Measuring User-Perceived Internet Performance

in Multiple Locations

A Thesis
Presented to
The Academic Faculty

by

John Richard Liston

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

College of Computing
Georgia Institute of Technology
July 2004

Measuring User-Perceived Internet Performance

in Multiple Locations

Approved by:

Professor Ellen Zegura
(College of Computing), Adviser

Professor Mostafa Ammar
(College of Computing)

Professor Jun Xu
(College of Computing)

Professor George Riley

(School of Electrical and Computer Engi-
neering)

Dr. Michael Rabinovich
(AT&T Labs-Research)

Date Approved: July 29, 2004

To LuAnn,

For her love, support

and sense of humor.

iii

ACKNOWLEDGEMENT'S

This work could not have been completed without the help of many people. My advisor,
Ellen Zegura, has been a constant source of motivation. Her ability to cut to the core
of complex issues has never ceased to surprise and inspire me. Matt Sanders and Russ
Clark have provided much appreciated friendship and stimulating discussion. Matt also
participated in addressing the practical aspects of significant portions of the studies in this
work. Thomas Hildebrandt and Bill Tice contributed to the design and implementation
of very intricate, cutting edge pieces of software. I would also like to thank the faculty
and students of Georgia Tech’s Networking and Telecommunications Group — too many
to name here individually — who have provided many thought-provoking discussions about
many areas of networking research. Finally, I wish to thank my wife, LuAnn, for being
patient, understanding and inspiring. While many relationships tend to be strained under

the stress of Ph.D. studies, ours has only grown stronger.

v

TABLE OF CONTENTS

DEDICATION e e iii
ACKNOWLEDGEMENTS e iv
LIST OF TABLES e e vii
LIST OF FIGURES et e e viii
SUMMARY e ix
CHAPTER I INTRODUCTION 1
CHAPTER II RELATED WORK 5
2.1 Web Performance 5

2.2 User-Perceived Internet Performance 6

2.3 DNS . e 8

2.4 Wide-Area Measurement Infrastructures 9
CHAPTER III BACKGROUND o 12
3.1 Web Session Overview 12

3.2 Domain Name System 0 13
3.2.1 Differences in DNS Performance 16

3.3 Measurement Options Lo 19

CHAPTER IV USING A PROXY TO MEASURE USER-PERCEIVED

WEB PERFORMANCE e 20
4.1 Requirements 20
4.2 Method Overview e 21
4.3 Proxy DesignIssues L 23
4.3.1 HTTP Issues et 24
4.3.2 Content-Driven Issues 25
4.3.3 Proxy/Browser Interaction Issues 29
4.4 Limitations L 30
4.5 Evaluation 31

CHAPTER V MEASURING DNS 34

5.1 Introduction 34
5.2 Method e 35
5.2.1 Measurement Locations 36
5.2.2 Domain Name Sample 37
5.2.3 Network Impact 38

53 Results 39
5.3.1 Completion and Success Rates 39
5.3.2 Mean Response Time L. 41
5.3.3 Root Server Interactions L. 48
5.3.4 gTLD Servers Interaction 50
5.3.5 Aliasesand CNAMEs 50
5.3.6 TTLs of completed queries 53

54 Conclusions 53

CHAPTER VI WISL: AN APPLICATION FOR USER-PERCEIVED PER-

FORMANCE MEASUREMENT 57
6.1 Method o8
6.2 Architecture 59
6.2.1 Design Issues 59
6.2.2 WISL Design 61

6.3 Configuration 63
6.4 Example NetModule: LandmarksModule 64
6.5 Privacy e 67
6.6 Conclusion L 67
CHAPTER VIICONTRIBUTIONS 69

7.0.1 Using a Proxy to Measure User-Perceived Web Performance 69
7.0.2 Diversity in DNS Performance Measures 69

7.0.3 WISL: An Application for User-Perceived Performance Measurement 70

APPENDIX A — SOUNDPALETTE.DTD 71

REFERENCES e 73

vi

N O Ot e W N

LIST OF TABLES

Log file line types. e 27
Results of testing. 32
Starting points for crawler collecting domain names. 37
Top level domains in the domain name sample. 38
CNAME Redirections. e 52
Number of different CNAMESs per alias. 52
Mean number of names in each TTL bin. 54

vii

© 0 N o Ot s W N

—_
[an)}

11
12
13
14
15
16
17
18
19
20

21
22

LIST OF FIGURES

Normal loading of a web object. 13
Structure of the DNS namespace. 14
Locations of root and gTLD servers. 17
Example of resolving a domain name. 17
Sequence of events in our measurement architecture. 21
Grouping objects into web pages during post-processing 23
Identifying requests generated by JavaScript 26
Percentages of completed and successful lookups. 40
Mean response times for completed lookups at each site. 41

Minimum response times vs Mean response times for completed lookups at

each site. 42
Example resolution tree and its critical path. 43
Total retries along critical path vs MRTc at each site. 45
Mean root server response time vs MRTc at each site. 46
Mean gTLD server response time vs MRTc at each site. 47
Percentages of queries to root, gTLD and other servers. 48

Percentages of time querying root, gTLD and other servers along critical path. 49

Mean response time for last server vs MRTc at each site. 50
Root servers favored by each site. 51
gTLD servers favored by each site. 51
Ranges of number of TTLs in each bin across all sites, as a percentage of the

number of TTLs inthe bin. 55
Simplified WISL architecture. 61
Multiple instances of WISL performing landmark measurements. 66

viii

SUMMARY

Measurement studies of Internet performance are critical for validating or refuting widely
held beliefs about Web behavior, and for shedding light on unknown behaviors. Results
from these studies can guide Internet architects in making decisions that affect Internet
Service Providers (ISPs), content providers and end-users. Examples of decisions that
can benefit from measurement information include provisioning network capacity, placing
Domain Name System (DNS) and Web servers, and tuning parameters of transport layer
protocols.

Internet protocols and services may exhibit different performance characteristics when
observed from different locations in the Internet topology; to date, however, there has been
little work investigating the differences in these characteristics from multiple vantage points.
Typically, performance studies present results of measurements taken in only one or two
locations. Some of the reasons for the lack of work in this area are the following. First,
performance measurement was not a high priority of Internet design and was not built into
the network architecture. Second, it is difficult to obtain the necessary level of privilege at
many different locations in the Internet topology to perform measurement studies. Finally,
high expectations for real-time Internet performance is a relatively recent phenomenon.

In this thesis we develop several methods for gathering Internet performance data from
multiple locations throughout the world, and to analyze data gathered. Our focus is on the
protocols and services that support the World Wide Web.

In the first method we utilize a modified Web proxy. Our proxy captures and logs fine-
grained performance information on a per-user basis. Our second method is to create and
deploy a measurement package for examining DNS performance. We modified the BIND
DNS server and packaged it with a script to drive the data collection. Our final method is to

create and distribute an application to be run at user sites worldwide. One of the primary

X

tasks of the application is to provide performance data from each instance of the application
executing at locations throughout Internet topology. We can use the information provided

by this application to examine user-perceived Internet performance throughout the globe.

CHAPTER 1

INTRODUCTION

Measurement studies of Internet performance are critical for validating or refuting widely
held beliefs about Web behavior, and for shedding light on unknown behaviors. Results
from these studies can guide Internet architects in making decisions that affect Internet
Service Providers (ISPs), content providers and end-users. Examples of decisions that
can benefit from measurement information include provisioning network capacity, placing
Domain Name System (DNS) and Web servers, and tuning parameters of transport layer
protocols.

Internet protocols and services may exhibit different performance characteristics when
observed from different locations in the Internet topology; to date, however, there has been
little work investigating the differences in these characteristics from multiple vantage points.
Typically, performance studies present results of measurements taken in only one or two
locations. There are several reasons for the lack of work in this area.

The first reason is that performance measurement was not a high priority of Internet
design, so it was not built into the network architecture. The Internet is comprised of many
interconnected machines that implement a common set of standardized protocols. There
are many decisions that must be made when designing a network architecture. The funda-
mental goals of a network will determine how these choices are made. David Clark, one of
the principal Internet architects, writes in a SIGCOMM 1988 paper that the top fundamen-
tal goal of the Internet was “to develop an effective technique for multiplexed utilization of
existing interconnnected networks” [15]. In this paper network performance measurement
is never explicitly mentioned. Also, the second level goals for which measurement must play
some part — resource management, cost effectiveness and accountability — are low in the

list of priorities. This is not to imply that network measurement was not a consideration.

In fact, the first Interface Message Processor, or IMP, was installed at the Network Mea-
surement Center at UCLA [27]. It does mean, however, that if network measurement is to
be performed then new techniques must be developed.

Secondly, it is difficult to obtain the necessary level of privilege at many different lo-
cations in the Internet topology to perform widespread measurement studies. There are
many tools that allow network operators and managers to locally examine and manipulate
network traffic. These tools — traceroute, tcpdump, dig, ping and others — as well as
Web server logs are often used in measurement studies. However, they are rarely used in
studies that claim to characterize user-perceived performance. Furthermore, studies that
have been successful in collecting data from multiple locations do not generally claim to
characterize user-perceived performance. This is because such data is usually obtained from
endpoints in well-connected locations — research institutions rather than commercial ISPs.

A third reason is that high expectations for real-time Internet performance is a relatively
recent phenomenon. The World Wide Web, or simply the Web, came into existence in 1993
with the appearance of the Mosaic Web browser. Prior to 1993, Internet applications
were relatively forgiving of periods of congestion and poor performance. Examples of these
applications are email, IRC (Internet Relay Chat) and gopher. Since about 1996 the Internet
has become so ingrained in world culture that for the forseeable future any service intended
to reach the widest possible audience must have an Internet presence. This has come to
include services like real-time stock quotes, instant news, audio/video streaming and online
merchandising. These services demand both reliable and responsive real-time performance
— demands that were not original requirements of the Internet design. The success of these
services is highly dependent on sufficient user-perceived network performance.

This thesis describes different methods to examine the performance of Internet protocols
and services both in isolation and in tandem. We are primarily concerned with evaluating
the effectiveness of different methods for gathering data from multiple locations in the
Internet topology. We will also provide analyses of the data collected using the methods
and tools we develop.

We study these interactions using the following techniques:

e Using a single proxy at the user.

We modified a proxy to capture Web performance information at the user. When the
proxy is installed on a user’s machine it logs each object being requested, the type of
the request (e.g., for an image, script or html page) and additional information that
aids performance analysis. We describe our method of grouping objects into pages,
some problems that arise during this process and our solutions to these problems. We

conclude with an evaluation of our method. This method is discussed in Chapter 4.

e Building and distributing a measurement package.

Previous work illustrates that resolution of domain names can be a significant com-
ponent of downloading Web pages. The actual process that occurs while performing
the resolution is, by design, “hidden” from the user. We therefore built a tool that
exposes this process and logs the performance information. Since we had some evi-
dence that DNS performance at our site was not representative of all user sites, we
packaged this tool with a script to drive the data collection and distributed the tool
to users throughout the world. We then collected the data and performed a detailed

analysis. The results of this study are presented in Chapter 5.

¢ Building and distributing an extensible application that performs measure-

ment.

The major obstacle to collecting data from users is the lack of incentive to participate;
in general, individuals are not inclined to participate in a network performance study.
In our next method we overcome this obstacle by tightly coupling the gathering of
performance data with an application that users would be willing to run. In Chapter 6
we describe an application we developed and have made available to users worldwide.
The application, called “What the Internet Sounds Like”, or WISL, measures different
characteristics of the network from the point at which it is running. During the
process, the application plays sounds that represent the current state of the network.
The sounds that are played can range from a literal notification of network state to an

aesthetically pleasing aural representation of network conditions. During collection the

data is collected and analyzed, providing a window into Internet performance that was
previously not available. WISL is highly extensible; different network measurement
modules can be incorporated into WISL, making it a suitable platform for network
researchers to examine a variety of network characteristics from points throughout

the network topology. WISL is described in detail in Chapter 6.

We discuss previous related work in network measurement in Chapter 2. Then in Chap-
ter 3 we provide an overview of the process of downloading a Web page and of the operation
of DNS. To provide a backdrop for some of our design choices we also discuss the pros and
cons of measurement options with respect to Web performance. In the concluding chapter

we summarize the contributions of this thesis.

CHAPTER 11

RELATED WORK

Since performance measurement is not built into Internet design, the Internet poses in-
teresting challenges for measurement. In this section we describe ongoing work in Internet
measurement, with emphasis on measuring protocols and services that support the Web. We
also discuss this work in the context of characterizing end-user measurement and worldwide

measurement.

2.1 Web Performance

There have been many studies that examine the Web performance with the goal of explain-
ing Web behavior and understanding how to best address the performance issues.

The technique used by Cunha, Bestavros and Crovella [20] is closely related to our proxy
work. They instrumented the Mosaic Web browser to record the Uniform Resource Locator
(URL), time of access and retrieval time for each object requested by the browser. This
data collection work formed the basis for important studies in network performance [19].
Our instrumented Web proxy, described in Chapter 4, essentially extends the functionality
of the browser to log similar information. The advantage of our approach is that it works
with virtually any Web browser. Additionally, our proxy logs the time required to resolve
the domain name of the Web server to which the request is sent, which can be a critical, but
often overlooked, component of the download time. While they were successful in collecting
data from many sessions and users, they were limited to a single site, whereas our data was
collected in multiple sites.

Also similar in method to our approach, the Medusa proxy developed by Koletsou and
Voelker [30] captures user traces. Their goal, however, was to replay the user sessions
under various system configurations to compare the performance implications of different

configurations.

Some studies infer user-perceived Web performance by examining traffic at the server.
One early Web performance study by Balakrishnan, Seshan, Stemm and Katz [11] collected
and analyzed packet-level traces from the primary Web site for the 1996 Summer Olympic
Games. Their findings confirm the heterogeneity of Web performance at that time, and
they demonstrate that hosts that are close to each other experience essentially the same
throughput. We point out that all their findings must be considered with respect to their
point of collection. Data collected in another location may report similar findings, but
actual reported throughput and latency may differ significantly.

We mention also that Keynote [4] is a commercial system designed to provide their
clients with strong comparative data about the performance of downloading their Web
pages. They have installed an infrastructure of 1,500 measurement computers in 50 cities
worldwide. While some of our goals are similar, our aim is to be able to publish our data
for independent analysis and validation of our results. Also, in contrast, we work towards
the goal of studying real user experience, whether or not the users visit any particular set

of Web pages.

2.2 User-Perceived Internet Performance

There is some related work that, similar to ours, performs measurement on end-systems.
Such pieces of work include NETI@home [39], ANEMOS [21] and ICPLD [2].
NETI@home is very similar in spirit to WISL. Like WISL, the goal of NETI@home
is to collect network performance statistics from end-systems. Also like WISL, it accom-
plishes this by providing a software package that the user downloads and runs on the user’s
machine. The primary difference between NETI@home and WISL is in the incentives for
users to participate in the data collection. The primary incentive for NETI@home users
is altruism. The NETI@home home page asks users to download the package and run it
where it will collect data and send it for subsequent analysis to a central server at Geor-
gia Tech. By participating in the data collection process users will provide data to the
researchers. NETI@home has had excellent response from the user community. In contrast

to NETI@home WISL is intended to appeal more to the user’s interest in the applications

itself, rather than to participate in a performance study. The primary incentive for WISL
users is that the package will generate music that users would like to hear, making it an
interesting application in its own right. Another distinguishing characteristic of WISL is
that WISL is highly extensible and useful to the networking community at large. At the
network level researchers can contribute new measurement modules. In this way WISL
provides researchers with the ability to perform measurements in parts of the network that
were previously inaccessible. And at the highest level WISL allows for the incorporation of
new SoundPalettes which map network-level events to sounds. This allows for incorpora-
tion of multiple SoundPalettes in the hopes that users will find one or more that suit their
individual taste.

ANEMOS (Autonomous NEtwork MOnitoring System) is a system written in Java (for
portability) that supports real-time processing, analysis and visualization of active mea-
surements. WISL is closely related to ANEMOS in the sense that both systems use active
measurements to detect network conditions and generate events — ”rule-based alarms” in
ANEMOS. Both systems are also extensible at the measurement layer. There are two pri-
mary differences in the two systems. The first is they have different intended audiences.
ANEMOS is intended for execution by network researchers and network managers, whereas
WISL is intended for execution by “average Internet users”. The second difference lies
in the method of data collection. ANEMOS has a centralized Coordinator module, which
schedules the measurements and collects and analyzes the data. In contrast, data collection
in WISL occurs whenever end-users execute the application; data is actively pushed to a
central server for subsequent analysis.

ICPLD (Internet Connection Performance Logging Daemon) is a daemon that runs on
an end-system. It sends ICMP requests to a user-specified IP address. The goal is to provide
real-time monitoring of the existence of a network connection between the two machines. It
timestamps and logs both failed attempts and the first successful reply after failure. There

is, however, no attempt to collect and compare data from multiple locations.

2.3 DNS

Relative to other measurement efforts there have been surprisingly few DNS performance
studies. Some existing studies have focused on performance from the point of view of root
servers. Danzig et al. [22] analyzed logs from one root nameserver and three nameservers
that replicated various domains. The focus of their work is on the consistency and cor-
rectness of portions of the DNS database. Similarly, Brownlee et al. [14] analyze logs from
a single root server, reporting on the apparent problems in local name servers that send
queries to the root servers. In contrast, our work examines the process of resolving domain
names from the point of view of the user, focusing on overall response time and its impact
on user-perceived performance. We show that root server performance in fact has very little
impact on user-perceived DNS performance.

Work done by Jung, Sit, Balakrishnan and Morris [28] is closely related to ours in that it
focuses on user-perceived DNS performance. They captured traces of real user traffic from
two sites — MIT and Kaist — and analyzed the impact of caching on user performance.
In our work we illustrate that for certain measures the variance in performance can be so
high that, depending on the particular performance characteristic being observed, it may
be necessary to take measurements in many locations to be able to generalize the results.

The goal of work by Shaikh, Tewari and Agrawal [38] is to explore the impact of low
TTLs on user-perceived Web performance. They measured DNS lookup times using name-
servers in four locations: Masssachusetts, Michigan, California and New York. They found
that caching reduces median lookup times by more than two orders of magnitude.

Cohen and Kaplan [16] propose the prefetching of DNS resolutions as one of three
methods to reduce user-perceived latency. Their data are based on measurements of lookup
times from three locations: AT&T, Stanford and Tel-Aviv University. In another paper [17]
they propose several methods to reduce DNS latency by refreshing expired entries in the
DNS cache.

Wills and Shang [42] investigate the impact of DNS on user-perceived Web performance.
They find that only 20% of lookups are not cached at the LDNS and that only 20-30% of

those non-cached names take more than one second. Their results are based on sampling

the response time at their site for 100 popular domain names and 100 domain names drawn
randomly from NLANR Web cache logs.

Although both the King system [26] and work by Wills, Mikhailov and Shang [43]
leverage the DNS system for measurement purposes, these studies does not characterize
DNS performance. We will therefore treat their work as measurement infrastructures and

consider them in Section 2.4.

2.4 Wide-Area Measurement Infrastructures

In recent years there has been significant movement towards measurement infrastructures
that allow researchers to gather high-quality Internet performance data. Mahdavi, Paxson,
Adams and Mathis created the National Internet Measurement Infrastructure, or NIMI [36],
which was a first step towards this goal. In this work they deployed a daemon on machines
located in multiple sites — 35 sites were reported in [35] — and coordinated measurements
among them. Our work differs from theirs in that we seek to deploy measurement tools
on end-user machines and make no attempt to coordinate measurements, although our
architecture allows limited coordination of measurements.

While it is not a measurement infrastructure per se, Allman, Blanton and Eddy [10]
describe a system for sharing network measurements. This has the potential to make it
possible for researchers to use data collected by others in multiple locations to perform a
wide-area performance study.

PlanetLab is a collection of machines distributed throughout the globe. It allows an ap-
plication to be run across some or all of the machines. Many types of application are possible,
including those that perform network measurement. Scriptroute [40] is a scripting system
for performing and coordinating measurements across multiple locations. Scriptroute is
currently deployed on some set of PlanetLab sites. It is quite possible for PlanetLab nodes
to be installed in a very large number of locations in countries throughout the world. One
potential drawback that we are attempting to overcome in our work is that the nodes must
be continuously available, and as they tend to be geared towards the networking research

community, they are likely to be installed at primarily research facilities. For certain types

of measurement this may be quite sufficient. The study by Akella, Seshan and Shaikh [9]
used twenty-six PlanetLab nodes to probe for wide-area Internet bottlenecks. The high
speed access provided by PlanetLab was an important characteristic of their study. For
other measurement studies, however, the PlanetLab infrastructure may not be generally
representative of user-perceived performance.

King [26] is both a tool and a service. The tool attempts to identify the two DNS servers
that are closest to two given endpoints and causes a query to be sent from one to the other.
The service uses this tool to estimate the round trip time between the two endpoints. King
could be used as the basis for a very wide-scale study about Internet topology.

Wills, Mikhailov and Shang [43] also leverage DNS to perform measurements. They
send requests to twenty different local DNS servers (LDNSs) to infer the popularity of
data servers. This is an intriguing technique that could be exploited for very wide-scale
measurement studies.

WebPerf [7] is a tool that is intended to be installed at many sites worldwide and run
continuously. There do not appear to be any measurement studies published that are based
on Webperf so there is little public information about how the tool actually works. It is
written in perl and appears to send a URL from a central location to all locations where
the tool is currently running. It therefore appears as though it has potential to form the
basis for an interesting global Web performance study.

E2E piPES [1] is an Internet2-specific measurement system that aims to allow arbitrary
users to locate and report network problems. Examples of information that can be gathered
include loss, jitter, one-way latency, flow data and “SNMP-queryable” router data. This
information can be determined on the granularity of a single link in a path.

Surveyor [29], a project of Advanced Network & Services and the Wisconsin Advanced
Internet Laboratory, currently consists of about 70 nodes performing one-way delay and loss
monitoring. Each node is a dedicated machine that provides a higher degree of security and
control over the system load. It utilizes specialized GPS-enabled hardware to synchronize
system clocks. The system is in the process of being enhanced to provide more generality.

Enable [41] is a system for adaptive monitoring, publishing and analysis of throughput

10

and delay values. The primary goals for the system are to provide manageability, reliability,
and adaptability for high performance applications running over wide-area networks. The
main component is a network advice server that may reside on the host of any data source.
The server can be queried by clients to determine the optimal TCP buffer size for a given

path.

11

CHAPTER II1

BACKGROUND

In this thesis we focus on protocols and services that support the World Wide Web. Pri-
marily we are interested in HT'TP and DNS, both of which are required for Web browsing
sessions. This chapter explains the operation of these protocols and services relevant to our

work.

3.1 Web Session Overview

We begin with an overview of the sequence of events that occurs when a user downloads
a Web page. The process begins at the user/browser interface. The user indicates to the
browser the Uniform Resource Locator, or URL, of the page he or she wishes to load through

one of the following means':

e The user may enter either a complete or partial URL into a text field provided by the
browser. In the case of a partial URL, the browser follows a fixed set of heuristics to

construct a complete URL. The heuristics may vary among browsers.

e The user chooses a URL from a set of “bookmarks” or “favorites” — URLs previously

stored by the user for future use.

e The user clicks on a hypertext link or an “action button” in a currently displayed

Web page.

The normal actions taken next are illustrated at a high level in Figure 1. Once the
browser has obtained the desired URL it parses the URL to determine the domain name or
IP address of the server that is the target of the request. Although the server’s IP address

may be indicated directly in the URL, most commonly the URL contains the server’s domain

"Websites can cause automatic reloading of a Web page via the META tag’s http-equiv="“refresh” at-
tribute. In this case, no user action is required.

12

Client
Browser A server
1
2
User’s machine Local
DNS
Server

Figure 1: Normal loading of a web object.

name. The browser (1) sends a request via UDP to the local DNS server, which resolves
the domain name on behalf of the client. This process is discussed in detail in Section 3.2.
The DNS server (2) sends the response to the browser.

The browser then (3) sets up a TCP connection and sends an HTTP request to the Web
server to (4) retrieve the initial object, or base page, indicated by the URL.

The base page may contain tags indicating additional objects that must be loaded to
complete rendering the page. Examples of these objects are images, frames and scripts.
These objects may reside on servers other than the one where the base page was retrieved.
The above process is repeated for each object until there are no more objects to load for

the page or until the user cancels retrieval of the page.

3.2 Domain Name System

The Domain Name System (DNS) is a distributed, dynamic, hierarchical database primarily
used to resolve the human-readable domain names of remote machines to IP addresses.
This resolution, called a domain name lookup, is typically the initial step in communication

between two IP endpoints when the remote IP address is not known. Thus, DNS is a critical

13

component of the operation of many Internet applications, including Web browsers.
Excellent descriptions of the operation of DNS are provided in several papers [22, 28,
25, 38, 18], and the details of this process are specified in the associated RFCs [33, 34, 23].
We will illustrate here in detail how the DNS structure and operation affect user-perceived
performance. We will also highlight aspects of the DNS architecture that may cause clients
in different locations to experience very different performance even though they are resolving

the same name.

\’\‘aw‘ ‘com‘/ edu ‘fr‘
S ‘gatech ‘ " ‘ ncarts ‘
‘cc‘ ‘isyeHme‘)

Figure 2: Structure of the DNS namespace.

The DNS system is structured to simplify administration of different portions of the
namespace, or domains. In this way IP addresses can be easily mapped and re-mapped
by local administrators without having to notify a central authority. The organization of
the namespace for domain names has a hierarchical structure, where each node in the tree
has a label. As an example, a small portion of the namespace tree is depicted in Figure 2.
The root of the namespace is indicated simply by a dot (.). Domain names are built up
by walking down the namespace tree and at each node in the tree, prepending the label
contained in the node with each step. A dot is also used to separate each label. The names
at the leaves of the namespace tree are typically the domain names of actual machines.
Names in the tree that are not leaf nodes are the names of domains. In some contexts it

is not necessary to specify all of the labels in a domain name. A fully qualified domain

14

name, or FQDN, is a domain name in which all labels are specified and that ends with
a dot indicating the root domain. For example, the name gaia.cc.gatech.edu. is the
FQDN for a machine that resides in the domain cc.gatech.edu.

DNS allows administrators to map multiple names to the same IP address. This is
accomplished with CNAME records. A CNAME record indicates that the current domain
name is actually an alias, and maps it to a different domain name which is is the canonical
name. Administrators can also map a single domain name to multiple IP addresses. When
this happens the client software chooses one of the IP addresses — typically the first one
in the set.

The DNS database is partitioned into zones. A zone is a contiguous section of the
namespace tree that is managed by a single organization. The zone structure allows for
local administration of the database. Subtrees of the namespace may be delegated to
other organizations by creating a new zone. Figure 2 also shows four administrative zones,
indicated by dashed lines. The zone at the top of the namespace tree is the root zone. The
root zone delegates all other zones by simply pointing to the nodes at the top of its subtrees.
In the figure we expand slightly two of the many zones at this level: edu and org.

The process of resolving a domain name works as follows. So that each application does
not have to implement its own DNS resolution functionality, applications incorporate DNS
resolver libraries. When an application needs a domain name resolved, it invokes the resolver
function. The resolver is configured with the IP address of its local DNS server (LDNS), so
it sends a sends a DNS query over UDP to the LDNS. This is typically a recursive query: a
request for the LDNS to perform the resolution on behalf of the client. The LDNS requires
a starting point for performing resolutions in the DNS namespace, so it is configured with
the IP addresses of the thirteen DNS root servers. The LDNS sends a query to one of
the root servers. Assuming the query is valid, the root server will respond with an NS
record. NS records are used to inform the client — in this example the client of the root
server is the LDNS server — that it must query another nameserver that will be closer to
the target of the query. Responses that contain NS records are known as “referrals”. An

LDNS may receive multiple referrals before finding an authoritative nameserver that can

15

answer the query. The LDNS may encounter the following responses from the authoritative

nameserver:
e an A record that contains the IP address of the domain name
e an indication that the name is invalid
e 1o response because the nameserver is not available
e no response because either the UDP query or response packet was dropped

In the first two cases the query is satisfied, and the LDNS sends its response to its client.
In the last two cases the LDNS sets a timeout. Upon expiration of the timeout the LDNS
resends the query to the nameserver. After a configurable number of timeouts the LDNS
gives up and sends a failure response packet to its client.

One characteristic of the organization of the DNS database is that the partitioning of
the zones does not necessarily dictate how and where the database is actually stored — only
how the data is located. It is the responsibility of the zone administrators to decide where
to store the zone data. The RFCs provide some guidelines for how to organize and serve the
data so that the system is uniformly robust and reliable. As an example, one RFC states
that a “given zone will be available from several name servers to insure its availability in
spite of host or communication link failure. By administrative fiat, we require every zone to

be available on at least two servers, and many zones have more redundancy than that [33].”

3.2.1 Differences in DNS Performance

This section illustrates how two clients can experience very different performance during
normal DNS operation while resolving the same name. Figure 4 shows an example of three
different clients resolving the same name: bigtooth.cc.gatech.edu. The two clients on
the right side of the figure share the same LDNS server. This figure emphasizes the fact
that two resolutions of the same name can result in the queries being sent to a completely
different set of servers.

We begin with Client 1, which sends a recursive query to its LDNS. The LDNS has no

information cached about bigtooth.cc.gatech.edu, cc.gatech.edu, gatech.edu or edu.

16

Map Source . winw.visualrouis.com

Area(23)

Los Angeles 3,
Area(2,1)

¥ Washington D.C.
Area (6,2)

Figure 3: Locations of root and gTLD servers.

I ST
| [a.root—servers.ne% [b.root—servers.neg . [m.ruot—servers.ne% client machine
I

client
T y application

client machine

I
3 [aS.nstld.com] [bB.nstld.com] m3.nstld.com

5 i //’ resolver

application
LDNS
e N
resolver | ! /
| (erott-aw-gasecn.cc
|

gatech.edu roll-gw.gatech.edu q
I

client

client machine

client
application

resolver

| \
| [dnsl.mtu.edu] [zeon.cc.gatech.edu] [gatech.edu][burdell.cc.gatech.edu]
I I

solaria.cc.gatech.edu troll-gw.gatech.edu

Figure 4: Example of resolving a domain name.

Its first request is therefore sent to one of the root servers. It arbitrarily chooses B.ROOT-
SERVERS.NET. The response to this query is a referral indicating that the client must now
query one of the thirteen nsTLD servers. Client 1’s LDNS chooses B2.NSTLD.COM for this
query?. To increase reliability, it is recommended that domain information be replicated
at different servers, and that they “be placed at both topologically and geographically

dispersed locations on the Internet” [24]. So in our example, the response is a referral to

2From the web page describing djbdns [13]: “dnscache simply contacts a random server, to balance the
load as effectively as possible. BIND keeps track of the round-trip times for its queries to each server, with
various bonuses and penalties, and then sends all its queries to the ‘best’ server”.

17

one of two servers that should have the answer: gatech.edu or troll-gw.gatech.edu.
Client 1’s LDNS chooses gatech.edu, sends the query and receives another referral to the
six nameservers at the bottom of the figure. It chooses dns1.mtu.edu, sends the query and
receives the answer. It then sends the response to Client 1. Note that all information it
receives about the namesspace tree has been cached. Each response contains a time-to-live
(TTL) indicating how long the client may cache the answer.

Client 2 sends a query to its LDNS for the same name. Many of the same steps are
taken as for Client 1, but we see that a completely different set of servers is queried:
m.root-servers.net,m3.nstld.com, troll-gw.gatech.eduand burdell.cc.gatech.edu.

Client 3 then sends a query to its LDNS, shared with Client 2. Assuming the query is
sent within the TTL of Client 2’s previous response the LDNS still has the answer cached
and immediately sends the response to Client 3.

Figure 3, obtained from CAIDA [14] and updated to reflect two additional gTLD servers
in Atlanta and Seattle, further illustrates the potential for clients to experience different
DNS performance depending on location. The figure shows the locations “of the root
nameservers and gTLD servers. The (x,y) notation near the city names indicates the number
of root servers (x) followed by the number of gTLD servers (y) in that area. Notice the
large number of both types of servers around Washington D.C. and in California.” [14]. The
map highlights the fact that the root and gTLD servers that are central to the operation
of DNS are geographically concentrated in the U.S., with many geographic regions entirely
unrepresented.

We must emphasize that the DNS is not a static entity. There is much current activity
in extending DNS to provide security and add additional features. Any changes will have
effects on user-perceived performance that will warrant further measurement study. In fact,
since the time of our study some of the zones high in the DNS hierarchy (com, org, edu,

etc.) have been restructured.

18

3.3 Measurement Options

We conclude this section of background with a discussion of options for performing user-
perceived measurement. We discuss the advantages and disadvantages of each option and
illustrate where our work lies.

It is possible to analyze Web performance using packet traces or access logs provided by
an ISP. However, getting ISPs to cooperate with measurements may be challenging. There
are several reasons for the difficulty. First, releasing packet traces may expose sensitive
information of clients, like passwords, credit card numbers and other personal information.
ISPs are understandably reluctant to provide external access to such traces. Second, setting
up measurement infrastructures may require a significant time commitment from ISPs. Sys-
tem and network administrators’ time is often scarce even for normal day-to-day activities.
Getting participation on projects in which there are no apparent immediate benefits for
their clients is unlikely.

Another option is to collect data inside the network. This option takes several forms.
Examples of data collection in this class are: packet traces of data traversing a single AS;
probing one or more ASes; or performing active measurement using existing measurement
infrastructures. Certain studies will benefit from this approach. Examples are those that
explicitly examine characteristics of the network that affect user traffic in aggregate like
congestion patterns, network structure, routing and traffic patterns. Studies that use this
option do not report on the actual user experience.

Another option may be to bypass the ISP infrastructure by obtaining user accounts
in multiple domains. However, taking measurements directly in this fashion may be pro-
hibitively time-consuming and expensive. Even if we were able to obtain a large number of
user accounts throughout the world, results that are taken in a central location claiming to
represent a user’s experience in a remote part of the world would be questionable.

The final approach, and the one used in this thesis, is to take measurements on multiple
users’ host machines. This approach will provide data that truly reflects characteristics of
the network as experienced by the user. This data can either validate or refute claims made

in other studies. Either outcome will be a significant step in network measurement.

19

CHAPTER IV

USING A PROXY TO MEASURE USER-PERCEIVED
WEB PERFORMANCE

In this chapter we present our first method of collecting user-perceived web performance
data: using a specially instrumented proxy. We then discuss challenges in capturing the

performance of downloading a Web page at the client, and describe our solution.

4.1 Requirements

Our goal is to create a measurement tool that logs information about the performance

experienced by the user. Our criteria for the measurements are as follows:

e Taken from real user behavior. We want to collect measurements during normal user

operation.

e Captures individual aspects of loading each object such as DNS resolution time, tim-
ing of each request coming from the browser, and time for complete objects to be

downloaded.

e Transparent to users. Since we will make measurements during normal operation, we
want to minimize any performance degradation or other artifacts from measurement

that might alter user behavior.

e Collected in a range of environments, broadly defined to include a variety of operating
systems, browsers, access technologies, etc. This is to ensure that any local effects
such as an atypically fast connection do not skew our conclusions. As a corollary,
we require that the measurement technique require no special privileges (e.g., root

access) on the part of the users participating in the study.

20

1

Client)
Browser

Web
server

Participant’s machine Loca
DNS

Server

Figure 5: Sequence of events in our measurement architecture.

4.2 Method Overview

To satisfy our objectives and overcome the obstacles, we implemented data collection in a
web proxy with one proxy instance per browser instance, as illustrated in Figure 5. It is not
strictly required for the proxy to execute on the same machine as the browser, but doing
so minimizes the effects of competing network traffic on the measurements. As illustrated,
the proxy is situated between the browser and any web servers accesses; it also handles all
calls for DNS resolution.

The proxy operates as follows: (1) intercepts client requests, (2) performs the DNS
resolution, (3) connects to the target server and sends the request to the server. The server
then (4) responds to the proxy with a header and (typically) data for the requested object.
As the proxy receives the responses, it (5) passes them to the client. While the proxy passes
headers and data in both directions, information of interest is parsed from both the headers
and the data and (6) gets logged to a log file. We post-process the log file to analyze the
data.

Each line of the log file contains the following information:

e ID: An identifier which is unique to each object being requested by the proxy.

21

e TYPE: A string indicating the type of the line. The complete list of TYPES is given
in Appendix A. The use of some of these TYPES is highlighted in Section 4.3 where

we describe details of the proxy design.

e ADDITIONAL INFO: Each line type may cause additional information to be
logged. For example, the actual IMG tag is logged on an IMG line type. Some line

types, such as an EOH line, do not have additional info.

Although the browser must maintain explicit information specifying how objects are
grouped together into pages, it does not in general indicate this in its requests. Therefore,
from the point of view of the proxy, each request is independent; the proxy cannot maintain
or log this information. Often, however, the variables we wish information about depend
on how the objects are grouped together into pages. Therefore, one of the most important
functions to be performed during post-processing is to reconstruct how the objects are
grouped to form a complete web page.

In Figure 6 we illustrate a simple example of how we perform this grouping. Figure 6-A
depicts the proxy’s view of objects being transmitted over time. The horizontal axis is
the time line, and the thick horizontal lines depict the time from the initial receipt of the
request for the object at the proxy to the time the object has been completely transmitted
to the browser. On the vertical axis the objects are numbered in the order in which they
are requested. Not pictured is the fact that along with information about the timing of the
objects, the logs also contain the URLs of the objects and any information about objects
which may be requested as a result of receiving this object.

Figure 6-B depicts the post-processing, which occurs in two steps. First, for each object,
we search the set of objects retrieved to date for a tag which caused this object to be
retrieved. If one is found, we add an arrow extending from the retrieved object to the one
that contains the tag.

When the complete log file has been processed, we have all the information necessary for
grouping objects into pages. Figure 6-B also depicts this final stage in post-processing. Any

object which does not have an arrow emanating from it is assumed to have been requested

22

time

(A)

time

)

12 Webpage2 °

object
number

Figure 6: Grouping objects into web pages during post-processing

by the user. These are the base pages. We then group objects into a web page by associating
with each base page all objects which can reach the base page by following a path along the
arrows and objects towards the base page. Two such groupings are depicted in the figure.

This discussion describes the simplest case of post-processing. Issues which cause diffi-

culties and the effects of these issues on our design are discussed in the next section.

4.3 Proxy Design Issues

In this section we discuss issues affecting the design and implementation of the proxy. These
issues determine what information was actually chosen to be logged in the log files.

We group the issues affecting our design into three categories. First, we discuss the issues
related directly to the HT'TP protocol itself. These issues are involved with information in

the HT'TP headers of the request and the response. Next, we discuss the issues that relate

23

to the actual content of the objects. Finally, we discuss issues that arise from interactions

between the proxy and browser.
4.3.1 HTTP Issues

Content-Encoding The HTTP protocol allows the data in a response to be encoded
using different encoding schemes. Requests may contain an “Accept-Encoding” field in the
request header that indicates to the server what encoding types the client is willing to handle.
The server informs the browser via the “Content-Encoding” header field how the data must
be decoded. For example, the server can deliver a gzipped HTML page accompanied by the
header field “Content-Encoding: gzip”. This, however, causes all HTML in the transferred
object to be unreadable by the proxy since the data will not be decompressed until it is
received by the browser.

To alleviate this problem, the proxy intercepts the “Accept-Encoding” field sent by the
browser and changes it to “Accept-Encoding: identity; q=1.0, *;q=0”. This causes the
server to decode any encoded content, if possible, before sending. The proxy can then
examine and parse the plain HTML. Doing so will cause a change in the timing of the
rendering of the page. However, during development of the proxy we noted few situations

in which servers provided compressed HT'ML objects.

Location The response header for an object may include a “Location” field. This field
indicates to the browser that the object being requested is found at an alternate URL, and
provides the URL for the browser to automatically query. There may be more than one
location indirection that must be followed before the request for the object is satisfied. The
new URL may contain the same domain name as the initial query, a completely different
domain name, or it may point to a different name within the same zone as the original
query.

The proxy logs the “Location” header field, and in post-processing, objects are linked

to previous requests in which the response header had a matching “Location” field.

Proxy-Connection Our proxy implements HTTP/1.0. It therefore does not handle

Keep-Alive connections. Specifically, it does not handle more than one set of headers sent

24

from the client to the server on a single connection. The proxy handles this by removing the
“Proxy-Connection: Keep-Alive” from headers sent to the server. This forces the server to
close the connection after the requested object has been sent. It has the effect of requiring a

separate process to be created for each requested object, each with a separate tcp handshake.

Content-Type Objects with certain content-types — for example, images — will never
generate subsequent requests from the browser. As a performance enhancement the proxy
examines the content-type of the object as it is received from the server. If it will not cause
a subsequent request to be sent, the proxy passes the data directly to the browser without
parsing it.

Also, if the content-type is application (e.g., application/x-javascript or application/x-
shockwave-flash), then we assume that another page caused it to be loaded. In this case, if
no other heuristics have determined which base object this object should be linked to, we

link it to the most recently identified base object.
4.3.2 Content-Driven Issues

JavaScript JavaScript is a scripting language that allows for development of web ap-
plications. Client-side JavaScript is dynamically interpreted by the browser and can cause
the browser to retrieve remote objects. It is impossible for a proxy to predict with 100%
accuracy what a request from a browser will look like when the page includes JavaScript
and the browser has JavaScript turned on. A simple example of the problem is illustrated
by the following JavaScript code:

(script lang=“javascript”)

NumR=Math.floor(Math.random()*10000000);
document.write(’(IMG SRC=*“http://foo.bar/> + NumR + *”)’);

(/script)

In the above case, the proxy and the browser will choose different random numbers
and the resulting IMG tags will not match. The post-processor will be unable to match
the incoming request with the page causing the request, so it will incorrectly interpret the

new request as a base page. We handle this ambiguity by causing delimiters to be placed

25

Server
Javascript RQ
RQ
(A | @ 2 (3 Proxy
Javascript
RQ RQ

A S

Browser
Server
Javascript RQ
RQ
® [@ @ 3 @(5)(®) Proxy
Javascript
RQ RQ RQ

v Browser

Delimiters

Figure 7: Identifying requests generated by JavaScript

in the proxy’s log when a section of JavaScript has been encountered (see START _JS and
END_JS in Table 1). During post-processing, any object that occurs between the delimiters
is assumed to have been generated by the JavaScript section of the previous object.

As illustrated in Figure 7 the delimiters cannot be logged while the stream is being
received from the server since the timing of the proxy’s parsing of the JavaScript tag and
the subsequent browser requests are not synchronized. The figure shows two different timing
diagrams of events seen by three entities: the browser, proxy and remote server. In Figure 7-
A the browser generates a request to the proxy which, at (1) is logged and forwarded to the
server. The server responds with an object which contains HT'ML and JavaScript portions.
At (2) the proxy logs START_JS to indicate the start of JavaScript code and at (3) it logs
END_JS to indicate that the end of JavaScript code has been reached. However, the request
generated by the JavaScript code is not seen by the proxy until (4), which occurs outside
the delimiters.

The delimiters can be properly placed as shown in Figure 7-B. The idea is to cause the

browser to send well-known requests to the proxy indicating when the JavaScript has begun

26

Table 1: Log file line types.

Line Type Description

ENTER Provides a timestamp when the proxy first receives a request from the
browser.

REQ Logs the actual request line sent from the browser.

HOSTNAME | Name of the machine in the URL of the requested object, and the time it
took for the name to be resolved.

EOH Indicates that the proxy has received and parsed the complete header.

META Indicates that the received object contained a META tag. META tags
may contain a “url” attribute causing another object to be
requested.

BODY Indicates that the received object contained a BODY tag. BODY tags
may contain a “background” attribute causing another object to be
requested.

IMG Indicates that the received object contained an IMG tag. IMG tags are
required to contain a “src” attribute which may cause another object to
be requested.

INPUT Indicates that the received object contained an INPUT tag. INPUT tags
may contain a “src” attribute causing another object to be requested.

TD Indicates that the received object contained a TD tag. TD tags may
contain a “background” attribute causing another object to be
requested.

TABLE Indicates that the received object contained a TABLE tag. TABLE
tags may contain a “background” attribute causing another object to be
requested.

EXIT Provides a timestamp when the proxy has completed handling the request.

ELAPSED Provides a calculation of how long the proxy took to load this object.

APP Indicates that the received object is an application as specified by the
Content-Type header field, and will not cause another object to be
requested.

APPLET Indicates that the received object contained an APPLET tag. APPLET
tags may contain a “src” attribute causing another object to be requested.

FRAME Indicates that the received object contained a FRAME tag. FRAME tags
may contain a “src” attribute causing another object to be requested.

LOCATION | Indicates that the header for the requested object contained a Location
header field. Upon receiving this header field, browsers immediately make a
request to for the indicated object.

REFERER Indicates that the header of the request contained a Referer header field.
This field can indicate which object caused the immediate request for the
object, or it can indicate the page that contained the link the user selected
in order to retrieve the object.

START_JS Provides an indication that the browser has begun interpreting a section of
javascript. See section 4.3.2.

END_JS Provides an indication that the browser has completed interpreting of a

section of javascript. See section 4.3.2.

27

and ended interpretation. The delimiters are logged when these requests are received by the
proxy. Object requests resulting from the JavaScript interpretation will be more likely to fall
between the two delimiters in this case. As before, the proxy logs and forwards the request at
(1). At (2) the proxy receives an HTML tag of a form such as (script language=“javascript”)
and the proxy embeds the tag (script language=“javascript” src=“http://start.js”) into the
page. This will cause a well-known request to be made from the browser to the proxy. The
proxy intercepts this request at (3), places a START_JS delimiter in the log, and closes the
connection to the browser. The browser continues parsing the subsequent HTML without
making any changes to the rendering of the page. The request generated by the JavaScript
code is seen by the proxy at (5), still inside the delimiters. When the (/script) tag is
encountered by the proxy at (4), it is passed to the browser followed immediately by an
embedded tag similar to the above. The browser will make another well-known request to
the proxy, which at (6) will place the END_JS delimiter in the log file, close the connection

and continue sending the page to the browser.

Meta Tags Another form of redirection is performed when the HTML content of a
page contains a tag such as (meta http-equiv="“refresh” CONTENT=5; url=foo.htm”).
This causes browsers to wait the number of seconds indicated by the CONTENT attribute
before automatically generating a request to the URL indicated by the URL attribute. The
proxy cannot distinguish between a user making this request and the automatic request
made by the browser, so in this instance we consider both the original page and the page
to which the browser is directed to be two separate user requests. In some instances this
is appropriate since the amount of delay is forced by the CONTENT attribute. Counting
this in the overall page loading would artificially inflate the amount of time we measured
that it took to load a page. However, if the delay is specified as 0, the META tag will effect
an immediate request, which should be treated as the “Location” header field is treated.
While we currently log META tags which may cause this form of redirection to take place,
we do not currently count these redirections as belonging to the same request for a base

page; the subsequent request is counted as a completely separate base page.

28

4.3.3 Proxy/Browser Interaction Issues

Caching The browser typically makes a request for a base page that includes some
number of embedded objects such as frames and images. As the server responds to this
request, the proxy parses the embedded objects and logs the information of interest. In
post-processing, the objects are grouped together into web pages.

Most browsers provide for caching of objects. Cached objects may be saved to memory
and/or disk. When a browser detects that a request is being made for an object that it
has in the cache, it may use the object immediately, or it may generate a request which
contains an “If-Modified-Since” header. The server determines whether the object has been
modified, and responds either with the object, or with a 304 (not modified) Status Code,
and no message body, causing the cached copy of the page to be used.

The case may arise where the cached copy of the base page is used without a request
being generated, but a request is generated for an embedded object. This causes difficulty
in determining how to group objects to form web pages.

Our solution to this problem is to have the user flush the browser’s disk and memory
caches when the proxy is first turned on. Then for each retrieved object, we determine
whether the same object was embedded in some previously requested web page. If it was
embedded in the immediately preceding page, it is assumed to belong to that page. If it
was embedded in a page prior to the preceding page, it is assumed that that page was
re-requested and was retrieved from the cache. In this case we use the prior information to
group the current objects that may appear to be unrelated.

Flushing caches will negatively affect browser performance during the period when the

caches are being re-populated. After this transient period, the effect will become negligible.

Browser Awareness of Proxy Existence In order to use the proxy, the browser must
be made aware of the existence and location of the proxy. This causes browsers to behave
slightly differently. Two differences which have been identified are (1) instead of generat-
ing the header line “Connection: Keep-Alive”, the browser generates “Proxy-Connection:

Keep-Alive” and (2) without the proxy the browser normally generates a request line with

29

a relative GET request such as “GET /images/example.jpg”’, whereas with the proxy it
generates a complete URL such as “http://www.example.com/images/example.jpg”.

The header line generated by case (1) is removed as described in the section on “Proxy-
Connection” above, so the difference in behavior has no effect. With case (2), however,
if this request line is passed without modification directly to the server, in rare cases the
server does not return the requested object, but returns a 403 Forbidden error. We handle
this case by removing the “http://www.example.com” portion of the request. This worked

without error for all servers we tested during development.

Streaming When making a request for an object, the browser opens a TCP connection
to the proxy and sends the request. The proxy performs the DNS resolution on the name
of the server, opens a TCP connection to the server and forwards the request. The server
responds with the header and data for the object.

The proxy reads the data sent by the server and parses it to determine whether one of
the line types described in the previous section must be logged before sending the data
to the browser. For example, the proxy may encounter an HTML tag such as (IMG
SRC=*“foo.jpg”), which will cause an IMG line type to be logged.

Since TCP is a byte stream, however, a tag may occur across two consecutive data reads
by the proxy. If no provisions are made for reconstructing tags that occur across consecutive
data reads, many such tags will go undetected. Therefore, the proxy maintains a per-object
working buffer in which partially received tags are stored. When complete tags have been

received, they are parsed and the proxy determines whether the tag must be logged.

4.4 Limatations

The source code for the Internet Junkbuster Proxy(TM) [3] (IJP) was the starting point
for implementing our proxy. IJP provided a framework for filtering request and response
headers, and allowed for insertion of code to parse the content of responses. It is a relatively
lightweight proxy, provides fine-grained manipulation of header fields and provides platform
independence. It also provides for relatively easily installation on a per-user basis.

The ability to parse content on the fly instead of capturing a complete web page before

30

parsing the information we need to log appears to work extremely well. As qualitative
evidence, we typically see browsers generate requests for objects while the base objects are
being received, indicating that online parsing is working properly.

One limitation of the method is that it only measures network performance at the user’s
access point. It may be the case, however, that a page becomes useful to a user before
all the data for the page has been received. Neither the proxy nor the post-processor can
determine the point at which the rendering of a page becomes useful to a user. Another
limitation is that it is somewhat labor-intensive for a user to install the proxy, configure the

browser to use the proxy and to deliver the logs.

4.5 FEvaluation

We evaluated our method using a single instance of browser and proxy, both running on
a Sun Ultra 1, and logging to an NFS-mounted logfile. Anecdotally, we noted that highly
popular web pages tend to be the most complicated in terms of content and organization of
embedded objects. Therefore, we used some of the most popular sites in several categories
as ranked by Top9.com [6] to test our method. Note that this evaluation was performed
prior to making the design change described in section 4.3.3 under “Caching”.

At this stage in development of our method, the most important task is to be able to
properly group objects into web pages during post-processing. We visited the selected sites,
then post-processed the resulting logfile. The results are shown in Table 2. The table lists
the 41 sites we used for stress testing. For each site, it shows the total number of objects in
addition to the initial request that were retrieved to satisfy a request for a web page. These
additional objects include both embedded objects and Location indirections. 2232 objects
in total were transferred to the browser for these 41 sites. 2191 of these were embedded
objects or Location indirections. The third column shows the results of post-processing.
The “# Correct” indicates the number of objects that were correctly identified as belonging
to their base page. The “# Incorrect” indicates the number of objects where the method
failed to identify the page to which they belonged. Objects that failed to be associated with

the correct base page were identified as being base pages themselves. All the base pages

31

Table 2: Results of testing.

Site # Additional Objects | # Correct/# Incorrect
www.real.com 68 68/0
www.napster.com 68 67/1
www.mp3.com 17 17/0
www.winamp.com 25 19/6
www.liquidaudio.com 51 49/2
www.peoplesound.com 95 74/21
www.audiofind.com 7 7/0
www.musicmatch.com 60 59/1
www.lyrics.com 4 3/1
www.launch.com 54 49/6
WWW.marsmusic.com 39 35/4
www.ubl.com 61 57/4
www.billboard.com 78 72/6
www.harmony-central.com 21 21/0
www.musiclyrics.net 45 43/2
Www.music.com 68 64/4
www.mtv.com 59 54/5
www.discovery.com 54 49/5
www.abc.com 87 86/1
www.pbs.org 99 92/8
www.tvguide.com 35 32/3
www.gist.com 47 46/1
www.hollywood.com 75 72/3
www.ifilm.com 64 60/4
www.moviefone.com 62 60/2
www.movietickets.com 86 83/3
www.channel2000.com 79 76/3
www.thebostonchannel.com 91 85/6
www.imdb.com 49 49/0
WWW.Imovies.com 50 49/1
www.dragonballz.com 6 6/0
www.startrek.com 82 82/0
www.starwars.com 47 47/0
www.twistedhumor.com 18 17/1
www.funstun.com 45 45/0
www.windowsmedia.com 47 45/2
www.adobe.com 63 62/1
www.allposters.com 37 37/0
www.eonline.com 49 49/0
www.disney.com 37 35/2
www.ebay.com 62 57/5
Totals: 2191 2077/114

32

were correctly identified as base pages.

114 of the 2232 embedded objects, or approximately 5%, were not correctly associated
with base pages. The cause of the errors were primarily related to the handling of JavaScript,
although the specific reasons varied. For example, it is possible for a web page to define,
within the START_JS and END_JS delimiters, a JavaScript function which will retrieve an
object, but to invoke the function outside of the delimiters. During logfile post-processing,
without using other heuristics, we will not detect the subsequent object as being embedded
in the page that invoked the function.

The objects that were identified as base pages included both those that were correctly
and incorrectly identified as base pages. There are a total of 114 + 41 = 155 such objects.

As noted in previous sections, we plan to evaluate the degree to which the proxy affects
performance as experienced by the user. The major topics for this evaluation are (1)
the impact of limiting the “Accept-Encoding”, (2) the impact of disallowing “Keep-Alive”
connections, and (3) the delay introduced by the proxy.

We conclude that this method is successful in logging fine-grained information about the
process of downloading web pages from each user’s vantage point. The method overcomes
many obstacles to gathering this data. Our evaluation demonstrates that this method is
fairly accurate given the number of heuristics that must be used during post-processing.
The primary limitations of this method lie in the lack of incentive for users to participate
in measurement studies, and in the technical ability required to installing the software.
In later chapters we will discuss other network measurement methods that address these

limitations.

33

CHAPTER V

MEASURING DNS

Results from our previous work and other studies suggest that DNS can at times add a
noticeable delay to Web page retrievals. Therefore we are interested in examining user-
perceived DNS performance separately from Web performance. In this chapter we discuss
the challenges involved in directly measuring DNS performance in multiple locations, and

our proposed solution.

5.1 Introduction

The Domain Name System (DNS) is primarily used to map the human-readable domain
names of remote machines to their IP addresses. This resolution, called a domain name
lookup, is typically the initial step in communication between two IP endpoints when the
remote IP address is not known. Thus, DNS is a critical component of the operation
of many Internet applications. As described in Section 3.1, when a user indicates to a
browser the URL of the desired Web page it typically contains the domain name of the
target of the request. This domain name requires a DNS lookup to be performed before the
HTTP request can be sent. Furthermore, a Web page may contain embedded objects — for
example, images residing on different servers — that may require separate DNS lookups.

There are some studies that specifically target DNS performance [22, 28, 14]. However,
many of these studies are old, or consist of performance measurements taken from a very
limited number of locations — only one or two — in the Internet topology, or do not focus
on performance from the perspective of the client. This raises the question “To what extent
does DNS performance vary across Internet clients?” The answer has implications regarding
the equity of Internet infrastructure services and the usefulness of DNS performance studies
from a small number of vantage points.

Measuring DNS performance at multiple locations suffers from many of the difficulties

34

outlined in Section 1. The primary difficulty is that the most common methods of taking
measurements — for example, using tcpdump — require privilege that is hard to obtain in
many domains.

We have three primary goals for collecting DNS performance data. First, we should cap-
ture fine-grained information about the operation of the DNS system. Such detail provides
us with great flexibility in analyzing DNS performance. Second, we should collect data in
such a way as to make comparison among sites as meaningful as possible. Limiting the kind
of data collected at each site and controlling the method by which it is collected reduces the
error in our comparisons. Finally, we should be able to collect data at multiple locations.
The more locations in which we collect data, the stronger our statements are about global

DNS performance.

5.2 Method

To satisfy these goals, we created a tool to run independently at multiple data collection
sites to actively perform measurements. The primary component of the tool is the named
name server!', modified to log each event that advances the server towards resolution of
the names, with a timestamp on each event line in the log. We post-process the logs for
subsequent analysis. The events logged are as follows: receipt of a request to resolve a name;
the sending of a request to remote servers; the receipt of responses from remote servers;
the answer sent to the querying client; the removal of queries from an internal queue of
pending queries; the identification of an entry in the local cache; and the identification by
the server of the type of the response. We then package the modified name server with a
script to drive the name lookups (the client application), a list of names to be resolved,
and configuration files that allow the tool to be run by a non-privileged user at a specific
port. The script utilizes the dig command, which invokes the gethostbyname () library

function. This causes the client script to issue a request directly to the modified server at

the server’s port and to wait for a response. After five seconds if an answer has not yet been

'named, dig and the gethostbyname() library routine are all provided with the Berkeley Internet Name
Domain (BIND) software distribution.

35

received the resolver times out and repeats the request. The resolver returns immediately
after the second request has been sent, but the server continues attempting to resolve the
name via retries for tens of seconds. For this reason events for different name lookups may

be interleaved in the logs, requiring special care during log processing.
5.2.1 Measurement Locations

The data was collected in three groups: on NIMI [36] nodes, by colleagues with accounts
on remote machines, and by members of the Linux user community who were willing to
participate in this study?. We obtained measurements from 75 different Internet locations
in 21 countries and territories®. Data from an additional seven sites were discarded due to
anomalies in the collection process. For example, at some sites the connection was broken
for some interval of time during the collection period because the individual had exceeded
their maximum login time.

While we did not systematically collect specific information about the kind of Internet
connection at every site where measurements were taken, many of the participants freely
offered this information. From this we know that the measurement locations represent a
wide variety of connection technologies, including DSL, PPP, cable modem, gigabit ethernet,
etc. The timestamps in the logs show that data was collected on different days of the week,
and at various times of day at each site. The dates of collection fell into two primary
periods: January 2002 and late March/early April 2002.

It is unlikely that participating clients interfered with each others’ measurements. Queries
from our server to remote servers do not (as is normal) have the recursion desired flag set,
so the remote servers should not retrieve the result in order to cache it. In Section 5.2.3 we
argue that the increased load on the system has a minimal affect on performance for other

participants.

2We emailed requests directly to individuals who identified themselves as contact persons for Linux User
Groups worldwide.

3Countries and territories represented in our data set are: Argentina, Australia, Brazil, Costa Rica, Czech
Republic, Denmark, France, Germany, Greece, Italy, Japan, Northern Ireland, Norway, Poland, Russia,
Slovak Republic, South Korea, Spain, Sweden, Switzerland, United States.

36

5.2.2 Domain Name Sample

To perform measurements on DNS performance we first collected a large number of domain
names (around 100,000). The names were collected by crawling the Web with the Larbin
crawler [8]. Given a seed page, this crawler fetches and parses it, then recursively follows
links on the resulting pages. To branch to as many web sites as possible while minimizing the
impact on network and server performance, we used the default configuration of following
links five deep into a web site with 60 seconds between successive requests to the same
server, and reduced the number of parallel connections from 200 to 10.

The set of web sites reached by crawling the Web is highly sensitive to the starting
point for the crawler [31], so we crawled multiple times, each time seeding the crawler with
a different starting point drawn from a set of pages that differ in several parameters. The
set of pages we chose to seed each crawl represented different values of variables such as
popularity, type of web site, country of origin and type of hosting organization. The pages

we used, along with the characteristics we chose to vary, are listed in Table 3.

Table 3: Starting points for crawler collecting domain names.

Seed site Popularity | Type of site | Host organization | US/Non-US
type US/Non-US
WWW.cnn.com High News Commercial US
www.gatech.edu Medium Information Educational US
www.parismatch.tm.fr | Medium | Entertainment Commercial Non-US
www.house.gov Medium Information Government US
www.chimfunshi.org.za Low Information Non-Profit Non-US
Www.sina.com.cn High News Commercial Non-US
hptdc.nic.in Medium Information Government Non-US
8ball.federated.com Low Entertainment Private Us

Many of the names we collected at this stage were not valid domain names. This appears
to be a consequence of many factors such as mistyped links and incorrect HTML syntax.
We first removed all ill-formed names. We then restricted the names to valid top-level
domains. However, some invalid, yet well-formed, names remained in the name sample.

Since our goal was to measure DNS performance for non-cached names, we selected a set of

37

Table 4: Top level domains in the domain name sample.

TLD category ‘ Percentage of names in category

com 50%
org 14%
net 9%
edu 6%
de 3%
ru 2%
fr 1%
ca 1%
gov 1%
it 1%
151 others less than 1% each

names that were unique up to the second level. For example, if there were two names from
the example.com domain such as a.b.example.com and c.example.com, we selected only one
of these names for inclusion in the final set of sample names. We did not, however, want
to completely remove the effects of caching, since the normal operation of a DNS server
typically has useful information cached even when the target name itself is not cached.
Such information may be gTLD or ccTLD servers, or remote servers that are “closer” to
the domain name being resolved. Thus, we did not force the server to flush the cache after
each name lookup.

The final data set consisted of 14,983 names, each representing a unique second-level
domain. The resulting names fell into the top-level domain categories in the percentages

shown in Table 4.
5.2.3 Network Impact

When using active probing to perform measurements, we must quantify the impact on
the system in terms of resource usage. Typically the collection takes about 4-6 hours of
continuous operation to complete on each client. It requires roughly 40K outgoing packets
of 40 bytes each and roughly 40K incoming packets of 300 bytes each, spread out over the
entire run. On average this consumes about 700 bps outgoing and 5Kbps incoming at the

measurement site.

38

An upper bound on the worst-case increase in root server load is calculated as the ratio
X/Y, where X is the maximum number of queries across all clients to any single root server
during a collection run and Y is the minimum amount of time across all clients for any
collection period in seconds. The resulting worst-case increase in root server load is 832
packets/15641 seconds, or .053 packets/sec. Similarly, an upper bound on the worst-case
increase in gTLD server load is 8868 packets/15641 seconds, or .57 packets/sec. These
upper bounds are low enough to make certain that our measuments neither place a burden
on the DNS system, nor perturb our measurements, even when multiple measurements are

being taken simultaneously.

5.3 Results

In this section we examine several metrics and analyze the degree of variation in these
metrics observed across the 75 measurement sites where our data collection tool was run.
The primary metrics we investigate are the completion and success rates of resolving names;
the mean response time for completed lookups; the root and gTLD servers that are favored
by the sites; the observed fraction of names that are aliases; and the distribution of TTLs

across names.
5.3.1 Completion and Success Rates

We first examine the rate of completion and the rate of success of each participating site.
The response codes sent by our modified server to the client script consisted of the following
values: 0, indicating no error occurred; 2, indicating a remote server failure; and 3, indicating
the name does not exist. We consider a resolution to be complete if our server returned an
answer with a response code of either 0 or 3. We consider a resolution to be successful if
our server returned an answer with a response code of 0.

Figure 8 plots, for each site, the percentage of lookups that completed and the number
that were successful. The range of values for completed lookups is [14500,14700], or 96.4%
to 98.1% of the lookups. The number of successful lookups is in the range [13900,14200],
or 92.7% to 94.7% of the lookups. This high number of successes can be attributed to

the method by which we obtained domain names, and the filtering of invalid addresses.

39

Percentage of completed and successful lookups

+. + A+
F e P e T T e
oyt

I

I

96
|

0000
Ooooooooooooooooooooooooo

000000

94
|

OoooooooOoooooooooooooooooooooo
00000
o
o

92

+ completed
O successful

90
|

T T T T
0 20 40 60

Sites

Figure 8: Percentages of completed and successful lookups.

Approximately 3% of the lookups did not complete. This can be caused by factors such
as unavailable nameservers, incorrectly configured nameservers and a lack of a route to
nameservers. We do not have sufficient information to quantify these problems.

In Figure 8 the sites are ordered by the number of successful lookups, exposing an
interesting phenomenon. There are two weak clusters: around 14,100 successful lookups for
sites 3 through 46, and around 14,200 successful lookups for sites 47 through 75. Two sites
have slighly lower numbers of completed and successful lookups and do not belong to either
cluster. Examining the logs for these two sites, we noted that they experienced higher
numbers of retries during portions of the data collection, lasting from 3 to 16 minutes.
This is likely caused by the presence of congestion close to the collection point, causing the
slightly lower number of completed lookups. Other logs also seem to have experienced short
periods of congestion that caused higher numbers of retries, but the congestion was not so
severe as to cause more lookups to fail.

Examining the sites for each of the clusters we note that they are grouped according to

40

22

2.0

Mean response time of completed lookups (sec)
1.2 1.4 1.6 1.8

1.0

- 600000000
o

T T T T
0 20 40 60

Figure 9: Mean response times for completed lookups at each site.

the dates of data collection. The data with the slightly higher number of successful lookups
were all collected in January 2002 and those with a lower number of successful lookups were
all collected in late March/early April 2002, showing that roughly 0.6% of the names became
invalid over the course of about two months. We conclude that the numbers of completed
and successful lookups for a static set of names are time-sensitive and, to the degree that

one site experiences congestion more than another, they may also be location-sensitive.
5.3.2 Mean Response Time

Figure 9 shows the mean response times for completed lookups (MRTc) at each site, with
sites ordered by MRTc. We see a large disparity in overall performance among the sites.
The minimum MRTec¢ is 0.95 seconds and the maximum MRTc is 2.31 seconds. This is a
difference of 1.36 seconds, or a factor of 2.4. This is a very noticable delay for applications
such as web browsing that require DNS lookups during human interaction.

We speculate that the four major factors affecting the MRTc for a site are the site’s

connectivity, loss rate, perceived performance of root and gTLD servers, and location in the

41

22

2.0

1.8

1.6

1.4

®o0 o0 o o o o
o o o

SJ' - %o oooo 0o o o

o®o o ° C

OCS go © o0

c@@)o o o

RG]
o
47 £ o Corr = 0.62

T T T T

0.00 0.05 0.10 0.15

Iviean Kesponse |1ime o1 completed IOoOKUpsS (sec)

Minimum Response Time of completed lookups (sec)

Figure 10: Minimum response times vs Mean response times for completed lookups at each
site.

network relative to other name servers. We do not have fine-grained information about each
of these factors for many of our sites, so we devise methods to estimate each factor from
our data, and then test for correlation with the MRTc to quantify the effect of the factor
on the MRTec.

5.8.2.1 Connectivity

A site’s connectivity is determined by the combination of its bandwidth and its proximity
to the Internet. To investigate the affects of connectivity on MRTc, we assume that the
Minimum Response Time for completed lookups (MINc) is a good measure of a site’s con-
nectivity. This quantity captures the minimum round trip time for a DNS query/response
to the closest name server to which a query is made. A lower MINc should correspond to
a higher bandwidth connection and/or close proximity to the Internet.

In Figure 10 we plot the MRTc against the MINc at each site. Our expectation was

that those sites with the highest MRTc would also have the highest MINc due to poor

42

Query for a.example.org received from client

uery for a.example.org sent to G.ROOT-SERVERS.NET

Response received from G.ROOT-SERVERS.NET
with referrals to two domain servers

Query for NS3.example.org sent to NS1.example2.org

Response received from NS1.example2.org
with referral to NS2.example.org

Query for a.example.org sent to NS2.example.org

Query for a.example.org sent to NS1.example.org

Response received from NS1.example.org with
answer for a.example.org

Answer for a.example.org sent to client

Response received from NS2.example.org with
answer for a.example.org

Figure 11: Example resolution tree and its critical path.

connectivity. We do see in the figure that the two sites that have the highest MRTc’s
(above 2.2 sec) also have higher MIN¢’s. However, we also see two other sites that have
high MINc’s (above .10 sec) that also have significantly lower MRTc’s (below 1.5 sec). We
calculate the coefficient of correlation, p, of the MRTc and the MINc. As there is only a
moderate correlation (p = 0.62) between the two variables, we conclude that connectivity

does not sufficiently account for the higher MRTc¢’s.
5.83.2.2 Loss Rate

The local DNS server often receives responses from remote servers that contain multiple NS
(nameserver) records, or referrals, indicating other nameservers that should be contacted

to resolve the name. It is quite common for the server to query multiple nameservers in

43

parallel, leading to a “resolution tree”, where each node in the tree represents a query or
response sent between machines, and each directed edge between nodes represents a causal
relationship between two nodes. For example, a response from a root server may cause a
query to a gTLD server. The root of the tree represents the original request, and one or
more leaves may contain the A (answer) record. One such resolution tree is illustrated in
Figure 11.

We use the critical path analysis technique [32] to examine the loss rate*. The unique
path from the root of the resolution tree to the first answer sent to the client (there are
sometimes multiple answers sent) comprises the critical path of the lookup. In practice, we
determined the critical path by identifying the first answer and following the edges in the
reverse direction up to the root. The nodes and edges traversed comprise the critical path
for the lookup. In Figure 11, the dark arrows indicate the critical path for this resolution
tree. The local server maintains a timer for outstanding queries. When a query to a remote
server, or its response, are lost the timer expires and the local server resends the query to
the remote server. These retries may also occur on the critical path for a lookup.

In Figure 12 we plot the MRTc of each site against its total number of retries along the
critical path. The correlation between critical path retries and MRTc is weak (p = .50).
Under the assumption that retries are a good measure of loss rate, we conclude that loss
rate is not a major factor affecting lookup time for our data set. We note, however, that

the loss rate varies dramatically across sites.
5.3.2.83 Root/gTLD Server Performance

We analyze the impact of the performance of root and gTLD servers by calculating the
Mean Response Time for all queries sent to root servers (MRTr). Similarly we calculate the
Mean Response Time for all queries sent to gTLD servers (MRTg).

Figures 13 and 14 show plots of each site’s MRTc against the site’s MRTr and MRTg,

respectively. Here we see a strong correlation for each (p = 0.86 and p = 0.94), initially

4The idea of using critical path analysis for a portion of our work was inspired by work by Barford and
Crovella [12]. They used critical path analysis to investigate various effects on the critical path profiles of
TCP transactions.

44

22

2.0

1.6 1.8

Mean Response Time of completed lookups (sec)
1.4

%o @ o ©
oo o
N 09 o0qyp ° o °
- © %o & o
o amg’ Ooooo
o o%% S
24 PP Corr = 0.50
o
T T T T T
1000 1500 2000 2500 3000

Total retries along critical paths

Figure 12: Total retries along critical path vs MRTc at each site.

suggesting that the performance of the root and gTLD servers have a major effect in the
overall DNS performance at a site. We also see a broad range of MRTr and MRTg across
the measurement sites. The range of MRTr is from 0.063 seconds to 1.41 seconds and the
range of MRTg is from 0.037 seconds to 0.89 seconds.

To investigate the impact of root, gI'LD and other server performance, we calculated
the percentage of lookups where each of these server types was queried at some point along
the critical path. The results are shown in Figure 15. We see that the percentages are
quite constant at approximately 7.0% for root servers, 60.0% for gTLD servers and 98.4%
for other servers. The seemingly high percentage of queries that involve root servers is
caused by the fact that the root servers delegate some domains at the top level (e.g., the
.se domain), and some domains at the second level (e.g., the census.gov domain). So after
the initial query for the .se domain, subsequent queries for this domain will circumvent the
root server, but different second-level names under the .gov domain must still go directly

to the root for referral. The percentage of time spent in the critical path querying each of

45

22

2.0

1.8

1.6

1.4

o o%
0 oo
o
N %o@ x° o
- o ol
)

Mean Response Time of completed lookups (sec)

1.0

_ o0 Corr =0.86

T T T T T T T
0.2 0.4 0.6 0.8 1.0 12 1.4

Mean root server response time

Figure 13: Mean root server response time vs MRTc at each site.

root, gTLD and other servers is shown in Figure 16.

Some implications of these results are:

e The performance of servers other than root and gTLD servers have the largest impact
on performance of lookups for non-cached names. Thus, schemes that reduce this
portion of the lookups, such as those employed by content delivery networks (CDNs),

have the greatest impact on speeding up lookups.

e For some sites, root and gTLD server performance is quite poor, taking as much as
1.41 seconds and 0.89 seconds on average, respectively, to respond to requests. Since
about 60.0% of lookups involved gTLD servers but only about 7.0% involved root

servers, poor performance is not as egregious for root servers as it is for gTLD servers.

e Also because of the difference in impact on performance by root and gTLD servers,
a possible service differentiator delivered by an ISP is the performance it provides

from gTLD servers for non-cached names. Far less important is the performance it

46

22

2.0

Mean Response Time of completed lookups (sec)
1.2 1.4 1.6 1.8

1.0

° Corr=0.94

T T T T
0.2 0.4 0.6 0.8

Mean gTLD server response time

Figure 14: Mean gTLD server response time vs MRTc at each site.

provides from root servers. This could influence decisions regarding peering points

and routing.
5.8.2.4 Network location relative to other servers

To estimate the location of a site relative to the rest of the Internet, we calculate the response
times observed by each site to a fixed set of servers. This is related to the idea of distributed
binning [37] where clients fix their location in the network based on measurements to a fixed
set, of servers.

We chose as our fixed set of servers the last server queried along the critical path while
resolving names. We identified the set of servers that used the same set of IP addresses
across all sites. We then extracted the names of the 498 servers in this set and calculated
the Mean Response Time from these last servers (MRTI) for each site. In Figure 17 we plot
the MRT1 against the Mean Response Time for completed queries (MRTc).

The method and results of this section are similar to those of Section 5.3.2.3 where

we examined the correlation between root and gTLD server performance and the MRTc

47

100

000

60
|

0D0po0o000000000000000000000000000p0000000000000p0000000000000000000000QpOO0000

40
|

O Other servers
o gTLD servers

¢ Root servers

0000000000000 0000000000008 8,00000000000000000000800000000000000200000%00000

Percentage of queries sent to each server type

T T T T
0 20 40 60

Sites

Figure 15: Percentages of queries to root, gI'LD and other servers.

for each site. However, the size of those sets of servers is considerably smaller (13 of each
instead of 498). From those results we only make conclusions regarding performance to
those types of servers. With the larger set of servers used in this section, we can make more
broad conclusions regarding distance to the rest of the Internet.

We find that the correlation between the MRT] and MRTec is strong (p = 0.90). This,
under our assumption of response to the fixed set of servers indicating distance, demon-
strates that the location of the site relative to the rest of the Internet is an important factor

in the lookup time.
5.3.3 Root Server Interactions

The results for the root and gTLD servers in the previous section prompted us to further
explore the interactions between local DNS servers and root and gTLD servers. BIND
employs a server selection algorithm that seeks to minimize resolution times. The algorithm
maintains a history of response times from servers when they respond to queries about a

portion of the namespace. It ages this information so that all servers that will respond to

48

100
|

[

O other
O gtd
W root

80
|

Percentage of access time
40

Sites

Figure 16: Percentages of time querying root, gTLD and other servers along critical path.

queries for a portion of the namespace get sampled over time. In this section we consider
the degree to which queries are distributed to the root servers from each measurement site,
and the response times from the root servers.

We tallied the total number of responses (not just on the critical path) received from
each of the root servers by each site. We then calculated the percentage of the total from
each site. We say that a site favors a root server if it sends greater than 10% of its
root queries to that root server. Figure 18 illustrates which root servers are favored by
each site. Each vertical line represents a root server and each horizontal line represents a
measurement site. A dark square placed at the intersection of a site line and root server line
indicates that the site favored that server. We see that four root servers ({A,D,H,I}.ROOT-
SERVERS.NET in Herndon, VA, US; College Park, MD, US; Aberdeen, MD, US; and
Stockholm, SE, respectively) are favored by many of the sites, whereas six root servers
({C,G,J, K,LM}.ROOT-SERVERS.NET in Herndon, VA, US; Vienna, VA, US; Herndon,
VA, US; London, UK; Marina del Rey, CA, US; and Keio, JP) are favored by few or none of

49

Mean Response Time of completed lookups (sec)

Bt
2] g4

0.2 0.4 0.6 08

Mean Response Time of last query/response pair

Figure 17: Mean response time for last server vs MRTc at each site.

the sites. This does not indicate that that there are not sites that would favor these servers

— only that the sites where we performed our measurements did not favor these servers.
5.3.4 gTLD Servers Interaction

Figure 19 has the same form as Figure 18, but for the gTLD servers. We see that two gTLD
servers ({H,I}.GTLD-SERVERS.NET in Amsterdam, NL and Stockholm,SE) are favored
by many of the sites, and two gTLD servers ({J,M}.GTLD-SERVERS.NET in Tokyo, JP
and Hong Kong, CN) are favored by few of the sites. Again, this does not indicate that
that there are no sites that would favor these servers - only that few of the sites where we
performed our measurements favored these servers.

Comparing Figure 18 and Figure 19, we see higher preferences shown for fewer root
servers than we see with gTLD servers. Favoring is distributed much more evenly among
the gTLD servers. The result is that there is more variation in which gTLD servers are

favored from site to site than for root servers.
5.3.5 Aliases and CNAMEs

A response from a nameserver of type CNAME indicates that the query was for a domain
name that is an alias for a canonical name. It is possible for the resulting canonical name
to be an alias for yet another canonical name, creating a chain of aliases. Whether a name

is an alias or a canonical name is configured by the domain’s administrator, and is not

50

Root servers chosen for > 10% of queries from each site

g
n
A B C D E F G H J K L
Root Servers
Figure 18: Root servers favored by each site.
gTLD servers chosen for > 10% of queries from each site
5
N

A B [D E F G H J K L
gTLD Servers

Figure 19: gTLD servers favored by each site.

51

Table 5: CNAME Redirections.

Number of | Mean number (percentage)
redirections, X of CNAMEs with
X redirections

3810 (96.3%)

138 (3.5%)

877 (0.2%)
1 (0.03%)

=W DN

Table 6: Number of different CNAMESs per alias.

Number of different | Number of aliases
CNAME mappings, X with X different
mappings

1 4230 (93.6%)

2 269 (5.9%)

3 13 (0.2%)

10 1

11 1

15 1

19 1

expected to vary as a function of location. However, some CDNs leverage the function
provided by CNAMEs in DNS to increase performance of web object retrieval, so we expect
some portion of the actual CNAME mappings to change from site to site.

Approximately 3960, or 26%, of the names in our data set were aliases. This percentage
varied only slightly across sites as expected, and this slight variation may be attributed
to the variation in the number of completed lookups. Table 5 shows the mean number
(percentage) of CNAME aliases in the data set. The longest chain of aliases was 4. Only
51 of the 75 measurement sites saw the chain of 4 aliases.

We also investigated the variety of CNAMEs given for aliases while performing the
name lookups. Table 6 shows that by far most of the aliases resolved to the same canonical
name (93.6%). Some aliases resolved to 2 and 3 different canonical names (5.9% and 0.2%,
respectively), and 4 aliases resolved to 10 or more different canonical names, depending on

site.

52

We conclude that, as expected, the number of names that are aliases is not location-
sensitive, and that only a small portion of the actual CNAME mappings are location-

sensitive.
5.3.6 TTLs of completed queries

Because TTLs are set by the administrator of a domain and they should be a static value
for each lookup, we expect each site to show the same distribution of TTLs for the answers.
We investigated this by extracting the TTLs of the names that successfully completed. We
then chose bins in which to count the number of TTLs. The bins were chosen somewhat
arbitrarily based on the modes of the distribution of the TTLs for one site. We then
calculated the number of TTLs in each bin across all sites. From each bin we took the
maximum number and the minimum number, and took the difference as the range of values
in each bin. To demonstrate the degree of the difference across the sites, we first calculated
the range across all sites of the number of items in each bin. We then calculated the
percentage of the mean represented by this range. The result is shown in Figure 20. On
the x axis is each bin. (The chosen bins are shown more precisely in Table 7.) On the y
axis is the range as a percentage of the mean. We see that even with the variations in the
number of names that were successfully completed at each site, the variation in the range
of TTLs in each bin is extremely small. We conclude that, as expected, the distribution of
TTLs seen at a site is quite constant.

We also include here the distribution of TTLs across the names. We tabulate the
mean number of items in each bin in Table 7. The five most popular TTLs fall in the
following bins, in decreasing order of popularity: [72001,86400], [2401,3600], [3601,7200],
[38401,43200],[100001,172800].

5.4 Conclusions

This chapter presented a fine-grained study of the operation of the DNS system from mul-
tiple locations in the Internet. The goal was to compare various measures from different
locations to determine which measures vary based on location and the degree to which they

vary, and which measures remain relatively constant. This information will both help to

93

Table 7: Mean number of names in each TTL bin.

Bin end value (sec

~—

‘ Mean number in bin

0 236

1 24

10 52

30 64

(one minute) 60 128
120 32

180 11

240 15

(five minutes) 300 398
360 22

600 281

900 380

1000 18

1200 108

1800 331

2400 23

(one hour) 3600 2664
7200 562

10800 331

14400 414

18000 33

21600 399

28800 369

36000 83

38400 125

43200 526

72000 144

(one day) 86400 5524
100000 54

172800 407

259200 134

345600 72

432000 37

604800 115

(ten days) 864000 18
>864000 23

54

3.0
2.5
2.0
15 4

1.0 —H
0.5 — {w
0.0 L

—

Figure 20: Ranges of number of TTLs in each bin across all sites, as a percentage of the
number of TTLs in the bin.

Range as a percentage of the mean

o]
104 |
30 -]
60 |]

120 -

180 -

240

2400 |

3600]

72000 —

86400 |

300+ |

360 -
600 4 |

900 |

1200 |

1800 |
18000 |
21600 - |
28800 -{_|

1000 |
36000 -

38400 |
43200 4|

7200 4|
1]

10800
14400 -]

1e+05 -{ |

172800 — |
259200 -{ |

345600 |
432000 |

604800 —{_|

864000

@
5

guide engineering of the DNS and other global distributed systems, as well as guide future
studies that rely on DNS performance information. We examined the correlation of DNS
performance, as determined by the mean response time for completed queries, with various
metrics.

Our results have demonstrated that, as expected, the DNS system tends to have low
variation in those measures that are controlled by site adminstrators, like the fraction of
names that are aliases and the distribution of TTLs across those names. Other measures
tend to vary widely as a function of location. These include mean and median response
times for completed queries and response times from root and gTLD servers.

We show that the greatest performance enhancements can be achieved by reducing the
response time of servers other than root and gTLD servers. We also show that reducing
the response time of ¢TLD servers, possibly via more equitable choice of placement of the
servers, has the potential to have a very noticable impact on perceived performance. In

addition, we demonstrate that root server performance has a negligible effect on perceived

95

performance. For those measures that vary widely as a function of location, we have demon-
strated that measurements from few locations may not represent the range of performance

experienced across the Internet.

o6

CHAPTER VI

WISL: AN APPLICATION FOR USER-PERCEIVED
PERFORMANCE MEASUREMENT

In previous chapters we argued that the design principles and decisions guiding the devel-
opment of the Internet make system-wide user-perceived measurement an elusive goal. We
have also made the case that there are certain types of information that can be collected by
involving the user. For example, we currently have no way to estimate the typical packet
loss rate of users throughout the world. We can only sample from the point of view of
the few machines that we have access to. And we have no way to adequately characterize
the performance of the DNS system experienced by users in countries whose locations are
remote from the root and gTLD DNS servers.

The problem caused by the lack of such data is that we can neither characterize nor
verify the performance of Internet protocols and services as experienced at the end-user.
We must currently rely on data collected at well-connected locations and hope that it
adequately reflects the performance at hosts worldwide. However, if we can collect user-
perceived performance data from actual user locations throughout the globe then we will
be better able to direct our efforts in routing, provisioning and protocol tuning.

We have described some methods for overcoming the obstacles. Each method exhibits
different tradeoffs in its design. The primary difficulty we face in employing these methods
is that to truly achieve end-user measurements we must involve the end-user. This is a
costly prospect for several reasons. First and foremost, the end-user must have incentive to
participate in data collection. Possible incentives can be monetary remuneration or altruism.
Often researchers do not have access to either the financial resources or the human resources
to provide monetary remuneration. We have had some success with altruism, as have others,
but this also has limitations.

In this chapter we present a new method for obtaining performance measurements from a

o7

potentially large and diverse set of locations throughout the Internet. Our method provides

a completely different incentive for participation than has been employed before.

6.1 Method

We present a novel user-perceived network performance data collection tool called WISL,
which stands for “What the Internet Sounds Like.” The purpose of WISL is twofold. First,
it provides a platform upon which to build a musical application. The music produced by
WISL may take many forms, but it is all characterized by the element of chance!. In
our case the chance input will be events that are detected as they occur in the Internet.
The musical aspect of this application provides the incentive for users to download and
execute the application. Second, WISL performs and reports real-time measurements of
user-perceived network performance. These measurements serve as the input to the musical
layer of the application, while providing a rich source of measurement data for subsequent
analysis.

The architecture, described in Section 6.2, is extensible at both the music application
layer and the network measurement layer. This makes it possible for researchers to provide
the packages that perform different types of network measurement, and for composers to
create packages that will play out their unique interpretations in sound of the current state
of the network. We note that while the primary intent of WISL is to generate music, the
extensible nature of WISL allows it to be employed as a network management tool as well,
providing real-time audio notification of network-level events.

WISL makes possible the creation of music in a way that has never before been achieved.
It allows the real-time generation of music based on events occurring simultaneously through-
out the world. Part of the appeal of WISL is that it can provide the listener with an aural
representation of the current state of the Internet. Composers will be attracted to the
challenge of creating music that will be aesthetically pleasing while having a meaningful

relationship with the state of the network. Network researchers will be drawn to creating

L« | something that befalls, as the result of unknown or unconsidered forces...” — Webster’s Revised

Unabridged Dictionary (1996). Music based on an element of chance is known as aleatoric music.

o8

the modules that can report on the state of the network.

6.2 Architecture
6.2.1 Design Issues

The WISL application has a large design space. At a minimum WISL must allow measure-
ment modules to be joined with sound playing modules. This could be accomplished by
simply defining an application programming interface, or API, for both layers. However,
we must balance the generality of WISL with its ease of use. That is, WISL must provide a
set of services that will be useful for both researchers and composers — each of whom will
be creating the packages to be used by WISL. A sufficient set of services will facilitate the
participation of both composers and network researchers, relieving them of the responsibil-
ity of writing code that performs common tasks. At the same time, the architecture should
as much as possible support a broad range of types of measurement that can be taken as
well as types of music that can be generated. This will help to maximize participation in
creating the modules required for the operation of WISL.

Ease of use by the end-user and system portability were also pervasive goals. Success
in attaining these goals will aid in achieving widespread deployment of the application,
thereby increasing the quality of the data collected.

Our criteria for the design of WISL take into account the three principals: the end-
user, the network researcher and the composer. From the perspective of the end-user WISL
should be simple to download and execute. The end-user should also be able to select
among different SoundPalettes — the packages contributed by composers — since individual
musical tastes vary. They should also be able to seamlessly switch between SoundPalettes in
real time. Adhering to these criteria will raise the likelihood of participation by end-users.

Network researchers should be able to easily incorporate their measurement packages,
called NetModules, into WISL. WISL should also facilitate the creation of NetModules by
limiting the required functionality of NetModules to performing and reporting the mea-
surements. The reporting of the measurents to the musical layer of WISL should be stan-

dardized and straighforward. For example, the music application layer of WISL may only

99

desire notification when a measured value crosses a particular threshold rather than each
time the measurement is made. WISL should alleviate the network researcher from having
to manage these events by providing threshold and parameter management functionality.
WISL should allow for collecting a wide range of types of measurements, and should be able
to accurately timestamp events. The researcher must be able to log data for subsequent
analysis. These criteria will ensure that WISL will provide the most useful platform for
network researchers. They will also help to attract network researchers to contribute the
NetModules that report on many different kinds of network events.

WISL should offer to the composer the ability to create a representation in sound of
a wide variety of events that may occur on the network. A rich source of network event
detection will make for a varied and interesting platform upon which composers can create
highly varied sound environments. Furthermore, WISL should support the creation of any
kind of music that can be realized within the framework of aleatoric music. Broadly, the
two main categories of music that must be supported are music with a regular pulse or
beat, and music without a beat. The beat-capable music criterium poses one of the most
difficult technical challenges of WISL, but will allow the WISL environment to support the
full range of creativity of participating composers. Finally, WISL should allow composers
to create SoundPalettes without requiring them to become software engineers. They should
be able to contribute sounds and define the rules that map network events to sounds with

minimal effort expended in learning how to use the WISL environment.

60

WISL Application

SoundPalette
(ENV)

GlobalModule

GlobaModule

X

X

NetModule NetModule

a wst
a Central Data Collection
Server

Figure 21: Simplified WISL architecture.

6.2.2 WISL Design

To meet our criteria of ease of use, extensibility, platform independence, WISL is written
in java and utilizes the JavaSound API. A simplified diagram of the WISL architecture is
shown in Figure 21. At the lowest layer of the application are a set of NetModules. Each
NetModule performs a measurement task as specified by its creator. A short list of examples

of the conditions that are detectable by NetModules include:
e current percentage of packet loss
e DNS response time
e sudden changes in delay or throughput

e congestion at a distant Web server

61

e the execution or termination of WISL at other end-user locations

WISL will instantiate at least one associated NetModuleListener for each active NetMod-
ule. NetModuleListeners filter and, as needed, dispatch events to the GlobalModules and
SoundModules that are expecting them. GlobalModules change the current global sound
environment (ENV), which determines which sets of sounds can be played out simultane-
ously. When a GlobalModule determines that the global environment should be changed
it signals this change to the currently active SoundPalette. SoundModules receive events
from the NetModuleListeners, check which global sound environment is currently active
and selects the appropriate sound for playout.

The presence of NetModuleListeners eases the programming burden for NetModule cre-
ators. Each time the measurement occurs, the NetModule simply reports its measured
value(s) to all NetModuleListeners that have registered their interest. The NetModuleLis-
teners decide whether it is necessary to report these values to the active SoundPalette.

SoundModules are configured to react to events by playing particular sounds upon re-
ceipt of events from one or more NetModuleListeners. A SoundPalette consists of a set
of sounds and rules that map the events to the sounds. Sounds in WISL are files that
contain an encoding of a particular sound in some format. A sound may be of any reason-
able length, and multiple sounds may be played simultaneously and either synchronously
or asynchronously. The SoundPalette rules are specified via configuration files at applica-
tion startup as described in Section 6.3. The end-user can dynamically select among the
installed SoundPalettes.

JavaSound, and therefore WISL, natively supports the use of several different sound
formats such as AU, WAV, and AIFF. JavaSound also supports decoders for other file
formats. We have added support for the Ogg Vorbis file format to the WISL package.

Much of the internal functionality of WISL involves the following tasks:

e instantiating the necessary NetModules, NetModuleListeners, SoundModules, Glob-

alModules and Sounds

e passing configuration parameters to the NetModules and NetModuleListeners

62

e allowing NetModules to continue seamless operation while switching among Sound-

Palettes
e maintaining the global parameters tempo and sound environment (or musical “key”)
e synchronizing sounds on a beat (if required)

6.3 Configuration

The different pieces of this application require some kind of “glue” to determine how they
will interoperate. Modules may also require configuration of operating parameters. This
is accomplished upon application startup via the SoundPalette Description Files (SPDFs).
Each SPDF is an XML document that conforms to the WISL Document Type Definition
(DTD) (Appendix A). The SPDF specifies the current operation of WISL by indicating
how the events that occur on the Internet will be represented by sounds. It denotes the

following configuration parameters to the application at startup:

e which NetModules must be instantiated

e operating parameters for each NetModule

o filtering parameters for the NetModuleListeners

e the sound files that will be used for playout

e expressions that describe to the SoundModules how to map events to sounds

e an initial tempo and sound environment

The SPDF, along with the set of sounds that will be played out as described in the SPDF,
constitute a musical composition in WISL. Thus, the requirements for composers are that
they must be able to 1) provide files that contain encodings of their desired sounds, 2) decide
how the events that are reported by the NetModules will map to the sounds and 3) provide
an SPDF. Requirement 1 is a common task for composers so it is reasonable to assume

this ability. Requirement 2 may be aided by a descriptive README file accompanying a

63

NetModule. Requirement 3 is satisfied by a complete description of how to create an SPDF,
with examples.

The method used for collecting data is completely at the discretion of the NetModule
creator. Omne possibility is to run an Apache Web server at a well-known location. The
initial NetModules would establish a connection with this Web server and periodically send
data to the Web server, which logs the data as it is received. Java APIs exist that facilitate

this scheme. Many other data collection schemes are possible.

6.4 FExample NetModule: LandmarksModule

We now describe the operation of one NetModule currently being shipped with WISL. In
this discussion the term node denotes an end-host that can provide some service to other
hosts.

Consider the following problem: Given a set of nodes, ¥, connected to the Internet that
deliver some service, we wish to determine with some level of accuracy which one of these,
o, is closest in the sense of latency to an arbitrary node §. The determination of ¢ has
applications to both peer-to-peer overlay construction and server selection [37].

LandmarksModule is being used for this measurement study in the following way. In
[37] it was suggested that DNS servers could be used as landmark machines. These servers
are selected because they are highly available, relatively well dispersed throughout the
Internet topology and thirteen should be a sufficient number for this study. Upon WISL
startup LandmarksModule periodically sends a single query to each of the GTLD servers
and records their response times. It employs a timeout such that any query not received
before the timeout expires is considered lost and is assigned a response time equal to the
timeout.

A WISL Data Collection Server (DCS) listens for connections at a location known to
LandmarksModule. LandmarksModule registers with the DCS by connecting to it and
sending the measured response times to the DCS. The DCS employs some scheme to choose
o from the set of previously registered nodes with the new node acting as 9. The DCS then

sends information about the chosen node, o, along with a random set of other nodes, to 4.

64

0 then measures its latency to each of the nodes in this set to collect the round trip times
and sends them all back to the DCS. The DCS periodically sends an update of the total
number of nodes currently running, along with an update of the node chosen that is closest
to 4.

There are many choices for events that can be generated by LandmarksModule and

reported to the SoundPalettes for playout. We chose the following events:

e numnodes: the number of nodes currently running LandmarksModule

e numneighbors: the number of nodes deemed to be neighbors of the current node, §

e landmarksperf: the minimum response time in milliseconds for all DNS queries sent

out this period

e neighbormin: latency to the closest neighbor, o

e neighborfail: failure of an attempt to communicate with a neighbor

e percentagelost: percentage of failed communications with neighbors

landmarksping: receipt of a packet from a neighbor

Like all WISL NetModules, LandmarksModule is written in Java by extending the ab-
stract NetModule class and implementing the parseParameters() and beginMeasurement()
methods. These methods are required and are invoked by other WISL modules. The Net-
Module reports events to its NetModuleListeners by invoking the fireEvent() method of
the NetModuleEvent class. The NetModule creator provides an accompanying file for the
composer that describes the operation of the NetModule, the configuration parameters it
accepts and the two events it reports.

We have also created a SoundPalette, called “Landmarks Demo” that utilizes the events
generated by two NetModules, LandmarksModule and PeriodicModule. PeriodicModule gen-
erates an event called periodic every configurable period of time. In the case of Landmarks

Demo the period is set to 20 seconds.

65

We require the latency measurement to be reported once every two seconds, and the
participants measurement is configured to occur once every thirty seconds. Arbitrary users
download and execute WISL and select the Landmarks Demo SoundPalette. When they
do so, the LandmarksModule measurements, event reporting and data collection begin. The
music representing the composer’s interpretation of the events is generated on the user’s

machine until the user chooses another SoundPalette or closes the application.

WISL

Data Collection
Server

Figure 22: Multiple instances of WISL performing landmark measurements.

Figure 22 is a depiction of nine separate instances of WISL executing simultaneously at
nine different end-user locations. (In this figure only three of the thirteen GTLD servers
are shown.) While the DCS is collecting the data and performing its calculations it logs
the information it receives. The data can then be used for subsequent analysis. In this

example, different algorithms for choosing the closest node can be tested and compared.

66

6.5 Privacy

Collecting data about a user’s network raises privacy issues. The question that must be
addressed is whether data can be collected that would make public personal data of the
users that they would prefer to keep private. The answer is that it is possible with any
software system that allows module plugins also makes it possible for unscrupulous people
to create pernicious modules. If the user installs these modules then they are subject to
whatever the creator has programmed them to do. This problem is not limited to WISL,
but any similarly extensible system. With WISL we attempt to mitigate this problem in
the following way. We make official NetModules available only on the WISL website. The
official NetModules are those that share information only about the performance of the
network services. Also, each NetModule includes a plain text description file that informs
the user exactly what data is collected. If the user objects to any of the data collection,
the NetModule can easily be removed. When unofficial NetModules are installed, it is the
user’s responsibility to ensure that data is not being collected that compromises the user’s

privacy.

6.6 Conclusion

The research goal of WISL is to overcome the problem of collecting network performance
data at end systems. It does so by building incentive to participate into the application itself.
All the functionality of WISL described above has been implemented, and WISL has been
through two major software releases. The current release is WISL 0.4. WISL is available
as an open-source software package hosted at SourceForge [5]. We are continually making
refinements in the form of bug fixes and new features. There are two demo SoundPalettes
included in the WISL package: “Landmarks Demo” and “Loss Rate Demo”.

WISL is an interesting and novel application in its own right, providing an outlet for
the imaginations of both NetModule writers and composers. To our knowledge it is the first
artistic application that will react to real-time events occurring throughout the globe. The
music generated by WISL will be different each time it is executed, and may sound quite

different in different places.

67

The choice of language for WISL — Java — has pros and cons for the network researcher.
Java was chosen to ease the task of making the application available on multiple platforms.
Working with sound devices across multiple platforms can be very difficult and error-prone.
Java in combination with JavaSound alleviates many problems, making it more likely that
end-users throughout the globe will be able to make use of WISL. Also, Java simplifies the
task of incorporating NetModules and SoundPalettes.

The choice of Java does impose limitations on the types of measurement that can be
performed. Measurements that are sensitive to timing variations on the order of a few mil-
liseconds may or may not be suitable for WISL. The extensible nature of WISL implies that
there are many possibilities for network measurement. It is anticipated that the measure-
ments most suitable for incorporation in the WISL environment will exhibit the following

characteristics:

e focus on end-user measurement

e do not require timestamping with an accuracy on a finer timescale than a few mil-

liseconds

e can provide useful data even without control over the exact number and location of

end-systems that are participating in measurement

68

CHAPTER VII

CONTRIBUTIONS

There is much about Internet operation that has yet to be discovered. Collecting data that
provides a more complete picture of the impact of Internet behavior on the end user is an
elusive, yet important goal. This thesis makes major contributions in measuring Internet
performance as experienced by the end user. It describes several different methods of data
collection and considers the tradeoffs exhibited by each method. The contributions of each

method are summarized in Sections 7.0.1, 7.0.2 and 7.0.3.
7.0.1 Using a Proxy to Measure User-Perceived Web Performance

Much of Web performance research has focused on caching, TCP performance, network
congestion and Web server performance. Our contribution to this field is the development
of a method and a tool to collect Web performance data at the end user. In the process we
described many practical issues that we encountered and our solutions to overcome those
problems.

We collected data from users in different locations and provide an evaluation of the
accuracy of our method. We provide a discussion of the tradeoffs involved in using this
method for collecting user-perceived performance data. We find that while our method
is accurate, the primary difficulty in collecting data on a wide scale is in the amount of
configuration required by the users. In our later work we pay special attention to the ease

of user configuration.
7.0.2 Diversity in DNS Performance Measures

Results from our previous work and others suggest that DNS can at times add a noticeable
delay to Web page retrievals. We observed that DNS performance studies either examined
data at the root servers, or from very few locations. This led us to consider whether

DNS performance varies from location to location. Demonstrating heterogeneity in DNS

69

performance implies that there is much work left for the networking community in measuring
and characterizing not only DNS performance.

To this end, we created a DNS measurement package that performed lookups on a diverse
set of domain names. The package provided a fine-grained view of the process of looking up
names throughout the DNS namespace. We demonstrated that DNS performance measures
that are subject to network conditions can vary greatly from location to location. We also
verified that DNS measures that are subject to administrative configuration tend to vary
very little, although we did identify some intentional variation. Furthermore, we provide
evidence that although much DNS performance work has focused on root and gTLD servers,

in practice they are not the source of problems in DNS performance.
7.0.3 WISL: An Application for User-Perceived Performance Measurement

While we were successful in our earlier work in gathering data from multiple locations, we
found that user incentive and ease of use are the primary obstacles to wide scale deployment
of our measurement packages. To address this problem we developed a novel application
whose very operation is dependent upon performing and sharing network measurements.
The application — called What the Internet Sounds Like, or WISL — detects the current
state of the network and plays sounds that are representative of the network state. For
the end user the primary uses of WISL are as a real time music generator or as a network
management tool. By providing the end user with incentive to run the application we are
able to gather data from portions of the network that we were previously unable to obtain.

Since the eventual success of the application is highly dependent upon the end user’s
musical taste, we designed the application to be highly extensible. WISL can provide the
user with many different musical “channels”, or SoundPalettes, to choose from. WISL is
also extensible at the network layer; new measurement modules can be easily incorporated

into WISL.

70

APPENDIX A

SOUNDPALETTE.DTD

<!ELEMENT soundpalette (netmoduleinit+,globalmodule*, soundmodule+)>
<!ATTLIST soundpalette
initialtempo CDATA #REQUIRED
initialenv CDATA #REQUIRED>
<!ELEMENT netmoduleinit (paramx*)>
<!ATTLIST netmoduleinit
id CDATA #REQUIRED
instance CDATA #REQUIRED>
<!ELEMENT globalmodule ((netmodule]|operator)+)>
<IATTLIST globalmodule
tempochange CDATA #REQUIRED
envchange CDATA #REQUIRED>
<!ELEMENT soundmodule (sound+, (netmodule]|operator)+)>
<IATTLIST soundmodule
id CDATA #REQUIRED
type (default) #REQUIRED>
<!ELEMENT sound
(filename, envlist, temporange, volume?, repetitions?,
noqueue?, flushqueue?, mute?, stickymodulo?)>
<!ELEMENT filename (#PCDATA)>
<!ELEMENT envlist (#PCDATA)>
<!ELEMENT temporange (#PCDATA)>
<!ELEMENT volume (#PCDATA)>

<!ELEMENT repetitions (#PCDATA)>

71

<!ELEMENT noqueue EMPTY>
<!ELEMENT flushqueue EMPTY>
<!ELEMENT mute EMPTY>
<!ATTLIST mute
modules CDATA #REQUIRED>
<!ELEMENT stickymodulo (#PCDATA)>
<!ELEMENT operator ((operator|netmodule)+)>
<IATTLIST operator
type (and|or) #REQUIRED
within CDATA #REQUIRED>
<!ELEMENT netmodule (event+)>
<IATTLIST netmodule
id CDATA #REQUIRED

instance CDATA #REQUIRED>
<!ELEMENT event (param*,listener)>
<IATTLIST event
name CDATA #REQUIRED>
<!ELEMENT param (#PCDATA)>
<IATTLIST param
name CDATA #REQUIRED>

<!ELEMENT listener (paramx)>

72

[1]

[17]

REFERENCES

“E2E piPES.” http://e2epi.internet2.edu/E2EpiPEs/overview.html.
“ICPLD.” http://icpld.northernmost.org,.

“Internet Junkbuster Proxy(TM).” http://www.junkbuster.com/ijb.html.

“Keynote.” http://www.keynote.com/keynote_method /keynote_method methodology.html.

“SourceForge.” http://sourceforge.net.

“Top9.com.” http://www.top9.com/.

“WebPert.” http://www.webperf.org.

AILLERET, S., “Larbin.” http://larbin.sourceforge.net/index-eng.html.

AKELLA, A., SESHAN, S., and SHAIKH, A., “An empirical evaluation of wide-area
internet bottlenecks,” in Proceedings of the ACM SIGCOMM Internet Measurement
Conference, pp. 101-114, ACM Press, 2003.

AvLLMAN, M., BLaNTON, E., and EDDY, W., “A scalable system for sharing internet
measurements,” in Proceedings of the Passive and Active Measurement Workshop, (Fort
Collins, Colorado), March 2002.

BALAKRISHNAN, H., STEMM, M., SESHAN, S., and KATz, R. H., “Analyzing sta-
bility in wide-area network performance,” in Measurement and Modeling of Computer
Systems, pp. 2-12, 1997.

BARFORD, P. and CROVELLA, M., “Critical path analysis of TCP transactions,” in
Proceedings of ACM SIGCOMM, pp. 127-138, 2000.

BERNSTEIN, D. J., “djbdns.” http://cr.yp.to/djbdns/notes.html.

BROWNLEE, N., CLAFFY, K., and NEMETH, E., “DNS measurements at a root server,”
in Global Internet 2001, November 2001.

CLARK, D. D., “The design philosophy of the DARPA internet protocols,” in SIG-
COMM, (Stanford, CA), pp. 106-114, ACM, Aug. 1988.

CoOHEN, E. and KAPLAN, H., “Prefetching the means for document transfer: A new
approach for reducing web latency,” in Proceedings of the IEEE INFOCOM 00 Con-
ference, 2000.

COHEN, E. and KAPLAN, H., “Proactive caching of DNS records: Addressing a perfor-
mance bottleneck,” in Proceedings of the Symposium on Applications and the Internet

(SAINT), pp. 85-94, 2001.

73

[18]

[24]

[25]

[26]

CRANOR, C. D., GANSNER, E., KRISHNAMURTHY, B., and SPATSCHECK, O., “Char-
acterizing large DNS traces using graphs,” in Proceedings of the ACM SIGCOMM
Internet Measurement Workshop, November 2001.

CROVELLA, M. and BESTAVROS, A., “Self-Similarity in World Wide Web Traffic: Ev-
idence and Possible Causes,” in Proceedings of SIGMETRICS’96: The ACM Interna-
tional Conference on Measurement and Modeling of Computer Systems., (Philadelphia,
PA), May 1996. Also, in Performance evaluation review, May 1996, 24(1):160-169.

CuNHA, C., BESTAVROS, A., and CROVELLA, M., “Characteristics of World Wide Web
Client-based Traces,” Tech. Rep. BUCS-TR-1995-010, Boston University, CS Dept,
Boston, MA 02215, April 1995.

Danavis, A. and DovroLis, C., “ANEMOS: An Autonomous NEtwork MOnitoring
System,” in Proceedings of the Passive and Active Measurement Workshop, (La Jolla,
CA), April 2003.

Danzig, P. B., OBrACzKA, K., and KUuMAR, A., “An analysis of wide-area name
server traffic: A study of the domain name system,” Proc. of the ACM SIGCOMM
’92, January 1992.

Erz, R. and BusH, R., “RFC 2181: Clarifications to the DNS specification,” July
1997.

Erz, R., BusH, R., BRADNER, S., and ParTON, M., “RFC 2182: Selection and
operation of secondary DNS servers,” July 1997.

GROSSGLAUSER, M. and KRISHNAMURTHY, B., “Looking for science in the art of
network measurement,” in IWDC, pp. 524-535, 2001.

GumMmADI, K. P., SAROIU, S., and GRIBBLE, S. D., “King: Estimating latency
between arbitrary internet end hosts,” in Proceedings of the SIGCOMM Internet Mea-
surement Workshop (IMW 2002), (Marseille, France), November 2002.

HAFNER, K. and LyoN, M., Where Wizards Stay Up Late : The Origins of the Inter-
net. Touchstone Books, 1996.

JuNg, J., SiT, E., BALAKRISHNAN, H., and MORRIS, R., “DNS performance and the
effectiveness of caching,” in Proceedings of the ACM SIGCOMM Internet Measurement
Workshop, 2001.

KALIDINDI, S. and ZEKAUSKAS, M. J., “Surveyor: An infrastructure for internet
performance measurements,” in Proceedings of INET ’99, (San Jose, CA), June 1999.

KoLETsou, M. and VOELKER, G., “The medusa proxy: A tool for exploring user-
perceived web performance,” June 2001.

KRISHNAMURTHY, B. and REXFORD, J., Web Protocols and Practice: HTTP/1.1,
Networking Protocols, Caching, and Traffic Measurement. Addison Wesley, 2001.

LOCKYER, K., An Introduction to Critical Path Analysis. New York:Pitman Publishing
Company, 1964.

74

[33]

[34]

[35]
[36]

[40]

[41]

[42]

[43]

MOCKAPETRIS, P. V., “RFC 1034: Domain names — concepts and facilities,” Nov.
1987.

MocCKAPETRIS, P. V., “RFC 1035: Domain names — implementation and specifica-
tion,” Nov. 1987.

PaxsonN, V., Abawms, A., and MATHIS, M., “Experiences with NIMI,” 2000.

PaxsoN, V., MAHDAVI, J., ADAMS, A., and MATHIS, M., “Creating a scalable archi-
tecture for internet measurement,” IEFE Communications, vol. 36, pp. 48-54, August
1998.

RAaTNASAMY, S., HANDLEY, M., KARP, R., and SHENKER, S., “Topologically-aware
overly construction and server selection,” in Proceedings of the IEEE INFOCOM 02
Conference, 2002.

SHAIKH, A., TEWARI, R., and AGRAWAL, M., “On the effectiveness of DNS-based
server selection,” in Proceedings of IEEE Infocom, April 2001.

SiMPSON, C. R. and RILEY, G. F., “NETIQhome@home: A Distributed Approach
to Collecting End-to-End Network Performance Measurements,” in Proceedings of the
Passive and Active Measurement Workshop, (Antibes Juan-les-Pins, France), April
2004.

SPRING, N., WETHERALL, D.; and ANDERSON, T., “Scriptroute: A public internet

measurement facility,” in USENIX Symposium on Internet Technologies and Systems
(USITS), 2003.

TIERNEY, B. L., GUNTER, D., LEE, J., STOUFER, M., and EVANS, J. B., “Enabling
network-aware applications,” in HPD(C-10, August 2001.

WiLLs, C. and SHANG, H., “The contribution of DNS lookup costs to web object
retrieval,” Tech. Rep. TR-00-12, Worcester Polytechnic Institute, July 2000.

WiLLs, C. E., MIKHAILOV, M., and SHANG, H., “Inferring relative popularity of
internet applications by actively querying DNS caches,” in Proceedings of the ACM
SIGCOMM Internet Measurement Conference, October 2003.

75

