                     (Equation 4.5) 

    

(a)                                   (b) 

 

(c) 

Figure 4.5: Illustration of data fusion process 
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Figure 4.6: Flowchart of temperature mapping process 

 

During the scan, each point collected by the system was considered as an object to 

find the corresponding temperature value according to the abovementioned equations. 

Figure 4.6 shows a flow chart of the proposed temperature fusion process with point 

clouds. The temperature fusion process continues until all the points have temperature 

values assigned. If a point does not contain temperature value, the program computes the 

angle  to determine if the object is parallel to the reference plane when the data are 
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collected. If it is parallel, Equation 4.2 is used to calculate  and ; otherwise 

Equation 4.5 will be used. Then the temperature value corresponding to  and  in 

the temperature matrix is assigned to the point. After a loop, if any points remain without 

assigned temperature value, the IR camera is automatically panned or tilted to collect data. 

 

4.3.3 Mapping Temperature Data to Window  

As mentioned earlier, it is difficult to map temperature data to a clear window 

because the beam passes through a transparent pane of glass.  Similarly, the 

photogrammetry approach has the same problem with transparent windows since a digital 

camera cannot detect a clear window either. In the proposed method, the empty areas in 

point clouds that are unmatched with thermal data are recognized as panes of glass, and 

virtual points are created on the surfaces of the glass on which thermal data can be 

mapped. 

In the created 3D thermal point cloud, each point’s vertical coordinate is 

compared with its last vertical neighboring point. If the absolute value of the difference 

between them is greater than 20 units, the point itself and its neighboring point are 

respectively marked as lower and upper window boundary points. Then virtual windows 

can be created according to these window boundary points.  Clear windows can be 

recognized in this way as shown in Figure 4.7. 
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               (a)                              (b)                                (c) 

Figure 4.7: (a) Digital image of clear windows; (b) Edge detection of the clear 

windows from a point cloud; (c) Creation of virtual points on clear windows  

 

   

                      (a)                                       (b)                                              (c) 

Figure 4.8: (a) Digital image of blinded windows; (b) Blinds surface as recognized 

from the point cloud; (c) Creation of blinded window areas  

 

When collecting data from blinded windows, the laser beam went through the 

transparent glass and was reflected from the blinds. Two different surfaces were created, 

one from exterior walls and the other from the blinds, and the difference between these 

two surfaces could be used to recognize the blinded window glass. Based on the 

empirical value obtained through multiple experiments, the surfaces are recognized as 

two different surfaces if the absolute value of the difference between two surfaces is 

greater than 5 units and smaller than 10 units, as shown in Figure 4.8. Walls and blinds 
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are recognized as two different surfaces and rendered by two different colors, allowing 

the blinds area to be recognized as blinded window glass. 

In the proposed method, all the threshold values were determined based on 

empirical analyses. To use the threshold effectively for a smaller window, higher 

resolution of point clouds is necessary to accurately recognize the window frame 

boundaries. For the complicated type of window, additional algorithms are needed to be 

added to make the proposed method more robust. 

Once window areas were recognized, virtual points could be created inside the 

window frame according to certain vertical and horizontal interval values. Then, all the 

created virtual points could be fused with the corresponding temperature data as 

described in the section Temperature Data Fusion. 

 

4.4 Full Field Tests and Discussion 

Preliminary field test subjects were a "living laboratory" residential house called 

the Zero Net Energy Testing Home (ZNETH), shown in Figure 4.9 (a), and a part of the 

Peter Kiewit Institute (PKI) building at the University of Nebraska, shown in Figure 4.10 

(a). The test on the ZNETH house was conducted on a hot and sunny day. Multiple 

thermal and laser scans were made to cover the whole building envelope. The captured 

thermal data were automatically registered and stored to point clouds on the building 

surface. After all the point clouds with thermal data were registered, they were rendered 

by different colors according to the normalized temperature value that was calculated by 

projecting lowest-highest temperature to 0-1. Here, 0 stands for blue, 1 stands for red. A 

simple mouse click on any point in the point clouds from the GUI shows x-y-z 
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coordinates and temperature value.  For example, a hot point selected in Figure 4.9 (c) 

shows 39.566°C. The window detection algorithm was applied to the ZNETH thermal 

model as shown in Figure 4.9 (c), which can be compared to the 3D thermal point cloud 

without windows detection in Figure 4.9 (b). Precision and recall (Olson and Delon 2008) 

were estimated to evaluate the performance of the detection algorithm. As shown in 

Table 4.1, True Positive (TP) indicates the number of correctly recognized components, 

False Positive (FP) means the number of wrongly recognized components, and False 

Negative (FN) is the number of components that were not recognized.  Six same size 

windows in the front wall of ZNETH were analyzed to compare the actual window size 

with the modeled window size. It can be seen from Table 4.2 that the average error 

difference is 6.30% for width and 10.85% for length. 
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(a) 

  

(b)                                                       (c) 

Figure 4.9: (a) Digital image of ZNETH; (b) 3D point cloud of ZNETH; (c) 3D 

thermal point cloud rendered by different colors based on normalized temperature 

values 
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Table 4.1: Precision and recall of windows recognition 

Component TP FP FN Precision (%) 
TP/(TP+FP) 

Recall (%) 
TP/(TP+FN) 

Windows 21 0 4 100 84 

 

Table 4.2: Error analysis of windows recognition 

Component Dimension Actual Size 

(cm) 
Recognized Size 

(cm) 
Difference 

(%) 

Window  
Width 50.80 47.60 6.30 

Length 139.70 124.54 10.85 
 

Another set of tests was conducted with the PKI building to study the solar 

radiation effect. The tests were conducted during the day (2 pm) and at night (4 am). As 

shown in Figure 4.10, during the day, the same exterior building façade shows significant 

temperature differences because of solar radiation and shade. Points A and B in Figure 

4.10 were randomly picked from each building façade. It can be seen from Table 4.3 that 

the shaded façade had a lower temperature. The daytime temperature difference between 

point A and B was about 7.5°C, but the nighttime difference was only about 1.8°C. 

Through the comparison, the effect of solar radiation was well observed, confirming that 

the building envelope’s thermal data should be collected after the building cools off at 

night.  
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(a)                                                                    (b)                                          

 

                               (c)                                                                 (d)   

Figure 4.10: (a) Daytime digital image of PKI building; (b) 3D thermal model 

created during the daytime; (c) Digital image of PKI building at night; (d) 3D 

thermal model created at night 

 

Table 4.3: Temperature value of points A and B at daytime and nighttime 

 Point A (°C) Point B (°C) A-B (°C) 

Daytime 39.167 31.622 7.545 

Nighttime 24.431 22.661 1.770 

Daytime -Nighttime 14.736 8.961 NA 

 

A B A B 

A B 

A B 
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A 3D thermal building model is ready to view as soon as the data are captured, 

which allows onsite modeling quality assurance. The proposed system is able to collect 

data at night to avoid the thermal effects of solar radiation and to accurately detect heat 

transferred through a building envelope. This is a strong advantage over the system that 

uses digital camera images. Also, the proposed system is designed to collect thermal data 

simultaneously while the laser scans a building, followed by immediate data fusion.  It 

took about 20 minutes for each scan, including time to move and set up the system. After 

all the scans were finished, the only process remaining was to automatically register those 

sets of 3D thermal point clouds using the developed registration algorithm, which will be 

introduced in a future publication. Table 4.4 summarizes the differences among the 

proposed method and other state-of-the-art approaches. 
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Table 4.4: Summarized differences between the proposed method and existing 
methods 

 
 EPAR 

(Ham et al. 2012) 
Bi-Camera 
(Alba et al. 

2012) 

Irma3D 
(Borrmann et al. 
2012b, 2012c) 

Proposed Hybrid 
LIDAR  

Data 
collection 
equipment 

Handheld IR 
camera with built-in 
digital camera 
(320x240) 

IR cameras 
(320x240, 
640x480) digital 
camera and 3D 
laser scanner 

Fixed IR camera 
(160x120) 
mounted on a 
3D laser scanner 

2 DOF robotic IR 
camera (320x240) 
integrated with a 
laser scanner 

Thermal data 
fusion 
process 

Automatic; IR 
image to digital 
image; 3D 
reconstruction  
using SFM 

Manual; IR 
image and 
digital image to 
3D point cloud; 
or 3D 
reconstruction 
with images 
using SFM 

Automatic; IR 
image to 3D 
point cloud 

Automatic; 
absolute 
temperature value 
to 3D point cloud 
(no image used) 

Data 
collection 
time  

Daytime Daytime Nighttime Nighttime 

Thermal data 
reading 

Color Color Color Color and text 

 
 
 
 
 
 
Other 
performances 

Lower equipment 
cost; low man 
power; good 
mobility;  relatively 
lower model 
resolution and 
accuracy than laser 
scan-based 
approach;  limited 
flexibility to 
upgrade IR or 
digital camera 

Flexible to 
upgrade IR or 
digital camera; 
two sets of data 
group fusion 
(thermal images 
& digital images 
+ point clouds & 
digital images)  

Fast and real-
time data fusion; 
robotic point 
clouds 
registration; 
limited vertical 
field of view 
due to the fixed 
camera position 

Fast and real –time 
data fusion; high 
resolution of 
thermal model due 
to robotic scanning 
mechanism; 
thermal modeling 
for transparent 
windows 
(complete thermal 
modeling of 
building) 
 

 

4.5 Web-based Thermal Model Map 

To improve connectivity between building energy performance information and 

the decision makers, a web-based geospatial program was utilized to display a 3D 

thermal map created from the proposed approach. To transfer the 3D thermal model to 

the geospatial program, a translation and rotation matrices were calculated to convert 
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point cloud data in the Cartesian coordinate system to the geospatial coordinate system 

(latitude, longitude, and attitude) (Im et al. 2012). To provide better visualization for the 

decision makers, ZNETH’s BIM was imported into Google Earth Pro™.  

The point cloud’s Cartesian coordinates (x, y, z) need to be converted to latitude, 

longitude, and altitude (LLA) coordinates in order to be imported to Google Earth Pro™ 

through using transformation between LLA and earth-centered, earth-fixed (ECEF) 

coordinates as shown in Figure 4.11. 

 

 

Figure 4.11: The process of converting Cartesian coordinates to LLA coordinates 

 

Firstly, three LLA coordinates are measured by using a GPS receiver; meanwhile, 

three corresponding Cartesian coordinates of points with the same location in the point 

cloud are measured and stored. Then, these LLA coordinates are converted into ECEF 

coordinates through using the LLA2ECEF algorithm (Kleder 2005). As a result, three 
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corresponding coordinates in two different coordinate systems are obtained, which are 

Cartesian coordinates and ECEF coordinates.  

All the points in the point cloud are then converted to ECEF coordinates through 

applying the rotation matrix and translation matrix. After being converted to ECEF 

coordinates, all the points are converted to LLA coordinates through using ECEF2LLA 

algorithm (Kleder 2006). At last, all the Cartesian coordinates in the point cloud are 

converted to LLA coordinates. 

As shown in Figure 4.12, the 3D thermal point cloud and ZNETH’s BIM were 

successfully imported into Google Earth Pro™, and all the thermal data were retained. 

The thermal data can be visualized by simply mouse clicking the corresponding point.  

 

 

Figure 4.12: 3D thermal BIM model of ZNETH in Google Earth ProTM  
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4.6 Summary 

This chapter introduces a rapid measurement system for a thermal 3D model of 

existing buildings. To rapidly and accurately measure the 3D geometries of a building 

envelope, a hybrid data collection system was developed. An IR camera was integrated 

into the 3D laser scanner to measure the temperature of the building surface. Multiple 

degrees of freedom (DOF) kinematics were solved to integrate the two units to obtain x-

y-z coordinates and corresponding temperature data for each point. A GUI was developed 

to control the hardware units (laser scanner, PTU, and IR camera) for data collection and 

to edit and visualize 3D thermal point clouds.  Window detection algorithms were 

introduced to create virtual thermal points on transparent window glasses and blinded 

windows. The technical feasibility of the developed hybrid system has been successfully 

demonstrated through two field experiments on a residential house and a commercial 

building.  
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CHAPTER 5  

AUTOMATED GBXML-BASED BUILDING GEOMETRIC MODEL 

GENERATION  

 

 Although much work has been done on the processing of point cloud data for 

progress in construction and safety monitoring (Golparvar-Fard et al. 2009a), 

performance visualization (Golparvar-Fard et al. 2009b), and bridge management (Tang 

and Akinci 2012; Anil et al. 2013), not much work has been done to facilitate simulation 

of building performance. Further, as regards practicability, the current point clouds 

processing technologies are still in the very early stages. 

 The primary objective of this chapter was to provide a preliminary solution that 

automatically and rapidly extracts building envelope components of existing buildings 

from the thermal point cloud data that can be further utilized for building energy 

simulation applications. The thermal point cloud data collected from the hybrid 3D laser 

scanner system was processed to recognize different building envelope components such 

as windows, doors, walls, and roof as individual objects for gbXML-based geometry 

model generation. In the ensuing sections, this study first reviews the framework of the 

proposed approach, and then introduced the detailed automated geometric model creation 

process. Finally, field test results were discussed to validate the proposed framework. 

 

5.1 The Framework for Automated As-Is Semantic Building Geometric Model 

Creation 
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The proposed method comprises four main steps: first, the collected raw data was 

pre-processed by removing noise data and downsizing the data. On the completion of 

data pre-processing, the region growing plane segmentation algorithm was applied to 

divide the raw data into segments of point cloud which were located at the same plane. 

Then, a boundary detection algorithm was introduced to recognize boundary points in 

each segment of point cloud. Further, all the detected boundary points were categorized 

into their own building component category and building geometry was successfully 

extracted. Figure 5.1 shows the flowchart for the proposed method. The four steps are 

explained in detail in the ensuing sub-sections. 

Pre-
processing

Boundary 
Detection

Raw data

Plane 
Segmentation

Building Components 
Classification

Segmented 
Point Clouds

Start

Openings

End

Windows

Exterior 
Walls

Roof

Input

Boundary

Doors

Foundation 
Walls

Slab

Output  

Figure 5.1: Flowchart for the proposed method 
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5.2: Data Pre-processing 

The point cloud data collected by a laser scanner from an outdoor environment 

usually contain noise, which can result in a failure or inaccurate result if not being 

reduced or eliminated. A tensor voting algorithm (Kim et al. 2013) was employed in this 

paper to distinguish and remove the isolated points from the collected point cloud. The 

goal of data downsizing is to increase the data processing speed by reducing the amount 

of overly dense data being processed. The raw point cloud data are imported into a 3D 

space where the data structure is a 3D uniform voxel grid (Figure 5.2 (a)). Each voxel has 

its own specific boundary according to the size set up. After they are placed in their 

corresponding voxels, all the points present in the same voxel are removed and a centroid 

point for the point group is created (Moravec 1996) (Figure 5.2 (b), (c)). Thus, the bigger 

the voxel is, the more points are eliminated. The newly downsized data are then passed to 

the next step as input. 

(a) (b) (c)
 

Figure 5.2: (a) 3D uniform voxel grid structure; (b) a voxel and the points located in 

it; (c) one estimated point left after data downsizing (Illustration adapted from 

(Moravec 1996)) 
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5.3 Region Growing Plane Segmentation 

In this research, existing residential buildings or small  commercial buildings are 

mainly studied. Due to a difficulty of foundation form design and cost, most of the 

residential building envelope components have plane surfaces. Thus, a plane 

segmentation algorithm is then applied on pre-processed data to segment it into a set of 

disjoint point clouds which are located on the same plane. The region growing plane 

segmentation algorithm (Farid and Sammut 2012; Farid and Sammut 2013) was chosen 

in this research because of its desirable properties, such as conceptually simple and 

allowing applications in a wide range of settings. This algorithm can merge the points 

that are close enough to each other in terms of the smoothness constraint into one plane 

cluster. The algorithm sorts the points by their curvature value, and the region begins its 

growth from point P with a minimum curvature value. This point P is chosen and added 

to the set called seed points. For each seed point chosen, the algorithm finds its neighbor 

points {PN} and tests each neighbor point  for the angle between its normal and 

the normal of the current seed point. The current seed point is added to the current region 

if the angle is less than the threshold value θth. Further, the curvature value of its neighbor 

point is compared with the value of the seed point. If the curvature value is less than the 

threshold value Cth, this neighbor point is added to the set of seed points and the current 

tested seed point is removed from the set. The algorithm repeats this process until the set 

of seed points is empty, signifying that the algorithm has grown the entire region and all 

points have been labeled. The output of this segmentation algorithm is a set of segmented 

point cloud clusters, where points in the same cluster are considered to be part of the 

same plane.  
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(a) (b)

(c)

(d)

(e)

 

Figure 5.3: Segmented point cloud clusters 

 

5.4 Edge and Boundary Point Extraction 

Point cloud data cannot be collected from materials that have low reflectivity, 

such as black objects and glass, owing to the characteristics of the laser beam. 

Consequently, there is no point showing in the window glass area. The edge points of the 

window frames can be separated from the joined boundary points on the basis that the 

boundary points of the window frame surround an empty window glass area. In the third 

step, an edge and boundary detection algorithm (Rusu et al. 2007, Bae and Lichti 2004) is 

used to isolate edge and boundary points from the rest. The results of the region growing 

plane segmentation process are a set of segmented point cloud clusters, in which each 

point contains X, Y, Z coordinates together with its normal and curvature flatness. As 

illustrated in (Bae and Lichti 2004), the edges of the objects can be extracted based on the 

curvature information because they are characterized by high changes in curvature. 

However, the boundary points residing on the outer boarder of the point cloud cannot be 

found based on curvature data as there is no change for these points. Since all points in 

each cluster are on the same plane, the point cloud can be projected onto a 2D plane. In 
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2D plane, the boundary points can be easily identified because the maximal angle formed 

by the vectors towards the neighboring points is larger for boundary points than for points 

are on the inside of the object. For point cloud data of buildings, the edge points and 

boundary points are correspondingly referred to the edge of the openings and the 

boundaries of walls or roofs (see Figure 5.4). On the edge and boundary points of all 

clusters being recognized, all the component surfaces can be created by applying 2D 

concave hull algorithm (Zhou 2005). 
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(a)

(d)

(b) (c)

 

Figure 5.4: Outer boundary and inner boundary recognition  
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5.5 Rule-based Building Envelope Component Classification 

In the final step of the proposed method, the building envelope components were 

automatically identified through the surfaces obtained from the previous sub-section. All 

surfaces recognized from the previous steps were processed through a rule-based 

classification system. The following rules were developed based on the understanding of 

the building features, and only the building components covered in the gbXML schema 

were considered in this research to be an object to recognize. First, all vertical surfaces 

were defined as wall components, then openings were separated from the recognized wall 

components. In this paper, it was assumed that all openings were closed when the data 

was collected. For each opening, if there was a same size of surface parallel and adjacent 

to it, then this paralleled surface can either be a door panel or window-blinds. Together 

with the location of the openings, the openings were labeled as a door if it was close to 

the bottom boundary of its wall surface, otherwise it was recognized as a window. The 

door components were further categorized into normal door and glass door according to 

the existence of the door panel. The window components were also categorized into clear 

window and blinded window based on the existence of a window-blinds. Figure 5.5 

shows how an example of the recognized wall, window, door, and door panel surfaces. 

Then, the wall category was divided into two classes (exterior wall and foundation wall) 

by the rule that the foundation wall surface was below a door surface, and the exterior 

wall surface was not (Figure 5.6).  The partial foundation wall surface could also be 

completed according to the user input. Because the roof was usually above the walls and 

adjacent to at least one exterior wall, it can be recognized once the exterior wall 

components are defined (Figure 5.7). Lastly, the unclassified surfaces were categorized 
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into raised floor and shade based on the rules that raised floor surface was horizontal and 

below a door surface, and shade surface was not adjacent to the space formed by wall 

surfaces. Table 5.1 shows the organized classification rules. 

 

 

Figure 5.5: Exterior wall surface and door panel surface (a) Front view. (b) Side 

view 
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Table 5.1 Proposed classification rules 

Component Classification Rules 

Wall 
Exterior Wall Vertical surfaces 

Foundation Wall Vertical surfaces, below a door surface 

Door 
Panel Door 

Bottom of the opening close to the boundary of the 
wall, panel surface behind the opening 

Glass Door 
Bottom of the opening close to the boundary of the 

wall, no panel recognized 

Window 
Blinded Window Non-door opening, blind surface behind the opening 
Clear Window Non-door opening, non-blinded window 
Roof Above and adjacent to exterior wall, non-vertical 

Raised Floor Horizontal, below door surface 
Shade Surface not adjacent to any spaces 

 

 

Figure 5.6: Exterior wall and foundation wall 
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Figure 5.7: Roof classification 

 

5.6 Geometry Size Fitting 

 Because the laser scanner has a limited scan resolution, and is unable to obtain 

thickness data of the envelope components. In Figure 5.8, it can be seen there are gaps 

between the recognized surfaces. Energy simulation requires a closed space as an input, 

therefore a geometry size fitting algorithm is needed to fill in those gaps. The proposed 

algorithm extended the surfaces of all walls, roofs, and raised floor, and replaced their 

surface edges with the intersection lines if existing (Figure 5.9). 
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Figure 5.8: Gaps between surfaces 

 

 

Figure 5.9: Intersection lines extracted after surface extension 
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5.7 Data Conversion 

 The output of the building component classification algorithm was a set of 

boundary points of the envelope components. For each individual component, all its 

boundary points were saved in a text file in which the first line of data was its surface ID, 

and followed by its surface type on the same line. Starting from the second line, there 

were three columns of data on each line, and they represented one point’s x, y, and z 

coordinates. To be useful for energy simulation, the file has to be converted to another 

file format that can be imported. In this research, the gbXML open schema was chosen to 

help facilitate the transfer of the data to engineering analysis tools. Figure 5.10 is a 

structure chart of element “Surface” in gbXML schema (Version 5.0.1). This element 

was used to interpret the extracted components. Each surface requires a unique ID, 

surface type, and geometry. Surface type includes interior wall, exterior wall, roof, 

ceiling, and etc. In this paper, exterior wall and roof were assigned to corresponding 

surface. PlannarGeometry specifies the location of the surface, and lists all vertexes of 

the surface to define a loop. Attribute “Opening” is added if there is any opening in the 

surface. The extracted as-is data were first saved as text files, as shown in Figure 5.11, 

and then were converted into gbXML file according to the corresponding gbXML 

schema. 
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Surface

id
surfaceType

PlanarGeometry
Opening

PlanarGeometry

id
unit
PolyLoop

PolyLoop

CartesianPoint

CartesianPoint

Coordinate

Opening

id
openingType
PlanarGeometry

constructionIdRef

 

Figure 5.10: The gbXML schema of the elements used in data exchange 

 

 

Figure 5.11 Data exchange from text data (left) to gbXML data (right) 
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5.8 Field Tests and Results  

Validation of the proposed methodology was implemented on three small existing 

buildings, and two of which are residential houses, and one is a small bank building. In 

all case studies, the point clouds of the buildings were as completely as possible collected 

and used as raw input data. In the first cast study, the same residential house (ZNETH) 

that was tested in Chapter 4 was used as a test subject. The collected raw data (Figure 

5.12(a)) containing 1,061,637 points were first processed by the data downsizing 

algorithm. In the algorithm, the leaf size of the vessel was set at 0.05m which is five 

times of the resolutions (0.01m) of the raw data. By utilizing data sizing algorithm, the 

data size was decreased to 541,003 points which is about half size of the raw data. The 

decreased data size can significantly reduce the processing time in the following 

processes. Then, the downsized point cloud data were segmented into a set of plane 

clusters (Figure 5.12(b)). For each segmented point cloud cluster, the inner and outer 

boundary points were extracted by a boundary and edge points detection algorithm.  

The output of the boundary points detection algorithm was a set of outer and inner 

boundary surfaces. Then, the rule-based building envelope component classification 

algorithm followed to categorize each boundary surface into its corresponding category. 

Figure 5.12(c) shows the results of the proposed method. There were total 2 door 

components, 39 window components, 4 roof components, 1 underground wall 

component, 1 raised floor component, and 10 exterior wall components being recognized 

from the set of boundary surfaces. Precision, recall and accuracy (Olson and Delen 2008) 

were measured to evaluate the performance of the component classification (Table 5.2). 

In this case study, all recognized components excepted one window were correctly 



 

71 

 

categorized. The area dimensions of the recognized components were also compared with 

the manually measured area dimensions of the house, and the absolute difference was 

calculated for each recognized component. Table 5.3 shows the comparison results of the 

recognized geometry of each envelope component. The door category was the most 

accurately recognized in terms of the area size. The roof and exterior wall categories have 

a lower accuracy because the incompleteness of the raw data. 
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Figure 5.12: Test results of case study 1 (ZNETH). (a) Raw data; (b) Segmented 

point cloud clusters; (c) Created semantic model; (d) Geometry size fitting 
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Table 5.2: Evaluation of the extracted envelope components for case study 1 

Precision = TP / (TP+FP), Recall = TP / (TP+FN), 

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

 TP FP FN TN Precision Recall Accuracy 
Exterior Wall 10 0 0 46 100.00% 100.00% 100.00% 
Window 39 0 1 17 100.00% 97.50% 98.25% 
Door 2 0 0 54 100.00% 100.00% 100.00% 
Foundation wall 1 0 0 55 100.00% 100.00% 100.00% 
Raised Floor 1 0 0 55 100.00% 100.00% 100.00% 
Roof 4 0 0 52 100.00% 100.00% 100.00% 

 

Table 5.3 Comparison between the recognized and the manually measured envelope 

components for case study 1 

 
Measured 

Dimension (m2) 
Recognized 

Dimension (m2) Error (m 2) Error (%) 

Exterior Wall 355.25 363.95 8.71 2.45 
Door 3.90 4.27 0.37 9.49 

Window 18.48 15.29 3.19 17.26 
Roof 156.74 143.48 13.26 8.46 

Raised Floor 19.74 16.41 3.33 16.87 
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Figure 5.13: Test results of case study 2 (ZNETH II). (a) Raw data; (b) Segmented 

point cloud clusters; (c) Created semantic model; (d) Geometry size fitting 
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To further validate the robustness of the proposed methodology, two more case 

studies were conducted. As shown in Figure 5.13(a) and Figure 5.14(a), one is a one-

story residential house, the other is a one-story bank building. Following the same 

process, the results of these two case studies were correspondingly visualized in Figure 5. 

13 and Figure 5.14. The evaluation results of the component recognition were also shown 

in Table 5.5-5.7. In case study 2, one exterior wall and one door were falsely classified, 

and most components were recognized with around 1m2 error. There was 11.10 m2 

difference between the measured and the recognized roof components. This is also 

caused by the data incompleteness. In case study 3, the tested bank building has a more 

complicated roof containing 12 plane segments. Based on the evaluation results shown in 

Table 5.6, 3 out of 24 windows were not successfully recognized from the point cloud 

data. The dimension evaluation results in Table 5.7 shows that the recognized exterior 

wall and roof categories had greater absolute area difference compared with the manually 

measured one. 

In Figure 5.15, all recognized component categories in three case studies were put 

together to analysis the relationship between the error and the measured area size of the 

component. It can be summarized from Figure 5.15 that the greater errors mostly came 

from the greater size of the component. Figure 5.16 shows the error range frequency, and 

total 50% of the recognized component categories had less than 2.5m2 error, and total 

about 71% had less than 10m2 error. Figure 5.16 shows the error range frequency, and 

total 50% of the recognized component categories had less than 2.5m2 error, and total 

about 71% had less than 10m2 error. Through a joint analysis with Tables 5.3, 5.5 and 

5.7, it can be seen that the recognized component categories with greater than 10m2 error 
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are roof and exterior wall. This is because the point cloud data are usually difficult to be 

completely collected from these two components due to the building height or occlusion. 

 

Table 5.4: Evaluation of the extracted envelope components for case study 2 

Precision = TP / (TP+FP), Recall = TP / (TP+FN),  

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

 TP FP FN TN Precision Recall Accuracy 
Exterior Wall 4 1 0 20 80% 100% 96% 

Window 14 0 0 11 100% 100% 100% 
Door 2 1 0 22 67% 100% 96% 
Roof 4 0 0 21 100% 100% 100% 

Raised Floor 1 0 0 24 100% 100% 100% 
 

Table 5.5 Comparison between the recognized and the manually measured envelope 

components for case study 2 

 Measured 
Dimension (m2) 

Recognized 
Dimension (m2) Error (m 2) Error (%) 

Exterior Wall 127.30 128.75 1.45 1.14 
Door 2.97 3.89 0.92 3.10 

Window 10.81 11.83 1.02 9.44 
Roof 137.50 148.60 11.10 8.07 

Raised Floor 10.41 10.19 0.21 2.02 
 

Table 5.6: Evaluation of the extracted envelope components for case study 3 

Precision = TP / (TP+FP), Recall = TP / (TP+FN),  

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

 TP FP FN TN Precision Recall Accuracy 
Exterior Wall 14 0 0 42 100% 100% 100% 

Window 27 0 3 26 100% 90% 95% 
Door 3 0 0 53 100% 100% 100% 
Roof 12 0 0 44 100% 100% 100% 
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Figure 5.14: Test results of case study 3 (Bank). (a) Raw data; (b) Segmented point 

cloud clusters; (c) Created semantic model; (d) Geometry size fitting 

Table 5.7 Comparison between the recognized and the manually measured envelope 

components for case study 3 

 Measured 
Dimension (m2) 

Recognized 
Dimension (m2) 

Error (m 2) Error (%) 

Exterior Wall 347.70 324.74 22.97 6.61 
Door 4.63 5.92 1.29 27.86 

Window 76.01 77.53 1.52 2.00 
Roof 1036.90 1054.00 17.11 1.65 
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Figure 5.15: Summary of the relationship between the error and the measured area 

size  

 

 

Figure 5.16: Error range frequency 
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5.9 Feasibility Validation 

In previous sections, this study discussed about how to collect 3D thermal point 

cloud data, and how to automatically extract building envelope geometry from the point 

cloud data. The output from the previous sections was an auto-generated gbXML file. 

The intent of this section was to validate the feasibility of using the auto-generated 

gbXML file as an input in the energy simulation tools. Figure 5.14 shows the preliminary 

result that the auto-generated gbXML file of the case study 1 was successfully imported 

into a building energy simulation tool (Autodesk Ecotect Analysis 2011 was tested for 

validation in this study.). 

 

 

Figure 5.17: Auto-generated gbXML file imported into Autodesk Ecotect 
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5.10 Summary 

In this chapter, this research proposed and demonstrated a method for automatic 

building geometry extraction from unorganized point clouds collected from a 3D laser 

scanner. In the proposed method, raw data were first eliminated to reduce the data size so 

as to increase the processing speed while maintaining accuracy. The downsized data were 

then processed through boundary detection algorithms, and building components finally 

recognized by processing the boundary points. The proposed method was tested and 

validated on three collected as-is building data. The test results show that the proposed 

method can successfully extract semantic information from the raw point cloud data, and 

convert the extracted data into a gbXML format that can be imported into the energy 

simulation tools. Precision, recall, accuracy of the component recognition algorithm, and 

dimension error of each component were all evaluated in this chapter. 
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CHAPTER 6 

CONCLUSIONS 

 

The intent of this chapter is to summarize and offer concluding remarks for this 

research. The chapter specifically addresses the research needs statement as well as the 

research questions presented in Chapter 1 of this research. Major findings of the research, 

identified limitations, and future research extension of this work are discussed in this 

concluding chapter. 

 

6.1 Concluding Remarks 

This research proposed a non-invasive methodology to automate the as-is 3D 

semantic geometric model creation process. Three research questions were presented in 

Chapter 1, and these research questions and a summarized discussion were presented in 

the following: 

 

Research Question 1: How can the as-is point cloud and thermal data be non-

invasively collected, fused and visualized? 

 

 A hybrid data collection system was developed by integrating 2D laser 

scanners and IR camera. The laser scanner and the IR camera collected 3D point 

clod data and temperature data simultaneously. During the data fusion phase, the 

IR camera was calibrated and the kinematics of the system were solved to 

automatically map the collected temperature data. A 3D thermal point cloud can 
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be successfully created, and each point possesses its corresponding coordinates 

and temperature data. This study also discussed the effects of the sun radiation on 

the temperature data collection process, and concluded that it’s best to collect data 

at dawn to avoid the sun radiation. 

 

Research Question 2: How can the semantic data be automatically extracted 

from the collected raw data? 

  

 A rule-based building envelope component recognition algorithm was 

proposed and created in this research. Using the 3D thermal point cloud as an 

input, this algorithm first downsampled the size of the input to reduce the total 

processing time. The downsampled point cloud data were then processed by a 

regional growing plane segmentation algorithm, and this algorithm segmented the 

downsampled point cloud data into a few clusters, in which all points have similar 

normal vector. Furthermore, an edge and boundary detection algorithm was 

introduced to extract boundary points in each cluster. Finally, a rule-based 

building component classification algorithm was developed to divide all plane 

segments into their corresponding categories, such as exterior walls, underground 

walls, windows, doors, roofs, shades, and raised floors. Field tests on selected 

residential houses were conducted to validate the feasibility of the proposed 

methodology and evaluate its performance as well. The test results showed that 

the precision, recall and accuracy of most of the extracted components can reach 
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95%, and the total about 71% of the recognized components had less than 10m2 

error. 

 

Research Question 3: How can the extracted semantic data be stored in terms of 

data interoperability? 

  

 The extract components were first processed by a geometry size fitting 

algorithm to fill in the gaps between all the plane surfaces in order to create a 

closed space. All the extracted geometry data of the building components were 

originally saved as a text file, in which it included its component ID, adjacent 

component ID, and a set of boundary points. Based on the gbXML schema, this 

text data was automatically converted into a gbXML file. In the auto-generated 

gbXML file, the “surface” element stands for the plane segment. The auto-

generated gbXML was also validated with the selected commercial building 

energy simulation software tools. The gbXML file was successfully imported, and 

all elements were correctly transported into the simulation tools. 

 

6.2 Research Contributions 

The contributions of this research include 1) a customized low-cost hybrid data 

collection system development to fuse various data into a thermal point cloud; 2) an 

automatic method of extracting  building envelope components and its geometry data to 

generate gbXML-based building geometry model. The broader impacts of this research 

are that it could offer a new way to collect as is building data without impeding 
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occupants’ daily life, and provide an easier way for laypeople to understand the energy 

performance of their buildings via 3D thermal point cloud visualization.  

 

6.3 Limitations and Future Research 

Despite of the demonstrated promising results, it is still inevitable that this 

research has a few limitations, 

(1) The success of the proposed methodology totally depends on the completeness 

of the collected data. It’s hard to recognize a building component that was 

occluded during the data collection or that has many noisy data 

(2) The collected data usually contains other non-related objects, such as trees, 

other buildings, grounds, and cars. In this methodology, the unrelated data 

were manually filtered at the start. 

(3) Compared to commercial buildings, the residential house has small and 

various shapes, which may challenge the robustness of this research. More 

case studies need to be conducted to increase the reliability of the proposed 

system. 

 In future work, this study will focus on improving the accuracy of processing 

incomplete data because it was identified that accuracy primarily relies on the integrity of 

the data. The data downsizing process can cause errors because it replaces the points in 

each voxel with an estimated point. Incomplete data is another factor that can reduce 

accuracy (e.g., the incomplete roof of the residential house and the parts blocked by trees 

and bushes). Therefore, how to complete the data and filter the unrelated data will also be 

an emerging topic. This research also plans to further enhance the robustness of the 
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proposed methods so that it can be implemented and used for several different types of 

object recognition and extraction activities for as-built modeling in the AEC/FM domain. 

Automatic indoor room zone creation will also be investigated in the future research, and 

it will be helpful for those buildings with more than one thermal zone. Lastly, the auto-

generated gbXML files should be evaluated through comparing its simulation results with 

traditional method. In the long run, the future research outcomes are expected to 

stimulate decision makers to improve their buildings by providing reliable, visual 

information about their building’s energy performance, thus benefiting the economy, 

society, and the environment. 
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