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PREFACE

Why mosquitoes? Brainstorming sessions are commonplace in the Hu lab as we search

for the next story to tell. Towards the close of my first year in graduate school, Dr. Hu

and I were participating in such a session when he raised a burning question, “Do you

think insects can fly in the rain?” I did not realize at this moment the extent to which I

would build appreciation and a relationship with the humble mosquito, seemingly the most

obnoxious insect to ever evolve. We set about to determine the ideal model organism and

the feasibility of a study that would answer the rain-insect mystery. The model organism

needed to be easily raised (or attained), active, and scientifically relevant. Our journey

led us to the CDC’s entomology department, which raises mosquitoes and not much else.

Fortunately, the mosquito is the perfect model organism. The mosquito is easily excitable,

and scientists are very interested in any result pertaining to the survival and behavior of

the world’s most dangerous animal. In the CDC’s labs we were given a mesh cage full of

mosquitoes promised to be disease free. Armed with a high-speed camera and dropper, we

took the first insect-drop impact footage known to man. Three years and four articles later,

the CDC is still anxious to provide as many mosquitoes as we can use.
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SUMMARY

Flying insects face challenging conditions such as rainfall, fog, and dew. In this the-

oretical and experimental thesis, we investigate the survival mechanisms of the mosquito,

Anopheles, through particles of various size. Large particles such as falling raindrops can

weigh up to fifty times a mosquito. Mosquitoes survive such impacts by virtue of their

low mass and strong exoskeleton. Smaller particle sizes, as present in fog and insecticide,

pose the greatest danger. Mosquitoes cannot fly through seemingly innocuous household

humidifier fog or other gases with twice the density of air. Upon landing, fog accumulates

on the mosquito body and wings, which in small quantities can be shaken off in the manner

of a wet dog. Large amounts of dew on the wings create a coalescence cascade ultimately

folding the wings into taco shapes, which are difficult to dry. The insights gained in this

study will inform the nascent field of flapping micro-aerial vehicles.

xviii



CHAPTER I

INTRODUCTION

“For wisdom will enter your heart, and knowledge will be pleasant to your soul. Discretion

will protect you, and understanding will guard you.” -Proverbs 2:10-11 (New International

Version)

1.1 Motivation

Man has marveled at insects for centuries. Their number, richness in form and function, and

robustness is unmatched. They are worthy of our attention and still have so much to teach

us. The motive behind this thesis is twofold: technological and biological. Technologi-

cal advancements in manufacturing and control systems means that robots are becoming

smaller, even at the scale of insects. Micro-aerial vehicles (MAVs) range in size from 10

cm down to a few millimeters1–7. These small flying machines are appealing for the role

they will play in search-and-rescue and military operations. In parallel with the engineer-

ing of MAVs, vigorous efforts continue to be made into understanding flight in the natural

world, such as by birds and insects8–11. Much progress has been made in understanding

straight-path flight in unidirectional flow. However, much remains to be understood about

the abilities of birds and insects to fly through complex conditions such as wind and rain.

Such knowledge has implications for ecology in terms of understanding the evolution of

animals in rain forests and near waterfalls. The adaptations of these animals may also serve

engineering via biological inspiration for the design of robust MAVs.

An understanding of how flying insects survive perturbations from impacting particles

will also lead to new biophysics that incorporates both mesoscale biology and hydrodynam-

ics. Organisms are multi-degree-of-freedom, hierarchically organized, nonlinear systems.
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They respond to their environments through a combination of feedback between their vi-

sual, chemical, and strain-based sensory systems8,12. The notion of robustness emerges

from the combination of their muscular and neural connections, and the physical struc-

ture of the organisms including form, material, and surface properties. It remains unknown

which parts of these intricate systems are programmed to respond to varying environmental

conditions such as particle collisions. Flying insects are particularly specialized organisms.

They thrive in environments latent with perturbations13, but remain very capable flyers. A

crucial part of the ecosystem, flying insects act as pollination catalysts and food for larger

organisms. Some species, however, are a danger to society, indiscriminately transmitting

disease. An understanding of insect locomotion in particle environments will also benefit

the arsenal we have to manage flying insects.

1.2 Background & Previous Work

1.2.1 Rain & Drop Impact

One of the technological feats of the twenty-first century is the construction of insect-

sized flying robots, made possible by rapidly shrinking manufacturing and electronics1–7.

These robots have numerous applications such as deployment in swarms for surveillance

and search-and-rescue operations. Inspiration for robust and efficient flight is readily found

in nature. For millions of years, flying insects have been challenged by in-flight collision

with falling drops. Though the insects in Fig.1 are resting on a solid surface, they provide

perspective on how in-flight collisions may appear. Rain of various intensity, dripping from

overhanging leaves, dewfall, and splashes from cascades all generate drops that may strike

an insect mid-flight14,15. A raindrop16, can have a mass m1 = 4�100 mg, radius R1 = 1�4

mm, and speed u1 up to 10 m/s. Their shapes can vary from a sphere for small drops, to

flattened shapes for large drops.

Previous studies of bats have shown that rain doubles their energetic cost of flight17.

Hummingbirds will fly in rain to feed, and can shake off accumulated water mid-flight to
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Figure 1: Raindrop impacts upon (a) a house fly, recently deceased and untethered, and
(b) a live, tethered mosquito.

reduce the cost of carrying wet feathers18. These animals are so large that they will suffer

multiple raindrops in a single wingbeat. Such studies are likely not applicable to under-

standing how insects fly in the rain because of the insect’s much smaller size compared

with vertebrate flyers.

Many insects such as mosquitoes thrive in wet, humid locations such as the tropics,

where it rains often13. In rainforests, which encapsulate 40-75% of the species diversity

of earth, rainfall occurs daily. Flying insects likely perceive raindrop impacts as in-flight

perturbations. There have been many studies of such perturbations, although none have

considered the influence of a wetting fluid such as rain. For instance, bees exposed to

turbulent air resist rolling instabilities by extending their legs to increase their moment of

inertia19. Following in-flight perturbation, fruit flies actively re-stabilize themselves by

flapping12,20. Symmetric wing beats of a rotating insect will dampen insect rotation21.

Many of these re-stabilizing maneuvers rely upon delaying stall and interacting with wakes
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created by flapping wings22. They are thus sensitive to the wing’s ability to deform under

flapping23. Altogether, these studies indicate that flying insects are highly maneuverable

and able to quickly correct many kinds of perturbations (roll, pitch, yaw). However, such

abilities may be affected if the wing is wet or must flap through a field of drops. Thus, to

truly gain insight on the ability to fly through rain, we turn to in-flight experiments with

wetting drops of fluid.

The remainder of our knowledge of the effect of precipitation is restricted to large air-

craft, although they operate upon very different principles from flapping fliers. Field testing

on the effects of heavy rain on aircraft24 confirms that precipitation generally hinders loco-

motion. Aircraft experience greater drag (2-5%), reduced lift (7-29%), a reduction in stall

angle of 1-5�, as measured25,26 during a rainfall intensity of 100-1000 mm/hr. Aircraft can

reduce these losses by using wing designs that can funnel rivulets and control their diam-

eter. These design principles may explain some of the water-repellent features common in

birds’ wings27. However, they clearly do not apply for much smaller fliers such as insects

which are closer in size to raindrops.

Although drop impact has been studied for decades28,29, little is known regarding im-

pact upon a small free body. The closest situations to the one of interest are impact between

two drops and impact between a drop and an immovable solid. In the first, several outcomes

are possible, including bouncing, coalescence, disruption, and fragmentation. The choice

of outcome depends exclusively on drop size, their relative velocity, and degree of offset at

collision, known as the impact parameter30. Other studies focus on collision of two drops

of differing size, viscosity, and surface tension31. The topics of Chapters 3 & 4 of this the-

sis, the impact of a drop upon a small free body, may be considered as the impact between

two drops of vastly different viscosity.

Drop impact upon an immoveable solid surface may also be considered as a limiting

case of drop impact on a free body. As the free body grows in size to that of a large bird or

aircraft, it is clear raindrops will splash upon collision. It is not yet clear, however, where
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the splashing threshold lies in terms of free body properties such as density, curvature, and

impact speed. Drops striking solid surfaces experience one of multiple modes of impact:

deposition, splashing, receding breakup, partial rebound, or complete rebound29,32. Mode

selection depends upon drop size, speed, impact orientation, as well as properties of the

solid such as surface texture and curvature33–38. In Chapter 4 of this thesis, we clarify the

onset of splashing in terms of free body properties such as density, curvature, and impact

speed.

In this thesis, we will focus on small flying insects as model organisms, whose length-

scales on the order of the capillary length, make them particularly interesting in their inter-

action with water surfaces. Most research on water-repellency has centered upon material

properties39,40. The canonical water-repellent organism is the sacred lotus plant, known

as a symbol of purity. During rainstorms, it is self-cleaning by virtue of its hierarchical

fractal-like surface that permits drops to remain spherical and roll off easily, by virtue of

the associated high contact angles and low contact angle hysteresis41. Since then, a flurry of

experimental and theoretical efforts have been made to build super-hydrophobic surfaces,

and to characterize their abilities theoretically. The insights made have been used to design

hydrophobic fabrics and paint, Gore-Tex and Lotusan. However, most of these surfaces are

designed to be static. The means by which rapidly moving organisms or devices can repel

water while propelling themselves remains unknown. Such understanding is important for

building autonomous devices.

Nearly all flying insects are adapted for contact with water. Previous experiments on

flying insects through fields of drops were conducted towards the development of insecti-

cides. Such experiments show that many insects possess adaptations to contend with water,

including a dense layer of wax-coated hairs that repels water. This layer causes flying in-

sects to be considerably more water-repellent than both aquatic and terrestrial insects27.

For instance, water drops on mosquitoes have contact angles of approximately 180� on

the thorax and 75-95� on the legs and wings42. Insect wings, in particular, have evolved
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highly specific structures and surface chemistries to attain hydrophobic, and occasionally

superhydrophobic, wetting properties that enable macro-scale drop mobility and wing self-

cleaning43–47. A combination of microscopic surface structure, and a lipid layer, causes

drops to spontaneously roll off and carry away contaminants. Altering the surface structure

via micro-scale contaminants such as dust, or dissolution of the lipid layer rapidly degrades

their ability to stay clean and dry.

1.2.2 Insect wetting properties

Drops much larger than the microstructures on the wing surface will exhibit the Cassie-

Baxter wetting state such that the drop sits atop the structures with a thin layer of air un-

derneath48. This is a favorable wetting state for the insect, allowing for easy drop removal.

When drops are comparable in size to the microstructures, a groove-filling Wenzel-like

behavior is observed49, pinning drops to the surface and decreasing their mobility (Fig.2).

Small droplet deposition and vapor condensation between hairs are very similar50, and both

ultimately result in a wet insect.

The ability of materials to generate Cassie states is sensitive to contaminants. Altering

the wing microstructure by deposition of micro-scale contaminants such as dust rapidly

degrades their ability to stay clean and dry. A thin application of a thin layer of Al2O3,

causes butterfly wings to change from a superhydrophobic state (Cassie-Baxter) to a hy-

drophilic state (Wenzel). However, a similar coating causes water strider legs to remain

superhydrophobic, even under applied water pressure51. The water strider’s robustness

against surfactants may be due to the greater evolutionary pressure these insects face as

they walk on water52,53. Butterfly wings, in particular, have directional adhesion which

aids in shedding drops54. The adaptations of these animals suggest a primal relationship

between insects and rainfall. It remains unknown how a mosquito’s water-repellency is

beneficial during high-speed impacts of much larger drops such as rain.
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Figure 2: Photo sequence of droplets forming on a mosquito leg through the deposition
of 15 µm fog particles.

1.2.3 Fog, Dew, & Insecticide

In many areas of the world, fog is necessary for life. At high altitudes, trees and organisms

in “cloud forests” collect much of their water and nutrients from fog55. Desert insects

such as the Namib beetle and plants such as cacti gather fog in order to drink56–58. This

is often accomplished using an array of hydrophobic and hydrophilic surfaces to funnel

collected water. Fog in natural conditions contains drops of size range 1�10 microns and

concentrations of 100 drops/cm3.

Airborne particles can broadly be characterized into one of two categories, haze and

fog. Fog is defined as providing less than 1 km of visibility59; in natural conditions60

fog consists of small water droplets, in the liquid or frozen state, of size 1 � 10 µm in
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diameter and concentrations 25 - 100 mg/m3. These parameters are dependent on altitude.

Fog has a bimodal distribution; the larger fog particles close to the ground have an average

diameter of 5 µm, whereas the higher altitude particles have a diameter of 0.3 - 0.6 µm.

On the other hand, haze consists of 0.2 µm dust and smog particles, with little vertical

variation. Fog and haze particle size can be measured much like insecticide particle size,

through light scattering and holographic techniques61,62. In comparison to natural fogs,

insecticides involve drop sizes comparable to that of natural fogs, but of one millionth the

density, less than 100 ng/m3 when dispersed, rendering them invisible.63. However, during

dispersion, fogs and sprays at output nozzles are very dense and visible.

the primary water source for some plants58. Dew condenses on such surfaces because of

temperature gradients between air and ground. Poikilothermic insects too will experience

such condensation. Such condensation was observed on the semi-aquatic Fisher spider,

showing that drops tend to bead up64. Little is known on how terrestrial or flying insects

cope with dew.

The development of insecticide involves drop size comparable to that of natural fogs,

but of much lower density (ounces per acre). Mosquito control methods include inter-

mittent preventative treatment, insecticide-treated nets, indoor residual spraying, chemical

larviciding, and insecticide fogging or spraying. The latter technique works by depositing

toxins on the insect cuticle, through encounters with airborne particles or insecticide-ridden

surfaces. Toxins are carried by water or oil micro-droplets. While these insecticides pos-

sess acceptably low toxicity to humans, strict regulations govern their use and application.

Spraying and fogging should be done at the peak of adult mosquito activity, which is highly

variable among species and requires repetition, which can be expensive. By studying the

vulnerabilities of mosquito flight, unforeseen strategies for mosquito mitigation free of

insecticides may be found. The chosen model organism in this thesis is the Anopheles free-

borni mosquito, an established malaria vector. A mosquito’s flight performance in arrays

of very small drops such as in a dense fog is poorly understood, despite the common use of
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insecticide foggers. Little is known of how small particles can affect the insect’s air-wing

interactions and sensing of its environments.

1.2.4 Insect Flight Sensors

Dense fog has been known to disrupt avian vision and navigation ability65. Like birds,

insects also use a combination of visual and force-mediated feedback to navigate66. Teth-

ered fruit flies and houseflies use an optomotor response to adjust their thrust and torque

for visual cues positioned in front of their eyes67. Insects without gyroscopes, like the

desert locust, employ other means of flight sensing68,69 such as sensitive hairs on their

hind limbs to detect wind direction. The small tortoiseshell butterfly uses its antenna to

detect flight speed70,71, while the hawkmoth vibrates its large antennae to detect Coriolis

forces72. Mosquitoes rely heavily on olfactory cues to find food and mates73. The effect

of airborne particles on these sensing systems has not been systematically studied, and

sensing systems are very species specific. Only recently has any work been done on how

particles affect olfactory sensors on cockroaches74.

Halteres, small knobbed structures evolved from hind wings, flap with the same fre-

quency as wings and serve several in-flight functions75–77 (Fig.3). Halteres, provide propri-

oceptive feedback by detecting Coriolis forces and play a crucial role in the neuromuscular

circuit generating the wingbeat rhythm in Dipterans66,78. By activating the motor neurons

of minuscule steering muscles, halteres help regulate wing motion through a reflexive feed-

back loop with these muscles. Haltere-bearing insects have irregular fields of campaniform

sensilla imbedded in their cuticle at the base of the haltere shaft79. The architecture of

the campaniform structures give them the ability to detect small strains in the cuticle as

the haltere flaps. Historically, halteres have been thought to sense inertial, centrifugal, and

gravitational forces in addition to Coriolis forces76.

Mosquito halteres have not been the focus of much investigation, but the function and

dynamics of fruit fly halteres has been well studied. In tethered fruit flies, adding mass
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Figure 3: (a) An Anopheles freeborni mosquito in flight. The location of mosquito’s
haltere boxed in red. (b) A mosquito haltere.

to one haltere using glue acts to reduce peak velocity and amplitude of body saccades66.

Ablating one fruit fly haltere has the opposite effect by accelerating in-flight maneuvers.

In some situations, haltere augmentation results in the adoption of a flapping frequency

different from that of the wings80,81. Sensory feedback from the haltere is read by the wing

control mechanisms on a stroke-by-stroke basis, even in steady flight82,83, so the effects of

haltere augmentation in fruit flies may be due to the disruption in synchronous wing-haltere

signals66. Houseflies with halteres removed show a complete lack of control over flight75.

1.2.5 Folding Wings & Capillarity

Folding is a way to reduce the size of functional components when in storage. The most fan-

tastic examples of folding in technology are the solar panels on satellites and appendages in

robotics. In micro-fabrication, folding is an auspicious method to produce three-dimensional

structures from planar sheets. At such a small scale, capillary forces are sufficient to orient

thin membranes or assemble tiny parts84. In this study, we turn to the biological world: we

investigate mosquito wing folding by capillary forces. We begin by reviewing structural

and wetting properties of wings, and the roles these properties play in insect wing folding.

All organisms have elastic properties tuned to either encourage or resist folding. Plants

have flower petals which are perennially tightly folded in a bud85 or those which open and

close daily86. Insects in the Coleoptera order (ladybugs, sun beetle, cockroach) possess
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wings that fold through complex crease patterns, allowing the wings to be stored below the

outer shell when not in use87,88. While most insect wings are not intended to be folded

so tightly, all insect wings experience bending due to aerodynamic forces. Insect wings

possess specially tuned stiffnesses to maximize aerodynamic lift during flight89. For ex-

ample, bumblebees exhibited an 8.6% reduction in lift when their wings were stiffened

with extra-fine polyester glitter.

The flexibility and resiliency of insect wings is provided by the elastic protein90, resilin,

which enables a wing to store mechanical potential energy when bent91. Resilin is also

found in mobile wing joints, facilitating energy recovery and leading edge wing twisting92.

In general, wings are purposefully stiff in certain regions, such as the leading edge93.

Anisotropic bending is a common property of insect wings. A wing’s veins provide re-

sistance against aerodynamic bending moments94, creating span-chord stiffness anisotropy.

Stiffness in the chordwise direction is 1-2 orders of magnitude higher than in the spanwise

direction95, indicating a wing more folds more naturally in the spanwise direction. Finite

element models based on Manduca sexta forewings show spatial variation in flexural stiff-

ness, firming proximal regions and facilitating bending of edges, where subtle changes in

shape are critical to lift production93. Due to the highly specialized relationship between an

insect’s wing shape and its flexural stiffness, it follows that wings are susceptible to failure

by changes in curvature, mass, and edge geometry, all of which can arise by the deposition

of dew drops.

To resist the accumulation of water drops, insect wings have evolved complex mi-

crostructures and surface chemistries. This combination yields hydrophobic, and often

superhydrophobic, wetting properties that enable macro-scale drop mobility and wing self-

cleaning43–47. The hydrophobicity of the wing, however, depends on the size of the drops

deposited. Drops much larger than the microstructure exhibit a Cassie-Baxter wetting state

such that the drop sits atop a thin layer of air permeating the spaces between the microstruc-

tures48. These pearl drops are in a favorable wetting state for the insect, as they are easy
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to remove. However, if drops are comparable in size to the microstructures, a groove-

filling Wenzel-like behavior is observed, pinning drops to the surface and decreasing their

mobility49.

Once insect wings are wetted in the Wenzel state, they can be easily folded by emplaced

water drops. Elastocapillarity is the study of the interaction between water surfaces and thin

elastic sheets and fibers96–100. Much work has been done both on the theoretical level as

well as on experiments using synthetic flexible materials. Neukirch et al.. (2013) use a vari-

ational approach with pinned and mobile contact lines to characterize the resulting shape

of an elastic beam underneath a liquid drop. Honschoten et al.. (2009) uses picoliter sized

droplets to fold micrometric structures separated by discrete hinges to enforce the location

of folds. Py et al.. (2007) investigate the effects of elasticity and capillarity in folding

three-dimensional, millimetric scale structures composed of PDMS. They use modeling to

predict the equilibrium shapes of two-dimensional beams under capillary forces. In our

study, we show that an approach similar to theirs can predict the folded shapes of mosquito

wings.

Most observations of elastocapillarity are done in the laboratory, but such phenomena

can also be easily observed in nature. Organisms are susceptible to deposition from mists

expelled by waterfalls, dense fogs, and most commonly, nocturnal dewfall. In some areas

of the world, dewfall is sufficient to be the sole water source for certain plants58. Dew

condenses on cooling surfaces as these surfaces radiate heat to the night air and sky. Like

plants, poikilothermic insects too will experience condensation due to their low thermal

mass. Some insects have adapted to manage condensation, such as the semi-aquatic Fisher

spider64, which is susceptible to dew, but still walks on water. The Namib beetle57 captures

dew so it can drink. The use of dew in generating energy to folding thin surfaces such as

insect wings has received little attention.
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1.2.6 Water-Rellency & Fur

Water-repellency has previously been viewed as a static property of surfaces such as plant

leaves and insect cuticles101,102. An equally important trait is dynamic water-repellency,

whereby muscular energy is applied to remove water. This paradigm may have use in sen-

sor design. For example, digital cameras already rely upon internal shakers for removing

dust from sensors103. Such functionality may have improved the capability of the Mars

Rover104,105, which suffered reduced power from accumulation of dust on its solar panels.

In the future, self-cleaning and self-drying may arise as an important capability for cameras

and other equipment subject to wet or dusty conditions.

Many animals evolved physical adaptations to minimize infiltration of water into their

furs or feathers106,107. Semi-aquatic mammals possess a dense underfur that maintains

large air pockets to insulate the body during a dive108. Fur itself often has specialized

geometries, such as the grooved interlocking hairs of otters that mechanically resist infil-

tration of water109. Certain animals, such as sheep, additionally secrete oily substances like

lanolin that act to increase the hydrophobicity of hair and so discourage fluid-fur contact.

In order to arrange their hairs regularly and to uniformly coat them with oil, many animals

groom110 by preening, licking and shaking. Such behaviors may also remove particles in

addition to water: birds have been observed to remove dust by shaking after dust-bathing105

and perform aerial shakes to remove water18.

Shaking water from an animal surface reduces the combined energetic costs of carrying

this water and evaporating it. Small animals may trap substantial volumes of water in their

fur for their size111–113: emerging from a bath, a human carries 1 pound of water, a rat

5% its mass, and an ant three times its mass. Wet fur is a poor insulator because water’s

conductivity of 0.6 Wm�1K�1 is 25 times greater than that of air and 12 times greater

than that of dry fur114, causing a wet animal to lose heat very quickly. Evaporation of the

entrapped water from an animal’s fur may sap a substantial portion of the animal’s energy

reserves. The specific energy required115 is e = 0.6l where the heat of vaporization of

13



water l = 2257 kJ/kg. Consequently, a wet 60-pound dog, with 1 pound of water in its fur,

would use 20% of its daily caloric intake simply to air-dry. It is thus a matter of survival

that terrestrial animals remain dry in cold weather116.

1.3 Thesis Outline

In this thesis we will investigate several dynamical phenomena related to insect flight in

particulate environments. We here refer to particulates as droplets of water ranging in

size from raindrops to the micro-droplets that deposit on a resting insect. We develop

novel experimental and theoretical techniques to discover mechanisms by which insects

cope with challenging conditions. Most of this thesis is drawn from recent papers and

preprints117–122. Chapter 2 provides a collection of experimental techniques used in this

thesis, as there is an overlap in techniques between individual chapters.

In Chapter 3 we will begin with an experimental investigation of the impacts of rain-

drops onto mosquitoes. A mosquito’s survival is rationalized through consideration of mo-

mentum transfer, and the resulting force, from raindrop to insect. Insect mimics with mass

and size similar to mosquitoes are used to determine impact dynamics. We give particular

attention to evaluating drop deformation upon impact, noting that drops do not splash upon

impact with a mosquito. In Chapter 4 we present experimental results for raindrop impacts

onto insect mimics with a range of sizes and densities. Such mimics represent a range of

insects beyond mosquitoes, and thus the work compliments that presented in Chapter 3.

We notice that by introducing differently massed mimics, two additional impact regimes

are possible in which the drop does not remain intact. Predictions for each impact regime

are made, for any given mimic mass and radius, by considering the drop’s various forms of

energy, pre- and post-impact.

In Chapter 5 we examine mosquito flight in hyperdense flight mediums. Using high-

speed video and microscopy, we characterize complications the hyperdense mediums of

fog particles and refrigerant impose on a mosquito’s in-flight sensors, the halteres. Using
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a simple Newtonian model, we quantify the additional drag forces by gases of various

densities. The time-scale for flight complications is too short for significant fog particle

deposition on a mosquito’s wings and body. However, in Chapter 6, we investigate the

effects of prolonged fog, or dew, deposition onto flying insects. Micro-droplets are able

to deposit on the body much more effectively than larger drops. The wings on small to

moderately sized insects fold into taco shapes upon wetting under surface tension forces.

We employ mosquito wings to determine the dependence of folding magnitude to drop size.

Our two-dimensional folding model considers the balance of bending stiffness, Laplace

pressure, and surface tension. After fog or dew exposure, a wet insect may employ a

number of techniques to remove the extra weight. In Chapter 7, we present measurements

of the accelerations mosquitoes use in various drying techniques, by tracking particles in

high-speed videos.

Chapter 8 expands the work of insect drying mechanisms by examining the technique

furry mammals use to self-dry, rapid, oscillatory shaking. By studying a range of species,

we draw a relationship between body mass and shaking frequency. Analysis of drop ejec-

tion from a single tuft of hair resolves the physical underpinnings of each animal’s chosen

frequency, and the shake’s effectiveness. In Chapter 9, we conclude by discussing the

implications of our work and suggesting directions for future research.
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CHAPTER II

EXPERIMENTAL TECHNIQUES

2.1 Mosquito Source & Care

Non-blood fed, 2-5 day old adult Anopheles gambi and Anopheles freeborni mosquitoes

were obtained from the Malaria Research and Reference Reagent Resource Center at the

Center for Disease Control (CDC). They were housed with cotton balls of sugar water in

our lab. Insects were filmed one at a time to avoid pseudo-replication.

2.2 Mosquito Handling

Mosquitoes are transferred to various containers with a John Hock brand aspirator. They

are singularly held in place by one of two methods. The first method is by a continuous

vacuum pen (Virtual Industries Tweezer Vac) which can pick up and release mosquitoes

without removing appendages or rupturing their exoskeleton. The second method, used in

tethered experiments, employs liquified wax to attach them to a tether, which is preferable

for long-term restraint, as it places no external forces on the exoskeleton. Tethering with

wax just behind the head or performing other tedious procedures, such as glue deposition

on the halteres, requires the mosquitoes to be incapacitated by inhalation of CO2. Short

exposure to the gas anesthetizes insects, while prolonged exposure causes death. Tethering

requires the mosquitoes be exposed to CO2 for 10 seconds, to remain asleep for roughly 20

seconds.

Wings are removed from freshly dead or anesthetized mosquitoes with scissors by re-

moving a small bit of the thorax connected to the wing. A 50 SWG wire is attached in the

base of the wing with Loctite brand superglue. The wing tips are clipped at the tip to create
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a flat edge, so that wing edges will appear in sharp focus through our microscope.

2.3 Filming

A Phantom V210 and Phantom Miro 110M high-speed cameras are the primary tool for

observing of mosquito flight, and we film over a range of 24 - 10,000 fps. A Nikon AF

Nikkor 50 mm 1:18D lens is used to capture the entire flight arena, while a Navitar 1-

60135 is used for macro filming. Flight arenas are lit by 4 low temperature LEDs (IDT

Honeycomb LED-1). For wing folding videos, the high-speed cameras are attached to an

Olympus SZX16 dissection microscope, using up to an 8x zoom. Ablated wings are lit

with a single 900420 1⇥3 LED array by Visual Instrumentation Corporation from above,

and a Dedolight DT4.1 from below. The lights provide enough heat to evaporate deposited

moisture within 10 minutes, but do not warp dry wings.

Measurement and tracking within videos is done with Tracker, an open source physics

program. All reported P-values in this manuscript are results of an unpaired t-test applica-

tion to our data.

2.4 Insect Mimic Experiments

To capture the effects of drop impact on inanimate objects in flight, we collided them

with drops freely and without support. A schematic of the apparatus is shown in Fig.4.

A syringe was used to generate a single drop from a nozzle suspended as high as 1.5 m

above the subject. The falling drop passed through an infrared beam (modified photo-gate)

which triggered a high-speed pull-type solenoid leaving the object momentarily airborne,

and poised to be struck by a drop. Attached to the solenoid is a supporting arm composed

of two thin wires, sufficiently stiff to support insect mimics, but thin enough not to drag

the objects down its wake when retracted. The impact is filmed with a Phantom high-speed

camera and lit by Schott fiberoptic lights.

We build 18 spherical and 10 cylindrical mimics, whose masses of 1 to 1000 mg and

radii of 1 to 10 mm. The mimics span the range of most flying insects (Fig.5, Video
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Figure 4: Schematic of apparatus used to strike insect mimics with drops, where (A)
Nozzle, (B) Infrared laser sensor, (C) Controller, (D) Power supply, (E) Pull-type solenoid,
(F) Material holder.

S2). In designing mimics, we neglect insect wetting properties, legs, and wings. Spherical

mimics consist of an assortment of materials, including steel ball bearings, wooden beads,

clay balls formed by hand, and styrofoam pellets. Additional mimics of cylindrical shape

increase the mass range achievable by spherical mimics. Cylinder mass is easily varied

by the insertion of steel or wooden cores and wrapping the outer layer of styrofoam with

scotch tape. To ensure at least some similarity to filming of the spherical mimics, cylinders

are filmed so that their circular cross-section faces the camera.

Mimic impacts are filmed at 1950 fps with a Phantom Miro 4C. We estimate accelera-

tion of the mimic using the change in velocity over one video frame (513 µs). Acceleration

measurements of mimics are performed at two incoming drop speeds, 2.2 m/s and 5 m/s.

We combine both data sets in this study. We do not expect this variation in drop speed vary-

ing to substantially affect impact acceleration, which varies by several orders of magnitude

over the masses considered.
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Figure 5: The relation between ratios of insects123–133 and flying robots2–4,6 with half-
wingspan R2 with mass m2, and raindrop with radius R1 and mass m1. Boundaries between
impact modes are drawn from theory presented in §4.2. Insects and robots are listed in
order of increasing mass.

2.5 Rain simulators.

For studying the behavior of living insects, we enclosed a group of insects in a closed

acrylic container with 5 cm length and width, 20 cm height for experiments when a high-

speed jet is employed. A nozzle is positioned at the roof of the container and jet is produced

by a Cole Parmer 75211-10 Gear Pump. The impacts are captured with a Phantom V210

high-speed camera at 4000 fps.

For dripping experiments, the container is reduced to 10 cm to heighten the probability

of impact. A nozzle is placed at variable height above the cage, supplied with dripping

water of variable speed by the aforementioned pump. The nozzle’s flow will transition

from jetting to dripping by reducing the flow rate. Wet plastic mesh is placed at the top of

the container, so that drops hitting the mesh release water collected upon it, allowing high

speed drops to enter the cage without letting mosquitoes escape. Impacts occur opportunis-

tically, and the recovery of the insects is captured with a Phantom Miro 4C high-speed

19



camera at 6400 fps.

2.6 Fog Experiments

Fog is produced with an Air O Swiss 7145 consumer humidifier with continuous adjusta-

bility in fog density. A hose attached to the humidifier directs the stream of mist to the

subject. A droplet sizing instrument (DC-III; KLD Labs Inc., New York, NY) is used

to characterize the spectra of droplets generated by our humidifiers. As seen in Fig.6, a

miniature wind tunnel (7.5 cm x 5 cm x 11 cm) has been constructed to deliver fog to a

mosquito’s contained, flight environment. It uses a variable speed computer fan to pull air

through a 6.5 cm x 1 cm opening, which uses a square grate to laminarize the incoming air

and contain mosquitoes. The air speed at the inlet is 3 cm/s, measured by particle track-

ing. Control experiments indicate no substantial effect of incoming air on mosquito flight.

Flight is evoked from the mosquitoes within by human breath into the tunnel’s intake. Hu-

man breath excites both male and female Anopheles freeborni. We observe no difference

in flight failure characteristics between male and female mosquitoes, and no attempt was

made to separate the sexes following initial experiments.

2.7 Dense Gas Experiments

For experiments with flight in various gas densities, R134a (1,1,1,2-Tetrafluoroethane), a

non-toxic gas134, with a density of 4.25 kg/m3 at standard temperature and pressure, is

piped into a sealed, transparent, semi-circular container of height 15 cm and width 5.5 cm.

Mosquitoes were capable of indefinite perching on the interior walls and ends of the con-

tainer post-experiment. Subjects used in R134a-based experiments are still alive the day

following exposure to R134a, when sufficient ambient oxygen is allowed into their con-

tainer. The density of the gas mixture inside the container is determined by the container’s

mass reading on an analytical balance. Atmospheric conditions inside our lab remain with
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Figure 6: Miniature wind tunnel used to visualized mosquito flight upon entering a dense
fog stream and takeoff. A variable speed computer fan pulls in fog at 3 cm/s as denoted by
the arrows.

5 �C range. Mosquitoes were introduced through a hole in the top of the container, and

allowed to fly freely, or fall to the bottom.

2.8 Haltere Augmentation Experiments

To investigate the effect of altered forcing on mosquito halteres, we laden the halteres of

untethered, anesthetized mosquitoes with UV curable glue with density rglue=960 kg/m3, a

the haltere tip. The glue’s density is measured by massing a disc of cured glue whose vol-

ume is measured by digital calipers. The glue is deposited onto unconscious mosquitoes via

a thin wire, by hand, under a microscope. Glue is cured with a UV flashlight. Mosquitoes

are given 10 minutes to recover from anesthesia and released for observation. Mosquitoes

anesthetized by the same manor as those with glue on halteres recovered to resume qualita-

tively normal flight after approximately 5 minutes in atmospheric air. Post-flight, mosquitoes

are imaged in a Phenom Pro G2 scanning electron microscope (SEM), which provides a

reference scale in frame, to measure the volume of glue deposited. Glue dollops are traced

with Tracker to calculate the irregular shape’s area and thickness.
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2.9 Wing Measurements

Measurements of wing dimensions and wing cross-sectional shape within videos is done

digitally with Tracker, an open source physics program. Drop areas are found by tracing

the drops in Tracker, creating an irregularly-shaped polygon of more than 100 sides. The

polygon’s coordinates are exported to MATLAB for area calculation.

Experiments pertaining to wet mammals in Chapter 8

2.10 Animal measurements

We and the Zoo Atlanta staff measured by hand the masses and torso radius of 28 of the

33 animals in our study. The masses and radii of the remaining 5 animals (squirrel, black

bear, brown bear, lion, and tiger) were inferred using a combination of methods. Tiger and

lion masses were provided by the Zoo staff from recent veterinary procedures in which the

animal was anesthetized and weighed. Chest girth measurements for the tiger and lion were

not safely measurable by the Zoo staff, and were thus inferred from literature, based on the

animals’ masses135,136. Videos of three species (squirrel, black bear, and brown bear) were

obtained from YouTube and BBC, where their masses and radii were estimated based on

previous measurements of adults in the literature137–142.

2.11 Wet-dog simulator.

We built a “wet-dog simulator” apparatus to visualize the motion of drops on a shaking

mammal. The apparatus is described further in the Supplementary Info Section. “Dog” fur

was provided by three squares of 6.3 cm2.5 squares of white-tailed deer tanned fur, which

were glued with non-water-soluble glue to plastic bases clipped to the rotating axis of our

device. Prior to experiments, loose hairs were removed and samples immersed in water for

4 hours to ensure complete saturation into skin and fur. Samples were unidirectionally spun

for 30 seconds on the wet-dog simulator at a radius of 2 cm at various frequencies. Between
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trials, samples were weighed, resaturated with water, and drip dried for 30 seconds.

2.12 Brush experiments

In order to test Tate’s law, we used 19 brushes with round bases (Loew Cornell Nylon 1812

brushes, Loew Cornell Bristle 1812 brushes, and Sterling Studio synthetic brushes SS-100

round set). Originally tapered at a range of slopes, we shaved the brushes to produce a flat

tip. We weighed drops dripping from the brushes on an analytical balance. To obtain data

in Fig.45d, three brushes were placed on the “wet-dog simulator” and the mass of ejected

drops at various rotational speeds was determined through image processing with Matlab.

The cylindrical shell method was used to determine the volume of elliptical drops.

2.13 Experiments using the “Wet-Dog Simulator”

The spinning apparatus consisted of two parts, a frame and a spinning plate, both of which

were constructed from pressure-treated wood. The spinning plate, oriented vertically, holds

the camera and subjects, which spin in the same frame. At the top the high-speed camera,

Vision Research Miro-4c, is fixed, aimed down. A 5” slot along the center of the plate

allows subjects to be placed at variable distances from the lens. This ensured the camera

was capable of focusing on the material being studied. The holder for different subject

matter was attached to 3/8” bolt, which used a nut to hold it in place once it was positioned.

Multiple holes drilled along the slot served as mountings holes for the light, which light

the scene from above. It was necessary to position a light above the material, because the

high frame rate of the high-speed camera required a large amount of light for the material

to be visible. The light was a modified Coleman Max Bubba LED flashlight, which was

powered by 6 AA batteries attached to the back of the spinning plate. A Rigid model

R7000 corded power drill attached to the spindle at the top provided the torque necessary

to spin the plate. The motor was powered from a variable AC power supply. The power

supply, Variac Transformer model TDGC-0-5KM, provided an output of 1-130 VAC at 60

Hz. Adjusting the voltage output of the power supply controlled the speed of the drill. A
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Laser Tachometer, ES Pro model # 332, was used to determine the rotational velocity of

the plate.

2.14 Filming of Rat Shaking with X-Ray Videography

High-speed x-ray videos of shaking rats were captured on a custom built video system.

X-rays were emitted from a 97 kV, 2 mA monoblock-160 continuous beam x-ray emitting

tube from VJ Technologies. The x-rays passed into a 255 mm diameter input window im-

age intensifier (TH-9438-HX, VJ Technologies), which converted them into visible light.

A high-speed video camera (A504k, Basler Vision Technologies) was used to record the

converted light. The video was recorded at 200 frames per second and saved to a dedi-

cated computer using digital recording software (Streampix, Norpix Inc.)143. The rat was

contained in a waterproof box constructed out of acrylic glass sheets. The box was large

enough for the rat to retain mobility and rear-up while shaking, but narrow enough to ori-

ent the rat in the direction necessary for the experiment. A water reservoir was assembled

from 4 diameter PVC pipe. A Rainbird 0.75” inline valve was attached at the base of the

reservoir. This valve allowed water to flow when voltage was supplied to a solenoid. The

voltage was supplied from three nine-volt batteries, and a simple SPST switched was used

to open and close the circuit. This set-up allowed for the flow of water to be controlled at

a safe distance, which minimized exposure to radiation. A plastic tube running the length

of the box was used to sprinkle water from the reservoir onto the rat. After setup, all the

researchers moved a safe distance from the x-ray camera the valve was activated. When

the water reached the rat, the camera captured video. The procedure was repeated several

times until an adequate video was achieved for a front and side view.
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Figure 7: Wet-dog simulator with labeled components: motor (Y), motor mount (U),
high-speed camera (C), spinning plate (S), light emitting diode (L), and material holder
(H).
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CHAPTER III

MOSQUITOES SURVIVE RAINDROP COLLISIONS BY VIRTUE

OF THEIR LOW MASS

“If a mosquito has a soul, it is mostly evil. So I don’t have too many qualms about putting

a mosquito out of its misery.” -Douglas Hofstadter

In this combined theoretical and experimental study, we investigate drop impact onto

free bodies, free-flying mosquitoes and similarly massed mimics. In §3.1, we begin by

presenting preliminary theoretical considerations for impacts on free bodies. In §3.2, we

proceed with a description of a mosquito flying into a stream of terminal velocity raindrops,

then compare mosquito-drop impacts to those between mimics and raindrops. We measure

impact accelerations for various mimics, paying particular attention to drop deformation

on impact. We discuss our theoretical simplifications and implications of our research in

§3.3, and summarize our conclusions in §3.4.

3.1 Preliminary theoretical considerations

To investigate how flapping flight is affected by rain, we care for and film Anopheles gambi

mosquitoes, a species that is found in moist climates and is likely to face rainy conditions

regularly. These mosquitoes have a body length of 3 mm and a mass of m2 = 2 mg. As

shown in Fig.8a, raindrops are of comparable size144, with a radius R1 = 0.1 � 0.4 cm.

However, the raindrops are of much larger mass m1 = 4 � 100 mg: the mass-ratio of the

raindrops to mosquitoes is m1/m2 = 2 � 50. Two objects with the same mass ratio are

a person laying underneath the wheel of a bus, a scenario whose outcome suggests that

mosquitoes should not survive raindrop collision.
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To gain insight into the collision forces, we consider a simplified scenario. Consider

raindrop impact force onto a mosquito resting on an unyielding surface such as a tree

branch. The dynamics of drop impact onto unyielding surfaces29 (e.g., of infinite mass)

has been well-studied. Upon striking such a surface, raindrops exhibit a spreading stage

and a receding stage. Given the terminal velocity of rain, u1 = 6 � 9 m/s145, the duration

of the spreading is an exceedingly short t = R1/u1 ⇡ 1 ms, Therefore, the impact force as-

sociated with the transfer of momentum on an unyielding surface is F ⇠ m1u1/t ⇡ 5⇥104

dynes, which is 104 times the weight of a mosquito. This large force further suggests

raindrop impacts should be deadly to mosquitoes.

The likelihood of a raindrop impact can be predicted by considering the mosquito as

a target for a raindrop. A vertically falling raindrop encounters a plan-view of the insect

given by its wings, legs, and remainder of the insect’s body, whose total surface area Am =

30-40 mm2. During the heaviest rain146 with drops of mass m1 = 16 mg, falling with

an intensity I ⇡ 50 mm/hr, a stationary mosquito will receive an impact on average every

Dt = m1/(IrAm) = 25 seconds, where r is the density of water. Thus it is quite likely that

a free-flying mosquito will be struck by a drop during a rainstorm.

The mosquito’s long legs and wings account for three-fourths of the potential impact

area, with the body accounting for only one-fourth. If a drop falls with uniform probability

on these surfaces, impacts on the wings and legs are three times more probable than on the

body. We will test this prediction in our experiments.

3.2 Experimental Results

3.2.1 Jet impacts cause mosquitoes to tumble

We constructed a flight arena composed of a small acrylic cage of width 5 cm, covered

with a mesh top to both contain the mosquitoes but permit the entry of drops (Fig.8b). To

prevent the insects from landing on the walls, the cage was vibrated manually every few

seconds. In this confined environment, we observed insects made no attempt to escape
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Figure 8: (a) Impact of a 3 mm drop on a mosquito supported from below, meant to show
the relative size of raindrop to a mosquito. (b) Schematic of our drop impact chamber.
(c) Time sequence of a mosquito spun by a falling drop. Graph shows the time course of
angular position of a mosquito where the pink shaded area denotes the duration of contact
with the drop. (d) Time sequence of a mosquito pushed by a drop. Graph shows the time
courses of vertical positions of the mosquito (black) and drop (blue). In both impacts (c-d),
the mosquito easily recovers and continues flying.

being struck by drops (Video S1). In our first series of experiments, we desired to strike

a mosquito with a terminal velocity raindrop. This requires releasing drops at a height of

about 10 m, which was nearly impossible to aim into our flight arena. Instead, we employed

a jet of water to simulate rainfall. We used a gear pump to shoot a 9 m/s jet of water into

a container of flying mosquitoes (Fig.9). Jet speed and mosquito position were confirmed

using high-speed filming at 4000 fps (see Methods). Due to fortuitous cavitation in the

pump, the jet was pulsatile, a combination of drops and jetting streams.

Using this setup, we observed 6 mosquitoes struck with high-speed jets. A mosquito is
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rapidly accelerated downwards upon collision with the jet. Continued perturbations with

the jet tumble the mosquito repeatedly. Fig.9 shows one example: impact by a 9 m/s jet

accelerates the mosquito to a velocity of 2.1 m/s within a duration of 1.5 ms. After tumbling

a distance of 39 mm, or 13 body lengths, the mosquito finally separates laterally from the

jet and lands on the side of the container. The 6 mosquitoes tested each separated from

the jet before striking the bottom of the 20-cm tall chamber. It was noteworthy that all the

mosquitoes survived the collision, as shown by their flight after a brief resting period. We

estimate the drops in our jetting streams have a diameter of 4 � 6 mm, and mass 33 � 113

mg, corresponding to kinetic energies ranging from 1.36 � 4.58 mJ. The fastest recorded

drop falling through quiescent fluid in literature145 was 102 mg, traveling at 9.17 m/s, with

kinetic energy 4.30 mJ. By comparison, a 1 mm diameter raindrop will fall at 4.03 m/s,

with a kinetic energy of 0.021 mJ. These experiments confirm that mosquitoes can survive

impact with terminal-velocity raindrops.

3.2.2 Drop impacts on mosquitoes

To obtain films at higher resolution as well as more accurate body tracking, we filmed free-

flying mosquitoes subjected to drops falling at a lower speed than the jets. A small nozzle

of variable height ejected individual drops of radius 0.15 - 0.25 cm at speeds of 10 - 260

cm/s (Fig.8c-d).

We observed impacts on the wings and legs are far more likely (N=13) than on the

body (N=4), as predicted. These glancing blows cause a pitch, yaw or roll rotation to the

insect, depending on the point of impact. An impact on the wing is shown in Fig.8c and

Video S1. The mosquito rolls an amplitude of q ⇡ 50�

⇡ 0.9 rad with a contact duration

t = 10�2 s with the drop. The insect subsequently recovered its original position in 10�2

s. We can estimate the forces involved using the geometry of the insect and neglecting

aerodynamic losses in this short duration. The torque applied by the drop is r ⇥ F = Ia ,

where the mass moment of inertia of the insect I = m2R2
e/2 ⇡ 4 ⇥ 10�5 g·cm2, Re is the
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Figure 9: Mosquito being pushed and tumbled by a vertical jet traveling at 9 m/s. The
graph indicates the time course of the vertical position of the jet and mosquito, shown in
blue and black respectively.

effective radius of its mass, and the force is applied to the wing at a distance r ⇠ 1mm from

the center of mass. Using the observed angular acceleration of a = q/t

2
⇠ 104 rad/s2, we

find the impact force is F ⇡ 3.5 dynes, or nearly two mosquito masses, and from which the

mosquito easily recovered.

If the drop makes a direct hit with the insect’s center of mass, such as between the

wings, a very different outcome from a glancing blow occurs. The insect is pushed down-

ward a distance of several body lengths at the same speed of the drop. This is shown in

Fig.8d and the Video S1. Upon impact the drop remains intact and nearly at the same

speed. These features suggest little force is imparted, in contrast to the splash observed due

to impact upon an immobile surface. A mosquito is always able to laterally separate itself

from the drop and recover its flight (N =17). The mosquito’s falling distance while pinned
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by the drop varies from 5 - 20 body lengths. Thus it is imperative a mosquito does not fly

too low during rain or it will suffer an secondary impact with the ground.

3.2.3 Drop impacts on mosquito mimics

Clearly, mosquitoes are able to survive impacts from both low and high speed drops. In

the collision of two bodies, the outcome is known to be highly dependent on the masses

involved147. We thus hypothesize that mosquitoes survive drop impacts by virtue of their

low mass: specifically, the low mass of mosquitoes causes a falling drop to maintain most

of its speed after impact and apply a correspondingly low impact force to the mosquitoes.

To test this hypothesis, we conducted tests with mimics of the same mass as mosquitoes.

We constructed insect mimics using styrofoam spheres of varying mass (0.4-1.8 mg) and

radius (1.65-2.75 mm), as shown in Fig.10a. Our use of mimics enabled us to investigate

the dynamics of drop impact at drop speeds up to 2.60 m/s, which are closer to the terminal

velocities of raindrops. The mimics were held in place using a solenoid that was trigged to

drop instantaneously by the approaching drop, leaving the sphere momentarily suspended

and poised for impact (Fig.10c). We tracked the position of the drop and spheres, both be-

fore and immediately after impact (Fig.10d,e) to determine their change in velocity. Initial

drop speeds highlighted in Fig.10d,e are 2.3 and 0.31 m/s respectively. We generated drops

with mass ratios of m1/m2 = 1 - 300 with respect to our mimics. We expect the behavior

of the impact within the range m1/m2 = 1 - 50 to be dynamically similar to our mosquito

experiments.

Consider the collision of a drop of mass m1 and speed u1 with a stationary insect of

mass m2 hovering in mid-air. From our experiments of direct hits with mosquitoes, we

observed the collision is inelastic, namely, that the insect and drop adhere immediately

after impact into a combined lump of mass (m1 +m2) of speed u0 (Fig.10b). Conservation

of linear momentum indicates the final velocity u0 of the combined mass system is

u0

u1
=

✓
1+

m2

m1

◆
�1

. (3.1)
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Figure 10: (a) Insect mimics composed of variably sized styrofoam spheres. Both small
and large size are shown with respect to a drop. (b) Schematic of inelastic impact be-
tween drop and insect. (c) Schematic of apparatus used to strike insect mimics with drops,
where (A) Nozzle, (B) Infrared laser sensor, (C) Controller, (D) Power supply, (E) Pull-
type solenoid, (F) Material holder. (d-e) Video sequences of drop impact onto small (d)
and large (e) insect mimics with respect to the drop. Graphs indicate the time course of the
vertical positions of the drops and mimics, shown in blue and black respectively. Note, in
both cases, the velocity of the drop is only slightly influenced.

Measurements of the dimensionless drop speed after impact u0/u1 are given in Fig.11a for

a range of dimensionless drop masses m1/m2. The drop is only slowed slightly (2-17%).

Notice that direct impacts, which cause no rotation, follow the prediction in Eq. (3.1) well.

Departure from the prediction occurs when a drop glances the mimic, rotates around it, and

pulls it downward. More kinetic energy is lost in this rotation, as compared to the direct

impacts.

The blue X in Fig.11a corresponds to a direct impact with a mosquito and fits the

prediction, Eq. (3.1), well. Here, the final velocity u0 = 0.9u1, indicating the drop’s speed
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decreases only 10%: the drop continues in its path unimpeded by the mosquito. It is

noteworthy this result is strongly dependent on the mosquito’s low mass. For instance,

according to Eq. (4.1), a much heavier dragonfly with a mass of 1 g will cause the drop to

decrease in speed by 91%, stopping the drop in its tracks.

From our tests with mimics, we observed raindrops do not splash upon mosquitoes, but

simply deform. We rationalize this surprising result by comparing drop deformation c in

our experiments to the results observed by Clanet et al. 2004148. For water, Clanet et al.

2004 found a relation for the drop deformation, c/R1 ⇠ We1/4, when a drop impacts a

solid surface, where We= ru2
1R1/s . In particular, they observed a drop with R1 = 1.65 mm

impacting rigid plastic at u1 = 0.81 m/s experienced a maximal deformation of c/R1 = 1.1

and did not splash. The highest c/R1 value we witnessed in our mosquito mimic experi-

ments was a lower value of 0.77 (Fig.11b) and so we conclude splashing on mosquitoes is

not possible.

Furthermore, we can predict the deformation radius of drops at various impact speeds

using methods inspired by those of Okumura et al. 2003149. Using a coordinate frame

fixed on the drop, the relation between the change in speed of a drop u1 �u0 and its internal

pressure p is given by Euler’s equation,

r

D
Dt

(u1 �u0) = �5p+rg. (3.2)

Assuming the drop’s radius undergoes a small deformation during impact, we may scale

the duration of impact

t ⇠ c/(u1 �u0) (3.3)

and the pressure gradient

5p ⇠ s c

2/R3
1 (3.4)

where s is the surface tension of water. Euler’s equation at low Bond numbers (Bo=Drgl2/s=

0.003 - 0.009 as found in our experiments), yields

r(u1 �u0)2R3
1 ⇠ s c

2. (3.5)
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The dimensionless deformation may be written as

c

R1
⇠ We

1
2

✓
m1

m2
+1

◆
g

(3.6)

where We = ru2
1R1/s and the predicted exponent g from literature is -1. Our measurements

of the dimensionless drop deformation c/R1 are shown in Fig.11b. Our power-law fit

for our drop deformations is excellent (with an R2 value of 0.93), and moreover has an

exponent of -0.85, very close to the prediction of -1. Thus we find drop deformation is

inversely proportional to drop size: a small drop suffers a larger change in speed and larger

deformation than a large drop, keeping all other conditions the same.

3.2.4 Impact force by a raindrop

If drops do not splash on mosquitoes, we can easily estimate the force of direct impacts

on the mosquito. During inelastic impact, a mosquito experiences a change in momentum

m2u0 over an impact duration t , yielding an impact force

F =
u0m2

t

=
u1j

t

(3.7)

where the reduced mass of the system is j = m1m2/(m1 +m2) and the measured range of

impact durations was t ⇡ 0.5-1.8 ms. In the limit of m1 ⌧ m2, the force scales as m1u1/t ,

where m1 is small. This scaling indicates that the applied force decreases in proportion

with insect size, consistent with our hypothesis.

Fig.11c shows the associated acceleration scaled by gravity, experimentally measured

on our insect mimics. At first glance it appears that this force is quite high, as shown by

the range of accelerations of 100-300 gravities (g), equivalent to 50-150 mosquito weights.

However, this range is two orders of magnitude less than impact on a unyielding surface

(10,000 dynes); moreover, it amounts to very low absolute values that the insect can clearly

survive. For example, a 2 dyne mosquito experiencing 300 g will feel a force of 600 dynes

or 0.61 grams-force, the weight of a small feather. Moreover, these estimates remain robust

when we increase the speed of the drop to terminal raindrop speeds. The 6 mosquitoes
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struck by jets, as demonstrated in Fig.9, experienced 80 ± 35 g, a fraction of the force due

to a direct impact. Glancing blows, which cause tumbling, vastly reduce impact force.

Although the impact force of F ⇡ 200-600 dynes is many times the insect’s body

weight, it is easily survivable because the insect’s exoskeleton enables small insects to

support large loads150. To confirm this, we performed compression tests using an analyt-

ical balance and a micromanipulator to determine mosquito’s threshold to force. When

subjected to a sustained compressive force, a mosquito survived up to about 3,000 - 4,000

dynes (N=3) and was still able to fly. When subjected to a larger force of 8,000 - 10,000

dynes, the mosquito did not survive. Since these values exceed by an order of magnitude

the impact forces applied by raindrops, we conclude a flying mosquito cannot be killed by

the impact of falling rain.

3.3 Discussion

We performed raindrop-impact experiments on both mosquitoes and their mimics, finding

that the momentum and force imparted to the insect is determined entirely by the insect’s

mass relative to the drop. The mosquito is so lightweight that the resulting force imparted to

it is low, enabling a mosquito to survive flying in the rain. This result is in stark contrast to

the resulting force on immobile surfaces for which splashing and large momentum transfers

occur.

Although the raindrop force imparted to a mosquito is low, the mosquito’s low mass

causes the concomitant acceleration to be quite high. Insects struck by rain may achieve

the highest survivable accelerations (100-300 g) in the animal kingdom. In comparison,

the current champions of generating acceleration are fleas, which experience 135 g when

jumping151. The similarity between these maximal accelerations may suggest a fundamen-

tal limit to survival among organisms.
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Figure 11: Relations between dimensionless drop mass and (a) dimensionless final drop
velocity, (b) dimensionless drop deformation ratio, and (c) object acceleration in gravities.

Mosquitoes may experience life-threatening impacts if flying very low to the ground.

Drops impacts in quick succession too pose dangers if the impacts are sufficiently direct

to push a mosquito downward. Without sufficient distance to recover from impact, the
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insect could strike the ground with the speed of a falling drop or be immersed in pools

of water from which it cannot escape. Such an effect was evidenced in our jet and drop

chamber experiments. A mosquito which landed into a puddle ultimately perished, not

from the impact of drops, but by drowning due to adhesion of its body with the water

surface. Although the insect is covered in water-repellent hairs, these hairs do not seem

to confer any advantage with respect to the force imparted. The hydrophobicity however

may be advantageous in enabling the insect to separate from the drop as is necessary for

recovery post-impact. The hairs may also be advantageous in surviving puddles.

It remains unknown whether flying insects can dodge raindrops, given their remarkable

abilities to fly sideways and take-off in reverse11. Mosquitoes were unable to employ drop-

avoidance maneuvers in our experiments. Their maximum flight speed152 is about 1 m/s,

which is far less than the average raindrop speed145 6 - 9 m/s. Suppose a mosquito were

visually aware of incoming objects within a radius of 10 cm. Given the speed of raindrops,

it would have 10 ms to move out of the path of an incoming drop. If the mosquito could

achieve half of its maximum speed in avoidance, it would travel a distance of 0.5 cm in

10 ms, which is insufficient to avoid collision in most cases. However, it may make the

difference between a direct and a glancing blow.

In this study, we only studied drop impacts from above. If rain falls vertically, the

relatively slow flight-speed of mosquitoes will not appreciably increase the frequency of

frontal impacts. Even so, it is advantageous for an insect to fly as quickly as possible when

flying from one dry area to another through rain to decrease the total number of impacts

from above153.

Studies of aircraft24–26 and flying animals17 have shown rain acts to slow flight. In

contrast, mosquitoes may be propelled forward by a glancing blow in their hind region.

Such events could be a hazardous to the flier when flying close to other objects. Design

parameters for MAVs, like those pictured in Fig.12 may be adapted from the body plan

of mosquitoes. For instance, hydrophobicity allows glancing drops to roll off the body
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quickly. Sprawled legs create an aerodynamic freeing torque that allows the mosquito to

separate from the drop during direct impacts, minimizing the distance pushed upon impact.

a b

Figure 12: MAVs created by (a) R. Wood at Harvard University and (b) G. de Croon at
the Delft University of Technology.

Calculating impact force using deformation was not possible. Though our experiments

show momentum transfer fits theoretical predictions perfectly (Fig.8a), we are unable to

use deformation data to predict other quantities. Deformation is dependent highly on im-

pact orientation, which is difficult to reproduce consistently, and curvature of insect mimic

which our theory lacks.

3.4 Chapter Summary

We perform raindrop impact experiments on free-flying mosquitoes and their mimics. We

find mosquitoes can survive, without injury, a collision with a terminal velocity raindrop.

Mosquitoes can experience two types of impact, glancing and direct. Glancing impacts,

which cause rapid body rotation, vastly reduce impact force. Direct impacts occur when

a raindrop impacts a mosquito’s center of mass in an inelastic collision, pushing it down-

ward many body lengths. From conservation of momentum, we predict the post-impact

velocity of an insect based on its mass for direct impacts. Through a series of videos with

similarly sized mimics to mosquitoes, we measure impact acceleration and discover that

flying insects with the mass of a mosquito can undergo upwards of 300 g of acceleration

upon impact. The acceleration is survivable by mosquitoes because their low mass renders
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the impact force minimal, no more than the weight of a small feather. In our supporting

theoretical study, we pay particular attention to drop deformation, noting that drops im-

pacting mosquitoes will not splash. Larger insects, and smaller drops, will undergo larger

deformations.
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CHAPTER IV

RAINDROPS PUSH AND SPLASH FLYING INSECTS

“Rain is grace; rain is the sky descending to the earth; without rain, there would be no

life.” -John Updike

In this combined theoretical and experimental study, we investigate drop impact onto

free bodies of varying mass and size. By varying target mass and size, we are no longer

restricted to the pushing impacts observed in Chapter 3. In §4.1, we begin by present-

ing the observed impact outcomes and corresponding acceleration and forces applied. In

§4.2, we proceed with a mathematical model for predicting impact outcomes. We compare

these theoretical predictions to our experimental measurements in §4.3, paying particular

attention to the prediction of the impact mode outcome and impact force on biological and

synthetic flyers. We discuss our theoretical simplifications and avenues for future research

in §4.4, and summarize our conclusions in §4.5.

Fig.13 shows the relation between non-dimensional mass m2/m1 and effective radius

R2/R1, where m1 and R1 is raindrop mass and radius, respectively, m2 is the insect mass,

and R2 is taken to be half the wingspan, of 21 insects from literature123–133. We find insect

wingspan scales with mass as W ⇠ m0.44
2 (R2 = 0.91), where mass spans 1 - 1200 mg and

wingspan W spans 2 - 50 mm. In this thesis, we build insect mimics within this range to

investigate how the size of insects affects drop collisions.

4.1 Experimental Results

We perform a series of drop impact experiments, filmed using a high speed camera. Drops

strike three species of live insects, including mosquitoes, fruit flies and houseflies. In ad-

dition, we film the drop impact of 28 insect spherical and cylindrical insect mimics. We
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Figure 13: The relation between radius ratio R2/R1 and mass ratio m2/m1 of in-
sects123–133 and flying robots2–4,6. Boundaries between impact modes are drawn from
theory. Insects and robots are listed in order of increasing mass.

categorize the impacts into three distinct modes, pushing, splashing, and coating (Video

S2). Fig.14 shows the observed modes of impact, based upon the mass and size of the

mimic. In this section, we introduce each of the modes and provide measurements of the

impact force. For the discussion henceforth, we consider an incoming drop of mass m1 = 5

mg, radius R1 = 1.1 mm, and speed u1. Our choice of raindrop size corresponds to an

average raindrop in nature16,145,154. The drop collides with a spherical insect of mass m2

and radius R2 hovering in mid-air.

4.1.1 Pushing

Mimics of mass less than 3 mg represent the smallest insects, such as mosquitoes, black-

flies, and fruit flies, which account for 20% of the mimics considered. These mimics are

shown by the seven blue points in Fig.14, and the insects they represent by the four leftmost

symbols in Fig.13. Such insects have less mass than raindrops, but comparable wingspan

to a raindrop. (Table 5). Experiments in this mass range reveal that drops, surprisingly, re-

main intact during impact. Fig.15a shows a pushing impact with a 1 mg mosquito; Fig.15b
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ory. Black outlines surrounding data points indicate a cylindrical mimic was used, while
the data points without borders indicate a sphere was used.

shows a qualitatively similar impact with a styrofoam sphere of mass 0.6 mg.

During impact, the drop is deformed, increasing in radius as much as 80%, but still

insufficient to cause breakup, which requires a radius increase148 of more than 300%. The

contact region of the impact remains small, constrained to the top hemisphere of the mimic.

After impact, the mimic remains trapped under the drop, and relative motion ceases be-

tween the two. Neglecting aerodynamic drag, conservation of linear momentum yields the

final velocity u0 of the combined mass system is

u0

u1
=

✓
1+

m2

m1

◆
�1

. (4.1)

Thus, the new falling speed of the combined drop-mimic is determined by the masses of

each. For the smallest insects, this falling speed is often quite close to the initial raindrop

speed. In this regime, fruit flies fall the fastest with 95% percent of the raindrop speed;

mosquitoes and black flies the slowest with 80-90% the speed. We will apply the model
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Figure 15: Pushing. (a) A mosquito and (b) a styrofoam mimic pushed downward by a
falling drop. The graphs show the time course of position of the targets (black) struck by a
drop (blue). The pink shaded area denotes the duration of contact with the drop.

of inelastic impact, given in Eq. (4.1), as an estimate of other drop-mimic speeds in our

modeling in §4.

4.1.2 Splashing

The vast majority of insects in Fig.13 have mass 10 mg to 1 g and wingspans ranging from

2 mm to 50 mm. Examples include the plume moth, crane-fly, and bumblebee. These in-

sects are generally heavier than raindrops and have wingspans much larger than a raindrop

diameter (Table 5). Fig.16a shows a tethered housefly which causes an impacting drop to

shatter. Fig.16b shows splashing on a wooden sphere, where the drop begins to break apart

prior to the entire drop making contact. This mimic is accelerated only slightly on impact.

Mimics which are splashed are denoted by the green points in Fig.14.

4.1.3 Coating

Since flying insects are all less dense than water, insects of comparable size to a raindrop,

but heavier in mass, do not exist. For the sake of completeness, we investigated the impact

of raindrops on objects of mass 1 mg to 1 g but of comparable size to a raindrop (Table 5).

Such objects would correspond to an insect standing atop a hard unyielding surface such as
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Figure 16: Splashing. (a) A tethered housefly and (b) wooden sphere experiencing a
splashing impact. Graphs (a) and (b) show the position (open points) of the bottom edge of
a raindrop. The dashed lines show the position of mimic if no impact occurred. The pink
shaded area denotes the duration of contact with the drop.

Table 1: Impact mode requirements and characteristics in relation to drop mass m1 and
radius R1, and target mass m2 and radius R2.

Impact'
Mode'

Defini0on'of'
Mode'

Condi0ons'for'
Mode'

Accelera0on'
of'Target'

Targets'

Insects' Mimics'

Push'
drop'remains'

intact'
� 1! ≤  1! high'

mosquitoes,'
gnats'

styrofoam'

Coat'
drop'

surrounds'
object'

�  1! �  1!
medium';'

low'
tethered'
fruit'flies'

metals'

Splash'
drop'

fragments'
upon'impact'

>  1! �'1' negligible'
bees,'

cicadas,'
dragonflies'

woods,'
metals'

€ 

m2

m1

€ 

R2
R1

€ 

m2

m1

€ 

R2
R1

€ 

R2
R1

€ 

m2

m1

One example is shown by the fruit fly tethered to a thin wire in Fig.17a. If the insect

were untethered, a pushing impact would occur. However, the wire resists the motion of the

insect, causing it to be coated by the drop. As shown by Fig.13, most insects are too large

and lightweight to be coated. Coating impacts would be maladaptive to insects because

they increase the surface area in contact with the fluid.
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Figure 17: Coating. (a) A fruit fly and (b) steel sphere mimic coated upon impact. Graphs
(a) and (b) show the position (open points) of the bottom edge of a raindrop. The dashed
lines show the position of mimic if no impact occurred. Closed points show the vertical
position of the mimic. The pink shaded area denotes the duration of contact with the drop.

Fig.17b shows an untethered steel sphere coated by a raindrop. The drop flows around

the mimic, covering its entire surface before continuing onward. During this process, the

2.2 m/s drop accelerates the mimic only slightly, increasing its velocity from 0.26 to 0.58

m/s. Most of the momentum of the drop is not transferred to the mimic, but instead flows

around the target. After striking the object, the fluid re-forms into a drop, momentarily

encapsulating the mimic before draining. Mimics which were coated are denoted by the

red points in Fig.14.

We further recognize a mode of impact which is a combination of splashing and coating,

shown by the turquoise points in Fig.14. In this mode, part of the drop coats the insect while

part splashes, and we denote such impacts as a coating-splashing transition.

Rain is known to capture airborne particles, such as pollen and dust, as it falls155. Based

on our observations, small particles impacted dead-on by raindrops will be encapsulated by

a drop until collision with the ground. One of the very smallest insects, the parasitic wasp

with a mass of about 0.03 mg123, would likely succumb to the same fate.
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4.1.4 Impact acceleration

We rate impacts based on acceleration and impact force, which we discuss in turn. Fig.18

shows the mimic’s acceleration in terms of number of gravitational accelerations, g = 9.81

m/s2. Pushing and coating accelerates impacts by 100 - 400 g. The splashing region has

much lower acceleration (20 - 50 g). This lower effectiveness of momentum transfer can

be observed in the fragmented droplets, continuing downward or radially from the mimic.

To give perspective on the magnitude of these accelerations, we note the human156 limits

for acceleration are about 50 g, the limits for fleas151 jumping are 135 g. In comparison,

impact by a falling raindrop can generate even higher accelerations.

10−2 10−1 100 101 102 103100

101

102

103

m2 / m1

a im
pa

ct
 / 
g

Coating Coating-
Splashing 
Transition 

Splashing Pushing 

m2 / m1 = c  

Figure 18: The relation between acceleration in number of gravities aimpact/g and mass
ratio m2/m1, for mimics struck by drops falling at 2.2 - 5 m/s. The line of best fit has R2 =
0.45. Delineated regions denote impact outcome, based on experimental observation.

The clear trend in Fig.18 suggests that a scaling is possible. For impact of a drop of

constant size and drop speed, we expect the acceleration aimpact to scale as the ratio of

object speed u0 to impact time t ,

aimpact = u0/t. (4.2)
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By substituting in Eq. (4.1) for u0, aimpact scales as

aimpact =
1
t

u1

1+m2/m1
⇠

b
c+m2/m1

. (4.3)

The fitting constants b = 1.45 ⇥ 105 m/s2 and c = 60 are found using the method of least

squares. Although the fit is modest (R2 = 0.45), the trend line in Fig.18 encapsulates the

trends observed. For mass ratios m2/m1 = 10�2
� 10, which translates to m2 = 10�4

�

0.05 g, impact acceleration is roughly constant. After a mass ratio of 10, the acceleration

decreases nonlinearly with mimic mass. In particular, an increase in mass ratio by a factor

of ten from 20 to 200 causes the acceleration to decrease by a factor of five.

The magnitude of the absolute force provides further insight into the damages that

a flying insect may face. Impact acceleration may easily be translated into a maximum

impact force Fimpact such that

Fimpact = m2aimpact. (4.4)

Fig.19 shows the relation between maximum force Fimpact and the mimic-drop mass ratio.

Surprisingly, the trend is opposite to the acceleration trend in Fig.18, for which the smallest

mimics receive the highest acceleration. Instead, here, the heaviest mimics sustain the

largest forces (102
� 104 dynes), with the largest force at 4 ⇥ 104 dynes. This is close to

the maximum force applied by an unyielding surface, F ⇠ m1u1/t ⇡ 7 ⇥ 104 dynes. The

lightest mimics sustain forces of 100 dynes, indicating that their low mass is effective in

reducing the force of impact.

Based on our measurements of impact force, we observe splashing impact is the least

effective at transferring momentum. The mimics in the splashing region in Fig.18 likely

experience half of the impact acceleration they would have if the drop had remained intact.

In the next section, we present a mathematical model for predicting the mode of impact

based on insect size and mass.
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Figure 19: The relation between impact force Fimpact (circles) and mass ratio m2/m1, for
mimics struck by drops falling at 2.2 - 5 m/s. The relation between mimic weight (squares)
and mimic mass is shown for comparison. Delineated regions denote impact outcome,
based on experimental observation.

4.2 Model

In this section, we present a theory for the mass and size range for the three distinct modes

of impact, shown graphically in Fig.20. In the push regime, the impact is inelastic, and

so the kinetic energy may be easily calculated using equation Eq. (4.1). We will use this

relation to calculate the conditions for the push-coat and push-splash thresholds. We seek a

relation between the object mass and radius that yields an impact that is just on the border

of pushing and coating. Our strategy is to use conservation of energy to yield a relation

between two regimes. We use a similar method for calculating the conditions distinguishing

a push from a splash impact. Lastly, we consider a force balance to investigate the threshold

between coating and splashing. In the theory below, this insect is assumed to spherical for

simplicity, but modifications can be made for other insect shapes.

4.2.1 Dimensionless Parameters

In the following analysis of raindrop impact onto a free-flying insect, a number of dimen-

sionless groups arise upon non-dimensionalization of our governing equations. The groups

48



R2#
u1#

R1#

g#
σ

u’#

R1"+"χ#

Push"

h#
Coat"

e0#

Splash"

δ#

m1#

m2#

Figure 20: Schematic diagram illustrating drop impact modes. A drop initially strikes the
unsupported target, and based on the relative size and speed of the two objects, continues
onward to one of three modes of impact. Here we define variables used throughout our
analysis, where d is the boundary layer thickness upon drop deformation, c is the increase
in drop radius, h is the shell thickness of a coating drop, and e0 is the film thickness during
splashing.

are typical of both two-body impact problems, e.g., Equation 1, and in studies of drop

impact. The groups include:

a =
m2

m1 +m2
=

mimic mass
combined mass

b =
R1

R2
=

drop radius
mimic radius

Re1 =
R1u1

n

=
drop inertia

drop viscosity
We1 =

ru2
1R1

s

=
drop inertia

drop surface tension
(4.5)

The first two groups involve dimensionless groups describing relative masses and sizes

of the two bodies. The group a relates the inertia of the insect to the combined inertia

of the drop-cum-insect, and emerges upon consideration of the kinetic energy before and

after impact. The group b relates the relative sizes of the two objects, which is important

in considering surface energy involved. Specifically, b

2 relates the surface areas of the

drop to the mimic. The next two dimensionless groups are quite common in drop impact
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problems. Reynolds and Weber numbers for the drop size and speed considered in our

model are Re1=5300 and We1=365 respectively, where the properties of the drop include

water density r = 1000 kg/m3, kinematic viscosity n = 10�6 m2/s, and surface tension

s = 72.8 dynes/cm. The Reynolds number is used in calculation of dissipated energy

within the boundary layer within the drop as is strikes the mimic. The Weber indicates the

importance of the drop’s inertia to capillarity. In studies of impact on unyielding surfaces,

large Weber number typically indicates splashing29. However, in the case of impact on a

free target of variable mass, the outcome depends on the mass and size of the object as we

determine in the analysis below.

4.2.2 Push-Coat Threshold

We employ an energy balance on the drop before and after impact157,158 to predict the

transition from a drop’s pushing its target downward to the drop coating its target. Denoting

the post-impact energy using primed notation, conservation of energy states

Ek +Ep +Es| {z }
before impact

= Ek
0

+E p
0

+Es
0

+Ed
0

| {z }
after impact

, (4.6)

where Ek,Ep,Es, and Ed are kinetic, potential, surface, and dissipative energies, respec-

tively. Mass conservation dictates the mass of the drop remains unchanged throughout the

impact: namely, m1 = m0

1. We take Ep = E p
0

by assuming the drop does not substantially

change in elevation with respect to the target just prior to and after the collision.

At the border of coating and pushing, the impact is inelastic and the drop surrounds

a spherical target and remains adhered as in Fig.20. Initial kinetic and surface energies,

Ek and Es, remain unchanged for all impacts. We calculate E 0

s and E 0

d based upon the

lowest-energy coating scenario, considering the flows that occur as the drop deforms from

a sphere to an spherical shell coating the mimic. At conditions away from this threshold, the

assumptions we have made about drop deformation and impact kinetics become inaccurate.

We therefore define a term which captures the error in our calculation of the energy balance
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in Eq. (4.6), given by

DE = Ek +Es �E
0

k �E
0

s �E
0

d. (4.7)

The sign of DE determines which impact mode will be witnessed. During pushing, the

drop does not form a complete spherical shell around the mimic, and so our method over-

estimates the surface E 0

s, and dissipative E 0

d , energies. Thus we expect the error DE to be

negative if the impact is a push. Conversely, a faster incoming drop would flow around

the target and continue past it as in Fig.17. This would lead to more residual kinetic en-

ergy E 0

k than that calculated using an inelastic impact, and so an underestimated E 0

k. Thus,

we expect the error DE to be positive if the impact is a coat. Together, our relation for

distinguishing pushing from coating is:

DE

8
><

>:

< 0 push

> 0 coat
(4.8)

To complete this analysis, we now write relations for all the terms in Eq. (4.7). The initial

kinetic and surface energies of the system may be written as that of a spherical drop,

Ek =
1
2

m1u2
1, (4.9)

Es = 4psR2
1, (4.10)

where r and s are the density and surface tension of water. These energies are converted

into several terms throughout the impact process, including the final kinetic and surface

energies of the drop-cum-mimic, and the irrecoverable dissipation during impact. We now

estimate these final energies of the system post-impact.

The final kinetic energy is estimated as that for inelastic impact,

E
0

k = Ek,inelastic =
1
2

(m1 +m2)(u0)2, (4.11)

where we use Eq. (4.1) to substitute for u0. This equation represents the greatest possible

kinetic energy change for the system, as inelastic impact slows the drop more than other
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impact types. This estimate will be accurate for pushing, but will be an underestimate for

high-speed coating flows in which the fluid continues flowing past the mimic.

We write the final surface energy as that associated with a spherical shell surrounding

its target as illustrated by Fig.20. This surface energy is comprised of the energy in the

solid-liquid surface and the air-liquid surface,

E
0

s = 4psR2
2 (1� cosq)| {z }

solid-liquid surface

+4ps

�
R3

1 +R3
2
� 2

3

| {z }
air-liquid surface

(4.12)

where q is the contact angle of water on the target.

Viscous dissipation arises from the drop’s deformation upon impact. The time-scale

of deformation is t ⇡ 2R1/(u1 � u0). To calculate dissipation, we apply a method, by

Pasandideh-Fard157 and Mundo158, for estimating dissipation during impact of drops onto

flat surfaces. Dissipation occurs as the fluid undergoes shear within the boundary layer.

Using stagnation point flow, this layer can be estimated to be of thickness157

d = 4R1/
p

Re, (4.13)

where the Reynolds number Re =R1(u1 �u0)/n . The viscous dissipation per unit mass38 is

F = µ

✓
∂vi

∂x j
+

∂v j

∂xi

◆
∂vi

∂x j
⇡ rn(u1 �u0)2/d

2. (4.14)

The volume of the boundary layer is approximated by considering the deformation of a

drop into a spherical shell that encapsulates the impacted object. At the end of the impact,

the drop assumes a spherical shell of thickness

h = (R3
1 +R3

2)
1
3
�R2. (4.15)

We model this process as the flattening of a drop of radius R1 to

Rmax =
q

4R3
2/3h, (4.16)

where Rmax is the effective radius of a disc of height h and the original volume of the drop.

The volume of fluid over which dissipation take place is approximated by

W ⇡ pR2
maxd . (4.17)
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The total dissipation, E
0

d , within the drop is

E
0

d =
Z

t

0

Z

W
F dW dt ⇡ FWt. (4.18)

The energy lost due to viscous dissipation may be approximated by substituting F, W, and

t into Eq. (4.18), yielding

E
0

d =
1
2

rnpR2
max

�
u1 �u0

�p

Re. (4.19)

By substituting Eqs. (4.9) to (4.12) and (4.19) into Eq. (4.6) and rearranging, we arrive

at

DE =
1
2
⇥
m1u2

1 � (m1 +m2)(u0)2⇤+4ps


R2

1 �R2
2 (1� cosq)�

�
R3

1 +R3
2
� 2

3

�

�

1
2

rnpR2
max

�
u1 �u0

�p

Re
(4.20)

where m2 and R2 are the only non-constant terms.

We may non-dimensionalize Eq. (4.20) by dividing by rpu2
1R3

1, yielding a dimension-

less energy

DE⇤ = a

"
1�

(Re1)
�

1
2

b (b 3 +1)
1
3
�b

#
+

6
We1

h
cosq � (1+b )

2
3
i
, (4.21)

where our push-coat criteria as

DE⇤

8
><

>:

< 0 push

> 0 coat.
(4.22)

Eqs. (4.21) and (4.22) are physically consistent in light of limits of dimensionless

groups involved. Note the second term in Eq. (4.21) is negative because 0� < q < 180�.

Thus, for very low inertia or very high surface tension, We1 ! 0, DE⇤ decreases, indicating

that pushing the target is now favorable. In the limits of either high viscosity, Re1 ! 0, or

for superhydrophobic targets, cosq ! �1, the dimensionless energy DE⇤ decreases, pro-

moting pushing. We plot the curve given by Eq. (4.21) in Fig.14 to predict the threshold

between pushing and coating, by specifying values of m2/m1 and plotting values of R2/R1

for which DE⇤ = 0. No free parameters are employed in computing the push-coat transition

Eq. (4.20).
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4.2.3 Push-Splash Threshold

In the previous section, we determine the threshold between the push and coat modes. In

coating, we assume the drop completely coats its spherical target. In this section, we use

observations from our experiments to make several modifications to this physical picture to

consider splashing. First, more residual kinetic energy remains in splashing than in coating

at the end of the impact. Second, splashing coats the target less than a coating impact.

In this section, we calculate the final kinetic energy E
0

k using an inelastic impact model,

and the final surface E
0

s and dissipative E
0

d energies using a model for drop deformation,

or flattening, upon impact. If the drop’s initial kinetic Ek and surface Es energies are too

high to be absorbed into surface energy and dissipation, the drop will splash. Our model

for E
0

k, E
0

s, and E
0

d becomes invalid if the drop breaks apart, but remains valid if the drop

stays intact.

We begin with Eq. (4.18) as before, but consider instead the boundary layer volume

W ⇡ p (R1 + c)2
d occupied by a disk of radius R1 + c and height d . We apply a method

we previously used to model the deformation of a drop upon a sphere117. Impact increases

the radius R1 by an amount c ,

c

R1
⇠

p
We1

✓
m1

m2
+1

◆
�1

. (4.23)

A more detailed derivation of Eq. (4.23) may be found in Dickerson et al.. (2012). We use

a scaling factor is 0.7. Combining Eq. (4.23) with Eq. (4.18), and now using R1 + c in

place of Rmax to determine the volume of dissipating fluid W, we arrive at the dissipation

E
0

d ⇡ FWt ⇠

1
2

rnp (R1 + c)2 �u1 �u0

�p

Re. (4.24)

Assuming the drop flattens into a disc upon impact, we estimate the final surface energy

as the sum of the solid-liquid energy and the air-liquid energy,

E
0

s = ps (R1 + c)2 (2� cosq) . (4.25)
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Combining Eqs. (4.9) to (4.11) and (4.23) to (4.25) for the push-splash threshold, we

may rewrite Eq. (4.7) as

DE =
1
2
⇥
m1u2

1 � (m1 +m2)(u0)2⇤+ps

h
4R2

1 � (R1 + c)2 (2� cosq)
i

�

1
2

rnp (R1 + c)2 �u1 �u0

�p

Re
(4.26)

where m2 is the only non-constant term.

We may non-dimensionalize Eq. (4.20) by dividing by rpu2
1R3

1, yielding a dimension-

less energy

DE⇤ =
2
3

a +
4

We1
�

⇣
1+2a

p
We1 +a

2We1

⌘"2� cosq

We1
+

a

3
2

2
p

Re1

#
, (4.27)

and our push-splash criteria as

DE⇤

8
><

>:

< 0 splash

> 0 push.
(4.28)

In Eq. (4.27), we can reason that as m1 increases, the corresponding decrease in the com-

bined mass ratio a will increase DE⇤, promoting pushing. This is consistent with our

experiments, in which decreasing m2/m1 produces smaller drop deformations and subse-

quently, pushing117. Similarly, as the target becomes more hydrophobic, cosq ! �1, DE⇤

will decrease, promoting splashing. We plot the vertical line given by Eq. (4.27) in Fig.14

to predict the threshold between pushing and splashing, by specifying values of m2/m1

for which DE⇤ = 0. Unlike the previous section, the energy balance given in Eqs. (4.26)

and (4.27) has no dependence on R2/R1. Such a result occurs because we assume drop

deformation is unaffected by mimic size in Eq. (4.23). We justify this approximation in

the regime in which mimic radius exceeds drop radius (R2/R1 > 2), which is the reason of

interest, as shown in Fig.14.

4.2.4 Coat-Splash Threshold

At the threshold of coating and splashing, the drop deforms beyond a point where pushing

is possible. The drop flattens sufficiently that it forms a thin film on the top of the target,
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after which two outcomes can occur: it can remains adhered, creating a coat, or shed off

in a ligament or drops, creating a splash. Consideration of attachment or separation from

the target’s curved surface is a solved problem called the teapot effect159. To determine

the conditions for distinguishing a coat from a splash, we consider a force balance between

inertial and adhesive forces for the flow around a curved surface160.

Duez et al.(2010) report a critical Weber scaling that characterizes the transition be-

tween fluid attachment and separation. We apply their theory using the relative velocity be-

tween drop and mimic, u1 �u0 and the length scale given by the film thickness e0 ' R2
1/2R2,

estimated from the Bernoulli equation, to define a Weber number,

We⇤ =
r (u1 �u0)2 e0

s

. (4.29)

A radial force balance equates centrifugal forces with the adhesion forces of the fluid

to the sphere. This force balance can be written in non-dimensionalized form

We µ
R2

2
e2

0
(1+ cosq) (4.30)

During splashing, inertial forces dominate and so Weber number is above the critical value

above. Thus,

We

8
><

>:

< R2
2 (1+ cosq)/e2

0 coat

> R2
2 (1+ cosq)/e2

0 splash.
(4.31)

By equating expressions for We given by Eqs. (4.29) to (4.31), we write the condition for

splashing,

R2 <

"
rR6

1 (u1 �u0)2

s (1+ cosq)

# 1
5

(4.32)

We may non-dimensionalize Eq. (4.32) by dividing by rpu2
1R3

1, yielding a radius ratio

R2

R1
<


a

2We1

(1+ cosq)

� 1
5

(4.33)

A drop with a very high initial velocity, producing a large We1, and a target with a

hydrophobic surface such that cosq ! �1, promotes splashing by increasing the right-

hand-side of Eq. (4.33). We plot the curve specified by the threshold given in Eq. (4.33) by
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specifying values of m2/m1 and plotting values of R2/R1, which satisfy the equality. No

scaling coefficient was required to shift the curve to the intersection of the curves plotted

by Eqs. (4.21) and (4.27).

4.3 Comparison of theory to experiment

Previously, we presented implicit equations, Eqs. (4.21), (4.27) and (4.33), for the mass-

radius coordinates of each impact mode. We use Mathematica to numerically solve these

equations by inputing a mass ratio m2/m1 and calculating a corresponding radius ratio

R2/R1 which solves the equations. Although insects are hydrophobic, we perform experi-

ments with hydrophilic mimics. Thus, we assume in our calculations that the contact angle

of water on the mimics is q = 80�.

We have freedom to choose where to terminate each curve, and so we terminate curves

given by Eqs. (4.21) and (4.27) at their point of intersection. For the push-splash transition,

in Eq. (4.23), we use a free parameter of 0.7. As shown in Fig.14, our theoretical predic-

tions for impact mode match well our experimental observations. Only a few points stray

from their predicted zones. We proceed to use our findings to predict impact phenomenon

on organisms.

4.3.1 Predictions for insects and flying robots

Fig.13 shows the predicted impact modes for various insects. The model predicts that

insects above 100 mg will splash, which seems quite feasible. Inaccuracies are due to our

modeling the insect wing, which is flat, as a curved surface. Consequently, the smallest

insects lie at the coating-pushing border rather than within the push regime. Mosquitoes

in particular are known to be pushed by raindrops117. Another inaccuracy is in the coat

regime: four insects lie just within the coat regime rather than within the push regime.

We apply our model to predict the effects of raindrop impact on flying robots. We

consider four robots, including Harvard’s Microrobotic Fly, Cornell’s Micro-Air Vehicles

I-II and the Delfly2–4,6, whose mass and half their wingspan is given in Fig.13. All robots
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are within the splashing zones. Pushing is not possible, as the robots are 2 � 4 orders of

magnitude too heavy, and 1-2 orders of magnitude too large. Most would need radii two

orders of magnitude less than their current values to be in danger of coating. The Harvard

micro robotic fly is most in danger of coating: if its wingspan were 3 mm rather than 1 cm,

its wings would be coated by the drop. In fact, it is likely that parts of the body which are

more slender than the wings will be coated if they are struck by a drop.

4.3.2 Acceleration and force resistance for small and large insects

We now consider the effects of scaling on the effect of raindrop. Scaling is particularly

useful as flying insect masses range over 6 orders of magnitude, and synthetic flyers span

an additional order of magnitude.

We consider two regimes, the limit of very lightweight and very heavy insects. Small

insects have an impressive ability to survive very large accelerations. For example, fleas

can survive 135 g during jumping, a mosquito 300 g during raindrop impact117. This

increasing tolerance to acceleration at small sizes can be explained using scaling.

Fig.4.3 shows that impact accelerations aimpact/g asymptote to a constant value of 250

gravities for small sizes. This value arises from consideration of Eq. (4.3), for which the

acceleration due to drop impact,

aimpact ⇡

b
c+m2/m1

=
b/c

1+m2/cm1
. (4.34)

For small insects, which have a mass m2 ⌧ cm1 = 0.3 g, the acceleration due to drop impact

approaches a constant, b/cg ⇡ 250 gravities. Although this acceleration is high, smaller

insects, are relatively more capable of surviving accelerations. This increasing strength

at small sizes is due to the strength scaling of materials, observed first by Leonardo da

Vinci, and reported by McMahon161 and Schmidt-Nielson162. Materials have a constant

yield stress, and so the maximum force Fmaterial a material can withstand scales as its cross-

sectional area, Fmaterial ⇠ m2/3
2 . Using Newton’s second law, Fmaterial = m2amaterial, the

impact acceleration a material can withstand scales as amaterial ⇠ m�1/3
2 . As insects become
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smaller, the maximum acceleration a material can withstand will exceed that provided by a

raindrop: amaterial > aimpact. Thus, smaller insects are invincible with respect to acceleration

caused by drop.

As insects increase in size, the force of raindrop impact becomes small compared to

both the insect weight and the force their materials can withstand. Fig.19 shows that as an

insect grows larger, the force from a raindrop asymptotes to a constant value of 104 dynes.

This results from consideration of Eq. (4.4), for which the force due to drop impact,

Fimpact ⇡

bm2

c+m2/m1
=

bm2m1

cm1 +m2
. (4.35)

For large insects, which have a mass m2 � cm1 = 0.3 g, the force due to drop impact Fdrop

approaches a constant, bm1 ⇡ 7 ⇥ 104 dynes. This scaling is adaptive for larger insects,

which become relatively more capable of surviving force. The force of raindrop impact

will be exceeded by both an insect’s weight, scaling as m2, and the force its materials can

withstand, which scale as as m2/3
2 . A small bird with mass m2 = bm1/g = 74 g receives an

impact force equal to its weight. A Ladybird of mass 2 g receives an impact force 1/10 of

its weight.

4.4 Discussion

Our experiments involve several assumptions and simplifications which we review here.

Since fast drops cannot be easily aimed at our mimics, we employ drops of speed u1 = 2.2�

5 m/s, which is 45�75% slower than a terminal-velocity raindrop. Experiments conducted

with terminal raindrops would produce modifications to regimes in Fig.14. Specifically,

coating and splashing would occur for lower radius R2 and mass m2 values. In addition, the

acceleration and force on an insect will increase (Fig.19), as a greater amount of momentum

is available for transfer to the object. Lastly, we assume only spherical drops of fixed size.

However as discussed by Reyssat (2007), raindrops have a range of size and shape. In

particular, our transition lines in Fig.14 may not be robust to changes in drop shape.
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Wings and legs increase the force of raindrop impact by increasing the insect’s aerody-

namic resistance. During the high accelerations applied, these structures provided added

mass to the insect and shift points to the right in Fig.13 and Fig.14. Insects with the largest

wings for their size such as butterflies will experience the greatest deviation from the pre-

dicted trends. Wings induce splashing at mass values smaller than predicted in Fig.13.

Behavior of the insect will not likely influence impact force. The maximum speeds

of most insects is less than 10 m/s, the terminal speed of a falling raindrop163. Even at

slow flight speeds, however, the formation of a boundary layer as a result of wing motion

may help to dispel the smallest drops. The boundary layers formed on discs spinning at

exceedingly high speed may prevent drops from impacting the surface164.

In this study we consider the impact outcome of a raindrop striking an insect. Con-

versely, one might consider the fate of the insect during impact: does it fragment or splash

upon striking an incoming object? From our experiments and theoretical analysis in §5.2,

we conclude that an insect will not break apart from the force of a raindrop impact. How-

ever, as we know from common experience, insect splashing does occur upon impact with

automobiles. This splashing is due to the high impact force imparted by the high mo-

mentum of the automobile. For example, if a 2-mg mosquito is struck by an automobile

traveling at 15 mph = 6.7 m/s, it will experience an impact force of 9,000 dynes, which is

comparable to the force required to kill a mosquito. Larger insects may even splash. If that

same car strikes a 1-cm long 0.3 g insect, which is 150 times heavier than a mosquito, the

insect will experience an impact force of 240,000 dynes. A car traveling at higher speeds

would generate even higher impact forces, which explains why a car driving at 50 mph is

often covered with dead splattered insects.

4.5 Chapter Summary

We perform raindrop impact experiments on free-flying insects and their mimics. By sys-

tematically varying the size and mass of the mimics, we observe three distinct impact
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modes which we refer to as pushing, splashing, and coating. In our supporting theoreti-

cal study, we derive mathematical relations which bound each impact regime based on the

target’s mass and size. These regimes are consistent with our experimental observations.

The push-coat and push-splash transitions are determined from consideration of energet-

ics, whereas the coat-splash transition is determined from the balance of centrifugal and

adhesive forces.

Our study shows how the experience of flying in the rain is strongly affected by body

size. The lightest mimics experience the highest impact accelerations of 300 g, but the low-

est absolute forces of 100 dynes. Conversely, the heaviest mimics experience the lowest

accelerations of 20 g, but the highest impact forces of 4⇥104 dynes. Based on our exper-

iments with both mimics and insects, we predict insects smaller than 2 mg are pushed by

raindrops, whereas larger insects cause raindrops to splash. Consequently, a modern MAV

causes raindrops to splash, and should be designed to withstand this force and to contend

with splashes shed on its body.

We also identify a sub-optimal size for which objects are most poorly suited for coping

with rain. Objects experience both peak acceleration and peak force at a critical mass of

0.3 g, about the weight of a bumblebee. Biological organisms and synthetic flyers should

avoid this mass if they are to minimize acceleration and force due to rain.
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CHAPTER V

FOG DISRUPTS MOSQUITO FLIGHT DUE TO INCREASED

AERODYNAMIC DRAG ON HALTERES

“I’ve just been bitten on the neck by a vampire... mosquito. Does that mean that when the

night comes I will rise and be annoying?” - Vera Nazarian

Half of the world’s population resides in regions where malaria transmission is a risk165.

In 2010, approximately 216 million clinical malaria episodes resulted in an estimated

655,000 deaths. Transmission of malaria to humans occurs through the bite of an infected

female mosquito. In this chapter we probe the limits of flight ability of Anopheles freeborni

mosquitoes in heavy fogs hyperdense air. Our experimental methods for insect handling

and imaging are provided in Chapter 2. In §5.1, we present our measurements of the likeli-

hood and promptness of flight failure in heavy air, a calculation of the aerodynamic forces

involved. To show such forces are sufficient to perturb halteres, we laden them with addi-

tional mass. In §5.2, we present a discussion of our results and avenues for future work,

and summarize our main points in §5.3.

5.1 Experimental Results
5.1.1 Flight failure in fog and heavy gas

We performed hundreds of experiments with male and female Anopheles freeborni flying in

both fog and 38 mixtures of gas with various densities. Fog here refers to the output from a

commercial humidifier, consisting of 5�35 µm diameter water droplets. The microscopic

droplets act to increase the aggregate fluid density through which a mosquito flaps. We

define flight failure as a rapid descent to the ground and the subsequent inability to resume
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flight. Failure is observed when a mosquito encounters a stream laden with fog particles

or when introduced to a quiescent medium with suspended fog particles. Landing on the

floor of a container is atypical behavior, as mosquitoes prefer to land on walls and ceilings,

despite the species166. We observe less than 10% of individuals from a group (number of

trials, N = 20) of Anopheles freeborni choose to rest on the floor of their container under

normal conditions.

Every case of flight failure (N > 100) involves pitching (Fig.21c, Video S3) or rolling

(Fig.21d, Video S4), generating inversion or steep angles of orientation with respect to the

horizontal flight position. When mosquitoes have rotated 90� relative to vertical, the lift

generated by wings cannot maintain their position and they quickly begin falling down-

ward. In other instances, the mosquito maintains its typical orientation and even generates

lift in fog, or heavy gas, for fractions of a second, as shown by the upward flight in Videos

S3, S4, and S5. Nevertheless, these periods of normal flight, which occur in approximately

10% of the flights filmed, are so sporadic and unstable that mosquitoes inevitably fall to

the floor within seconds of introduction of heavy gas. Fog particle deposition on the wings

or body is not the cause of flight instability, as we observe flight may resume immediately

after fog particles are removed from the air, and that a mosquito blanketed with small drops

on its wings and legs retains the ability to fly in dry air.

Mosquitoes behave similarly in both fog and heavy gas, indicating increasing the aggre-

gate density of the medium is the cause of flight failure, rather than the particulate nature

of fog. A heavy gas with the same average density as fog causes nearly identical flight

failure, as shown in Video S5. Heavy gas is also transparent, indicating that the opacity

of the medium and occlusion of vision is not a factor in their flight failure. In Fig.22a,b

we present flight tracks for mosquitoes in normal air and hyperdense air, respectively. As

demonstrated by the flight track in Fig.22a, a mosquito can remain aloft for more than 4

seconds before landing in normal air. Conversely, in hyperdense air, the descent behavior

is clearly distinct. Fig.22b shows the mosquito falls quickly from the ceiling to the floor of
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the container. The mosquito falling in the most dense gas (red) shows the least control over

flight, falling at an average falling speed of 27 cm/s over 0.55 s.

~250%μm%

~120%μm%

a%
b%

c%

d%

Haltere%
Wing%

0%ms% 6%ms% 16%ms%

0%ms% 37%ms% 65%ms%

Figure 21: (a) An Anopheles freeborni mosquito in flight. The location of mosquito’s
haltere boxed in red. (b) A mosquito haltere. A video sequence of a mosquito pitching
forward (c) and rolling (d) while aloft in a stream of fog particles. The red arrow denote
the directingon normal to the mosquito’s back.

We measured the flight time before grounding when the mosquito is dropped from a

height H = 15 cm, in air made heavier by the addition of R134a. Humidifier fog was not

employed in this experiment due to its propensity for settling and aggregating on container

walls. Fig.23a shows descent time becomes both shorter and more predictable with in-

creasing gas density. The fastest possible descent time is T = 0.11 s, the time needed to fall
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Mosquitoes behave similarly in both fog and heavy gas, indicating the average density of the
medium is the cause of the flight failure rather than its particulate nature. Despite their size,
halteres are massive in comparison to the fog particles with diameter dp = 5 � 35 µm, a ratio of
100:1. At densities where flight failure begins, more than 300 fog particles are contained within
1 mm3 of a mosquito’s flight medium. The flapping halteres will encounter upwards of 2,000 of
these particles in 1 second of flight. A heavy gas with the same average density as fog causes
nearly identical flight failure, as shown in Supp. Movie 3. In Fig.2a,b we present flight tracks for
mosquitoes in normal air and hyperdense air, respectively. As seen in Fig.2a, in normal air, the
mosquito sustains flight for more than 4 seconds before landing. Conversely, in the hyperdense air,
the descent behavior is clearly distinct. Fig.2b shows the mosquito falls quickly from the ceiling
to the floor of the container at an average falling speed of 27 cm/s over 0.55 s.

We measured the flight time before grounding when the mosquito is dropped from a height
H = 15 cm. Fig.3a shows descent time becomes both shorter and more predictable with increasing
gas density. The fastest possible descent time is T = 0.11 s, the time needed to fall a distance of
H at terminal velocity, 136.5 ± 9.5 cm/s (N=10). The shortest descent times observed are twice
this minimal time, indicating mosquitoes are creating drag by attempting flight. During descent,
mosquitoes flap their wings at varying frequencies (150�400 Hz), but continue to fall on their sides
or inverted.

Fig.3b shows the relation between gas density and proportions of mosquitoes able to sustain
flight for over 3 seconds. Over an intermediate range of gas density, 0.9 � 1.6 kg/m3, mosquitoes
can stay aloft indefinitely. The corresponding success rate in this range is slightly less than 100%
because of experimental error. Specifically our inability to deposit the mosquitoes at the same
orientation causes a few to be released upside-down entry into the container and, if unable to
recover, strike the ground. At higher gas densities, between 1.6 and 2 kg/m3, only 50 % mosquitoes
can maintain steady flight. At the highest gas densities tested, greater than 2 kg/m3, mosquitoes
are unable to maintain flight. To investigate further the mechanism for flight failure, we consider
in the next section the aerodynamic forces on the mosquitoes’ flapping halteres.

3.2 Flight failure due to haltere-fluid interaction

In our previous section, we identified the conditions where mosquitoes can fly. Specifically, as we
saw in Fig.3b, mosquitoes fail to sustain flight in humidifier fog, with a density of 2 kg/m3, and
remain grounded until the fog particle concentration falls below 1.7 kg/m3. We hypothesize this
inability to fly is caused by the interaction between the mosquito haltere and ambient fluid.

We measure haltere motion and geometry using high speed videography and scanning electron
microscopy, respectively. Halteres are drumstick-shaped, with a characteristic length of ` = 250
µm and diameter, at the widest point, of dh = 120 µm, as shown in Fig.1a,b. When tethered
mosquitoes are stimulated by hand, they flap both wings and halteres for brief periods using a
full range of motion. We observe haltere flapping is sinusoidal with similar kinematics for all gas
densities tested (0.2 � 4.2 kg/m3). Specifically, wings and halteres flap at a frequency of f = 375
± 42 Hz (N=19) in normal air, similar in magnitude to flapping frequency in dense fog of f = 303
± 37 Hz (N=9) (P-value < 0.0001). Therefore in the following calculations, we use a typical and
reasonable flapping frequency of f = 300 Hz. The haltere flapping amplitude is A = 97 ± 2�.
The peak velocity of the haltere-tip in simple harmonic motion is Vmax ⇠ 4A2f` = 0.74 m/s, at a
flapping frequency of f = 300 Hz, and flapping amplitude A = � radians.

The total force on the flapping haltere in hovering flight consists of a sum of drag force FD,
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Figure 22: Three columns designate flight in normal air, fog or dense gas, and flight with
glue on halteres respectively. Flight tracks (a-c) for a mosquito flying in normal air (a);
in gas of density r = 1.75 (blue), 1.9 (pink), 2 (red) kg/m3 (b); with glue deposited on its
halteres (c). Schematics (d-f)of haltere flapping in normal air (d), in fog or heavy gas (e),
with glue deposited on the tip (f).

a distance H at terminal velocity, 136.5 ± 9.5 cm/s (N=10). The shortest descent times ob-

served are twice this minimal time, indicating mosquitoes are creating drag by attempting

flight. During descent, mosquitoes flap their wings at varying frequencies (150�400 Hz),

but continue to fall on their sides or inverted.

Fig.23b shows the relation between gas density and proportion of mosquitoes able to

sustain flight for over 3 seconds. Over an intermediate range of gas density, 0.9 � 1.6

kg/m3, or ± 0.4 kg/m3 from standard density, mosquitoes can stay aloft indefinitely. The

corresponding success rate in this range is slightly less than 100% because of experimental

error. In our experiments, we do not control for initial orientation of the mosquito. Thus, a
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few mosquitoes are released upside-down entry into the container and, if unable to recover

in less than one second, strike the ground.
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Figure 23: (a) Relation between gas density r and descent time for mosquitoes suddenly
introduced into a container of dense gas. Error bars denote ± one standard error. Trials
were performed once per animal. Points without error bars denote a single trial at the
specified gas density. The dotted line a the bottom bounds the minimum time required
to fall the container depth at terminal velocity. (b) Relation between gas density r and
percentage of mosquitoes able to sustain flight. Each bar represents N= 4�12 trials.
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At higher gas densities, between 1.6 and 2 kg/m3, only 50 % mosquitoes can maintain

steady flight. At the highest gas densities tested, greater than 2 kg/m3, no mosquitoes

are unable to maintain flight. To investigate further the mechanism for flight failure, we

consider in the next section the aerodynamic forces on the mosquitoes’ flapping halteres.

5.1.2 Flight failure due to haltere-fluid interaction

In our previous section, we identified the air densities in which mosquitoes can fly. Mosquitoes

fail to sustain flight in humidifier fog, with a density up to 2 kg/m3, and remain grounded

until the fog particle concentration falls below 1.7 kg/m3. We hypothesize this inability to

fly is caused by the interaction between the mosquito haltere and ambient fluid.

We measure haltere kinematics and geometry using high speed videography and scan-

ning electron microscopy. Halteres are drumstick-shaped, with a characteristic length of

` = 250 µm and radius, at the widest point, of R = 60 µm, as shown in Fig.21a,b. They

are massive in volume with comparison to fog particles, with diameters 5�35 µm, a ratio

of 100:1. When tethered mosquitoes are stimulated, they flap both wings and halteres for

brief periods using a full range of motion. We observe haltere flapping is sinusoidal with

similar kinematics for all gas densities tested (0.2 � 4.2 kg/m3). In normal air, wings and

halteres flap at a frequency of f = 375 ± 42 Hz (N = 19), on the same order as the flapping

frequency in dense fog (r = 2 kg/m3) of f = 303 ± 37 Hz (N = 9) (P-value < 0.0001). The

20% decrease in flapping frequency corresponding to a 67% increase in medium density

maintains almost constant mean form drag for the wings. Drag force FD ⇠ r and FD ⇠ f 2.

In the following calculations, we use a characteristic flapping frequency of f = 300

Hz. The haltere flapping amplitude is A = 97 ± 2� (N = 6). The time-dependent, linear

velocity of a haltere in simple harmonic motion can be written V (t) = A`w cos(wt), where

w = 2p f . The peak velocity of the haltere-tip is therefore Vmax ⇡ 2p f A` = 0.74 m/s, using

a flapping frequency of f = 300 Hz, and flapping amplitude A = p/2 radians. At densities

where flight failure begins, more than 300 fog particles are contained within 1 mm3 of a
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mosquito’s flight medium. The flapping halteres will encounter upwards of 2,000 of these

particles in 1 second of flight, assuming the shaft’s frontal area is negligible compared with

that of the bulb.

The total force on the flapping haltere in hovering flight consists of a sum of drag force

FD, virtual mass force Fm, and inertial force Fi,

Fhaltere = FD +Fm +Fi, (5.1)

where each term may be expressed

FD =
1
2

CDrpR2V 2, (5.2)

Fm = Cmmgas
dV
dt

, (5.3)

Fi = m
dV
dt

. (5.4)

The haltere mass and radius are m and R respectively; mgas is the mass of gas occupying

the same volume as a haltere if modeled as spherical, and V is the time-dependent velocity.

Dimensionless coefficients include CD = 5.1, the drag coefficient for a sphere, Cm = 0.5,

the virtual mass coefficient for a sphere167. Though Cm is function of jerk, we assume a

constant Cm is a good approximation in our case. The corresponding Reynolds number

Re= 2RrVmax/µ = 8, for a medium density of 1.7 kg/m3, and dynamic viscosity of air

µ = 1.98⇥10�5 kg/m-s. We consider the effect of altered flight conditions on each of the

components of Eq. (5.1) in turn.

For flight medium density r = 2.0 kg/m3 about 67 % greater than that of air (rair =

1.2 kg/m3), the anomalous peak drag force is DFD = 1
2 (r �rair)CDpR2 (A`2p f )2 = 12.4

nN. The maximum additional virtual mass force on a flapping haltere can be similarly

approximated by DFm = (r �rair)Cm
4
3pR3A`(2p f )2 = 0.5 nN. By adding the drag and

virtual mass force, which find their peaks at different positions in the stroke, we calculate

their sum DFD +DFm = 12.4 nN. This value is 0.06% the weight of a mosquito, and nearly

equal to the haltere weight, estimated by volume to be 900 ng using the density of water168.
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Based on our observations of flight failure, we hypothesize the calculated anomalous

aerodynamic force of 12.4 nN in the high density medium is sufficient to incapacitate the

haltere’s function. In terms of haltere anatomy, such aerodynamic forces translate to in-

creased strain detected by the campaniform sensilla embedded at the haltere shaft’s base.

Strain in a cantilever beam e ⇠ P, were P is a point force at the tip. Therefore, the increased

drag force corresponds to a 67% increase in strain registered at the base. In this case, the

finely tuned haltere becomes slightly out-of-sync with the wing’s steering muscles, which

in turn creates the rapid pitching and rolling behaviors observed in flight.

5.1.3 Flight failure due to artificially increasing haltere mass

To test our hypothesis that an aerodynamic forces of 12.4 nN incapacitates halteres, we per-

form experiments with mass added to both halteres. Mass added to halteres increases the

haltere inertial force Fi, which according to Eq. (5.1), increases the haltere’s force in a sim-

ilar fashion to their immersion in fog. Though increased drag and mass addition have very

different dynamical effects, they both increase the strain registered by the campaniform

sensilla embedded in the haltere shaft.

We begin by adding a large mass of glue (50�150 ng) to one haltere of a mosquito (N=

5). If weight is added to only one of the halteres, a mosquito can remain aloft. Presumably,

it ignores the sensory feedback weighted haltere and maintains flight.

By weighting both halteres for each of 5 mosquitoes with a similar mass of glue, we

observe they cannot fly. By drastically reducing the volume of glue, we find the minimum

amount added to halteres which will induce complications to flight is ⇠9.8 ± 8.9 ng (N=4),

which is at the cusp of complete loss of flight ability. At such low amounts of glue (< 5

ng), a mosquito may still be able to remain aloft in our container, but must use the walls of

its container as a guide for ascent.

Specifically, the mosquitoes perform pitching and rolling as they would in a denser-

than-air gas or if both halteres had been ablated. The third column in Fig.22 depicts a
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mosquito flying in normal air with glue on its halteres. The glue is shaded in blue in

Fig.24. As seen in Fig.22c, a mosquito with glued halteres also falls quickly.

150 µm 370 µm 

150 µm 40 µm 

a b 

c d 

Figure 24: SEM photographs of halteres with various amount of glue, shaded in blue.
The glue has a mass (a) < 1 ng, (b) 2 ng, (c) 13 ng, and (d) 20 ng.

The additional inertial force added to the halteres by glue is DFi = mglueA`(2p f )2. The

mass of the glue mglue is calculated based on volume estimated from images. For glue of

mass mglue = 9.8 ng, the maximum additional inertial force is DFi = 13.6 nN, which is

similar to the haltere’s aerodynamic force in fog, calculated in §3.2. The similarity of these

two values suggest that indeed the aerodynamic force of fog is responsible for flight failure.

Both the introduction of heavy gas and the treatment using glue each provide the hal-

teres an additional resistance force. We thus pinpoint the cause of flight failure of a

mosquito in fog to malfunctioning of the haltere system, and not the wings. In normal
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air, halteres are capable of following the wings, even if wingbeat frequency changes signif-

icantly due to wing augmentation66. We speculate this anomalous forces places an addi-

tional strain on the halteres during flapping. Consequently, the mosquitoes lose the ability

to successfully engage steering muscles, causing them to unintentionally turn upside down.

A more detailed mechanism involving the pathways from halteres to muscles in unclear.

While we do not have a definitive mechanism for flight failure in hyperdense mediums, we

can pinpoint the failure as a collapse in haltere function. Next, we show how the additional

mass of glue can change the free vibration parameters of the halteres.

5.1.4 Haltere mass affects their natural frequency

All vibratory systems, physical or biological, have a natural frequency due to the geometry

and elasticity of their components. Halteres are likely flapped at, or close to, their natural

frequency or one of their resonance modes, to reduce the power required to reach maximum

amplitude. Wings and halteres are meant to flap together, but if the vibration properties due

to aerodynamic drag of haltere mass, a subtle mismatch in phase may occur between wings

and halteres. In this section, we examine how increased mass to the haltere affects its

natural frequency.

We pluck the halteres of 10 freshly dead mosquitoes, and allow them to vibrate freely

(Fig.25a, Video S6). As seen in Fig.25b, the heavier amounts of glue (40 � 50 ng) de-

crease the damped natural frequency wd by 14% as one might expect when increasing a

cantilever’s inertia. Small amounts of glue (5 � 15 ng) increase wd by 15% relative to an

unaltered haltere. The cause for this increase in frequency is unknown. We find the above

differences for wd to be statistically significant, rendering P-values of 0.02 when compared

to the unaltered haltere sample.

We model the haltere as a damped single-degree-of-freedom system, under free vibra-

tion. Such a system is governed by Iq̈ + cvq̇ + kq = 0, where q = q (t), I ⇡ m`2 is the

moment of inertia, cv is the damping coefficient, and k is the haltere’s spring constant169.
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Figure 25: (a) Haltere swinging through its plane of motion after manual plucking. (b)
Damped natural frequencies of freely vibrating halteres with various amount of glue added
(N = 8). The bars on each column bound the minimum and maximum values for frequency.
(c) Time course of freely vibrating haltere, and (d) with approximately 50 ng of glue de-
posited on the tip.

As seen in Fig.4c,d, the deflected and released haltere will complete many cycles before

coming to rest, and is therefore an underdamped single-degree-of-freedom system. Solving

for q (t), we may write governing equation above as

q (t) = e�z wnt (C1 cos(wdt)+C2 sin(wdt))+C3 (5.5)

where wd =
p

1�z

2
wn is the damped natural frequency, wn =

p
k/I is the undamped

natural frequency, and C1, C2, and C3 are fitting constants. We have added C3 to Eq. (8.2)

for calibration purposes. On average, addition of glue to a haltere does not alter its damping

coefficient z . Without glue we calculated z = 0.05 ± .02 (N=4) and with glue added z =

0.05± .01 (N=4).

As shown by the examples in Fig.25c,d, all of the freely vibrating halteres tested have

asymmetrical exponential decay envelopes, likely the result of a single muscle which drives
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haltere oscillation81 alongside a thoracic oscillator170 when the mosquito is flying. The

lower bound of the envelope in Fig.25c, (dotted), levels off more quickly than the upper

bound (solid), indicating preferential deflection towards the mosquito’s anterior surface.

The addition of glue to the haltere (Fig.25d), not only decreases the vibration of the haltere,

but slows the rate by which the vibrations decay. The changes in vibration frequencies and

envelopes in plucked halteres resulting from glue addition, suggests a subtle disruption to

haltere kinematics in flight. Altered kinematics and mass distribution will impact strain

measurements, made by the haltere’s campaniform sensilla, and beat rhythm, rendering

halteres less effective in regulating wing motion.

5.2 Discussion

Our study highlights the sensitivity and precision of mosquito halteres. We induce flight

failure in mosquitoes using two independent means, immersion in hyperdense flight envi-

ronments and addition of 0.2% mass to the halteres. Our result shows haltere systems are

highly tuned to the properties of normal air, rendering small changes to these aerodynamic

properties devastating to the insect. A greater understanding of the sensitivity of such sens-

ing systems may lead to a greater understanding of the complex control system of insects

and new ways to reduce their populations.

In tests with other insects, we found haltere size is inversely related to their vulnerability

in fog. We have observed fruit flies Drosophila melanogaster and Drosophila virilis, whose

halteres are smaller than that of a mosquito, also fail to fly in dense fog. Conversely,

houseflies (Musca domestica) with larger halteres, can stay aloft in dense fog (Video S7),

presumably because their flight system does not require such a finely tuned central pattern

generator.

Our results are supported by the findings of Pringle (1948), in which the mechanical

resonance of halteres of the Calliphora erythrocephala was studied by crushing the haltere

bulbs and measuring the resulting change in flapping frequency81. Pringle reports a normal
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frequency range of 105 � 120 Hz for females, and 125 � 140 Hz with crushed bulbs. This

result shows aerodynamic forces help govern resonance frequency, and flapping behavior.

Our study goes a step further by investigating how a change in drag force affects flight.

Diptera are not alone in possessing very specialized and tuned sensing organs. The male

Emperor moth has chemoreceptors which can smell a female 11 km away171. A squid’s

head can detect vibration, and in the 75�100 Hz range, it can sense 0.2 µm peak-to-peak

water displacement116. Some snakes are able to sense vibrations of their head as small

as 0.1 nm peak-to-peak amplitude. Homing pigeons can detect sound frequencies as low

as 0.05 Hz, while bats can detect frequencies as high as 100 kHz. In light of the extreme

sensitivity in sensing ability in the animal kingdom, disruption of mosquito haltere function

with only a 2 ng addition of glue appears more feasible.

When compared to human anatomy, halteres most closely resemble the vestibular struc-

ture in our inner ear, used for balance. The inner ear is susceptible to infections, altering

the inner ear’s original state slightly, causing balance disorders172. The vestibular fluid in

the semicircular canals of the inner ear pushes against a small membrane, the cupula, as

we move our heads. It has been calculated that cupulas have a maximum displacement of

3 microns, or 0.4 % the amplitude displacement of a mosquito haltere173. Indeed, micro-

scopic precision in sensing, and the accompanying vulnerability, is a commonality among

organisms.

Mosquitoes are not alone in being affected by extreme flight medium conditions. Alter-

ing flight medium characteristics reduces the flight performance of most flying creatures.

Birds at high altitudes fly with reduced forward drag, but increased requirements for lift

production174. Orchid bees hovering in heliox (80% He/ 20% O2), with a density of 0.40

kg/m3, experienced 50% increases in lift coefficients relative to normal air129. The decrease

of flight ability in low density and hypoxic environments is a result of both aerodynamics

and metabolism. The dynamic viscosity of the flight medium might also create instability

flight. It is not possible to calculate the viscosity of our mixtures of R134a and air without
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further experiments175, though based on the viscosities of R134a (12 µPa-s) and air (19

µPa-s), we do not expect the viscosity of the mixture to be dramatically different than that

of air. For example, a mixture of nitrogen and R-12 (Freon) with the same volume fraction

we use to a create a flight medium density r = 2 kg/m3 (74% air, 26 % R134a) has a vis-

cosity of 16 µPa-s. Additionally, a Reynolds on the order of 10 indicates inertial effects

dominate viscous effects.

The introduction of gases other than air, displaces oxygen needed for breathing and

raises the possibility of hypoxia influencing the results in our experiments. At a density of

2 kg/m3, the threshold at which no mosquito can fly, the oxygen in our container dropped

from 21% by volume to 15% with the introduction of R134a. Such conditions are not

prohibitive to flight: insects have been known to survive extreme hypoxic conditions176

and colonize high altitudes above 6000 m where the oxygen content is a mere 9.5%. We

have stated previously that mosquitoes are capable of flying in medium densities of 1.6

kg/m3. When using carbon dioxide to create this particular density, the oxygen drops to

10.5%, and we notice mosquitoes are able to sustain flight for 10 seconds or more before

suffering hypoxic effects and falling to the floor. Mosquitoes left in containers where R134a

was used to produce densities greater than ⇠3 kg/m3 (< 8% oxygen) would lapse into

unconsciousness within 10 s, but no sooner than 4 s. In our observations, insects will

cease flapping immediately upon unconsciousness. Since the falling mosquitoes in our

experiments continued flapping during descent, we are confident hypoxia did not play a

role in our results. Even at the highest gas densities, flight failure behavior occurs within

a time much less than 1 s following a mosquito’s drop into a container, whereas the total

flight time is less than 2 s. The fast onset of flight failure and the flapping of the mosquitoes

suggest they are conscious and attempting to fly in our experiments.

Due to the water repellent nature of a mosquito’s body, including the halteres, fog

particles are unlikely to deposit and remain attached to flapping wings, halteres, and other

sensors in quantities significant enough to hinder flight. As seen in Fig.24 the rapidly
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moving appendages have tightly-spaced feather-like sensilla. However, a wetting liquid,

such as nontoxic soybean oil (density of 920 kg/m3), a common insecticide base, may be

able to remain adhered. Oil-based insecticides are known to be produced in a range of

sizes177, 2 � 110 µm in diameter. A single oil droplet 10 µm in diameter deposited on

each haltere would be sufficient to ground a mosquito. Production of insecticide-free fogs

may be a viable mosquito-control strategy in some situations. We note that with current

foggers, mosquitoes and similarly sized insects will be downed near the output nozzle, not

due to immediate insecticide absorption, but due to the fog cloud’s density.

To eliminate the likelihood of fog interrupting the function of the mosquitoes’ antennae,

we cropped the antennae at the base and observed they were able to maintain qualitatively

normal flight in a container. Fog exposure on mosquitoes without antennae was met with

grounding, in a manner similar to those with intact organs.

Mosquito control using fog produced by ultrasonic humidifiers is not currently viable,

especially for large areas. Water and electricity consumption will be unreasonable in most

environments, when compared to traditional insecticide sprays. The most realistic use of

water droplets to protect humans against mosquitoes would consist of a continuously falling

curtain of microscopic droplets over thresholds such as windows and doors. Similar “air

doors” are currently used, such that a sheet of high velocity air is directed downward from

the top of a doorway. While such curtains of air are effective as an insect filter, they require

high power and are noisy. In places where water is plentiful, a “fog door” would provide

protection with no sound and lower operating costs.

5.3 Chapter Summary

We perform flight experiments with mosquitoes in mediums of varying fluid density. In

gases with densities twice that of standard air, mosquitoes suffer rapid pitching, rolling,

and ultimately grounding. We hypothesize the anomalous aerodynamic drag forces, on

the order of 10 nN, disrupt the rhythm of mosquito halteres, their gyroscopic sensors and
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wingbeat pattern generators. We test this hypothesis by adding weight to the halteres to

create inertial forces on the same order of magnitude as aerodynamic forces in heavy air.

An increase in the haltere’s mass by 10 ng, is sufficient to disable flight. We also show

weighted halteres have different natural frequencies than unaltered halteres, and suggest

this change in natural frequency prevents synchronization between wings and halteres. This

study shows halteres are highly tuned to the properties of air, making changes in air density

a potential method to be applied in mosquito control.
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CHAPTER VI

DEW-DRIVEN FOLDING OF INSECT WINGS

“The easiest way to get a reputation is to go outside the fold...” -F. Scott Fitzgerald

In this study, we investigate the deformation of mosquito wings due to droplet deposi-

tion (Fig.26). Our experimental methods for insect handling and imaging are presented in

Chapter 2. The 2D bending model we use to predict the response of wings under capillary

forces is presented in §1. In §2, we present our measurements of wing bending magnitude

for various drop sizes, and qualitatively report the folding behavior of wings in 13 insect

species. In §3, we present a discussion of our results and avenues for future work, and §4 a

brief conclusion.

6.1 Model

6.1.1 Folding energetics

We model a mosquito wing as a two-dimensional, isotropic beam with length L = 0.7 � 1

mm and thickness t ⇡ 10 µm. Consider the wing placed into contact with a circular drop

of radius R, as shown in Fig.27. Depending on the contact angle qe and geometry of the

system, the beam can exist in one of two equilibrium states, flat or wrapping the drop. If the

process from Fig.27a to Fig.27b happens spontaneously, the total change in energy can be

written as DEtotal = DEsurface + DEelastic + DEgravity < 0, the sum of the changes in surface,

elastic, and gravitational energies, respectively. We consider each of these energies in turn.

The change in surface energy from a flat to a wrapped beam is

DEsurface = (sSL �sSG �s)L = �s (1+ cosqe)L ⇠ �sL, (6.1)

where sSL and sSG are the interfacial tensions between the solid and the liquid, and the
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Figure 26: Photo sequence of resting mosquito becoming increasingly wet. Ultimately,
the bigger drops on the right wing fall way, leaving a tightly folding wing behind.
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Figure 27: Schematic of liquid cylinder placed in contact with a flexible sheet, where
(a) pre-wrapping exhibits surface, elastic, and gravitational energies, as compared with (b)
post-wrapping.

solid and the vapor, respectively. The equilibrium contact angle that the drop makes with a

mosquito wing in the Wenzel state is qe = 90�120�.
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The wings used in this study do not have a constant curvature when bent. However, we

may define a mean curvature k̄ =
pR

k

2ds/L and mean radius of curvature R̄ = 1/k̄ , where

k is the wing’s curvature at any curvilinear coordinate s. The change in elastic energy in

the beam178 is

DEelastic =
EILk̄

2

2
⇠

EIL
R̄2 . (6.2)

The change in gravitational energy as the sheet wraps is

DEgravity = rgLtDH̄ ⇡ rgLtR̄ (6.3)

where r is the beam’s density, g is the acceleration due to gravity, and DH̄ ⇡ R̄ is the

average change of height in the beam.

Depending on the size of the system and the interfacial tension, the relative magnitudes

of the above energies may change. In general, the smaller the system, the less important is

gravity and the more important is surface tension. Py et al.. have shown the folded length of

a structure is governed by the elastocapillary length97 LEC =
p

EI/s , where E is Young’s

modulus, I = t3/12 is the second moment of area of the beam cross-section, per unit depth.

For small systems where L ⇠ LEC, capillary forces are significant178. Since elastocapillary

length scales as the thickness to the 3/2 power, thinner membranes can produce tighter folds

and the thickest membranes cannot fold. Using E ⇡ 20 MPa, estimated from measurement

using cicada wings, and I = 83 µm3, the elastocapillary length for mosquito wings LEC =

0.15 mm, on the same order as the chord length measured in experiments (0.7 � 1 mm).

Since LEC is similar in magnitude to L we expect mosquito wings to fold. Using the material

and geometric properties of mosquito wings, we find
����

DEelastic

DEsurface

���� =

✓
LEC

R̄

◆2
⇠ 1,

����
DEgravity

DEsurface

���� =
rgtR̄

s

⇠ 10�3. (6.4)

Therefore, gravity can be reasonably neglected in our analysis in comparison to capillary

and elastic forces. In the next section, we perform a more detailed analysis to determine

the shape of a wing deformed by capillary forces.
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6.1.2 Two-dimensional drop atop an insect wing

In this section, we present a mathematical model for the folding of an insect wing due to

growth or evaporation of a single drop emplaced atop it, as shown in Fig.28. The influx of

fog will cause a drop to grow in volume; the absence of fog will cause a drop to evaporate

and shrink in volume. In our two-dimensional model, we consider the cross-sectional area

A of the drop as the equivalent measure of drop volume. We consider only drops sufficiently

small that gravitational forces remain negligible.
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Figure 28: Schematic of drop folding a two-dimensional wing.

To describe the magnitude of folding, we report the tip-to-tip distance D between the

leading and trailing edges of the wing. For an undeformed wing, D is simply the wing

length L. A worst-case scenario for an insect wing is completely folded in half, in which

D ⇡ 0, as seen in Fig.29a. The insect wing is considered as an elastica beam of finite

bending stiffness EI, but zero thickness and depth into the page.

Fig.28 illustrates a number of dimensions and angles that we will use in our calcula-

tions. The drop is shaded, bounded above by its free surface (dashed line), and below by

the beam (solid line). In our integration of drop volume, we divide the drop into two parts,
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a

b

Figure 29: Photo sequence of mosquito wing (a) closing and (b) opening as the drop
evaporates.

above and below the line (dash-dot) connecting the leading and trailing edges of the wing.

Above this line, the drop is circular with a radius R and center point C. Below this line,

the shape of the drop is governed by its internal pressure and the underlying beam’s elastic

properties.

In reality, a drop can intersect the beam at any point. In our experiments, we observed

the strongest folding occurs for the widest drops, in particular, when the free surface meets

the edge of the beam. We consider this case as the boundary condition for our problem.

This intersection point involves the joining of three phases, the beam, the water and air. We

use two angles to relate the orientation of the beam and the free surface at this point. The

angle a is measured between the line tangent to the beam and the horizontal; the angle q

is measured between the line tangent to the free surface and the horizontal. Note that q is
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distinct from the equilibrium contact angle qe between the drop and a planar surface. Since

the drop intersects the beam at the beam’s edge, the free surface can assume any number of

angles with the beam.

The rotation angle of the beam j , relative to the horizontal, is used to describe the

deflection as a function of curvilinear coordinate s. Due to symmetry, we consider only

half the beam, denoting the lowest point of the beam by s = 0, and the rightmost point as

s = L/2.

By consideration of the geometry of the problem, we may write the tip-to-tip distance

D and the drop area A in terms of j(s). Rather than integrating over s, we integrate over

h 2 [0,1], where Lh/2 is substituted for s:

D
L

=
Z 1

0
cos(j)dh (6.5)

A
L2 = R̃2 (p �q + sinq cosq)�

1
2

Z 1

0
cos(j (x ))

Z
x

1
sin(j (h))dhdx , (6.6)

where the normalized radius of water drop R̃ = R/L.

In light of the discussion of energy in the previous section, we consider only small

insect wings in which gravity can be safely neglected. We thus consider only elastic and

surface tension forces. The governing equation for local bending is obtained from a force

balance, commonly known as Euler-elastica theory. The internal bending moment in the

beam M = EIk , where k = dj/ds. By Newton’s third law, the load per unit length and

unit width P pressing down on the beam is balanced by the beam’s elastic force per unit

length in the opposite direction, and so P = d2M/ds2. In the curvilinear coordinates shown

in Fig.28, the beam is subject to Laplace pressure, a uniform load per unit depth such that

P = �s/R and is simply supported at the midpoint. The governing equation for bending

at a curvilinear coordinate s is therefore

EI
d3

j

ds3 = �

s

R
, s 2


0,

L
2

�
. (6.7)

The shear force in the beam can be defined as EId2
j/ds2. Shear force in the ends
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results from the component of surface tension normal to the wing such that

EI
d2

j

ds2 = �s sin(q �a) ; at s =
L
2
, (6.8)

where a is the angle tangential to the beam tip, defined earlier. The beam is unable to

sustain a bending moment at its ends, therefore

dj

ds
= 0; at s =

L
2
. (6.9)

The symmetry of the beam leads to a constraint at its midpoint such that

j = 0; at s = 0. (6.10)

Triple integrating the governing equation in Eq. (6.7), which is equal to a constant, and

solving integration constants with the boundary conditions in Eqs. (6.8) to (6.10), we obtain

j = �

1
6

kw

L2
EC

s


s2 +l

L
2

s�

✓
3
4

+
l

2

◆
L2
�

(6.11)

where kw = 1/R, and l is an undetermined parameter which satisfies the implicit equation,

l =
6sin(q �a)

kwL
�3. (6.12)

Eq. (6.11) can be normalized, such that

j = �

1
48

L3

L2
EC

kwh(h2 +lh �3�2l ). (6.13)

The result in Eq. (6.13) can now be applied to computationally determine the relation

between D and A from Eq. (6.5) and Eq. (6.6). The inputs to the model are L, and LEC.

The iteration variable for convergence is l . To satisfy the condition in Eq. (6.12), a fixed

point algorithm is applied because q and a are both dependent on l . To accelerate the

convergence speed, Steffensen’s method179 is employed such that

l

⇤ = f (l n)

l

⇤⇤ = f (l ⇤)

l

n+1 = l

n
�

(l ⇤

�l

n)2

l

⇤⇤

�2l

⇤ +l

n

(6.14)
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where f (l ) = 6sin(q �a)/
�
k̃wL̃

�
�3.

In order to perform our simulation across a wide range of folded shapes, we consider

the limits of a and q . By definition, a = j|

h=1, where a = 0 for a flat wing and a = p/2

for a completely folded wing. However q changes as the center of the circular drop falls

below the line joining the two beam ends. For the case where the center of the circular drop

is above this plane, q = p � arcsin(D/2R) (Fig.28), whereas q = arcsin(D/2R) when the

center lies below the plane (Fig.28). We must find solutions for A and D for each case

separately, and join them to form the theoretical curves.

6.2 Results

6.2.1 Small insect susceptible to wing folding

We begin with a broad survey to identify the size regime of insects susceptible to dew-

induced wing folding. Table 2 lists the 13 species used in experiments and their pertinent

wing dimensions. Wings are removed from insects ranging in size from a fruit fly, with

a single-wing span S = 1.8 mm, to a cicada, with wings twenty times longer at S = 40

mm. A consumer grade humidifier emulates heavy fog conditions and nocturnal dewfall,

producing a stream of 5�35 µm diameter drops, with an average diameter of 15 µm.

We use an elastic modulus E ⇡ 20 MPa to describe the stiffness of insect wings. Due to

the mosquito’s small size, we measure the elastic modulus of cicada wings to determine a

suitable value for analysis. The elastic modulus is measured by taking a chord-wise section

of each wing and using an analytical balance to measure the force required to slightly

deform each wing. A video camera is used to measure the wing’s deflection. Cicada wings

have a modulus 25±5 MPa.

Fig.30 shows the relation between wing chord length L and thickness t. The wings

denoted by filled symbols fold tightly after drop removal, as seen in Fig.30c. Using the

solid line, we denote a region in Fig.30d where we predict wing folding may be seen in

nature. The elastocapillary length LEC governs the limit for which wings can fold97, and
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Table 2: Species used in folding experiments.

species N thickness 
t [µm] 

chord L 
[mm] 

Can fold?  [Y/N] 

fruit fly  
(Drosophila 

melanogaster) 
2 5 0.7 Y 

mosquito  
(Anopheles freeborni) 

2 8 1.0 Y 

fruit fly  
(Drosophila virilis) 

2 5 1.3 Y 

lacewings  
(Chrysoperla carnea) 

2 3 1.4 Y 

honey bee  
(Apis mellifera) 

2 50 2.3 N 

reticulated netwinged 
beetle  

(Calopteron reticulatum) 
1 25 2.5 Y 

northern petrophora 
(Petrophora 

subaequaria) 
2 60 3.4 Y 

firefly (Photuris 
lucicrescens) 

2 30 4.5 Y 

forage looper moth 
(Caenurgina erechtea) 

2 50 6.6 Y 

bumblebee 
(Bombus bimaculatus) 

2 75 7.1 N 

cockroach 
(Periplaneta americana) 

1 95 7.2 N 

stone fly 
(Plecoptera perlidea) 

2 20 9.1 Y 

cicada 
(Tibicen davisi) 

1 90 14.1 N 

is it known that LEC is proportional to L for structures that can fold. Assuming each wing

has the same Young’s modulus, we use L = 3.7LEC to divide Fig.30d into folding and non-

folding regions. The slope of 3.7 cannot be found theoretically, and so is chosen to fit the

experiments.

The division is quite good, with all of the non-folding insects below this line, and only

one insect, the northern petrophora in the incorrect regime. The distance from an insect’s

measurements to the closest point on the solid line indicates the level of danger to folding.

Six of the thirteen insects studied, fall very close to the the line, indicating that they are

near the limits of thickness or chord length at which folding occurs. The insects most in

danger of folding is the stone fly, as it is well within the folding regime. The cockroach is

the least in danger of wing folding.
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Figure 30: Folding of wings belonging to a (a) mosquito, (b) fruit fly, and (c) stonefly.
(d) Relation between wing thickness and chord length for 13 insect species. Filled points
denote the wings which fold upon droplet deposition and removal in experiments. The
curves in (b) trace wing edges.

6.2.2 Taco and edge-type folds

Fig.31 shows how micro-droplet deposition dramatically alters the wing’s wetting behav-

ior. If the wing is dry, a drop sits atop it wetting in the Cassie-Baxter state (Fig.31a).

After 3 seconds or less of exposure to our stream of fog particles, small droplets scattered

throughout the wing wet the wing in the Wenzel state (Fig.31b). These small droplets serve

two functions for further water addition. First, they act as deposition sites and grow upon

additional exposure to dewfall or fog particles. Second, they allow larger drops to stick to

the wing in the Wenzel state (Fig.31c). This Wenzel state has an associated equilibrium
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contact angle qe across a large range, 30�130�, over the species considered.

c

b

a

Figure 31: (a) Drops deposited on stone fly wing before the introduction of micro-droplets
has a very high contact angle ⇠ 150�. (b) Micro-droplets wet a stone fly wing upon contact.
(c) A large drop introduced to wing coated with micro-droplets has a much lower contact
angle ⇠ 50�.

Folding occurs as drops coalesce across the span of the wing. This coalescence creates

a larger mother drop with a larger contact area, generating sufficient torque to fold the

wing. Smaller insects such as mosquito, fruit fly, and stone fly possess wings that fold

the tightest. These wings form tacos as shown in Fig.30a-c, folding along the centerline

of the span (Fig.32a). The smallest wings, are typically thinner (Fig.30d): this flexibility

decreases the elastocapillary length, facilitating folding. Large insects such as cicadas,

bumblebees, and cockroaches have stiff large wings that do not bend dramatically and so
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cannot fold as tightly as small insects. However, the edges of the wing has few veins, and

can undergo folding as shown in Fig.32b.

a bL!

Figure 32: Diagrams of spanwise and edgewise folding followed by photo sequence of
a (a) fruit fly (Drosophila biarmipes) wing folding span wise, and (b) a housefly (Musca
domestica) wing folding at the edge. The green lines denote folding lines, and the blue
arrow points on the wing’s edge which has been folded over. The curves in (a) trace wing
edges.

Wings may also fold through the influence of sliding drops. A large drop may drip

off the wing, sliding down the span, and off the wing tip, leaving a very tight fold in its

wake (Fig.30c). An external disturbance will also cause large drops to fall from the wing

in a similar fashion. The insect is unable to contend with these tight folds, which are held

together by both capillary forces and viscous lubrication forces resisting separation of the

wings. Consequently, such wings are made heavy, small and ineffectual, grounding the

insects until the fog ceases and the entrapped fluid evaporates.
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6.2.3 Control of wing folding through drop growth and evaporation.

In general the folding of an insect wing is difficult to control. Drops grow and coalesce

seemingly randomly across the wing surface. In this section, we use fog to control the

growth of drops on the wing, and then hot lights coupled with cessation of fog to control

the shrinkage of these drops. In parallel, we measure drop area A and wing edge distance D

under a microscope. Fig.29a shows a photo sequence of a wing closing as the water drop

evaporates. Experiments, which take 7 � 10 minutes, are performed on ablated mosquito

wings, where the wing is cut near its tip, as shown in the inset of Fig.33a, in order to facil-

itate measuring D from side views of the wing. Through this process, we obtain controlled

folding of the insect wing which we compare to our theoretical predictions.

Fig.33a shows the relation between the dimensionless wing distance D/L and the di-

mensionless area of the drop A/L2 for three mosquito wings. Each open symbol represents

a different wing, and trends are quite consistent between the three wings tested. Fig.29a

shows a large drop decreasing in volume. As the drop evaporates, decreasing in A, the wing

closes more tightly, decreasing in D. When the wing folds very tightly (D/L < 0.4), the

drop volume has become so small that the meniscus falls below the line drawn between

wing edges (dash-dot line in Fig.28). Below the smallest drop area measurable of 0.1,

the wing abruptly shuts completely, wherein D = 0. Conversely, as the drop increases in

volume, the wing unfolds, nearly reaching the flat wing distance of D = L.

In Fig.33a, the solid lines indicate our theoretical predictions for the relation between

D/L and A/L2 using theory derived from Euler’s elastica in §3.2. The input to the model is

the wing’s chord length and thickness, as well as the interfacial tension of the water. The

elastocapillary length is used as a free parameter because we cannot measure the bending

stiffness B = EI of the wing directly, due to the wing’s small size. The color of each line

represents a different value of the elastocapillary length LEC, as shown in the legend.

The theoretical trends vary qualitatively depending on the thickness of the wing. The

blue and green curves, corresponding to the physically plausible LEC = 125 � 200 µm, fit
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Figure 33: (a) Experimental points and theoretical curves of wingtip extent D/L in rela-
tion to drop area A/L2. (c) Theoretical curves of wingtip angle a in relation to drop area
A/L2.

our data well. Small drops fit the theory best. As drops increase in size, our experiments

generally give a 10 percent higher degree of folding than predicted. We find a value of

LEC = 125 µm and so B = 1.2⇥10�7 N-m2 best fits our data. With a wing thickness of 10

µm, the corresponding Young’s modulus is 19 MPa, which is also close to our measure-

ments for a different insect, the cicada. These values of stiffness is consistent with values

measured by previous investigators: Shang et al.. (2009) suggests that stiffness B < 10�8

N-m2 for wings with L < 1 mm. Lower values of B prevent our model from converging

and cannot be plotted using our current methods.
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For stiffer wings, the brown and red lines, for which LEC > 240 µm, the curves flatten

and do not capture the shape of mosquito wings. An anomalous behavior is shown: wings

will reopen as the drop evaporates to areas less than A = 0.2. This behavior is shown

in the anomalously stiff mosquito wing in Fig.29b. This opening is distinctly different

behavior from the green and blue lines in which the wing closes as the drop evaporates.

This evaporation-induced unfolding shows that certain breeds of mosquitoes can resist wing

folding, as shown by their closeness to the folding boundary in Fig.30.

This transition curve between opening and closing wings is denoted by a yellow line

in Fig.33b,c, associated with B⇤ = 3.5 ⇥ 10�7 N-m2 and a wing thickness of 13 µm. This

transition is clearly seen in Fig.33b, where we plot a in relation to A/L2. A large alpha cor-

responds to tight folding. For the stiff wings, the wings begin to unfold, and exhibit smaller

a . For MAV wings to be designed for moist environments, they should be stiffened so that

their elastocapillary length LEC > 220 µm. Wings in this regime will unfold automatically

as water evaporates.

6.3 Discussion

Our study highlights the vulnerability of small insects to wing deformation by dew depo-

sition. We observe very different results depending on wing stiffness. For soft wings, as

a drop shrinks by evaporation, the wing wraps the drop, folding the wing more tightly.

This behavior is well predicted by our model derived from Euler’s-elastica equations. The

behavior of stiff wings is quite different and should be emulated by MAV wing designers.

The wing is initially bent by drop growth, but can then be opened by further drop growth.

We observed systematic error of 10% in our predictions, likely due to the assumption

of isotropy in our model. However, biological wings are laced with irregularly placed

veins and hairs which do not always run parallel to one another or the leading edge. This

anisotropy affects how the wing unfolds as a the drop evaporates. A higher concentration

of veins at the wing’s leading edge hinder this edge’s mobility during folding. As a drop
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held within the wing evaporates, the trailing edge draws toward the static leading edge.

Veins within the wing also allow the wing to fold tighter than might be predicted with an

isotropic surfaces. We observe when the wingtips meet, forming a closed surface, the fold’s

crease straddles a vein. This vein acts as a hinge site enabling the wing to appear folded in

half. Consequently, the bended wing does not maintain a smooth curve, but instead forms

a “V” shapes for very tight folds.

6.4 Conclusion

Insects are non-wetting, but deposition of micro-droplets is effective at wetting an insect

wing. The deposited drops coalesce and grow sufficiently large fold the wings inward via

capillary forces. Measurements of folding magnitude were taken using wings ablated from

Anopheles freeborni mosquitoes, and compared to a two-dimensional elastic model, which

predicts well the behavior of folding wings. If wings are sufficiently flexible, evaporating

drops create tighter folds that cannot be unfolded except through evaporation over long

periods. The tightness of the fold is directly related to the amount of water supported by

the wing. This study reveals a previously uncharacterized danger to insects and MAVs in

the wild and an unforeseen avenue of insect control.
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CHAPTER VII

MOSQUITOES ACTIVELY REMOVE DROPS DEPOSITED BY

FOG AND DEW

“Dew-drops are the gems of morning, but the tears of mournful eve!”

-Samuel Taylor Coleridge

We have now investigated the fate of a small insect’s wings upon the deposition of fog

or dew, but the wings are only one site for deposition, the question remain how a mosquito

might cope with the additional mass. In this chapter we investigate the mechanisms of

Anopheles freeborni mosquitoes to remove deposited moisture from their bodies. Our ex-

perimental methods for insect handling and imaging are provided in Chapter 2. §1 gives

brief consideration to the acceleration insects should generate to remove droplets from their

bodies. In §2, we present our observations and measurements of the various mechanisms

mosquitoes use for drop removal. In §3, we present a discussion of our results and avenues

for future work.

7.1 Theory

In this section we use theory to predict the magnitude of acceleration required by an

insect to remove a drop of particular size. Fig.34 shows a hemispherical drop of ra-

dius R emplaced on an insect wing. The adhesion force of the drop to the wing is Fs =

2pRs sinq ⇠ Rs , where s is the surface tension of water, and q is the equilibrium con-

tact angle. If the wing is abruptly accelerated, the inertial force in the opposite direction

is Fdrop = (2/3)prR3a ⇠ R3
ra, where r is the density of water, and a is the acceleration

of the wing. Equating the adhesion and inertial forces yields an expression between the
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applied acceleration and the smallest drop that can be removed by this process:

a ⇠

s

r

R�2. (7.1)

As R ! 0, a ! •, and thus smaller drops require greater accelerations to remove. Drops

with a radius of 4.7 mm and larger can be removed by gravity. Since such drops are larger

than a mosquito, it is rarely observed that drops fall from mosquitoes due to gravity. There-

fore, a mosquito must remove drops by applying high accelerations using a variety of tech-

niques that we review in the next section.

Table 3: Methods for droplet removal employed by mosquitoes.

Particle  
Diameter D  

(prior to deposition) 

% Body Weight 
of 2 dyne 
Mosquito 

Survival Behavior/
Mechanism 

Associated 
Acceleration 

(g) 

Rain 1 – 8 mm 100 – 5000 hyrdophobicity,  
passive rotation 50 – 300  

Fog  0.3 – 10 µm 10-10 – 10-5 rest in unfavorable 
conditions ---- 

Dew ~100 nm ---- 
rapid takeoff  
hard landings 
wing flutters 

0.5 – 3 
10  

2500 

7.2 Results

Insects must cope with a wide range of particles in their environments, including milli-

metric raindrops, micrometric fog droplets, and nanometric water vapor. The size of these

three classes of particles is given in Table 6. Fig.35b,c shows fog condensing into discrete

drops, covering the insect’s body. If we zoom in, as in Fig.36, we observe the progression

of drop growth between the hairs. Over time, the drops increase in size. The accumulated
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Figure 34: Schematic of drop adhering to an insect’s surface.

drops across the mosquito’s body can be many times its mass119. Below we report three

methods, listed in Table 4, which mosquitoes use to remove these drops.

Table 4: Predicted and observed drop sizes for each method in this study.

Mechanisms 
of Deposition 

Removal 

Associated 
Acceleration (g) 

Observed Drop 
Radius (µm) 

Predicted Drop 
Radius (µm) 

rapid takeoff 0.5 – 3 >500  1575 – 3850 

hard landings 10 280 860 

wing flutters 2500 150 55 

7.2.1 Take-off

In previous work119, we have shown a flying mosquito is grounded rapidly when encoun-

tering very dense fog. After the fog has settled, mosquitoes laden with droplets tend to

remain at rest. This behavior is likely a strategy to conserve energy. After waiting, on the
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Figure 35: (a) Raindrop impacting a flapping mosquito. (b) Mosquito attempting flight
in a stream of 15 µm fog particles. (c) Resting mosquito covered with droplets after the
deposition of 15 µm fog particles.
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order of one minute, the insect tries to take off. In our experiments, we observe the vigor of

takeoff is strongly dependent on the direction off takeoff. We discuss two types of takeoff,

those from the floor and a wall, both in which the insect takes off normal to the surface.

Figure 36: Photo sequence of droplets forming on a mosquito leg through the deposition
of 15 µm fog particles.

Mosquitoes take off from the floor with an acceleration of 1.6±1.1 g when dry. When

they are wet, they do not take off. In some cases, mosquitoes cannot fly their legs or other

body parts are entrapped by accumulated moisture, as seen in Fig.37. A leg of diameter

Dleg = 100 µm would require an applied force of F = psDleg = 2.3 dynes to pull free

from a liquid film. If all six legs are entrapped, upwards of six times the mosquito’s weight

is required to escape the film. We observe mosquitoes flapping in these scenarios, but

remaining grounded.
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Figure 37: A mosquito attempting to escape a water film upon the ground.

Wet mosquitoes resting on a wall or a ceiling are much more likely to takeoff than

those resting on the floor. Wet mosquitoes generate accelerations of 0.47±0.26 g (N = 4),

only one sixth the takeoff acceleration of dry mosquitoes (3.1 ± 1.9 g, N = 5). The lower

acceleration of wet mosquitoes is explained by their higher mass, roughly a factor of six

(6.22 ± 0.22, N = 3). A wall takeoff is more vigorous, and so more effective at removing

drops, than from the floor. Takeoffs from a wall involve forces applied perpendicular to

gravity, and so necessarily have higher accelerations than takeoffs from the floor. Indeed,

takeoffs from walls are higher than those from the floor by 1.5 g, which is close to the
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expected value of 1 g.

7.2.2 Hard Landing

A dry mosquito will repeatedly attempt flight when held by any part of its body. Upon

release, the mosquito will assume stable flight within one second119. Surprisingly, a wet

mosquito falls motionless when released from any height (N = 20). They make no attempt

to flap during the fall, but resume motion after collision with the floor. Fig.38a shows

a photo sequence of a wet, motionless mosquito impacting the ground. Before collision,

the mosquito carries approximately forty visible drops on its legs, wings, and body. After

impact, the number of drops adhered falls by ⇠75%, with roughly ten drops remaining.

Fig.38b shows the time course of the vertical position of the mosquito’s head (open

symbols), and a drop with radius of 280 microns near the head (closed symbols). Prior

to collision, the mosquito is falling at a terminal velocity of U = 0.44 m/s, which is sig-

nificantly higher than the falling speed U = 0.135m/s of an anesthetized, dry and much

lighter mosquito119. During a 3.8 ms collision with the floor, the mosquito’s head under-

goes an acceleration a = U/t = 115 m/ss, or about 10 g, which is well within its limits of

survival117,118, which is greater than 300 g. In fact, after collisions, the insect stands up,

shakes off a few additional drops (Fig.38c) and flies away. The smallest drops are likely

to remain attached through both impact and shaking, but these behaviors are an excellent

method for removing collected moisture.

7.2.3 Wingbeating

The most unusual method of drop removal is a modified wingbeat. Shown in Fig.39a, this

maneuver can be compared to driving a beam, fixed at one end, at its natural frequency,

such that the amplitude of deflection at the free end is much greater than that at the fixed

end. This flutter stroke causes a mosquito’s wings to dramatically flex, removing a number

of small droplets.
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Figure 38: (a) Photo sequence of a live mosquito, falling motionless and covered with
dew droplets. Drops are dislodged upon impact. (b) Time course of the vertical position of
a mosquito’s head (open symbols) and a 0.8 mm diameter drop (closed symbols), originally
attached to the mosquito. (c) Photo sequence of a mosquito standing and shaking after a
hard fall. Arrows denote the direction of drop travel.
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Black lines in Fig.39a trace the wing at various moments over the duration of the flap.

The time course of the displacement of the wingtip, with respect to its resting state, is

plotted in Fig.39b, with a spline interpolant through the data. We denote three consecutive

regions in Fig.39b as the flutter stroke, transition, and normal stroke phase.
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Figure 39: (a) Photo sequence of a mosquito removing droplets from wings using a flutter
stroke. The drop denoted by the arrow has a radius of approximately 0.15 mm. (b) Time
course of the vertical position of wingtip measured against the natural resting state, for the
mosquito in (a).

During the flutter stroke phase lasting 4 ms, the wings beat at 875 Hz. During the

flutter stroke, the wingtip amplitude, at less than 1 mm, is roughly 10% of a normal stroke.

The flutter stroke produces higher acceleration on adhered drops than a normal stroke. For

an amplitude A = 0.8 mm and frequency f = 875 Hz, the flutter stroke generates amax =

A(2p f )2 = 2470 g. Thus, this motion is explicitly for removing drops, and not for flight.
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In the transition region, the amplitude grows while the wingbeat frequency slows to the

normal wingbeat frequency, 285 Hz.

We compare the effectiveness of the three techniques in Table 4. We record the size

of drops removed during each, as shown in Fig.38b and Fig.39a. Using the observed ac-

celeration, we can compare the size of the released drop to that predicted using Eq. (7.1).

The wing flutter generates the highest acceleration (2500 g), followed by hard landings and

takeoff, which are roughly comparable (0.5 � 10 g). Clearly the wing flutter can dispel a

wider range of drop sizes than the other two methods. The superiority of the wing flutter is

shown by the data, in which the drop dispelled is half the size of the other drops. The last

column of the table shows the expected range of sizes for the removed drops, roughly con-

sistent with those observed. In fact, the predicted drop size dispelled by the flutter stroke is

about 50 µm size, below the limit that can be seen in our videos.

7.3 Discussion & Future Work

While our study focused on insects, the preceding principles to eject drops can be extended

to much larger organisms. Like insects, most mammals are covered with hair, which acts to

repel water by an oily coating on the fibers106. However, mammals can trap large amounts

of water within their fur after swimming, which they need to remove122. By rapidly oscil-

lating their bodies, producing up to 180 degrees of skin displacement, mammals generate

centrifugal forces sufficient to remove 70% of the water trapped in their fur within seconds.

Humming birds have been observed to exhibit similar behavior in flight18. The animals’

loose skin and feathers is crucial to their ability to generate large shaking amplitudes and

high forces.

While insects do not have the advantage of loose skin122 or feathers18 to aid in water

removal, they have exists a rich set of strategies for water removal across the gambit of

insect species. Mosquitoes employ a number of active strategies such as the flutter stroke,

and passive strategies, such as hard falls. Other strategies may be species specific, or subtler
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than those we observe. Future work should be done to compare and contrast the various

grooming and drying techniques in insects. The techniques will vary by insect geometry,

locomotive style, and climate.

Micro-aerial vehicles (MAVs)1–7 can employ the techniques reported here to remove

water, particularly hard landings. For a perched MAV, a terminal velocity fall should be

less than 1 m/s and easily survivable by on-board components. For larger fliers, such as

birds, crash-landing is not an option for water removal due to their higher mass and so a

higher terminal velocity. Furthermore, birds have been known to shake water from their

bodies18. Additionally, a drenching is not as life threatening as flyers grow in size be-

cause of an increasing volume to surface area ratio. Nevertheless, birds can generate large

accelerations on take-off sufficient to remove drops. The European migratory quail180, Co-

turnix coturnix, uses its wings and hind-limbs to produce 8 g, enough to dispel medium to

large-sized drops.

This study also raises questions of wetting, namely, whether or not insect hair arrays

are optimized to repel water. While micro-pillar wetting models exist49, future researchers

may choose to search for an optimum hair spacing, diameter, length, and stiffness, such

that the array easily repels water drops at any length-scale.

7.4 Chapter Summary

In this chapter, we have looked briefly into three mechanisms by which mosquitoes remove

water from their bodies, takeoff acceleration, collision with the ground, and a modified

wingbeat. The gamut of techniques create accelerations ranging from 1 � 2500 g. The

modified wingbeat, in particular is most able to remove the smallest droplets, as mosquitoes

are able to flap their wings at more than twice their wingbeat frequency in flight.
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CHAPTER VIII

WET MAMMALS SHAKE AT TUNED FREQUENCIES TO DRY

“A dog is the only thing on earth that loves you more than he loves himself.” - Josh Billings

In this study, we investigate a mechanism used by mammals to dry quickly, the wet-

dog shake shown in Fig.40a. In Chapter 2, we describe the novel methods developed in

this study, including a robotic wet-dog-shake simulator. We proceed §8.1 by measuring the

masses and frequencies of shakes spanning a wide range of mammals. Next, we charac-

terize the kinematics of the shaking response using high-speed video and fur-tracking. We

proceed by presenting models for both drop ejection and the ensuing dryness of the animal,

testing these models using experiments with a spinning tuft of fur. Lastly, we discuss the

implications of our work in §8.2 and suggest directions for future research. A summary of

this work is given in §8.3.

8.1 Experimental Results

8.1.1 Shaking frequencies across mammals

Using high-speed video at 500-1000 fps, we filmed the shakes of 33 wet mammals, span-

ning 16 species and 5 breeds of dogs (Fig.41). Animals were provided by the Atlanta

Zoo, the local park, and neighboring laboratories at our institution, and filmed according

to IACUC protocols A09036 and A10066. Shakes were prompted by sprinkling small ani-

mals with a spray bottle, and large animals with a hose. We found animals generally shook

after the flow of water had ceased.

We characterized animal sizes using measurements of body mass M and the chest cir-

cumference 2pR measured posterior to the shoulder, where R is cross-sectional radius of

the chest. In general, one specimen per species or breed was available. Several specimens
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Figure 40: Kinematics of fur during the wet-dog shake. (a) A droplet cloud generated by
a Labrador retriever during mid-shake. (b) Time-lapse images of a dog shaking its fur. The
thin black line highlights a marker glued between the shoulders of the dog’s back. (c) Time
course of the angular position of the skin and vertebrae of the dog. Error bars indicate the
standard deviation of measurement (N=3).
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of mice and rats provided the opportunity to determine variability in frequency and mass

within a species. The averages and standard deviations of measurements are presented in

Table 5 with corresponding error bars in Fig.42. Among four juvenile mice, four adult

mice, and four adult rats, the standard deviations for both mass and frequency were only

5-10% of their respective averages, indicating that there is very low variability in these

measurements. This also suggests that each animal has a particular frequency at which it

shakes.

A"

B"

C"

D"

E"

F"
Figure 41: Photo-sequences of animals filmed in this study. (A) Adult Mouse. (B) Rat.
(C) Kunekune Pig. (D) Boer Goat. (E) Labrador Retriever.

107



10−3 10−2 10−1 100 101 102 103100

101

102

M (kg)

f (
H

z)

 

 

mouse weanling
adult mouse
rat
squirrel
guinea pig
chihuahua
cat
otter
poodle
small husky
chow
kangaroo
large husky

 

 

labrador  1
labrador  2
labrador  3
labrador  4
goat
pig
sheep
black bear
lion
tiger
panda
brown bear
best fit to animals
predicted scaling

Figure 42: The relation between shaking frequency f and animal radius R. Dogs are
denoted by a �, other mammals by a ⇤, and the semi-aquatic otter by an X. Best fit is
given in Eq. (8.1) Error bars indicate the standard deviation of measurement.

Fig.42 and Table 5 show the relation between frequency of shaking f and animal mass

M for the animals in our study. To calculate a best fit, we tried to obtain a fair and uni-

form sample of the animals studied. The mass and frequency changed little within certain

samples groups, such as juvenile mice, adult mice, and adult rats. In these groups, only the

average of each group was considered to avoid bias towards particular species in our best

fit. Specimens of certain canine breeds such as Labradors and Huskies were obtainable in

a wider range of masses and so were considered individually rather than as an average for

each breed. Otherwise, we calculated a best fit using a sample that consisted of one speci-

men of each canine breed and one specimen of each non-canine species. In all, among the

33 animals measured, we used a sample of 25 points to determine our best fit.
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Table 5: Size and shaking speeds of animals studied. The radius and mass of the squir-
rel, black bear, and brown bear were estimated from the sizes of average adults in litera-
ture137,138,140,142. The radii measurements of the lion and tiger were unattainable by the
Zoo staff and were estimated similarly sized adults in literature135,136.

M R f Rω2 / g

Mass$(kg) Radius$(cm) Frequency$(Hz)
Non9dimensionalized$

Centrifugal$Accelera?on

Mouse$Weanling%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Mus$musculus

0.01$±$0.0001 1.2 31.5$±$2.0 72

Adult$Mouse%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Mus$musculus

0.0272$±$.0014 1.3 29.0$±$1.6 66

Rat%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ra*us$norvegicus

0.3077$±$.007 2.6 17.869$±$2.0 53

Grey$Squirrel$$$$$$$$$$$$$$$$$$$$$$$$$%
Sciurus$carolinensis

0.50 3.0 15.0 43

Guinea$Pig$$$$$$$$$$$$$$$$$$$$$$$$$
Cavia$porcellus

0.606 3.2 14.1 40

Chihuahua$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

2.5 5.0 6.8 14

Domes?c$Cat$$$$$$$$$$$$$$$$$$$$$$$$$
Felis$catus

3.3 5.9 9.4 33

River$OHer$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Amblonyx$cinereus

3.5 5.5 10.2 36

Poodle$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

4.1 5.9 5.6 12

Siberian$Husky$$$$$$$$$$$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

10.9 8.8 5.8 19

Chow$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

15.9 10.0 5.0 16

Kangaroo$$$$$$$$$$$$$$
Macropus$rufus

19.4 8.1 4.9 12

Siberian$Husky$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

22.3 11.2 5.4 21

Labrador$Retriever$1$$$$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

26.8 11.9 4.6 16

Labrador$Retriever$2$$$$$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

28.1 12.1 4.5 15

Labrador$Retriever$3$$$$$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

34.0 13.3 4.4 16

Labrador$Retriever$4$$$$$$$$$$$$$$$$$$$$
Canis$lupus$familiaris

41.0 14.1 4.3 17

Boer$Goat$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Capra$hircus

48.3 13.3 7.7 50

Kunekune$Pig$$$$$$$$$$$$$$$$$$$$$$$$$
Sus$scrofa

49.4 13.3 8.2 57

Gulf$Coast$Sheep$$$$$$$$$$$$$$$$$$$$$$$
Ovis$Aries

55.0 15.0 6.5 40

Black$Bear$$$$$$$$$$$$$$$$$$$$$$$$$$
Ursus$americanus

90 15 4.1 16

African$Lion$$$$$$$$$$$$$$$$$$$$$$$$$$$
Panthera$leo

114 15 4.8 22

Sumatran$Tiger$$$$$$$$$$$$$$$$$$$$$$$$
Panthera$@gris$sumatrae

119 16 4.3 19

Giant$Panda$$$$$$$$$$$$$$$$$$$$$$
Ailuropoda$melanoleuca

130 18.1 4.3 21

Brown$Bear$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Ursus$arctos$horribilis

260 24 4.0 24
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The best fit using the method of least squares yields

f ⇠ M�0.22, (R2 = 0.95, N = 25). (8.1)

Note that the goodness of fit R2=0.95 is high, despite over four orders of magnitude in

mass (0.01 - 260 kg) of the animals considered. Among these animals, we observe a clear

dependency of shaking frequency on body size: mice must shake at 30 Hz, dogs at 4.5-8

Hz and bears at 4 Hz.

In Fig.42, the vertical distance between the points and the best fit denotes the vigor of

the animal’s shake with respect to the average. We suspect deviations from the trend are

due to modifications in shaking style according to the animal’s anatomy, or as in the case

of dogs, centuries of domestication. While animals generally shook on four legs, rodents

such as mice and rats stood on hind legs to shake (Fig.41)a-b). Otters and sheep did not

shake at frequencies lower than the best fit, as one might expect from the lower adhesion

of drops to their waxy fur.

The largest animals such as bears shook at frequencies of 4 Hz, slightly higher than

predicted by the best fit (3.5 Hz). Generally animals in the size range of 4-260 kg exhibited

a slightly smaller range in frequency (4-6 Hz) than indicated by the best fit (3.5-9 Hz). This

departure from the best fit is likely due to the decreasing importance of shaking with size.

The largest animals such as elephants need not shake because of a combination their large

thermal mass, thickness of dermal layers, and lack of hair. Thus, we expect animals to

depart from the observed trends at some critical size, and this departure may in fact begin

for the largest animals studied.

8.1.2 Shaking Kinematics

Four Labrador retrievers (M = 32.5±6.5 kg) served as model organisms to characterize the

shaking kinematics because they were tame and accessible. A typical shake by a Labrador

is shown in Fig.40a, where a fluorescent fiducial marker is taped to the dog’s fur in the

middle of its back (Fig.40b). The angular position q of the marker with respect to the
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vertical is shown in Fig.40c and Video S14. We find the shake is closely approximated by

simple harmonic motion, in which

q(t) = Asin(2p f t) (R2 = 0.98, N = 3) (8.2)

where the shake amplitude is A = 90 ± 10� (N=3) and the frequency (in cycles per second)

is f = 4.5 ± 0.25 (N=3) . The peak angular velocity of the shake is w = dq/dt ⇠ 2p f A.

We observed qualitatively that drops are shed continuously throughout the cycle, with small

bursts of increased shedding when the fur changes direction.

We observe in Fig.40b a surprisingly large amplitude of motion A ⇡ 90� despite the

dog’s four paws remaining in contact with the ground. Rotating the dog’s skin by hand,

while keeping the vertebrae static, indicates the dermal tissue alone has a maximum de-

flection of As ⇡ 60�. Loose dermal tissue, which roughly contains all substance between

fur and muscles, had been previously hypothesized106 to reduce the energetic cost of lo-

comotion by facilitating limb movement, and we find here it serves another purpose by

increasing the amplitude of the shake.

We infer the vertebral motion during the shake has a smaller amplitude Av = A�As ⇡

30�, as shown by the time course of the dotted line in Fig.40c. The vertebral amplitude

is three times less than the dermal tissue amplitude during the shake, indicating that loose

dermal tissue has an important role in amplifying the shake. We also observed loose dermal

tissue in other animals, such as our x-ray videos of rats (Video S15). In our analysis of the

forces involved, we will see how this increase in amplitude improves the efficacy of the

shake through increasing the centrifugal force on drops within the fur.

8.1.3 Drops ejection from hair clumps

We now rationalize the observed power law scaling by consideration of the physics of drop

release from an animal’s furry surface. A wet furry animal will drip water due to the influ-

ence of gravity. As the animal dries, the falling ligaments of water transform into streams

of drops. Because the animal coat is wetting, it is energetically favorable for this departing
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fluid to follow the animal’s hair, from root to tip. Photographs of wet animals such as ot-

ters, bears, and dogs (Fig.43) often show wet animal hair forms a fairly uniform series of

wet aggregations, resembling wetted paintbrush bristles. These clumps are formed through

a complex process that depends on hair spacing, length, curvature, material properties and

degree of wetness100,181–184. Tabulated properties106,185–188 of animal fur, length, diam-

eter, density, and stiffness, show no dependency on animal size for the range of animal

masses we have considered (Fig.43, Fig.44).

a" b"

c" d"

Figure 43: Wet fur aggregation array shown on a (a) otter, (b) a brown bear, (c) an rat,
and (d) a black Labrador. (photo credit: stock photos (a)-(b), Andrew Dickerson (c), and
Phil Roman (d))

We performed a series of drip tests with variable-sized paintbrushes, ranging in diam-

eter from 1.2 to 11.5 mm meant to simulate the range of hair clump sizes observable in

animals. We shaved the tips of the paintbrush bristles flat in order to obtain uniformity in

our experiments. The paintbrushes are then suspended in a “wet-dog simulator” (see Fig.7

in Chapter 2), consisting of a high-strength spinning frame that rotates the brush along with
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a high-speed camera at a given frequency f . This device allowed us to visualize the flow

of fluid as if a dog is shaking at the frequency the device is spun.
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Figure 44: Hair length of mammals versus body mass.

8.1.4 Visualization of drop release

The detachment of drops may be clearly visualized using our system. Fig.45a shows a

video sequence of drop release from a paintbrush under gravity. The corresponding drop

release from a spinning brush (at 2.61 m/s with rotation rate of 610 rpm) is shown in

Fig.45b, and is visually similar to release due to gravity. In both processes, fluid entrained

from the brush engorges the drop. This engorgement occurs at a rate that depends on the

remaining moisture content of the brush and the applied centrifugal or gravitational forces.

During engorgement, the drop remains pinned to the brush. In Fig.45a, pinning occurs

at the circumference of the hair clump, whereas in Fig.45b, at points within the center of

clump. Once the drop has grown to a critical size, the pinch-off and release process is quite

fast, occurring within 10 ms. In both gravitational and centrifugal force-driven dripping, a

portion of the drop remains attached to the clump after release.
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Figure 45: Drop departure from fiber aggregations. (a-b) Video sequences of drop ejec-
tion under gravity and due to spinning, respectively. In the latter, centrifugal forces are
Rw

2/g = 11 and smaller drops are ejected. (c) The dependence of drop mass m and hair
aggregation size R0 for dripping under gravity. The mass of drops dripping from from glass
capillaries is shown for comparison. (d) The relation between drop mass and dimension-
less centrifugal acceleration for three hair aggregations of varying diameters. Best fits in
(c) and (d) are given by Eq. (8.3) using F(R0/a) = 0.4.
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This phenomenon of drop release has been well-studied in dripping from capillar-

ies189,190 in the context of intravenous drug delivery and in spinning disk spray applica-

tions191,192. In these cases, drop size can be very carefully controlled. The conditions for

drop detachment from a capillary are given by Tate’s Law193,194: to detach, a drop’s effec-

tive weight mg must overcome the surface tension force sR0 binding the drop to adjacent

hairs, where m is the drop’s mass, s = 72 dynes/cm is the surface tension of water and

R0 is the paintbrush radius. During shaking, drops have a larger effective weight due to

centrifugal forces, Fcent = mRw

2, which for mammals we have filmed can be 10-70 times

gravity (Table 5). As shown in Fig.45a-b, the high centrifugal forces cause extruded drops

to be smaller; we will see later that they result in far more fluid extracted than simply by

gravity.

Note that because our device spins at constant speed, our experiments do not account

for the dynamics of oscillating, pendulum-like motion, which may also act to eject drops.

The relative magnitudes of centrifugal to acceleration forces are comparable, Faccel/Fcent =

|

dw

dt /w

2
| = A�1

⇡ 0.65, suggesting that drops are likely to be shed by a combination of both

mechanisms; nevertheless we only consider centrifugal forces in our analysis.

8.1.5 Tate’s law applied to hair clumps

Our experiments reveal that drops formed by wet paintbrushes very consistently satisfy

Tate’s Law. Fig.45c shows the dependency of drop mass on clump size R0 under gravity:

drop mass is linearly proportional to clump size, as shown by the red points. Note this

behavior is similar to that shown previously for capillary tubes, as shown by the diamonds

in Fig.45c. Fig.45d shows the dependency of drop mass on rotational speed for three clump

sizes (R0 = 1.1, 1.7, 2.1 mm): drop mass is inversely proportional to centrifugal acceleration

Rw

2. Together, these findings demonstrate the modified Tate’s Law for the mass of drops

released,

m = (2psR0/Rw

2)F(R0/a), (8.3)

115



where s is surface tension of water, r is density, and a =
p

s/rg ⇡ 2.7 mm is capillary

length. For the best fit trend lines in Fig.45c-d, we estimate the correction factor195 for hair

clumps as a constant function, F(R0/a) = 0.4. We plot F(R0/a) for hair clumps of various

size in Fig.46. The correction factor for an analogous system, glass pipettes, was previously

determined to be a non-constant function by Harkins and Brown (1919). Measurements of

this function in our experiments yielded a small range, from 0.3 to 0.6, indicating the low

impact of approximation as a constant function. As shown by the agreement between the

solid lines and the experimental data in Fig.45c-d, Eq. (8.3) well predicts the mass of the

drops shed for an animal shaking at a fixed rotational velocity w with hair clumps of size

R0.
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Figure 46: F(R0/a) for hair clumps of various size.

We surmise the drying of animals proceeds as follows. Large drops, whose size are on

the order of the capillary length, naturally depart the animal due to gravity as in Fig.45a.

However, thin films of water on the hairs and the smallest drops remain attached and so can

only be removed by shaking, as shown in Fig.45b. Equation 8.3 shows that if an animal

increases its rotational velocity and so its centrifugal force compared to gravity, it may

extend the range of drop masses shed. However, at a given rotational velocity, the residual
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drop masses left behind after dripping, shown in Fig.45a-b, may be too small to be ejected

by centrifugal forces, and so may remain attached to the animal.

8.1.6 Prediction of shaking allometry

We may simplify Tate’s Law to formulate a “wet-dog shake rule,” an allometric relation

between animal mass and shaking frequency. Formulation of such a scaling law requires

determining which variables within Eq. (8.3) are independent of animal mass and so may be

fixed as constant. We consider each of the five variables in turn (s ,A,m,R0, f ), turning first

to variables that are independent of animal mass, as found either in our experiments or in

literature. Clearly, material properties of the fluid such as surface tension s are independent

of animal mass. In our experiments, we observe shaking amplitude A varies over a range of

60-110� without clear trends in animal mass. We find hair properties108,142,196–199,199–225

such as hair length and density do not vary systematically across mammal mass, as shown

in Fig.43, Fig.44, and Fig.47, respectively. Thus we fix wet hair clump radius, which

depends primarily on hair length and density.
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Figure 47: Hair density of mammals versus body mass.

The remaining variables in Eq. (8.3) are the radius R, which is an independent variable,
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and two dependent variables, the chosen shaking frequency f and the shed drop size m. The

shed drop mass is a function of both the radius and the frequency of shake. In particular,

over the range of Rw

2/g = 10-70 for animals studied (Table 5), Eq. (8.3) predicts drop

mass will vary by a factor of 7. This amount is low in comparison to the variation in other

variables considered. Variation in animal radius R is a factor of 24 (from 1 to 24 cm);

moreover, variation in the square of frequency (4 to 30 Hz) is a factor of 50. Each of these

factors are greater than seven. Moreover, their combined variation of Rw

2 varies by an

even larger factor of 1200 if R and w were to vary independently. Thus, we assume drop

mass is constant and proceed with our scaling to determine the relation between frequency

and radius.

We apply an allometric relation relating animal mass and radius previously found by

McMahon and Bonner (1983)161: animals are nearly isometric according to Kleiber’s Law

such that M ⇠ R8/3. Applying this law, the resulting scaling relation between animal mass

and shaking frequency is

f ⇠ M�3/16. (8.4)

By shaking at such frequencies, furry animals act like a high-pass filter, causing drops

above a critical size m to eject. This critical drop size is determined by the scaling pre-

factor in Eq. (8.4), which depends on the drop’s surface tension and density according

to Eq. (8.3). It is noteworthy our predicted exponent of -0.19 (R2=0.92) is close to the

observed value of -0.22. Our exponent is within the 99.8% confidence intervals for our

experimental best fit indicating that there is only a 0.2% chance our the predicted exponent

is different from the measured one. We attribute this small discrepancy, which scales as an

infinitesimal M0.03, to simplifications in our model, most likely regarding animal radius.

The increase in shaking speed for smaller animals is important in compensating for their

smaller radius. This tuning of shaking frequency with body size is necessary to generate the

large centrifugal forces required to shed drops, Rw

2/g = 10-70 gravities, for the animals

listed in Table 5. If for example all animals shook at the frequency of a dog, the smallest
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animals would have insufficient force to remove drops: for example a mouse shaking at 4

rather than 30 Hz would generate only 1 gravity of centrifugal force, and would remain just

as wet.

8.1.7 Shaking animals achieve similar residual moisture content

In our experiments with paintbrushes, we found the frequencies required for drop detach-

ment depend on clump size R0. We now use experiments with real animal fur to measure

how clump size changes during longer durations (30 seconds) of shaking. Fig.48a shows

the hair clump configurations at various speeds of rotation for a 6.3 cm2 square sample of

deer fur. As rotation speed increases so that centrifugal forces increase from from 1 to 40

gravities, the clumps separate into a cascade of smaller clumps. By weighing these clumps,

we find that this separation is accompanied by an exponentially increasing difficulty in

drying, which gives further rationale for the frequencies used by the animals.

Fig.48b shows the relation between the centrifugal forces applied and the remaining

moisture content RMC within our deer fur sample. We define RMC as the ratio of the

post-shake mass to the initial mass of water in the clump, as was done by textile-drying en-

gineers226. In Fig.48b the limiting RMC values of D = 30% show excellent agreement with

our measurements of RMC = 0.31±0.12 (N=10) on live rats, suggesting our experiments

with spun deer hair are representative of shaking live animals. From the combination of

these results, we conclude 30% RMC is the lowest level of dryness obtainable using shak-

ing. Moreover, the lowest RMC values of 0.3 - 0.4 values occur for speeds in which the

associated centrifugal force is

Rw

2/g > 10, (8.5)

as indicated in the shaded region in Fig.48

As shown in Table 5, all shaking mammals in our study have centrifugal forces in the

range of 10-70, a relatively small range considering the 4 orders of magnitudes of mass of

the animals. Notably, this range of forces coincides with the region of peak dryness given
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by Eq. (8.5), which was found independently with our wet-dog simulator. We conclude

that animals shake to achieve nearly equal and maximal levels of dryness.

8.1.8 Physical basis of residual moisture content

We may rationalize the trends observed in Fig.48b, beginning with the initial RMC of deer

fur under gravity. The mass of water in the hair is proportional to the corresponding water

column height within the fur. When fur is initially wetted, surface tension competes with

elasticity to bring the water column between the hairs to an equilibrium height100 of

Hinitial = L�

✓
9
2

d2L2
EC/cosqe

◆1/4
, (8.6)

where hair length in the deer fur sample L ⇡ 40 mm, hair follicle radius b ⇡ 200 µm, inter-

hair spacing d ⇡ 0.028 cm, elastocapillary length is LEC =
p

EI/sb = 57 cm, Young’s

Modulus is E = 3.7 GPa, I = pb4/4 ⇡ 1.26 ⇥ 10�3 mm4 is the area moment of inertia

and qe = 60� is the equilibrium contact angle of water on hair188. We find this model is

fairly accurate for our 6.3 cm2 square sample of deer fur. Given its combined water column

cross-sectional area A f ur of 2.4 cm2 (measured by the area of space between the furs): we

predict the hairs will retain minitial = rHinitialA f ur = 4.4 g of water whereas it held 4.7 g in

our experiments. Thus elastocapillarity theory is sufficient to account for the wet weight of

deer fur under gravity, and the discrepancy between experiment and theory suggests water

may soak into the hair fibers.

When fur is spinning, the associated centrifugal force competes with surface tension to

decrease the height of the water column to a modified Jurin’s height H = 2s cosqe/rRw

2d.

Using the definition of RMC, we may write RMC = H/Hinitial + D, where D is a free

parameter used for fitting the asymptote in Fig.48b. This parameter D cannot be predicted

with our simple model, as it represents the moisture that soaks into the rough surfaces of

the hair and skin, and cannot be removed even under extreme centrifugal forces227–230. The

remaining moisture content simplifies to

RMC = C/Rw

2 +D (8.7)
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where C = 2s cosqe/rdHinitial = 14.2 m/s2 and D = 0.3. Our measurements of RMC of

deer fur in Fig.48b show a power law qualitatively consistent with Eq. (8.7), having a

goodness of fit R2 = 0.93 within the range of Rw

2/g =2 - 35.
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Figure 48: Properties of hair clumps measured using our Wet-Dog Simulator. (a) The
separation of wet aggregations upon spinning. (b) The relation between RMC and non-
dimensionalized centrifugal acceleration. Error bars indicate the standard deviation of
measurement. (c) Mass of water held on a wet animal’s body versus animal mass. Data
for wet and dry masses for Cerradomys. sp. nov, Lindbergh’s Oryzomys, Atlantic Forest
Nectomys, and Amazonian Nectomys were collected by Santori (2008)112, while the Mink
was gathered from Korhonen (2002)113.
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For small rotation speeds Rw

2/g <2, RMC is sigmoidal and outside the scope of our model,

due to elastic and gravitational forces becoming comparable with centrifugal forces in this

regime.

Using our measured trends in moisture content in Fig.48b, we may quantify the benefits

of the animal’s loose dermal tissue, observed in Fig.40c. Previously, we found loose dermal

tissue increases the shake amplitude by 3-fold, and thus the speed of shaking by 9-fold.

If dermal tissue were tight rather than loose (as on humans), animal shaking frequencies

would cause RMC values to remain close to 1, indicating the animal would remain wet.

Thus, an important role of the loose dermal tissue is to increase the efficacy of the shake,

as shown by the sensitivity of the RMC to changes in skin speed.

8.1.9 Shaking energy expenditures

We may assess the effectiveness of shaking by comparing the energetic costs of shaking

versus evaporating the water. The shaking energy can be estimated as the peak kinetic

energy for simple harmonic motion, given by Eshake = 1
2M(Rw)2. If animals can shake

70% of their water off, as shown previously, the energy required to evaporate that mass

of water is given by Eevap = 0.42lMw where Mw is the mass of the water on the animal.

The coefficient 0.42 is a product of 0.6, the fraction of energy needed from the animal to

evaporate water115 and 0.7, the fraction of water an animal can shake off as found in our

experiments.

Fig.48c shows the relation between an animal’s body mass M and the mass of water

in its fur, Mw. Data for 7 mammals was found by combining our own measurements of

wet animals along with others112,113. The trend follows the power law Mw = 0.047M0.97,

where M and Mw are both in kilograms, with high accuracy (R2 = 0.95, N = 7). The mass of

the water held in the fur is approximately 3-10% of the animal’s body mass for the masses

considered (0.1-4 kg).

We combine the above energetic estimates above with our measurements of animal
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frequency to calculate an efficacy of shaking. We define this efficacy as the ratio of the

energy expended to shake to the energy expended to air-dry as h = Eshake/Eevap. We find

that over the 4 orders of magnitude of mass for animals studied, this efficacy has a small

range of 10�4
� 10�3. In this range, all values are far less than one, indicating the great

energy savings achieved by shaking.

8.2 Discussion

8.2.1 Predictions based on power

In tests with animal hair, we found the observed frequencies were capable of drying the

animal appreciably, as defined by removing 70% of its accumulated water. Furthermore,

we found that increased speeds imparted to the fur would achieve diminishing return. Thus,

the animal obtains a reasonable amount of dryness without expending an excess of energy.

The work per shake W of an animal161 scales as the mass of its muscles (W ⇠ M). The

kinetic energy expended per shake is

W ⇠ MR2
w

2
⇠ MR2 f 2 (8.8)

thus

f ⇠ R�1
⇠ M�1/3. (8.9)

We note that our observed scaling exponent of -0.22 falls between the minimum frequencies

for drop release (-0.19) and the maximum frequencies based on power output (-0.33). Thus,

it may not be possible for animals to dry further because they may be at the upper limits

of shaking speed they can generate. In studies of galloping, stride frequencies of small

mammals varied from 2- 9 strides/second, whereas the frequencies of shaking are faster

(4-30 shakes/second). Studies regarding drug-induced tremors in mice reported shivering

frequencies to be very close to shaking frequencies at 25 shakes/second231, which is quite

possibly at the limits of oscillatory motion of muscle.
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8.2.2 Comparison with other scaling laws

Our measurements of shaking frequency may be related to other frequencies associated

with animal movement. Stahl measured the heartbeat frequency232 of resting animals scal-

ing as fhb ⇠ M�0.25. Joos et al. found that the wing beat frequency233 in bees scales with

the bee’s mass as fwb ⇠ M�0.35. Heglund found frequency234, in the trot-gallop transition,

for mice, rats, dogs, and horses, scales as ftrot ⇠ M�0.14. He noticed for all animals tested,

stride frequency became asymptotic, changing less than 10% as the animals increased their

speed from the trot-gallop transition to their maximum. These power law scalings are com-

parable in exponent to the ones we measured for shaking animals, possibly because similar

muscles are used to power both locomotion and shaking.

8.2.3 Scaling frequency with body radius

In predicting a scaling for frequency, care must be made in choosing an appropriate in-

dependent variable. There are two choices to characterize body size, radius and mass.

When choosing body mass, our model fit the experimental results quite well. Rewriting

our model, Eq. (8.4), in terms of frequency and body radius yields f ⇠ R�1/2. This result

is in high variance with respect to experimental data in Table 5, which yields f ⇠ R�0.77 (R2

= 0.96). This discrepancy arises from approximating body proportion with a single circum-

ference measurement around the shoulders. However, this is not the only region in need

of drying. In fact, other regions of the animal will have a different characteristic radius.

Consequently, an animal’s mass, which scales as its volume, more accurately captures the

average radius of the animal the drops encounter during shaking. This reasoning explains

why our scaling with respect to animal mass ultimately yielded a closer fit to experimental

data.

8.2.4 Predictions and exceptions

We hypothesize shaking when wet is an ancient survival mechanism, dating back to the

emergence of furry mammals. Many Pleistocene mammals were covered with hair. Giant
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beavers235, similar in size to a black bear, and short-faced bears236, similar in size to griz-

zlies, would have likely shook similarly to their modern counterparts. Though the ability to

shake likely spans generations of furry mammals, it is not a characteristic of all mammals,

even of those today. The largest mammals’ thermal mass is a likely cause for its inability

to shake. In addition, aquatic mammals and those covered with a hard shell, such as an

armadillo have no need to shake dry. Other animals with specialized slow lifestyles such

as the giant sloths may not posses the speed to initiate a shake.

Hairless mammals may have no shaking instinct. While filming we observed hairless

guinea pigs did not shake, but only shivered. In personal observations, some species such

as the sparsely-haired warthog spend their days bathing in muddy water. We expect that

nearly hairless species, adapted to hot environments, have not developed the behavior to

shake when wet.

We saw earlier that loose dermal tissue played a role in increasing the speed, force and

efficacy of the shake. This constraint may also prevent certain species from shaking. For

instance, while humans do not generally have loose dermal tissue, some humans can use

their long hair to shed water. This technique involves repeated motion of the head and

upper torso in the dorso-ventral plane to whip water from their hair. Although the head

is oscillated at the low frequencies of only 1-2 Hz, the hair length aids to increase the

amplitude and speed at which hair tips are whipped, and consequently the ensuing dryness.

8.3 Chapter Summary

In this study, we demonstrated that reciprocal high-speed twisting commonly observed in

dogs has a broad generality among mammals. We found that drops remain adhered to a

wet animal’s hair due to the forces of surface tension. To eject drops and achieve dryness

levels of 30%, we found animals generated centrifugal forces equivalent to 10-70 gravities.

In order for animals of variable size to attain this magnitude of force, we predicted animals

must shake at frequencies of f ⇠ M�3/16, which was similar to experimentally measured
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frequencies. We conclude animal frequency is tuned to (1) the animal’s size and (2) the

properties of water, namely surface tension and density, which set the magnitudes of the

centrifugal and capillary forces in our model. Consequently, such mechanisms work poorly

when animals are subjected to fluids with properties different from water such as crude oil,

whose wetting properties and inability to evaporate prevents the shake from being effective.
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CHAPTER IX

CONCLUDING REMARKS

“Consider it pure joy, my brothers, whenever you face trials of many kinds, because you

know that the testing of your faith develops perseverance. Perseverance must finish its work

so that you may be mature and complete, not lacking anything. If any of you lacks wisdom,

he should ask God, who gives generously to all without finding fault, and it will be given to

him.” -James 1:2-5 (New International Version)

We have reported the results of a combined theoretical and experimental thesis on

mosquito locomotion in rainfall, hyperdense flight mediums, and various phenomena aris-

ing from fog and dew deposition. In Chapter 3, we investigated how Anopheles gambi

mosquitoes and similarly sized insects survive raindrop impacts, and quantified the forces

associated with those impacts. The mosquito’s low mass causes raindrops to lose little

momentum upon impact and so impart correspondingly low forces to the insect. We de-

rived relations for the transfer of momentum between the insect and raindrop to predict the

insect’s downward velocity post impact. An analysis of drop deformation was preformed

and we may conclude that drops do no splash upon impact with a mosquito. Our findings

demonstrate that small fliers are robust to in-flight perturbations. In Chapter 4, we iden-

tified three outcomes of raindrop collisions: drops push the insect while remaining intact,

coat the insect, or splash. The type of impact observed is dependent upon the insect’s mass

and size. We presented a mathematical model that predicts impact force and outcome con-

sistent with those found in experiments. We pinpointed a critical mass of 0.3 g for which

flyers achieve both peak acceleration (100 g) and applied force (104 dynes) from incoming

raindrops; designs of flying robots similarly massed should be avoided. Future researchers
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may identify how our results will change for other drop kinematics. There likely exists a

small range of sphere sizes and masses that can produce any of the three impact modes

based on initial drop velocity and size.

In Chapter 5, we showed simple fogs of water droplets, devoid of chemicals, are effec-

tive at obstructing the flight of Anopheles freeborni mosquitoes. Using high-speed video,

we filmed their flight in heavier-than-air fluids such as fogs produced by household humid-

ifiers and R134a gas. In gases denser than air, mosquitoes cannot maintain flight stability,

but pitch and roll uncontrollably until they fall to the ground. We found the aerodynamic

drag force of denser-than-air flight environments is sufficient to render a mosquito’s gy-

roscopic sensors and wingbeat controllers, their halteres, ineffective. We compared the

change in force required to drive the rapidly oscillating halteres imposed by increased

drag to the inertial forces induced by adding glue masses of 10 nanograms to each haltere.

Mosquitoes with such a minor treatment executed flight maneuvers similar to mosquitoes

in fog, indicating their halteres are highly tuned to aerodynamic properties of normal air,

making the halteres sensitive to contaminants. The failures of mosquito flight in fog reveals

potential methods for mosquito control that do not require insecticide-laced particles. In

addition to insecticide research, future researchers may choose to investigate the effects of

hyperdense mediums on the flight performance of non-haltere-bearing insects, which also

rely on airflow characteristics to sense flight dynamics68,69 .

In Chapter 6, we characterized the folding process of small, wet, insect wings from flat

into taco shapes. We observed a wing begins to bend as the drops atop grow larger through

coalescence. A very thin wing will fold more tightly as the drop evaporates, whereas

a thicker wing will reopen to its natural state. We derived a two-dimensional model to

determine the magnitude of folding for a given drop size spanning the wing’s width, and

presented folding-resistant design suggestions for micro-aerial vehicle wings.

Certainly, deposited moisture on an insect’s body can hinder locomotion. In Chapter 7

we investigated three water deposition removal techniques employed by mosquitoes. They
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shed drops by employing various types of body accelerations, ranging from 1�2500 g, in-

cluding those during takeoff, collision with the ground, and a flutter-type wingbeat. These

low amplitude, flutter-type wingbeats are executed at more than double the mosquitoes’

in-flight wingbeat frequency to dispel droplets. Table 6 gives a comparison of the survival

mechanisms and associated accelerations mosquitoes employ when encountering different

type of water particles. In addition to undiscovered drying techniques, our study raises

questions of wetting, namely, if insect hair arrays are optimized to repel water. While

micro-pillar wetting models exist49, future researchers may choose to search for an opti-

mum hair spacing, diameter, length, and stiffness, such that arrays easily repel drops of any

length-scale.

Table 6: Methods for droplet removal, categorized by particle type.

Particle  
Diameter D  

(prior to deposition) 

% Body Weight 
of 2 dyne 
Mosquito 

Survival Behavior/
Mechanism 

Associated 
Acceleration 

(g) 

Rain 1 – 8 mm 100 – 5000 hyrdophobicity,  
passive rotation 50 – 300  

Fog  0.3 – 10 µm 10-10 – 10-5 rest in unfavorable 
conditions ---- 

Dew ~100 nm ---- 
rapid takeoff  
hard landings 
wing flutters 

0.5 – 3 
10  

2500 

In Chapter 8, we strayed away from the realm of insects into that of furry mammals.

Mammals do not face the locomotive challenges of insects in particle environments, but

water accumulation on their bodies remains a great danger. By rapidly oscillating their

bodies, through a process similar to shivering, furry mammals can dry themselves within

seconds. We used high-speed videography and fur particle tracking to characterize the

shakes of 33 animals (16 animals species and 5 dog breeds), ranging over four orders of
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magnitude in mass from mice to bears. We presented a power-law relationship between

shaking frequency f and body mass M to be f ⇠ M�0.22, which is close to our prediction

of f ⇠ M�0.19 based upon the balance of centrifugal and capillary forces. We also observed

a novel role for loose mammalian dermal tissue: by whipping around the body, it increases

the speed of drops leaving the animal and the ensuing dryness relative to tight dermal tissue.

Due to water absorption into the hair fibers themselves, an animal can remove about 70%

of the water initially trapped in its fur, which can be done in less than 2 seconds. Therefore,

we proposed that mammals shake close to an energetically optimal speed and time.

Much may be gleaned from nature’s solutions to environmental challenges, as engineers

become more interested in the manufacture of micro- and nanoscale devices which oper-

ate at scales dominated by capillary forces. Aerial robots have rapidly shrunken in size in

recent years1–7. Their designs have closely relied on the physiology of insects. Biomimet-

ics, the development of machines based on living organisms, is drawing on increasingly

lightweight materials, but with smaller components, comes increased vulnerability to flu-

ids. The success of robotics in the future will rely heavily on their ability to cope with

challengingly wet and particle-filled environments.

It is my hope this series of investigations bestows perspicuity to a number of fundamen-

tal fluid mechanics problems arising through the consideration of flying insects, to date left

largely unexplored by fluid dynamicists and biologists. In this thesis, we have applied

modern technology (specifically, high-speed videography) and classical fluid mechanics

towards understanding survival strategies of insects and mammals against surface tension

forces and droplet impacts, which evolved millions of years ago.
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APPENDIX A

SUPPLEMENTARY VIDEO CAPTIONS

A thesis is meant to stand the test of time, and the links below will remain active as long as

YouTube exists.

Mosquitoes survive raindrop collisions by virtue of their low mass

Video S1: Experimental clips of mosquitoes and insect mimics, submitted to the Gallery

of Fluid Motion, APS DFD 2011.

http://youtu.be/LQ88ny09ruM

Raindrops push and splash flying insects

Video S2: Experimental clips of all regions of impact on insects and insect mimics.

http://youtu.be/aBNPKej-lgU

Fog disables mosquito flight due to increased aerodynamic drag on halteres

Video S3: Mosquito taking off in a dense fog stream. The mosquito, unable to sense

this orientation, quickly pitches forward after takeoff. Notice that despite the presence

of fog and the deposition of droplets onto the body, a mosquito is able to generate lift in

the presence of fog particles. Mosquitoes have been known to double their body weight

through feeding and fly successfully. Time is slowed 150X.

http://youtu.be/6ZzGE IM2qE

Video S4: Mosquito flying into the fog stream. The mosquito is performing normal flight
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prior to entering the stream, but eventually perfumes a 180� roll due to interaction with the

stream. Time is slowed 30X.

http://youtu.be/VS962PyCsFg

Video S5: Mosquito entering a container of hyperdense air from the top, unable to achieve

flight before hitting the floor. Mosquitoes are able to climb in during brief periods but lack

of orientation control results in a quick descent. Time is slowed 50X.

http://youtu.be/UTc Y F9gEw

Video S6: Haltere of a freshly dead mosquito manually plucked. The haltere has not been

weighted with glue. Time is slowed 200X.

http://youtu.be/DhtvsC4996I

Video S7: Housefly successfully executing a turn in a fog stream. Unlike mosquitoes,

houseflies could stay aloft in the densest fog tested. Time is slowed 140X.

http://youtu.be/4qq4TK7noag

Dew-driven folding of insect wings

Video S8: Top view of mosquito wing folding following coalescence cascade. Slowed

50X.

http://youtu.be/snqMbD5l-ks

Video S9: Drosophila melanogaster wing folding. Slowed 100X.

http://youtu.be/b2ZpuWm LVc

Video S10: Mosquito wing folding tightly as drop above evaporates. Sped up 4X.

http://youtu.be/KXzpdwRYXac
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Video S11: Mosquito wing reopening as drop above evaporates. Sped up 4X.

http://youtu.be/JTIb2nVjcaI

Mosquito drop shedding mechanisms for fog and dew deposition

Video S12: Live mosquito falls motionless to remove droplets covering its body. Mosquito

quickly stands after fall and flies away. http://youtu.be/8s1 f9fyjME

Video S13: Mosquito flapping with a flutter stroke at 875 Hz (initially). This is a mecha-

nism to remove small droplet attached to the wings. http://youtu.be/t1NC1Rw8ygw

Wet mammals shake at tuned frequencies to dry

Video S14: Particle-tracking straw affixed to a Labrador retriever’s back during four peri-

ods of shaking. The shaking is initiated by the dog’s head. Note the looseness of the skin

increases the amplitude of shaking, which for the skin is 90� from the vertical axis. Time

is slowed 25 X.

http://youtu.be/ekXOf8Rc5EI

Video S15: Image shaking sequence for animals of increasing size (Mouse, Rat, Kunekune

Pig,Labrador Retriever, Gulf Coast Sheep Brown Bear), including an X-ray video of rat

shaking. Note smaller animals (mouse, rat) lift their front feet to increase their mobility

during the shake. Animals of all sizes exploit their loose skin to increase shaking amplitude.

http://youtu.be/FYegFlZ3-o0

Video S16: Drop ejection from a hair clump on the “wet-dog simulator.” Ejected drops

shrink with increasing centrifugal acceleration and decreasing hair aggregation size. Note
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the small drop radius compared to the clump size for this frequency of rotation correspond-

ing to Rw

2/g = 14. Laser light in background is used to track rotation. Time is slowed 50

X.

http://youtu.be/jEMNwm-CX2c
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APPENDIX B

DEW-DRIVEN FOLDING OF INSECT WINGS: NUMERICAL

CODE

Below we provide the numerical code for solving the implicit equations presented in Chap-

ter 6. The code is run in Intel Fortran Compiler integrated with Microsoft Visual Studio.

Code was authored by Xing Liu.

program main

implicit none

!===========interface=============

interface

!⇤⇤⇤⇤⇤⇤⇤⇤⇤total⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤

function total (x, y, z)

implicit none

real (8) :: x, y, z

real (8) :: total (6)

end

function total extra (x, y, z)

implicit none

real (8) :: x, y, z

real (8) :: total extra (6)

end

end interface

!===========initialization=============

real (8) , parameter :: E = 1.9e7, thickness = 0.9e�5

real (8) :: Lec, d, temp(6), constants (3) , breakpoint , rate , pz initial1 , pz initial2

real (8) , allocatable :: inv r (:) , inv r2 (:) , area (:) , th (:) , pz (:) , alpha (:) , dist (:)

integer (8) :: i , j , no, err , m

i = 1

j = 0

no = 1e5
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allocate ( inv r (no) , inv r2 (no) , area (no) , th (no) , pz(no) , alpha(no) , dist (no) , stat =

err )

if ( err .ne. 0) stop ’ allocation error ! ’

forall ( j = 1:no) inv r ( j ) = 0.2+(1�0.2) /(no�1)⇤(j�1)

forall ( j = 1:no) inv r2 ( j ) = 0.32+(1�0.32)/(no�1)⇤(j�1)

area = 0

th = 0

pz = 0

alpha = 0

temp = 0

rate = 0

dist = 0

pz initial1 = �2

pz initial2 = �2

Lec = SQRT(E/12⇤(thickness⇤⇤3)/0.073)

d = 6.7e�4/Lec

constants = [d, thickness , E]

print ⇤, constants

m = 3

call output ( constants , ’ plotgraph / cons al . dat ’ , m)

!==========lambda initial1====================

breakpoint = 0.0 ! 1 correct

do while(abs( breakpoint ) . lt . 1e�5)

temp = total (1/ inv r (1) , d, pz initial1 )

breakpoint = temp(6)

print ⇤, ’ lambda initial1 ’ , pz initial1

pz initial1 = pz initial1 + 0.1

end do

!==========lambda initial2====================

breakpoint = 0.0 ! 1 correct

do while(abs( breakpoint ) . lt . 1e�5)
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temp = total extra (1/ inv r2 (1) , d, pz initial2 )

breakpoint = temp(6)

print ⇤, ’ lambda initial2 ’ , pz initial2

pz initial2 = pz initial2 + 0.1

end do

pz initial1 = pz initial1 � 0.1

pz initial2 = pz initial2 � 0.1

!==========calculate everything==============

breakpoint = 1.0

pz(1) = pz initial1

do while (abs( breakpoint�1) . lt . 1e�5)

temp = total (1/ inv r ( i ) , d, pz( i ) )

area ( i ) = temp(1)

th ( i ) = temp(2)

pz( i ) = temp(4)

alpha( i ) = temp(3)

dist ( i ) = temp(5)

breakpoint = temp(6)

rate = sin (alpha( i )+th( i ) ) / inv r ( i ) /d/(3+pz( i ) )⇤6

print ⇤, ’FIRST’, i , rate , pz( i )

i = i+1

pz( i ) = pz( i�1)

end do

call output ( area (1: i�2),’ plotgraph /area nm. txt ’ , i�2)

call output ( th (1: i�2),’ plotgraph /thet nm. txt ’ , i�2)

call output (pz(1: i�2),’ plotgraph /lamb nm.txt’ , i�2)

call output (alpha (1: i�2),’ plotgraph /alph nm. txt ’ , i�2)

call output ( dist (1: i�2),’ plotgraph /dist nm . txt ’ , i�2)

call output ( inv r (1: i�2),’ plotgraph /invr nm. txt ’ , i�2)

!==========extra===================================

area = 0

th = 0

pz = 0
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alpha = 0

temp = 0

rate = 0

dist = 0

i = 1

!==========calculate everything extra ==============

breakpoint = 1.0

pz(1) = pz initial2

do while (abs( breakpoint�1) . lt . 1e�5)

temp = total extra (1/ inv r2 ( i ) , d, pz( i ) )

area ( i ) = temp(1)

th ( i ) = temp(2)

pz( i ) = temp(4)

alpha( i ) = temp(3)

dist ( i ) = temp(5)

breakpoint = temp(6)

rate = sin (alpha( i )+th( i ) ) / inv r2 ( i ) /d/(3+pz( i ) )⇤6

print ⇤, ’SECOND’, i, rate , pz( i )

i = i+1

pz( i ) = pz( i�1)

end do

call output ( area (1: i�2),’ plotgraph / area ex . txt ’ , i�2)

call output ( th (1: i�2),’ plotgraph / thet ex . txt ’ , i�2)

call output (pz(1: i�2),’ plotgraph /lamb ex. txt ’ , i�2)

call output (alpha (1: i�2),’ plotgraph / alph ex . txt ’ , i�2)

call output ( dist (1: i�2),’ plotgraph / dist ex . txt ’ , i�2)

call output ( inv r2 (1: i�2),’ plotgraph / invr ex . txt ’ , i�2)

end program

!=========function================

!⇤⇤⇤⇤ total⇤⇤⇤⇤⇤⇤⇤

function total (x, y, z)

implicit none
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real (8) :: x, y, z , lambda, lambda2, err , dlbd , s(100000), ss(99999), phi(99999), theta , q1,

q2, tt

real (8) :: dx(99999), dy(99999), xx(100000), yy(100000), Area, l

real (8) :: total (6) , rate , pi

real (8) , external :: phi cal

integer (8) :: judge , step , j

!x r

!y d

!z lbd

judge = 1

lambda = z

lambda2 = 0

dlbd = 1

step = 0

total = 0

phi = 0

err = 1e�5

theta = 0

q1 = 0

q2 = 0

tt = 0

xx = 0

yy = 0

dx = 0

dy = 0

Area = 0

l = 0

j = 1

pi = 4.D0⇤datan(1.D0)

forall ( j = 1:100000) s( j ) = ( j�1)/99999.0

ss = s(2:100000)

loop1: do while( dlbd . gt . err )

phi = �y⇤⇤3 /48 /x ⇤ss ⇤(ss⇤⇤2+lambda⇤ss�3�2⇤lambda)

l = sum(y/100000⇤cos(phi))

tt = l /2/ x

if (abs( tt ) . gt . 1) then
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judge = 0

print ⇤, ’ First loop1’

exit loop1

else

theta = asin ( tt )

end if

q1 = 6⇤sin(y⇤⇤3 /48 /x ⇤(2+lambda)+theta)⇤x/y�3;

phi = �y⇤⇤3 /48 /x ⇤ss ⇤(ss⇤⇤2+q1⇤ss�3�2⇤q1)

l = sum(y/100000⇤cos(phi))

tt = l /2/ x

if (abs( tt ) . gt . 1) then

judge = 0

print ⇤, ’ First loop2’

exit loop1

else

theta = asin ( tt )

end if

q2 = 6⇤sin(y⇤⇤3 /48 /x ⇤(2+q1)+theta )⇤x/y�3;

dlbd = abs(q2�q1)

if (dlbd . lt . err ) then

lambda2 = q2

else

lambda2 = lambda�(q1�lambda)⇤⇤2/(q2�2⇤q1+lambda)

end if

dlbd = abs(lambda2�lambda)

step = step+1

lambda = lambda2

if ( step . gt . 10000) then

print ⇤, ’ First convengence

error ! ’ , x, lambda

judge = 0
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exit loop1

end if

end do loop1

phi = �y⇤⇤3 /48 /x ⇤ss ⇤(ss⇤⇤2+lambda⇤ss�3�2⇤lambda)

l = sum(y/100000⇤cos(phi))

tt = l /2/ x

if (abs( tt ) . gt . 1) then

judge = 0

else

theta = asin ( tt )

end if

rate = sin (y⇤⇤3 /48 /x ⇤(2+lambda)+theta)⇤x/y/(3+lambda)⇤6

if (judge .ne. 0) then

j = 1

phi = �y⇤⇤3 /48 /x ⇤ss ⇤(ss⇤⇤2+lambda⇤ss�3�2⇤lambda)

dy = sin (phi)/99999

dx = cos(phi)/99999

loop2: do j = 1, 99999

yy(j+1) = yy(j )+ dy(j )

xx(j+1) = xx(j )+ dx(j )

if (dy(j ) . lt . 0) then

print ⇤, ’Geometric Error A!’

judge = 0

exit loop2

elseif (xx(j+1) . lt . 0) then

print ⇤, ’Geometric Error B!’

judge = 0

exit loop2

end if

end do loop2

if (judge .ne. 0) then

yy = yy � yy(100000)
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Area = �sum(yy(1:99999)⇤dx)⇤2

Area = Area⇤y⇤y/4+x⇤x⇤(theta� sin( theta )⇤cos( theta ) ) ;

total = [Area, theta , y⇤⇤3 /48 /x ⇤(2+lambda), lambda, l , 1]

else

total = 0

end if

else

total = 0

end if

end function total

!⇤⇤⇤⇤ total⇤⇤⇤⇤⇤⇤⇤

function total extra (x, y, z)

implicit none

real (8) :: x, y, z , lambda, lambda2, err , dlbd , s(100000), ss(99999), phi(99999), theta , q1,

q2, tt

real (8) :: dx(99999), dy(99999), xx(100000), yy(100000), Area, l

real (8) :: total extra (6) , rate , pi

real (8) , external :: phi cal

integer (8) :: judge , step , j

!x r

!y d

!z lbd

pi = 4.D0⇤datan(1.D0)

judge = 1

lambda = z

lambda2 = 0

dlbd = 1

step = 0

total extra = 0

phi = 0

err = 1e�5

theta = 0

q1 = 0

q2 = 0

tt = 0

xx = 0
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yy = 0

dx = 0

dy = 0

Area = 0

l = 0

forall ( j = 1:100000) s( j ) = ( j�1)/99999.0

ss = s(2:100000)

loop3: do while( dlbd . gt . err )

phi = �y⇤⇤3 /48 /x ⇤ss ⇤(ss⇤⇤2+lambda⇤ss�3�2⇤lambda)

l = sum(y/100000⇤cos(phi))

tt = l /2/ x

if (abs( tt ) . gt . 1) then

judge = 0

print ⇤, ’Third loop1’

exit loop3

else

theta = pi � asin( tt )

end if

q1 = 6⇤sin(y⇤⇤3 /48 /x ⇤(2+lambda)+theta)⇤x/y�3;

phi = �y⇤⇤3 /48 /x ⇤ss ⇤(ss⇤⇤2+q1⇤ss�3�2⇤q1)

l = sum(y/100000⇤cos(phi))

tt = l /2/ x

if (abs( tt ) . gt . 1) then

judge = 0

print ⇤, ’Third loop2’

exit loop3

else

theta = pi � asin( tt )

end if

q2 = 6⇤sin(y⇤⇤3 /48 /x ⇤(2+q1)+theta )⇤x/y�3;

dlbd = abs(q2�q1)
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if (dlbd . lt . err ) then

lambda2 = q2

else

lambda2 = lambda�(q1�lambda)⇤⇤2/(q2�2⇤q1+lambda)

end if

dlbd = abs(lambda2�lambda)

step = step+1

lambda = lambda2

if ( step . gt . 10000) then

print ⇤, ’Second convengence error ! ’ , x, lambda

judge = 0

exit loop3

end if

end do loop3

phi = �y⇤⇤3 /48 /x ⇤ss ⇤(ss⇤⇤2+lambda⇤ss�3�2⇤lambda)

l = sum(y/100000⇤cos(phi))

tt = l /2/ x

if (abs( tt ) . gt . 1) then

judge = 0

else

theta = pi� asin( tt )

end if

rate = sin (y⇤⇤3 /48 /x ⇤(2+lambda)+theta)⇤x/y/(3+lambda)⇤6

if (judge .ne. 0) then

j = 1

phi = �y⇤⇤3 /48 /x ⇤ss ⇤(ss⇤⇤2+lambda⇤ss�3�2⇤lambda)

dy = sin (phi)/99999

dx = cos(phi)/99999

loop4: do j = 1, 99999

yy(j+1) = yy(j )+ dy(j )

xx(j+1) = xx(j )+ dx(j )
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if (dy(j ) . lt . 0) then

print ⇤, ’Geometric Error A!’

judge = 0

exit loop4

elseif (xx(j+1) . lt . 0) then

print ⇤, ’Geometric Error B!’

judge = 0

exit loop4

end if

end do loop4

if (judge .ne. 0) then

yy = yy � yy(100000)

Area = �sum(yy(1:99999)⇤dx)⇤2

Area = Area⇤y⇤y/4+x⇤x⇤(theta� sin( theta )⇤cos( theta ) ) ;

total extra = [Area, theta , y⇤⇤3 /48 /x ⇤(2+lambda), lambda, l , 1]

else

total extra = 0

end if

else

total extra = 0

end if

end function total extra

!================================================================

subroutine output ( results , filename , M)

implicit none

integer (8) :: i var , err , i , M

real (8) :: results (⇤)

character (21) :: filename

open( unit = 111, &

file = filename , &

err = 100, &

iostat = i var , &
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access = ’ sequential ’ , &

form = ’ formatted ’ , &

status = ’ replace ’ , &

action = ’ readwrite ’ , &

position = ’rewind’)

100 continue

if ( i var .eq. 0) then

print ⇤, ’” results . dat” opened!’

else if ( i var . gt . 0) then

print ⇤, ’ File openning error : ’ , i var

stop

else

print ⇤, ’Reach to the end of file ” results . dat ”! ’

stop

end if

i = 0

do i = 1, M�1

write (111, 400) results ( i ) , char (9)

end do

write (111, 300) results (M), char (9)

endfile (111)

print ⇤, filename

300 format(f18 .8, a)

400 format(f18 .8, a\)

500 format (/ i0 ,a , i0 ,a , i0 )

close (111)

end subroutine output
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APPENDIX C

SCHOLARLY ACHIEVEMENTS
C.1 Journal papers

Dickerson, A.K. and Shankles, P.G. and Madhavan, N.M. and Hu, D.L. “Mosquitoes sur-

vive raindrop collisions by virtue of their low mass,” Proceedings of the National Academy

of Sciences. 109, no. 25, 2011.

Dickerson, A.K. and Mills, Z.G. and Hu, D.L. “Wet mammals shake at tuned frequencies

to dry,” Journal of the Royal Society Interface. 10.1098, 2012.

Dickerson, A.K. and Shankles, P.G., and Hu, D.L. “Raindrops push and splash flying in-

sects,” Physics of Fluids. (In Review)

Dickerson, A.K. and Shankles, P.G. and Berry, B.E. and Hu, D.L. “Fog disrupts mosquito

flight due to increased aerodynamic drag on halteres,” Experiments in Fluids. (In Review)

Dickerson A.K. and Liu, X. and Zhu, T. and Hu, D.L. “Dew driven folding of insect wings.”

Journal of the Royal Society Interface. (In Preparation)

Dickerson A.K. and Hu, D.L. “Mosquitoes actively remove drops deposited by fog and

dew,” Integrative and Comparative Biology. (In Review)

C.2 Conference presentations

Dickerson, A.K. and Mills, Z.G. and Hu, D.L. “Wet-dog shake” American Physical Soci-

ety: Division of Fluid Dynamics. Nov 2010. Long Beach, CA
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Dickerson, A.K. and Shankles, P.G. and Madhavan, N.M. and Hu, D.L. “How mosquitoes

fly in the rain,” American Physical Society: Division of Fluid Dynamics. Nov 2011. Balti-

more, MD

Dickerson, A.K. and Shankles, P.G. and Madhavan, N.M. and Hu, D.L. “Insects flying in

the rain,” Society for Integrative and Comparative Biology. Jan 2012. Charleston, SC

Dickerson, A.K. and Telljohann, L. and Hu, D.L. “Mosquito flight failure in heavy fog,”

American Physical Society: Division of Fluid Dynamics. Nov 2012. San Diego, CA

Dickerson, A.K. and Liu, X. and Zhu, T. and Hu, D.L. “Dew-driven folding of insect

wings,” American Physical Society: Division of Fluid Dynamics. Nov 2013. Pittsburgh,

PA
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