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SUMMARY 

This study presents the topic of the use of second order response 

surface designs and their applications to digital simulation. In par-

ticular, it examines methods to determine the combination of factor levels 

at which the response variable is optimized. Specifically, the questions 

considered are associated with problems of experimental design in simula-

tion, where the experimenter's objective is to optimize some appropriate 

response of the system under study. 

The research surveys the field of response surface methodology, 

with emphasis on the use of second order experimental designs and optimi-

zation techniques. Several second order experimental designs are con-

structed and applied to various known response surfaces which typically 

might be generated by a digital computer simulation model. 

The results are analyzed from two points of view; first, comparison 

by design and second, comparison by surface. Conclusions are then drawn 

in such a manner as to apply them to constructing designs in general or 

designs for specific surfaces. When comparing results, the class of 

orthogonal equiradial designs demonstrates the best performance in all 

average situations. The best achievement on ridge surfaces was obtained 

by the use of uniform precision and minimum bias central composite designs. 

Irregular, asymmetric surfaces are best explored using the minimum bias 

central composite design. Finally, the concept of rotatability was pre-

sented and its importance demonstrated. 

vii 



CHAPTER I 

INTRODUCTION 

1.1 Experimental Optimization  

In recent years experimental optimization techniques have found 

wide application in a variety of situations. These techniques may be ap-

plied to situations in which one is interested in determining the levels 

to which independent variables or factors are adjusted to optimize some 

response, say y, associated with a system. This relationship may be 

described mathematically as 

Y = 0(x i ,x2 ,...,xk ) + e 	 (1.1) 

where x. is the i
th 

factor in the observation and the residual e measures 

the associated experimental error. In the experimental design literature, 

the function 0 is called a response surface. If the mathematical form of 

0 is known, the functiOn fully describes the response surface in the area 

of interest. In most cases, however, the form of 0 is unknown and usually 

extremely complicated. Then it is assumed that the function may be rea-

sonably approximated by a low order polynomial in the variables x i  within 

the experimental region of interest. 

If there is little curvature in the true surface, then one may use 

as the approximating function a first order polynomial, say 

1 



2 

=-I- 0 	Plx1 	r3 2x2 	Pkxk 	e  
(1.2) 

If significant curvature in 0 is present the experimenter may turn to 

the second order polynomial model 

y = 	+ 5ixi  +I 	x 
2 

 L + 	ij3 
x.x. + e . 	(1.3) 

j 
i<j 

The experimenter may, due to lack of fit of the second order model, re-

sort to cubic or even higher order models. The Taylor Series expansion 

provides the rationale for the polynomial approximation of 0. For exam-

ple, the first order model is developed from the first order Taylor Series 

expansion about x i  = x2  = 	= xk  = 0 

wheretheVare the appropriate derivatives. 

Fitting the approximating polynomial (i.e. estimating the coeffi-

cients) is usually accomplished by least squares, which uses as an esti-

mate of a vector which results in a minimum value for the sum of the 

squares of the deviations 

N 
L = 	e i

2 
  = 
	

(1.5) 

i=1 

Matrices will be denoted by upper case underlined letters. Col-
umn vectors will be denoted by lower case underlined letters. The trans-
pose of a matrix or vector is denoted by a prime ('). 



3 

It is well known that the model of equation (1.1) can be written in the 

form 

	

x = X + e , 	 (1.6) 

or 

	

X - 21= e • 	 (1.7) 

Substituting equation (1.7) into equation (1.5) and expanding gives 

L = y'y - 	+ 	. 	 (1.8) 

Now taking the partial derivative of L with respect to 

61, 
TaI = 	+ 2(X 1 X)a , 	 (1.9) 

and then setting the partial derivative equal to zero and solving for 

yields 

a = (X'X) -1X'y 	 (1.10) 

Of course, the usual assumptions of multiple linear regression regarding 

g.  must hold, that is E(g.) = 0 and Var(e) = a 241 . 
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It is now possible to estimate each of the model parameters and 

obtain a fitted equation for the response surface. From this fitted 

surface the experimenter may obtain estimates of the optimum levels for 

the independent variables and predicted experimental responses. Also, 

one may test various hypotheses about the parameters in the model of 

equation (1.6). This is discussed extensively in Graybill (17). 

1.2 Digital Simulation  

Digital simulation is a numerical technique for conducting exper-

iments on certain types of mathematical models describing the behavior of 

a system (or its components) on a digital computer over extended periods 

of real time (10). The behavior of a system in turn, is described by a 

collection of entities which act and interact together toward the accom-

plishment of some logical end. 

Before one can simulate a given system, a representative model of 

that system must be constructed. This is the major difference between 

an actual experiment and an experiment involving simulation of a system. 

Given a model of the system, Hunter and Naylor (18) have shown that a 

computer simulation experiment usually requires that the analyst give spe-

cial attention to the following four activities: 

1. Formulation of a Computer Program. The formulation of a com-

puter program for the purpose of conducting computer simulation experi-

ments requires that some consideration be given to the following: flow 

charts, computer program, error checking, data input and starting condi-

tions, data generation, and output reports. 

2. Validation. The model must be validated by comparing simulated 
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data with actual and historical data. If the model proves inadequate, 

then changes must be made in the variables, parameter estimates, and 

structure of the model. 

3. Experimental Design. Two different types of experimental ob-

jectives can be defined: (a) to find the combination of factor levels at 

which the response variable is optimized and (b) to explain the relation-

ship between the response variable and the controllable factors in the 

experiment. The type of experimental design employed will depend on the 

objectives. 

4. Analysis of Simulated Data. The analysis of data generated by 

a computer model consists of the collection and processing of the simu-

lated data, computation of meaningful statistics, and interpretation of 

the results. The analysis includes the use of such techniques as regres-

sion analysis and analysis of variance. 

This investigation is concerned primarily with step 3(a) of this 

procedure. Specifically, the questions considered here are associated 

with problems of experimental design in simulation, where the experi-

menter's objective is to optimize some appropriate response of the system 

under study. 

Experimental optimization techniques and their use in conjunction 

with digital computer simulation models have been discussed by many au-

thors. The basic optimization technique employed most often is the method 

of steepest ascent, or some other closely related technique, such as the 

sequential simplex (27), the one-factor-at-a-time method (16), or sto-

chastic approximation (19). These are usually called first order tech-

niques, since they require the experimenter to assume that a first order 
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model is adequate to explain the response. Examples of the use of first 

order optimization techniques in conjunction with digital computer simu-

lation may be found in the texts of Schmitt and Taylor (25) and Meier, 

Newell, and Pazer (21), also articles by Meier (20), Montgomery, Talavage, 

and Mullen (22), Dickey and Montgomery (14), Baasel (2), Carpenter and 

Sweeny (12), Duer (15), and Naylor and Burdick (10). 

Few authors have discussed the use of higher order approximating 

polynomials and associated optimization techniques with computed simula-

tion models to improve the estimate of the optimum obtained by a method 

such as steepest ascent. Burdick and Naylor (11), Sasser (24), and 

Brooks (8) have stressed the need for a survey discussing the relation- 

ship of experimental design techniques to simulation. As these techniques 

have been widely and successfully employed in a variety of other experi-

mental settings, it would seem that some account of their application to 

simulation be given. 

1.3 Objectives  

The primary objectives of this thesis are: 

1. To investigate the use and properties of second order experi-

mental designs. 

2. To investigate and analyze the effectiveness and efficiency of 

designs from this class through simulation modeling. 

3. To demonstrate these applications to simulation experiments by 

examining the relationship between experimental design techniques and the 

design of computer simulation experiments. 

4. To draw conclusions regarding types of designs presented. 
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The above objectives will be accomplished by first surveying the 

field of response surface methodology, and in particular, the use of 

second order experimental designs and optimization techniques. Several 

second order experimental designs will be constructed so that valid com-

parisons can be presented. The experimental designs will then be applied 

to various known response surfaces which typically might be generated by 

a digital computer simulation model, the results analyzed, and conclusions 

drawn. The techniques of experimental design, as they apply to computer 

simulation, will be reviewed throughout the presentation. 

1.4 Assumptions  

The following assumptions are made: 

1. With the extensive literature and experimentation concerning 

search techniques and first order experimentation, it is assumed that the 

simulation investigation has already encountered a near optimal region in 

which a "lack of fit" situation exists. Therefore emphasis will be placed 

on the investigation of the second order situation. 

2. A representative cross section of frequently employed experi-

mental designs will be used. This will include a factorial design, two 

rotatable central composite designs, a minimum bias design, and two equi-

radial designs. 



CHAPTER II 

RESPONSE SURFACE METHODOLOGY 

2.1 General  

The underlying goal of response surface methodology is the 

determination of the optimum operating conditions for a system. Basically 

we encounter two distinct situations in examining a response surface: (1) 

the actual optimum is unknown or remote from the current experimental re-

gion, and (2) the actual optimum is within or close to the experimental 

region. As a result, a response surface study usually proceeds in two 

phases, the first being a sequential procedure which leads one to a near 

optimal region, and the second being a simultaneous procedure to more pre-

cisely estimate the optimum and describe the nature of the fitted surface. 

2.2 Phase I  

Experimenters are quite hesitant about designing elaborate simul-

taneous experiments unless they are sure that the optimum lies either in 

or near the region under consideration. Because of this, an experimenter 

should be acquainted with procedures for searching a large region for a 

near optimal response. Probably the most widely used optimum seeking 

procedure is the method of steepest ascent (7). It is a method by which 

one moves in a sequential manner along a path of increasing response. 

The procedure begins by fitting a first order polynomial 

8 
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y = bo  + b lxi  + b 2x2  + 	+ bkxk 	 (2.1) 

to approximate the response surface 0 in some restricted region in the 

vicinity of the starting point. The path of steepest ascent is defined 

as that direction which maximizes y on the surface of a hypersphere of 

a given radius. That is, the experimenter must maximize y subject to 

theconstraintthatthex.1 's are on a hypersphere of radius R. Coding 

the variables, i.e. assuming the center of the design to be the origin 

(0,0,...,0), the problem becomes one of finding the values of xi  which 

maximize 

subject to 

y = b0  + 	b.x. 0 	1 1 
i=1 

x
i
2 
= R

2 
. 

i=1 

(2.2) 

(2.3) 

Lagrange multipliers are used to maximize the function 

Q(xl ,x2 , 	xk) = b0  + 
x 	2 	2 ( 	x 	R  ) 

i= 	 i=1 
(2.4) 

Taking partial derivatives, one obtains 

= b.
1 
 - 2Xx 
	

(2.5) 

and 

a2 	_ 	... i 2 	R2)  . 
bX 	L  

i=1 

(2.6) 
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Now setting 31  = 0 results in 1 

b. 
(i=1,2, 	k) 	 (2.7) 

2X 

At this point the experimenter can either choose a value for X or 

choose an arbitrary change in one of the x t s and from it compute X, 

hence, defining the coordinates of the remaining k-1 variables along the 

path of steepest ascent. Points along the path of steepest ascent are 

then computed and experimentation continues until one of two possibilities 

occurs: 

(1) The coefficients bi 
become small and the linear equation still 

fits. This result implies that a plateau has been reached. 

(2) Curvature becomes evident as the result of a lack of fit test. 

For one to obtain more information about the location of the optimum in 

these situations, second order designs must be constructed. 

A word of caution should be given concerning the importance of the 

appropriate choice of levels used in this phase. If the levels of a factor 

are too close, the results of each subsequent experiment may seem neg-

ligible. Consequently, one may have to conduct far too many experiments 

in moving along the path of steepest ascent. Likewise, if the levels are 

too far away, too much curvature may be present early in experimentation 

and one may be forced to a higher order design when it is not necessary. 

Further discussion of this problem will be presented in Chapter III. An 

excellent example of correction for errors in the choice of levels for 

this phase can be found in Cochran and Cox (13) on page 362. 
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The method of steepest ascent is probably the most often used 

optimum seeking procedure. Examples of its use are found in Box and 

Wilson (7) page 18, Cochran and Cox (13) page 357, and Myers (23) page 

90. Its all-around reliability is demonstrated by Brooks (8) in his com-

parison of maximum-seeking methods. Other first order methods used to a 

lesser degree are Bulher, Shah, and Kempthorne's method of parallel tan-

gents (9), Friedman and Savage's one-factor-at-a-time procedure (16), 

Anderson's random test point selection (1), a single large factorial (8), 

Schmitt and Taylor's quadratic approximation (26), and Spendley, Hext, 

and Himsworth's sequential simplex (27). 

2.3 Phase II  

As a result of experience, previous experimentation, prior know-

ledge of the system, or phase I experimentation, the experimenter will 

at some point in time arrive in the general vicinity of the optimum. A 

more elaborate analysis must be conducted to obtain an improved estimate 

of the optimum. A major portion of this analysis is the design of the 

experiment. 

Let the unknown parameters in the second order model equation 

(1.3) be estimated by least squares, resulting in the fitted second order 

response surface 

	

y
u = b0 
	x 2 II I) .x. x. + e

u 

	

0 	1 iu 	iu + 	ij 	ju 
i 
i<j 

(2.8) 
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where u = 1,2, ..., N and yu  represents the N observations in an experi-

ment. Of interest here is the fact that, in order to estimate the re-

gression coefficients in a model of this type, there must be at least 

three different levels for each variable x, . 
1 U 

Assuming an arbitrary choice of design and using the fitted re-

sponse surface (equation (2.8)), the experimenter wishes to choose 

x. so as to optimize yu . In matrix notation, the second order X
l'
X
2' 	k 

polynomial is written 

y = b + x'b + x'Bx 	 (2.9) 

where 

x = [xl ,x2 , 	xk  

b' = [b l ,b 2 , ..., 

and 

b
11 	

b
12/2 	

blk/2 

b
22 	

.... b
2k/2 

B = 

b
kk 

In equation (2.9) x'b contains the first order terms (lb i 
 x.) as indicated 

1 
in equation (2.8). x'Bx contains both pure ( b iixi 2) and mixed 

bijj 
.x.x.) quadratic coefficients. Differentiating equation (2.9) with 

i 
respect to x i ,x2 , 	xk  will provide the stationary point. It follows 

that 



13 

cx= b + 2Bx 
 — — 

(2.10) 

Setting equation (2.10) equal to zero and solving for x yields the sta-

tionary point 

It
O = - 1/2B -1

b 
	

(2.11) 

At this point one can easily predict the response at x
0 
 by substituting 

equation (2.11) into equation (2.9) 

y = b0  + x '13 + x 'Bx 
0 	0 	0 — 0 0 

= b
0 
 + (-1/2B lb)' + (-1/2B lb)'B(-1/2B lb) 
 — — 	— — — 

= b0  - 1/21:0B-lb + 1/41) 1 B-1 BB-lb 

= b0  - 1/213'13 -lb + 1/4b'B-lb 

= b
0 

+ 1/2x 'b 
—0 — 

(2.12) 

(2.13) 

One sees that the stationary point can be either a maximum, mini-

mum, or saddle point. To determine the nature of this point the experi-

menter may perform a canonical analysis, which is a method of not only 

determining the nature of the stationary point but certain general proper-

ties of the response surface. 

The canonical analysis consists of a translation of coordinates 

from the original origin to the stationary point and then a rotation of 

the coordinates to correspond to the principal axes of the contour system. 

A new set of axes z is defined at the stationary point as 
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Z = X -X 
0 
	 (2.14) 

Substituting this into equation (2.9) one may redefine the response in 

terms of the new variable z. It follows that 

(2.15) 

	

y = b
0 
 + (z+x

0 	
+ (z+x

0 
 )'13(s+x

0 
 ) 

— —   

= b
0 — 
+ x

0  l
b + x

-0 
 'Bx + zlb + z'Bz + x 	

--O 
'Bz + z'Bx 

	

— 	--O — — — 	—0 	—  

A 

Recognizing that the first three terms are y 0  (equation (2.12) 

y = y
0 
 + 2z 1 Bx + z'Bz + z l b 
 — —0 

= y
0 
 + z i [b + 2Bx

0 
 ] + z'Bz 

— — 	— — • 

Substituting equation (2.11) for ao  

y y
0 
 + z'Bz 
 — — 

(2.16) 

Thus equation (2.16) is the response at any point in the system in terms 

of the new set of variables z. The second part of the canonical analysis 

rotates equation (2.16) to a new set of axes, say w corresponding to the 

principal axes of the contour system. The final form, which is called 

the canonical form, is 

, 2 y = y
0 

+ 
X1w1

2 
+Aw2

2 
 + 	+AW k k2  (2.17) 

where y0  is the estimated response from equation (2.13), wi  are the new 

translated and rotated axes, and the X i 
are constants which indicate the 

nature of the stationary point and the response surface. 



It is well known that any real symmetric matrix, say B, can be 

orthogonally transformed to a diagonal matrix, say 4 = M'BM. Here M 

is the orthogonal transformation matrix of w to z or 

z = Mw (2.18) 
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Thus 

z'Bz = w'M'afw  

k 

(2.19) 

.w. 
1 1 

2 

Thus one may write 

x 
2 0 

• 

0 

M T BM = (2.20) 

X
k 

where the X.'s are the latent roots or eigenvalues of the matrix B. The 

eigenvalues determine the nature of the stationary point and the response 

surface. Several situations may be encountered: 

(1) All X. are negative. This implies that the fitted surface is 

a maximum at the stationary point within the experimental region. 

(2) All Xi  are positive. This implies that the fitted surface is 

a minimum at the stationary point within the experimental region. 

(3) All Xi  are negative or all X i 
are positive and the stationary 



/
w1 

/ 

w2 

x
1 0,0 

16 

point lies outside the region of experimentation. Polynomials are not 

trustworthy when extrapolated. In other words, inferences about results 

outside the area of experimentation are quite unreliable. Therefore, the 

experimenter can only continue investigating in the direction of the ex-

pected maximum or minimum in a cautious manner. 

(4) Some X. are negative and some positive. This implies that 

the experimenter has found a saddle point. 

(5) All xi  are negative with magnitudes greatly different. For 

example, consider two variables where X i  is large and X 2  close to zero. 

The situation is illustrated below. 

x
2 

Figure 1. Illustration of Canonical Form in Two Variables 
(Maximum elongated along w 2  axis) 

From situation (1) the experimenter knows that a maximum already exists, 
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butfromthedifferenceintheX.he can determine the shape of the 

response surface in the experimental region. The X i  tell him that the 

response is more sensitive along the 	axiss than along the w 2  axis. The 

result is a ridge system along the w 2 
axis. 

2.4 Designs for the Second Order Model 

2.4.1 General  

Each independent variable x i  must take on at least three different 

levels to estimate the regression coefficients of a second order poly-

nomial. This thesis attempts to investigate the efficiency and effective-

ness of designs that fall in this class. There are numerous designs in 

this class, and only a representative cross section of them, including 

some of the more popular designs in use today, will be investigated. 

If a polynomial relationship is to be investigated, an important 

part of the experiment is the choice of design matrix. The matrix 

D = 

— 
x11 x21 	xkl 

x12 x22 	xk2 

• • 	• • • 	• • • 	• • • 

x
ln 

x
2n ". xkn 

(2.21) 

indicates the combinations of levels chosen, and it is defined as the de-

sign matrix. Each row (x ii ,x2i , ...,xki ) represents one experimental run. 

In what follows it becomes convenient to invoke the scaling conven- 

tion 
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N 

x. 2  = N 	(i=1,2, ...,k) 	 (2.22) 
iu 

u=1 

and 
N 

x
iu = 0 	

(i=1,2, ...,k) 	 (2.23) 
u=1 

One could easily obtain a scaled design if the natural variables do not 

conformtothisconvention.Lettingg.be the natural variable, the 
iu 

corresponding coded value would be 

 

- 

	

g . U  - 	. 
1 	1 

X. = 
iu 	S. 

(2.24) 

N 
—  

where g i  = 1 g i  ; 
u=1 

  

and 

   

( iu 
u  

S = 	
=1  

  

2.4.2 3k Factorial Designs 

As three different levels are required for x iu , one immediately 

considers the use of the 3
k 

factorial design. Here the three levels of x 

are easily coded -1,0,1, and the second order polynomial may be fit very 

easily. One major disadvantage of this design is that, for a large num-

ber of independent variables, the experiment becomes too large. Box and 

Wilson (7) show that the 3
k factorial design provides estimates of qua-

dratic coefficients having variances eight times greater than those for 

interaction coefficients. Geometrically, the design is shown in Figure 2 



for the case k=2. 

x2 

-1,1 	0,1 	1,1 

0,0 	1:0 

0,-1 	1,-1 

Figure 2. 3
2 
Factorial Design 

The 3
2 

factorial design matrix is given by 

x2 
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x l  

D = (2.25) 

  

2.4.3 Central Composition Designs  

2.4.3.1 General. Box and Wilson (7) developed this class of de-

signs as alternatives to the 3
k factorial. Basically, the central com- 



posite design is a 2
k 

factorial augmented by at least one center point 

and 2k axial points. The design in two variables is shown in Figure 3. 

l x2 

Oda 
• 

1,1 

       

x
1 

-a,0 	 olo 	cx,0 

- 
-1,-1 	I 	1,-1 

01-a 

Figure 3. Central Composite Design 

The design matrix for two variables, and considering only one center 

point is given by 

x x
1 	2  

	

-1 	-1 

	

-1 	1 
1 	-1 
1 	1 

	

D = 0 	0 

	

-a 	0 
a 	0 
0 	-a 
0 	 a 

(2.26) 

20 
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This design is widely used, as it may be derived easily from the 2 k
. The 

method of steepest ascent often uses the 2
k 

design to estimate the para-

meters in the first order model. When lack-of-fit of the first order 

model becomes significant, all that is required to complete the central 

composite design is the addition of 2k axial points plus center points. 

2.4.3.2 Rotatability. A very important property, one which will 

be used extensively in Chapter III, is that or rotatability. A design for 

which the variance of Ssr is a function of distance from the design origin 

only and not direction is said to be rotatable. In other words, all 

points equidistant from the center of the experimental design have a com-

mon variance. Thus the variance contours for a rotatable design are cir-

cles or spheres centered at the origin. 

2.4.3.3 Design Moments. An important concept that aids in devel-

oping concepts of rotatability and other properties is the design moment. 

Design moments are the elements of the moment matrix of the design, which 

is defined as N -1
X , X where N is the total number of runs specified by the 

design. For example, the moment matrix of a second order design is given 

by 

N-1X'X = 

x
1 	

x
2 	x1

2 x
2
2 x1x2 

 

[1] 	[1] 	[2] 	[ 11] 	[22] 	[12] 

[11] 	[12] 	[111] 	[122] 	[112] 

[22] 	[112] 	[222] 	[122] 

	

[1111] 	[1122] 	[1112] 

	

[2222] 	[1222] 

[1122] 

(2.27) 
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where 

[i] = 1/N E x. 
u  

[i j] = 1/N E x, x. 
u 1U 3U 

[iiii] = 1/N E x. 4  u iu 

[iiij ] = 1/N E x. 3  x 
u lu ju 

[ii jj] = 1/N E x. 2  x 2 	etc 
u 1U 	jU 	

etc . 
 

The quantities [i], [ij], [iiij], and [iijj] are called first, second, 

third, and fourth order design moments. The elements of the moment matrix 

can be easily verified by obtaining the sums of squares and products of 

the appropriate X'X matrix. The inverse of the moment matrix is called 

the precision matrix and contains elements which are related to the var-

iances and covariances of the model coefficients. 

Box and Hunter (6) show that a necessary and sufficient condition 

for a d
th 

order design to be rotatable is that the moments of order 

6(6 = 1,...,2d) be of the form 

N 
N
-1 	81 82 	8k 	x 1=1\ 11  

x ,x 	 - 
lu 2u' 	' KU 	6/9  k 	Si  \ 

u=1 	 2 ' 
-11i=1( 2 ) 1  

(2.28) 

fora116.even, and 
1 

N 
N 1 7 61 62 	6k 0 

Z4 xlu'x2W—"xlcu - u 
u=1 

(2.29) 

odd. Here 6 =. and X
6 
is a quantity which is a function 
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of 6. An excellent derivation of the above results can be found in 

Appendix A of Myers (23). 

One may now construct a moment matrix for a second order rotatable 

design. Examining (2.27) it is obvious that [1] has 6 i  odd. Therefore 

[1] = O. [11], however, has a 6i  even and, therefore, 8 = 	Si  = 2. 
i=1 

X 2 (2)! (0)! 
From this [11] - 	

2(1)! (0)! = X 2' [1111]representsaneven8.N.there 

X4 (4)! (0)! 
8 = 4 and [1111] = 2 z 	

(2)! (0)! = 3X
4 . The resulting moment matrix for a 

second order rotatable design is given by 

N -1 (VI() = 

1 

0 

0 

X 2 

X 2 

0 

1 
0 

X 2 

0 

0 

0 

0 

2 
0 

0 

X
2 

0 

0 

0 

2 
1 

X2 

0 

0 

3X
4 

 X
4 

0 

2 

X
2 
2 

0 

0 

X
4 

 3X
4 

0 

x  
0 1x 2- 

0 

0 

0 

0 

X
4 

(2.30) 

Two key characteristics of this matrix are: 

(i) All moments with at least one 6
i odd are zero 

(ii) The ratio of the fourth pure moment to the fourth mixed mo-

ment is always 3. 

Thus, if the moments of a second order design meet conditions (i) and 

(ii), the design is rotatable. Notice that, by definition [iijj] = X 4 . 

This gives the experimenter a great deal of flexibility in constructing 
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designs, as X4  can be conveniently altered without affecting rotatability. 

This admits further properties of the central composite class of designs. 

2.4.3.4 Rotatable Central Composite Designs. The previous section 

has shown that flexibility exists in choosing rotatable designs. One may 

find the value of a to make any central composite design rotatable. From 

inspection of the general form of X I X one sees that, for a central com-

posite design, all odd moments are zero, and also 

x. 4  
1U 

[iiii] 	u=1  
[iiii] 	k 	2 	2 

x, x 
iu ju 

u=1 

Letting F be the number of factorial points in a central composite design 

and referring to the general moment matrix, one sees that 	x. 4 = F + 
lu 

k 	 u=1 

+ 2a4 2a4 and that 	
xiu2ju2 

x 	= F. Therefore
, 

F 
F 	must equal 3 or 

a = (F) 1/4 	
(2.31) 

Thus, a is completely independent of the number of center points. One may 

alter the value of X
4 

by adding or deleting center points without affect-

ing rotatability. 

At this point it is necessary to digress somewhat to gain insight 

on how changes in the value of X4 , the mixed fourth moment [iijj], affect 

the properties of the fitted response surface for a rotatable design. 
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From the earlier discussion on the precision matrix, and considering the 

precision of y, one can see that 

N Var y  
2 = 
	Var b + 0 	xi

2 
Var 	 + b. 

	

1 	
x.
1
4  Var b ii  

a 	a
2 

i=1 	 i=1 
(2.32) 

+ '7 L  xi 2xj 2 Var b
1
..
3 	 1 
+ 2 	x.

2 
Cov(b

0,
b
ii

) 
i j 	 i=1 
i<j 

+ 2 D] x.
2  

1 xj
2 
 Cov(b..,b..) 

1133 
i j 
i<j 

Myers (23) shows that the elements of the precision matrix (inverted mo-

ment matrix (equation (2.27))) are 

N Var b 

2 
0  

= 2 X
4
2
(k+2)A 

a 

where A = (2X4[(k+2)X4  - k]) -1  

N Var (b i ) 
1 	= 1 

a 
 

(2.33) 

(2.34) 

N Var (b ii ) 

2 	  = [(k+l)x
4 

- (k-1)]A 
a 

(2.35) 

N Var (b. ) 
ij 1 . 

X4 a
2 (2.36) ( i 	J) 



N Cov (bo ,bii ) 
- 2X4A a 
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(2.37) 

N Cov (b ii ,b i .) 
	  = (1-X

4)A 
a 

 (2.38) 

All other elements are zero. 

Two interesting observations can be made at this point. 

(i) Examining equation (2.38) one sees that, if X4  = 1, Coy (b ii , 

b jj  ) = 0 and an orthogonal design results. So it is possible to construct 

a central composite design which is both rotatable and orthogonal. 

(ii) If X'X is singular, its determinant is zero; further, an A 

of infinity yields infinite variances and covariances and a useless de-

sign. 

Now defining p as the distance from some point (x l ,x2 ,...,xk) to 

k 

the center of the design, and since p 4 = 	x. 4  + 2 YfzE xi  2x. 2
, one can 

i j 
i<j 

apply the results of equations (2.33) through (2.38) to equation (2.32) 

to yield 

N Var y  
- A [2X

4
2
(k+2) + 2p

2
X4 (X4-1)(k+2) + p 4[(k+l)X4 - (k-1)]) (2.39) a

2 

This equation will now be the basis to select from the class of rotatable 

second order designs that give desirable values of X
4. Plotting 

2r 	-1 
a [N Var y] 	for k=2 variables against p indicates, as shown in Figure 4, 



that basically the "best" precision is obtained at p = 1. 

2 7 

P 

Figure 4. Design Precision Versus p 

Notice also that small values of X
4 

lead to poor precision, especially 

near the design center. Also, large values of X4  lead to good precision 

near the center of the design whereas the precision drops off rapidly 

when p > 1. However, large values of X 4  lead to heavy biasing of the re-

gression coefficients if the surface happens to be greater than second 

order. 

Box and Hunter (6) proposed a solution to this dilemma. They de-

fined the uniform precision design to have a value of X 4  such that the 

precision on y at the center (p = 0) is equal to the precision at p = 1. 

In other words 

.., 	r 	.-1-1 DI Var yi p
1
0 

= [N Var YJ p=1 
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They based their design on the hypothesis that, in the region p < 1, there 

should be equal importance so far as estimation of response is concerned. 

Table 1 presents the values of X
4 

found by setting the variance function 

for p = 1 and then substituting for k. 

Table 1. Values of X
4 
 for Second Order Rotatable 

Designs Which Result in Uniform Precision 

k 
	

2 	 3 	 4 	 5 

X
4 	

.7844 	.8385 	.8704 	.8918 

In the specific case of the rotatable central composite design, one can 

achieve uniform precision by varying the number of center points. One may 

express X4  as a function of N, the total sample size, and F, the number 

of points in the factorial. Because of"the scaling convention, each 

column in the design matrix must be multiplied by g, where 

N/F +N2a
2 (2.40) 

Now taking the fourth pure design moment and recalling that a = F
1/4 

[iiii] 	Fg4 + 2og
4 

(2.41) 

After some algebra this reduces to 

= 	
3N 

(2.42) 
F + 4F1/2  + 4 



N x
4 

. 	  
F + 4F

1/2 
 + 4 

(2.43) 

Now to complete the rotatability requirement 

[iijj] = X4  = 1/3[iiii] 

and 
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The property of rotatability is completely independent of X 4 . Table 2, 

created by Box and Hunter (6), serves to summarize the results of this 

section. 

Table 2. Uniform Precision and Orthogonal Rotatable 
Central Composite Designs 

k 2 3 4 5 

F 4 8 16 32 

na (axial points) 4 6 8 10 

n2 (UP) 
5 6 7 10 

n
2 

(ORTH) 8 9 12 17 

N(UP) 13 20 31 52 

N (ORTH) 16 23 36 59 

a 1.414 1.682 2.000 2.378 

X
4
(UP) 0.81 0.86 0.86 0.89 

X
4 

(ORTH) 1.00 0.99 1.00 1.01 

2.4.3.5 Other Second Order Rotatable Designs for Small Values of  

k. The class of equiradial designs (designs at which all points are equi-

distant from the origin) offers practical alternatives to the central 

composite design for certain problems. This investigation will consider 
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one of them, the hexagon. 

A hexagon would have n l  = 6 equally spaced points on a circle of 

radius p, augmented by n2  center points. Meyers (23) shows that one may 

start by placing the first design point at an angle e with the x
1 

axis. 

The general form of the design matrix then becomes for k = 2 

xl 
	

x
2 	 (2.44) 

	

D = [p cos[e + (2ru)/n1 
 ], p sin[O + (2ru)/n

1 	(u=0,1,2,...,n 1 
 -1) 

which leads to 

x
1 	

x
2 

p cos 0 	 p sin 0 

p cos (0+17/3) 	p sin (0+7/3) 

p cos (0+2r/3) 	p sin (8+2r/3) 

p cos (0+r) 	p sin (0+r) 

p cos (0+4r/3) 	p sin (0+4r/3) 

p cos (0+5r/3) 	p sin (0+5r/3) 
D = (2.45) 

• 

0 

• 

0 	 0 

and the design is as shown in Figure 5. This design is rotatable as it 

satisfies the necessary and sufficient conditions stated previously. 

Other properties, such as uniform precision and orthogonality, are also 

applicable here. 



x o  

Figure 5. Hexagon Design 

An expression for X4  can be obtained which again is independent of the 

factors affecting rotatability. In general 

n
2 
+ n

1 
4 	2n

1  
(2.46) 

Therefore, if one chooses a specific equiradial design, he can change X4  

easily by varying the number of center points. Table 3 gives information 

concerning some equiradial designs. It is obtained in the same manner as 

the data of Table 2. Many other equiradial designs are possible and such 

shapes as octagons, tetrahedrons, dodecahedrons, and icosohedrons are all 

feasible. Likewise, Box and Hunter (6) have also shown that interesting 

possibilities exist for certain combinations of equiradial rotatable 

designs. 

31 
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Table 3. Orthogonal and Uniform Precision Equiradial 
Designs in Two Variables 

n
1 

n2  ORTH) 

n2 (UP) 

X
4 

(ORTH) 

X
4 

(UP) 

5 6 7 

5 6 7 

3 3 4 

1.0 1.0 1.0 

0.8 0.75 0.786 

2.4.3.6 Other Criteria for Choosing Response Surface Designs. So 

far consideration has only been given to the variance of an estimated re-

sponse Y, while the bias of y due to the inadequate representation of the 

polynomial has been almost ignored. It would seem desirable for a design 

to be chosen that would simultaneously consider both the variance of the 

predictor 3= and the bias of the regression coefficients. Box and Draper 

(3,4,5) proposed a solution to this problem by suggesting that a reason-

able design would be one that minimized 

E[Y(x) - g(x)] 2  dx 
J = N  R  

Q2 
J dx 

(2.47) 

where y(x) represents the fitted model and g(x) the true model. It may 

be shown that 

J = 
N

E[y - E(y)]
2 

dx + j [E(y)  - g]
2 
 dx} 	(2.48) 

a R 
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where K = - 	. The first quantity on the right hand side of equation 
j 

1 

  dx 
R 

(2.48) is the variance averaged over the region R and the second quantity 

is the square of the bias averaged over the region R. Alternately, one 

may write 

J = V + B 	 (2.49) 

where V is the average variance of Y, and B is the average squared bias 

of Y. 

Box and Draper suggested that some possible objectives would be to 

choose a design matrix that would 

(i) minimize J = V + B 

(ii) minimize V 

(iii) minimize B. 

It may be shown that it is impossible to minimize J = V + B. Thus one 

must consider (ii) and (iii). Myers (23) shows that, for the first order 

model 

N$ 11
2 

J = {1 + 3 
1 

771 + - 
a2 
 {([11] - 1/3)

2 
+ 4/45} (2.50) 

Here the second moment occurs in both V and B and thus the value of [11] 

which minimizes J depends on the quadratic coefficient $ 11 . Therefore, 

with no prior knowledge of $
11' 

J = V + B cannot be minimized. Now from 

equation (2.50) one sees that 

(i) If bias is expected to be negligible in comparison to error 

N1311 2  
variance resulting in a small value for --t" , one should minimize V by 

a 
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making [11] as large as possible. This is accomplished by spreading the 

design points out as far as practically possible. Unfortunately, if 

0
11 

is not zero, a large value of [11] results in a heavy bias contribu-

tion. Thus, to use a large second moment, one must be sure that the sys-

tem is of order d with no order d+1 contribution. 

(ii) If one is to consider minimizing bias in ST', the second term 

or B should be minimized. From equation (2.50) the required second moment 

is [11] = 1/3. Box and Draper show that the best experimental approach 

is to choose the design which protects against bias, or an all-bias de-

sign, and to use this design unless bias is very  unlikely. In fact, they 

show that only if V, the variance contribution, is greater than six times 

B, the bias contribution, is there any apparent significant increase in 

J over the minimum value used for the all-bias design. 

A central composite design will be used which is from the class 

of all-bias designs. The design will resemble equation (2.26). 



CHAPTER III 

EXPERIMENTAL DEVELOPMENT: SURFACE AND DESIGNS 

3.1 The Work of Brooks in Comparing Maximum-Seeking Methods  

Brooks, in his doctoral dissertation and a later article (8), 

conducted a simulation study to compare the performance of various first 

order experimental optimization methods. He constructed four two-variable 

surfaces, each with a well-defined maximum. Each surface was chosen to 

describe and represent functions that are suspected to occur often in 

practice. Their contours will be presented later. 

Factorial designs, one-factor-at-a-time procedures, methods of 

steepest ascent, and random experimentation were compared for seeking 

maxima by trying versions of these techniques in several two-factor 

situations, with and without experimental error. The factorial method is 

characterized by the use of a single factorial design, either fractional, 

complete, or replicated. The one-factor-at-a-time procedure may be re-

garded as the exploration of the response surface by optimizing the 

response for one of the k factors while holding the remaining k-1 con-

stant. This process is repeated until all factors have been tried at 

least once with no further improvement in response. In the method of 

steepest ascent, the course of experimentation is directed by the sequen-

tially determined estimates of the gradient direction. In the random 

method, trials are made at randomly selected points in the factor space. 

35 
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For each surface investigated, nine different starting positions 

were tried. Two series of experiments were run, the first in which 16 

trials were allotted to locate the optimum and the second in which 30 

were allotted. 

The performance of each method was judged by the true response 

0(xx2
) at the (near) optimum values of x 1 and x2 

as found by each method. 

He concluded that: 

1. The all-around reliability of the method of steepest ascent 

was suggested. 

2. The factorial method is inferior to sequential methods. 

3. Random methods are clearly the worst for a small number of 

factors. For a very large number of factors, random methods may be of 

some benefit. 

4. The univariate method performed in an average manner. Brooks 

terminated his study at this point and did not investigate further the 

region around the stationary point. His results were good, but could 

have been better had he carried out a phase II investigation. Further, 

a more accurate description of the nature of the surface would have been 

given. Two examples of the improvements achieved through phase II in-

vestigation are shown in Appendix A. 

3.2 The Response Surfaces  

The four surfaces of Brooks will be used in this study. The ex-

perimental region of each surface contains a single maximum y = 1 at 

x
1 
= 1 and x

2 
= 1. Figures 6(a) through 6(d) show the three contour lines 
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x 2 

2.0 2.0 

1.0 1 .0 

21.0 
	x

l 2.0 xl 1.0 
(a) Surface 1 

1.0 
(b) Surface 2 

'2 
(c) Surface 3 

1.0 
	

2.0 
(d) Surface 4 

2.0 

1 .0 

1.0 	2.0 
(e) Surface 5 

2.0 

1 .0 

1.45 
1.45 3.45 xl 2.45 

(f) Surface 6 

3.45 

2.45 

2.0 

1.0 

Figure 6. Response Surfaces 
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y = 0.25, 0.50, and 0.75 for these surfaces. In addition to these four 

surfaces, two others were considered, the first being a modification of 

Rosenbrock's curved valley and the second, a surface developed from an 

inverse polynomial function. Rosenbrock's curved valley has been modified 

so that a maximum of y = 0 is achieved at x i  = 1 and x2  = 1. Figure 6(e) 

shows the contour lines y = -8, -4, -1, and -0.5. Figure 6(f), developed 

from an inverse polynomial function, shows the contour lines y = 4.15, 

4.05, 3.85, and 3.75. The surface has a maximum response of y = 4.173749909 

at x
1 = 2.4475 and x2 = 3.8875. 

3.2.1 Surface 1  

y = (0.5 + 0.5x
1  )

4x2
4 

exp[2 - (0.5 + 0 . 5x1 ) 4  - x24] + e. In this 

response surface the relative effect of one factor is independent of the 

level of the other factor. 

3.2.2 Surface 2  

y = (0.3 + 0.4x
1 + 0.3x2

)
4
(0.8 - 0.6x

1 
+ 0.8x

2
)
4 

exp[2 - (0.3 

+ 0.4x1 + 0.3x2
)
4 

- (0.8 - 0.6x
1 
+ 0.8x

2
)
4
] + e. This response surface 

is the same as Surface 1 rotated approximately 37 degrees, as would occur 

if x1 
and x

2 
were not independent. 

3.2.3 Surface 3 

y = x1
2 
exp[l - xi

2 
- 20.25(x 1  - x2 )

2
] + e. This response surface 

is a sharp narrow ridge with large flat areas of low response. 

3.2.4 Surface 4 

y = (0.3x 1
2 
+ 0.7x2

2
)
3 
exp[l - 0.6(x1  - x2 )

2 
- (0.3x1

2 
+ 0.7x2

2
)
3
] 

+ e. This response surface is a relatively flat curvilinear ridge. 
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3.2.5 Surface 5  

y = - [100(x2  - 
x1 2 ) 2 	(1 - x1) 2 1. 

 e] . This response is a 

fairly steep curved ridge. 

3.2.6 Surface 6  

y 	 )/( 9 + .066x1  - .001x2  - .01x1 2  + .03x22  + 005x x 
= [(x1x2 . 	• 	' 	1 	2 	' 	1

2 	
22 
	

' 	1 2 
1 

+ .01x 1
2
x
2 

- .017x
1
x
2
2 
+ .013x1

2 
 x2

2 
 )j + e. This response surface is a 

low, bumpy, irregular surface. 

3.3 Comparisons Between Designs  

Any second order design can be systematically compared with another 

second order design on the basis of the precision with which the designs 

allow estimates of the model coefficients. For such comparisons to be 

valid, the two designs must be scaled so that their "spreads" are equal, 

the measure of spread being 7 x4  2/N, the pure second moment of the de- 
u 

sign. 

As an example, the design matrix of the 3
2 

factorial is 

x1  x2 
 

	

-1 	-1 

	

-1 	0 

	

-1 	1 

	

0 	-1 

	

D = 0 	0 

	

0 	1 

	

1 	-1 

	

1 	0 

	

1 	1 

(3.1) 

It can be seen that, for this design, 	xiu
2
/N = 2/3. Now referring to 

equation (2.26) and Table 2, the scaled design matrix for an orthogonal, 



rotatable central composite design should be 

xl  x
2 

	

-1 	 -1 

	

-1 	 1 

	

1 	 -1 

	

1 	 1 

0 
	

0 
0 
	

0 
0 
	

0 
0 
	

0. 

0 
	

0 
0 
	

0 
0 
	

0 
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(3.2) D 

-1.414 	 0 
1.414 	 0 
0 	 -1.414 
0 	 1.414 

In this case
iu

2/N = 1/2, which is not equal to the second pure moment 

of the 3
2 
factorial design. If both designs were subsequently used to 

analyze a specific response surface, invalid comparisons would result. 

Therefore, it is necessary to rescale the elements of the design matrix 

for the orthogonal central composite design so that Ix
iu

2
/N = 2/3. The 

moment x
iu

2
/N = 2/3 will be used as a standard for all designs. This 

results in a new design matrix 
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xl 
	 x2 

	

-1.15 	 -1.15 

	

-1.15 	 1.15 

	

1.15 	 -1.15 

	

1.15 	 1.15 

D 

0 
	

0 
0 
	

0 
0 
	

0 
0 
	

0 
0 
	

0 
0 
	

0 
0 
	

0 
0 
	

0 

(3.3) 

	

-1.63 	 0 

	

1.63 	 0 
0 	 -1.63 
0 	 1.63 

The design matrix for the uniform precision central composite design is 

xl 
	

x
2 

-1.04 
-1.04 
1.04 
1.04 

-1.04 
1.04 

-1.04 
1.04 

D = (3.4) 

	

-1.47 	 0 

	

1.47 	 0 
0 	 -1.47 
0 	 1.47 

0 
	

0 
0 
	

0 
0 
	

0 

0 
	

0 

The design matrix for the minimum bias design is 



x x
1 
	 x2 
 

	

-.99 	 -.99 

	

-.99 	 .99 

	

.99 	 -.99 

	

.99 	 .99 

0 
	

0 
0 
	

0 
0 
	

0 
0 
	

0 
o 	 0 
0 
	

0 
0 
	

0 
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(3.5) D = 

	

-1.40 	 0 

	

1.40 	 0 

	

0 	 -1.40 

	

... 0 	 1.40 

The design matrix for the orthogonal hexagonal design is 

x1  x
2 

	

1.56 	 0 

	

.78 	 1.35 

	

-.78 	 1.35 

	

-1.56 	 0 

	

-.78 	-1.35 

	

.78 	-1.35 

0 	 0 
0 	 0 
0 	 0 
0 	 0 
0 	 0 

10. 

(3.6) D 

The design matrix for the uniform precision hexagonal design is 



D 

x
2 

x
1  

	

1.41 	 0 

	

.71 	 1.22 

	

-.71 	 1.22 

	

-1.41 	 0 

	

-.71 	 -1.22 

	

.71 	 -1.22 
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(3.7) 

In applying these designs to the six surfaces, the coding 

x.(surface) = 
xi (design) 

5 

is used, and the origin of the design (x = 0 on the design matrix) may 

be any arbitrary point on the surface. 

The second design parameter considered in this study is p, the 

distance from the true optimum to the design center. For response sur-

faces 3 and 5, p = 1.1 and, for the remaining surfaces, p = 1.18. Every 

design examined on each surface has a constant p. It is important to 

note that, for all designs, p is chosen to insure that the optimal factor 

combination lies within the limits of the respective design. 

3.4 The Computer Program  

Because of the many similar subroutines, the complete computer pro-

gram listing will not be presented. Appendix B contains a listing of the 

main program and one of the six major experimental design subroutines. A 

general flow chart is depicted in Figure 7. Basically, the computer pro- 



MAIN PROGRAM 
Choice of design 
Choice of surface 
Choice of error 

RANDOM PICK OF CENTERPOINT SUBROUTINE 
(16 possibilities) 

ASSIGNMENT OF CENTERPOINT COORDINATES SUBROUTINE 
(2 each, 1 for surfaces 3 and 5, 1 for 
remainder) 

EXPERIMENTAL DESIGN SUBROUTINE 
(6 each, one for each type of design) 
Assign and code design points, based 
on centerpoint 

Compute design point responses 
Perform least squares procedure 
Compute stationary point and predicted 
response 

Perform canonical analysis 

OUTPUT SUBROUTINE 
Compute averages 
Print results 

RANDOM NUMBER GENERATOR 

RESPONSE FUNCTIONS 
(6 each, one for 
each surface) 

Figure 7. Generalized Flow Chart of Computer Program 
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gram consisted of a main program, seven functions, and ten subroutines. 

3.4.1 Main Program 

This segment of the program serves to drive the experiment and 

input necessary data. Three main variables are varied per run; the sur-

face, the design, and the magnitude of the error. The other input data 

consist of a table of normal deviates used to compute the error term of 

the response functions. 

3.4.2 Random Choice of Center Point and Assignment of Center Point  

Coordinate Subroutines  

Recall the earlier discussion of p, the distance from the true 

optimum to the design center point. If one is to agree with the first 

assumption discussed in the introduction, which was that the experimenter 

has already encountered a near optimal region in which a "lack of fit" 

situation exists, some method must be used to provide a starting point 

or a design center. The method utilized in this study was to choose a 

value of p, circumscribe an arc of radius p around the known optimum, and 

randomly assign starting points along this arc. Sixteen possible starting 

points were chosen per arc. In order to choose a value for p, an average 

was taken of the near optimal responses using the method of steepest 

ascent. This average was then transformed into an average linear devia-

tion of the predicted optimum from the true optimum. In other words, 

taking Surface 1 as an example, it is assumed that, on the average, the 

method of steepest ascent will get the experimenter within .18 scaled 

units of the optimum. 
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3.4.3 Response Functions  

This is a set of six functions, one for each surface described. 

In addition, it was decided to vary the standard deviation of the experi-

mental error from 0.00 to 0.15. The relatively high values of the error 

standard deviation were employed because digital computer simulations 

often exhibit considerable random variation in their output statistics. 

3.4.4 Experimental Design Subroutines  

This is a set of six subroutines designed to investigate each 

experimental design on all surfaces. As shown in the flow chart, it 

assigns and codes design points, computes responses, performs least squares 

estimation, computes the stationary point and predicted response, and per-

forms a canonical analysis thirty times for each design on each surface 

varying the error standard deviation from 0.00 to 0.15 in steps of 0.03. 

3.4.5 Output Subroutine  

This section takes the results of the previous experimental designs, 

stores them, computes averages, and prints the results. 

3.5 Problems Encountered  

This discussion would not be complete without briefly discussing 

a major potential problem area encountered when using response surface 

techniques. It was observed that the choice of levels used in phase I in-

vestigation was important. This problem is also present in phase II in-

vestigation in the choice of "spread," or second moment of the design. 

The nature of the problem can best be demonstrated by an example. Consider 

two 3
2 factorial designs superimposed on the same surface (Surface 3), 

shown in Figure 8. 



x 2 

2.0 

1.0 

  

   

xi 

 

1.0 2.0 

(a) Distance between design points = .5 units 

x2  
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2.0 

1. 0 

 

  

	 x, 
2.0 	1  

 

1.0 

(b) Distance between design points = .2 units 

Figure 8. 3
2 Factorial Design with Varying Spread 
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Obviously, different results will occur for each design. 

The stationary point 	will probably be quite different for each 

design. This problem was avoided in this study as only designs having 

the same second moment were compared. However, this is a major problem 

area when working with these techniques in practice. The best solution 

to this issue is experience with the model under study so far as the 

choice of scale of variables is concerned. The surfaces discussed in 

this investigation are artificial. For example, the first four were con-

structed to cover 2 units on the x
1 

and x
2 

axes, to vary the response 

from 0 to 1, and to have a maximum at x l  = 1, x2  = 1. The factors and 

response have no physical meaning, they are merely numbers. In practical 

situations one would be dealing with such variables as time, temperature, 

distance, etc. Thus, the variables and response have physical significance 

to the experimenter, and the choice of an appropriate scale of measurement 

is simplified. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

4.1 Measures of Effectiveness  

This investigation utilizes two measures of effectiveness of a 

second order experimental design. In comparing maximum-seeking methods, 

Brooks (8) proposed that the measure of effectiveness of an optimization 

method in any given situation be the magnitude of the response at the es-

timate of the optimal factor combination that resulted from applying that 

particular method. In this study this will be a comparison of the respec-

tive responses achieved for each combination of surface/design/error, on 

the basis of the average "response achievement" of each method. Defining 

y
0 
 as the achieved response and y as the true response, then the response 

achievement, say R, is 

R= y°  
Y*  

(4.1) 

The second criteria used will be the linear distance from the stationary 

point (the predicted optimum levels for the independent variables) to the 

true optimum levels of the independent variables. Defining xio  as the 

stationary point, xi*  as the true optimal factor combination, and L as 

the distance, then 

49 

L  = (x10 - xl*) 
2 	

(x20 - x2*) 2 

	
(4.2) 
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when k = 2. 

In examining the experimental results, each measure will be analyzed 

from two points of view; first, comparison by design and second, compar-

ison by surface. Thus, one will be able to observe the conclusions and 

apply them to constructing designs in general or designs for specific 

surfaces. 

4.2 Experimental Results by Design  

In this section, the results obtained will be described on a de-

sign basis. The objectives of this section will be to give insight to 

the experimenter in choosing an efficient second order experimental design 

irregardless of surface. 

Table 4 shows the average response achievement by design for all 

surfaces (R). 

Table 5 shows the average distances from the optimal factor com-

binations to the predicted factor combinations by design for all surfaces 

(L). 	For each design and error standard deviation thirty replications 

were performed on each surface. The design center was 0.18 units from the 

optimal factor combination for all surfaces, except for Surfaces 3 and 5, 

where it was 0.11. 

4.2.1 3
2 
Factorial Design 

Figure 2 describes the geometric configuration for this design. In 

the design matrix used on each surface (equation (2.21)) the scaled value 

of "1" is equal to "0.2" surface units. 

Because it was the simplest design tested, the 3
2 

factorial was 

chosen as the standard with regard to the second moment [ii] (see section 
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Table 4. Average Response Achievements (R) and Standard Errors (S) 
by Design for All Surfaces 

Design 60.0 0.3 0.6 0.9 0.12 0.15 Average 

3
2 
Factorial 

Orthogonal 
CCD 

Uniform 
Precision CCD 

Minimum 
Bias CCD 

Orthogonal 
Hexagon 

Uniform 
Precision 
Hexagon 

R 	.9489 

S 	.0576 

R 	.9792 

S 	.0406 

R 	.9692 

S 	.0194 

R 	.9755 

S 	.0234 

R 	.9814 

S 	.0214 

R 	.9762 

S 	.0226 

.8772 

.0659 

.9228 

.0901 

.9572 

.0181 

.9580 

.0349 

.9744 

.0197 

.9310 

.0507 

.8057 

.0916 

.9043 

.0815 

.9089 

.0489 

.9335 

.0191 

.9394 

.0432 

.8585 

.0248 

.7677 

.1107 

.8694 

.0648 

.8660 

.0718 

.8769 

.0309 

.9092 

.0496 

.7890 

.0640 

.7357 

.1259 

.8191 

.0656 

.8185 

.1003 

.8347 

.0449 

.8627 

.0471 

.7448 

.0944 

.7051 

.1262 

.7451 

.0971 

.7949 

.1055 

.7943 

.0572 

.8229 

.0316 

.6699 

.0776 

.8067 

.0963 

.8733 

.0733 

.8858 

.0607 

.8955 

.0351 

.9150 

.0354 

.8282 

.0557 

Note: All designs except 3
2 

are rotatable. 



Table 5. Average Distance Achievements (L) and Standard Errors (S) 
by Design for All Surfaces 
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Design 	60.0 

L .0290 
3
2 
Factorial 

S .0345 

Orthogonal 	
L .0105 

CCD 
S .0079 

Uniform 	
L .0319 

Precision CCD S .0159 

Minimum 	L .0151 

Bias CCD S .0146 

Orthogonal 	L .0153 

Hexagon S .0129 

Uniform 	L .0194 
Precision 
Hexagon 	S .0158 

0.3 0.6 0.9 0.12 0.15 

.1024 .1082 .1169 .1873 .2108 

.1436 .0529 .1228 .2531 .2456 

.0343 .0517 .0828 .1128 .1065 

.0435 .0502 .0828 .1128 .1065 

.0404 .0613 .0778 .0935 .1186 

.0185 .0523 .0569 .0764 .0796 

.0368 .0290 .0467 .0909 .0982 

.0391 .0330 .0512 .0729 .0559 

.0226 .0537 .0589 .0697 .0901 

.0178 .0696 .0752 .0295 .0621 

.0239 .0558 .0912 .1243 .1819 

.0172 .0272 .0588 .0809 .1075 

Average 

.1258 

.1421 

.0664 

.0664 

.0706 

.0499 

.0450 

.0445 

.0517 

.0445 

.0828 

.0512 

Note: All designs except 3
2 

are rotatable. 
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3.4). In other words, the 3
2 

factorial design was used with values of 

-1,0,+1, the second moment recorded, and then all other designs subse-

quently rescaled to adhere to this convention. 

As a whole, the 3
2 factorial design showed achievement averages 

lower than all other designs. An exception will be found in the discussion 

of Surface 5 (see section 4.3.5). Average distance from the true optimal 

level of factor combinations turned out to be higher than all other de-

signs. Standard errors for this design were also generally larger. 

An interesting point to be made here is that, for two independent 

variables, the 3
2 

factorial design is equivalent to a 2
2 
design augmented 

by four axial points, a distance of "1" from the design center and one 

center point. By definition this is a central composite design with 

a = 1. (Recall that in section 2.4.3.4, equation (2.27) required that 

a = F
1/4 . Applying this a = 4

1/4 
=.57, so here the design is not rota-

table.) Therefore the 3
2 

factorial design is the same as a nonrotatable 

central composite design. This fact will become important later when com-

menting on the effect and desirability of the property of rotatability. 

4.2.2 Central Composite Designs (Orthogonal, Uniform Precision, and Min-

imum Bias)  

Figure 3 describes the design point configuration for these designs. 

In the design matrices, equations (3.3), (3.4), and (3.5), the ±1 factors 

and a had to be scaled accordingly in order that the second pure moment 

[ii] = 2/3. The difference between these designs and the 32  factorial is 

that design points were added at the center to achieve orthogonality, uni-

form precision, or minimum bias. 
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As a class, the central composite designs showed a good average 

achievement with the minimum bias design giving the best average in all 

but the "no-error" case. The next best design was the uniform precision 

which was better than the orthogonal in all but two error cases. The 

orthogonal design generally revealed the lowest averages except in the 

case of "no-error" where it performed best. 

The average distance measure of effectiveness demonstrated about the 

same results. Overall, the minimum bias design showed the smallest dis-

tance except for the orthogonal design with no error which again gave the 

best results of the entire class. In this case, the orthogonal design 

performed a little better in lower error situations and the uniform pre-

cision a little better in higher error situations 

4.2.3 Hexagon Designs (Orthogonal and Uniform Precision)  

Figure 5 describes the design configuration for these designs. 

Again the design matrices (equations (3.6) and (3.7)) had to be scaled to 

the second pure moment standard. A big difference between these designs 

and those of the central composite class is that the hexagon designs at-

tempt to investigate the same situation, but they use fewer design points. 

For orthogonality, the hexagon design requires 11 total points compared 

to 16 for the central composite design. For uniform precision the ratio 

is 9 to 13. This could be an important economic criterion if the perform-

ance of the hexagon design is acceptable. 

The two hexagon designs, on the average, performed similarly to the 

central composite designs when examining their average response achieve-

ment. Considered individually, the orthogonal design had much higher 
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averages than the uniform precision design. The orthogonal design pro-

vided very good results for all values of experimental error, but the 

uniform precision design, after starting out well with little or no error, 

began to drop off significantly. The same comments can be made for the 

average distance criterion. The significant increase in distance from the 

optimum can be observed as the error increases. 

4.2.4 Comparison of Results for All Designs  

Overall, one cannot help but be impressed with the performance of 

the Orthogonal Hexagon Design. The results of its achievements are better 

in all average situations than any other design examined. The minimum 

bias design also performed quite well. The 3
2 

factorial design and the 

uniform precision hexagon design, in situations of large experimental er-

ror, were definitely poorer in performances than the other designs. 

4.3 Experimental Results by Surface  

In this section each design will be investigated on each surface to 

determine its effectiveness. The objective of the section will be to give 

insight to the experimenter in choosing an efficient second order experi-

mental design when he has a priori knowledge of the shape of the surface. 

4.3.1 Surface 1  

Figure 6(a) describes this surface as a symmetric surface on which 

the relative effect of one factor is independent of the level of the 

other factor. Table 6 shows the average response achievements for each 

design. 

This being a simple, symmetric (along the xi ,x2  axes) surface, it 

would seem almost intuitive that all designs would perform well. This is 
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Table 6. Surface 1 Average Response Achievement (R) 

Design 	 ,c;\\0.0 	0.3 	0.6 	0.9 	0.12 	0.15 	Average 

3
2 
Factorial 	.9752 	.9129 	.8003 	.7635 	.7557 	.7451 	.8255 

Orthogonal 

	

.9948 	.9913 	.9755 	.9168 	.8345 	.7492 	.9104 CCD 

Uniform 

	

.9717 	.9647 	.9284 	.8744 	.7903 	.7524 	.8803 Precision CCD 

Minimum 

	

.9887 	.9768 	.9462 	.8564 	.8201 	.7701 	.8931 Bias CCD 

Orthogonal 

	

.9939 	.9879 	.9765 	.9557 	.9140 	.8574 	.9476 Hexagon 

Uniform 
Precision 	 .9892 	.9628 	.8648 	.7447 	.6249 	.5683 	.7725 
Hexagon 

true for all cases except the 3
2 

factorial and the uniform precision whose 

response achievements drop significantly as the experimental error in-

creases. The orthogonal hexagonal design reveals the best average achieve-

ment in all error situations. It is followed by the orthogonal central 

composite design and the minimum bias design. 

Figure 9 depicts the distance of the estimated optimal factor com-

bination from the true optimal factor combination for surface 1. The 

smallest distances overall come from the orthogonal hexagonal, orthogonal 

central composite, and minimum bias designs respectively which agree with 

the results of the first measure of effectiveness. 

4.3.2 Surface 2  

Figure 6(b) describes this surface as a rotated Surface 1. Table 7 
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Figure 9. Surface 1 Distance from True Optimum (L) 
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shows the average response achievements for each design. 

Table 7. Surface 2 Average Response Achievement (R) 

Design 	aN 0.0 	0.3 	0.6 	0.9 	0.12 	0.15 Average 

3
2
Factorial 	.9781 	.9312 	.8163 	.7296 	.7008 	.6642 	.8034 

Orthogonal 

	

.9947 	.9885 	.9675 	.9005 	.7875 	.6520 	.8818 
CCD 

Uniform 

	

.9577 	.9487 	.8861 	.8484 	.7703 	.7462 	.8596 
Precision CCD 

Minimum 

	

.9878 	.9752 	.9395 	.8623 	.8022 	.7475 	.8858 
Bias CCD 

Orthogonal 

	

.9919 	.9861 	.9729 	.9464 	.8855 	.8406 	.9372 
Hexagon 

Uniform 
Precision 	 .9870 	.9583 	.8441 	.7277 	.6808 	.6126 	.8018 
Hexagon 

As Surface 2 is similar to Surface 1 except for rotation; one 

would expect results to be similar to the results achieved in Surface 1 

experiments, especially for the rotatable designs. Obviously, as ob-

served in the above table this is so. The only appreciable difference 

occurs in the 3
2 

factorial design which, as shown earlier, is the same as 

a nonrotatable central composite design. Similar results are demonstrated 

by the second measure of effectiveness as shown in Figure 10. 

4.3.3 Surface 3  

Figure 6(c) depicts this surface as a sharp narrow ridge. A lack-

of-fit test on the quadratic polynomial indicated a cubic or higher order 
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surface. Table 8 shows the average response achievements for each design. 

Table 8. Surface 3 Average Response Achievement (R) 

Design 0.3 0.6 0.9 0.12 0.15 Average 

3
2 
Factorial 

Orthogonal 
CCD 

Uniform 
Precision CCD 

Minimum 
Bias CCD 

Orthogonal 
Hexagon 

Uniform 
Precision 
Hexagon 

.9443 

.9/61 

.9588 

.9529 

.9473 

.9580 

.8879 

.9205 

.9554 

.9458 

.9424 

.9467 

.8797 

.9199 

.9527 

.9376 

.9311 

.8831 

.8764 

.9183 

.9482 

.9254 

.8962 

.8425 

.8405 

.9171 

.9427 

.9139 

.8532 

.8059 

.7812 

.8822 

.9116 

.8927 

.8137 

.7512 

.8683 

.9140 

.9449 

.9281 

.8973 

.8646 

Even before examining the data computed in this experiment, one would 

suspect that the minimum bias design would perform well because of the 

lack-of-fit of the quadratic polynomial. The results of the Surface 3 

experiments demonstrate this, but also show that the uniform precision 

central composite design is somewhat better in all error standard devia-

tions. It is interesting to note that both orthogonal designs do not per-

form as well as they had on the earlier surfaces. 

Figure 11 depicts the distance of the estimated optimal factor com-

bination from the true optimal factor combination for Surface 3. Again 

the minimum bias design performs well, as would be expected from the above 

discussion. The orthogonal central composite design, however, achieves 
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Design 

3
2 
Factorial 

Orthogonal 
CCD 

Uniform 
Precision CCD 

Minimum 
Bias CCD 

Orthogonal 
Hexagon 

Uniform 
Precision 
Hexagon 

.8472 

.9804 

.9602 

.9482 

.9741 

.9467 

0.3 0.6 0.9 0.12 0.15 Average 

.8244 .7337 .7606 .7406 .6965 .7672 

.9613 .9084 .8648 .8190 .7521 .8810 

.9539 .8607 .8551 .8364 .8206 .8812 

.9024 .8999 .8507 .8175 .7917 .8684 

.9679 .9469 .9163 .8724 .8287 .9177 

.8412 .8231 .7583 .7515 .6874 .8014 
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even better results which is in direct contrast to the lower percentage 

achievement attained under the first measure of effectiveness. Likewise, 

after yielding good results under the first measure of effectiveness, the 

uniform precision central composite design does not do as well with regard 

to distance, although the results should not be considered bad. 

4.3.4 Surface 4  

Figure 6(d) is a relatively flat curvilinear ridge with a gradual 

slope and gentle curvature. Again the orthogonal hexagon design performs 

best in all situations (Table 9). The entire class of central composite 

designs also indicates good results with the orthogonal being the best. 

Table 9. Surface 4 Average Response Achievement (R) 

Examining Figure 12, similar situations arise as for Surface 3. 

To begin with, the orthogonal hexagon design achieves by far the best 
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results. This agrees with the first measure of effectiveness. The re-

maining designs, except for the 3 2 
factorial, start out fairly well; but, 

as error increases, they tend to develop large distances between estimated 

and true optimal factor combinations. 

4.3.5 Surface 5  

This is a modification of Rosenbrock's curved valley. This surface 

(Figure 6(e)) is a steep curving ridge with much more prominent features 

than Surface 3. Table 10 shows the average response achievement for each 

design. 

Table 10. Surface 5 Average Response Achievement (R) 

Design 

3
2 
Factorial 

Orthogonal 
CCD 

Uniform 
Precision CCD 

Minimum 
Bias CCD 

Orthogonal 
Hexagon 

Uniform 
Precision 
Hexagon 

(:)- \\„0.0 	0.3 	0.6 	0.9 	0.12 	0.15 	Average 

	

.9992 	.9992 	.9991 	.9990 	.9989 	.9867 	.9970 

	

.9056 	.8871 	.8895 	.8895 	.8883 	.8863 	.8911 

	

.9991 	.9991 	.9990 	.9990 	.9990 	.9989 	.9990 

	

.9448 	.8886 	.7164 	.0090 	.0000 	.0000 	.4265 

	

.2970 	.0000 	.0000 	.0000 	.0000 	.0000 	.0495 

	

.6695 	.5195 	.2593 	.0000 	.0000 	.0000 	.2414 

The uniform precision central composite and 3
2 

factorial designs 

do extremely well for all error standard deviations. The orthogonal cen- 
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tral composite design likewise offers good results. All other designs do 

very poorly in analyzing the surface. This phenomenon is difficult to 

explain completely, although it is probably related to the steepness and 

excessive curvature of the ridge. The distance measure of effectiveness 

(Figure 13) demonstrates similar results. 

4.3.6 Surface 6  

This is the surface described in Figure 6(f). It was developed 

from an inverse polynomial and presents a "bumpy," irregular, asymmetric 

surface. Table 11 shows the average response achievement for each design. 

Table 11. Surface 6 Average Response Achievement (R) 

Design 	6N0.0 	0.3 	0.6 	0.9 	0.12 	0.15 Average 

3
2 Factorial 	.9998 	.8296 	.7988 	.7088 	.6411 	.6386 	.7695 

Orthogonal 

	

.9999 	.7524 	.7503 	.7468 	.7373 	.6902 	.7795 CCD 

Uniform 

	

.9975 	.9632 	.9166 	.8041 	.7527 	.7439 	.8630 
Precision CCD 

Minimum 

	

1.0000 	.9897 	.9441 	.8898 	.8200 	.7696 	.9022 
Bias CCD 

Orthogonal 

	

.9999 	.9875 	.8698 	.8313 	.7883 	.7741 	.8752 
Hexagon 

Uniform 
Precision 	 .9999 	.9462 	.8773 	.8719 	.8607 	.7299 	.8810 
Hexagon 

Both the 3
2 

factorial and the orthogonal central composite designs 

show a rapid decrease in response when error is introduced. The remain- 
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ing designs do well with the minimum bias central composite design pre-

senting the best results. 

Figure 14 depicts the results of the second measure of effective-

ness. Here, the same four designs do well again, with the uniform pre-

cision hexagon design yielding the smallest distance between the predicted 

and true optimum of the factors. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions  

The conclusions derived from this study are the following: 

1. A survey of the literature revealed a definite need for an in-

vestigation of the utility of second order experimental design techniques 

to digital simulation. 

2. The concept of rotatability is an important factor in experi-

mental design. This is evident in comparing the achievements of the 3 2 

factorial design, which is also a non-rotatable central composite design, 

to the achievements of the class of rotatable central composite designs. 

3. Design "spread," or choice of second moment, can be a poten-

tially dangerous problem and lead to erroneous conclusions if the experi-

ment is not properly designed. The only solution is experience with the 

model under study and a thorough knowledge so far as the choice of scale 

of the variables is concerned. 

4. When comparing results for all designs, the orthogonal hexagon 

design shows better performance in all average situations than any other 

design. Close in performance was the minimum bias design followed by the 

remaining central composite designs. The 3
2 

factorial design, as well as 

the uniform precision hexagon design were definitely poorer in performance 

than the other designs. 

5. When comparing results of experimental designs by surface, 

69 
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the orthogonal hexagon and orthogonal central composite designs provide 

the best performance on gently sloping surfaces with little curvature. 

The best achievement on ridge surfaces was obtained by the use of uniform 

precision central composite designs, followed by the minimum bias central 

composite design. Irregular, asymmetric surfaces are best explored using 

the minimum bias central composite design. 

5.2 Recommendations for Further Study  

The relationship of experimental design techniques and simulation 

offers many areas of potential research. The following is a brief out-

line of recommendations for further research in this area. 

1. An investigation of experimental optimization and its relation-

ship to simulation with three or more variables and cubic and higher order 

surfaces. 

2. The results of this study warrant a further investigation of 

the class of rotatable equiradial designs as well as the possibilities of 

combinations of equiradial designs. 

3. Further investigation of the minimum bias criteria and its 

use with equiradial, rotatable designs. 
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APPENDICES 



APPENDIX A 

EXAMPLES OF THE USE OF SECOND ORDER DESIGNS 

Situation 1  

An experimenter has arrived at a near optimal region while exploring 

Surface 1 by the method of steepest ascent. His optimal factor combination 

is x
1 
= .94 and x

2 
= 1.00 which in turn give a response of .9929. A lack-

of-fit test tells him that a first order model is no longer adequate. 

Solution  

In Chapter III it was shown that the rotatable, orthogonal, hexagon 

second order design would perform well in a Surface 1 type response re-

gion. Letting 1 in the design be equivalent to .07 on the surface and 

using the optimal factor combination as the design center, the following 

design matrix is constructed. 

	

x1 	
x
2 

	

1 	 0 

	

0.5 	 0.75 

-0.5 	 0.75 

	

-1 	 0 

-0.5 	- 0.75 

	

0.5 	- 0.75 
D 

O 0 

	

0 	 0 

O 0 
O 0 

72 
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The X'X matrix is 

 

12.0000 	.0000 	.0000 	3.0000 	2.9999 	.0000 

	

3.0000 	.0000 	.0000 	.0000 	.0000 

	

2.9999 	.0000 	.0000 	.0000 

	

2.2500 	.7499 	.0000 

	

.7499 	2.2497 	.0000 
.7499 

X t X = 

  

This leads to the fitted equation 

y = .9929 + .0161x 1 
- .00069x2 - .0093x1

2 
 - .0383x2

2 
+ 0.0000x

1
x
2 ' 

the stationary point is 

xl* 
= 1.00059 

x2* = .999367 , 

and the response at the stationary point 

y 	.9999961 . 

The computed eigenvalues are -.0001075 and -.002611, which indicate a 

maximum response and a surface slightly elongated along the x l  axis. 

The distance from the predicted optimal factor combination to the 

true optimal factor combination is 0.000865. This compares to 0.06 

achieved by the method of steepest ascent. Likewise, the optimum response 

was increased by 0.0070961. 

Situation 2  

An experimenter has arrived at a near optimal point while explor-

ing Surface 3 by the method of steepest ascent. His optimal factor com- 
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bination is x l  = .95 and x2  = .95 which give a response of .9949. A 

lack-of-fit test tells him that a first order model is no longer adequate. 

Solution  

In Chapter III it was shown that both the uniform precision central 

composite (rotatable) and the minimum bias central composite would 

achieve consistent good results in a Surface 3 type situation. 

Minimum Bias Central Composite Design  

Letting 1 in the design be equivalent to .06 on the surface and 

using the optimal factor combination as the design center, the following 

design matrix is constructed. 

x
1 	

x
2 

D = 

-.996 
-.996 
.996 
.996 

-1.408 
1.408 

0 
0 

0 

-.996 
.996 

-.996 
.996 

0 
0 

-1.408 
1.408 

0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 

— 

0 
— 

The X'X matrix is 
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X I X= 

15.0000 	.0000 	.0000 	7.9329 	7.9329 	.0000 

	

7.9329 	.0000 	.0000 	.0000 	.0000 

	

7.9329 	.0000 	.0000 	.0000 

	

11.7967 	3.9364 	.0000 

	

3.9364 	11.7967 	.0000 
3.9364 

This leads to the fitted equation 

y = .9929 + .0179x
1 
 + .000791x 2 - .07127x 1

2 
 - .06479x 2

2 
+ .1259x

1
x
2 ' 

the stationary point is 

xi*  = .984235 

x2*  = .983620 , 

and the response at the stationary point 

= .99949. 

The computed eigenvalues are -.0001997 and -.07630 which signify a maximum 

response and an elongated ridge along an axis through the design center 

origin at an angle of approximately 45 . 

The distance from the predicted optimal factor combination to the 

true optimal factor combination is 0.02273. This compares to 0.0708 

achieved by the method of steepest ascent. Likewise, the optimum response 

was increased by 0.00459. 

Uniform Precision Central Composite Design  

Letting 1 in the design be equivalent to .055 on the surface and 

using the optimal factor combination as the design center, the following 

design matrix is constructed. 
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x
1 	

x2 
_ 

- 1 	 -1 
- 1 	 1 

1 	 -1 
1 	 1 

	

-1.414 	 0 

	

1.414 	 0 
0 	 -1.414 
0 	 1.414 

O 0 
0 	 0 
O 0 
0 	 0 
0 	 0 

The X'X matrix is 

x'x = 

13.0000 	.0000 	.0000 	7.9999 	7.9999 	.0000 

	

7.9999 	.0000 	.0000 	.0000 	.0000 

	

7.9999 	.0000 	.0000 	.0000 

	

12.0000 	4.0000 	.0000 

	

4.0000 	12.0000 	.0000 
4.0000 

This leads to the fitted equation 

y = .9949 + .01005x 1 + .00060x2 - .06122x1
2 
 - .05572x2 2 + .1074x1x2 ' 

the stationary point is 

x
1* 

= .980859 

x2*  = .980036 , 

and the response at the stationary point 

D 
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= .999249. 

The computed eigenvalues are -0.0002128 and -0.08909 which signify a 

maximum response and an elongated ridge along an axis that goes out from 

the design center origin at an angle of approximately 45
0 
 . 

The distance from the predicted optimal factor combination to the 

true optimal factor combination is 0.028233. This compares to 0.0708 

achieved by the method of steepest ascent. Likewise, the optimum response 

was increased by 0.00435. 
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COMPUTER PROGRAM LISTING 



DI MEN SI ON PT( 1 00) 
DIMENSION RC 16) 
DIMENSION ERR( 50. 10) 
COMMON/ BLOKA/ ERR. ER. Ls K 
COMMON /BLOKC/ SURF 
COMMON/ BLOKD/ I FO 
INTEGER SURF 
INTEGER TY 
READ( 5. 498 ) ( (ERR( / • J )• I 1. 5 0).J. I. 1 0) 

498 	FORMAT( 1 OF6. 3) 
1 	WRI TE( 6. 700) 
700 FORMAT( // 2X. 'ENTER N EY INPUT DATA ". // ) 

READC 5. 7 1 O. END-9999) IDES. SURFER 
710 	FORMAT( 2I la F6.3) 

Re-. 0 
I PO.0 
IX. 19 42 7 
L.1 
K.1 
CO TO (20. 229 23.24. 25 • 2 6) • I DES 

80 	WRI TE( 6. 499 ) ER. SURF 
499 	FORMAT( / •8X. "THREE K DE SI ei (ERROR. 's F5.2. ') 	SURFACE •• 1 3. /8X, 40( 

11H-) ) 
CO TO 30 

22 	WRI TE( 6. 50 1) ERR SURF 
501 	PO MAT( /8X• 'ORTHOGONAL CCD DESI EN ( RO TATABLE ) ( E RRO R. 's F5. 2. ') - 

1 SURFACE ". 13, /8K• 60( 	) 
93 10 30 

83 	WRI TE( 6. 502) ER. SURF 
508 FORMAT( // Us • UN I FORM PRECISION CCD DESIGN ( RO TATABLE) CE RRO R. ' • FS• 

18. ") • SURFACE "a 13. /4K. 67C 	) 
93 10 30 

24 	WRI TE( 6.5 03) ERA SURF 
'503 	FORMAT( //8K. •MODE RN DESI ON ( CCD ROTATABLE) (ERROR-', F. 2, •) 	SURF 

1ACE / 3. /8X.. 56C 114•) ) 
0) TO 30 

05 	WRITE( 6.504) ER. SURF 
504 FORMAT( ••/ 3X. 'HEXAGON AL DE SI 04 (ORTHOGONAL  ROTATABLE) ( E RR() R. F5 

1.2. •) • SURFACE', I3. /3X. 68( • ) ) 
GO TO 30 
WRI TE( 6. 5 05) E R. SURF 

505 FO RMAT(// 3X. 'HEXAGONAL DESI WI ( UN I F• PRE C• • ROTATABLE) ( ERRO ' • F 
15 • ft. • ) • SURFACE 'a I 3, / 3X. 69(.1}(•) ) 

GO TO 30 
30 	DO 11 J. IP 30 

CALL RAN DU( I X. FN ) 
204114 
P11 J =XX( X) 
YY.I FIX( PT(J) 
I F( SURF. EQ. 3.0 R. SURF. EQ. 5) GO 70 31 
I FY SURF. EQ. 6) GO 10 33 
CALL CN IRPTC Y Y• S. T) 
co TO 32 

31 	CALL CNTR( Y Y. S. T) 
03 70 32 

33 	CALL CPT( Y Y• S. T) 
32 	CONTI NUE 

GO TO C 40, 42. 43. 44s 45 4 6) • I DES 
40 	CALI. THKAY( S. T. R) 

GO TO 10 
48 	CALL. 0 RCCDC S. 

Go TO 10 
43 	CALL UPCC1X S. To Ft) 

GO TO 10 
44 	CALL MODCCD( S. T. R) 

GO TO 10 
45 	CALL HEXOR( S, T. R) 

0) TO 10 
46 	CALL HEKUR S. T. 11) 

GO 70 10 	• 
10 	CONTINUE 
11 	CONTINUE 

CALL 0 UT PUT 
GO TO 1 

9999 END 



SUBROUTINE 0 RCCD( S. T. Ft) 	 R( I ).FtESP2( SI, T1) 
DIMENSION II( 16) 	 1=2 
DIMENSION Y ( 1 6) , X Y ( 6) , BETA( 6) 	 TI.T+. 23094 
DIMENSION LI TL( 20). V( 2) 	 RC 1 ).RE SP2( SI. TI) 
DI MEN SI ON 13( 20, 20), A( 20, 20), C( 20, 20) . DC 20, 20) 	 1.3 

DI MEN SION DI AG( 2) P 0 FED( 2) • Et 2) • TEMPI( 20) , TE M P2( 20) 	 5I.S4.•23094 
DIMENSION X04( 1) 	 11.1-. 2309 4 
DIMENSION BB( 2, 2),BL( 2) . B1 N( 2, 2) , X0 ( 2), LI T( 10) .X1( 2) • X01 ( I, 2) 	 R( I ) *RE SP2( SI, T I) 
DIMENSION SPCC 2), SRI( 2) 	 1.4 
DI MEN SION ADR 1( 30), AIDR2( 30) . ADX ( 30), ADY ( 30) . ADZ( 30) 	 11.1+. 23094 
D I MEN SI ON ASPIC 30) . ASPIC 3 0) . AYH A T( 30) . ARESP( 30), AE 1( 30). AF2( 30) 	R( I ) =RE SP2( Si. T1) 
COMMON/BLO KB/ ASP1, ASP2, AYHAT, ARESP, AE 1. AE 2, ADR 1, ADR2, AM, Ain', ADZ 	1-5 

COMMON/BLOKC/ SURF 	 Tlir+• 3266 
CO MOON 1 MO 11D/ I FO 	 RC 1) a RESP2( S. T1) 
INTEGER  SURF 	 1=6 
SS=S 	 T I =T-. 3266 

TT=T 	 R( I )=RESP2( S. T 1) 
1.1 	 1=7 
GI TO ( 1, 2, 3, 4. 5. 6), Si AT 	 SI.S+• 3266 

1 	S 1 =S-. 23094 	 R( I ) =RESP2( S I, T) 

TI=T-.23094 	 1=8 

R( I ) =RESP1( SI, TI) 	 SI.S-.3266 
1=2 	 R( I ) .RESP2( SI. T) 
11.1=• 2 309 4 	 IX) 124 I .9. 1 6 
R( I )=RESP1( SI. T1) 	 R( I ) .RE SP2( 5, T) 
I .3 	 124 CONTINUE 
5 1=54-• 2309 4 	 03 TO 59 

T 1 .T- . 23094 	 3 	SI.S-. 2309 4 
R( I) .RESP1( SI, TI) 	 TI=T-. 23094 
1.4 	 R( I ).RESP3( SI. T1) 
TI.T+.2309 4 	 1=2  
R(1)=RESP1( Sl, TI) 	 11.14-. 23094 
I=5 	 R(I)=RESP3(SI, T1) 
T1=T+• 3266 	 I =3 
R(I).RESP1( S.TI) 	 SI.S+.2309 4 
1.6 	 11.T-. 2309 4 
TI=T-• 3266 	 R( I ).RESP3( SI, TI) 
R( I ).RE SRI( S. T1) 	 1.4 
1=7 	 TI.T..• 23094 

SI=5+•3266 	 R( I ).RESP3( SI, II) 
R( I ).RESP1( SI. T) 	 1.5 
I=8 	 11•11+. 3266 
SI.S-.3266 	 RC I ) =RESP3( S. TI) 
R( I )=RESP1( SI, T) 	 1=6 
130 123 I =9, 16 	 TI.T-. 3266 
R( I ).RESP1( 5, T) 	 RC I ).RESP3( S, Ti) 

123 CONTINUE 	 1.7 
03 TO 59 	 S1=S+•3266 

2 	S1itS-.23094 	 R( I ) =RE SP3( SI, T) 
TI=T-.2309 4 	 1=8 



SI.S-• 3266 
R( ).RESP3( SI. T) 
to 125 I -9.16 
RC I ) =RE SPX Si T) 

125 CONTINUE 
GO 70 59 

	

4 	SI=S-• 23094 
11 	2309 4 
RC ) .RESP4C St. T1) 
1=2 
T1.14,23094 
R( I )=RESP4( 	T1) 
1.3 
S1.5+. 2309 4 
11 ■1-• 23094 
RC I ) .RESP4( SI. T1) 
1-4 
11-T4,23094 
R( I ).RESP4C SI. Ti) 
1.5 
T1 geT4-• 3266 
R(1) =RE 5P4( S. T1) 
1.6 

I.T-• 3266 
RC 1 ) .RESP4( S. T1) 
I -7 

3266 
R( I ).RESP4( SI. T) 
1.8 
SI.S.-• 3266 
R( ) ...RESP4( SI. T) 
20 126 1.9. 16 
RC I )*RESP4( 5, 

126 CONTINUE 
03 TO 59 

	

5 	SI.S- • 2309 4 
11.1-• 2309 4 
RC )*RESP5( SI, T1) 
1.2 
11-1+. 2309 4 
R( I )=RESP5( 51, 1. 1) 
1 ■ 3 
SI-S+.23-094 
T 	2309 4 
RC I ) .RESF5( SI. Ti) 
1 ■ 4 
TIET+.2309 4 
RC 1) ERESP5( SI, TI ) 

11.1+. 3266 

R( ).RESP5( S, T1) 
1 ■ 6 
11.1-• 3266 
RC 1 )=RESP5C T 1) 
1 ■ 7 
SI .54-• 3266 
RC I ).RESP5( S 1. T) 
1 ■8 
51.S-. 3266 
R( 1 ) .RESP5C S T) 
20 127 1 ■9. 16 
R( I ) .RESF5 ( S. 7) 

127 	CONTINUE 
GO TO 59 

6 	S1=S-• 2309 4 
T1.T-• 23094 
R( I) =RE SP6( S 1, T1 ) 
1.2 
T1.1+ • 2309 4 
RC I ) .RESP64 SI. T1) 
1-3 
S1.54-.23094 
11.T- • 2309 4 
R( ).RESP6( S 1. T1) 
1.4 
T1.11.• 2309 /I 
RC I ) .FEE SP6( SI, T1) 
1=5 
T T4-• 3266 
W I) =RESP6( T 1) 
1=6 
11=T-• 3266 
RC I) =RESEW S. T1) 
1 -7 
SI. S... 3266 
RC I ) =RE SP6( Si. T) 
I =8 
S1.S-• 3266 
R( I )=RESP6( SI. T) 
CO 128 1.9. 16 
RC I ) =RESP6( S. T) 

128 	CONTINUE 
GO TO 59 

59 20 10 J=I* 1 6 
10 B(J.1).1 

DO 11 J.1. 2 
11 W..1,2)= - 1.15470 

DO 12 J.3. 4 
12 RW..2).1.15470 

DO 13J-5..6 



13 BC 2/ 70. 0 
BC 7, 2) =1. 63299 
• 8. 2). -.1. 63299 
DO 14 J=9. 16 

14 B( J. 2) =O. 0 
DO 15 J=I.3.2 

15 B( J., 3) 	15470 
DO 16 J=2. 4. 2 

16 B(J,3)=1. 15470 
0(5. 3) =1. 63299 
II( 6. 3) 1. 63299 
DO 17 J=7. 16 

17 B(J. 3) =0. 0 
DO 18 J=1.4 

18 B( J, 4) 7 1. 33333 
0(5. 4) =0. 0 
B( 6. 4) =0. 0 
B( 7, 4) =2. 66666 
13 ( 8 ,  4) =2. 66666 
DO 19 J=9, 16 

19 BC J, 4) =0. 0 
DO 20 J=1, 4 

20 B(J.5)=1.33333 
BC 5, 5)=2. 66666 
BC 6.5)=2. 66666 
DO 21 J=7. 16 

21 BC J. 5)=0. 0 
B( 1. 6) =1. 33333 
BC 2. =-.1.33333 
0( 3, 6) =- 1. 33333 
B( 4, 6)=1. 33333 
Iv 23 J=5. 16 

23 B(J, 6) =O. 0 
DO 28 1 =1* 1 6 
DO 28 J=1. 6 

28 A(.I. I ) =13( I, J> 

	

CAL).. MXML T( A, 0, 	1 6. 6s■ 20, 20) 
DO 34 L=1,6 
DO 34 J =1* 16 
I F( ABS( C( I.J)).LT.. 1) CD TO 33 
00 TO 34 

33 C( 1. .1) =O. 0 
34 CONTINUE 

DO 25 1=1. 16 
25 Y(1)=R(1) 

CALL MXMLT( A. Y• XY• 6, 16. 1. 20. 16) 
DO 32 I=1,6 
IF ( ABS(KY(1 ))•LT.. 001) GO TO 35 
03 TO 32 

35 XY( 1)=0. 0 

32 CONTINUE 
V( 1)=3. 
DO 30 1=1, 6 
LO 30 J= 1, 16 

30 D(1,J)=C( 1,J) 
CALL GJR( D, 20. 20. 6. 6, S 60, L I TL. V) 
CALL MXML T( D, KY, BETA. 6. 6, 1, 20. 6) 
DO 40 1=1, 6 
IF ( ABS(BETA( I))•LT• • 001) GO TO 41 
GO TO 40 

41 BETA( I ) =0. 0 
40 CONTINUE 

BB( 1. 1) =BE TA( 4) 
BB( 2,2) =BETA(5 
BB( 1. 2) =( BF. TA( 6) ) /2 
BE( 2, 1) =BB( 1, 2) 
DO 31 I=1.2 
DO 31 J=1, 2 

31 BIN( 1,J)=00( 1.J) 
VC 1)=3. 
CALL Gift( BIN. 2, 2, 2. 2. $ 60, L I To V) 
BL( 1) =BETA( 2) 
BL( 2) =BETA( 3) 
CALL MXMLT( SIN, BL. XI 2, 2, 1, 2, 2) 
X0( 1)=-((X1( 1)/2) 
X0(2) =-( (XI ( 2))12) 
X01( 1.1) =X0 ( 1) 
X01( 1, 2) =XO( 2) 
DO 42 1= 1, 2 

42 SPC( 1) =X0( ) *. 2 
SPU( I) =SS+ SPC( 1) 
SPU( 2) =TT+ SPC( 2) 
120=11'0+1 
ASPIC 1 FO )=SPU( 1) 
ASP2( I PO )=SPU( 2) 
CALL PIXMLT( X01, BL, KOK, 1, 2. 1. 1.2) 
YHATO=BETA( ) + (KOK( 1)/2) 
ATHAT( 1 PO) =YRATO 
GO TO ( 61, 62. 63. 64. 65. 54) • SURF 

61 RESP=RESP 1 ( SPU( 1), SPU( 2) ) 
01 TO 69 

62 RESP=BESP2( SPU( 1). SPU( 2) ) 
03 TO 69 

63 FIESP=FIESP3( SPU( 1), 5PL1( 2) ) 
03 TO 69 

64 RESP=RESP4( SPU( 1), SFU( 2) ) 
GO TO 69 

65 	RESP=RESP5( SPU( 1) SPU( 2) ) 
GO TO 69 

$ 4 	RE SP=RE SP6( SPU( 1), SPU( 2) ) 



GO 10 69 
69 ARE SP( I PO) = RE SP 

CALL TRI DMX ( 2. 2, BB, DI AG. OFFD) 
CALL EI GVAL( 2.Es DI AG. 0 FM, TEMPI. TEMP2) 
AE I PO) =EC 1) 
PE 2( I PO) . EC 2) 
I FT SURF. EQ. 5) GO TO 66 

FC SURF. EQ. 6) 03 TO 56 
DRI.I. 0-.YRATO 
DX. 1. 0- SP11( 1) 
• 0-SFLIC 2) 
DR2.1. 0•..RE SP 
GO TO 67 

66 	 0••THATO 
DX. 1. 0•.SPLIC I ) 
DY. I. 0-SR/C 2) 
DR2.0. 0- RESP 
GO TO 67 

5 6 	DR 1=4. 1 737499 09.- THATO 
DX.2. 4475- SPU( 1) 
DY a 3.88 75•SPUC 2) 
DR2.4. 1 73 7499 09 -.RESP 

67 	CONTINUE 
ADRI( I PO) .DRI 
ADR2C I F0).DR2 
ADX ( I PO) .DX 
ADYC I PO )=DY 
Dr.BSORT( DX** 2+ DY**2) 
ADZ( I PO) =DZ 
RETU RV  

60 STOP 
END 
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