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ABSTRACT 
 
 
 
 Aluminum and its alloys are used in many aspects of modern life, from soda cans 

and household foil to rigid containers, automotive and aircraft structures.  Aluminum 

alloy systems are characterized by good workability that enables these alloys to be 

economically rolled, extruded, or forged into useful shapes.  Mechanical properties such 

as strength are altered significantly with cold working, annealing, precipitation-

hardening, and/or heat-treatments.  Heat-treatable aluminum alloys contain one or more 

soluble constituents such as copper, lithium, magnesium, silicon and zinc that 

individually, or with other elements, can form phases that strengthen the alloy.    

  Microstructure development is highly dependent on all of the processing steps 

the alloy experiences.  Ultimately, the macroscopic properties of the alloy depend 

strongly on the microstructure.  Therefore, a quantitative understanding of the 

microstructural changes that occur during thermal and mechanical processing is 

fundamental to predicting alloy properties.  In particular, the microstructure becomes 

more homogeneous and secondary phases are dissolved during thermal treatments.  

Robust physical models for the kinetics of particle dissolution are necessary to predict the 

most efficient thermal treatment.  

  A general dissolution model for multi-component alloys has been developed 

using the front-tracking method to study the dissolution of precipitates in an aluminum 
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alloy matrix.  This technique is applicable to any alloy system, provided thermodynamic 

and diffusion data are available.  Treatment of the precipitate interface is explored using 

two techniques: the immersed-boundary method and a new technique, termed here the 

“sharp-interface” method.  The sharp-interface technique is based on a variation of the 

ghost fluid method and eliminates the need for corrective source terms in the 

characteristic equations.  The immersed-boundary and sharp-interface techniques are 

compared to the exact solution of one-dimensional planar dissolution.  The results show 

the sharp-interface front-tracking method more accurately matches the exact solution 

when compared with the immersed-boundary method.  In addition, the sharp-interface 

method is shown to predict the dissolution behavior of precipitates in aluminum alloys 

when compared to published experimental results.  The influence of inter-particle spacing 

is examined and shown to have a significant effect on dissolution kinetics.  Finally, the 

impact of multiple particles of various sizes interacting in an aluminum matrix is 

investigated.  It is shown that smaller particles dissolve faster, as expected, but influence 

the dissolution of larger particles through soft-impingement, even after the smaller 

particles have disappeared. 
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CHAPTER ONE 

INTRODUCTION 
 
 
 
 Aluminum and its alloys are used in many aspects of modern life, from soda cans 

and household foil to the automobiles and aircraft in which wee travel.  Aluminum alloys 

have numerous technical advantages that have made them one of the most useful alloy 

systems.  Aluminum is a relatively light metal compared with metals such as iron, nickel, 

brass, and copper with a density of 2.7 g/cm3.  Although many aluminum alloys have 

typically low to intermediate strength, alloys containing precipitation-hardening elements 

such as copper (2XXX) or zinc and magnesium (7XXX) can have mechanical properties 

equivalent to some steels.  The combination of high strength and low density make these 

alloys particularly attractive when structural weight is a critical property.  In addition to 

high strength, aluminum alloys have a strong resistance to corrosion, which is a result of 

a tenacious oxide surface that forms quickly in air.  This hard, microscopic oxide coating 

protects aluminum from many chemicals and weathering conditions.  Aluminum and its 

alloys are also characterized by good workability that enables them to be economically 

rolled, extruded, or forged into useful shapes.  Cold working, annealing, and in some 

alloys, precipitation-hardening and heat-treatments are used to control strength. 

 Aluminum alloys are separated into two major classes – cast and wrought.  Cast-

aluminum alloys are produced in hundreds of compositions by all commercial casting 

processes, including green-sand, dry-sand, composite-mold, plaster-mold, investment 
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casting, permanent-mold, counter-gravity tow-pressure casting, and pressure-die casting.  

Because cast alloys are poured into their final shape, they may be strengthened by heat-

treatments but are not work-hardened.  Wrought alloys differ from cast alloys in that they 

can be shaped by deformation.  Aluminum alloys may be strengthened by thermal 

treatments (heat-treatable alloys) and by work-hardening (work-hardenable).  Wrought-

aluminum alloys are further separated into heat-treatable and non-heat-treatable.  The 

1XXX, 3XXX and 5XXX series alloys are non-heat-treatable, and thus are work-

hardened by cold-working processes, usually by cold rolling.  The 2XXX, 6XXX, and 

7XXX series alloys are heat-treatable.   

 Heat-treatable aluminum alloys contain one or more soluble constituents such as 

copper, lithium, magnesium, silicon and zinc that individually, or with other elements, 

can form phases that strengthen the alloy.  Also, aluminum alloys may contain impurities 

such as iron and silicon.  Because of limited solubility, the morphology of phases formed 

by the combination of these impurities with major solute additions cannot be affected by 

heat treatment.  In all aluminum alloys, the percentages of alloying elements and 

impurities must be controlled carefully.  If they are not, properties such as strength, 

toughness, formability, and corrosion resistance, for example, may be affected adversely.  

However, while certain mechanical properties are improved, it may often be at the 

expense of other properties.  For example, tensile and yield strengths can be increased, 

but this often results in lower elongation and fracture toughness.  Thus, heat treatments 

are designed to optimize properties. 

 Heat-treating improves the strength of aluminum alloys through a process known 

as precipitation hardening.  Precipitation hardening occurs during the heating and cooling 
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of an aluminum alloy in which precipitates are formed in the aluminum matrix.  These 

second-phase particles affect dislocation motion which in turn affects strength.  The 

composition of a particular alloy determines the heat treatment temperature.  When an 

aluminum alloy is heated above the solvus temperature of the secondary phases in the 

matrix, the alloying elements dissolve into the aluminum matrix to form a solid solution.  

Following a quench (or rapid cooling), the alloying elements precipitate out of solution.  

This step, known as aging, occurs at room temperature (natural aging); however, an alloy 

can be artificially aged at an elevated temperature in order to increase the kinetics of the 

process. 

 Annealing in precipitation-hardening alloys is a process that imparts the most 

ductile condition.  During annealing, the alloy is heated to above its solution temperature 

and then slowly cooled to room temperature.  During the cooling processes, the alloying 

elements precipitate out of solution and form coarsely distributed phases, which are not 

effective barriers to slip.  The result is a low-strength alloy. 

 Another method for increasing the strength of aluminum alloys is by work 

hardening.  Work hardening increases the dislocation density and results in a higher 

strength alloy.  Some examples of work hardening include forging, stamping and tube 

bending. 

 The important microstructural features, as far as toughness is concerned, are 

second phase particles and grain structure.  The second-phase particles of concern are: (1) 

coarse, insoluble particles formed during casting, or coarse particles of normally soluble 

phases formed during casting or subsequent processing; (2) smaller intermediate particles 

formed during homogenization; and (3) aging precipitates.  The as-cast microstructure is 
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highly segregated as a result of coring during solidification in which solutal element 

concentration and secondary phases are distributed unevenly throughout the 

microstructure. 

 The first step in alloy processing is, therefore, homogenization.  This high 

temperature step is necessary to eliminate (or reduce) the coring by dissolving soluble 

phases and precipitating equilibrium phases.  Although precipitate dissolution is not the 

only metallurgical process that is occurring during homogenization, it is often the most 

critical.  The homogenization temperature can be determined from a thermodynamic 

analysis of the phases that are present.  The homogenization time at a given temperature 

is dependent upon the types of precipitates present, their shape, size, distribution, and 

chemical composition.  Subsequent processing steps for wrought alloys include: cold 

working, during which an alloy is simultaneously deformed and strengthened; hot 

working, during which an alloy is deformed at high temperatures without strengthening; 

and annealing, during which the effects of strengthening caused by cold working are 

modified.  By controlling these processes, the material is processed into a usable shape 

while material properties are improved and controlled. 

 Microstructure development depends heavily on all of the processing steps the 

alloy experiences.  Ultimately, the properties of the alloy depend strongly on the 

microstructure so it is particularly useful to gain a quantitative understanding of the 

microstructural changes that occur during thermal and mechanical processing.  During 

thermal treatments, the microstructure becomes more homogeneous and secondary 

phases are dissolved.  Hence, any modeling efforts directed towards understanding these 
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processes are important.  Robust physical models for the kinetics of particle dissolution 

are necessary to predict accurately the most efficient thermal treatment. 

 In this thesis, particle dissolution in aluminum alloys is studied.  To model the 

dissolution of second-phase particles in these alloy systems correctly, it is helpful to 

understand the microstructural changes that these alloys experience throughout their 

processing steps.  The model that has been developed during this research is applicable 

for dissolution of particles in multi-component alloys in multi-dimensions.  Because there 

is a dearth of information regarding dissolution of particles in higher-order alloys, the 

numerical simulations will be limited to binary (specifically Al-Cu and Al-Si) and ternary 

(Al-Mg-Si) systems.   

 
 

1.1 Microstructure Formation 
 
 

 Ingot casting is a non-equilibrium phenomenon.  Non-equilibrium effects during 

solidification fall into two categories: (1) coring of the solute across primary and 

secondary dendrite arms, and (2) precipitating a second phase by eutectic decomposition 

of the liquid solution resulting in the formation of large (> 0.3 µm) secondary 

intermetallics particles in the interdendritic channels whose size is controlled by 

solidification rate and alloy composition.  Typically for commercial alloys these particles 

are approximately 2 to 50 µm in their longest dimension [1]. 

 Both non-equilibrium effects contribute to the development of microstructure 

with further processing.  The coring of the solute elements upon solidification establishes 

concentration gradients of each element within the microstructure.  The presence of 
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coarse second phases within the cast microstructure precludes direct working of the 

ingot. 

 
 
 

 
Figure 1.1  Cross section of a dendrite showing coring [2] 

 
 
 
 Coring occurs in all alloy systems that freeze over a range of temperatures.  For 

example, in the case of a solidifying binary hypo-eutectic system, such as Al-Cu or Al-Si, 

dendritic cells form which have increasing amounts of solute from the cell center to its 

edges.  Figure 1.1 depicts this phenomenon.  The last liquid to solidify between the cells 

is a continuous, non-equilibrium eutectic phase.  Since the continuous phase of any metal 

product controls the physical properties of the metal, and eutectic structures are typically 

brittle, the resulting cast structure is brittle and this impedes fabrication.   

 Many aluminum binary systems, such as Al-Cu and Al-Si, form eutectics.  A 

basic eutectic phase diagram for hypothetical A and B is shown in Figure 1.2.  The 

eutectic composition and the maximum solid solubility of B in A are indicated by CE and 

Cmax respectively.  If the initial composition in a eutectic alloy is less than Cmax, the 

precipitates that form will all be soluble.  Conversely, if the initial composition is higher 

than Cmax, both soluble and insoluble secondary phases will form.  The focus of the 

current study will be soluble phases, therefore only “dilute” alloys will be considered. 
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Figure 1.2  A sample binary eutectic phase diagram for hypothetical A and B.  The first 
solid to form from a melt at initial composition, C0 is the α-phase.  The highest 
concentration of B in the α-phase will be Cmax, the maximum solid solubility of B in A.  
The β-phase will form near the grain boundaries as the alloy cools to room temperature. 

 
 
 

 The thermal treatments that homogenize the structure prior to working smooth out 

the concentration gradients of the solutal elements and impurities.  Additionally, the 

homogenization step will lead to dissolution of soluble second phases containing major 

solute elements and to precipitation of the dispersoid phases.  The dispersoid-forming 

elements are retained in supersaturated solid solution after casting.  The preheat 

temperature is above the solvus temperature for the coarse soluble phases but below the 

solvus temperature for the dispersoid phases.   

  After an alloy has been preheated, it may be plastically deformed by rolling, 

extrusion, drawing, and forging.  A room temperature rolling is referred to as cold rolling 

and rolling at an elevated temperature is hot rolling.  Rolling an ingot reduces the cross 
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sectional area, making it easier to fabricate into a final product.  Insoluble constituent 

phases are broken up during rolling, reducing particle size and increasing particle number 

fraction.  Deformation also serves to work harden via the introduction of dislocations into 

the microstructure to accommodate the strain involved with rolling.  Hot rolling produces 

a more uniform dislocation distribution throughout the microstructure than cold rolling 

[3].  The microstructure attempts to attain equilibrium during and after deformation by 

two competing mechanisms: recovery and recrystallization.  Recovery is the 

simultaneous creation and annihilation of dislocations, while recrystallization is the 

nucleation of new strain-free grains.  The recrystallization behavior of an alloy must be 

limited because recrystallization can be detrimental to the strengthening characteristics of 

a worked alloy.  Recrystallization can be affected by working conditions, second-phase 

particles, alloying elements and initial grain size [4].  These factors are affected by 

solidification rates and solute additions. 

 To summarize, an aluminum alloy will go through the following processing steps 

prior to industrial use: casting (or solidification), homogenization (or preheating), and 

rolling (in the case of work-hardenable alloys).  An ideal microstructure would contain 

homogeneous concentrations of solutal elements and a uniform distribution of 

precipitates and dispersoid phases.  Unfortunately, the final end product is typically non-

ideal.  A better understanding of the effects of solute gradients and secondary phase 

distributions will lead to producing a more ideal microstructure.    
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1.1.1 Aluminum – Copper System 
 
 
 Copper is the major solutal element in the 2000 series of wrought, heat-treatable 

aluminum alloys.  These alloys are used for their strength in the aerospace and 

automobile industries.  The aluminum-rich portion of the Al-Cu phase diagram is shown 

in Figure 1.3.  Various temperature ranges for heat treatments are also shown on the 

phase diagram.  After an Al-Cu alloy has been cast it will be solution heat treated just 

below the eutectic temperature.  Depending on the product and stage in processing, the 

alloy may be annealed, with temperature ranges as shown in Figure 1.3. 

 As previously stated, the focus of this research is dilute alloys.  Dilute alloys are 

those with an overall composition less than the maximum solid solubility.  For example, 

consider an Al-Cu alloy containing 4.5 wt%Cu.  At the solution heat treatment 

temperature, 540°C, all of the copper in the alloy is soluble in the alpha-matrix phase.  A 

rapid quench to room temperature ensures that there is there is insufficient time at 

elevated temperatures to nucleate the second-phase; consequently the alpha solution is 

supersaturated.  Furthermore, there is a supersaturation of vacancies.  These excess 

vacancies arise because the quench maintains the vacancy concentration developed at 

540°C.  The vacancies accelerate precipitation to the extent that it occurs at temperatures 

at which it would ordinarily have low diffusion rates.   

 Diffusion in solid solutions is an important mechanism.  An atom can move only 

if there is a vacant lattice site next to it.  The diffusion mechanism involves an exchange 

between a vacancy and a diffusing atom.  Precipitation at room temperature is too slow to 

be commercially acceptable, even with excess vacancies.  While artificial aging reduces 

the time required for the phase transformation it also results in a decrease in the amount 
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of second-phase that can precipitate.  Consequently, the selection of an appropriate aging 

temperature requires a balance between the time to age and the maximum achievable 

properties. 

 
 
 

 

Figure 1.3 Aluminum-rich portion of the Al-Cu phase diagram with temperature ranges 
indicating heat treating operations [1]. 

 
 
 

 Precipitation has been studied extensively in binary Al-Cu alloys.  Guinier [5] and 

Preston[6] detected copper-rich zones in these alloys independently in 1938.  These “GP 

zones” are typically formed as the first precipitate during low-temperature aging of 

aluminum alloys [7].  GP zones are believed to consist of copper and magnesium atoms 

collected on the {110}Al planes [7].  As has been stated previously, when supersaturated 

solid solutions decompose, one or more metastable phases may appear prior to or in 

addition to the equilibrium precipitate [8].  The formation of GP zones is often followed 
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by the precipitation of non-equilibrium phases in aluminum alloys.  The precipitation 

sequence for the binary Al-Cu system is:  

  Supersaturated solid solution (SSS)→ GP zones→θ” →θ’→θ (Al2Cu) 

 GP zones are copper-rich clusters about 8 nanometers in diameter and 0.3 to 0.6 

nanometers thick.  The GP zones have the same structure as the matrix, but have a much 

higher copper content.  Because Cu atoms are smaller than Al atoms, strain fields around 

the precipitate are created.  Upon heating, GP zones begin to dissolve, and a second 

precipitate, θ′′, appears.  The θ′′ precipitate maintains a plate-like morphology about 30 

nanometers in diameter and 2 nanometers thick and is coherent with the matrix.  Upon 

further heating, θ’precipitates begin to form at the expense of the θ′′.  θ′ precipitates are 

on the order of 100 nanometers in diameter and semi-coherent with the matrix.  Finally, 

the precursor phases disappear and θ precipitates form.  θ is the equilibrium phase and is 

incoherent with the matrix. 

 GP zones are more like the matrix than any of the other phases, including the 

equilibrium theta phase.  The magnitude of the precipitate-matrix interfacial energy 

increases from GP zones to θ′′ to θ′ to θ.  Third, the stability of the phases increases 

likewise so regardless of which phase forms first, eventually the equilibrium θ phase will 

be present [9]. 

 
 

1.1.2 Aluminum-Magnesium-Silicon System 
 
 
 The aluminum-magnesium-silicon system is the basis for a major class of heat- 

treatable alloys used for both wrought and cast products.  Because 6XXX alloys are easy 



 

 12  

to fabricate and have high tensile strength after heat-treating, ranging  from 90 MPa (13 

ksi) to 400 MPa (58 ksi) [10], Al-Mg-Si alloys are used in automobiles and in 

architectural products.  The Al-Mg-Si system of wrought alloys undergoes similar 

processing to the Al-Cu alloys, and the microstructure development is analogous to that 

described above.  Most commercial compositions in the Al-Mg-Si alloys, at normal aging 

temperatures, occur in a ternary phase field consisting of the equilibrium phases: primary 

aluminum; the β-phase (Mg2Si); and silicon.  

 The precipitation reactions in this alloy system have been studied and the 

following sequence has been noted [1]: 

Supersaturated solid solution→ semi-incoherent β′′ rods→ semi-coherent β′ needles→ 

semi-coherent β plates → non-coherent β (Mg2Si). 

 Several ternary phase diagrams are given for the Al-Mg-Si system below. Figure 

1.4 shows the liquidus projection.  Figures 1.5 and 1.6 show the solidus and solvus 

projections, respectively.  An isothermal slice is taken across the ternary phase diagram 

at 340°C and shown in Figure 1.7.  It is obvious that the ternary phase diagrams are much 

more complicated than binary phase diagrams.  
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Figure 1.4 The liquidus portion of the Al-Mg-Si ternary phase diagram[11]. 

 
 

 

Figure 1.5 The solidus projection of the Al-Mg-Si phase diagram[11]. 
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Figure 1.6  Solvus projection of the Al-Mg-Si phase diagram[11]. 

 
 
 

 

Figure 1.7 Al-Mg-Si phase diagram at 340°C[11]. 
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An interesting feature of the Al-Mg-Si system is that it is a pseudo-binary Al-Mg2Si at 

magnesium to silicon ratios of 1.73-to-1 (wt%).  Figure 1.7 shows the Al-Mg2Si pseudo-

binary phase diagram. 

 

 

Figure 1.8 Al-Mg2Si pseudo-binary phase diagram [11]. 

 
 
 

1.1.3 Aluminum-Silicon System 
 
 
 Another important set of aluminum alloys is the aluminum-silicon system, which 

are commercially viable due to their high fluidity and low shrinkage in casting, brazing 

and welding applications [1]. Binary aluminum-silicon alloys are characterized by high 

corrosion resistance, good weldability, and low specific gravity.  The Al-Si system is a 

simple eutectic system, however Al-Si alloys differ from "standard" eutectics.  In the 

aluminum-silicon system, solid solubility of aluminum in solid silicon at any temperature 
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is nil, see the phase diagram in Figure 1.9.  The enlarged aluminum-rich portion of Figure 

1.9 is shown in Figure 1.10.  This means that there is no β phase and so when considering 

dissolution, this secondary phase is pure silicon.  So, for Al-Si alloys, the eutectic 

composition is a structure of α+Si rather than α+β.  The primary Si has a cuboidal form.  

The eutectic is non-lamellar in form and appears to consist of separate flakes [12]. These 

coarse flakes of Si in the eutectic promote brittleness within these alloys. Most Al-Si 

alloys used have a near-eutectic composition since this gives a lower melting point and 

makes them cheaper to cast [3].   

 
 
 

 
 

Figure 1.9 Aluminum-Silicon Phase Diagram from Mondolfo[12]. 
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Figure 1.10 Aluminum-rich portion of the Aluminum-Silicon phase diagram. 

 
 
 

 Most commercial aluminum-silicon alloys are at the eutectic composition, or 

higher.  These cast alloys are used for their resistance to wear.  When the composition of 

silicon in the alloy exceeds the eutectic composition, the microstructure is characterized 

by an aluminum matrix with insoluble silicon particles.  Due to coarsening, these 

particles become spherical in shape, however this phenomenon is not addressed in the 

current study.  However, because of the simplicity of the system, there have been 

numerous investigations on the precipitation and dissolution of silicon in Al-Si alloys 

containing silicon less than the solid solubility[13]. 
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1.2 Overview of Previous Modeling Efforts 
 
 
 As described above, alloys are heat treated to smooth out inhomogeneities and to 

optimize their mechanical properties.  During heat treatment the types of phases that are 

present, and the morphology of these phases, can change.  Throughout processing, 

beginning with the solidification step and ending with the final solution heat treatment 

step, there are a variety of particles that form.  The formation of secondary phases in 

aluminum alloys is very important to the final macroscopic properties of the alloy.  

Precipitate precursor phases form during casting and provide the necessary conditions for 

precipitates to form through subsequent material processing.  The precursor phases 

dissolve at the expense of the desired precipitates.  Thus the dissolution and precipitation 

of the different phases along the processing route are essential to the development of an 

optimum microstructure.  The ability to predict the dissolution process of secondary 

phases is an important step toward developing a quantitative model to simulate 

microstructural development. 

Particle dissolution has been modeled by numerous researchers using a variety of 

analytical and numerical techniques [13-39].  Over a period of many years, several 

analytical models have been developed [36-38]  which describe the kinetics of particle 

dissolution in metals and alloys under elevated temperatures.  These solutions all 

represent approximations of the diffusion field around the dissolving precipitate and are 

all for infinite domains.  Numerical studies [13-36, 39] have attempted to describe the 

dissolution kinetics in a precise manner; however these models deal primarily with binary 

alloys and isothermal annealing.  In more recent studies, dissolution models were 
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extended to multi-component systems in one-dimension[29-34] and to binary systems in 

two-dimensions[24, 39]. 

There are two modes that control the rate limiting step for particle dissolution, 

diffusion away from the interface, interface reactions, or a mixture of both.  In the case of 

diffusion control, any interface reactions that are necessary for the precipitate to dissolve 

occur much faster than the diffusion of solute into the matrix.  Alternatively, if an 

interface reaction (such as a phase change) is required before the solute can diffuse into 

the matrix, the dissolution process is considered to be interface controlled.  Figure 1.11 

shows the corresponding solute gradients in the matrix for both diffusion controlled and 

interface controlled dissolution.  Under diffusion control, the interface boundary 

condition remains constant, and is determined by the maximum solid solubility of the 

phase diagram, as shown in Figure 1.11.  Furthermore, as time progresses under interface 

control and the particle dissolves, the composition ahead of the precipitate decreases to 

the average composition over the entire domain, given by C0.  Diffusion control and 

interface control are the two extreme cases of particle dissolution.  If the dissolution is 

mixed-mode controlled, the concentration profiles will be similar to those found under 

diffusion-control conditions.  The interface composition will vary from the equilibrium 

value, however, and during the process when the interface reaction is the rate-limiting 

step, the concentration gradients will have time to smooth out in the matrix.   
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Figure 1.11 Schematic of a binary phase diagram and concentration profiles at the 
precipitate/matrix interface at times t1, t2, and t3, showing the difference between 
dissolution that is interface controlled and diffusion controlled (t1<t2<t3). 

 
 
 

For the most part, second-phase particles dissolving in a metal matrix may be 

considered to be diffusion controlled.  A chemical reaction at the interface would be 

necessary to provide the conditions for interface controlled dissolution.  Most researchers 

have focused on diffusion-limited dissolution while a handful [35, 37, 38] developed 

methods in which mixed-mode control could be incorporated. 
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The early models of particle dissolution were based on analytical solutions in an 

unbounded medium under the assumption of local equilibrium at the moving 

interface[36, 37].  Aaron and Kotler [37], for example, investigated second-phase 

dissolution of precipitates, including effects of diffusion, interface reaction and curvature 

in their model.  They noted that, for spherical precipitates dissolving in an infinite matrix, 

as time increases, the volume for mass transfer increases, thereby speeding up the 

dissolution process.  This is different from the planar case because the volume for mass 

transfer ahead of the moving interface is always constant.  As the solute from a spherical 

particle diffuses into the matrix, more and more surface area is available for mass 

transfer.  The authors also observed that for dilute alloys the curvature effects were 

negligible.  Interface reactions were also included in Aaron and Kotler’s analysis.  They 

developed an expression to determine the deviation of the interface concentration from 

the equilibrium (or diffusion-limited) value for various interface-reaction mechanisms, 

including uniform atomic detachment, screw-dislocation, and ledge mechanisms.  

Whelan [36] performed a similar analysis for purely spherical precipitates.  Both Aaron 

and Kotler [37] and Whelan[36] developed analytical expressions for the radius of a 

spherical dissolving precipitate in a binary alloy in an unbounded domain.   

Nolfi et al. [38] used separation of variables to solve for the kinetics of 

dissolution and growth of a spheroidized, solute-rich stoichiometric precipitate in the 

surrounding matrix.  In this study, the interfacial reaction between the particle and its 

surrounding phase were included. Two limiting cases were examined: (1) long-range 

solute diffusion through the matrix with interfacial equilibrium (diffusion control) and (2) 

the transfer of atoms across the matrix-precipitate interface with the rate of dissolution or 
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growth being controlled by an interfacial reaction.  Mixed-mode control was also 

considered.  Nolfi et al. [38] were the first to introduce a quantitative estimate of the 

mixed-mode character for the dissolution of spherical precipitates.  A major limitation in 

this analysis was the assumption of constant precipitate size.   

Tanzilli and Heckel [26] solved the diffusion equation numerically using a finite-

difference technique.  They combined a Crank-Nicolson discretization of the diffusion 

equation with a Murray and Landis [40] grid transformation to account for the moving 

boundary in binary systems.  Their model, in principle, can be used to describe the 

dissolution kinetics in materials with a given volume fraction of precipitates of different 

shapes.  However their model has some major limitations.  The main assumption in the 

model is that all precipitates are of equal size and that they are divided into identical, 

spherical cells having the particle at their center.  A consequence of this geometry is that 

all of the precipitates dissolve completely at the same annealing time.  Tundal and Ryum 

[41] have extended this analysis to include a distribution of particle sizes.  They showed 

that the macroscopic dissolution rates depend strongly on the particle size and possible 

interactions between subsequent particles.  Again, spherical particles that are at the center 

of their respective spherical volumes are considered.  This assumption was justified by 

the conclusion that if dissolution is controlled by volume diffusion, the precipitates will 

become spherical as they shrink.  Tundal and Ryum [13] compared their model to 

experiments of Si-atoms in an Al-Si alloy.  At high temperatures (and therefore high 

diffusivity of Si in Al) the numerical results compared well with experiments.   

Vermolen and co-workers [16, 17, 27-32, 34, 35, 39] have done considerable 

work in dissolution modeling.  A semi-analytical model was derived for the dissolution 
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of spherical particles in finite media assuming that long-distance diffusion is the only 

rate-limiting step [28].  The model allowed the prediction of the dissolution kinetics as a 

function of the initial concentration differences between particle and matrix and the 

interface concentration during dissolution.  Several assumptions were made to formulate 

the solution including that the alloy is dilute and the solutal element has limited solubility 

in the matrix phase.  Vermolen [35] then extended this 1-D model to incorporate any 

combination of first order reactions at the particle-matrix interface and long-distance 

diffusion in the matrix.  The dissolution could be diffusion-controlled, interface-reaction-

controlled, or a mixture of the two.   

Segal et al. [24] extended Vermolen’s one-dimensional binary analysis to two 

dimensions.  A finite-element method was used with a moving mesh.  Some instabilities 

in the precipitate interface were observed for sharp edges and the authors outlined a new 

method for calculating the interface motion based on mesh regeneration at each time step.  

The precipitate phase was not included in the calculations.  Two-dimensional 

concentration fields were shown, and soft-impingement of differing size particles was 

observed.   

Multi-component systems dissolution was also investigated for iron alloys by 

Vitek [42] and in an Al-Mg-Si alloy by Reiso et al. in [43].  More recently, Vermolen 

and colleagues [29-32] have extended their one-dimensional spherical model to include 

multi-component alloys.  In general, they have used a finite-volume model for a one-

dimensional spherical geometry, assuming that all particles in the alloy are the same size 

and equidistant from each other.  The dissolution rate was correlated to heat flow in 

Langkruis [21]  to compare the results of the model with differential scanning 
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calorimetry (DSC) measurements.  The model was then used to predict peak hardness for 

a standard artificial heat treatment as a function of initial structure and heating schedule.  

The model compared reasonably well with the experiments; however it could be 

improved by using a more realistic geometry and distribution of particles.  

For the most part when considering dissolution of particles in a multi-component 

system, cross-diffusional terms in the diffusivity matrix are neglected.  The cross-

diffusional terms in the diffusivity matrix are the off-axis entries that are a measure for 

the interaction of diffusion in the matrix between consecutive alloying elements.  When 

an alloying element dissolves in the matrix it may facilitate or hinder diffusion of the 

other elements.  Vermolen et al. [30] [31]  considered the case when these cross-

diffusional terms could not be neglected.  They used front-tracking with a moving grid.  

The interface point always coincides with a grid node using this scheme.  An implicit 

finite-difference method was used to solve the diffusion in the matrix while the 

convective term due to grid movement was treated explicitly.  A geometrically 

distributed grid was used such that the discretization was fine near the moving interface 

and coarser farther away.  In [34], Vermolen et al. developed analytical approximations 

for an unbounded domain and compared it with their numerical solution.  As expected, at 

earlier times the two models showed good agreement but diverged at later times when 

soft-impingement started occurring.  Using the analytical approximation as a basis, cross-

diffusion was shown to have a large impact on the dissolution of the particle when the 

off-diagonal terms in the diffusivity matrix were on the same order as the diagonal terms.   

Thus, there are some limitations that must be recognized when considering 

previous modeling of particle dissolution.  First, most particles are not ideally shaped; 
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therefore a two or three dimensional model is necessary to compute the dissolution of 

non-ideal particles.  Furthermore, the case where more than one particle is dissolving in a 

two-dimensional cell needs to be examined.  Additionally, there have been no previous 

two-dimensional multi-component simulations.  These specific issues will be addressed 

in this thesis. 

 
 

1.3 Research Objectives 
 
 
 The aim of this thesis is to model the dissolution of secondary phases in 

aluminum alloys.  To this end, a general multi-component dissolution model based on the 

front-tracking method of Shin[44] and Juric [45] was developed.  Because much of the 

literature covers binary and ternary alloys specifically, these types of alloys were focused 

on in the current study.  Therefore, the two-dimensional model was applied to binary 

alloys, as well as ternary alloys.  Additionally, one-dimensional, mass-conserving 

dissolution models for planar, cylindrical, and spherical precipitates were developed and 

applied to binary and ternary systems.   

 Using these models, the impact of initial conditions on the dissolution of 

precipitates in aluminum alloys will be studied.  Particle size, shape, and distribution are 

important to the overall homogenization of the alloy, and thus are important to the 

current work.  The interactions of more than one particle dissolving in the same matrix 

cell will be considered.   

 The remainder of this dissertation is organized as follows:  In Chapter 2 the 

theory behind the development of the governing equations will be described, as well as 
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the numerical techniques utilized in this investigation.  The model is validated in Chapter 

3 for binary alloys based on comparisons with exact solutions and experimental data.  In 

Chapter Four the model is applied to ternary alloys.  The main conclusions of the 

dissertation are summarized in Chapter 5, along with recommendations for future 

modeling efforts.  Finally, the finite-difference equations for the two-dimensional 

simulations are given in Appendix A
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CHAPTER TWO 

DISSOLUTION MODEL 
 
 

2.1 Introduction 
 
 
 The mathematical theory and the numerical method for the dissolution problem 

will be developed in this chapter.  First, the general case of multi-component dissolution 

in two-dimensions will be described and the governing equations will be formulated in 

section 3.2.  Then the numerical method will be described in section 3.3.  Finally, the 

solution procedure will be discussed in section 3.4.  

 

2.2 Governing Equations 
 
  

 In a multi-component alloy, precipitates containing n different chemical elements, 

which are different from the bulk-alloy-matrix phase, may form.  In this case, n diffusion 

equations must be solved, which are coupled through conditions on the moving 

boundaries.  As the precipitate dissolves, the radius shrinks and the interface moves.  

Solute is rejected into the bulk phase and diffuses outwards into the matrix according to 

the material properties of the alloying element being considered. 
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Consider an arbitrary matrix with two phases, where phase 1 is the majority phase, and 

phase 2 is the minority phase, referred to as the dissolving phase, separated by a moving 

interface, denoted by s(t), shown in Figure 2.1.  The velocity of the moving interface, 

which is found by solving an interfacial flux balance, is the same for each element in a 

given phase.  Additionally, the interfacial concentrations of all of the chemical elements 

in a particle are hyperbolically related to each other[2, 32].  For chemical 

elements { }, 1,..., 1iC i n∈ + , with stoichiometry ( ) ( ) ( ) ( )( )1 2 31 2 3 4
... nm m m m

C C C C , the 

solubility product, K(T), is given by: 

 

( ) ( ) ( ) ( )( )1 2 3
1, 2, 3, ,... ( )

m m m mn
S S S n SC C C C K T=    (2.1) 

where the subscript S refers to the interface composition. 

 
 
 

 

Figure 2.1Arbitrary solution domain in two dimensions.  The areas of the two separate 
phases, phase 1 and 2 are given by Ω1(t) and Ω2(t), fixed outer boundaries Г1 and Г2, and 
moving boundary s(t).  

 

s(t) 

Г1 

Ω1(t) Ω2(t) 
Г2 
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 The solubility product follows an Arrhenius relationship with temperature[2], 

0( ) exp QK T K
RT

 = − 
 

     (2.2) 

 where K0 is the pre-exponential factor, Q is the activation energy of formation, R is the 

gas constant, and T is the absolute temperature.   

 
 
 

 

Figure 2.2 Mass transport across a phase boundary.  JP,η and JM,η are the mass fluxes 
normal to the interface in the particle and matrix phases, CP,S and CM,S are the interface 
compositions in the particle and matrix phases, and  dAS is the differential surface area of 
the interface in the control volume. 
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 The system must satisfy the principles of conservation of mass at the interface.  

The transport of mass across the interface is schematically indicated in Figure 2.2.  In 

Figure 2.2, subscript P refers to the particle phase, subscript M refers to the matrix phase, 

and subscript S refers to values on the interface in each phase.  An arbitrary solutal 

element is being considered, so the subscript i has been dropped.  Mass must obviously 

be conserved for all components in the system.  Mass is transported to and from the 

interface, with differential surface area dAS, by Fickian diffusion (indicated by mass 

fluxes JP,η and JM,η).  Note that the mass flux is in the direction normal to the interface, η.  

The interface is moving with a velocity of ds/dt, so the rate of particle mass flow moving 

towards the control volume moving with the interface is , ,P P S S
dsJ C dA
dtη

 + 
 

.  In a 

similar manner, it can be argued that the rate of matrix mass flow moving out of the 

control volume is , ,M M S S
dsJ C dA
dtη

 + 
 

.   

 The control volume in Figure 2.2 is assumed to be so thin that there is negligible 

accumulation of mass within it.  Conservation of mass for a this control volume requires 

that 

 

, , , ,P P S M M S
ds dsJ C J C
dt dtη η+ = + ,   (2.3) 

 

which can be rearranged to obtain 

 

( ), , , ,M P P S
dsJ J C C
dtη η η η− = − .    (2.4) 



 

 31  

The mass fluxes in the direction normal to the interface are given by 

 

, ,andM M P P
C CJ D J Dη ηη η

∂ ∂
= − = −

∂ ∂
   (2.5) 

 

where DM and DP are the diffusivities of the arbitrary solutal element in the matrix and 

particle phases, respectively.  There is no subscript on composition, C, here because we 

are only considering one element.  The analysis is valid for all solutal components in the 

system.  Combining Equations (2.4) and (2.5) yields the following relationship for mass 

conservation at the interface: 

 

, ,( )P M P S M S
C C dsD D C C

dtη η
∂ ∂

− = −
∂ ∂

.   (2.6)  

 

A schematic of the composition profile across the interface for component i is shown 

below in Figure 2.3.   
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Figure 2.3.  Schematic of particle/matrix interface composition profile during dissolution 
for component i.  CP,i is the composition one node inside the particle (- ∆η), CP,iS is the 
interface composition of the particle, CM,iS is the interface composition in the matrix, CM,i 
is the composition one node outside of the particle (+∆η) and CM,iS is the far field 
composition of the matrix. 

 
 
 
 The preceding derivation has assumed that all of the solutal elements are diffusing 

independently of each other.  However, this may not be a valid assumption for some 

systems.  When the solutal elements are affecting the diffusion of element i, a species-

dependent diffusivities ( ijD ) must be used.  For example, consider chemical element 1.  

,1P nD  accounts for the effect of element-n on the diffusion of element-1 in the particle 

phase.  Therefore, the interfacial mass conservation for chemical element 1 becomes: 

 

1 1
,1 ,1 ,1 ,1

1
( )

n

P j M j P S M S
j

C C dsD D C C
dtη η=

 ∂ ∂
− = − ∂ ∂ 

∑ .  (2.7) 
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 Equation (2.7) is valid for every single chemical element in the system.  The 

velocity of the moving interface, ds/dt, is identical for all elements in the system.  

Consider a three-component alloy where n=3.  Solving for the interface velocity and 

rearranging,   

 

3 3 3
3 31 1 2 2

,1 ,1 ,2 ,1 ,3 ,3
1 1 1

,1 ,1 ,2 ,2 ,3 ,3( ) ( ) ( )

P j M j P j M j P j M j
j j j

P S M S P S M S P S M S

C CC C C CD D D D D D

C C C C C C
η η η η η η= = =

     ∂ ∂∂ ∂ ∂ ∂
− − −     ∂ ∂ ∂ ∂ ∂ ∂     = =

− − −

∑ ∑ ∑
. 

 

 This gives the second relationship necessary for determining the position of the 

moving interface at any given time.  The first condition is given by the stoichiometry of 

the particle, shown in Equation (2.1).  The unknowns in above set of equations are the 

compositions of the chemical species, Ci, the interface compositions at each time step, 

CS,i, and the interface velocity, ds/dt.    

 The above interfacial-flux equation does not take into account any interface 

reactions that may be occurring.  If there are interface reactions occurring, a third 

interface condition is needed.  Supposing a first-order reaction is occurring at the 

interface,  

 

{ }1 1
int , , ,1 ,1 ,1 ,1

1
( ) ( ) , for 1,...,

n

sol i M Si P j M j P S M S
j

C C dsK C C D D C C i n
dtη η=

 ∂ ∂
− = − − − ∈ ∂ ∂ 

∑  (2.8) 

 

where Kint is a measure of the rate of the interface reaction, Csol,i is the equilibrium solid 

solubility of component i and CS,i is the actual interface composition of component i.  As 
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Kint becomes large, the dissolution becomes diffusion-controlled and as Kint becomes 

small, the dissolution is interface-reaction-controlled.  

 In addition to conserving mass at the interface, each alloying element must also 

conserve mass globally over the entire domain.  In the case of a multi-component alloy, 

each individual diffusion equation may have terms associated with the other alloying 

elements.  Consider the control volume shown in Figure 2.4.  

 

 

 

 

Figure 2.4 Control volume over which mass flux of each component is calculated.   
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In each phase, the mass fluxes across the control volume in the x and y directions are 

given by  

 

1 1

( , , ) ( , , )
( , , ) , ( , , )

n n
j j

i ij i ij
j j

C x y t C x dx y t
J x y t D J x x y t D

x x= =

∂ ∂ +
= − + ∆ = −

∂ ∂∑ ∑   (2.9) 

and     

1 1

( , , ) ( , , )
( , , ) , ( , , )

n n
j j

i ij i ij
j j

C x y t C x y dy t
J x y t D J x y y t D

y y= =

∂ ∂ +
= − + ∆ = −

∂ ∂∑ ∑ .  (2.10) 

 

where the diffusivities, Dij, are the multi-component diffusion coefficients of the 

chemical species in the system.  Dij, in general, are different from binary mass 

diffusivities, Dij, and, unlike Dij, are strongly concentration dependent.  Summing these 

fluxes over a differential control volume and taking the derivative with respect to time 

yields Fick’s second law in two-dimensions:  

 

 
1

, for (1,..., )
n

j ji
ij ij

j

C CC D D i n
t x x y y=

 ∂ ∂    ∂ ∂ ∂ = + ∈    ∂ ∂ ∂ ∂ ∂     
∑   (2.11) 

  

 The set of governing equations that must be solved to find the dissolution of a 

second-phase particle in a matrix are given above.  This set of equations is part of a 

general class of problems, commonly known as Stefan problems.  The interface condition 

given in Equation (2.7) is known as the Stefan condition.  If interface reactions are 

important, Equation (2.8) must also be applied.   
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 Front-tracking was used primarily in this work and the numerical technique will 

be described here for a general multi-component alloy in two-dimensional Cartesian 

coordinates.  First, however, it is useful to consider how the interface compositions at the 

particle/matrix interface are determined. 

  The composition in the particle and the matrix and the interfacial boundary can 

be found in a number of ways.  If the phase diagram information is available, it may be 

used to determine the equilibrium concentrations for the alloy system being studied.  

Phase-diagram-calculation software, such as Pandat and Thermocalc, can be used to find 

the concentrations for many alloys.  For multi-component alloys, if the solubility product 

constants are known for various precipitates, they can be used to find the interface 

compositions.  Alternatively, free-energy functions may be used to determine the 

equilibrium boundary conditions.  In this research, systems in which the phase diagram 

information is available have primarily been used.   

 
 

2.3 Numerical Method 
 
 

Particle dissolution is often considered to be a Stefan problem – essentially 

diffusion with a moving interface.  In addition to particle dissolution, melting, 

solidification, and other phase-change phenomena may be described as Stefan problems.  

Many approaches have been taken to solve these types of problems such as front-fixing, 

implicit methods such as level-set and phase-field methods, as well as various front-

tracking approaches.   



 

 37  

In front-fixing methods, the position of the interface is fixed by a suitable choice 

of new space variables.  In this type of method, the interface position is always at a grid 

node.  The transformed differential equations may be more complicated than the original 

set of equations and it is difficult to apply in two and three dimensions [19, 46]. 

The level-set method uses an implicit representation for the interface, captured as 

the zero level set of a continuous function.  The advantage is that topological changes of 

the interface are handled in a simple manner, however mass loss has been observed using 

this method [19, 47, 48]. 

The phase-field method is an implicit method that uses a phase-field function 

parameter to characterize the domain.  The main idea is to couple the governing equation 

of the physical problem with an equation derived from a Helmholtz free-energy 

functional of the phase-field function[49, 50].  The interface is represented by a 

smoothed transition region, and so it may be difficult to resolve fine details.  One of the 

drawbacks of the phase-field model is the appearance of new parameters which are 

difficult to control and depend on the free-energy functional chosen[50]. 

Front-tracking methods follow the interface in time.  The moving grid method is 

one of these, in which the grid is adjusted at each time step to keep the same number of 

nodes in each phase.  Vermolen and co-workers [24, 27-35] used this method for the 

particle-dissolution problem.  In two and three dimensions it is necessary to regenerate 

the mesh at every time step, which can become time consuming[19].  The front-tracking 

method developed by Juric and Trygvasson [51] for solidification utilized two grids: a 

stationary grid combined with a moving interface grid.  This approach allows the moving 
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front to be followed accurately without the time consuming effort needed for mesh 

regeneration.  Shin [44] improved on this method for modeling boiling phenomena. 

 The front-tracking method developed by Juric [45, 51] and Shin [44, 52, 53] will 

be utilized in this work.  Again, the interface is tracked explicitly, and, in two-

dimensional solutions, the Lagrangian (moving) surface gives the interface location.  The 

material properties and the concentration field are specified at stationary, or Eulerian, 

grid points.  Two different methods for determining the interface velocity and 

concentration at grid nodes will be employed, the immersed-boundary method, and a 

newly developed method, called the sharp-interface method in this thesis.  Both methods 

will be described below.  The accuracy of these methods will be discussed in Chapter 

Three. 

 
 

2.3.1 Front-Tracking Method 
 
 
 The basis of the front-tracking method is quite simple.  Two grids are used as 

shown in Figure 2.5: a stationary (Eulerian) finite difference mesh used to define the 

concentration; and a moving interface mesh used to track the interface.  The interface 

mesh is represented by non-stationary Lagrangian computational points connected to 

form a one-dimensional line.   

 The basic structural unit is a line segment consisting of two adjacent points.  The 

interface is represented by the vector parametric equation 

 

( ) ( ) ( )u g u h u= +R i j .    (2.12)  
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The normal, tangent and curvature at any point on the interface are found using the 

formulae 

2 2

h g
g h

′ ′− +
=

′ ′+

i jn     (2.13) 

 

 
2 2

g h
g h

′ ′+
=

′ ′+

i jt      (2.14) 

 

( )3/ 22 2

g h g h

g h

′ ′′ ′′ ′−
=

′ ′+

i jκ     (2.15) 

 

where the prime denotes differentiation with respect to the parameter u and i and j are 

unit vectors in the x- and y- directions, respectively.  The normal is defined such that it is 

positive into the precipitate phase. 
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Figure 2.5 Two grids are used, a stationary Eulerian grid and a moving, Lagrangian grid 
to track the points.  The normal direction is defined so that it is positive pointing into the 
precipitate and is calculated at each point using the four nearest neighbor points. 

 
 
 
Since the location of the interface points is known, a fourth-order Legendre polynomial is 

fit to each interface point to develop the component functions g and h using its four 

nearest neighbors.  A fourth order polynomial is constructed through five successive 

interface points ( ( ), ( ), 0,..., 4f i f ix u y u i = . Choosing the parameterization , 0,..., 4iu i i= = , 

the normal, tangent and curvature at the point 2 2( ( ), ( ))f fx u y u  are found using Equations 

(2.13) through (2.15) with the following expressions: 

 

0 1 3 4
4 2

( ) 8 ( ) 8 ( ) ( )
( )

12
f f f fx u x u x u x u

g u
− + −

′ =    (2.16) 

 

0 1 3 4
4 2

( ) 8 ( ) 8 ( ) ( )
( )

12
f f f fy u y u y u y u

h u
− + −

′ =    (2.17) 

k-2 

k 

k+2 

k+1 k-1 
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0 1 2 3 4
4 2

( ) 16 ( ) 30 ( ) 16 ( ) ( )
( )

12
f f f f fx u x u x u x u x u

g u
− + − + −

′′ =   (2.18) 

 

0 1 2 3 4
4 2

( ) 16 ( ) 30 ( ) 16 ( ) ( )
( )

12
f f f f fy u y u y u y u y u

h u
− + − + −

′′ =   (2.19) 

The interface is tracked using Lagrangian advection, such that a new point location can 

be found by: 

1

1

t t
x

t t
y

x x v dt

y y v dt

+

+

= +

= +

    (2.20) 

 

where vx and vy are the x and y components of the velocity, ds/dt, and dt is the time step 

used in the calculation.  As the interface moves, it deforms and some parts become 

crowded with interface elements while the resolution of other parts becomes inadequate.  

In order to maintain accuracy, additional elements must either be added when the 

separation of the points becomes too large or the points must be redistributed to maintain 

adequate resolution.  Small elements may be removed, which reduces the total number of 

elements and prevents the formation of fluctuations smaller than the grid size.  To 

accommodate topology changes, interfaces are allowed to reconnect when either parts of 

the same interface or parts of two separate interfaces come close together.  Since it is not 

well known at what distance the interface will coalesce when brought together and 

distances at such a small scale are not resolved, the interface is artificially reconnected 

when two points come closer than a small distance, p.  Here the advantage of front-

tracking is that the distance at which interfaces merge can be controlled and the effect of 
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varying p can be studied, unlike in interface capturing methods such as the phase-field 

[49] or level-set [48] methods where there is no active control over topology changes.  

However, it should be mentioned that p is not a physically known quantity, but an 

artificial parameter chosen by the user. 

 
 

2.3.2  Immersed-Boundary Method 
 
 
 The immersed-boundary method was first developed by Peskin [54, 55] [55]and 

combined with front-tracking by Trygvasson and Aref [56].  The moving interface 

becomes immersed by combining the governing equations for the precipitate and matrix 

phases, resulting in one equation that accounts for both phases and the moving interface.  

Large jumps in concentration (as seen in Figure 2.3) and thermodynamic properties at the 

particle/matrix interface may cause instabilities in the solution of the governing equations 

for particle dissolution.  Fortunately, a formulation employing a single diffusion equation 

can be written for both phases as long as the sharp changes in material properties and the 

rejection/absorption of solute at the interface is correctly accounted for.  The 

concentration field for each alloying element must be transformed to create a continuous 

function.  The concentration and diffusivity are transformed by the ratio , ,/i P Si M Sik C C= .  

Note that the subscript P refers to the precipitate phase and M refers to the matrix phase.  

The transformed initial condition is simply: 

 

 , ( , ,0) / , in the precipitate
, for (1,..., )

( , ,0), in the matrix
P i i

i
i

C x y k
c i n

C x y


= ∈


�    (2.21) 
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and the diffusivity coefficients are transformed as follows:  

 

{ },

,

, in the precipitate
, for , 1,...,

, in the matrix
i P ij

ij
M ij

k D
D i j n

D


= ∈


�    (2.22) 

 

The diffusion equation is rewritten in conservative form and expressed in terms of the 

transformed variables for { }1,...,i n∈ : 

 

1
( ) ,

n
i

ij i i
j f

c D c s dA
t

δ
=

∂
= ∇ ⋅ ∇ + ⋅ −

∂ ∑ ∫ fx x
� � �     (2.23) 

 

where ic�  is the transformed concentration field, and ijD� are the transformed volumetric 

diffusivity coefficients, si is the mass source of element i at the interface point fx , and 

( )δ − fx x is a two dimensional delta function that is nonzero only at the interface where 

= fx x .  The mass source term is appears as a result of recasting the two separate 

diffusion equations into one, and for an individual interface point it is given by: 

 

, ,( , ) ( )i f f P Si M Si
dss x y C C
dt

= −     (2.24) 

 

where ds/dt is the velocity of point ( , )f fx y and is determined by using the Stefan 

condition, given in equation (2.7) for alloying element i.  In transformed concentration 

notation, the mass source becomes:  
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,( , ) ( 1)i f f M Si i
dss x y C k
dt

= −�     (2.25) 

 

Recall that ki is simply the ratio of precipitate composition and matrix compositions at 

the interface for component i.  

 At each time step, information must be passed between the moving Lagrangian 

interface and the stationary Eulerian grid. Peskin’s Immersed-Boundary Method [54] is 

used to pass this information because the discrete interface points (xp) do not necessarily 

coincide with the Eulerian grid points (xij).  Using this technique, the infinitely thin 

interface is approximated by a smooth distribution function that is used to distribute 

sources at the interface (due to rejection/absorption of solute, mass transfer across the 

interface, or surface tension, f) over several grid points near the interface.  Considering 

mass transfer across the interface, s(t), the interfacial source, mk, can be distributed to the 

grid and the grid field variable, cij, can be interpolated to the interface using the 

discretized summation 

 

( )ij k ij k k
k

m m F x s= ∆∑     (2.26) 

 

where ∆sk is the average of the straight-line distance from the point k to the two points on 

either side of k, and Fij is the Peskin [54] distribution function, defined as:  

 

( ) ( )ij k ij k
ij

x x y y
F

x y
δ δ− −

=
∆ ∆

    (2.27) 
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for two dimensions with grid spacing ∆x, ∆y.  The delta function is defined by the 

following: 

 

1

1

( ), 1
( ) 1/ 2 ( ), 1 2

0, 2

x x
x x x

x

δ
δ δ

 ≤
= − < <
 ≥

   (2.28) 

 

and 

 

2

1

3 2 1 4 4
( )

8
x x x

xδ
− + + −

= .    (2.29) 

 

Similarly, the Peskin function is used to interpolate field variables from the stationary 

grid to the interface.  For example, the concentration of the interface may be found by: 

 

2 ( )k ij ij k
ij

C h C F x= ∑      (2.30) 

 

In this way, the front is given a finite thickness on the order of mesh size to provide 

stability and smoothness.  There is also no numerical diffusion because this thickness 

remains constant for all time [44, 45, 52].  

 Different phases are identified by a step function, H, which is equal to one in 

phase 1 and two elsewhere.  The interface is marked by a non-zero value of the gradient 

of the step function.  Discontinuous material properties, such as density, are then 

expressed by: 
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1 2( , , ) ( , , ) (1 ( , , ))x y t H x y t H x y tρ ρ ρ= + −    (2.31) 

 

where ρ1 is the density in phase 1 ( 1)H = and ρ2 is the density in phase 2 ( 0)H = (H=0). 

 An indicator function ( , )H x t ), is used to represent the step function.  The jump 

in the indicator function across the interface is distributed using the grid points closest to 

the interface using Equation (2.26).  This generates a grid-gradient field, 

 

( ) ( ) ,f
A

G x H n x x dAδ= ∇ = −∫     (2.32)  

 

which is zero except near the interface, and has a finite thickness.  The divergence of the 

gradient field, ( G∇ ⋅ ), is found by numerical differentiation, using second-order centered 

differences.  In this manner, the Laplacian of the indicator function is then calculated, 

and is again zero, except near the interface.  The indicator function is found by solving 

the Poisson equation: 

 

2H G∇ = ∇ ⋅       (2.33) 

  

 At the end of each time step, the tracked interface elements are used to obtain the 

indicator function, H, at each grid point.  The indicator function is constant within each 

material region, but has a finite-thickness transition zone around the interface and 

therefore approximates a two-dimensional step function.  The primary advantage of this 

approach is that close interfaces can interact in a natural way since the gradients simply 

add or cancel as the grid distribution is constructed from the information carried by the 
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tracked front.  Therefore, when two interfaces are close together, the full influence of the 

solute liberated from both interfaces is included in the diffusion equation. 

 
 

2.3.3 Sharp-Interface Method 
 
 
 The sharp-interface method described here is based on the ghost-fluid method.  

The ghost-fluid method [57] is a useful way to calculate the gradients at the interface 

more accurately. Similar to the ghost-fluid method, in the sharp-interface method, the 

gradient for the matrix phase is extended into the precipitate for the purposes of 

calculating the diffusion of concentration in the matrix.  Likewise, the gradient for the 

precipitate phase is extended into the matrix phase to calculate diffusion of solutal 

elements within the precipitate.  This is accomplished by constant extrapolation in the 

direction normal to the interface, as seen in Figure 2.6. 
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Figure 2.6 Gradients are extended into a ghost fluid for each phase for a more accurate 
calculation of interface values.   

 
 
 

Consider the matrix phase, with diffusivity D.  For simplicity, assume that the 

diffusivity is constant over the entire computation domain.  The explicit finite-difference 

equation that characterizes the composition at node i,j for ∆x=∆y=h, after a time step ∆t, i 

 

 ( )1
, , 1, , 1 , 1, , 12 4

tt t
i j i j i j i j i j i j i j

D tC C C C C C C
h

+
− − + +

∆
= + + − + +  (2.34) 

 

Suppose that node i-1, j is located in the precipitate field.  Instead of using the 

actual composition at that node, a “ghost” composition is calculated using the known 

composition and location of the interface.  A schematic of this process is shown in Figure 

2.7.  The composition at one grid spacing from the interface (xf + ∆x) on the matrix side 

is interpolated using the nearest grid points.  The grid node nearest the interface is not 

Matrix Precipitate 
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used to extrapolate the composition in the ghost-matrix in order to avoid numerical 

instabilities if the distance between the grid node and the interface is too small.  The 

interpolated composition and the interface composition are then used to extrapolate the 

composition at the grid node in the ghost-matrix.   

 
 
 

 

Figure 2.7 Schematic for extrapolating the composition of a ghost point for the matrix 
phase.  First, the composition at xf + ∆x is interpolated from the neighboring grid nodes 
The composition at the grid node behind the interface is then extrapolated using the 
known composition at the interface and the interpolated composition. 
 
 
 
 The composition at node ,i j then becomes: 

 

( )1
, , 1, , 1 , 1,2 4

tt t
i j i j i j i j i j i j ghost

D tC C C C C C C
h

+
− − +

∆
= + + − + +   (2.35) 
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xf x 

∆x 

xf + ∆x

extrapolated  
composition 

interpolated  
composition 
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where Cghost is the “ghost” composition.  The advantages of this method, as compared 

with the immersed-boundary front-tracking method, is that the gradients near the 

interface are expressed more accurately and the boundary is no longer immersed in the 

governing equations, thereby removing the necessity for the delta-function mass source 

term to account for the mass flow in the system. 

 
 

2.4 Numerical Implementation 
 
 
 In order to begin the computation an initial interface shape is specified.  From this 

shape the indicator function is constructed as described above in Section 2.3.3.  The 

following must also be initialized: number of alloying components, initial composition 

fields of all components, diffusivity matrix, solution domain, and any boundary 

conditions (for instance, periodic boundaries or convective-source boundaries instead of 

no-flux boundaries).  The interface compositions must then be found for each alloying 

element at each interface point based on the hyperbolic relation given in Equation (2.1) 

coupled with the Stefan conditions at the interface, given by Equation (2.7).  A root-

finding procedure must be used – in this work a Newton-Rhapson root-finding technique 

is used.    

 Using the initial interface compositions, the concentration and diffusivity fields 

are transformed using Equations (2.21) and (2.22).  The procedure for the remaining time 

steps is given below. 
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1. The interface velocity at each interface point is calculated using Equation (2.7)  

for each of the individual components.  All of the components should give 

identical results for velocity.   

2. With the normal velocity, the mass source term for each interface point is then 

determined using Equation (2.25) and distributed to the stationary grid using the 

Peskin distribution function, as in Equation (2.26).  Note that this step is unique to 

the immersed-boundary method.  The sharp-interface method does not use mass 

source terms. 

3. The concentration field is then calculated using the transformed diffusion 

equation, given in Equation (2.23).  Finite-differencing schemes are used to 

discretize the differential terms.  The discretization of the equations is shown in 

Appendix A.  An explicit method has been employed, which is first order 

accurate in time and second order accurate in space. 

4. The interface points are then advected using Equation (2.20) and the indicator 

function is calculated using an available fast Poisson equation solver 

(FISHPACK) for Equation (2.33).   

5. The time step is advanced and new interface compositions are calculated for each 

individual component at each interface point, again using the Newton-Rhapson 

root-finding routine for the hyperbolic relation given in Equation (2.1) coupled 

with the Stefan conditions at the interface, given by Equation (2.7): 

1 1
,1 ,1 ,1 ,1

1
( )

n

P j M j P S M S
j

C C dsD D C C
dtη η=

 ∂ ∂
− = − ∂ ∂ 

∑ . 
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Return to Step 1 until the precipitate has completely dissolved or the final specified time 

has been reached. 
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CHAPTER THREE 

APPLICATIONS FOR BINARY ALLOYS 
 
 

3.1 Introduction 
 
 

The physics behind the equations discussed earlier are described in detail in this 

chapter for a binary alloy composed of components A and B.  In this system molecules of 

A and B form physical bonds, but do not react chemically.  Therefore, this is a metallic or 

intermetallic solution or mixture.  The majority component is called the solvent and the 

minority component the solute.  For a given mass of m grams of binary alloy A-B, the 

mass of A and B are mA and  mB, respectively, where mA+mB=m.  The mass ratios are  

,A B
A B

m mC C
m m

= =      (3.1) 

and are measures of the proportion of A and B, respectively, in the alloy and are known 

as the mass fraction or the concentration of each component in the alloy.  Only one of the 

concentrations is needed to determine the composition of the alloy since CA+CB=1.  The 

concentration of the solute, CB, is typically used as the composition variable and will be 

used here. 

Mass transfer arises from component segregation when there is a concentration 

gradient of solute in the solvent [Figure 3.1(a)].  In this example, the concentration of B, 

given by CB, varies in one dimension (x) through the solution.  The B atoms will diffuse
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 throughout the material until their concentration is the same everywhere.  The movement 

of the B atoms is represented by a flux J, given by Fick’s first law of diffusion: 

 

B
B

CJ D
x

∂
= −

∂
      (3.2) 

 

where DB is the diffusivity of chemical species B in A. 

The number of B atoms that diffuse through plane 1, of Figure 3.1, with a flux of 

J1 in a small time interval, ∆t, will be J1A∆t.  The number of atoms that leave plane 2, 

with a flux of J2, during this time, is J2Aδt.  Since 2 1J J<  , the concentration of B within 

a volume of Aδx  will have increased by:  

 

2 1( )
B

J J A tC
A x

− ∆
∆ =

∆
     (3.3) 

 

For small ∆x,  

 

2 1
JJ J x
x

∂
= + ∆

∂
     (3.4) 

 

so, in the limit as ∆t→0, 

 

BC J
t x

∂ ∂
= −

∂ ∂
      (3.5) 
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Substituting Fick’s first law gives Fick’s second law for a single-phase system: 

 

( )B
B B

C D C
t

∂
= ∇ ∇

∂
i ,     (3.6) 

 

where the generalization to three dimensions has been made, which can be solved for the 

concentration profile using the appropriate initial and boundary conditions. 

 
 
 

 

Figure 3.1 (a) Composition profile of component B. (b) Flux of component B. (c) 
Location of flux planes 1 and 2, and cross-sectional area for mass transfer, A. 
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In most practical cases, diffusion occurs in the presence of more than one phase. 

Consider a two-phase alloy composed of A and B that form an α-matrix interspersed with 

β precipitates.  During the homogenization treatment β precipitates will dissolve.  The B 

atoms will diffuse into the α-phase away from the α/β interface.  The interface is not 

stationary but moves as diffusion progresses.  An expression for the rate at which the 

boundary moves can be obtained as follows.  Consider the planar α/β interface, shown in 

Figure 3.2.  If a unit area of the interface moves a distance ∆η, a volume (∆η•1) will be 

converted from β containing Cβ B-atoms/m3 to α containing Cα B-atoms/m3.  This means 

that a total of ( )C Cβ α η− ∆  atoms of B must accumulate at the α/β interface, shown in 

the shaded area in Figure 3.2.   

There is a flux of B-atoms towards the interface from the β-phase and a flux away 

from the interface in the α phase.  In a time, dt, there will be an accumulation of B atoms 

at the interface given by: 

 

2 1
2 1

/ /

C CD D dt
α β α βη η

    ∂ ∂ −       ∂ ∂     
 

 

where D1 and D2 are the diffusivity of B in the α-matrix (represented as phase 1)  and β-

precipitate (represented as phase 2) respectively, the concentration gradient of solute 

component B is taken normal to the α/β interface in both phases, and η indicates the 

direction normal to the interface. 
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Figure 3.2  Concentration profile across the α/β interface and its associated movement. 

 
 
 
The instantaneous velocity of the interface can then be found by equating the two 

expressions for accumulation at the interface: 

 

2 1
2 1

/ /

1
( )

ds C Cv D D
dt C Cβ α α β α βη η

    ∂ ∂ = = −       − ∂ ∂     
.  (3.7) 

 

Note that the transfer of atoms across the α/β interface is assumed to be diffusion 

controlled.  In some instances an interface reaction may control the motion of the 

interface and a different expression for interface velocity must be defined.  For the 

current discussion, only cases where interface reactions may be neglected are considered.    

To solve for the dissolution of the β precipitate, the diffusion equation for 

component B is coupled with the expression for the velocity of the interface.  The solute 

equation is written for both phases separately as:  

 

Cβ 
∆η 

V 
Cα 

α β 
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( )1
1 1

C D C
t

∂
= ∇ ∇

∂
     (3.8) 

 and 

 ( )2
2 2

C D C
t

∂
= ∇ ∇

∂
.      (3.9) 

 

The alloy systems that will be discussed in this Chapter include Al-Cu and Al-Si.  

The composition in the precipitate phases is assumed to be constant, and the diffusion 

equation is solved within the precipitate with a diffusivity of zero.    

 
 

3.2 One Dimensional Systems 
 
  

 One-dimensional solutions were developed for planar, cylindrical, and spherical 

precipitate geometries.  These three geometries are illustrated in Figure 3.3.  In the planar 

case, a planar precipitate with an initial half-thickness x0 and composition CP dissolves in 

a matrix of size L and composition CM.  The solution domain begins in the center of the 

precipitate ( )0x = .  For the spherical and cylindrical geometries, a precipitate of initial 

radius r0 and composition CP is dissolving in a surrounding matrix of radius rL and 

composition CM.  Again, the solution domain begins at the center of the precipitate for 

the cylindrical and spherical geometries.  The interface composition is denoted by CS.  
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Figure 3.3 Schematic of solution geometry for one-dimensional planar, spherical and 
cylindrical solutions.  CP, CM, and CS are the precipitate, matrix and interface 
compositions, respectively. 
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 The concentration profile of B in the system can be found by solving the 

following one-dimensional diffusion equation for solute in each phase:   

 

a
a

C D Cr
t r r r

∂ ∂ ∂ =  ∂ ∂ ∂ 
     (3.10) 

 

where a is a geometrical parameter, which is 0, 1, and 2 for planar, cylindrical, and 

spherical geometries, respectively.  The equations are coupled at the interface location, 

s(t) through the Stefan condition, Equation (3.7).  There are two separate fields for which 

the diffusion equation must be solved: within the precipitate and within the matrix. 

The boundary conditions for all three one-dimensional solutions are given by:  

 

(0 ( ), ) (0 ( ), )

0
L

P

x L r r

C x s t t C r s t t C

C C
x r= =

< < = < < =

∂ ∂
= =

∂ ∂

   (3.11) 

 

and the initial conditions are: 
 

0 0

0 0

(0 ,0) (0 ,0)

( ,0) ( ,0)

P

L M

C x x C r r C

C x x L C r r r C

< < = < < =

< < = < < =
   (3.12) 

 

where the composition in the matrix may be a function of distance.  The interface 

condition, in addition to the flux condition, given in Equation (3.7), is given by: 
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( ( ), ) SC s t t C=      (3.13) 

 

for all three geometries.  

 
 

3.2.1 Comparison with Exact Solution  
 
 
 The immersed-boundary and sharp-interface front-tracking methods which were 

described in Chapter Two were compared to determine the best method to perform the 

simulations.  In the immersed-boundary method, a single diffusion equation is written for 

the entire solution domain.  Because of this, the particle/matrix boundary is “immersed” 

and source terms must be included in the governing equations.  In the sharp-interface 

method, “ghost” fluids are used to calculate the diffusion in the matrix near the 

precipitate/matrix interface.  There is no need to combine the governing equations for the 

entire flow field and thus the source terms are no longer needed.  

 The simulations to compare the two front-tracking methods were run using a 

precipitate composition of 33 at.%, an interface composition of 2.24 at.% and an initial 

composition in the matrix of 0 at%.  The diffusivity value used was 0.1 µm2/sec.  These 

values were chosen because they are similar to conditions for the Al-Cu system.  The 

precipitate half-thickness was chosen as 3 µm, and the length of the computational 

domain was set to 30 µm.     

 Analytical solutions only exist for very specific cases of particle dissolution.  The 

solutions are for one-dimensional problems in infinite or semi-infinite domains, with 

simple initial conditions and constant diffusivity, D.  These are similarity solutions, and 
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are functions of 
( )fx x t

t
−

, where xf(t) is the interface location,  and x and t are the spatial 

and temporal variables, respectively [58].  Following Carslaw and Jaeger [58], the 

interface location as a function of time for a planar particle dissolving in an infinite 

domain is given by: 

 

( ) (0) 2f fx t x Dtλ= + ,    (3.14) 

 

 and the composition is expressed as: 

 

 
( )

( , ) erf
erf( ) 2

fS M
M

x x tC CC x t C
Dtλ

− −
= +  

 
   (3.15) 

 

 where, λ is found by solving the transcendental equation, 

 

2exp( )
( ) erfc( )

s M

P S

C C
C C

λ π λ
λ

−
− = −

−
.   (3.16) 

 

 Figure 3.4 shows the interface location as a function of time for the exact solution 

and both front-tracking methods.  The front-tracking methods were very close to each 

other; in fact, it is difficult to tell them apart in Figure 3.4. The absolute errors between 

the front-tracking methods and the exact solution are shown in Figure 3.5.  Initially the 

immersed-boundary method has a smaller error than the sharp-interface method.  

However, the immersed-boundary method quickly develops a larger error than the sharp-



 

 63  

interface method.  The error has been defined as the absolute difference between the 

exact solution interface location and the interface location calculated by front-tracking 

The maximum error in interface location was larger for the immersed-boundary method 

than for the sharp-interface method.   

 
 
 

 

Figure 3.4 Interface location as a function of time for the exact solution (dotted line), 
sharp-interface method (solid line) and immersed-boundary method (dashed line).  Both 
of the front tracking methods gave similar results, their interface locations were just 
slightly higher than the analytical solution. The simulations were run using: dx = 0.05,  
CP = 33 at.%, CS =2.24 at.% , CM =0 at%, D = 0.1 µm2/sec, (0) 3µmfx = , and L = 30 
µm. 
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Figure 3.5 Absolute error in interface location for the immersed-boundary (dashed line) 
and sharp-interface (solid line) methods.  The immersed-boundary method shows a 
greater error in interface location than the sharp-interface method.  The simulations were 
run using: dx = 0.05, CP = 33 at.%, CS =2.24 at.% , CM =0 at%, D = 0.1 µm2/sec, 

(0) 3µmfx = , and L = 30 µm. 
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 Another important aspect in the calculation is mass conservation.  For the method 

to be accurate, it must conserve mass globally at every time.  Figure 3.6 shows the mass 

in the system for both front-tracking methods.  The immersed-boundary method, shown 

in the dashed line, decreases initially and then levels off, while the sharp-interface 

method remains constant throughout time.  The sharp-interface method performs better in 

terms of mass-conservation than the immersed-boundary method. 

 An additional advantage of the sharp-interface method is shown in Figure 3.7, in 

which the composition profiles are shown at t = 10 seconds.  The immersed-boundary 

method has a spike in concentration at the interface.  This spike is due to the delta-

function source term that is located at the interface.  The spike becomes smaller as the 

grid size is reduced, however it does not completely disappear.  The sharp-interface 

method does not have these spikes, so it is preferable to the immersed-boundary method.  
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Figure 3.6 Total mass in system over time for the immersed-boundary method (dashed 
line) and sharp-interface method (solid line).  The immersed-boundary method quickly 
gains mass and then starts to lose mass.  The sharp-interface method maintains mass 
consistently over the entire temporal domain.  The simulations were run using: dx = 0.05, 
CP = 33 at.%, CS = 2.24 at.% , CM = 0 at%, D = 0.1 µm2/sec, (0) 3µmfx = , and L=30 µm. 
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Figure 3.7 Comparison of composition profile at 100 seconds for sharp-interface and 
immersed-boundary methods.  The composition at the particle/matrix interface is 
enlarged to show the spike in composition for the immersed-boundary method.  The 
simulations were run using: CP = 33 at.%, CS = 2.24 at.% , CM = 0 at%, D = 0.1 µm2/sec, 

(0) 3µmfx = , and L = 30 µm. 
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 Error norms have been plotted for the difference in composition between the 

exact solution and the two front-tracking methods.  They are defined as: 

 

1
1

1 m

i
i

L e
m =

= ∑      (3.17) 

 

1/ 2
2

2
1

1 m

i
i

L e
m =

  
=   

  
∑      (3.18) 

 

 maxL e∞ =      (3.19) 

 

where m is the number of data, and ei is the error of point i.  The L1, L2, and L∞ 

concentration norms are plotted in Figures 3.8-3.10 respectively.  In all three cases, the 

error norm is higher for the immersed-boundary method than for the sharp-interface 

method.  In Figure 3.8, both methods appear to have the same trend for the L1 norm, 

however the immersed-boundary method has higher values at all times.  The immersed-

boundary method has a decreasing L2 norm, while the L2 norm for the sharp-interface 

method is increasing; however the sharp-interface method does have a lower value 

throughout the computational time (see Figure 3.9).  In Figure 3.10, the L∞ composition 

norm for both front-tracking methods is shown.  The immersed-boundary method has a 

much higher L∞ error than the sharp-interface method.  It is obvious that the sharp-

interface method out-performs the immersed-boundary method over the entire solution 

domain. 

 



 

 69  

 
 

Figure 3.8 L1 composition norm for immersed-boundary (red line) and sharp-interface 
(blue line) methods.  The L1 norm is higher at all solution times for the immersed-
boundary method.  The simulations were run using: CP = 33 at.%, CS = 2.24 at.% , CM = 
0 at%, D = 0.1 µm2/sec, (0) 3µmfx = , and L = 30 µm. 
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Figure 3.9 L2 composition norm for immersed-boundary (red line) and sharp-interface 
(blue line) methods as a function of time.  The L2 norm is higher at all solution times for 
the immersed-boundary method, although they seem to be converging to the same value.  
The simulations were run using: CP = 33 at.%, CS = 2.24 at.% , CM = 0 at%, D = 0.1 
µm2/sec, (0) 3µmfx = , and L = 30 µm. 
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Figure 3.10 L∞ composition norm for immersed-boundary (red line) and sharp-interface 
(blue line) methods.  The L∞ norm is much higher at early times for the immersed-
boundary method, and is constant (after the initial time) throughout the solution time for 
the sharp-interface method.  The simulations were run using : CP = 33 at.%, CS = 2.24 
at.% , CM = 0 at%, D = 0.1 µm2/sec, (0) 3µmfx = , and L = 30 µm. 
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 Grid convergence was also tested for the immersed-boundary and sharp-interface 

methods.  Figure 3.11 shows the grid convergence for the L∞ composition error norm.  

The sharp-interface method has nearly quadratic convergence and the immersed-

boundary method has nearly linear convergence.  Quadratic convergence is expected 

because the finite-difference method used to calculate composition values is second-order 

accurate.  The mass error as a function of grid spacing is shown for the sharp-interface 

method in Figure 3.12.  The error is reduced as the grid size is reduced, as expected. 
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Figure 3.11 L1 and L2 composition error norms for the sharp-interface (solid line) and 
immersed-boundary (dashed line) methods at time=100 seconds.  The sharp-interface 
method shows nearly quadratic convergence, and the immersed-boundary method shows 
between linear and quadratic convergence.  The simulations were run using: CP = 33 
at.%, CS = 2.24 at.% , CM = 0 at%, D = 0.1 µm2/sec, (0) 3µmfx = , and L = 30 µm. 
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Figure 3.12 Sharp-interface mass error plotted as a function of grid resolution 
(dx=0.5,0.25, 0.05, 0.025, and 0.0125). The simulations were run using : CP = 33 at.%, 
CS = 2.24 at.% , CM = 0 at%, D = 0.1 µm2/sec, (0) 3µmfx = , and L = 30 µm. 
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 The sharp-interface front-tracking method has been chosen for the remaining 

calculations in this thesis.  It has outperformed the immersed-boundary method in both 

composition calculations and mass conservation.  Both factors may be attributed to the 

delta-function source-terms that are inherent to the immersed-boundary method.  The 

sharp-interface method is also more efficient – performing at a clock speed of almost 

three times faster than the immersed-boundary method.  This enhanced efficiency is 

needed when moving into two-dimensional simulations. 

 
 

3.2.2 Comparison with Literature Models  
 
 
 Aaron and Kotler [37] considered one-dimensional diffusion-controlled 

dissolution of a planar precipitate in a semi-infinite domain.  Under the assumption that 

the interface location was a slowly varying function of time, they calculated the interface 

location to be: 

 

( ) (0)f f
Dtx t x k
π

= −      (3.20) 

 

 where k is a supersaturation parameter given by: 

 

2 S M

P S

C Ck
C C

−
=

−
      (3.21) 
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where CP, CS, and CM are the composition in the precipitate, the precipitate/matrix 

interface, and the matrix, respectively.  According to Aaron and Kotler, in order for the 

interface location to be a slowly varying function with time, k must be less than 0.3.   

 Figure 3.13 shows Aaron & Kotler’s [37] method compared with the exact 

solution and both front-tracking methods.  The simulations were run using: 33at%PC = , 

2.24at%SC = , 0at%MC = , 20.1µm / sD = , (0) 3 µmfx = , and 30 µmL = .  The 

supersaturation parameter, k, is equal to 0.14564.  It is obvious from Figure 3.13 that 

Aaron and Kotler’s method diverges very quickly from the exact solution, which is 

somewhat surprising considering that k is well within the limits of their model’s 

applicability.  The divergence from the exact solution is most likely due to the 

assumption that the interface-location is a slowly varying function with time.   
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Figure 3.13  Interface location as a function of time, showing the exact solution (dotted 
line), sharp-interface method (solid line), immersed-boundary  method (dashed line), and 
Aaron & Kotler’s approximation (dash-dot line).  Aaron and Kotler’s expression has 
diverged from the other solutions at an early time due to the assumptions in their 
analysis.  They assumed that the interface was a slowly varying function with time. The 
simulations were run using : 33at%PC = , 2.24at%SC = , 0at%MC = , 20.1µm / sD = , 

3 µmfx = , and 30 µmL = .  
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 Whelan [36] considered the dissolution of a spherical precipitate and posed that it 

was approximately the reverse of growth at long times.  His analysis was similar to that 

of Aaron and Kotler [37] for the planar particle.  They approximated the dimensionless 

half-thickness at early times to be: 

 

  2
0 0 0

1
2

r kDt k Dt
r r r π

= − −      (3.22) 

 

Figure 3.14 shows the Whelan equation (dashed line) plotted with the radius determined 

by the spherical one-dimensional sharp-interface front-tracking method.  The Whelan 

solution predicts a slower dissolution time than the sharp-interface method.  Whelan’s 

solution does not take into account the changing interfacial area for mass transfer.  The 

area available for mass transport increases with radial distance from the center of the 

sphere.  Therefore, as the sphere becomes small, the dissolution rate increases, which is 

observed in the sharp-interface method profile.   
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Figure 3.14 Whelan correlation plotted with sharp-interface spherical model.  The 
Whelan correlation initially shows a slightly lower interface radius position, however as 
time continues, Whelan’s model predicts a longer dissolution time than the spherical 
model.  The simulations were run using: 33at%PC = , 2.24at%SC = , 0at%MC = , 

20.1µm / sD = , 0 3 µmr = , and 30 µmLr =  
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3.3 Two Dimensional System 
 
 
 Two-dimensional simulations were performed, using the parameters shown in 

Tables 3.1 and 3.2.  In all cases, the two-dimensional simulations were run using a 

circular precipitate in a matrix, shown in Figure 3.15.  This geometry was chosen because 

it is a convenient shape, however any two-dimensional precipitate shape can be used.  

The concentration profile of B in the system can be found by solving Equations (3.8) and 

(3.9).  The equations are coupled at the interface location, s(t) through the Stefan 

condition, Equation (3.7). There are two separate fields for which the diffusion equation 

must be solved: within the precipitate and within the matrix.  Within the precipitate, there 

is a no-flux condition at the center (x=xc, y=yc): 

 

2 2 0, at ( , )c c
C C x y
x dy

∂ ∂
= =

∂
    (3.23) 

 

and there are also no-flux conditions imposed on all outer boundaries of the matrix phase: 
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Figure 3.15  Solution domain for dissolution of a circular precipitate in an alloy.  There 
are no-flux conditions on all outer boundaries of the solution domain. 

 
 
 

3.3.1 Comparison with Experimental Data 
 
  

 There are three main issues to consider when comparing models with 

experimental data: (1) the diffusivity of the solute in the solvent, (2) shape of precipitates, 

and (3) size distribution of precipitates.  In all cases where models were compared to 

experimental data, the diffusivity value reported by the author was used.  There is 

uncertainty involved in these numbers which may affect the final result.  The diffusivity 

values found in the literature were reported to have less than 5% error, which is not 
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enough of a difference to affect the dissolution time.  Additionally, the shape of the 

precipitates is a factor that must be considered.  If the particle is spherical in shape, the 

spherical model will be the obvious choice.  Two-dimensional simulations are needed 

when more than one particle is being considered, or particle spacing is an issue.  The one-

dimensional models assume a uniform size, shape, and distribution of precipitates.  

Another factor is that the reported experimental information is for a distribution of 

various sizes of precipitates.  The one-dimensional models can only account for one 

particle at a time, so again, two-dimensional simulations are needed.  Note that in this 

chapter, only one particle will be considered in a given matrix. 

 The sharp-interface method was compared with experimental data found in the 

literature for Al2Cu platelets dissolving in an Al-Cu alloy [59, 60], for θ′ dissolving in an 

Al-Cu alloy [18], and for Si particles dissolving in an Al-Si alloy[13].  The simulations 

were run using the parameters listed in Tables 3.1 and 3.2.  The diffusivities for each 

simulation are given in Table 3.1, along with the precipitate and interface compositions.  

The geometric parameters used for the simulations are given in Table 3.2 for each case.  

In all two-dimensional simulations in this section, the geometry shown above in Figure 

3.15 was used.  This geometry translates to an infinitely long cylinder dissolving in an 

infinitely long square bar.   

   

 



 

 83  

 

Table 3.1 Boundary conditions and diffusivities for binary alloy simulations found in 
Reiso et al. [60],(ROR),  Baty et al. [59], (BTH), and Hewwitt and Butler[18], (HB), 
Tundal and Ryum[13], (TR). 

Precipitate Half thickness 
or radius 

Volume 
fraction 

CP (at. 
fraction) 

CS (at. 
fraction) 

diffusivity 
(µm2/sec) 

Source

Al2Cu/θ 3 µm 0.015182 0.33 0.0224 0.1  ROR  
Al2Cu/θ 0.3 µm 0.025 0.33 0.0224 0.0603  BTH 
Al2Cu/θ’ 0.25 µm 0.019 0.33 0.00857 6.43X10-4  HB 

Si 1.89 µm 0.0037 0.8289 0.0079 0.131 TR 
Si 1.89 µm 0.0037 0.8289 0.0104 0.288 TR 
Si 1.89 µm 0.0037 0.8289 0.0136 0.6 TR 

 

 

 

 

 

Table 3.2 Geometry for simulations using parameters found in Reiso et al. [60], Baty et 
al. [59]  Hewitt and Butler[18],and Tundal and Ryum[13]. 

Experiment Geometry 1D 
planar 1D cylindrical 1D spherical 

2D, 
cylindrical 
precipitate 

x0,r0  (µm) 3 3 3 3 ROR L,rL (µm) 197 24 12 43 x 43 
x0,r0  (µm) 0.3 0.3 0.3 0.3 BTH L,rL (µm) 12 1.897 1.025 3.36 x 3.36 
x0,r0 (µm) 0.25 0.25 0.25 0.25 HB L,rL (µm) 13 1.8 0.94 2.8 x 2.8 
x0,r0 (µm) 1.89 1.89 1.89 1.89 TR-a , TR-

b, TR-c L,rL (µm) 510.81 31.07 12.22 55 x 55 
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 Reiso, Overlie, and Ryum [60] investigated the dissolution of Al2Cu in an Al-4.2 

wt%-Cu alloy.  The alloy was produced by directional solidification and was then 

homogenized 4 days at 530°C and subsequently broken down by cold rolling with 

intermediate annealing at 430°C.  The specimens were then annealed for 2 hours at 

530°C in air.  The temperature was then decreased by 1°C/hour down to 450°C, after 

which the specimens were quenched in water.  To observe dissolution of the Al2Cu 

precipitates, a series of up-quenching experiments to 546°C were run.  The area fraction 

of precipitates was measured on an optical microscope using an interactive image 

analysis system instrument.  Dissolution data was digitized using “digiMatic” software.  

The percent-area fraction of precipitate is shown as a function of time in Figure 3.16.  

The two-dimensional model was run using a circular precipitate in a matrix, and shows 

good agreement with the experimental data.  The solution geometry chosen is akin to an 

infinite cylinder dissolving in an infinite box of square cross-section with end effects 

neglected.  Al2Cu precipitates are plate-like in shape, and as they dissolve, the sharp 

edges will soften, so this geometrical choice is reasonable.  The one-dimensional planar 

model is also compared with the experimental data shown in Figure 3.16, and overshoots 

the dissolution time.   
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Figure 3.16 Two-dimensional model (solid line) and planar model (dashed line) 
compared with Reiso et al.’s experiment (●).   
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 Baty, Tanzilli, and Heckel [59] studied the dissolution of Al2Cu in an Al-4wt%-

Cu alloy.  They developed large Al2Cu particles during a heat treatment of 35 hours at 

300°C.  Small particles were developed by solution heat treatment at 560°C for 46 hours 

followed by cold working 50% and aging for 200 hours at 200°C.  The samples were 

then heat treated at 520°C and 540°C to study the evolution of the Al2Cu particles.  Point 

counting was used to determine the volume fraction of Al2Cu after each heat treatment.  

Size distributions were calculated using DeHoff analysis.  The reduction in particle size 

during heat treatment was determined by two different ways.  The first was volume 

fraction of Al2Cu particles in the matrix.  The second was by determining the mean 

particle size from the particle size distributions.  The data were plotted in dimensionless 

parameters: dimensionless radius,
0

r
r

, vs. dimensionless time, 
1.1

2
0

SD t C
r

⋅ ⋅ .  In order to 

compare the experimental data with our models, it was necessary to determine the time in 

seconds from the dimensionless time.  The data were digitized using digiMatic software.  

The two-dimensional model shows good agreement with the experimental data, as 

observed in Figure 3.17.  
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Figure 3.17  Data compared with experiment from Baty, Tanzilli and Heckel[59].  The 
two-dimensional model shows good agreement with the experimental data. 
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 Hewitt and Butler[18] investigated the dissolution of θ′ in an Al-3wt%-Cu alloy.  

The alloy was solution heat treated at 550°C for 30 minutes, water quenched and aged at 

285°C for 22 hours to produce a microstructure consisting of two size dispersions of θ′.  

The samples were then observed during a heat treatment at 370°C in a high voltage 

electron microscope.  A timed sequence of micrographs was obtained using a data 

acquisition system and the area of θ′ at each time step was determined using stereometric 

analysis software.  Hewitt and Butler observed disk-like particles θ′ dissolving.  The two-

dimensional model and the one-dimensional spherical model are compared with the data 

digitized from Figure 2 in Hewitt and Butler[18].  The spherical model shows good 

agreement with the data points, while the two-dimensional model overshoots the 

dissolution time.   
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Figure 3.18 Simulations compared with data found in Hewitt and Butler[18].  The one-
dimensional spherical sharp-interface model shows very good agreement with the 
experimental data at early times.  The two-dimensional model overshoots the dissolution 
time, likely due to geometry. 
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 Tundal and Ryum[13]  studied the dissolution of silicon particles in an Al-

0.8wt%-Si alloy[13].  The casting was homogenized for 48 hours at 580°C.  The alloy 

was then heat treated at 490°C for 24 hours, 70%  cold rolled, held for four hours at 

490°C, cooled at 1°C/hour to 450°C and heat treated for another 48 hours.  Samples were 

then heat treated in a salt bath to various temperatures above the solvus temperature in 

order to study the dissolution.  After the heat treatment, the samples were quenched in 

cold water.  The particle sizes after each heat treatment were determined using a 

semiautomatic image analyzer, and were found to be generally circular in shape in the 

planar sections.  The area fraction of precipitates found using image analysis was then 

plotted with dimensionless time, 2
0

2Dkt
r

, where k is a measure of the supersaturation.   

 Tundal and Ryum[13] observed spherical particles dissolving with an average 

radius of 1.89 µm, which was chosen as the input for the spherical model.  Their data are 

compared with our model in Figure 3.19.  For all three temperatures, the experimental 

dissolution time is longer than the calculated dissolution time.  Again, the simulations 

were carried out using the average radius determined experimentally by Tundal and 

Ryum.  However, in reality there is a distribution in the size of precipitates dissolving.  

At large times, the larger particles will dominate the experimental data.  Smaller particles 

dissolve faster and do not enter into the experimental determination of average radius.  In 

Figure 3.20, three initial radii (1.89, 2.835, and 3.78 µm) are compared to the 

experimental data for 530°C.  The curves for the larger radii each go through an 

experimental datum point, which confirms that particles larger than the average initial 

radius take longer to dissolve.  The spherical model does not take into account more than 
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one precipitate.  In order to predict the dissolution time of a distribution of particles, 

either a distribution of particles, or the largest particle radius should be used. 

 
 
 

 
Figure 3.19 Model comparison with experimental data from Tundal and Ryum [13].  
Spherical silicon particles were observed dissolving in an aluminum matrix at 560 °C (♦), 
530 °C (►) and 500 °C (●).  The experimental data overshoot the spherical model for all 
three temperatures.   
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Figure 3.20  Spherical silicon particles dissolving at 530°C (■) compared with spherical 
dissolution model using an initial radius of 1.89 µm (black line), 2.835 µm (red line) and 
3.78 µm (blue line).  Experimental data taken from Tundal and Ryum  [13]. 

 
 
 

3.4 Summary 
 
 
 Two front-tracking techniques, the immersed-boundary and the sharp-interface 

methods, were compared with an exact solution for a one-dimensional planar-dissolution 

problem.  The interface location as a function of time, mass conservation as a function of 

time, and concentration profiles were compared for each method.  Both front-tracking 

methods performed well with respect to interface location; however, the immersed-

boundary method deviated more from the exact solution than the sharp-interface method.  

The sharp-interface method was also shown to conserve mass better than the immersed-

r=1.89 µm 
r=2.835 
r=3.78 µm 

r/r
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boundary method.  Furthermore, when composition profiles of the two front-tracking 

methods were compared with the exact solution, the sharp-interface method out-

performed the immersed-boundary method.  The composition error norms for the 

immersed-boundary method were all higher than those for the sharp-interface method. 

Furthermore, the sharp-interface method showed the expected second-order accurate 

convergence when subjected to a standard grid-reduction study.  The immersed-boundary 

method showed slightly less than quadratic convergence.  An additional advantage of the 

sharp-interface method is that it is more efficient and faster than the immersed-boundary 

method because the source terms are no longer necessary.  

  The sharp-interface front-tracking model was then compared with dissolution 

models found in the literature, as well as experimental results for precipitate dissolution 

in binary alloys.  A semi-analytic planar-dissolution model, developed by Aaron and 

Kotler [37], was compared with the one-dimensional planar sharp-interface method and 

the exact solution.  Aaron and Kotler’s method was shown to predict a faster dissolution 

time, due to assumptions inherent in their analysis.  Whelan’s [36] semi-analytical 

spherical-dissolution model was also compared with the one-dimensional spherical 

sharp-interface model.  His spherical model predicted a longer dissolution time than the 

sharp-interface method.  Whelan’s analysis was for a spherical particle dissolving in an 

infinite domain, and Aaron and Kotler’s analysis was for a planar particle, also dissolving 

in an infinite domain.  The motion of the moving interface was not accounted for in 

either study, causing the discrepancy between their models and our sharp-interface 

model. 
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 Four sets of experimental data were found in the open literature for dissolution of 

second-phase particles in aluminum alloys.  Two sets of experimental data were found 

for dissolution of θ in the aluminum copper alloy system.  The two dimensional model 

performed well when compared with both sets of data.  Reiso et al.’s [60] experiments 

were performed with an Al-4.2Cu alloy with an initial average precipitate radius of 3 µm.  

Baty et al.[59] considered dissolution of θ in an Al-4Cu alloy, with an average initial 

precipitate radius of 0.3 µm.  The model was able to capture the dissolution kinetics at 

both of these precipitate sizes.  The spherical model performed very well when compared 

with Hewitt and Butler’s [18] experiments on dissolution of θ′ in an Al-3Cu alloy.  The 

two dimensional model was also compared with Hewitt and Butler’s experimental data 

and predicted a much longer dissolution time.  This result enforces that the shape of the 

dissolving precipitate must be taken into consideration to obtain accurate description of 

the dissolution kinetics.  The model was also compared with Tundal and Ryum’s [13] 

experiments on dissolution of spherical silicon particles in an Al-Si alloy.  The average 

initial radius reported by Tundal and Ryum was used to run the simulations for three 

different temperatures, using the spherical model.  In all three cases, the spherical model 

under-predicted the dissolution time.  Tundal and Ryum observed a distribution of 

precipitates dissolving in the matrix.  The smaller particles will dissolve first, so at large 

times the experimentally determined average radius will be dominated by the largest 

particles.  Therefore, a distribution of particles should be incorporated into the model in 

order to obtain a more accurate description of the system. 
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CHAPTER FOUR 

APPLICATIONS FOR TERNARY ALLOYS 
 
 

4.1 Introduction 
 

 

 Most industrially relevant alloys contain more than two components; therefore it 

is important to consider dissolution in multi-component alloys.  Because of the 

complexities associated with multi-component alloys, there are no experimental results 

available.  This chapter will focus on data from the Al-Mg-Si system where data are 

available for the diffusivity values.  First the governing equations will be discussed and 

applied to the dissolution problem using the one-dimensional spherical model.  The 

effects of particle spacing and size distributions on the dissolution of Mg2Si will then be 

investigated.  

 The hyperbolic relationship between interfacial concentrations in this case may be 

expressed by: 

 

( ) ( )2 1
, , ( )Mg S Si SC C K T=     (4.1) 
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where the subscript S refers to interfacial values, Mg and Si refer to magnesium and 

silicon, respectively, and ( )K T  is the solubility product constant.  The exponents on the 

interfacial composition are taken from the precipitate stoichiometry.  For simplicity, 

consider dissolution of Mg2Si in a one-dimensional spherical domain.  The interfacial 

flux relationships, neglecting cross-diffusion terms are: 

 

( ), , , ,
f f

Mg P Mg S Mg P Mg M
x x

ds c cC C D D
dt r r− +

∂ ∂
− = −

∂ ∂
  (4.2) 

and 

( ), , , ,
f f

Si P Si S Si P Si M
x x

ds c cC C D D
dt r r− +

∂ ∂
− = −

∂ ∂
   (4.3) 

 

where ,Mg MD , ,Mg PD , ,Si MD , and  ,Si PD  are the diffusivities of Mg in the matrix, Mg in the 

precipitate, Si in the matrix and Si in the precipitate, respectively.  The composition flux 

may be written as: 

 

, ,

f

Si P Si S

x

C Cc
r r−

−∂
=

∂ ∆
     (4.4) 

and 

, , ( )

f

Si S Si M f

x

C C x rc
r r+

− + ∆∂
=

∂ ∆
.    (4.5) 
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Figure 4.1 Schematic of moving interface point located at xf on an equally spaced 
stationary grid.  The large block arrows represent the directions for gradients at the 
interface. 

  
 
 

The composition at fx x+ ∆ is interpolated from neighboring grid nodes, see Figure 4.1.  

The boundary conditions at the interface have been specified in equations (4.1) through 

(4.3).  The unknowns in these equations are the interface compositions, the compositions 

at the grid nodes at the current time step, and the interface velocity, ds
dt

.  The 

compositions at the grid nodes are found using the diffusion equation, which in the 

example we are considering here may be expressed as: 

 

2 2

, ,2 2

2 2andMg Mg Mg Mg Mg Mg
Mg M Mg P

C C C C C C
D D

t r r r t x r r
   ∂ ∂ ∂ ∂ ∂ ∂

= + = +      ∂ ∂ ∂ ∂ ∂ ∂   
 (4.6) 

xf fx r+ ∆

r∆  

r Particle Matrix 

xf - xf + 
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for magnesium in the matrix and the precipitate phases, respectively, and similarly for 

silicon: 

 

2 2

, ,2 2

2 2andSi Si Si Si Si Si
Si M Si P

C C C C C CD D
t x r r t x r r

   ∂ ∂ ∂ ∂ ∂ ∂
= + = +   ∂ ∂ ∂ ∂ ∂ ∂   

.  (4.7) 

 

There are zero-flux conditions at the outer boundaries of the system, at r = 0 and r = L.  

The interface compositions are determined iteratively by guessing the composition of 

Mg, calculating the composition of Si using the solubility product constant, and iterating 

until the interface velocity determined by the interfacial-flux balances given in equations 

(4.2) and (4.3) are identical to each other.   

 Figure 4.2 shows composition profiles for magnesium and silicon for a spherical 

precipitate.  The simulation is carried out at a temperature of 853 K.  The interface 

composition histories for Mg and Si are shown in Figure 4.3.  The diffusivity in 

aluminum at 853 K of magnesium is 1.249 µm2/sec, which is approximately 25% higher 

than the diffusivity of silicon at this temperature (0.948 µm2/sec)[21].  The two species 

are coupled at the interface, and, as time increases, the interface composition of silicon is 

increasing while the interface composition of magnesium is decreasing.  The presence of 

magnesium speeds up the diffusion of silicon, which causes the interface composition of 

silicon to rise while the opposite is true – the presence of silicon slows down the 

diffusion of magnesium and depresses the interface composition. 
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Figure 4.2 Composition profiles of magnesium (dashed line) and silicon (solid line) in 
atomic percent as a function of distance from the center of a spherical precipitate. The 
initial radius is 1 µm, dissolving in a sphere of radius 8 µm.  CMg,P = 65%, CSi,P = 35%, 
DSi,M  = 1.249 µm2/s,  DMg,M  = 0.324 µm2/s, K = 98 at%.   

 

co
m

po
si

tio
n 

(a
t%

) 

distance from center (µm) 

         Magnesium 
 
          Silicon 



 

 100  

  

Figure 4.3 Interface composition as a function of time for magnesium (blue line) and 
silicon (red line).  The initial radius is 1 µm, dissolving in a sphere of radius 8 µm.    
CMg,P = 65%, CSi,P = 35%, DSi,M  = 0.948 µm2/s,  DMg,M  = 1.249 µm2/s, K = 98 at%.   
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4.2 Inter-particle Spacing 
  

 The previous discussions in Chapter 3 and Section 4.1 have all considered a 

uniformly spaced particle dissolving in a matrix.  This is an idealization of the actual 

geometry of the system.  In this section the effects of initial particle spatial-distribution 

on the dissolution of Mg2Si in an aluminum matrix will be investigated.  The initial size 

of the precipitate will remain constant for all three cases, as will the area fraction of 

precipitate in the matrix.  Three cases will be considered, as shown in Figure 4.4.  The 

shaded region is the actual computational domain.  Case 1 represents uniformly spaced 

precipitates, centered in the solution domain.  In Case 2 the precipitate is located one 

precipitate-diameter from the left-hand side of the vertical axis, but still centered 

vertically within the cell.  This resembles the conditions that give rise to clustering of 

precipitates.  Further clustering has occurred in the third case.  The particle is located one 

precipitate-diameter from the left side of the vertical axis and one precipitate-diameter up 

from the bottom of the horizontal axis.   
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Figure 4.4 Schematic of the particle spacing used in the following simulations:  (a) Case 
1, particle is centered in the matrix; (b) Case 2, particle center is one diameter from the 
wall in the x-direction, and centered in the y-direction; and (c) Case 3, particle is located 
one diameter from the wall in the x- and y-directions.  The shaded region shows the 
actual computational domain.   
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 Figure 4.5 shows the radius as a function of time for the three different cases of 

inter-particle spacing.  The radius is determined by taking the average radii between the 

initial precipitate center and interface point locations.  The precipitates of Cases 2 and 3 

do not dissolve symmetrically, so their average radii do not vary smoothly with time as 

for Case 1. As expected, the dissolution time of Case 1 is the fastest, followed by Case 2, 

while Case 3 is the slowest.  These results show that knowledge of the inter-particle 

spacing is necessary for accurate prediction of dissolution time.  Figure 4.6 shows the 

interface location profiles for all three cases at one second intervals from zero to ten 

seconds.  The asymmetric interface motion experienced under Cases 2 and 3 is obvious 

in Figure 4.6.  The concentration contours of magnesium and silicon dissolving for each 

of these cases are shown in Figures 4.7 through 4.12.  The composition of magnesium 

inside the precipitate is 65 at% and the composition of silicon inside the precipitate is 35 

at%.  The initial precipitate radius is 3 µm for all three cases and the solution domain is 

30 µm by 30 µm, which results in a constant area fraction of 0.0314.  The simulation is 

carried out isothermally at 853 K.  The diffusivity of magnesium in aluminum is 1.249 

µm2/sec and the diffusivity of silicon in aluminum is 0.948 µm2/sec. 

 



 

 104  

 

 

 

Figure 4.5 Average radius location as a function of time for the three different cases 
Case 1 (solid line), Case 2 (dotted line), Case 3 (dashed line).  Case 1 corresponds to 
equal spacing of particles in a matrix, Case 2 corresponds to two mirrored particles in a 
matrix, and Case 3 corresponds to four particles mirrored in a matrix.  Note that the 
average radius is calculated by taking an average of the distance between each interface 
point and the initial radius.  Because the precipitates in Cases 2 and 3 do not dissolve 
symmetrically, their average radius profiles are not smooth. 
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        (a)                (b) 
 

 
   
        (c) 
 

Figure 4.6 Interface location profiles at one second intervals from 0 to 10 seconds for 
particles dissolving under (a) Case 1, (b) Case 2, and (c) Case 3 conditions.  The particle 
in (a) is dissolving symmetrically, while the particles in (b) and (c) are dissolving 
asymmetrically. 
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 Figures 4.7 and 4.8 show the concentration contours at 20, 40, 60, and 80 seconds 

for magnesium and silicon, respectively, for uniformly spaced particles dissolving in an 

aluminum matrix.  The particle is dissolving symmetrically in the matrix, which can be 

observed by the symmetric concentration contours surrounding the precipitate.  The 

precipitate is indicated by the innermost contour.  As time increases the solutal elements 

spread out across the graphs.  The magnesium (Figure 4.7) has diffused away from the 

particle/matrix interface faster than the silicon (Figure 4.8) for all cases, because the 

diffusivity of magnesium in aluminum is 25% higher than the diffusivity of silicon in 

aluminum.   
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   (a)        (b) 

           

   (c)      (d) 
 

Figure 4.7  Composition contours for magnesium at (a) 20 seconds, (b) 40 seconds (c) 60 
seconds and (d) 80 seconds.  The precipitate is centered in the solution domain.  The 
particle/matrix interface is depicted by the innermost concentration contour. 
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   (a)        (b) 

      

   (c)       (d) 
 

Figure 4.8 Composition contours of silicon at (a) 20 seconds, (b) 40 seconds, (c) 60 
seconds and (d) 80 seconds.  The precipitate is centered in the solution domain.  The 
particle/matrix interface is depicted by the innermost concentration contour. 
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 Figures 4.9 and 4.10 show the concentration contours at 20, 40, 60, and 80 

seconds for magnesium and silicon, respectively, for the precipitate dissolving under 

Case 2 conditions.  Again, the precipitate is shown by the innermost concentration 

contour.  The particle is centered vertically (at 2.5 precipitate-diameters) and located one 

precipitate-diameter from the left-hand vertical axis.  The influence of the symmetry 

condition at the boundaries is evident from the increase in solute concentration on the left 

side of the graphs.  The solutal elements spread out towards the top and bottom of the 

computational domain into the matrix.  The concentration gradients are steeper towards 

the larger inter-particle spacing, so the precipitate dissolves asymmetrically (recall that 

the interface velocity is a function of the concentration gradient at the interface).  The 

magnesium (Figure 4.9) has diffused away from the particle/matrix interface faster than 

the silicon (Figure 4.10) for all cases, because the diffusivity of magnesium in aluminum 

is 25% higher than the diffusivity of silicon in aluminum.   
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          (a)     (b) 
 

   
                     (c)     (d) 
 

Figure 4.9 Magnesium concentration contours at (a) 20 seconds, (b) 40 seconds, (c) 60 
seconds, and (d) 80 seconds.  The influence of the symmetry conditions at the boundaries 
is evident as solute builds up on the left-hand side of the solution domain.  The 
precipitate/matrix interface is depicted by the innermost concentration contour. 
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       (a)      (b) 

     
     (c)      (d) 
 

Figure 4.10 Silicon concentration contours at (a) 20 seconds, (b) 40 seconds, (c) 60 
seconds, and (d) 80 seconds.  As time increases, the silicon spreads out into the matrix.  
The influence of the symmetry conditions at the boundaries is evident as solute builds up 
on the left-hand side of the solution domain.  The particle/matrix interface is depicted by 
the innermost concentration contour. 
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 Figures 4.11 and 4.12 show the concentration contours at 20, 40, 60, and 80 

seconds for magnesium and silicon, respectively, for a precipitate dissolving under Case 

3 conditions.  The precipitate is located one precipitate-diameter from the left vertical 

axis and one precipitate-diameter from the lower horizontal axis.  The influence of the 

symmetry conditions is evident from the increase in solute concentration in the lower left 

corner of the graphs.  The solutal elements spread out diagonally across the 

computational domain into the matrix.  Again, recall that the interface velocity is a 

function of the concentration gradients at the interface.  The concentration gradients 

facing the lower left corner of the solution domain are smaller than those facing the upper 

right corner, so the particle dissolves asymmetrically.  The magnesium (Figure 4.11) has 

diffused away from the particle/matrix interface faster than the silicon (Figure 4.12) for 

all cases, because the diffusivity of magnesium in aluminum is 25% higher than the 

diffusivity of silicon in aluminum.   
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        (a)         (b) 

 
        (c)      (d) 
 

Figure 4.11 Magnesium concentration contours for Case 3 at (a) 20 seconds, (b) 40 
seconds, (c) 60 seconds, and (d) 80 seconds.  The influence of the symmetry conditions at 
the boundaries is evident as solute builds up in the lower left corner of the solution 
domain.  The particle/matrix interface is depicted by the innermost concentration 
contour. 
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         (a)          (b) 

 
          (c)         (d) 

Figure 4.12 Silicon concentration contours for Case 3 at (a) 20 seconds, (b) 40 seconds, 
(c) 60 seconds, and (d) 80 seconds.  The influence of the symmetry conditions at the 
boundaries is evident as solute builds up in the lower left corner of the solution domain.  
The particle/matrix interface is depicted by the innermost concentration contour. 
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4.3 Multiple Particle Interactions 
 
 

 Aluminum alloys typically contain a range of precipitate sizes that are not 

symmetrically located in the matrix.  In this section, a distribution of three particles with 

three different sizes is considered.  Three Mg2Si particles of radius3.0µm , 2.5µm , and 

1.5µm were placed randomly in a matrix  30µm x 30µm in size.  The composition 

profiles are shown in Figures 4.13 and 4.14 for magnesium and silicon, respectively.  The 

smallest particle is on the left side of the graphs and the largest particle is located in the 

upper right corner.  The composition contours in Figures 4.13 and 4.14 are shown at 0, 

10, 50 and 100 seconds.  The precipitates are indicated by the darkest red color in the 

graphs, and the compositions of magnesium and silicon within the precipitates are 65 at% 

and 35 at%, respectively.  At 10 seconds all three precipitates remain in the matrix.  

Solute builds up between each precipitate and the nearest solution-domain boundary due 

to the no-flux condition imposed there.  The solute from the two precipitates on the right 

side of the graphs has begun to overlap.  At 50 seconds the smallest particle (located on 

the left side) has disappeared, and the solute from that particle has spread out on the left 

side of the solution domain.  The two remaining particles are no longer circular in shape.  

The largest particle remains at 100 seconds, and the influence of the medium-size particle 

is still clear in the composition contours.  The solute from the smallest particle has 

diffused throughout the region on the left of the graphs.   

 It is clear from these figures that the presence of other precipitates in the matrix 

influences the dissolution of an individual precipitate.  The precipitates dissolve in an 

asymmetric manner when their solutal profiles overlap.  The dissolution of precipitates 
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close to each other is slower because solute builds up between them, stalling diffusion of 

solute into the matrix.  As expected, the smaller particles dissolve faster than larger 

particles; however their presence at the initial time has influenced the dissolution of the 

largest particle.   
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           (a)         (b) 

 

   (c)          (d) 

Figure 4.13 Magnesium concentration contours at (a) 0 seconds, (b) 10 seconds, (c) 50 
seconds and (d) 100 seconds.  At 10 seconds the concentration profiles from the two 
particles on the right hand side have begun to overlap.  At 50 seconds the smallest 
particle has completely dissolved.  At 100 seconds, the medium-sized particle has 
dissolved but the influence on the concentration contours is still observed. 
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       (a)     (b) 

 

           (c)        (d) 

Figure 4.14 Silicon concentration contours at (a) 0 seconds, (b) 10 seconds, (c) 50 
seconds, and (d) 100 seconds. At 10 seconds the concentration profiles from the two 
particles on the right hand side have begun to overlap.  At 50 seconds the smallest 
particle has completely dissolved.  At 100 seconds, the medium-sized particle has 
dissolved but the influence on the concentration contours is still observed. 

Silicon (at%
) 

Silicon (at%
)



 

 119  

CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 
 
 

5.1 Conclusions 
 
 

 A general particle-dissolution model has been developed for multi-component 

alloys using front-tracking.  The model may be used in one and two dimensions, with 

a variety of precipitate sizes and shapes.  The immersed-boundary front-tracking 

method of Trygvasson [56] , Juric [45, 51], and Shin [44, 52, 53] has been combined 

with the ghost-fluid method of Gibou et al. [57], removing the need for solutal mass 

source terms at the particle/matrix interface.  The front-tracking methods were both 

compared with an exact solution for a planar particle dissolving in an infinite matrix.  

Both methods performed well with respect to interface location; however, the 

immersed-boundary method deviated more from the exact solution than the sharp-

interface method (cf. Figure 3.5).  The sharp-interface method was also shown to 

conserve mass better than the immersed-boundary method (cf. Figure 3.6).  

Furthermore, when composition profiles obtained using the two front-tracking 

methods were compared with an exact solution, the sharp-interface method out-

performed immersed-boundary method.  The composition error norms for the 

immersed-boundary method were all higher than those for the sharp-interface method 

(cf. Figures 3.8 – 3.10).  An additional advantage of the sharp-interface method is that 
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it is more efficient and faster than the immersed-boundary method because the source 

terms are no longer necessary.   

 The sharp-interface front-tracking model was compared with results for 

precipitate dissolution in binary alloys.  Two sets of experimental data were found for 

dissolution of θ in the aluminum-copper alloy system.  The two-dimensional model 

performed well when compared with both sets of data.  Reiso et al.’s [60] 

experiments were performed with an Al-4.2Cu alloy with an initial average 

precipitate radius of 3 µm (cf. Figure 3.16).  Baty et al. [59] considered dissolution of 

θ in an Al-4Cu alloy, with an average initial precipitate radius of 0.3 µm (cf. Figure 

3.17).  The model was able to capture the dissolution kinetics at both of these 

precipitate sizes.  The spherical model performed very well when compared with 

Hewitt and Butler’s [18] experimental data on dissolution of θ′ in an Al-3Cu alloy (cf. 

Figure 3.18).  The two-dimensional model was also compared with Hewitt and 

Butler’s [18] experimental data and predicted a much longer dissolution time.  This 

result suggests that the shape of the dissolving precipitate must be taken into 

consideration to obtain a meaningful description of the dissolution kinetics.  The 

model was also compared with Tundal and Ryum’s [13] data for dissolution of 

spherical silicon particles in an Al-Si alloy.  The average initial radius reported by 

Tundal and Ryum was used to run the simulations for three different temperatures, 

using the spherical model.  In all three cases, the spherical model under-predicted the 

dissolution time (cf. Figure 3.19).  Tundal and Ryum observed a distribution of 

precipitates dissolving in the matrix.  The smaller particles dissolve first, so at longer 

times the experimentally determined average radius will be dominated by the largest 
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particles (cf. Figure 3.20).  However, the small particles still influence the dissolution 

of the larger particles after they have disappeared, due to soft-impingement of solute.  

If one is interested in capturing the overall kinetics of dissolution, a distribution of 

precipitates must be included in the model. 

 Dissolution of Mg2Si in an Al-Mg-Si alloy was also investigated.  The 

compositions and fluxes of the solutal elements, Mg and Si, are coupled at the 

moving interface.  Because the diffusion coefficient of magnesium in aluminum is 

25% higher than the diffusion coefficient of silicon in aluminum at 853 K, 

magnesium diffuses away from the precipitate/matrix interface faster than silicon.  

Thus, the rate-limiting step controlling the dissolution for multi-component alloys is 

not the diffusion into the matrix, but the coupling of the solutal elements at the 

precipitate/matrix boundary.   

 Particle size, shape, and distribution (both spatial and size distributions) affect 

the dissolution time.  Clustering of particles slows the dissolution time and causes 

asymmetrical interface motion.  This phenomenon was shown for the ternary alloy in 

Chapter Four, (cf. Figures 4.5 through 4.11).  The precipitate dissolution time was 

longer for precipitates that were closer to the no-flux boundaries.  Additionally, the 

influence of a distribution of sizes was examined for ternary alloys.  Smaller particles 

dissolve faster than larger particles but still affect the diffusion of solute away from 

the larger particles, which in turn may slow down the dissolution of the larger 

particles (cf. Figures 4.12 and 4.13).  The results for clustering and size-distributions 

of particles are not unique to ternary alloys.  Precipitates in binary and higher-order 

alloys will experience the same effects on dissolution time. 
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5.2 Contributions 
 
 
 This work is the first in the available literature to detail a general dissolution 

model for multi-component alloys in two dimensions.  The main contributions of this 

research on the dissolution of secondary phases in aluminum alloys are listed below. 

1. A general dissolution model has been developed for multi-component alloys that 

is applicable in one and two dimensions.  In the past, other researchers have 

developed two-dimensional simulations for binary alloys [39]  and one-

dimensional solutions have been developed for multi-component alloys [21, 27, 

29, 30, 32-34, 39, 42].  This research represents the first effort to model the 

dissolution of precipitates in a multi-component aluminum-alloy in two 

dimensions. 

2. A sharp-interface method has been developed, combining front-tracking with the 

ghost-fluid method.  This new method was shown to be more accurate than the 

immersed-boundary front-tracking method when compared with an exact solution 

for dissolution.  The sharp-interface front-tracking method has also been validated 

based on experimental data found in the literature.   

3. The effect of particle spacing on dissolution in two-dimensions has been 

investigated.  To the author’s knowledge, inter-precipitate spacing has not 

previously been quantified. 

4. The effect of multiple particle interactions in two dimensions has been 

investigated.  Previously, Vermolen et al. [39] showed a plot of concentration 

contours of two different size particles dissolving in a binary aluminum alloy and 
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suggested that more work be done in this area.  This is the first time multiple 

particle interactions have been investigated in a multi-component aluminum alloy. 

 
 

5.3 Recommendations for Future Work 
 
 
 This work is the first in the available literature to consider the effects of inter-

particle spacing and multiple-particle interactions in multi-component alloys.  Based on 

the experience gained in this research, the following recommendations for future work 

are suggested.   

 The current calculations are for isothermal holds, useful information will be 

gained by including a representative heat-treatment schedule from the aluminum 

industry.  The diffusion coefficients and solubility product constant would vary 

throughout time because they follow an Arrhenius relationship with temperature.  The 

interface compositions also depend on temperature, according to the specific alloys phase 

diagram.  Phase-diagram-calculation software, such as PANDAT and Thermocalc, 

should be combined with the current model in order to determine interface compositions. 

 More complex geometries should be investigated.  Precipitates form in a variety 

of shapes such as rods, cubes, rectangles, and ellipsoids to name a few.  The dissolution 

of precipitates of varying shapes should be investigated, perhaps necessitating three-

dimensional simulations.  Furthermore, a more realistic size-distribution of particles 

should also be investigated.  This could be accomplished by using a micrograph as the 

initial condition, which would incorporate both a size and shape distribution of particles 

dissolving in the matrix. 
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 Currently, only one type of second-phase particle is considered.  Actual alloys 

have several different secondary phases present in the matrix.  For example, an Al-Mg-Si 

alloy may have Mg2Si and Si particles embedded in the matrix.  The presence of the 

silicon particles will undoubtedly influence the dissolution of the Mg2Si particles, and 

vice versa. 

 Combining the dissolution model with models for particle growth will permit a 

more accurate description of the microstructural evolution throughout heat-treatments.  

Presently, the homogenization step may be modeled–using the as-cast microstructure as 

the starting condition for precipitate size and distribution.  Dissolution during the 

precipitation-hardening heat-treatment step may also be modeled; however the initial 

condition is more ambiguous.  A more complete picture of precipitate behavior would be 

captured if both growth and dissolution of the various second-phase particles were 

modeled throughout all of the heat-treatments. 

   Finally, more experimental data are needed to validate the model.  There is a 

dearth of information regarding precipitate dissolution in the open literature.  

Experiments should be designed to capture the dissolution behavior in multi-component 

alloys, in particular.   
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APPENDIX A 

FINITE-DIFFERENCE EQUATIONS 
 
 

 The finite-difference equations that were used to calculate composition are given 

in this appendix for the two-dimensional models.  First, the finite-difference equations 

will be expressed for the immersed-boundary method.  Then the finite-difference 

equations for the sharp-interface method will be described. 

 The diffusion equation was solved on a regular, fixed grid using a conservative, 

second-order, centered-difference scheme for the spatial variables and an explicit, first-

order, forward Euler time integration method.  Consider the computational model for 

node l,m shown in Figure A.1.  The immersed boundary front-tracking method included a 

source term in the finite-difference equations.  In this case, the finite-difference equation 

for component i at node l,m is given by: 

 

{ } { }1
, , , 1, , 1, , 1 , , 12 22 2ij ijt t t t t t t t

l m l m l m l m l m l m l m l m l m

D t D t
C C t Q C C C C C C

x y
+

− + − +

∆ ∆
= + ∆ ⋅ + − + + − +

∆ ∆
   (A.1) 

 

where Q represents the solutal mass source term of component i at node ( l, m ).  For 

simplicity, the diffusivity, Dij , has been taken as constant throughout the solution 

domain.  Note that the diffusivity at each node may be different than the nodes 

surrounding it, so care must be taken to ensure that the correct diffusivity is used.   
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Figure A. 1 Computational model for explicit finite differencing surrounding node l,m. 

 
 
 

The explicit method is subject to the stability condition that 
2min( , )4

max( )
x yt ∆ ∆

∆ ≤
D

. 

 

 A second method was used to calculate the composition – the sharp-interface 

method.  The source terms are no longer included in the sharp-interface method, and 

ghost points are used for grid points that are near the moving interface.  Interpolation of 

“ghost” compositions is described in Chapter Two.  Again, consider the schematic in 

Figure A.1.  There are two possibilities for the positions between each node. 

• If nodes 0 and 1 are on the same side of the interface, 1, ( 1, )t
l mC C l m+ = + . 

• If nodes 0 and 1 do not lie on the same side of the interface, interpolated1,
t
l mC C+ = . 

0 13

2

4

l,m 
l+1,m 

l,m-1 

l,m+1 

l-1,m 
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• If nodes 0 and 3 are on the same side of the interface, 1, ( 1, )t
l mC C l m− = − . 

• If nodes 0 and 3 do not lie on the same side of the interface, interpolated1,
t
l mC C− = . 

• If nodes 0 and 2 are on the same side of the interface, , 1 ( , 1)t
l mC C l m+ = + . 

• If nodes 0 and 2 do not lie on the same side of the interface, interpolated, 1
t
l mC C+ = . 

• If nodes 0 and 4 are on the same side of the interface,  , 1 ( , 1)t
l mC C l m− = − . 

• If nodes 0 and 4 do not lie on the same side of the interface, interpolated, 1
t
l mC C− = . 

 

The finite-difference equation for the sharp-interface method is then given by: 

 

{ } { }1
, , 1, , 1, , 1 , , 12 22 2ij ijt t t t t t t t

l m l m l m l m l m l m l m l m

D t D t
C C C C C C C C

x y
+

− + − +

∆ ∆
= + − + + − +

∆ ∆
. (A.2) 

 

Note that the only difference between Equations (A.1) and (A.2) is the absence of the 

mass-source term in Equation (A.2). 
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