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APPLICATION OP THE HYDRAULIC ANALOGY TO STUDY THE PERFOR'tANCE 

OF THREE AIRFOILS AT SUBSONIC AND SUPERSONIC SPEEDS 

SUGARY 

Two British airfoil profiles were tested in the Georgia 

Institute of Technology twenty foot by four foot Water Channel at 

subsonic and supersonic speeds over a range of angles of attack. 

A third profile, the Italian G. U. U, was tested at the same super

sonic speed and angles of attack previously used in a water channel 

examination of the G. V* k airfoil. The chord was increased by a 

hundred per cent in this investigation in order to study the effect 

of Reynolds Number. The water depth distributions for the three 

profiles were obtained by the probe method. Through application of 

the hydraulic analogy, pressure distributions were obtained from the 

water depth distributions, and lift, drag, and moment coefficients 

were in turn obtained from the pressure distributions by integration. 

These airfoil aerodynamic characteristics were compared to -wind tunrel 

and theoretical results for the three profiles in air. 



INTRODUCTION 

Theoretical work on the analogy between flow of water -with 

a free surface and compressible gas flow was first presented fcy 

Riabouchinsl<y in 1932• Since that time, further extensions of this 

theory and practical applications have been made by such leaders in 

2 3 
the field as Ernst Preiswerk, Binnie and Hooker in England, the 

National Advisory Committee for Aeronautics,^ and North American 

Aviation Incorporated* Preiswerk's proof and explanations of the 

application of gas dynamics methods to the flow of water with a free 

surface are probably the foremost in the field. He conclusively 

proved the validity of the hydraulic analogy as it stands today* 

North American Aviation and the National Advisory Committee 

for Aeronautics were leaders in experimental applications of the 

1 
D. Riaboucninsky, Mechanique des fluides. Comptes Rendus, 

195, 1932, pp. 990-999. 
2 
Ernst Preiswerk, "Application of the Methods of Gas dynamics 

to Water Flows witn a Free Surface11. 
Part 1. "Flows with No Energy Dissipation". NACA TM No. 93U, 

19li0#  
Part 2. "Flows with Momentum Discontinuities." NACA TM No. 

935, 19li0. 
3 
A. M. Binnie, and S* G. Hooker, "The Flow Under Gravity of an 

Incompressible and Inviscid Fluid Through a Constriction in a Horizon
tal Channel", Proceedings of tne Royal Society. Vol. 1J?9 (London, 
England) 1937. pp* 592-608; * *L 

James Orlin, Norman J. Linder, and Jack G. Bitterly, "Appli
cation or tiie Analogy Between Watern Flow with a Free Surface and 
Two-Dimensional Compressible Gas Flow". NACA TN No. 1185, 19U7. 

Arthur Kantrowitz, "The Formation""ancT Stability of Normal 
Shock Waves in Channel Flows". NACA TN No. 1225, 19U7. 

J. R. Bruman, "Application of the Water Cnarmel-Compressible 
Gas Analogy". North American Aviation Incorporated, Engineering 
Report NA-U7-07, 19UY. 
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hydraulic analogy. Their work indicated that with the proper equip

ment and methods, accurate quantitative as well as qualitative re

sults could be expected from water channel experiments. These 

theoretical and experimental developments have led to a very conven

ient and quite satisfactory means for conducting aerodynamic invest

igations. This method is particularly useful in compressible gas 

study when no supersonic or high speed wind tunnels are available. 

WorK with the analogy at the Daniel Guggenheim School or 

Aeronautics was coitMenced by John Hatch in 19U8» He constructed 

a water channel for the purpose of making investigations relative to 

high speed aerodynamics, and carried out some preliminary tests with 

the equipment which demonstrated the considerable possibilities 

pointed out in previous work. Further testing, with some alteration 

of equipment, was undertaken by John Uatchpole in V)k9* 

Some of the advantages obtained through application of the 

hydraulic analogy and use or the water channel may be summarized as 

follows: 

(1) The relative cost is ±cw compared with wind tunnel or 

flight tests. 

(2) Visual observations lor the purposes of researcn or in

struction of such phenomena as shock wave formation, vortices, 

5 
John £• Hatch, "The Application of the Hydraulic iuiaiogies to 

Problems of Two-Dimensional Compressible Gas Flow"* Unpublished 
Master's thesis, Georgia Institute of Technology, Atlanta, ±9U9» 

1 
Eric John Gatchpole, "Application or the Ifcrdrauiic Analogy to 

Study the Performance or two Airfoils in Compressible Flow". Un
published Master1s thesis, Georgia Institute of Technology, Atlanta, 
19h9. 



turbulence, ana now pattern are possible. These same characteristics 

iiiay also be pnotograpfted. 

(3) High supersonic Macn numbers are obtained at model speeds 

of a few i'eet per minute* 

(U) Any teacn number may be acnieved by a simple speed setting 

while a nozzle cnauge is required in "wind tunnel work* 

(£) Since no elioKing can occur, transonic observations are 

just as simple as for subsonic and supersonic speeds in the movable 

model type of water channel. 

The present investigation is largeley concerned with (5) above, 

since most ofthe tests were conducted at Mach numbers close to 

unity. Supersonic and subsonic test results have proved the water 

channel experimental values to be reliable. By virtue of this fact, 

it is expected than the transonic water channel results will also 

be reliable. In partial fulfillment of these requirements, two of 

the three models used were tested in the transonic range in the 

Georgia Tech Water Channel. Much more than necessary attention was 

paid to the accuracy of water channel results and procedures for 

application to air flow as compared with other experimental and the

oretical results and procedures. 
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THEORY 

The theory or the hydraulic analogy as presented by Ernst 
a 

Preiswerk0 -will be reviewed here. 

This tteory of the analogy between water flow vdth a free sur-

face and two-dimensional compressihle gas flow depends on the follow

ing assumptions: 

(1) The flow is irrotational. 

(2) The vertical acceleration of the water is negligible com

pared with the acceleration due to gravity so that pressures in the 

fluid depend only on the heighth of the Tree surface above the point 

in question. 

(3) There are no viscous losses, thus excluding the conversion 

of energy into heat or internal energy. 

The energy equations for water and for gas give the relations 

shown below in terms of velocity. 

For water this equation gives 

V^dx & Vl^do 
and for gas 

v*= £9 t> (TaS\) 

Vfno* = V^Cj Cp T^, 

It can be seen that V/Vj^^ lor water and air are equal if 

To_T ~ do- (j, 
T do 

or, if 

do T. ' 

5-
Ernst Preiswerk, op. cit. 



This comparison of water depth r a t i o , d/dQ, to the gas tem

perature r a t i o T/T0, in the consideration of veloci ty i s the i i r s t 

step i n the proof of the analogy* 

The equations of continuity are now compared. For steac^r 

two-dimensional gas flow, t h i s equation i s 

dCud +- 3 0/g>- o 

and for water 

dCud) + a>(vd)= 0, 
dK ~~%V~ 

From these equations, a further step in the analogy is evolved as 

4->&-0o **' (2) 

;By comparing equations (1) and (2), it is seen that tne analogy 

nolds only if the following equation is satisfied by the gas in ques

tion. 

I /-> 

However, the temperature and pressure of the gas must also conform 

to the principles of the adiabatic relation (assumption (3)) 

An inspection of equations (3) and (U) reveals that they are 

simultaneously only ir \f=*2. 

Thus, the flow of water is analogous to the flow of a gas hav

ing £ ~ 2# Since o' ror air is 1«U, this appears to be a rather loose 



comparison. However, many characteristics of gas flow do not depend 

strongly on ft • Tne significance of this statement will be further 

illustrated. 

Consider now the adiabatic relation and the preceding number

ed equations, 

O oA 

or 

E = (AX 
(5) 

The d i f f e ren t i a l equation of the veloci ty po ten t i a l for water 

i s as follows: 

<Pn 0 - & L " ) •+- <PyY (I- <b?) - * <P*V <Px(Py-. O 
did,/ a,4 J q d 

(6) 

9<* 

and the corresponding equation for gas i s 

<£u 0 - ®<t) +- 4V/ 0 - &£)--z<hY <£L&^ O. (7) 
cT/ <s> / d * 

Equations (C>) and (7) are identical if 

g^ _ qt 
^3 d0 A3^o 

From this relation it is seen that Vgd corresponds to the pressure 

propagation velocity or velocity of sound, a, in gas flow. The ex

pression y/gd is the basic wave propagation velocity in shallow 

water with a free surface as proved ty Leign Page." 

9 
Leigh Page, Introduction t o Theoretical Physics. D. Van 

Nostrand Co., I n c . , ly^o, pp . 2JL0-2<diu 



In water flowing at speeds above ̂ gcT , the velocity of the 

flow may strongly decrease for short distances and the depth may in

crease. An unsteady Motion of this type is called a hydraulic jump, 

and corresponds to a shock wave in a gas. 

This completes the analogy which is summarized in the following 

table of corresponding quantities and characteristics. 

Two-Dimensional Compressible 
Gas Flow, fc=2 

1 Analogous Liquid Flow 

Temperature r a t i o , T/TQ Water-depth r a t i o , d/dg 

Density r a t i o , ^//^ Water-depth r a t i o , d/dQ 

Pressure r a t i o , p / p 0 Square of water-depth r a t i o 

•wl Velocity of sound, a = \ffp~ Wave veloc i ty , \fg(i 

Mach number, V/a Mach number, V/y|cT 

Shock wave Hydraulic jump 

The application of the analogy as it will be used in this in

vestigation is as follows: 

The Mach number of the free stream may be calculated as 

\[$4S 

(8) 

The standard equation for the pressure coefficient at any 

point on an airfoil is defined in the supersonic case as 

CP= Pt_ R, (9) 

M vf 

file:///ffp~


10 
and in the subsonic case as 

Since 

%s - I 

±f*v 

(10) 

equation (9) s implif ies to 

irft-D 
From equation (5) 

H. . 

Tfterei'ore, in the present consideration, }f=2.0, equations (9) 

and 10) evolve as 

ID 

O - J 
Mf BH 

and 

Cp= Fc (t) i 

ttr-> 

(11) 

(12) 

TD" 
James Orlin, Noriian J . I inder , and Jack G« B i t t e r l y , "Appli

cation oi* the Analogy Between 'water Flow with a Free Suri'ace and 
Two-Dimensional Compressible Gas Flow"* KACA TM la* 118£, 19^7. 



The compressibility factor i'or a compressible gas is 

Fc=fe|+V^'-'-L) 
Since the hydraulic analogy requires that &~ 2.0, the compressibility 

Tactor simplifies to 

Thus, by virtue of tJae hydraulic analogy, applicable equations 

for the pressure coefficients from which all airfoil characteristics 

data is obtained are set forth. 



EQUIPKEHT 

There are two types of water channels suitable for application 

of the hydraulic analogy. The least expensive of these two is the 

type in which the model is moved through static water. The other 

arrangement is one in which tne model remains stationary wnile water 

flows past it. The former is in use at Georgia Teen and the Aero-
11 

physics Laboratory or North American Aviation, Incorporated while 

the latter is employed by the National Advisory Committee for Aero-

12 
nautics at Langiey Field, Virginia. 

Other advantages of the movable model type include easy 

acceleration of the flow, simple construction, and no boundary layer 

effect from the sides and bottom of the channel. Its biggest dis

advantage, which is not present in the stationary model arrangement, 

is the difficulty of measuring the water depth along the model. 

A general view of the water channel is shown in Figure 1. The 

frame is of bolted structural steel supporting ̂ a channel four feet 

wide, twenty feet long, and approximately one and one fourth inches 

in depth. The bottom of this channel is or plate glass in two rive 

foot sections and one ten foot section. The transverse steel members 

are spaced at thirty inch intervals and are supported by screw jacks 

enabling the glass surface over which the model slides to be leveled 

II 
J. R. Bruman, op. cit. 

12 
James Orlin, Norman G. Linder, and JacK G. Bitterly, op. cit. 



within 0.001 inch at all points* This leveling is accomplished 

through use of a depth gage5 this instrument is also used before 

each run to determine the static depth of the water in the test sec

tion within 0.000J? inch. 

A drain is provided at one end or the cnannel. 

The model carriage is of welded steel tubing construction. It 

is moved along the channel on four rubber wheels which transier the 

weight of the carriage "Do the upper horizontal steel members of the 

frame, serving also as rails. Four rubber wheels with vertical axes 

located at the carriage frame corners prevent £ny relative sidewise 

motion of the carriage. The model is supported ahead of the car

riage by a vertically free acting mount producing the towing force 

and permitting the model weight to act on the channel bottom. Tins 

mount is also radially adjustable and calibrated in order that the 

angles of attack can be measured accurately. Safety stops are plac

ed at the ends of the carriage track to prevent overrunning of car

riage and model. 

The carriage is driven by a one-quarter horse-power, single 

phase, alternating current electric motor through a 3/32 inch 

continuous steel cable. A reversing mechanism and a "Speed-

Ranger" device enable control of motion in eitner direction and at 

varied speeds. An auxiliary power unit is available for high speed 

and accelerating and decelerating runs. This consists of a 19«5 amp, 

2U volt direct current series wound motor which drives the cable 

through a set of reduction gears. 

Tne combination of these two drive units provides speeds of 



from 0.£ to $.$ feet per second. A photograph of the drive mechanism 

is shown in Figure 2. 

The correct timing for accurate speed adjustment of the model 

is accomplished by means of a microswitcn placed on the track, A 

cam 2.925> feet in length attached to the carriage trips this switch 

which automatically operates an electric timer. The timer is lo

cated on the control panel above the -water channel. This panel also 

contains tiie instruments and switches for starting, reversing, and 

operating the drive mechanism* 

Vtfien experimental work was first begun in the Georgia Tech 

Water Channel, photographs were tafcen of the models to determine the 

water depth distribution around the model. The method and equipment 

13 

used in this work are described by Hatch. •* Photographic interpre

tation of tnese results was not particularly accurate so another meth

od of measuring water depth was developed. 

The model is fitted vilth a plexiglas bx-acket from wiiich are 

suspended steel needle probes alongside the upper or lower surface of 

the model at intervals of 0.1 chord and 0.1 inch out from the model 

surface. These probes are attached to adjustable brass screws which 

are screwed into brass bushings fitted into the plexiglas bracket. 

Copper contacts are provided for each probe. Contact of the probe 

with the water completes the grid circuit of a vacuum tube causing 

a relay to operate a signal light. As the model is moved through 

the water, the probe is adjusted vertically until it just touches the 

water. The status of the signal light determines the contact position 

13 
Hatch, op. cit. 



of the probe point and the water surface. This is done for each of 

the probes and the water depths are then measured by means of a 

heighth gage and surface plate to within an accuracy of 0*001 inch* 

A photograph of one of the models with the probes in place is pre

sented in Figure 6. 

Although no photographs were taken for the purpose of experi

mental data, Figure 7 was included to show the flow pattern from the 

bi-convex model in motion in the water channel* 

The models were chosen because of the availability of both 

subsonic and supersonic wind tunnel data* The models and a brief 

description are as follows: 

Ik 
(1) Faired double wedge airfoil, 8.7 per cent thick* The 

model was constructed of lacquered hard brass and had a 12 inch chord. 

A descriptive diagram is shown in Figure 3. 

(2) Symmetrical bi-convex airfoil, Y*5 per cent thick. This 

was also constructed of lacquered hard brass and had a 12 inch chord. 

A diagram is presented in Figure U* 

(3) Triangular G. U. h airfoil, 6.1 per cent thick. The 

model was constructed of shelacked mahogany and had a zk inch chord. 

This model is shown in Figure 5* 

38 
W. F* Hilton and F* W. Pruden, "Subsonic and Supersonic 

High Speed Tunnel Tests of a Faired Double Wedge Aerofoil". BARC R&M 
No. 2057, 19U3* 

15 
W* F. Hilton, "Subsonic and Supersonic Tests on a 7*5 per cent. 

Bi-convex Aerofoil"• BARC m^ No. 2196, 19l4±. 

Antonio Ferri, "Experimental Results with Airfoils Tested in 
the High Speed Tunnel at Guidonia". HACA TM No. 9k6, 19ij0. 
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PROCEDURE: 

A test run was conducted for both the upper and lower surfaces 

of the model at each angle of attack and each Mach number. The car

riage speed was adjusted in accordance with the Mach number, the 

static water level adjusted to the proper depth, and the desired angle 

of attack set before each of these test runs. The probes were adjust

ed during the tests by trial until they indicated the local depths 

alongside the model. These depths were measured and recorded for fu

ture use in calculating the pressure coefficients. The equipment 

used to accomplish these tests has been described in the previous 

section• 

TESTS CONDUCTED: 

The following tests were conducted at a static water depth of 

0.2530 inch under the conditions described below. 

Faired Double Wedge Airfoil 

M =*• 1.U5 °^=-5, -U, -2, 0, 2, h degrees 

M == 1.21 AC—-5, -1*, -2, 0, 2, k, 5 degrees 

Bi-convex Airfoil 

M — 1.25 «*•• -U, -2, 0, 2, h, degrees 

G. U. h Airfoil 

M = 2.13 °C=- -2, 0, 2, 6 degrees 

The tests conducted at a static water depth of 0.75^ inch were: 



Faired Double Wedge Airfoil 

M=0.80 0L- -2, 0, U, 7 degrees 

BJ-convex Airfoil 

V = 0.80 OC - -l*,-2, 0, 2, U degrees 

16 
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COMPAEIS 5 M D DISOUSdIOH 

2ach, of the airfoils tested will be discussed separately which 

will involve some re :o tit ion but allow a more thorough coverage. 

Faired Double ./edr'e airfoil 

This airfoil was tested as described in the previous section* 

A sample calculation for the pressure coefficient and also the 

corrected pressure coefficient is presented in Table I of Appendix I. 

All of the pressure coefficients as calculated by Equation 9, using 

^ = 2.0, were corrected to tf— 1.4 by means of a correction procedure 

deduced from Figure 1 of the National advisory Committee for Aero-

17 nautics Technical Note 1185. Results were obtained for both 

*%= 1.4 and £.0 by integrating the plotted pressure distributions, 

examples of which are shown in Figures 8, 9, 10, and 11. 

Values of lift, drag, and moment coefficients are shown in 

Table II and plotted in figures 15, 16, 17, 18, 19, £0, 21, 22, and 

2C-. i'hese plots present both the corrected and uncorrected measursd 

values in comparison with wind tunnel tests and either the Busemann 

or extrapolated .icireret theory when applicable. 

Figures 8 and 10 represent tha supersonic caordwise pressure 

distribution as being typical of the plots obtained for this air

foil. Figure 9 represents a typical supersonic thicknesswise pressure 

distribution and Figure 11 the subsonic chordwise pressure distribution. 

__ 

James O r l i n , "Gorman b i n d e r , and Jack b i t t e r l y , op . c i t . 
18 

.-«'• F . H i l t on and F . ,'/. Pruden. op . c i t . 



Since there is no means for direct comparison of these plots to 

either wind tunnel or theoretical results, only a general discussion 

can be presented. 

Figure 10 shows a small unexpected pressure peal; for the lower 

surface at approximately 0.30 chord. litis may probably be attributed 

to a bow disturbance of approximately 2.5 inches width, centering 

at the leading edge, which invalidates assumption (£) of the theory 

concerning negligible vertical accelerations at that point, discrep

ancies are also noticeable in approximately tne same location in Figure 

8. k similar sharp breaking peak occurs at about 0.75 chord for the 

upper surface in Figare 8 and is believed to have been caused by expan

sion waves aft of the point of maximum taickness. Although a positive 

increase is expected in the pressure coefficient close to the trailing 

;d;
r:e, it is unlikely that it increases as rapidly as is evidenced in 

particular by the lower surface in Figure 8. It is very possible that 

a separation of the flow in this neighborhood occured whioh caused this 

increase. If that be the case, the pressure distribution will correspond 

more closely at the trailing ed.ge to a wind tunnel plot than to a theo

retical plot. 

Figure 9 requires no particular discussion since a thickness 

pressure plot is not suitable for discussion as to trends arid effects. 

As is to be expected, the chordwlse pressure distribution for 

Mach number of 0.8 is smoother in shape than for the supersonic plots. 

The negative pressure peaks occur at the approximate location of the 

points of reflex for the upper and lower surface, but the steep slope 

of the curves toward the trailing edf?:e definitely indicates separation 
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of the flow. A positive peak also occurs at about 0.25 chord which is 

partially caused by the bow disturbance, again invalidating assumption 

(2) of the theory at this point. 

A alight clockwise tilting of the water level about the half 

chord, more noticeable in the deeper water subsonic tests, produces 

a slight gradient error in the probe readings which produces larger 

pressure coefficients for the forward half of the chord and saaller 

coefficients for the aft half. It is believed by the writer and other 

observers that this gradient error is a function of local velocities and 

friction of the water on the model. 

The corrected pressure coefficient curves seem to follow the 

^=•2.0 coefficient curves with little deviation, but a closer scrutiny 

shows small differences which reveal themselves in the lift, drag, and 

moment results. 

It is believed that th re is a basic error of very small con

sequence in the equipment and procedure setup which will affect the 

pressure distribution slightly. Shis will be discussed in a later 

section. 

A review of Figures 15 through 23 reveals that the water channel 

results follow the correct trends and with a few exceptions, the quan

titative agreement with the theoretical and wind tunnel results is good. 

An occasional "wild" point such as theQ(=0o point of Figure 16, ot= 2° 

of Figure 19, and <*.-= 4° of Figure 23 is noted. Since the agreement 

is generally close, these points are apparently effects of human error 

and technological inconsistencies. Particularly good results are noted 
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for the lift comparisons with the greater deviations occuring at the 

larger angles of attack for all of the coefficient presentations. 

It is seen that the 16 correction is of notable importance since 

it corrects the experimental results in the right direction almost 

without exception. Although this correction is usually small, it is 

definitely a step in the right direction. 

l'he corrected values approach the theoretical curves more closely 

than to the wind tunnel results which is in opposition to the findings 

19 
of Catchpole's inves t iga t ions . However, agreement between analogous 

resu l t s and theore t ica l r e su l t s i s to be expected since nei ther theory 

nor water channel calculat ions include viscosi ty effects which do appear 

in wind tunnel t e s t r e s u l t s . 

3i-Convex Air fo i l 

The t e s t s and methods of calculat ing r e su l t s are the same for 

t h i s a i r f o i l as for the faired double wedge a i r f o i l . A summarization 

Of the t e s t coefficients is presented in iable I I I of Appendix I and the 

corresponding curves appear as Figures £5 through £9 where they are 
©A 

compared to wind tunnel r e su l t s and extrapolated Ackeret theory when 

appl icable . 

A typica l thiclaiess pressure d is t r ibu t ion is shown for a Liach 

number of 1.25 in F&ga*e IE. I'he effect of trie o correction i s plainly 

evident in t h i s case since the area ov r the lower surface i s larger 

19 
John Catchpole. op. cit. 

20 
./• h'-. Hilton, op. cit. 



in the case of 16 = 1 . 4 than for ^ = 2.0. The subsonic chordwise pressure 

d i s t r ibu t ion of Figure 13 i s very similar to the subsonic pressure d i s 

t r ibu t ion for the faired double wedge a i r f o i l with the same trensd a t 

the leading and t r a i l i n g edge. However, the decrease in pressure coeff i 

cient at the t r a i l i n g edge i s not as noticeable as in Figure 11 . 

Figures £4, 25, and £6 show that the water channel r e su l t s follow 

the correct trends with very good quanti tat ive agreement in the case of 

l i f t and moment. However, i t i s noted that the experimental r e su l t s 

approach wind tunnel values more closely than to the theore t ica l curves, 

This may be coincidental since the ,,'ind tunnel and theore t ica l curves 

are also in r e l a t ive ly close agreement and t tie re are several chances 

for error in obtaining toe f inal experimental values. The ft correction 

serins to affect only the drag coefficients in any appreciable c*mo,mt. 

I t i s believed that the close su^parsonic quant i ta t ive Li.*;reemeiit, espe

c ia l ly in the case of the moment coefficients whioh are d i f f icu l t t-, 

obtain accurately, i s a resul t of the small flow deflection angles for 

tne model. 

F i b r e s 27, ZSt and 29, which represent the subsonic invest

iga t ions , reveal desirable qual i ta t ive agreement but the quant i ta t ive 

r e su l t s are not _s good as in the Cc.se of the supersonic comparisons. 

This may be explained by a previous assumption that there i s a more 

active separation of flow close to the t r a i l i n g edge at t h i s high spe^d 

"streaming" condit ion. I t has been a general observation that be t te r 

r e su l t s are obtained at the lower angles of a t tack . Since th^re would 

be a greater tendency for flow separation and other flow inconsistencies 

Cc.se


to occur at the higher angles of attacfc, i t would appear that th is 

assumption of flow separation i s va l id . 

& . U . 4 Airfoi l 

As was s tated in a previous section, the main purpose of the 

experiments on t h i s a i r f o i l i s a Reynolds ft umber consideration* Tests 

21 were conducted by Catchpole on t h i s same prof i le a t the Mach number 

used in the present invest igat ion. However, the chord was increased 

by 100 per cent to give a basis for Reynolds number comparison. 

The tes t coefficients for th i s a i r f o i l are compiled in Table 

IV of Appendix I and are depicted graphically in Figures 30, 31, and 32 

22 as comparisons to F e r r i ' s wind tunnel balance t e s t s at Guidona and 

calculat ions based on the "exact" theory. 

The Reynolds number used in F e r r i ' s wind tunnel t e s t s at Guidonia 

was approximately 720,000 while Catchpole's t e s t s were conducted at a 

Reynolds number of 203,000 calculated for a water temperature of 36°F. 

The invest igat ions presented herein were made a t twice the previously 

used number of 203,000 or 406,000. This approaches the Guidonia Reynolds 

number near enough for there to be only small discrepancies in r e su l t s 

as far as Reynolds number effects are concerned. 

A sample pressure coefficient plot i s presented in Figure 14 

21 
John Catclnoole. op. c i t . 

22 
Antonio F e r r i , "Experimental Results with Airfoi ls Tested in 

the High Speed Tunnel at Guidonia". SAGA gg 3To. 946, 1940. 



along with a theore t ica l pressure d i s t r ibu t ion for tf= 1.4 and y— £.0 

using Busemann's parabolic formula.^ A similar observation as to the 

effect of the bow disturbances on the pressure coefficient for the 

f i r s t portion of the a i r f o i l i s noted for th is a i r f o i l as for the faired 

double wedge p ro f i l e . A s l ight increase of both the upper and lower 

surface pressure coofficients toward the t r a i l i n g edge indicates the 

effect of flow separation, Ih i s effect i s more pronounced at the higher 

angles of a t tack pressure d is t r ibu t ions which a r e n ' t presented in th i s 

t h e s i s . The lower surface coefficients are somewhat higher than expected 

and suggest & basic er ror in method. 

Figures 30, 31, and 32 reveal the correct trends with fa i r 

quant i ta t ive agreement noticed for drag and moment and a bet ter compar

ison for the l i f t coeff ic ients . The tendency for the coefficients to 

approach theore t ica l r e su l t s i s even more noticeable for t h i s prof i le 

than for the faired double wedge a i r f o i l , 2nis i s pa r t i cu la r ly evident 

in Figure 31, where the t e s t r e su l t s depart from wind tunnel values 

considerably and follow the same path as Busemann's theory. 

A comparison of the resu l t s obtained in th i s invest igat ion with 

the Catchpole's r e su l t s indicates an approximate avorage of 25 per cent 

closer quant i ta t ive agreement with theory and wind tunnel for the 

higher Reynolds number t e s t s . However, a l l of the r e su l t s obtained 

and presented in th i s invest igat ion have been generally bet ter than 

23 
2 . ^r thur Bonney, "Aerodynamic Character is t ics of Rectangular 

Wings at Supersonic Speeds". Journal of the Aeronautical Sciences. 
Vol. 14: 1947, pp. 110-116 
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those of previous investigations due to Improved Methods of experimen

tation and study, Nevertheless, since this model was constructed of 

mahogany which is not as conducive to good flow conditions or as accurate 

in construction as a brass model, it is very litely that the higher 

Reynolds number effect was an aid in securing better results. 

General Discussion 

The results obtained in this investigation surpassed expect

ations as to both their quantitative and qualitative accuracy in agree

ment with theoretical and wind tunnel values. The trends are almost 

without exception correct and seem to adhere more closely to the paths 

followed by theory waich, as has been previously explained neglects 

the effects of viscosity. The several new experimentation methods and 

techniques which have been incorporated since previous investigations 

are responsible for these improved test results. 

The most consistent discrepancies in test coefficients occured 

in the drag considerations. This is easily explained in that an 

Integration of the thickness wise pressure distriDution for the deter

mination of the drag coefficient is an approximation at best due to 

the nature of the points which fall in close proximity to each other 

In an inconsistent pattern. However, this method is sufficiently accu

rate to indicate general results. 

The nature of Equation (11) of the theory section, Ct>-=_L WiA -̂ i I 

is such that it can be seen that a small error In the measurement of 

dl> ^s* o r Ivls c a n P 1 " 0 ^ 1 1 0 6 a considerable error in C^. Also, the 



technique bj which the 0 correction for 0^ i s obtained possesses 

p o s s i b i l i t i e s of error• However, the methods of measuring Ms, &]_, and 

dg have been improved to the point where there should not be any er rors 

of lar^e consequence in Cp. Kor should the errors in the corrected 

Op be great since i t depends on the or ig ina l V=-E.O Cp and values taken 

from Figure 1 of the national Advisory Committee for Aeronautics 

Technical Eote 11S5. In spi te of these new and improved techniques, 

there i s s t i l l the probabil i ty of small e r rors in the determination of 

the coefficient of pressure for both tf=-2.0 and 1.4, contributing to 

the fact that some of the water channel l i f t curve slopes presented 

here, with the slopes of the theore t ica l l i f t curves indicates an 

approximate ? per cent average er ror with the largest discrepancy of 15 

per cent occuring for the biconvex prof i le at a UJach number of 1.25. 

A similar comparison for the slopes of the moment curves reveals an 

e r ror of approximately 15 per cent . A consideration of the agreement 

between the quanti tat ive experimental and theore t ica l drag coeff icients 

shows a very general average error of about 14 per cent . 

Although Busemann's theory gives an approximate constant e r ro r 

in the change of )J from 1.4 to 2.0, the error in , for example, the 

l i f t coefficient for the G. U, 4 a i r f o i l at M = 2.13 and 0° i s approx

imately 30 per cent because of the small absolute value of the l i f t 

coefficient at t h i s point . The percentage error drops to a much smaller 

value at the higher angles of a t tack where the absolute value of tne 

l i f t coefficient i s re la t ive ly l a rge . The importance of the V correct ion 



for t es t r e su l t s i s evident since most supersonic f l igh t work wil l be 

conducted at low angles of a t t ack , A general resume of the presented 

performance curves indicates tha t t h i s f i r s t attempt a t a correction 

has been succussful in that i t has improved the qual i ta t ive trends of 

the curves somewnat and has been a pa r t i cu la r improvement in quanti

t a t ive r e s u l t s . The increments in coefficient values brought about by 

the change from Y=2.0 to 1.4 are reasonably consistent ly of the same 

magnitude for any one curve as i s expected since the increments calcu

la ted from Busemann1 s formula are approximately of the same value a l s o . 

A general fa i l ing of the hydraulic analogy is the fact that i t 

only takes into account normal pressures in the determination of l i f t , 

drag, and moment coeff ic ients , whereas shear effects are neglected. 

This factor contributes to the generally closer agreement between 

water channel t e s t r e su l t s and theore t ica l values than between water 

channel t e s t r e su l t s and wind tunnel data which, of course, takes into 

account viscosity e f fec t s . 

The shortcomings of the hydraulic analogy and i t s appl icat ion 

in the present invest igat ion have bem pointed out in th i s section along 

with a brief discussion of r e s u l t s . These shortcomings are now of 

r e l a t ive ly small consequence as a r esu l t of the improved methods and 

techniques employed. The r e su l t s are a good indication of %\ i s but 

there i s s t i l l room for far ther improvement and development. 
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CG ECU/SIGHS 

As was s t a t e d in the Summary, an i n v e s t i g a t i o n of two B r i t i s h 

a i r f o i l s and a Guidonia a i r f o i l was conducted through a p p l i c a t i o n of 

the hyd rau l i c analogy* The performance r e s u l t s have been compared to 

wind tunne l and t h e o r e t i c a l r e s u l t s and are p r e sen t ed h e r e i n . 

There was a vas t improvement in the q u a n t i t a t i v e agreement with 

the va lues used for comparison than in p rev ious i n v e s t i g a t i o n s as a 

r e s u l t of improved exper imenta l equipment and t e c h n i q u e s . Good q u a n t i 

t a t i v e agreement was expected and was ob ta ined s ince the hydrau l i c 

analogy has y i e lded the c o r r e c t t r e n d s in pas t i n v e s t i g a t i o n s by Hatch, 

Thomas,**5 a n £ Gatci ipole .^ 6 I t was a l so roughly determined t h a t t he re 

i s an e f f e c t of Reynolds number on t e s t i n g r e s u l t s ; a nigh Reynolds 

number g iv ing b e t t e r r e s u l t s . 

This a p p l i c a t i o n of the hydrau l i c analogy has been the f i r s t 

a t Georgia Tech to employ a K c o r r e c t i o n i n the de te rmina t ion of Gp. 

The o v e r a l l e i ' fec t of t h i s c o r r e c t i o n i n d i c a t e s tli t i t should be used 

in fu ture exper iments a s i t produces a d e f i n i t e improvement i n r e s u l t s . 

The ma jo r i ty of the t e s t s were conducted a t h igh subsonic and 

low supersonic speeds . By v i r t u e of t h i s f a c t , i t was a p a r t i c u l a r 

__ 

John Hatch, op . c i t . 
25 

Gerald B . Thomas, "Appl ica t ion of ¥a te r Channel Compressible 
Gas Analogies to Problems of Supersonic ,lnd Tunnel Design"• Un
publ i shed P ias te r ' s T h e s i s , Georgia I n s t i t u t e of Technology, 1949. 

26 
John Catchpole . on* c i t . 



pleasure to note the excellent r e su l t s since transonic phenomena, i s 

very d i f f i cu l t to study in a wind tunnel . 

Thus, the water channel has proven i t s e l f to be an inexpensive, 

eas i ly operated, and very useful means of studying the problems of two 

dimensional compressiole flow. Subsequent development of experimental 

techniques wi l l probably further demonstrate the value of the water 

channel as a research t o o l . 
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KEOOmEXTMIOES 

(1) All models should be formed from brass for be t te r flow 

conditions and more accurate construction. Although a mahogany model 

s l ides smoothly on the glass bottom, i t i s impossible to machine i t s 

surfaces as smoothly as brass or reproduce i t s contours as accurately 

as in the case of a brass model, 

(2) I t i s believed, by visual observation, that the probes are 

placed too far from the side of the model. Figure 33 depicts the location 

of a probe as i t was placed in these experiments. I t can be seen 

that the probe should define tne water depth a t point A but a t present 

i t appears to measure the depth of the r i s e in water a t a point 

where the r i s e has Degun to f a l l off. The purpose of placing the probes 

0.1 inch from the side of the model i s to avoid the meniscus e f f ec t . 

I t i s unlilcely tha t the water, pa r t i cu la r ly in the s ta le stage, has a 

meniscus of 0.1 inch. I t i s therefore recommended that an invest igat ion 

of the meniscus around the model be made and the probes be replaced 

accordingly. 

(3) A study of the aerodynamic phenomena for an a i r f o i l a t a 

ilach number of unity should be conducted. Although the t e s t s reported 

in th i s thes i s validate transonic observations, an invest igat ion at a 

Maoh number of one would probably substantiate transonic studies a t a 

point of considerable i n t e r e s t . 

(4) Although of l i t t l e value, a study in the water channel of 

an a i r f o i l with a detached shock would be extremely in teres t ing i f 

adequate comparison data were ava i lab le . A method suggested by 
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Ferr i of evaluating pressure dras for flows v/ith detached si.oclcs 

from the shadow picture taken from above the model could be used. 

27 
Antonio F e r r i , "Method for Evaluating from Shadow or Schlieren 

Photographs the Pressure Drag in Two-dimensional or Axially Symmetrical 
Flow with Detached Shock". SAGA TM Ho. 1806, 1949. 
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APPENDIX I 

TABLES 



TABLE I 

SA1CPLB CALCULATION OF EBBSSTTBg COJ3PFICIEKT FROM BOTBIW55AL liATA 

Fa i r ed Double ./edge A i r f o i l , Lower Surface , 0(—0°, d s = 0.250 inch, d 0—0.513 inch 

Timar read ing = 1.19 seconds, Timer cam leng th =-£.925 feot 

s TTr* = 1,45, j j j * . ^ 0.415 

V H J I * ^ 1 y 
V¥*% 7-56 

\7-
Kqn. (11 

Cp t*=1.4) A . 1 -kflftU N«3"N-3 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Station dj/dg di/d0 (Pl/p0)^1.4 (pi/p0) *=£.() (4)/{5) (dx/d P (6)x(7) C (V=1.4) <U#-«I 
{'jb chord] * 

10 1.336 .651 . 51 . 4 3 1.19 1.79 2.13 .537 .376 
20 1.252 .610 .46 . 3 6 1.21 1.57 1.90 .429 .271 
30 1.225 .596 .42 . 3 5 1.20 1.50 1.80 .381 .238 
40 1.100 .536 .36 . 29 1.24 1.21 1.50 .238 .100 
50 0.996 .485 .29 . 2 3 1.26 0.993 1.25 .119 - . 0 0 3 
60 1.024 .499 . 31 . 2 5 1.24 1.05 1.30 .143 .024 
70 1.020 .497 . 31 . 2 5 1.24 1.04 1.29 .138 .019 
80 1.024 .499 . 31 . 2 5 1.24 1.05 1.30 .143 .024 
90 1.096 .534 .36 . 2 9 1.24 1.20 1.49 .233 .095 

28 
Jamas O r l i n , Norman J . Linder , and Jack G-. B i t t e r l y , op . o i t . f F i g . 1 . 

Cfl 



TABIE II 

EXPfiSmSfTiL ?&®m OF LIFT, DRAG, ANI> MOMENT 

COEFFICIENTS FOR FAIRED DOUHLE WEDGE AIRFOIL 

M=0.80,1S=2.0 

OC 
(degrees) 

CL % CM 
4 

-2 
0 
U 
7 

-•162 
•0U8 

.78U 

.ouo 

.029 

.057 
,13U 

.002 
-.02U 
-.032 
- .016 

0.8Q,Y=1.U 

(degrees) i 

-2 -ate .033 .002 
0 .0a2 .025 -.02U 

u .iw2 .052 -.029 
7 • 736 .115 -•OlU 

M 1 = 1.21, V= 2.0 

(degrees) j 

-5 - . W i •Oci7 .Oi4l 

4 -.106 .079 .036 
-2 - .221 .050 .028 

0 .029 •0U6 .006 
2 .198 .051 - .025 
J* .U08 .077 - .03o 
5 .555 .oaU -.01*9 



TABLE I I (Cont . ) 

uo 

M = 1*21, lf~i.il 

(degrees) 

- 5 
-U 
- 2 

0 
2 
h 

= 1.^5*^-2.0 

OC 
(degrees) 

CL 

CL 

°D 

.Uo9 •095 
•ii28 .087 
• 235 •0i>i> 
.029 •0U6 
.212 •05U 
.1*29 .08U 
.578 .092 

°D 

CMl 

•05U 
.0U3 
.028 
.007 

-.029 
..OI4O 
••053 

V 

-5 - . 3 0 6 .063 .056 

-u - .23U •0lt9 .0U3 
- 2 - . 1 0 1 .ouo .02U 

0 - . 0 0 8 .031 .006 
2 .121 .ouh - . 0 1 3 

u .21a .050 - •039 

M = i . u 5 , fc—l.U 

ĉ 
(degrees) 

CL °D 
% 

-5 - • 3 2 1 .000 .0>U 
-u - . 2 ^ 9 .05U .038 
- 2 - .11U •Oltf* .021 

0 .010 .032 .006 
2 .13U .Oi4.9 - . O i o 
i* • 253 .057 - . 0 3 8 

lf~i.il


TABLE I I I 

sxpmarat i i VALUES OF LIFT, JJRAG, AND MOMENT 

COEFFICIENTS FOB KE-CONVEX AIRFOIL 

14= 0.80, fr=2.0 

ft. 
(degrees) 

M = Q . 8 0 , X = 1 * 4 

(degrees) 

Ci 

CL 

CD 

-b - • 6 0 .024 - . 0 0 1 
- 2 - . 3 0 jnk - . 0 2 0 

0 .00 .008 .000 
2 .30 •Olit .020 

u .60 •02U .001 

'JJ % . 

-u - • 5 5 .024 - . 0 0 1 
- 2 - . 2 7 .014 - . 0 2 0 

0 .00 .008 .000 
2 .27 .011^ .020 
U .5!? .024 .001 

U — 1.25»*=* 2.0 

PC % 
(degrees ) 

1) 'i,> 

-u - •452 .057 *Ot>b 
- 2 - •212 .03> .030 
0 .000 .033 .000 
2 .212 .035 - . 0 3 0 
4 .U52 .057 - . 0 5 6 



TABLE I I I (Can t . ) 

s s 1*25, V = ±.1* 

OC. ^L C^ CM 

(aegrees) A
A 

-h - .U56 .062 - .05U 
•2 - . 2 1 5 .039 - . 0 3 0 
0 .000 .037 .000 
2 .215 .039 .030 
U .hS6 .062 .05U 



TABLE IV 

EXPERIMENTAL VALUES 0? LIFT, DRAG, AND 

MOMENT COEFFICIENTS FOR G. IK h AIRFOIL 

= 2.13,^2.0 

(degrees) 
c L °D °M 

-2 - .072 .012 .022 
0 .006 .009 .006 
2 .ouo .Oil - .020 
6 .181 .022 - .052 

M = 2.13»*=1.U 

(de^ees) ° L °» °* 

>2 -.080 .016 .026 
0 .007 .013 .007 
2 .051 .011* - .025 
6 .216 .028 -.060 

hi 
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APPEMDIX I I 

FIGURES 



FIGURE 1 

GENERAL VIEW OF WATER CHANNEL 



•**—ii 

FIGURE 2 
4^-
c-

CARRIAGE DRIVE MECHANISM 



CIRCULAR 

5J5° 

1 NOTE: THICKNESS RATIO = 87 PER CENT 
AIRFOIL HAS FORE AND AFT SYMMETRY. 
FLATS ARE TANGENTIAL TO CIRCULAR ARCS. 
AIRFOiJL SHOWN AT +5J50 /'NC/DENCE. 

E/GURE 3. FAIRED DOUBLF WBD6S AIR FOIL 
_ _ _ _ ^ 1 



SUPPORT 
HOL£5 
J5a*a MAX T///C/tsV^SS 

. POO " 

FIGURE 4 , 8/-COW\/£X Af&FOti-
£ 



SUPPORT HOLi'S MAX. TWCKNES5 
t-4-74-" 

FIGURES. G U4- AJRFO/L MODEL 

5 



FIGURE 6 

VIEW OF MODEL WITH PROBES IK POSITION 

6 



IHIIIMiC 

FIGURE 7 

FLOW ABOUT BI-CONVEX MODEL 
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