GEORGIA INSTITUTE OF TECHNOLOGY

ENOINEERING EXPERIMENT ETATION

 ATLANTA 13, GEORGIAran
Ager1 19, 1962

Abstract

Mr. J. Y. Dtekent, Acritenaturel Magtreer

 20x 5906II. C. Btate college
nelelen, II, C.

Bubjeeth Final llegort - Contraet Ho, 12-23-010-3651
 Dcaign and Fontige of Mechantenl and Struetund Companents of ia Paensatie Enmpler for Thmer'e stoel Peatuts

Dens Nor. Dielmas:

A frual repert se heroly rentered on the enbjoct grojeot. In preprige

1. The exportisental seaplar ot Devison, Ceorgis, wis atnifed in

 ropniry, and other danien foetors vere oocsiderod in oxter to develog ceasgen erttexta for the ampletr.
2. On the inate of the design erriterta cereloped in the forvgot (rande, spousflemtione vere coveloped for a puerentile these spectricentions enbreed ense of ogemitios, aseplielty of cealery, onte of rephir, soowontani coet vith adequate seiplity enjeciv, and the mertirm sesomnee of yroviating a mopresenthtive semple.
3. Uling the apeolifientions devoloped a unst wns dealgned, the necesany hiafson vork requised to sasiet a oontrmotor to bulat a grototyse and to lave the prototype ampler fantulled at the

 includef analotarise in the selection of a contmotor, olone tnat with the contmetor furfng conatruetion of the wimst, and elose superviation of the eveotion of the untt in Dothen. It also Inelisted 21ntion with the Dothen ofl wille personnel an to site neleation oud apeeffiontione for the mecouniry footsiges.

Arter aroction the untt wes frulk tented and ell meohantens ond
 cosued autivable for loug tem renting.

5. In comjunation with the Foteml Etate Tuapoetion Serviee fasta were fommiated to cotemsion wenr and unenge footors of the somplep in an ascolorsted 11Fe fiest. The wast wims weet to ebfatn aove 3600 aumpien witoh is the equivalest of see yesp's operntion.
6. After the ampling operetious the watt vas atrefally inspeeted and mal major vear pofnte emashand. Opernthe perwomel wire

7. The unnlyste of the etats, osuments of the operntors, perfonnase of the neahirary, and atereetions of the Eosthenetera Puarut Shellena Conititiee ware all eonallervel ond where appltenble finoluted in the firal set of truetings and appotiftentions.

Is a gunema fenlention of corrvetive notiona talen the folloving theus nee given:
 type.
(b) A mifety owiteh wis odded to that the britge and emb cound wot le

(a) ISflats vere batod to the amb for night er 3ate efternoen eperstion.
(a) Gyelone ataweter wns inorensel to peweat ample aboliting.
(e) Sofety gunits wers placed en briage wheole (on stinir aste).
(f) The hopper sas elianged to s round ehpye.
(s) The hepper fook and Ietah were rodeaignet.

(1) Hitages an sontrol bos were nelonentel.
(3) Hiflit Jooks for vinde vore inetalied.

In geomal the uthe has performed vell and there is mo falteabtioe that

The Fecems stnte Inspeotion feavice ahould thoroughly tissin the operators
 ogarstion and awople drmutine and heneltine.

Fety triyy youes,

Theyen A, B2avoth
 Projeet Director

Ampenets

Whone V, dashevel, ebitet
hoshences Selecene IIviaton
Enotobure! Epoetitiaistete Thivetice

A-580-D-1; D-2
Foundations, Columns, Braces, Rails
These show combinations of welded and bolted structures. The top bolt flange for the $3^{\prime \prime}$ structural pipe may be welded to the H-Beam poast at erection. All members may be welded if the contracting party agress.

Bridge stops to be welded at all ends of tee bars $3 / 8 \times 4 \times 12$.
X-Braces 5/8 D. Rod and Turnbuckles - Tee beams $2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 8$.
A-580-D-3; D-4
Bridge Details
All parts shown bolted -- production models may be welded where possible.
X-Braces 5/8 D. and Turnbuckles.
Tee beams $2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 8$.
Wheel guards on stair side only.
A-580-D-5; D-6
Sample Tube Details
Standard aluminum irrigation pipe. Shims must be provided between the $3^{\prime \prime} O D$ aluminum tube and the KP49BK Fefnir bearing so that no air escapes in or out at this point. A gasket sealing material must be applied to both bearings at assembly.

Spacer bearing of stainless steel. Machine spacer bearing. Use pan head rivets. Vickery slip clutch for sprocket. Tube raise interlock switch frame welded to inner side of tube rotate motor.

A-580-D-7
Crab Frame
Floor of crab to be $3 / 4^{\prime \prime} \# 9-1$ @ 1.71 " lbs. per sq. ft. flattened expanded metal.

Sides and door to be covered with $1 \frac{1}{2} \# 14-16 @ .46$ lbs. per sq. ft.
Door to swing inward only and latch in closed position.
Crab drive motor to be mounted outboard (space angles to accomodate motor reducer used) see A-580-D-9.

One crab safety bracket to be placed at each corner.

Tube brake pedal and brake liner. Brake liner is mounted to 16 ga. backing and is mounted to outer shoe by $10-32$ screws.

Flange beaxings, fafnif: LCS with G-KLIB bearing.
D-9 shows general locations of happer, crab dxive motor, cyclone, and details of probe tube night locking arrangement.

A-580-D-10
Crab safety brackets are to be of $3 / 8$ plate and to be bolted to crab frame at each corner as shown.

The schematic electrical diagram shows the necessary electrical components. All wiring to be encased in water proof electromechanical tubing. The main box should be raintight and all connections entering should be raintight. Tube and crab and bridge safety inter lock. switch is for the purpose of preventing damage to the tube by moving either crab or bridge while tube is in the load. This is accomplished by using switch as shown which has a weight on the end of the chain. The weight should extend $3^{\prime \prime}$ below end of the tube so that when the weight rests on the load the switch PA SU-2 is open and power to crab and bridge drive is cut off. When tube is raised and clears load the weight on chain closes switch and allows crab and bridge drive to be activated.

A-580-D-11
Perspective drawing
A-580-D-12
This drawing shows the stairs enabling operator to ascend to bridge and crab.
A-580-D-13
Hopper door latch details.
A-580-D-14
Crab wheel mount details and tube brake details.
Drives and Sprocket Sizes
All motors US encapsulated (Everseal)
All motors 220 V three phase 60 Cy .

Tube Rotation
1/3 HP, -190 RPM - Parallel shaft US Tyoe GR, Frame \#56-5
Drive Sprocket 32 T RC-40
Driven Sprocket $32 T$ RC-40
Bridge Drive
I/2 HP, 20 RPM - Worm gear drive US Type GWR
Drive sprocket 20 T RC-40
Driven sprocket 18 T RC-40
Crab Drive.
I/2 HP, 36 RPM - Worm gear drive US Type GWR
Drive and driven sprocket 20 T RC-40
Tube Life
1/3 HP, 30 RPM, Parallel shaft US Type GD, Frame \#56-10
Divider Drive
l/3 HP, 68 RPM, Worm gear drive US Type GWR

Blower

Buffalo 3 RE $21 \frac{1}{2}$ wheel
5 HP 3 phase 220 V 60 Cycle
Drip proof 3600 RPM
or equivalent blower and motor to furnish $650 \mathrm{CFM} @ 27^{\prime \prime}$ S.P.
Other Items
Suction hose to be $13 \frac{1}{2} f t$. long
Thermoflex special grey water suction hose (Southern Belting Co., Prod. Code 91300000)
Return hose - 3 " "Flexhaust" hose $12 \frac{1}{2}$ feet long (Eastman Atlantic Co.)
li $\frac{1}{2}$ gate valve to be stubbed or welded to outlet of blower.
Metal flex hose from cyclone outlet to fan inlet.
Hose support sleeves are required to mount counterweight cables.
All counterweight cables are $3 / 16$ air plane control cable.

Orfice is to be inside suction hose at the top of the tube rotating mechanism.

Other Items (continued)
Counterweight cable guid es are required for two hose and tube counter weights. A suitable bolted stop should be at the bottom of each counter weight tube as a safety to prevent the counterweight from falling to the ground in the event the cable should break.

Pulley guides at tube counterweight guide and for hose counterweights should be nyion (outboard steering pulleys) and brass.

Hose counterweights 1. Flex haust 4 lbs. 2. Thermoflex 9 lbs.

EJECTRIC WIRING

A disconnect box will be mounted on the center post of the rail support structure (by others). From this box a 4 conductor cable should run to a junction box at the edge of the bridge. Wiring from this junction box to center of the bridge shall be in E. M. tubing.

All wiring which does not move should be in E.M. tubing and all junction boxes are to be rain tight.

Two 4 conductor cables from the bridge center junction box should be mounted so that as' the crab moves the cable will not fall on the bridge drive motor. This cable should loop enough so that it will be 10% longer than straight line distance when the crab is at the extremities of travel. A spring of the type used to support air lines on tractor trailer trucks should be used to take up slack in this line.

4 lines of the 8 conductor cable will be to carry main voltage the other four will be to control the bridge drive motor.

Location of main control panel is to forward right of crab $36^{\prime \prime \prime}$ from crab floor.
All 3 phase wiring is to be \#10-4 wire General Cable Super service Type so Cord Extra tough neoprene. All other wiring is to be \#l2 wire size Type so Super Service.

All wiring shall be fastened to steel frames by cable clamps, cable clips or appropriate fastening devices.

PAINIING

The unit shall be solvent sponge cleaned with methylene chloride prior to painting. Proceudres as specified in SSPCl-52-T.

The unit after solvent cleaning shall be painted with two coats of Dupont primer 1004-773 zinc chromate iron oxide primer.
The unit shall be finish painted with 1 coat of Dupont 5105-520 bronze green paint. All paint applications shall be in accordance with SSPC-PA-l-53T.

