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SUMMARY

The objective of this PhD research is to design and develop automated systems for

evaluation of surgical skills in order to reduce manual assessment by experts and help

surgical trainees to move through their learning curves much faster.

Surgical trainees are required to acquire specific skills during the course of their res-

idency before performing real surgeries. Surgical training involves constant practice of

skills and seeking feedback from supervising surgeons, who generally have a packed sched-

ule. The process of manual assessment makes the whole training cycle extremely cumber-

some and inefficient. Having automated assessment systems for surgical training can be of

great value to medical schools and teaching hospitals.

A typical surgical trainee goes through multiple stages during their training programs.

Most of them start with practicing basic skills of suturing and knot tying on foam boards/synthetic

tissue. Then they go on to practicing on VR based consoles where they learn more advanced

and clinical relevant skills but without real tissue involved. Once they have acquired the

desired level of competency in the previous stages, they then practice on cadavers or pigs

before moving on to performing surgeries on real patients. There is a need for automated

assessment at every stage of surgical training.

This PhD research aims at developing machine learning based methods for assessment

of surgical skills from basic tasks to complex robot-assisted procedures. Specifically, this

thesis will aim to (1) develop novel motion based features for basic surgical skills assess-

ment in open and robotic surgical training, (2) develop unsupervised and supervised meth-

ods for recognizing individual steps of complex robot-assisted (RA) surgical procedures,

(3) generate automated score reports for RA surgical procedures, and (4) produce video

highlights to indicate which parts of the surgical task most effected the final surgical skill

score.
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CHAPTER 1

INTRODUCTION

Surgical skill development, i.e., the process of gaining expertise in procedures and tech-

niques required for professional surgery, represents an essential part of medical training.

Acquiring high quality surgical skills is a time-consuming process that demands expert su-

pervision and evaluation throughout all stages of the training procedure. However, the man-

ual assessment of surgical skills poses a significant resource problem to medical schools

and teaching hospitals and results in complications in executing and scheduling their day-

to-day activities. In addition to the extensive time requirements, manual assessments are

often subjective and domain experts do not always agree on the assessment scores

Surgery is a complex task and even basic surgical skills such as suturing and knot tying

(that involve hand movements in a repetitive manner) require every surgical resident to go

through training in order to master these basic skills before moving on to more complicated

procedures. Considering the volume of trainees that need to go through basic surgical

skills training along with the time consuming and subjective nature of manual evaluation,

automated assessment of these basic surgical skills can be of tremendous benefit to medical

schools and teaching hospitals.

Medical literature recognizes the need for objective surgical skill assessment in surgi-

cal training [1]. Yu et al. [2] have suggested evaluations from residents and interns who

frequently supervise the students instead of the consultant surgeons who do not have the

opportunity to directly observe the medical students. However, the subjectivity and time-

consuming nature of these evaluations still cannot be ruled out.

For basic surgical tasks like suturing and knot tying in a training setup, structured grad-

ing systems such as the Objective Structured Assessment of Technical Skills (OSATS) [3]

have been developed to reduce the subjectivity. Table 1.1 summarizes the OSATS scoring

1



Table 1.1: Summary of the OSATS scoring system [3]. The score is a Likert scale from
levels 1-5 but the guidelines are provided only for levels 1, 3, and 5. The diversity of the
criteria, lack of guidelines for all levels, and the need to manually observe each surgeon,
makes the manual OSATS scoring a time consuming and challenging process.

Score Respect for
tissue (RT)

Time and
motion
(TM)

Instrument
handling

(IH)

Suture
handling

(SH)

Flow of op-
eration (FO)

Knowledge
of

procedure
(KP)

Overall per-
formance
(OP)

1 Unnecessary
force on tis-
sue, caused
damage

Unnecessary
moves

Inappropriate
instrument
use

Repeated en-
tanglement,
poor knot
tying

Seemed un-
sure of next
move

Insufficient
knowledge

Very poor

2 – – – – – – –
3 Occasionally

caused
damage

Some unnec-
essary moves

Occasionally
stiff or
awkward

Majority of
knots placed
correctly

Some for-
ward plan-
ning

Knew all im-
portant steps

Competent

4 – – – – – – –
5 Minimal tis-

sue damage
Economy of
movement

Fluid move-
ments

Excellent su-
ture control

Planned op-
eration

Familiarity
with all steps

Clearly supe-
rior

system. OSATS consists of seven generic components of operative skill that are marked on

a 5 point Likert scale. OSATS criteria are diverse and depend on different aspects of mo-

tion. For instance, qualitative criteria such as “respect for tissue” depend on overall motion

quality while sequential criteria such as “time and motion” and “knowledge of procedure”

depend on motion execution order.

For more complex surgical training, like on the da Vinci robotic system, most of the

objective assessment is based on efficiency metrics like economy of motion, speed, camera

movement etc. However, unlike basic training where the surgeon is only performing a sin-

gle task (e.g only suturing), clinical procedures being performed on robotic systems usually

involve multiple steps and can take a few hours to complete. This makes the assessment of

surgical skills even harder than that compared to basic training. Currently, intraoperative

assessment has been limited to feedback from attendings and/or proctors. Aside from the

qualitative feedback from experienced surgeons, quantitative feedback has remained ab-

stract to the level of an entire procedure, such as total duration. Performance feedback for

one particular task within a procedure can potentially be more helpful to direct opportuni-

ties of improvement. Similarly, statistics from the entire surgery may not be ideal to show

an impact on outcomes. For example, one might want to closely examine the performance
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of a single task if certain adverse outcomes are related to only that specific step of the entire

procedure. Scalable methods to recognize automatically when particular tasks occur within

a procedure are needed to generate these metrics to then provide feedback to surgeons or

correlate to outcomes.

The growing need for automated assessment of surgical skills in various stages of train-

ing and practice motivated us to develop machine learning based methods that can help

provide objective automated score-based feedback to surgeons. This work focuses on as-

sessment of basic surgical skills like that of suturing and knot tying, and assessment in

robot-assisted clinical procedures while tackling the problem of procedure segmentation in

order to achieve that.

1.1 Challenges

Replicating the assessments provided by experts is not an easy task to achieve. There are

many challenges that make this problem quite hard to solve using machine learning. A few

of them are listed below.

1. Disagreement between experts: The subjective nature of assessment results in dif-

ferences between scores that different experts give to the same trainee. This is mainly

due to the fact that surgeons can vary significantly on their style of surgery and can

perform the same task with competency in a very different way. Naturally, as a result,

the trainee more near to their own style would be given better scores.

2. Availability of data: Any machine learning problem requires good amount of data

to start with. Unfortunately, there are very few data sets available in the surgical

domain, and those present are very small in size. Therefore, for our work, new data

needs to be collected and annotated before machine learning based models can be

developed.

3. Huge variation in clinical procedures: For assessment in clinical robot-assisted
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procedures, the first problem to solve is that of segmenting the procedure into indi-

vidual steps. This is an extremely challenging task by itself since each surgeon will

have different kinds of motion and each person’s anatomy will look different. There

is nothing standard in such a task which requires very robust models to be developed

that can take in all the information coming from the robotic system to recognize in-

dividual tasks. Since procedure segmentation is hard to fully solve, assessment on

top of that becomes challenging as well since that is all dependent on how well the

procedure segmentation works.

1.2 Organization of the thesis

This thesis is organized as follows: Chapter 2 provides a detailed review on previous lit-

erature revolving around surgical skill assessment and surgical activity recognition that

provided the motivation behind this PhD work. In chapter 3, we introduce novel motion

based features for surgical skill assessment using video and accelerometer data for open

surgical training. Chapter 4 extends the evaluations of features proposed in Chapter 3 to

robot-assisted (RA) basic surgical training tasks. The thesis then drives into the domain

of more complex RA procedures and covers unsupervised and supervised surgical activity

work proposed in Chapter 5 and 6, respectively. Chapter 7 uses the work of supervised ac-

tivity recognition from Chapter 6 to propose an automated system for surgical performance

report generation for RA procedures. Chapter 8 finishes the technical part of this thesis and

covers methods proposed for video highlight generation in surgical procedures. A brief

summary and possible future work are given at the end of this thesis.
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CHAPTER 2

BACKGROUND

In this section we will look at some of the key works done in the field that motivated

the work presented in this thesis. The first section of this chapters provides a survey on

various papers presented in literature for surgical skills assessment. The next section gives a

background on work done in surgical activity recognition, which is followed by conclusion.

Table 2.1 summarizes some of the key works from both sections.

2.1 Surgical Skill Assessment

The problem of automated surgical skills assessment has recently seen some good progress

[4, 5, 6, 7, 8, 9]. Pioneering efforts were based on robotic minimally invasive surgery

(RMIS) and focused on gesture recognition and skill assessment using Hidden Markov

Models [10, 11, 12]. These initial endeavors attempted to identify gestures or motion

sequences for a specific surgical task. These gesture based methods were mostly used for

surgical activity recognition and in some cases for surgical skill assessment.

For assessment of surgical skills in RMIS, one of the earlier works proposed a variant

of HMM - sparse HMM [13]. Other works like [7] studied the differences in needle-driving

movements and reported significant differences between beginner and expert surgeons. In

[8], the authors proposed descriptive curve coding-common string model (DCC-CSM) for

simultaneous surgical gesture recognition and skill assessment. Support Vector Machine

(SVM) have also been used on basic metrics like time for completion, path length, speed

etc, for skill evaluation [9]. [7] studied robotic surgical movements and reported significant

difference in the needle-driving movements of experienced surgeons and novices. GEARS

(Global Evaluative Assessment of Robotic Skills) is an assessment tool specifically devel-

oped to assess levels of robotic surgical expertise and is known to be consistent and reliable
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as reported in [14]. More recently, some works have explored the use of crowd sourcing

techniques to evaluate surgeon skill [15].

Despite advances in basic robotic surgical training, assessment of conventional surgical

skills is done using OSATS [3] in medical schools and teaching hospitals (see table 1.1

for details on OSATS grading scheme). Some works based on automated assessment of

the OSATS criteria for general surgical training have also been proposed recently. In [6],

the authors introduced Augmented BoW (ABoW), in which time and motion are modeled

as short sequences of events and the underlying local and global structural information is

automatically discovered and encoded into BoW models. They classified surgeons into

different skill levels based on the holistic analysis of time series data. In [4], the authors

proposed Motion Texture (MT) analysis technique in which each video is represented as a

multi-dimensional sequence of motion class counts to obtain a frame kernel matrix. The

textural features derived from the frame kernel matrix are used for prediction of OSATS

criteria. Although MT technique provided good OSATS prediction, it is computationally

intensive (N×N sized frame kernel matrix for a video withN frames) and does not account

for the sequential motion aspects in surgical tasks. A variant of MT, called Sequential

Motion Texture (SMT) [5], encoded both the qualitative and sequential motion aspects.

The techniques mentioned above do provide encouraging results for video based OSATS-

like surgical skill assessment. However, these studies use very few participants which limits

their ability to capture the wide variation in surgical skills. An expert surgeon’s hand mo-

tion might be more clean, distinct, ordered and sequential as compared to a non-expert and

having more samples helps capture skills of varying levels. However, most of the works

mentioned above have not tried to utilize the disorder and repetitiveness in motion for skill

assessment. Also, they do not include studies on wearable motion sensing devices such as

accelerometers that may provide precise motion information for surgical skills assessment.
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Table 2.1: Key works on surgical skill assessment and surgical phase recognition. CNN:
Convolutional Neural Network, SMT: Sequential Motion Texture, CRF: Conditional Ran-
dom Field, BoW: Bag-of-Words, ABoW: Augmented Bag-of-Words, LDS: Linear Dy-
namical Systems, DTW: Dynamic Time Warping, CCA: Canonical Correlation Analysis,
HMM: Hidden Markov Model

Reference Technique Phase Analysis goal Data
Dipietro
(2016) [16]

RNN Yes Surgical gesture recognition RMIS (only kinematic data from
robotic surgery), 23 subjects

Twinanda
(2016) [17]

CNN Yes Surgical tool detection and
phase recognition

Laparoscopic cholecystectomy (endo-
scopic video), 13 subjects

Lea (2015) [18] CRF Yes Surgical action segmenta-
tion and recognition

RMIS (both kinematic and video data
from robotic surgery), 8 subjects

Sharma (2014) [4,
5]

MT,SMT No OSATS prediction, classifi-
cation

General suturing task (only video data),
16 subjects

Tao (2013) [12] CRF Yes Surgical gesture segmenta-
tion and recognition

RMIS (both kinematic and video data
from robotic surgery), 8 subjects

Bettadapura
(2013) [6]

ABoW No OSATS classification General suturing task (only video data),
16 subjects

Haro (2012), Za-
pella (2013) [19,
20]

BoW,
LDS

Yes Surgical gesture recognition RMIS (both kinematic and video data
from robotic surgery), 8 subjects

Padoy (2012) [21] DTW,
HMM

Yes Surgical phase recognition Laparoscopic cholecystectomy (endo-
scopic video), 4 subjects

Lalys (2011) [22] DTW Yes Surgical phase recognition Cataract surgery, 20 videos
Blum (2010) [23] CCA,

HMM
Yes Surgical phase recognition Laparoscopic surgery, 10 videos

Lin (2009) [24] HMM Yes Skill classification but not
on individual OSATS crite-
ria

RMIS (both kinematic and video data
from robotic surgery), 6 subjects

7



2.2 Surgical Activity Recognition

The problem of surgical activity recognition has been of interest to many researchers. Sev-

eral methods have been proposed to develop algorithms that automatically recognize the

phase of a surgery. Some of the initial works focused on very low level gesture recogni-

tion in RMIS training [25, 26, 13, 27], while more recently, many works have focused on

recognizing high level phases in surgeries [17, 28, 29, 30].

Several RMIS works have used Hidden Markov Models (HMMs) to represent the sur-

gical motion flow. The motivation for HMMs and gesture based analysis is derived from

speech recognition techniques and the goal is to develop a language of surgery where a

surgical task can be modeled as a sequence of predefined gestures (also known as surgemes

analogous to phonemes in speech recognition). [12] proposed a combined Markov/semi-

Markov conditional random field (MsM-CRF) model for gesture segmentation and recog-

nition for RMIS. [19] and [20] employed both kinematic and video data while using linear

dynamical systems (LDS) and bag-of-features (BoF) for surgical gesture (surgeme) classi-

fication in RMIS surgery. [18] developed a method to capture long-range state transitions

between actions by using higher-order temporal relationships using a variation of the Skip-

Chain Conditional Random Field. Some more recent works have presented unsupervised

methods to identify similar low-level trajectories with strong alignment to human labels

[31, 32].

Unlike most of the RMIS based work described above where the focus was on recog-

nizing low level gestures, multiple approaches have been presented to recognize high level

surgical tasks in laparascopic surgeries[21, 17, 29, 30]. In [21], the authors presented a

DTW and HMM based method for recognizing surgical phases using tool usage record-

ings as a multidimensional time series. [30] proposed a fully data-driven and real-time

method for segmentation and recognition of surgical phases using a combination of video

data and instrument usage signals. More recently, with the immense success of deep learn-
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ing in image recognition fields, some works have proposed convolutional neural networks

(CNN) based methods for surgical phase recognition. [17] collected a new dataset of 80

laparascopic cholecystecomies (Cholec80) and proposed ‘EndoNet’, a modified version of

AlexNet, to simultaneously recognize surgical tools and phase. A few works have then

tried to improve surgical tool and phase recognition using various deep learning models

[28, 33, 34]. Outside of laparascopic domain, some works have also presented methods on

recognizing surgical tasks in ENT [35] and cataract surgeries [36].

Most of the surgical activity recognition work described above has focused on low level

gesture recognition in basic RMIS tasks. The few works presented for recognizing steps

of clinical procedures mainly focused on laparoscopic surgeries with little to no work done

on recognizing surgical steps in a robot-assisted clinical procedure.

2.3 Conclusion

To better guide our research forward, we can derive the following conclusions from the

literature survey:

1. The majority of the work done on surgical skills assessment has been focused on

basic RMIS training. Very few papers have presented methods for OSATS based

assessment in general surgical training. Moreover, most of such works use small

datasets.

2. Most of the real surgery phase recognition work has been done on laparoscopic pro-

cedures - little to no research has been done on recognizing surgical steps in clinical

robot-assisted surgeries.

3. There is a lack of work done on providing automated feedback to surgeons for robot-

assisted surgeries in a clinical setting. Most of the feedback given in such cases

is limited to gross measures across the entire procedure despite the performance of

particular tasks being largely responsible for undesirable outcomes.
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CHAPTER 3

SURGICAL SKILL ASSESSMENT IN BASIC TRAINING

Surgical trainees are required to acquire specific skills during the course of their residency

before performing real surgeries. The first skills that trainees need to master are those of

basic suturing and knot tying. These skills form a base for any future skills that surgical

trainees need to acquire. Therefore, mastering the art of suturing and knot tying is very

essential in the career of any surgeon. However, due to the packed schedule of supervising

surgeons, trainees usually do not get frequent feedback that is necessary for their learn-

ing. Moreover, the manual assessment by experts can be subjective and prone to errors.

Objective Structured Assessment of Technical Skills (OSATS) is adopted in most medical

schools as a standard to assess surgical residents [1] (see Table 1.1 for details on OSATS

grading scheme). While adopting OSATS grading system reduces the subjectivity of as-

sessment to some extent, the grading itself can take up lot of time of the generally few

expert surgeons available. In this chapter, we present a framework for automated OSATS

based surgical skills assessment for basic surgical tasks of suturing and knot tying using

video and accelerometer data.

3.1 Methodology

Figure 3.1 shows the flow diagram for processing video and accelerometer data for sur-

gical skills assessment. The videos are initially preprocessed and converted into a multi-

dimensional time-series, whereas, the accelerometer data is first aligned with the video

data before further processing. We will now go into more details of the different parts in

the pipeline below.

Chapter references: [37, 38, 39]
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Figure 3.1: Flow diagram for processing the video and accelerometer data.

3.1.1 Video/Accelerometer Data Processing

In order to extract motion information from video data, we use Spatio-Temporal Interest

Points (STIPs) [40] proposed by Laptev. Let V be the set containing all the videos in our

dataset. Then, for all v ∈ V , a Harris3D detector is used to compute the spatio-temporal

second-moment matrix µ at each video point given by

µ = g(.;σ2, τ 2) ∗


L2
x Lx LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (3.1)

where g(.;σ2, τ 2) is a 3D Gaussian smoothing kernel with a spatial scale σ and a temporal

scale τ . Lx,y,t are gradient functions along the x, y and t domains. The final position of the

STIPs is then calculated by finding the local maxima of the Harris corner function given by

H = det(µ)− ω(trace(µ))3 (3.2)

Laptev’s STIP implementation [41] was used with default parameters and sparse feature

detection mode for different spatio-temporal scales with ω set to be 0.005. Histogram of

of Optical Flow (HOF) and Histogram of Oriented Gradients (HOG) are then computed

on a three-dimensional video patch in the neighborhood of each detected STIP. A 4-bin
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Figure 3.2: Motion class time series samples using K = 5 for a novice (left), an interme-
diate (center) and an expert (right) surgeon.

HOG and a 5-bin HOF descriptor is calculated resulting in 72-dimensional HOG vector

and a 90-dimensional HOF vector. The final feature vector for each STIP is obtained by

concatenating HOG and HOF vectors resulting in a 162-dimensional vector.

Once the STIPs for all videos are extracted, ’motion classes’ are learned by using k-

means clustering on STIPs from two expert videos. Expert STIPs are used since they

are more distinct and uncluttered as compared to non-experts. Therefore, expert motions

provide exemplary templates for the surgical task to be evaluated. The STIPs from experts

are clustered using k-means for different number of clusters ‘c’. The learned clusters can be

thought of as representing of the number of moving parts in the video. The expert clusters

are then used to transform the remaining videos in the data set into a multi-dimensional

time series. This is done by assigning each STIP in every frame of the video to one of

the ‘c’ learned clusters using minimum Mahalanobis distance from the cluster distribution.

This results in a time series T ∈ <K×N representing each video, where K represents the

dimension of the time series (equivalent to the number of clusters used in k-means) and

N is the number of frames of the video. Figure 3.2 shows some sample motion class time

series for a beginner, intermediate and an expert using K = 5.

The accelerometer data collected was already in a multi-dimensional time series format.

Each data recording for an individual accelerometer resulted in a time series T ∈ <3×N ,

where the rows denote the 3 acceleration values (x,y and z).
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3.1.2 Feature Extraction

The difference in motion predictability and repeatability of surgeons with varying skills

levels can potentially be used to assess the basic surgical skills. An expert will have more

predictable hand motion while a beginner will exhibit erratic and irregular patterns. There-

fore, we propose to use frequency based (DCT and DFT) and entropy based (ApEn and

XApEn) features for extracting predictability and repeatability in time series data for skill

assessment. Details of the different features used are given below

Discrete Fourier Transform: Discrete Fourier Transform (DFT) is used to convert data

from time domain into frequency domain and has been extensively used for many applica-

tion across several domains. For our time series X ∈ <K×N , we calculate the frequency

coefficients for each dimension independently and concatenate them to form the frequency

matrix Q ∈ <K×N [37]. The ith row in the frequency matrix Q, Q(i) is calculated by

Q(i) = θX(i)′ (3.3)

where X(i) is the ith dimension of the time series X . θ is an N ×N matrix and θ(m,n) is

given by

θ(m,n) = exp(−j2πmn
N

), (3.4)

where {m,n} ∈ [0, 1, . . . , N − 1]. Once the matrix Q is calculated, the higher frequency

terms are removed in order to eliminate noise. This results in a reduced matrix Q̂ ∈ <K×F

where F denotes the highest frequency component used from each dimension of the time

series X . This can also be thought of as low-pass filtering of the time series. The elements

of Q̂ are then concatenated to form a final feature vector of KF dimensions.

Discrete Cosine Transform: Discrete Cosine Transform (DCT) is also a transformation

of data from time domain to frequency just like DFT. However, DCT only uses cosine

functions instead of both sines and cosines. This results in the DCT coefficients being real
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as opposed to DFT where the coefficients can be complex. Similar to DFT, the ith row of

the frequency matrix Q ∈ <K×N is also calculated using equation 3.3 [37] but the θ matrix

is given by

θ(0, n) =

√
1

N
, (3.5)

θ(m,n) =

√
2

N
cos(

π(2n+ 1)m

2N
), (3.6)

where {m,n} ∈ [0, 1, . . . , N − 1]. Similar to DFT, the matrix Q is reduced to Q̂ ∈ <K×F

and a final KF -dimensional feature vector is obtained.

Approximate Entropy: Approximate entropy is a measure of regularity in time series data

initially proposed in [42]. A more predictable time series would have a low approximate

entropy value whereas an irregular time series would have a higher entropy. For a one-

dimensional time series, the approximate entropy ApEn is dependent on three parameters:

embedding dimension (m), radius (r) and time delay (τ ). The embedding dimension (m)

represents the length of the series which is being checked for repeatability, the radius (r) is

used for local probabilities estimation and time delay (τ ) is selected in order to make the

components of the embedding vector independent. For a given time series T ∈ <N , we

form a sequence of embedding vectors x(1), x(2), . . . , x(N −m+ 1), where x(i) is given

by x(i) = [Ti, Ti+τ , . . . , Ti+(m−1)τ ], for 1 ≤ i ≤ N − (m− 1)τ . Then, for each embedding

vector x(i), the frequency of repeatable patterns Cm
i (r) is calculated by

Cm
i (r) =

1

N − (m− 1)τ

∑
j

H(r − dist(x(i), x(j))) (3.7)

where H is a Heaviside step functions and

dist(x(i), x(j)) = max(|T (i + (k − 1)τ) − T (j + (k − 1)τ)|) for k ∈ [1, 2, . . . ,m]. The
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Figure 3.3: (a) Sample sine waves with different SNR. (b) Variation of approximate entropy
(ApEn) with respect to SNR (c) Sample sine waves with different phases (d) Variation of
cross approximate entropy (XApEn) with respect to phase difference between signals

conditional frequency estimates are calculated by

Ωm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

ln(Cm
i (r) (3.8)

Ω(r) is then used to calculate the approximate entropy for the time series T ∈ <N as

ApEn(m, r, τ) = Ωm(r)− Ωm+1(r).

In order to show how ApEn varies for signals with different predictability, we generate

a set of sinusoids V . A pure sine wave without any noise can be considered as completely

predictable since it has a fixed repeating pattern. However, adding noise to the same func-

tion would make it less predictable. We induce white Gaussian noise into our set of sinu-

soids V to vary the signal-to-noise (SNR) of the set of signals. The range of SNR in the

set V was kept from 1 to 50. Figure 3.3(a) shows some sample sinusoidal waves in the set

V with different SNR. Figure 3.3(b) shows the variation of ApEn with varying SNR and

radius. As expected, we can see that the higher the SNR (lesser noise), the lower the value

of ApEn gets for any value of r.

Cross Approximate Entropy: Cross approximate entropy (XApEn) is a measure of asyn-

chrony between two time series [43]. For two given time series [T, S] ∈ <N , the embedding

vectors are defined as x1(i) = [Ti, Ti+τ , . . . , Ti+(m−1)τ ] and x2(i) = [Si, Si+τ , . . . , Si+(m−1)τ ],

for 1 ≤ i ≤ N − (m − 1)τ . The frequency of repeatable patterns Cm
i (r)(T ||S) for the
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embedding vectors x1(i) and x2(i) is then calculated by

Cm
i (r)(T ||S) = 1

N−(m−1)τ
∑

j H(r − dist(x1(i), x2(j))) (3.9)

Ωm(r) is then calculated using

Ωm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

ln(Cm
i (r)(T ||S)) (3.10)

This is then used to finally calculate the cross approximate entropy between the two

time series by

XApEn(m, r, τ) = Ωm(r)(T ||S)− Ωm+1(r)(T ||S).

Similar to ApEn, we generate a set of sinusoids W to show the variation of XApEn for

varying synchrony between different signals. The setW consists of sinusoids with the same

SNR but with phase varying from 0 to π. Figure 3.3(c) shows some sample of sinusoids

in this set. Figure 3.3(d) shows how the value of XApEn varies when the phase difference

between the signals varies. We can see that the value of XApEn reaches a max at about 0.5π

and then reduces back to 0 at π phase difference. It is important to note that two sinusoids

with a phase difference of π are completely out of phase but in perfect synchrony. This is

because if one increases the other decreases with the same rate. This should result in a very

low XApEn value which we observe in Figure 3.3(d) as well.

Surgical motions in suturing and knot tying tasks are inherently repetitive in nature.

The repetitiveness of motion can be encoded using frequency features. However, frequency

features would not be able to capture the sudden movements or jerks in motion that define

the competency of a surgeon. They do not quantify the orderliness or predictability of

patterns. On the other hand, approximate entropy represents the likelihood of occurrence

of similar patterns of observations. A time series containing many repetitive patterns has

lower approximate entropy and is more predictable.Therefore, using ApEn features can

potentially capture repetitiveness along with more finer details crucial for skills assessment.
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Moreover, in surgical motions, it is also important for surgeons to move their hands and

tools in a smooth motion together. We think that XApEn features can potentially capture

information on how synchronized the surgeon’s hands and tools are with each other. We use

both the entropy based features described above to encode surgical motion predictability

for our analysis.

3.1.3 Classification

After extracting the features described above, we use Sequential forward selection (SFS)

[44] to reduce the dimensionality of the features. Finally, a Nearest-Neighbor (NN) classi-

fier is used for classification.

3.2 Experimental Evaluation

3.2.1 Data Set

Our data set consists of video and accelerometer data for evaluating the performance of

proposed and previous state-of-the-art features for skill assessment. We use the surgical

skills dataset from [37] for direct comparisons. This dataset had 18 participants. We aug-

mented this dataset with additional 23 participants to a total of 41 participants consisting of

surgical residents and nurse practitioners, essentially doubling the data set from previous

studies. In suturing, the participants were asked to perform a “running suture” using an

instrument (needle holder) for a specified amount of time, resulting in varied number of

sutures completed. For knot tying, the participants were asked to tie knots for a given time

using their hands only (without any instruments). In this data set, each participant under-

took two instances each of suturing and knot tying tasks. For each instance, video data

was captured at 30 frames per second at a resolution of 640 × 480 using a standard RGB

camera. We captured a fixed number of frames for each surgical task: 4000 for suturing

and 1000 for knot tying. Each video was captured in different lighting conditions and from

varying camera angles to make the data set invariant to lighting and viewing angle. Figure
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Figure 3.4: OSATS score distribution for both tasks in the dataset. For this plot, the indi-
vidual scores for each criteria were summed for each participant.

3.5 shows some sample frames from the videos. Due to acquisition errors, some videos

had to be excluded from the data set resulting in 74 videos (from 38 participants) for each

surgical task.

The acceleration data was captured using Axivity WAX91 sensors. Two accelerom-

eters were used for each surgical task. For knot tying, one accelerometer was attached

to each hand wrist whereas for suturing, one accelerometer was attached to the dominant

hand wrist and one to the needle-holder. This was done because for suturing, there was

very little movement of the non-dominant hand and would not contribute much. On the

other hand, needle holder is the main instrument used for suturing. Hence we capture the

motion of the dominant hand and the needle holder for suturing. The data captured con-

sisted of x, y and z acceleration values resulting in a 3-dimensional time series for each

accelerometer. At the start of each instance, all participants were asked to rapidly shake

the hands/instruments with the accelerometers to get the synchronization waveform that is

used to align the starting point of acceleration data with the video using the ELAN software

[45] (a snapshot shown in figure 3.5). The accelerometer data had some additional noise as

the accelerometers were not being attached properly, resulting in unwanted jerks. For some

cases, the accelerometer even fell off during a session and had to be reattached. All such

samples were removed from the data set resulting in a final 54 acceleration data samples for

1https://axivity.com/downloads/wax9
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Figure 3.5: Image on left shows a screenshot from ELAN software for synchronization of
video and accelerometer data. Middle column and right most columns show sample frames
for suturing and knot tying, respectively. The accelerometers can also be seen placed on
the wrists and the needle-holder

knot tying (from 30 participants) and 62 for suturing (from 33 participants). The average

length with standard deviations of the acceleration data was 8434 ± 2030 for suturing and

1919± 507 for knot tying.

In order to generate the ground truth skill levels, we asked an expert to watch the videos

and give OSATS scores (on a scale of 1 to 5) for each participant. The scores were then

divided into three categories: beginner (score = [1, 2]), intermediate (score = 3) and

expert (score = [4, 5]). A complete class distribution for video and accelerometer data is

given in Table 3.1. We also show the distribution of the sum of OSATS scores in Figure 3.4

for both tasks. Please note that we only use the OSATS criteria being used in our partner

hospital for actual assessment. For example, RT and IH were not used for knot tying since

there is no direct tissue contact with no instrument being used. Scores for OP in suturing

and KP in both tasks, were not available.

In order to generate the ground truth skill levels, we asked an expert to watch the videos

and give OSATS scores (on a scale of 1 to 5) for each participant. The scores were then

divided into three categories: beginner (score = [1, 2]), intermediate (score = 3) and

expert (score = [4, 5]).

19



Table 3.1: Skill class distribution for each of the OSATS criteria (RT: Respect for Tissue,
TM: Time and Motion, IH: Instrument Handling, SH: Suture Handling, FO: Flow of Oper-
ation, OP: Overall Performance). Each cell contains two values V : A, where V = No. of
samples for video data, A = No. of samples for acceleration data.

Suturing Knot Tying
RT TM IH SH FO TM SH FO OP

Beginner 38 : 28 46 : 34 47 : 35 47 : 35 45 : 33 27 : 18 27 : 19 22 : 15 23 : 15
Intermediate 22 : 20 15 : 15 13 : 13 17 : 17 18 : 18 22 : 17 28 : 21 28 : 22 28 : 22

Expert 14 : 14 13 : 13 14 : 14 10 : 10 11 : 11 25 : 19 19 : 14 24 : 17 23 : 17

3.2.2 Parameter Selection

There are multiple parameters that we need to find optimal values for in different parts of

our pipeline. First parameter that we tuned was the dimension of time series data to be used

from videos i.e. the number of motion classes. We used K ∈ [2, 3, . . . , 10, 12, . . . , 20] for

k-means clustering to learn motion classes (the number of time series dimensions used) for

analysis of video data. Each feature used had different optimal values of K and are given

in Table 3.2.

For frequency based methods described, the only parameter that needs to be selected

empirically is F which is the highest frequency component selected from each dimension

of the time series (or the cutoff frequency in the low pass filter). Therefore, we calculate the

classification accuracy for F ∈ [25, 50, 100, 200, 500]. Average accuracies were evaluated

over all OSATS criteria and F = 50 achieved the best performance. We will maintain

F = 50 for our evaluation and results comparison.

As described in the previous section, entropy based features are dependent on some

parameters which need to be specified. These are the embedding dimension (m), time delay

(τ ) and the radius (r). In order to differentiate time series data on the basis of regularity,

radius (r) needs to be equal to rcoeff ×std, where rcoeff can range from 0.1 to 0.25 and std

denotes the standard deviation of the time series. For the embedding dimension,m = 1 and

m = 2 both work equally well according to [42]. The time delay τ essentially represents

the factor by which the input data is down sampled for further calculations.

20



3.2.3 Evaluation Metrics

Different metrics were used to compare performances of various features on our data set.

For video, we calculate the average classification accuracy over all OSATS criteria for

different features for all values of K in order to find the optimum number of clusters for

each feature type. The average accuracy Âk is calculated using Âk = 1
O

∑
OSATS

AK , where

AK is the accuracy using K clusters for a specific OSATS criteria, and O represents the

total number of applicable OSATS criteria for that task. For accelerometer data, we evaluate

the different features for both the accelerometers attached for each task; wrist and needle-

holder for suturing and hand wrists for knot tying. Accuracies are averaged over all OSATS

criteria for accelerometer data as well.

We also calculate the class wise precision and recall values as precision = tp
tp+fp

and

recall = tp
tp+fn

, where tp is true positive, fp is false positive and fn denotes the false

negatives for the corresponding class. Again, the per-class precision and recall values are

averaged over all OSATS criteria for a more compact representation.

3.3 Results

The features and evaluation metrics described in the previous section were evaluated on

video and accelerometer data for suturing and knot tying tasks for all applicable OSATS

Table 3.2: Highest average classification accuracies with standard deviations for different
techniques using multi-modality data. For video data,K corresponding to highest accuracy
is also shown.

Video Accelerometer
Suturing Knot Tying Suturing Knot Tying

SMT 78.9 ± 5.7 (K=3) 61.1 ± 2.3 (K=10) 72.9 ± 4.5 72.7 ± 5.3
DCT 91.9 ± 3.4 (K=9) 89.5 ± 2.8 (K=9) 84.5 ± 4.9 83.3 ± 2.1
DFT 92.4 ± 3.7 (K=7) 86.8 ± 2.8 (K=10) 85.5 ± 3.0 84.7 ± 4.1
ApEn 93.7 ± 2.2 (K=20) 89.2 ± 5.3 (K=20) 80.3 ± 2.1 75.0 ± 6.5

XApEn 91.4 ± 3.0 (K=16) 90.9 ± 4.3 (K=20) 81.0 ± 4.0 66.2 ± 4.1
ApEn+XApEn 95.1 ± 3.1 (K=16) 92.2 ± 3.0 (K=14) 86.8 ± 4.5 78.7 ± 5.8
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Figure 3.6: Average classification accuracy (Âk) versus K (number of dimensions of time
series) for video data. (Best viewed in color)

Table 3.3: Per class average precision and recall values over all OSATS criteria with stan-
dard deviations using video data corresponding to Table 3.2. The values in each cell are in
the format Precision | Recall.

Suturing Knot Tying
Beginner Intermediate Expert Beginner Intermediate Expert

SMT 89.0±5.7 | 82.3±4.5 66.2±11.8 | 73.2±15.5 60.9±14.7 | 72.6±18.1 68.4±5.6 | 65.5±2.0 51.8±9.4 | 58.4±4.7 63.7±6.9 | 59.4±11.1
DCT 97.3±2.8 | 94.0±1.6 79.2±14.6 | 90.7±7.6 86.0±10.1 | 85.4±10.6 86.5±7.4 | 92.2±7.0 88.3±5.5 | 92.2±5.7 93.1±5.9 | 85.1±2.1
DFT 96.5±2.8 | 94.0±2.5 82.1±11.8 | 90.7±8.9 91.0±9.3 | 89.3±5.2 88.1±7.9 | 85.6±4.9 91.5±7.3 | 85.3±5.4 79.7±9.9 | 90.8±7.7
ApEn 97.6±1.9 | 96.3±2.9 86.7±8.4 | 90.1±3.0 94.6±5.0 | 95.3±4.4 91.1±4.4 | 90.0±5.3 86.8±4.5 | 84.8±7.8 89.5±8.1 | 93.8±3.7

XApEn 97.6±2.4 | 92.8±3.6 80.6±9.0 | 92.6±6.9 93.8±6.2 | 96.6±4.6 91.6±4.1 | 94.2±3.9 88.6±3.3 | 87.9±7.6 91.9±9.4 | 91.8±7.5
ApEn+XApEn 98.1±2.2 | 95.2±3.2 92.4±7.0 | 92.2±5.2 89.3±8.6 | 100.0±0.0 95.0±3.9 | 93.0±6.8 89.7±5.1 | 91.4±3.1 91.6±8.4 | 93.7±6.3

Table 3.4: Per class average precision and recall values over all OSATS criteria with stan-
dard deviations using accelerometer data corresponding to Table 3.2. The values in each
cell are in the format Precision | Recall.

Suturing Knot Tying
Beginner Intermediate Expert Beginner Intermediate Expert

SMT 82.3±4.1 | 79.0±5.0 60.7±7.9 | 69.0±7.8 63.9±11.0 | 61.6±13.4 54.8±8.4 | 75.4±11.5 81.0±7.2 | 66.9±3.2 80.4±3.5 | 80.6±9.6
DCT 95.8±4.4 | 83.1±5.5 80.2±7.5 | 88.0±5.2 60.5±7.9 | 84.7±15.0 83.6±9.1 | 79.7±9.7 85.3±7.6 | 84.7±3.3 80.4±3.5 | 87.3±9.3
DFT 94.2±5.5 | 88.7±3.5 82.1±7.5 | 82.8±7.3 67.2±12.7 | 81.9±11.0 84.9±3.8 | 87.8±6.8 88.1±5.7 | 78.3±2.0 80.7±6.9 | 91.4±3.8
ApEn 91.9±4.2 | 82.5±3.0 64.1±10.0 | 76.1±10.0 69.1±6.0 | 76.4±6.0 74.0±15.1 | 69.0±10.3 67.7±6.6 | 76.5±6.2 82.7±10.7 | 80.9±10.5

XApEn 90.7±5.5 | 82.9±6.7 73.0±17.2 | 78.2±9.5 61.9±15.5 | 82.9±7.4 54.3±7.4 | 70.6±15.4 70.4±5.3 | 63.6±6.8 72.7±10.7 | 67.7±4.2
ApEn+XApEn 93.9±2.1 | 86.2±6.8 75.5±13.6 | 86.4±5.9 81.7±14.0 | 93.2±7.5 77.7±8.9 | 75.8±10.7 72.3±10.0 | 81.3±1.8 86.0±9.8 | 79.3±8.3
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Figure 3.7: Individual OSATS criteria results for video and accelerometer data. For each
feature, the optimal value of K (as indicated in Table 3.2) was used. (Best viewed in color)

criteria. Figure 3.6 shows the comparison of different features for suturing and knot tying

tasks using video data while using different values of K. Figure 3.8 shows the average

classification results achieved using accelerometer data. The highest average accuracy and

the corresponding standard deviations achieved for different techniques are given in Table

3.2. Along with highest average accuracies, we also show the results for individual OSATS

criteria using optimal K for each feature type (as indicated in Table 3.2) in Figure 3.7.

The per-class precision and recall values corresponding to accuracies given in Table 3.2 are

given in Tables 3.3 and 3.4.

In order to check the statistical significance of the presented results in Table 3.2, we

conducted McNemar’s test [46]. The best performing feature for each modality and surgi-

cal task was compared with the rest of the features. For comparing performance of different

classifiers, a p-value < 0.05 indicates that the difference in classification accuracies is sta-

tistically significant. Table 3.5 shows the p-values achieved conducting the McNemar’s
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Table 3.5: McNemar’s test of statistical significance for results presented in Table 3.2.
For each column, the highest performing feature (denoted by “HPF”) was compared with
all other features to check if the higher accuracy achieved is statistically significant by
evaluating the p-value. For example, in the first column, ApEn+XApEn performance was
compared to rest. The improvement in accuracy is statistically significant if p-value<0.05.

Video Accelerometer
Suturing Knot Tying Suturing Knot Tying

SMT <0.01 <0.01 <0.01 <0.01
DCT <0.01 <0.01 <0.05 <0.05
DFT <0.01 <0.01 <0.05 HPF
ApEn >0.05 <0.01 <0.01 <0.01

XApEn <0.01 <0.05 <0.05 <0.01
ApEn+XApEn HPF HPF HPF <0.01

test. It can be observed that the improvement in average classification accuracy by the

highest performing feature for each column is statistically significant for almost all cases.

This shows that the improvements achieved by the proposed entropy based features, when

using video data for both tasks and using accelerometer data for suturing, is statistically

significant.

We also perform experiments to compare how an early fusion of video and accelerom-

eter data performs for frequency (DCT and DFT) and top performing entropy features

(ApEn+XApEn). The features are fused via concatenation. Since some of the accelerom-

eter data had to be excluded (as described in Section 4), we only use videos for which

the corresponding accelerometer data is available i.e 54 for knot tying and 62 for suturing.

Tables 3.6 and 3.7 show the average accuracies (over all OSATS criteria) with standard

deviations using different modalities for suturing and knot tying, respectively.

Lastly, for a more thorough comparison, we perform another experiment using harder

cross validation schemes. We again compare ApEn+XApEn with DCT and DFT. For this

analysis, we use the Video+Acceleration data for each feature type. Figure 3.9 shows the

average accuracies with standard deviation over all OSATS criteria for 2, 5, and 10 fold
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Figure 3.8: Average classification accuracies with standard deviations for accelerometer
data using individual and combination of the two accelerometers. (Best viewed in color)

Table 3.6: Average accuracies with standard deviations for corresponding feature types
using different data modalities for suturing task. Highest performance across all modalities
and feature types is shown in bold

Video Accelerometer Video+Accelerometer
DCT 90.6 ± 3.1 84.5 ± 4.9 86.8 ± 7.7
DFT 87.1 ± 1.1 85.5 ± 3.0 86.1 ± 2.1

ApEn+XApEn 93.9 ± 3.7 86.8 ± 4.5 93.2 ± 6.6

cross validation schemes. Tables 3.8 and 3.9 show results for ‘hold-out’ cross validation

schemes for suturing and knot tying, respectively. For hold-out validation scheme, h% of

the data was kept as testing data (corresponding to each column in the tables) while the

remaining (100 − h)% was used for training. Within the training data, 10% was used as

validation set. Both validation and testing accuracies are given in Tables 3.8 and 3.9. We

do not show training accuracy since that will always be 100% using a nearest-neighbor

classifier (each point in the training data will be closest to itself, always).

Table 3.7: Average accuracies with standard deviations for corresponding feature types us-
ing different data modalities for knot tying task. Highest performance across all modalities
and feature types is shown in bold

Video Accelerometer Video+Accelerometer
DCT 91.7 ± 6.1 83.3 ± 2.1 83.8 ± 4.9
DFT 86.1 ± 1.9 84.7 ± 4.1 81.0 ± 5.5

ApEn+XApEn 90.3 ± 3.1 78.7 ± 5.8 94.0 ± 2.8
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Figure 3.9: Average classification accuracy bars with standard deviations for different cross
validation schemes by using Video+Accelerometer data. (Best viewed in color)

Table 3.8: Average validation and testing accuracies over all OSATS criteria with standard
deviations using hold-out cross-validation for suturing with Video+Accelerometer data.
The values in each cell are in the format Validation Accuracy | Testing Accuracy. Each
column corresponds to the amount of data that was left-out for testing.

Testing Set Percentage
80% 70% 60% 50% 40% 30% 20%

DCT 50.3±8.7 | 51.8±7.6 55.8±8.4 | 57.7±9.0 60.5±8.9 | 61.9±9.2 64.3±9.6 | 66.3±9.3 69.1±9.5 | 71.8±8.7 72.5±8.7 | 75.4±8.9 76.3±8.8 | 79.3±8.3
DFT 53.6±1.8 | 54.0±1.3 57.8±2.3 | 58.7±1.7 60.5±1.5 | 63.0±1.9 65.0±1.9 | 67.3±2.2 69.3±2.2 | 71.6±2.4 73.1±1.9 | 75.3±2.4 76.2±2.4 | 79.0±2.4

ApEn+XApEn 51.6±2.8 | 51.5±2.3 56.0±3.0 | 56.9±3.2 59.9±3.5 | 62.7±4.0 65.5±3.8 | 67.8±4.3 71.3±5.0 | 73.7±4.7 75.3±5.0 | 78.4±5.3 79.8±5.3 | 83.7±5.7

Table 3.9: Average validation and testing accuracies over all OSATS criteria with standard
deviations using hold-out cross-validation for knot tying with Video+Accelerometer data.
The values in each cell are in the format Validation Accuracy | Testing Accuracy. Each
column corresponds to the amount of data that was left-out for testing.

Testing Set Percentage
80% 70% 60% 50% 40% 30% 20%

DCT 42.4±3.7 | 45.0±3.6 48.5±5.0 | 50.6±3.9 53.9±5.1 | 54.9±4.4 57.9±4.0 | 60.4±4.5 63.2±4.5 | 65.0±4.1 67.6±4.4 | 70.2±4.6 71.8±4.8 | 75.9±5.0
DFT 45.7±3.2 | 45.4±4.5 50.9±5.4 | 50.4±5.0 52.7±4.7 | 54.9±4.9 57.8±4.9 | 58.7±5.3 6.3±5.0 | 63.9±5.3 65.6±5.7 | 68.1±5.1 70.2±5.5 | 73.3±6.1

ApEn+XApEn 46.9±5.8 | 47.0±6.3 54.6±5.8 | 54.5±6.7 58.5±5.7 | 60.9±6.2 64.2±5.5 | 66.6±5.6 70.2±4.8 | 73.7±5.2 75.4±4.9 | 79.0±4.7 80.8±4.2 | 85.4±4.2
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3.4 Discussion

From the results presented in the previous section, we can see that entropy based features

perform better for video data as compared to state-of-the-art techniques in terms of accu-

racy. For accelerometer data, entropy based features attain a higher accuracy for suturing

but not for knot tying (Table 3.2). The reasons for this is mainly because entropy based

features are dependent on the dimension of the time series used (can also be seen in Figure

3.6 for increasing values ofK); the higher the dimension of time series being evaluated, the

more information is captured especially for cross entropy (XApEn). In case of accelerome-

ter data, we only have 3-axis acceleration values so entropy based features cannot capture

enough information. However, entropy based features still have a higher accuracy for su-

turing task. From Tables 3.3 and 3.4, we can see that entropy based features perform well

overall, however, there isn’t a conclusive trend in terms of precision/recall values.

Comparing the performances of using individual or a combination of accelerometers

from Figure 3.8, we can observe that the combination of data from both accelerometers

performs better than individual accelerometers. However, these differences in the perfor-

mance can potentially give us some valuable insights for skill assessment. For example,

in suturing, instrument data works slightly better than wrist for most of the feature types.

The reason for this could be that there is relatively more movement of the instrument in

suturing as compared to the wrist. Therefore, more motion information would be available

to differentiate between different skills. This information can help surgeons improve on

their skills by focusing on their instrument motion a bit more.

Comparing results for individual modalities shows us that using video data performs

much better than accelerometer for all feature types. This can be explained by the fact that

accelerometers only capture the hands/needle-holder 3-D acceleration data whereas videos

can be used to extract all motions (both hands, instruments etc.). From the results of our

video and accelerometer features fusion experiment (Table 3.6 and Table 3.7), we can see
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that combining video and accelerometer data deteriorates performance for DCT and DFT

features as compared to video data. For ApEn+XApEn, the performance improves for knot

tying but slightly decreases for suturing. Overall, the highest performance is achieved using

ApEn+XApEn features for each task (shown in bold). Even while using harder cross vali-

dation schemes, the proposed ApEn+XApEn features outperform frequency based features

for both tasks for most setups (Figure 3.9, Table 3.8, Table 3.9).

While out-performing the previously proposed features for skill assessment, ApEn and

XApEn also have some limitations. Firstly, these features are somewhat dependent on the

dimensionality of the time series data; they work better for high dimensional data, espe-

cially for XApEn (since it can capture more information). However, increasing dimension-

ality also leads to potential over-fitting. Moreover, XApEn is computationally expensive

and can take a long time if extracted using CPU. However, this can be overcome if a GPU

implementation is used. In [47], the authors showed that using GPU for extracting XApEn

from a multi-dimensional time series can be more than 250x faster than using CPU. This

would be particularly important for real time feedback.

Although, previously proposed frequency features perform reasonably well (especially

for accelerometer data), we think that they perform well on repetitive surgical tasks like

suturing and knot tying. We believe that the proposed entropy based features would perform

better in other surgical procedures as well since they try to capture the irregularity in motion

instead of just the repetitiveness. Specifically, it would be interesting to see how these

features perform in the recently published JIGSAWS dataset [48] since it contains similar

surgical tasks being performed on a da Vinci robot.

3.5 Summary

In this chapter, we presented a framework for automated surgical skills assessment for

basic tasks of suturing and knot tying using video and accelerometer data. Overall, our

analysis showed that videos are better for extracting skill relevant information as compared
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to accelerometer. However, a fusion of video and accelerometer features can improve the

performance. Also, the proposed combination of ApEn and XApEn performed best among

all features. Having an automated system for surgical skills assessment can significantly

improve the quality of surgical training. It would allow the surgical trainees to practice

their basic skills a lot more with valuable feedback. Moreover, such a system could also

help save expert surgeon’s time that is spent on trainee assessment.
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CHAPTER 4

SURGICAL SKILL ASSESSMENT IN RMIS TRAINING

With the rapidly increasing amount of Robot-Assisted Minimally Invasive Surgery (RMIS)

around the world, the focus on robotic surgical training has increased tremendously. Typ-

ical robotic surgery training includes simulator based and dry lab exercises like suturing,

knot tying and needle passing. Training on these tasks is crucial since it forms the base for

advanced training procedures on pigs, cadavers and eventually, humans. However, the cur-

rent assessment on such dry lab exercises is done manually by supervising surgeons which

makes it prone to subjectivity and reduces the overall efficiency of training.

In this chapter, we will extend the work presented in the previous chapter to develop an

automated framework for assessment of surgical skills in basic RMIS training and achieve

state-of-the-art performance using frequency and entropy based features. As opposed to

previous chapter’s work where we used video and accelerometer data, here we will only

use robot-kinematics data to assess skill.

4.1 Methodology

4.1.1 Skill Classification/Score Prediction

As opposed to previous proposed works on using different variants of HMMs [50] for skill

assessment, we evaluate holistic features for predicting skill level using robot kinemat-

ics data. Figure 4.1 shows the proposed pipeline. For a given D-dimensional time series

S ∈ <D×L, where L is the number of frames, we extract 4 different types of features:

Sequential Motion Texture (SMT), Discrete Fourier Transform (DFT), Discrete Cosine

Chapter reference: [49]
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Figure 4.1: Flow diagram of the proposed framework for robotic surgical skills assessment.

Transform (DCT) and Approximate Entropy (ApEn). The dimensionality of the features is

reduced using Principal Component Analysis (PCA) before classification/prediction. We

give details of the feature types, fusion method and the prediction model below.

SMT: Sequential motion texture was implemented as presented in the original paper [5].

The time series is divided intoNw number of windows. A frame kernel matrix is calculated

after which Gray Level Co-Occurence Matrices (GLCM) texture features (20 in total) are

evaluated resulting in a feature vector φSMT ∈ <20Nw .

DCT/DFT: Frequency features were evaluated in a similar fashion as described in the

previous chapter. We evaluate DCT and DFT coefficients for each dimension of the robot

kinematics time series. This results in a matrix of frequency components F ∈ <D×L. The

lowest Q components from each dimension are then concatenated together to make the

final feature vector φDCT/DFT ∈ <DQ. Using low frequency features would eliminate any

high frequency noise that could have resulted during data capture.

ApEn: Approximate entropy features were also extracted as presented in previous chap-

ter. Evaluating ApEn for all dimensions of the time series data results in a feature vector

Figure 4.2: Weighted feature fusion for OSATS score and GRS prediction.
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Suturing Knot-Tying Needle-Passing

Figure 4.3: Sample frames from the 3 tasks in the JIGSAWS dataset [48].

φApEn ∈ <DR, where R is the number of radius values used in evaluation per dimension.

Feature Fusion: A weighted feature fusion technique for skill prediction (as shown in Fig-

ure 4.2) is also used for classification/predictions. The outputs of different prediction mod-

els are combined to produce a skill score. We take our training time series data and evaluate

each feature type to produce a training feature matrix φf ∈ <n×D, where f corresponds to

a the feature type used, n is the number of training samples and D is the dimensionality of

the feature type. The output yf ∈ <n corresponding to each φf is then evaluated using the

prediction model. A matrix of outputs from different features Y ∈ <n×F is generated by

concatenating all the yf , where F corresponds to total number of features used. Given the

ground truth predictions G ∈ <n, the optimal weights vector w∗ ∈ <F is then evaluated by

solving a simple least squares as w∗ = argmin
w
||Y w−G||22. For a given test set, the output

ˆytest is then calculated using ˆytest = Ytestw
∗.

Classification/Prediction: A simple nearest neighbor classifier is used for classification of

skill levels. For exact score prediction,a linear support vector regression (SVR) model [51]

is used.

4.2 Experimental Evaluation

Dataset: The proposed framework is evaluated on the publicly available JIGSAWS dataset

[48]. This dataset is collected from a da Vinci Surgical System (dvSS) and consists of

kinematics and video data from 8 participants for three robotic surgical tasks: Suturing,

Knot Tying and Needle Passing. The video data is captured using the endoscopic camera
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Table 4.1: Table showing optimal number of PCA components estimated. For prediction,
the optimal value of the regularization parameter C is given within parentheses.

SMT DCT DFT ApEn
Classification 50 150 150 40

Prediction 10 (102) 1000 (10−6) 250 (10−6) 40 (104)

while the kinematic data consists of the joint information (e.g. Cartesian positions, linear

and angular velocities, gripper angles, etc) from the different robot manipulators resulting

in a 76-dimensional kinematic feature vector per frame. Figure 4.3 shows sample frames

for each task. We only use kinematic data in its raw form without any preprocessing for our

analysis and employ the standard LOSO (leave-one-supertrial-out) and LOUO (leave-one-

user-out) cross validation setups. For LOSO, we leave one randomly selected trial from

each surgeon out for testing and repeat this 20 times. For LOUO, we leave all trials from

one surgeon out for testing. The dataset has ground truth skill labels of three categories:

self-proclaimed, OSATS and global rating score (GRS). Self-proclaimed category has three

skill levels (dependent on the amount of hours spent on the system) − novice (< 10 hrs),

intermediate (10 − 100 hrs) and expert (> 100 hrs). The OSATS scores are based on six

criteria on a scale of 1-5 and are generated by an expert watching the videos while grading

them. This is different from the original OSATS [3] (as described in introduction section)

since it contains an extra criteria of suture handling (SH) and that none of the criteria are

graded as Pass/Fail. The GRS is a sum of all individual OSATS scores.

Parameter estimation: There are different parameters that need to be tuned for the extrac-

tion of various features. We use the implementation of different features in their orig-

inal forms as presented in the previous chapter. In SMT, we use number of windows

Nw = 10 and evaluate Gray Level Co-Occurence Matrices (GLCM) texture features with

8 gray levels resulting in a 200-dimensional feature vector. For frequency features, we

take the lowest 50 components (Q = 50) for each dimension of the time series and con-

catenate them resulting in a 50D-dimensional feature vector, where D is the dimension of

time series (76 in our case). In calculating approximate entropy (ApEn), we use radius
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r = [0.1, 0.13, 0.16, 0.19, 0.22, 0.25] resulting in a 6D-dimensional feature vector. A value

of 1 was used for both m and τ .

We use Principal Component Analysis (PCA) for dimensionality reduction before pass-

ing features onto the classifier or the regression model. This was done since a lower per-

formance was observed using original feature dimensionality. In order to estimate the

optimal number of PCA componenets DPCA, we evaluate performance for DPCA rang-

ing from 10 to 3000 for all tasks for each feature type. The value of DPCA correspond-

ing to highest average performance accross all tasks was selected. For score predictions,

we need to estimate an optimal value for the regularization parameter C in SVR. For

each feature type, we evaluated the average correlation coefficient (over all OSATS) for

C ∈ [10−7, 10−6, . . . , 106, 107] and selected the best performing value of C for evaluations.

The optimal values of DPCA and C are given in Table 4.1. Please note that all parameters

were strictly tuned on the training data only for both validation setups. This includes the

weights being estimated for the fusion of different prediction models.

4.3 Results and Discussion

We evaluate the proposed features for skill classification and OSATS based score predic-

tion using the JIGSAWS dataset. For classification, we compare the performance of these

features with previous HMM based state-of-the-art methods [50]. Table 4.2 shows results

for self proclaimed skill level classification in the JIGSAWS dataset. As evident, using

holistic features significantly out-perform previous approaches of using different variants

of HMMs. Specifically, ApEn performs significantly better than all other methods. This

is interesting to note since experts (with > 100 hrs of practice) would have smoother mo-

tions as compared to beginners (with < 10 hrs of practice) making their movements more

‘predictable’, and hence easily differentiated using ApEn features.

Table 4.3 shows the results for OSATS and global rating score predictions. We use

spearman’s correlation coefficient ‘ρ’ as an evaluation metric and check for statistical sig-
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Table 4.2: Self proclaimed skill classification results
Suturing Knot Tying Needle Passing

LOSO LOUO LOSO LOUO LOSO LOUO
discrete-HMM 72.0 - - - - -

MFA-HMM 92.3 38.5 86.1 44.4 76.9 46.2
KSVD-HMM 97.4 59 94.4 58.3 96.2 26.9

SMT 99.0 35.3 99.6 32.3 99.9 57.1
DCT 100 64.7 99.7 54.8 99.9 35.7
DFT 100 64.7 99.9 51.6 99.9 46.4
ApEn 100 88.2 99.9 77.4 100 85.7

Table 4.3: OSATS scores and GRS prediction results. Each cell contains two numbers in
the form ρOSATS | ρGRS , where the first number is the value of ρ averaged over all OSATS
and the latter is the value of ρ for GRS prediction. “*” means a p−value < 0.05 for the
corresponding ρ.

Suturing Knot Tying Needle Passing
LOSO LOUO LOSO LOUO LOSO LOUO

SMT 0.25 | 0.46* -0.08 | -0.28 0.41* | 0.39* 0.18 | 0.21 -0.12 | 0.09 0.07 | -0.60*
DCT 0.57* | 0.68* 0.10 | 0.08 0.59* | 0.76* 0.49 | 0.73* 0.22 | 0.26* -0.16 | 0.09
DFT 0.45* | 0.49* -0.28 | -0.29 0.31 | 0.32* 0.46* | 0.47* 0.44* | 0.53* 0.37 | 0.19
ApEn 0.31* | 0.49* 0.43 | 0.40* 0.26 | 0.14* 0.02 | 0.12 0.16 | 0.06 0.21 | -0.21

SMT+DCT 0.48* | 0.61* 0.01 | 0.01 0.66*| 0.71* 0.46 | 0.78* 0.14 | -0.16 -0.23 | -0.14
SMT+DFT 0.40* | 0.60* -0.21 | -0.49* 0.36 | 0.39* 0.52* | 0.48* 0.39* | 0.54* 0.33 | 0.13
SMT+ApEn 0.28* | 0.35* 0.41 | 0.42* 0.18 | 0.36* 0.06 | 0.12 0.12 | -0.06 0.15 | -0.29

SMT+DCT+DFT 0.57* | 0.64* 0.16 | 0.10 0.58* | 0.70* 0.56*| 0.73* 0.36* | 0.38* 0.50* | 0.23
DCT+DFT 0.56* | 0.66* 0.13 | 0.14 0.53* | 0.68* 0.55* | 0.73* 0.41* | 0.47* 0.53* | 0.28

DCT+DFT+ApEn 0.59* | 0.75* 0.43* | 0.37* 0.57* | 0.63* 0.48 | 0.60* 0.37 | 0.46* 0.23 | 0.25
SMT+DCT+DFT+ApEn 0.47* | 0.66* 0.45*| 0.37* 0.55* | 0.61* 0.49 | 0.62* 0.45*| 0.45* -0.21 | -0.19

Table 4.4: Values of ρ averaged over all three tasks for the corresponding feature types in
the form ρOSATS | ρGRS .

LOSO LOUO
SMT 0.18 | 0.31 0.05 | -0.22
DCT 0.46 | 0.57 0.14 | 0.24
DFT 0.40 | 0.45 0.19 | 0.12
ApEn 0.24 | 0.23 0.22 | 0.10

SMT+DCT 0.43 | 0.39 0.08 | 0.22
SMT+DFT 0.38 | 0.51 0.22 | 0.04
SMT+ApEn 0.20 | 0.22 0.21 | 0.08

SMT+DCT+DFT 0.50 | 0.57 0.41| 0.36
DCT+DFT 0.50 | 0.60 0.40 | 0.38

DCT+DFT+ApEn 0.51 | 0.61 0.38 | 0.41
SMT+DCT+DFT+ApEn 0.49 | 0.58 0.24 | 0.27
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Table 4.5: Root-mean-squared-error (RMSE) for each OSATS criteria using the top per-
forming features from table 4.4. Each cell contains RMSE values for each task in the form
Suturing | Knot tying | Needle passing.

Respect for tissue Suture handling Time and motion Flow of operation Overall performance Quality of final product
SMT+DCT+DFT 0.86 | 0.88 | 0.84 1.26 | 0.75 | 0.88 1.04 | 0.57 | 0.79 0.96 | 0.67 | 0.62 1.17 | 0.84 | 0.74 0.92 | 0.83 | 0.99

DCT+DFT 0.91 | 0.90 | 0.83 1.40 | 0.81 | 0.88 1.07 | 0.53 | 0.81 1.14 | 0.65 | 0.61 1.22 | 0.83 | 0.74 1.04 | 0.89 | 0.97
DCT+DFT+ApEn 0.88 | 0.93 | 0.90 1.02 | 0.96 | 1.21 0.90 | 0.55 | 0.82 0.86 | 0.74 | 0.71 1.02 | 0.92 | 1.11 0.83 | 1.12 | 1.17

SMT+DCT+DFT+ApEn 0.88 | 0.93 | 1.28 0.98 | 0.96 | 1.40 0.89 | 0.51 | 1.26 0.85 | 0.74 | 1.00 1.02 | 0.88 | 1.29 0.82 | 1.12 | 1.38

nificance using the p-value. The value of ρ can range from -1 to +1, where the more positive

the value of ρ is, the more positively correlated the predicted and ground truth scores are

(which we want in our case). For OSATS score prediction, we show the value of ρ aver-

aged over all six criteria, whereas, the GRS ρ values are given as is. Feature combination

results presented in Table 4.3 are evaluated using weighted feature fusion as described in

methodology section. Overall, we can see that individual features and their combinations

achieve good results for the LOSO setup. Specifically, DCT and DFT features perform

better than others. On the other hand, we see a comparatively low performance overall

across all feature combinations for LOUO setup with many negative values of ρ observed.

This is because LOUO is a harder validation scheme due to less data for training phase.

However, using the proposed feature combination significantly improves performance over

individual features and results in a positive ρ for most feature combination cases. In gen-

eral, frequency features seem to perform well when used individually or in combination

with other features. We can also see an overall lower performance across all features for

the needle-passing task. The reason for this could be that needle-passing is a relatively

less repetitive task as compared to the other two. Since the features we use try to differ-

entiate between different skill levels using data repeatability, they perform less well for

needle-passing. Table 4.4 shows the average of ρ values over all three tasks (as given in

Table 4.3) for each feature type. We observe that DCT+DFT+ApEn performs best on av-

erage for OSATS and GRS score prediction. We also evaluate the root-mean-squared-error

(RMSE) values between the predicted and ground truth scores per OSATS criteria for the

top performing features as shown in Table 4.5. We can see that the presented combination
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Figure 4.4: Heatmaps of weight assignments of different features. Each column shows
the weight vector w∗ (scaled from 0 to 1) for the corresponding OSATS criteria or GRS.
For each heatmap, the features used in combination are shown next to each row and the
corresponding task, validation scheme and average ρ (over OSATS) are also shown. (Please
view this figure in color)

of features perform reasonably well for all the different criteria. This is interesting to see

since one would expect that kinematics data alone may not be enough for some criteria like

respect for tissue where visual information would be key in analyzing skill score. How-

ever, as confirmed by our results, robot kinematics data alone can potentially be enough for

assessment of all OSATS criteria.

In order to analyze the role of different features in the proposed weighted late fusion

for skill prediction, we generate heatmaps of the weight vectors learned and show a few

of them in Figure 4.4. It can be seen that DCT features get assigned the highest weight

in most of the cases. DFT and ApEn features generally have similar weight assignments

whereas SMT always gets assigned a low weight. This shows that DCT features capture the

most skill relevant information which is also evident from its high performance compared

to other individual features in Table 4.3.

While the framework presented in this chapter show promising results for automated
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surgical skills assessment for RMIS training, this work is limited by the amount of data

that the analysis is performed on. JIGSAWS is the only publicly available dataset to date

(to the best of our knowledge) for surgical skills assessment in RMIS training. Therefore,

it is hard to claim that such methods would be generalizable. However, we believe that the

idea of using predictability and fluency in surgical motions extracted through features like

DCT, DFT and ApEn, should be able to differentiate skill reasonably well for other kinds

of surgical data too.

4.4 Summary

In this chapter, we extended the framework presented in the previous chapter to RMIS

training assessment and used holistic features like SMT, DCT, DFT and ApEn for skill

assessment in RMIS training. The proposed framework out-performed all existing HMM

based approaches. We also presented a detailed analysis of skill assessment on the JIG-

SAWS dataset and propose a weighted feature combination technique that further improved

performance on score predictions. No video data was used making this method computa-

tionally feasible for real time feedback. This framework can easily be integrated in a robotic

surgery platform (like the daVinci system) to generate automated OSATS based score re-

ports in training.
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CHAPTER 5

UNSUPERVISED SURGICAL ACTIVITY RECOGNITION

In the previous two chapter, we looked at methods that can be used to assess surgical skill

in a basic training setup for open and robotic surgeries. The focus of this thesis will now

shift towards assessment of robot-assisted clinical procedures which involves operating on

real tissue - porcine or human. Assessment in such a setup becomes much harder since the

environment is not controlled as before and every data sample would have large variations.

Therefore, the frameworks presented previously cannot directly be applied for assessment

in clinical procedures. The first problem that we need to solve for assessment in clinical

setup is ‘procedure segmentation’. Procedure segmentation refers to finding the start and

stop times of individual tasks within a procedure. This is an essential step for generating

task wise assessment reports for surgeons. In this chapter, we will explore some unsuper-

vised methods for procedure segmentation in robot-assisted surgeries (RAS).

5.1 Introduction

Over the course of entire procedures, surgeons perform certain tasks that are more criti-

cal than others. For example, during a prostatectomy, surgeons must finely coordinate their

tools to carefully avoid damaging nerves during the dissection of the neurovascular bundles

whereas mobilizing the colon and dropping the bladder do not involve similar risks. Despite

these apparent differences across steps, most evaluations of surgical workflow or surgeon

skill at population scales use simple, descriptive statistics (e.g. time) across whole proce-

dures, thereby deemphasizing critical steps and potentially obscuring critical inefficiencies

or skill deficiencies. If we could develop tools and algorithms to automatically recognize

Chapter reference: [52]
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Figure 5.1: Flow diagram of the proposed model for unsupervised surgical phase segmen-
tation.

clinically-relevant surgical tasks within procedures, we might be able to improve surgical

workflow, skill assessment, surgeon training, and, ultimately, patient safety by providing

task-specific performance measures.

Despite the recent successes of video-based methods, there remain compelling reasons

why one would (a) want to use smaller data streams than video and (b) utilize offline meth-

ods without real-time capability. Small data streams enable feasible storage of data across

many procedures, streaming of data over network connections without large bandwidth or

disruption, and smaller compute resources for training the models. Using non-video data

strongly parallels research directions in activity recognition where wearables with simple

accelerometer signals might be used. Additionally, offline methods can utilize data from

entire procedures for phase recognition and remain useful for post-operative feedback, re-

view, and documentation by surgeons. For these reasons, we believe system data from

robotic surgical systems offer a scalable, practical approach to surgical segmentation and

skill estimation.

In this chapter, we will examine temporal clustering methods to perform offline surgical

task recognition using only non-video data from RAS systems. In particular, we will apply

models developed for human activity recognition [53, 54]. The models are evaluated on

clinically relevant tasks performed on porcine models in a training environment.
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Figure 5.2: ‘Pseudo-procedure’ with sample frames for each of the five surgical tasks in
the dataset.

5.2 Methodology

In this section, we describe an approach for unsupervised segmentation of RAS procedures.

Figure 5.1 shows a flow diagram of our method. We collect kinematic and events data from

the da Vinci Si R© surgical system (Intuitive Surgical, Inc., Sunnyvale, CA) while surgeons

of varying expertise perform exercises on a porcine model (additional details on data set

are given in Section 3). The events data stream is used directly, whereas, the kinematic

time series is preprocessed before implementing different segmentation algorithms. We

will employ Aligned Cluster Analysis (ACA) [53] and Hierarchical Aligned Cluster Anal-

ysis (HACA) [54] for our surgical procedure segmentation since both these algorithms

have proven to work well for human activity segmentation. For comparison, we also im-

plement two additional temporal clustering algorithms: Gaussian Mixture Models (GMM)

and Spectral Clustering (SC). Descriptions of the clustering algorithms are given below.

5.2.1 Spectral Clustering

Spectral clustering (SC) is a graph based clustering algorithm which has been widely used

for image segmentation in the computer vision community. It has also been used for time

series segmentation in various biomedical applications [55]. For a given time series T ∈

<d×N , SC divides the temporal data depending on a similarity measure sij between pairs
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of data frames ti and tj . The data is represented as a similarity graph G = (V,E), where

V is the vertex set and E is the edge set. Each vertex of the graph vi is represented by

a data frame ti, and any two vertices are connected via a Gaussian similarity measure

sij = exp(− ||ti−tj ||
2

2σ2 ). Once the graph G is constructed, the problem of clustering becomes

a graph partitioning task. Therefore, in order to cluster different surgical procedures in our

dataset, we partition the graph constructed so that the edges between different groups have

small weights and the edges within a group have large weights.

5.2.2 Gaussian Mixture Models

Gaussian mixture model (GMM) is a popular clustering algorithm and has been extensively

used for various applications. The use of GMM for time series segmentation was originally

proposed in [56]. We use a GMM to model our time series T ∈ <d×N , and segment the

series whenever two consecutive frames belong to different Gaussian distributions. This

is done since data frames from different surgical tasks, or activities in general, would po-

tentially form distinct clusters which can be modeled using Gaussian distributions. We use

the Expectation Maximization (EM) algorithm to estimate the parameters of each of the

Gaussians in the GMM.

5.2.3 Aligned Cluster Analysis and Hierarchical Aligned Cluster Analysis

Given a time series T ∈ <d×N , Aligned Cluster Analysis (ACA) and Hierarchical Aligned

Cluster Analysis (HACA) algorithms are formulated to decompose T into M different

segments with each segment corresponding to one of the K clusters. Each segment Qm

consists of frames of data from position tm till tm+1 − 1, where tm and tm+1 − 1 represent

the first and the last index of the mth segment. In order to control the temporal regularity,

the length of each segment Qm is constrained to the range li ∈ [lmin, lmax]. A binary

indicator matrix G ∈ <K×M is generated where gk,m = 1 if the mth segment belongs to

the kth cluster, otherwise gk,m = 0. The objective function for the segmentation problem
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is formulated as an extension to previous work on kernel k-means and is given by:

JACA(G, s) =
K∑
k=1

M∑
m=1

gk,mD
2
ψ(Qm, zk) (5.1)

where, the distance function D2
ψ(Qm, zk) = ||ψ(T[ti,ti+1]) − zk||2, Qm represents a

segment, s is a vector containing the start and end of each segment and zk is the geometric

centroid of the k-th class. Just like kernel k-means, the distance between a segment and a

class centroid is defined using a nonlinear mapping ψ(.), given by

D2
ψ(Qm, zk) = τmm −

2

Mk

M∑
j=1

gkjτmj +
1

M2
k

M∑
j1,j2=1

gkj1gkj2τj1j2 (5.2)

where, Mk denotes the number of segments belonging to class k. The dynamic kernel

function τ is defined as τij = ψ(Qi)
Tψ(Qj). In matrix form, the objective function for

ACA can be written as

JACA(G,H) = tr((Im −GT (GGT )−1G)H(F ◦W )HT ) (5.3)

where, W is the normalized correspondence matrix, H is the segment indicator matrix and

F is the frame kernel matrix, as defined in [54]. For our analysis, frame kernel matrix is

of particular interest since the preprocessing parameters depend on it. Given a time series

T ∈ <d×N , the frame kernel matrix F ∈ <N×N is given by

F = φ(T )Tφ(T ) (5.4)

Each element of the matrix fij represents the similarity between the corresponding frames,

ti and tj , using a kernel function. We use a Gaussian kernel function for evaluating the

frame kernel matrix giving fij = exp(− ||ti−tj ||
2

2σ2 ). Once the energy function JACA is formu-

lated, a dynamic programming based approach is used to solve for the optimal G ∈ <K×M

and s ∈ <M+1 [54].
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Table 5.1: Details of the five surgical tasks used in this study.
Task Name Mean Time (s) Standard Deviation Time (s)

1 Two-handed robotic suturing 1329.2 733.9
2 Uterine horn dissection 2159.7 492.6
3 Suspensary ligament dissection 1999.3 1097.5
4 Running robotic suturing 617.6 126.7
5 Rectal artery skeletonization and clipping 1474.7 276.3

For Hierarchical aligned cluster analysis (HACA), the same steps as described above for

ACA are performed in a hierarchy at different temporal scales reducing the computational

complexity; HACA first searches in a smaller temporal scale and propagates the result to

larger temporal scales. Temporal scales over here refers to the number of segments the

time series is randomly segmented into initially; a larger scale would mean less number of

segments. We use a two level HACA; the maximum segment length is restricted to l(1)max

and l(2)max for the first and second levels in the hierarchy, respectively, where l(1)max < l
(2)
max.

Please see [54] for a more detailed description of ACA and HACA.

5.3 Experimental Evaluation

5.3.1 Dataset

We collected data from nine RAS surgeons operating the da Vinci Si surgical system. In-

formed consent was obtained from all individual surgeons included in the study (Western

IRB, Inc. Puyallup, WA). None of the surgeons had performed previous RAS procedures

but they all had prior laparoscopic and/or open experience. Five of the surgeons specialized

in general surgery, three specialized in urology, and one specialized in gynecology. Each of

the surgeons performed multiple training tasks in a single sitting on a porcine model that fo-

cused on the technical skills used during dissection, retraction, and suturing. During each

exercise, instrument kinematics, system events, and endoscope video were recorded and

synchronized. System data was recorded at 50Hz whereas endoscope video was recorded

at 25fps.
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We selected five representative tasks for this study (see Table 5.1). The five tasks were

treated as one ‘pseudo-procedure’ in our analysis as shown in Figure 5.2. The video data

was used to generate ground truth segmentations and was not added as a source of features

in our models. All tasks were performed in the pelvis of the porcine model and the setup

joints (therefore, remote centers of motion) were unchanged for all tasks. The five tasks

were perfomed on common anatomy within the pelvis thus ensuring that the segmentation

algorithms are not simply using positions in the world reference frame to differentiate ac-

tivities. Additional details about the instrument kinematic and system events data are given

below.

Kinematic Data: The kinematic data captured from the da Vinci Si surgical system con-

sisted of the endpoint pose and joint angles from the hand controllers on the surgeon side

console (SSC) and the instruments and camera on the patient side cart (SI). The kine-

matic data stream from SSC consisted of a 56-dimensional time series whereas SI was a

156-dimensional time series. We used individual data streams along with their different

combinations in order to find the data stream most useful for segmenting different surgical

tasks.

Events: A subset of the available system events were used in this study. The events used

included camera control, master clutch for each hand controller, instrument following state

for three patient-side arms, energy activation, and surgeon head in/out of the console. All

events were represented as binary on/off time series. In total, the events data was an 8-

dimensional time series.

5.3.2 Parameter Estimation

The performance of each proposed clustering algorithm depends on various parameters at

each step of the pipeline. We used a subset of 5 randomly selected ‘pseudo-procedures’ to

estimate the different parameters empirically. The details are given below.

In the preprocessing step for kinematic data, we use k-means clustering per trial to
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Figure 5.3: Sample frame kernel matrices for different number of symbols used in the
preprocessing step. The left most image represents the frame kernel matrix when the time
series is not reduced using k-means.

convert the high-dimensional time series data into symbols. The number of symbols, Ns,

used in this step is important for the clustering performance since selecting too few symbols

would fail in capturing enough information to differentiate the surgical tasks. The structure

of the frame kernel matrix F , as described in Section 3, highly depends on the value of

Ns. Ideally, in order to temporally segment different surgical tasks, we would want F

to have a block structure along its diagonal. A block structure of K would mean a high

variability in frames between different surgical tasks, and a low variability within each task.

In [54], the authors selected the number of symbols (or clusters) based on characteristics

of the synthetic or real data and made sure the chosen number of symbols was greater

than the number of activities to be recognized. Here, we performed a coarse parameter

search for the number symbols by running our clustering algorithms for a range of Ns ∈

[10, 15, 20, 50, 100, 150, 200] and evaluated the clustering accuracies (using equation 6) for

the selected subset of ‘psuedo-procedures’. The value of Ns corresponding to the highest

average clustering accuracy (over the subset of ‘pseudo-procedures’) was then selected. We

found that having a smaller value of Ns gave better performance, with the highest average

clustering accuracy being achieved with Ns = 15. Figure 5.3 shows example frame kernel

matrices for the same time series data but with different value ofNs. One can see that using

fewer symbols results in a more block-like structure in the frame kernel matrix. We used

15 symbols to represent our multi-dimensional time series before employing the temporal
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clustering algorithms.

For ACA and HACA, the main parameter to fine tune is the maximum segment length

lmax. ACA and HACA divides the time series into many small segments which are then

assigned to different clusters. The lengths of these segments need to be selected in a way

that maximizes segmentation performance. Keeping lmax too big would result in misclassi-

fications at the boundaries between different tasks, whereas, a smaller lmax would not allow

for the algorithm to capture the temporal structure of the data required for segmentation.

In [54], the length constraints were again chosen based on characteristics of the datasets,

siimilar to the number of clusters, Ns, without formal optimization. Therefore, we empir-

ically selected the maximum segment lengths as lmax = 30 for ACA, and l1max = 20 and

l2max = 30 for the two levels in HACA, respectively, based on the length of our tasks (see

Table 5.1 and recording rate).

5.3.3 Evaluation Metric

In order to evaluate the clustering accuracy for each algorithm, we calculated the confu-

sion matrix between the ground truth (Gtrue, Htrue) and the segmentation output from the

algorithm (Gout, Hout). The confusion matrix C ∈ <K×K is given by:

C = GoutHoutH
T
trueG

T
true (5.5)

where, each element ccicj represents the number of frames that are in cluster segment

ci and are shared by cluster segment cj in ground truth. Once the confusion matrix is cal-

culated, we use the Hungarian algorithm [57] to find the optimum cluster correspondence

giving the clustering accuracy as:

accuracy = max
tr(CP )

tr(C1K×K)
(5.6)

where, P ∈ {0, 1}K×K is the permutation matrix and 1K×K represents a matrix of all 1
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Table 5.2: Average performance with standard deviations for various feature types tested
for the different clustering algorithms using the complete dataset of nine surgeons. The
highest performance achieved across different features for each algorithm is shown in bold.

SC GMM ACA HACA
SSC 71.1 ± 16.4 50.6 ± 6.2 70.8 ± 17.1 79.0 ± 12.3
SI 80.6 ± 7.5 51.2 ± 7.0 82.7 ± 8.6 85.5 ± 8.3

SSC+SI 84.1 ± 13.9 54.9 ± 6.5 78.1 ± 15.8 82.3 ± 8.0
SSC+EVT 72.2 ± 14.9 53.6 ± 6.0 73.2 ± 13.9 73.9 ± 14.6
SI+EVT 81.9 ± 11.2 53.9 ± 6.2 82.9 ± 11.0 88.0 ± 7.1

SSC+SI+EVT 77.3 ± 17.6 52.3 ± 3.1 79.9 ± 14.0 84.1 ± 9.2

Table 5.3: Precision and recall values for different algorithms for each task using SI+EVT
features.

Precision Recall
SC GMM ACA HACA SC GMM ACA HACA

Task1 52.4 48.8 73.2 89.2 63.1 49.3 68.3 87.4
Task2 85.0 52.7 69.3 80.3 74.6 59.5 85.7 81.5
Task3 76.6 47.5 86.4 73.7 80.3 59.7 99.7 99.7
Task4 42.1 37.8 73.0 59.7 36.0 19.6 43.3 37.3
Task5 77.9 57.4 94.8 90.0 81.2 53.6 85.8 81.1

entries.

We employed the temporal clustering algorithms on individual data streams as well as

their combinations. All possible combinations from these three data streams were evaluated

to find the optimum features for our task. We computed the precision and recall for the top

performing set of features based on the accuracy measures.

5.4 Results and Discussion

We evaluated the performance of the different unsupervised clustering algorithms on the

surgical procedures. As described in Section 5.3.1, the dataset consisted of kinematic (pose

and joint angles) and event data streams collected from the surgeon side console and the

patient side cart. We implemented the clustering algorithms on individual data streams and

combinations of different data streams in order to compare how various feature sets im-

pacted algorithm performance. Since the convergence of clustering algorithms depends on
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the initialization, we ran the algorithms for 5 different initializations and picked the solu-

tion with minimum energy (given by equation 3), which was the same methodology as [54].

Note that the solution that minimized the objective function also gave the highest cluster-

ing accuracy (evaluated using equation 6). Table 5.2 shows the mean accuracies achieved

(over nine surgeons) for different algorithms and data streams used. Additionally, Table

5.3 shows the precision and recall values across tasks for the top performing data stream

(SI+EVT). Task 4 consistently under performs compared to the other tasks across algorithm

types. Furthermore, the mean F1 score for each algorithm was: SC (0.67), GMM (0.48),

ACA (0.77), HACA (0.77). Based on these scores, ACA and HACA perform comparably

but significantly outperfrom SC and GMM.

As a baseline comparison, we computed the segmentation accuracy when we simply

scaled the normalized task lengths (relative to total procedure time) for each trial to estimate

the transitions between tasks. The resulting accuracy is 0.60 (+/- 0.15) slightly better than

GMM but worse than the remaining algorithms (see Table 5.2). This ensures the algorithms

are not simply scaling tasks based on time. Although it serves a useful comparison, one

can see from the example procedure bars (Figure 5.4) that the duration of tasks differed for

different subjects.

From the results, we can see that SC, ACA and HACA perform fairly well while GMM

performs poorly for all the feature types. As a whole, HACA out-performs all other meth-

ods for all but one feature type (SSC+SI). In general, using SSC kinematic data seems

to perform less well than SI, which might be because SSC contains less information than

SI (i.e., hand movements versus three instrument and camera movements). Adding EVT

data to SSC and SI individually improves the segmentation accuracy for most of the al-

gorithm types but deteriorates the performance when used with the combined kinematic

data (SSC+SI). The highest accuracy achieved across all algorithms and features types was

88.0% using HACA with SI+EVT data. Results presented here are comparable to other

surgical phase recognition methods in the literature [16, 32, 58].
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Table 5.4: Average performance with standard deviations for each of the five tasks (T1 to
T5). The feature set was SSC+SI+EVT.

T1 T2 T3 T4 T5
ACA 66.4 ± 44.3 71.8 ± 33.9 84.8 ± 13.6 74.4 ± 45.9 94.6 ± 8.0

HACA 87.5 ± 35.4 81.2 ± 20.4 80.2 ± 20.4 61.7 ± 51.0 88.2 ± 26.4

Figure 5.4 shows example segmentation bars for four surgeons using the four differ-

ent algorithms. The color scheme used for different surgical tasks in a procedure is the

same as in Figure 5.2. For each surgeon, the five total rows corresponded to segmentation

using ground truth, HACA, ACA, GMM and SC, respectively. One can see HACA out-

performs the other methods, in general. Most misclassifications occur at the boundaries of

tasks. Unlike other methods, GMM (and to some extent SC) made many misclassifications

throughout each task. In some cases, we can achieve very accurate segmentation using

HACA and ACA, as shown in the lowest block in Figure 5.4.

Finally, Table 5.4 shows the classification accuracy for each of the five tasks using ACA

and HACA with the SSC+SI+EVT feature set. For ACA, the first tasks achieved the lowest

accuracy whereas the fifth task achieved the highest accuracy. Conversely, for HACA the

fourth task achieved the lowest accuracy whereas the fifth task achieved the highest accu-

racy. Across all tasks, HACA achieved a slightly more consistent classification accuracy.

A one-way ANOVA showed that GMM, ACA, and HACA outperform SC across all fea-

ture types (p < 0.01). No significant differences existed between GMM, ACA, or HACA.

A two-way ANOVA for algorithm type and features showed that both the algorithm and

feature type affect accuracy (p < 0.05) but not their interaction. Additionally, a Friedmans

test showed that algorithm type affects accuracy (p < 0.001).

Depending on the requirements for a particular end application, some misclassification

error might be tolerable around task boundaries, especially at the task-level since the du-

ration of tasks is on the order of minutes whereas the misclassification might be seconds.

For example, compare the task boundaries between ground truth and HACA in the third

surgeon in Figure 5.4; the relative amount of misclassified frames is much smaller than the
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Figure 5.4: Segmentation results for four procedures. Each block contains five bars show-
ing segmentation output using ground truth (GT), HACA, ACA, GMM and SC.

total width of each colored bar or task. In this way, the accuracies achieved by HACA (or

ACA) could be sufficient for certain advanced analyses.

There are several limitations that exist with our analysis. Firstly, we used only five tasks

to make up a procedure when most clinical procedures have more clinically discernible

steps. Secondly, more formal methods could be used to optimize the parameters of the

unsupervised clustering algorithms, such as a k-fold cross-validation. However, unlike su-

pervised machine learning algorithms, the clustering algorithms used here are designed to

be unsupervised and applied to situations where ground-truth labels might not be avail-

able. Another limitation is that features derived from video data were not used to meet

the requirement of a lightweight data set. However, video-based features could be used to

improve performance, especially when segmenting a larger number of tasks. The recent

success of video-based segmentation methods also suggests it is a worthwhile endeavor

[17, 32].

Despite these limitations, the results show that RAS system data can be used by tem-

poral clustering algorithms to accurately segment surgically realistic tasks without directly
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modeling low-level sub-tasks. We confirm that aligned clustering techniques (ACA and

HACA) outperform conventional approaches like SC and GMM. Furthermore, we show

that certain feature sets result in higher accuracies, and that a subset of all available fea-

tures or data might be sufficient for certain applications.

5.5 Summary

In this chapter, we examined offline temporal clustering methods to recognize individual

steps during clinically-relevant training procedures in RAS. The long term goal for this re-

search is to provide increasingly more targeted assessment of surgical activities rather than

whole procedure measures. This will enable advanced metrics to be used to benchmark and

assess surgical workflow and surgeon proficiency. Our results suggest that offline clustering

methods can be used to chunk whole surgical procedures into individual, clinically-relevant

steps with competitive accuracies. Additionally, our approach is complementary to vision-

based methods in that it uses system-based data streams present in RAS.
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CHAPTER 6

SUPERVISED SURGICAL ACTIVITY RECOGNITION

In the previous chapter, we looked at some unsupervised methods for clustering surgical

activities in robotic surgery training. While an unsupervised approach can have many ad-

vantages in terms of not needing annotations and large amounts of data, we still cannot

recognize the task being performed via unsupervised approaches. In order to develop an

intelligent system to generate automated score reports for robot-assisted surgeries, we don’t

just need to separate one task from the other in a procedure, but we also need to recognize

what the individual tasks are.

In this chapter, we will present models to detect automatically the individual steps of

robot-assisted radical prostatectomies (RARP). Our models break a RARP into its indi-

vidual steps, which will enable us to provide tailored feedback to residents and fellows

completing only a portion of a procedure and to produce task-specific efficiency metrics

to correlate to certain outcomes. By examining real-world, clinical RARP data, this work

builds foundational technology that can readily translate to have direct clinical impact.

6.1 Methodology

The rich amount of data that can be collected from the da Vinci (dV) surgical system (Intu-

itive Surgical, Inc., Sunnyvale, CA USA) enables multiple ways to explore recognition of

the type of surgical tasks being performed during a procedure. Our development pipeline

involves the following steps: (1) extraction of endoscopic video and dV surgical system

data (kinematics and a subset of events), (2) design of deep learning based models for

Chapter reference: [59]
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surgical task recognition, and (3) design of post-processing models to filter the initial pro-

cedure segmentation output to improve performance. We will now go into details of the

different parts of our pipeline.

6.1.1 System data based models

The kind of hand and instrument movements surgeons make during procedures can be very

indicative of what types of task they are performing. For example, a dissection task might

involve static retraction and blunt dissection through in and out trajectories, whereas a su-

turing task might involve a lot of curved trajectories. Therefore, models that extract motion

and event based features from dV surgical system data seem appropriate for task/activity

recognition. We explore multiple Recurrent Neural Network (RNN) models using only

system data given the recent success of RNNs to incorporate temporal sequences. Since

there are multiple data streams coming from the dV surgical system, we employ two types

of RNN architectures - single stream (SS) as shown in Figure 6.1, and multi-stream (MS)

as shown in Figure 6.2. For SS, all data streams are concatenated together before feeding

them into a RNN. Whereas, for MS, each data stream is fed into individual RNNs after

which the outputs of each RNN are merged together using a fully-connected layer to pro-

duce predictions. For training both architecture types, we divide our procedure data into

windows of length W . At test time, individual windows of the procedure are classified to

produce the output segmentation.

6.1.2 Video based models

Apart from the kind of motions a surgeon makes, a lot of task representative information is

available in the endoscopic video stream. Tasks which are in the beginning could generally

look more ‘yellow’ due to the fatty tissues, whereas tasks during the later part of the surgery

could look much more ‘red’ due to the presence of blood after dissection steps. Moreover,
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the type and relative location of tools present in the image can also be very indicative

of the step that the surgeon is performing. Therefore, we employ various image based

convolutional neural networks (CNN) for recognizing surgical activity using video data.

Within the CNNs domain, there are three types of CNN architectures that are popular and

have been proved to work well for the purpose of recognition. The first type uses single

images only with two-dimensional (2D) convolutions in the CNN architectures. Examples

of such networks include VGG [60], ResNet [61] and InceptionV3 [62]. The second type of

architecture uses a volume of images as input (e.g., 16 consecutive frames from the video)

and employs three-dimensional (3D) convolutions instead of 2D (see Figure 6.4). C3D is

an example of such model [63]. A potential advantage of 3D models is that they can learn

spatio-temporal features from video data instead of just spatial features. However, this

comes at the cost of requiring more data to train as well as longer overall training times.

The third type of CNN architecture which has proved to work well recently by many works

is a combination of CNN and RNN (see Figure 6.9). Multiple images a fed into individual

CNN models to learn visual features. The extracted features are then concatenated together

to be fed into an RNN in order to learn temporal features from the stream of images. In this

type of a model, both spatial and temporal structure of the data is learned without having

the difficulty of training models with 3D convolutions.

6.1.3 Video and system data based models

While single image and system data based models can potentially work great individually,

a combination of both could help improve recognition scores significantly. Therefore, we

also employ a combination of single image and multi-stream system based models (see

Figure 6.5). A single image is fed into a CNN to extract visual features, while a preced-

ing window of system data is fed into a multi-stream architecture of RNN as described

above. The outputs of individual models are then merged together at the end using a fully

connected layer.
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Figure 6.1: System data based single stream (SS) model for surgical task recognition

Figure 6.2: System data based multiple stream (MS) model for surgical task recognition
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Figure 6.3: Single image based model for surgical task recognition

Figure 6.4: C3D network surgical task recognition

Figure 6.5: System data and single image model for surgical task recognition
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Figure 6.6: Multiple image CNN+LSTM model for surgical task recognition

6.1.4 Post-Processing

Since there are parts of various tasks that are very similar visually and in terms of motions

the surgeon is making, the predicted procedure segmentation can have ‘spikes’ of mis-

classifications. However, it can be assumed that the predicted labels would be consistent

within a small window. Therefore, in order to remove such noise from the output, we

employ a simple running window median filter of length F as a post-processing step. For

corner cases, we append the start and end of the predicted sequence with the median of

first and last window of length F , respectively, in order to avoid mis-classifications of the

corner cases by appending zeros.

6.2 Experimental Evaluation

6.2.1 Dataset

We collected a dataset consisting of 100 robot-assisted radical prostatectomies (RP) com-

pleted at an academic hospital. The majority of procedures were completed by a combina-

tion of residents, fellows, and attending surgeons. Each RP was broken into approximately

12 standardized tasks. The order of these 12 tasks varied slightly based on surgeon pref-

erence. The steps of each RP were annotated by one resident. A total of 1195 individual
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Table 6.1: Dataset: the 12 steps of robot-assisted radical prostatectomy and general statis-
tics.

Task no Task Name Mean time (sec) Number of samples
T1 mobilize colon / drop bladder 1063.2 100
T2 Endopelvic fascia 764.2 98
T3 Anterior bladder neck dissection 164.9 98
T4 Posterior bladder neck dissection 617.5 100
T5 Seminal vesicles 686.8 100
T6 Posterior plane / Denonvilliers 171.2 99
T7 Predicles / nerve sparing 510.6 100
T8 Apical dissection 401.1 100
T9 Posterior anastomosis 403.1 100

T10 Anterior anastomosis 539.7 100
T11 Lymph node dissection Left 999.6 100
T12 Lymph node dissection Right 1103.6 100

tasks were used. Table 6.1 shows general statistics of our dataset.

Each RP recording included one channel of endoscopic video, dV surgical system kine-

matic data (e.g., joint angles, endpoint pose) collected at 50Hz, and dV surgical system

event data (e.g., camera movement start/stop, energy application on/off).

The dV surgical system kinematic data originated from the surgeon console (SSC) and

the patient side cart (SI). For both the SSC and SI, the joint angles for each manipulandum

and the endpoint pose of the hand controller or instrument were used. In total, there were

80 feature dimensions for SSC and 90 feature dimensions for SI. The dV surgical system

event data (EVT) consisted of many events relating to surgeon interactions with the dV

surgical system originating at the SSC or SI. In total, there were 87 feature dimensions for

EVT.

6.2.2 Data preparation

Several pre-processing steps were implemented for system and video data before they could

be fed into the models. The endoscopic video was downsampled to 1 frame per second (fps)

resulting in 1.4 million images in total. Image resizing and rescaling was model specific.
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All kinematic data was downsampled by a factor of 10 (from 50Hz to 5Hz). Different

window lengths (in terms of the number of samples) W (50, 100, 200 and 300) were tried

for training the models and W = 200 performed the best. We use zero overlap when se-

lecting windows for both training and testing. Mean normalization was also applied to all

feature dimensions for the kinematic data. All events from the dV surgical system data that

occurred within each window W were used as input for to our models. The events were

represented as a unique integers with corresponding timestamps.

6.2.3 Model training and parameter selection

For RNN based models, we implement both SS and MS architectures for all possible com-

binations of the three data streams (SSC, SI, and EVT). Estimation of model hyperparam-

eters was done via a grid search on the number of hidden layers (1 or 2), type of RNN unit

(Vanilla, GRU or LSTM), number of hidden units per layer (8, 16, 32, 64, 128, 256, 512

or 1024) and what dropout ratio to use (0, 0.2 or 0.5). For each parameter set, we also

compare forward and bi-directional RNN.

In all CNN based models, we used two approaches - training the networks from ran-

domly initialized weights and fine-tuning the networks from pre-trained weights. For all

models, we found that fine-tuning was much faster and achieved better accuracies. For

single image based models, we used ImageNet [64] pretrained weights while for C3D we

used Sports-1M [65] pretrained weights. We found that fine-tuning several of the last con-

volutional layers led to the best performances across models.

For both RNN- and CNN-based models, the dataset was split to include 70 procedures

for training, 10 procedures for validation, and 20 procedures for test.

For the post-processing step, we evaluated performances of all models for values of

F (median filter length) ranging from 3 to 2001, and choose a window length that led to

maximum increase in model performance across different methods. The final value of F
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was set to 301. All parameters were selected based on the validation accuracy.

6.2.4 Evaluation Metrics

For a given series of ground truth labels G ∈ <N and predictions P ∈ <N , where N is

the length of a procedure, we evaluate multiple metrics for comparing the performance of

various models. These include average precision (AP), average recall (AR), F-score and

Jaccard index. Precision is evaluated using P = tp
tp+fp

, recall using R = tp
tp+fn

and Jaccard

index using J = tp
tp+fp+fn

, where tp, fp and fn represent the true positives, false positives

and false negatives, respectively.

6.3 Results and Discussion

In order to compare the performance of different models, we evaluate all types of evaluation

metrics presented above for all models. The results for all models without post-processing

are shown in Table 6.2, while Table 6.3 shows results after post-processing. We can see that

the multiple images CNN+LSTM models work best as compared to all others. In general,

we observed that the image-based CNN models (except for C3D) performed better than the

RNN models. Within LSTM models, MS architecture performed slightly better than SS

with the SSC+EVT combination achieving the best performance. For nearly all models,

post-processing significantly improved task recognition performance.

Figures 6.7, 6.8 and 6.9 show confusions matrices when using best system data based

model, best single image model and best multiple image model, respectively, after post-

processing. It can be seen clearly why system data based models do not perform too well -

some of the tasks are almost always misclassified. This could be due to the fact that some

tasks have very similar motions made by the surgeons. However, we do note that some

tasks are reasonably well classified.

Single image and multiple image based models perform much better as a whole and on

individual tasks as evident from a more ‘diagonal nature’ of the confusion matrices. There
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Table 6.2: Surgical procedure segmentation results using different models. Each cell shows
the average evaluations metric values across all procedures and tasks in the test set. For
LSTM models, the modalities used are given in parentheses while the architecture type
used is given in square brackets. Best performing model is shown in bold.

Model Type Precision Recall Fscore Jaccard Index
KIN LSTM FWD(SSC) 0.645 0.56 0.582 0.637
KIN LSTM BI(SSC) 0.642 0.6 0.607 0.652
KIN LSTM FWD(SI) 0.18 0.191 0.177 0.258
KIN LSTM BI(SI) 0.215 0.207 0.204 0.265
KIN LSTM FWD(EVT) 0.042 0.083 0.022 0.146
KIN LSTM BI(SI) 0.087 0.127 0.069 0.189
KIN LSTM FWD(SSC+SI)[MS] 0.591 0.555 0.56 0.613
KIN LSTM BI(SSC+SI)[MS] 0.585 0.565 0.559 0.629
KIN LSTM FWD(SSC+SI)[SS] 0.53 0.476 0.486 0.543
KIN LSTM BI(SSC+SI)[SS] 0.559 0.526 0.533 0.582
KIN LSTM FWD(SSC+EVT)[MS] 0.613 0.513 0.519 0.603
KIN LSTM BI(SSC+EVT)[MS] 0.625 0.572 0.586 0.633
KIN LSTM FWD(SSC+EVT)[SS] 0.589 0.508 0.527 0.593
KIN LSTM BI(SSC+EVT)[SS] 0.625 0.567 0.571 0.625
KIN LSTM FWD(SI+EVT)[MS] 0.212 0.204 0.165 0.262
KIN LSTM BI(SI+EVT)[MS] 0.223 0.212 0.202 0.249
KIN LSTM FWD(SI+EVT)[SS] 0.243 0.216 0.208 0.27
KIN LSTM BI(SI+EVT)[SS] 0.26 0.243 0.242 0.291
KIN LSTM FWD(SSC+SI+EVT)[MS] 0.569 0.527 0.518 0.583
KIN LSTM BI(SSC+SI+EVT)[MS] 0.437 0.446 0.405 0.552
KIN LSTM FWD(SSC+SI+EVT)[SS] 0.519 0.481 0.485 0.552
KIN LSTM BI(SSC+SI+EVT)[SS] 0.544 0.518 0.524 0.575
SINGLE IMAGE(VGG-16) 0.633 0.535 0.541 0.614
SINGLE IMAGE(VGG-19) 0.549 0.481 0.473 0.529
SINGLE IMAGE(RESNET-50) 0.621 0.582 0.573 0.622
SINGLE IMAGE(INCEPTION-V3) 0.662 0.642 0.632 0.666
C3D 0.569 0.535 0.538 0.623
MULTIPLE IMAGES (INCEPTION-V3) 0.764 0.755 0.774 0.790
MULTIPLE IMAGES (VGG-19) 0.801 0.798 0.803 0.811
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Table 6.3: Surgical procedure segmentation results using different models after median
filtering post-processing Each cell shows the average evaluations metric values across all
procedures and tasks in the test set. For LSTM models, the modalities used are given in
parentheses while the architecture type used is given in square brackets. Best performing
model is shown in bold.

Model Type Precision Recall Fscore Jaccard Index
KIN LSTM FWD(SSC) 0.674 0.581 0.605 0.665
KIN LSTM BI(SSC) 0.664 0.625 0.63 0.681
KIN LSTM FWD(SI) 0.181 0.189 0.175 0.259
KIN LSTM BI(SI) 0.217 0.21 0.207 0.271
KIN LSTM FWD(EVT) 0.012 0.083 0.021 0.147
KIN LSTM BI(SI) 0.146 0.127 0.064 0.195
KIN LSTM FWD(SSC+SI)[MS] 0.609 0.573 0.578 0.638
KIN LSTM BI(SSC+SI)[MS] 0.595 0.572 0.566 0.645
KIN LSTM FWD(SSC+SI)[SS] 0.564 0.502 0.512 0.573
KIN LSTM BI(SSC+SI)[SS] 0.578 0.551 0.554 0.606
KIN LSTM FWD(SSC+EVT)[MS] 0.648 0.539 0.545 0.632
KIN LSTM BI(SSC+EVT)[MS] 0.648 0.593 0.609 0.662
KIN LSTM FWD(SSC+EVT)[SS] 0.623 0.528 0.549 0.614
KIN LSTM BI(SSC+EVT)[SS] 0.641 0.593 0.59 0.651
KIN LSTM FWD(SI+EVT)[MS] 0.213 0.202 0.164 0.261
KIN LSTM BI(SI+EVT)[MS] 0.221 0.209 0.198 0.25
KIN LSTM FWD(SI+EVT)[SS] 0.274 0.223 0.217 0.277
KIN LSTM BI(SI+EVT)[SS] 0.268 0.246 0.244 0.296
KIN LSTM FWD(SSC+SI+EVT)[MS] 0.595 0.547 0.537 0.606
KIN LSTM BI(SSC+SI+EVT)[MS] 0.458 0.471 0.431 0.582
KIN LSTM FWD(SSC+SI+EVT)[SS] 0.555 0.503 0.508 0.581
KIN LSTM BI(SSC+SI+EVT)[SS] 0.579 0.546 0.553 0.603
SINGLE IMAGE(VGG-16) 0.747 0.621 0.627 0.715
SINGLE IMAGE(VGG-19) 0.695 0.573 0.568 0.634
SINGLE IMAGE(RESNET-50) 0.713 0.673 0.663 0.728
SINGLE IMAGE(INCEPTION-V3) 0.782 0.759 0.749 0.786
C3D 0.352 0.367 0.329 0.418
MULTIPLE IMAGES (INCEPTION-V3) 0.798 0.815 0.820 0.830
MULTIPLE IMAGES (VGG-19) 0.841 0.835 0.831 0.850
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Figure 6.7: Confusion matrix for best system data based model.

are some interesting insights that we get from the single image model confusion matrix in

Figure 6.8. The model performed well for almost all the tasks individually except for task

9. However, we can see that most of the task 9 samples were classified as task 10. Tasks 9

and 10 are very related - they are two parts of one overall task (posterior and anterior anas-

tomosis). Furthermore, the images from these two tasks were quite similar given they show

anatomy during reconstruction after extensive dissection and energy application. Hence,

one would expect that the model could be confused on these two tasks. This is also the

case for tasks 3 and 4 - anterior and posterior bladder neck dissection, respectively. When

using the multiple image models, we see all individual tasks classification accuracies go

up. However, the problem of confusion between similar looking tasks as that in the single

image based models still remained.

Figures 6.10, 6.11 and 6.12 show visualizations of the segmentation results as color-
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Figure 6.8: Confusion matrix of results using single image based model (Inception-V3)
with post-processing. Sample images of tasks between which there is a lot of ‘confusion’
are also shown.

Figure 6.9: Confusion matrix for multiple images CNN+LSTM model
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Figure 6.10: Segmentation bar plots for using best system data based model. Each box
shows bar plots for one complete procedure with top half showing the ground truth and
lower half showing the predictions. Each task is represented by a different color.

Figure 6.11: Segmentation bar plots for using single image model (Inception-V3). Each
box shows bar plots for one complete procedure with top half showing the ground truth and
lower half showing the predicitons. Each task is represented by a different color.
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Figure 6.12: Segmentation bar plots for using multiple image CNN+LSTM model. Each
box shows bar plots for one complete procedure with top half showing the ground truth and
lower half showing the predicitons. Each task is represented by a different color.

coded bars when using best system data based model, best single image model and best

multiple image model, respectively. In each figure, the individual boxes show segmentation

bars for one complete procedure from the test set. Within each box, the top half shows the

ground truth while the bottom half shows the predictions - each task is represented by a

different color. As expected, system data based models segmentation outputs do not look

good - some procedures are completely misclassified as well. However, this could be due

to data acquisition errors as well since we do see tasks being somewhat classified correctly

in almost all other cases.

The segmentation plots for image based models look much better. However, looking

specifically to single image model outpout (Figure 6.11), we see undesired spikes in the

predicted surgical phase. This can be explained by the fact that the model has no temporal

information and classifies only using a single image which can lead to mis-classifications

since different tasks can look similar at certain points in time. Multiple image model out-

put (Figure 6.12) do look better and have lesser number of spikes, but its not completely

eradicated. However, using the proposed median filter for post-processing significantly

removes such noise and produces a more consistent output. Figure 6.13 shows how me-
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Figure 6.13: Improvements achieved on segmentation outputs using median filtering. The
left part shows segmentation bars for a few cases without post-processing while the right
one show after post-processing.

dian filtering improves model performance. As can be seen, the segmentation outputs after

post-processing look much more clean and continuous without unwanted spikes. While the

proposed median filtering resulted in a tremendous improvement in performance, there is a

lot more that can be done in post-processing that can further improve results. For example,

having temporal models like HMM on top of median filtering can potentially remove even

more misclassification spikes that we get in the middle.

Despite not having temporal motion information, single image-based models recognize

surgical tasks quite well. One reason for this result could be due to the significantly large

dataset available for single-image based models. Given the presented RNN and C3D mod-

els use a window from the overall task as input, the amount of training data available for

such models reduces by a factor of the length of window segment. Also, in general, RNN

and 3D-convolitional models are harder to train. Though using CNN+LSTM model does

have the same issue of less data, having 2D convoltional model for visual feature extraction

seems to have made the training and results much better.

68



6.4 Summary

In this chapter, we presented various deep learning models to recognize the steps of robot-

assisted radical prostatectomy (RARP). We used a clinically-relevant dataset of 100 RARPs

from one academic center which enables translation of our models to directly impact real-

world surgeon training and medical research. In general, we showed that image-based

models outperformed models using only kinematic and events data. Having reasonably

high accuracies on surgical activity recognition gives a good foundation to perform skill

analysis on robot-assisted surgeries.
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CHAPTER 7

AUTOMATED PERFORMANCE REPORT GENERATION FOR

ROBOT-ASSISTED PROCEDURES

7.1 Introduction

A primary goal of surgeons is to minimize adverse outcomes while successfully treating

patients. Although many factors can influence outcomes, the technical skills of surgeons is

one area shown to correlate. Therefore, methods to evaluate technical skills are critical.

The most common approach for surgeon technical skill evaluation is expert feedback

either intra-operatively in real-time or post-operatively through video review. However, an

attending may not always be able to provide feedback in person, and post-operative video

review can be time consuming and subjective. It is apparent this approach is not scalable,

especially given the limited free time in expert surgeon schedules. Recently, crowd-sourced

video evaluations has shown promise but this approach still faces scalability and accuracy

concerns. Automated, objective, and less time-consuming methods to evaluate surgeon

technical skills are needed.

Recently, objective, efficiency metrics derived from robotic-assisted surgical platforms

have been defined for particular tasks within clinical procedures [66]. They have been

shown to differentiate expertise and to preliminarily correlate to patient outcomes [67].

These basic efficiency metrics closely resemble those from virtual reality simulators and

stand to offer a scalable method for objective surgeon feedback. However, there remain

two primary challenges for these objective metrics to impact surgery. The first challenge

is to define which metrics matter most for individual surgical tasks. Efficiency metrics

must be defined to control for a large amount of variability including anatomical variations

and surgical approach or judgment. Such variation is not present in virtual reality tasks
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Figure 7.1: Flow diagram for automated performance report generation

where these metrics are common since only a handful of standardized exercises is available.

In pursuit of this first challenge, several clinical research teams are actively working to

discover and validate efficiency metrics in clinical scenarios. The second challenge is to

automatically recognize the boundaries of surgical tasks. The begin and end times of tasks

or sub-tasks must be automatically identified from within the entire procedure because

manual identification through post-operative video review is overly time consuming and

not scalable. Machine learning algorithms have been used with promising initial results in

laparoscopic , retinal , and robotic-assisted surgeries .

A critical shortcoming of the prior work in automatic, surgical activity recognition is

that the models have been evaluated solely by their frame-by-frame accuracy but not their

impact on task-based, efficiency metrics. Since advanced intra-operative or post-operative

feedback through efficiency metrics is the overall goal, the requirements and specifications

of machine learning models should be at least in part defined by their ability to result

in accurate metrics. Certainly if the models perfectly predict every frame of a surgical

procedure, they can also be used to perfectly compute efficiency metrics.

In this chapter, we will use the procedure segmentation outputs produced in the pre-

vious chapter to generate automated performance reports in RARP. We will also explore

new methods to quantify the effects of surgical activity recognition models on technical,

efficiency metrics during clinical tasks.

71



7.2 Methodology

The process to generate automated performance reports for robotic-assisted surgery is

shown in 7.1. First, procedure segmentation models (presented in previous chapter) chunk

a surgery into individual tasks. Next, the relevant efficiency metrics are computed using

robotic system data. Finally, a report can be composed incorporating metrics for individual

surgical tasks. Each part of the pipeline is discussed below.

Procedure Segmentation: We use the multiple image model with VGG-19 (best per-

forming for procedure segmentation) with post-processing from chapter 6 to recognize

surgical activity form the raw video feed during an RARP. Despite post-processing, mis-

classifications can still exist causing cases where the predictions have disconnected contin-

uous chunks of the same task. Therefore, for each task, we select the longest continuous

chunk as our model’s predicted task segment. The extracted tasks are then used for perfor-

mance metrics evaluation.

Efficiency Metrics Computation: Efficiency metrics are computed for each task identified

from within the overall procedure using the models described in the previous section. The

metrics are computed from robotic system data, such as joint angles (or kinematics) and

button presses (events), specific to the da Vinci surgical system. System data was collected

at 50Hz and synchronized to a single channel of endoscopic video.

The metrics used in this work are the same as those previously shown to be useful

in differentiating surgoen experience and correlating to outcomes [67]. The metrics in-

clude Economy of Motion, Speed, Camera movements etc. Some examples of event- and

kinematics- based metrics we evaluate are given in Table 7.1.

Efficiency Metrics Evaluation: In order to evaluate how well our procedure segmentation

model works for the end goal of metrics evaluations, we compare the resulting efficiency

metrics with those from human task labels (i.e., ground truth). A single, surgical resident

manually identified the begin and end times for each surgical task using video review.
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Table 7.1: Few examples of events and kinematics based metrics used for evaluation.
Metric names

Event based camera control on/off, energy on/off, master clutch on/off, head in/out, arm swap.
Kinematics based economy of motion, master workspace range, wrist angles (roll, pitch, yaw), speed

Pearson’s correlation coefficient between ground truth and ML-predicted metrics was used

to evaluate model performance.

7.3 Dataset

We use the same dataset described in Chapter 6 for this work. However, we collect an

additional 42 similar cases of RARP as a case study to see how well the procedure segmen-

tation model can work in a real-time system for post-op performance report generation.

This resulted in a total of 142 cases from which 62 (20 from previous chapter test set and

42 new) were used as a test set in this chapter.

7.4 Results and Discussion

Errors for the predicted begin and end boundaries of each surgical task are shown in Figure

7.2. We can see that certain tasks (like task 5 - Seminal Vesicles) have quite small errors

whereas other tasks like task 12 have much larger errors. This could be a result of these

different tasks having different variability across patients and technique. Some tasks might

be very standardized and anatomical variations minimal whereas others require different

approaches each time due to patient differences.

Looking at how well metrics were predicted, certain metrics (e.g economy of motion,

camera control, etc) were very accurately predicted in most cases whereas others weren’t.

Table 7.4 shows the average correlation (over all metrics) of predicted vs ground truth.

Event based metrics might be more sensitive to inaccuracies on begin/end boundaries than

kinematic since events come in bursts - if you miss a burst, it can significantly influence the

metric, and vice versa. Example scatter-plots for individual metrics are shown in Figure
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Figure 7.2: Results for difference in start and stop times of predictions vs ground truth.
Each task has two box plots - one for start time and other for stop time.

7.3. In an ideal case, the values would fall on the unity line. Again, certain metrics follow

this trend more than others. Importantly, not all tasks are of equal value for learning. There

may be critical steps whose performance is more important. Some of the cardinal steps

of prostatecomy include bladder neck dissection and anterior anastomosis. Our results for

these steps illustrate that automated performance reports are feasible. In fact, some tasks

may actually have less stringent requirements in terms of accurately predicted boundaries

and based on estimated metrics than another task.

Since this work is aimed at developing a framework that can be used in a clinical setting,

we also look at the processing times required on different kind of hardware. For this,

we simulated how the data would be saved during an actual capture and timed procedure

segmentation along with metric evaluations on three systems. The first one had a medium

power CPU (without GPU), the second one had a single low end GPU (K2100M), and the

last one had a single NVIDIA Titan X. The performance comparison is given in Figure
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Figure 7.3: Scatter plots of different metrics. The x and y axis in each plot represent
ground truth and predictions, respectively. The value of pearson correlation coefficient,
task number and the name of corresponding metric is given on each plot.

Figure 7.4: Processing time comparison of segmenting a 20 min video clip in raw form
from the robot.
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Table 7.2: Results for metric comparisons between ML predictions and ground truth. Each
cell shows average pearson correlation coefficient over all metrics used for the correspond-
ing task.

Task
Average Correlation Coefficient
(EVT)

Average Correlation Coefficient
(KIN)

Apical
dissection 0.48 ± 0.27 0.127 ± 0.14

Posterior anastomosis 0.11 ± 0.13 0.128 ± 0.12
Anterior anastomosis 0.30 ± 0.27 0.352 ± 0.10
Posterior plane / Denonvilliers 0.34 ± 0.33 0.465 ± 0.13
Anterior
bladder neck dissection 0.403 ± 0.3 0.424 ± 0.15

Lymph node dissection L 0.71 ± 0.16 0.446 ± 0.19
Posterior bladder neck dissection 0.650 ± 0.12 0.509 ± 0.15
mobilize colon / drop bladder 0.649 ± 0.22 0.706 ± 0.07
Seminal vesicles 0.781 ± 0.09 0.843 ± 0.11

7.4. As expected, the system with the best graphic card was the fastest. However, in our

comparison of segmenting a 20 min video clip, we see that the worst performance of using

a single CPU was still twice as fast as real time (just 600 sec - 10 min). This shows that even

a non-GPU laptop can potentially provide surgeons with a report right after the procedure

is completed.

While the results presented look very promising, some limitations also exist in this

work. First, additional annotators could provide better consensus of ground truth which is

used to train the ML models. Second, additional state information from the system could be

used to improve model performance. One example could be instrument type. Third, metrics

could be defined to be more robust to boundary errors. These were those used in prior work

for relevance. Moreover, there is a need to test generalizability of models/metrics to other

clinical sites (currently all data was from one site). And lastly, more data and continued

model exploration could also help in improving performances.

7.5 Summary

This chapter proposed a new, applied method to evaluate ML models for procedure seg-

mentation based on their impact to efficiency metrics in generating automated performance
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reports. Given the presented results, it seems feasible that these reports can be automated,

especially for a subset of critical tasks within an overall procedure.
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CHAPTER 8

VIDEO HIGHLIGHTS FOR ROBOT-ASSISTED SURGERIES

All the previous chapters have dealt with giving surgeons better automated feedback in

one form or the other. However, all the work presented in this thesis before had focused on

evaluating surgical skill on a procedure or individual task level. Apart from giving feedback

to surgeons in terms of skill score predictions on a whole task, it could be of great help to

surgeons if they knew which parts of the task impacted their final score the most. The plot

used to highlight impact over the course of a task will be called ‘Task Highlights’. This can

potentially allow surgeons to focus more on specific techniques or gestures that contribute

to low scores. Few works have presented approaches for measuring impact of different

segments on overall skill score predictions. For example, in [68], the authors presented

an approach using human pose for evaluating the impact of a particular segment on final

score prediction in Olympic sports. We take inspiration from their work and in order to

generate highlights in surgical tasks. However, similar to the work in [68], there are some

key challenges in generating such highlights that are discussed below.

8.1 Challenges

1. No ground truth: There is no dataset available as of today that has annotated sur-

gical tasks with individual window impact scores. Gathering any annotated surgical

data set is hard by itself due to the busy schedules of experts; having such experts an-

notate each small section within surgical tasks is an even bigger ask. Therefore, none

of the publicly available/self-collected datasets have such ground truth information

available

2. Difficult to validate results: Similar to the problem of getting ground truth ‘high-
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lights’, there is also an issue of how the generated results can be validated. Once

again, for this to happen, an expert has to watch the generated highlights along with

the videos to approve/disapprove.

While these challenges exist and are hard to get around with, we still make an attempt

at generating video highlights from surgical tasks and try to make sense of them in this

chapter.

8.2 Dataset

We use JIGSAWS data set for our experiments in this chapter - details of JIGSAWS can

be found in Chapter 4. We choose this data set since this is the only dataset available with

gesture annotations that can help us understand the highlights generated better.

8.3 Methodology

We take the skill evaluation mechanism described in Chapter 4 and use it here as is. Support

vector regression is used on features extracted from time series data to get final skill score

(see Figure 4.1). We define the impact of a segment as the amount by which the predicted

score would change if that segment was not observed. In order find the impact of segments

within task, we use the DCT feature as described in Chapter 3 and 4. The goal here is to

evaluate the inferred frequency feature vector had we not observed a particular segment of

the data and then evaluate surgical score.

For a given d-th dimension of the kinematic time series S(d) ∈ <L, the corresponding

DCT features F (d) ∈ <L are evaluated using F (d) = AS(d), where A ∈ <L×L is the DCT

transformation matrix. Taking B = A+ as the inverse cosine transformation matrix (where

A+ denotes the pseudo-inverse ofA), the DCT equation can be written as F (d) = B+S(d).

Now, if the data from frames n1 till n2 were to be removed, we can evaluate the inferred

DCT feature vector by F̂ (d) = (Bn1:n2)
+S(d), where Bn1:n2 is the matrix B with rows n1
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Table 8.1: Gesture vocabulary [48].
Gesture ID Description

G1 Reaching for needle with right hand
G2 Positioning needle
G3 Pushing needle through tissue
G4 Transferring needle from left to right
G5 Moving to center with needle in grip
G6 Pulling suture with left hand
G7 Pulling suture with right hand
G8 Orienting needle
G9 Using right hand to help tighten suture

G10 Loosening more suture
G11 Dropping suture at end and moving to end points
G12 Reaching for needle with left hand
G13 Making C loop around right hand
G14 Reaching for suture with right hand
G15 Pulling suture with both hands

till n2 removed. F̂ will essentially have inferred the missing segment by the most likely

kinematics signal given the frequency spectrum of the rest of the signal. Since F̂ will have

the same dimensionality as F , we can use the same SVR model for score prediction. The

final impact of the segment on skill score is then evaluated by impact = ψ − ψ̂, where

ψ is the predicted score using whole sequence and ψ̂ is the inferred score with a missing

segment. The surgical task highlights can be generated by evaluating the impact on a

running window.

We use 50 lowest DCT features (same as for classification/prediction). The length of

the running window had to be carefully selected in order to generate meaningful highlights.

Having a long window length as compared to the length of the whole task would result in

high impact scores for each segment since we might be omitting a significant part of skill

relevant portion in a task, and vice versa. Therefore,after experimenting with different

values of window lengths like 50, 100, 200 etc, we found a window length of 100 to work

best for the dataset at hand for most cases.
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Suturing,
Overall performance, 

truescore=4, 
predicted score=3.93

Knot Tying,
Time and Motion, 

truescore=3, 
predicted score=3.14

Knot Tying,
Suture handling, 

truescore=1, 
predicted score=1.05

Needle Passing,
Time and motion, 

truescore=2, 
predicted score=1.99

Needle Passing,
Overall performance, 

truescore=2, 
predicted score=2.26

Suturing,
Respect for Tissue, 

truescore=2, 
predicted score=1.75

Figure 8.1: Sample task highlights. The y-axis on each plot corresponds to the impact
(as defined in methodology section) with number of frames on the x-axis. The task type,
modified-OSATS criteria, ground truth score, and the predicted score from our model using
DCT features on the whole sequence, are given in boxes next to each plot. The color coding
for the different gestures is also provided. The names of the gestures can be found in Table
8.1.

8.4 Results and Discussion

Figure 8.1 shows some sample task highlights constructed by following the procedure de-

scribed in the methodology section. We overlay the impact scores plot on color coded

gestures for getting better insights. The gestures used are the same as presented in the orig-

inal dataset paper [48]. The gesture vocabulary of JIGSAWS dataset is given in Table 8.1.
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The segments where the impact scores are negative indicate that these parts had a adverse

effect on the final score, and vice versa. There are some interesting points that we can

note from these plots that make intuitive sense. For example, in the suturing plot, we can

observe that the impact score has maximum variations for G3 (i.e. Pushing needle through

tissue). Since we predict for RT criteria in this case, one would expect that a ‘good’ or ‘bad’

push of a needle through the tissue should have the maximum impact on final skill score

prediction. Similarly, for knot tying, we can see high positive and negative impact scores

for G15 (i.e. Pulling suture with both hands). Again, this makes intuitive sense since G15 is

important for knot tying task. We can draw similar insights for needle-passing (considering

G2 and G5) as well. Although there are no ground-truth highlights to compare our results

to (and it probably would be an extremely tedious task to generate such ground-truths), we

believe that such impact score plots can tremendously help surgeons in understanding the

parts within a task that they need to improve on. As a result, surgical trainees can direct

their time and training on specific gestures within a task which can potentially allow them

to move through their learning curves much faster.

8.5 Summary

In this Chapter, we explored an approach for generating video highlights in RMIS basic

training. While there was no ground truth available in this case, our results seem to make

sense when looked with overlaying surgical gestures. This work provides good basis for

and provides direction to how such works can be extended to more complex clinical cases.
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CHAPTER 9

SUMMARY AND FUTURE WORK

The main contributions of this thesis can be summarized as given below.

1. One of the largest studies on basic surgical skill assessment was carried out with

data collected from 41 participants in total. Novel motion based features to differen-

tiate surgical skill level were proposed that out-performed previous state-of-the-art

models.

2. Novel framework and feature fusion approach for assessment in RMIS surgical train-

ing that out-performed all previous HMM based methods was proposed.

3. Novel unsupervised and supervised approaches were presented for procedure seg-

mentation achieving high accuracies.

4. A large study was conducted on generating automated performance report on clinical

robot-assisted radical prostatectomy. High performance achieved on predicting effi-

ciency metrics makes the work possibly ready for implementation on a real system.

5. Novel approach presented for generating video highlights for giving surgeons more

directed feedback in terms of which parts within a task effected their final score the

most.

The promising results presented for automated benchmarking of surgical skills can be

of huge benefit to the research and clinical community. However, there are still many

things that can still be done to improve the presented work even further. Some of the future

directions for the research work presented in this thesis are given below.
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1. Inclusion of depth modality for assessment of basic suturing and knot tying skills

as presented in Chapter 3. Having RGB-D can potentially help in extracting better

motion features using video data.

2. Using pose instead of STIPs for extracting motion information from videos for hu-

man action assessment. STIPs make it hard to back track parts of a video which

effected final score of a surgeon due to the clustering step. Using 2-D human pose

will have most of the motion information needed for skill assessment and will allow

for specific feedback to be given to surgeons in terms of how the hands can be moved

for better scores.

3. Fusion of video and kinematics based features for RMIS training assessment. Using

just kinematics data for assessment in RMIS made the work easy to deploy on a real

system due to its light nature. However, in order to improve score prediction perfor-

mance, using video based features can help tremendously as evidenced by success of

video+accelerometer feature fusion in Chapter 3. With the availability of high power

GPUs, the compute time may not be an issue.

4. Using deep learning based methods for surgical activity clustering. The methods pre-

sented in Chapter 5 worked great with a huge advantage of not requiring any training

data as such. However, having more data can allow for powerful deep learning based

unsupervised methods to be explored in this field.

5. Model improvements for procedure segmentation in RARP. There are many things

that can be done to improve model performances for this problem. First, optical flow

from videos can be used in a multi-stream CNN architecture. Second, LSTM based

kinematics models can be combined with multi-image model. These are just few of

many things that be done to improve recognition models.

6. Post-processing can be significantly improved in procedure segmentation. We pre-
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sented the simplest of techniques using a median filter to de-noise segmentation out-

put. However, many other things can be done in order to further improve this step.

For example, a state machine based model can be implemented on top of median

filtering to remove incorrect transitions from output.

7. Evaluation of APR work on data from different sites. Currently, all the data came

from one site - in order to generalize well, data from different centers should be

collected and tested upon.

8. Extension of APR work to other RA procedures. It would be interesting to see how

models trained for RARP extend to other procedures like Hernia etc. There may not

be a need for large amounts of data for new procedure as RARP procedure segmen-

tation model weights could be used as initialization point.

9. Extension of video highlights work to clinical RA procedures. While RA procedures

don’t have ground truth like that of OSATS, scoring mechanisms can be developed

using efficiency metrics which can then be used in a similar fashion to produce task

wise video highlights for RA clinical cases.

85



REFERENCES

[1] R. Reznick and H. MacRae, “Teaching surgical skills–changes in the wind,” The
New England journal of medicine, vol. 355, no. 25, p. 2664, 2006.

[2] T. Yu, B. Wheeler, and A. Hill, “Clinical supervisor evaluations during general
surgery clerkships,” Medical Teacher, vol. 33, no. 9, pp. 479–484, 2011.

[3] J. Martin, G. Regehr, R. Reznick, H. MacRae, J. Murnaghan, C. Hutchison, and
M. Brown, “Objective structured assessment of technical skill (osats) for surgical
residents,” British Journal of Surgery, vol. 84, no. 2, pp. 273–278, 1997.

[4] Y. Sharma, T. Plötz, N. Hammerla, S. Mellor, M. Roisin, P. Olivier, S. Deshmukh,
A. McCaskie, and I. Essa, “Automated surgical OSATS prediction from videos,” in
ISBI, IEEE, 2014.
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