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SUMMARY

The objective of this PhD research is to design and develop automated systems for
evaluation of surgical skills in order to reduce manual assessment by experts and help
surgical trainees to move through their learning curves much faster.

Surgical trainees are required to acquire specific skills during the course of their res-
idency before performing real surgeries. Surgical training involves constant practice of
skills and seeking feedback from supervising surgeons, who generally have a packed sched-
ule. The process of manual assessment makes the whole training cycle extremely cumber-
some and inefficient. Having automated assessment systems for surgical training can be of
great value to medical schools and teaching hospitals.

A typical surgical trainee goes through multiple stages during their training programs.
Most of them start with practicing basic skills of suturing and knot tying on foam boards/synthetic
tissue. Then they go on to practicing on VR based consoles where they learn more advanced
and clinical relevant skills but without real tissue involved. Once they have acquired the
desired level of competency in the previous stages, they then practice on cadavers or pigs
before moving on to performing surgeries on real patients. There is a need for automated
assessment at every stage of surgical training.

This PhD research aims at developing machine learning based methods for assessment
of surgical skills from basic tasks to complex robot-assisted procedures. Specifically, this
thesis will aim to (1) develop novel motion based features for basic surgical skills assess-
ment in open and robotic surgical training, (2) develop unsupervised and supervised meth-
ods for recognizing individual steps of complex robot-assisted (RA) surgical procedures,
(3) generate automated score reports for RA surgical procedures, and (4) produce video
highlights to indicate which parts of the surgical task most effected the final surgical skill

Score.

Xii



CHAPTER 1
INTRODUCTION

Surgical skill development, i.e., the process of gaining expertise in procedures and tech-
niques required for professional surgery, represents an essential part of medical training.
Acquiring high quality surgical skills is a time-consuming process that demands expert su-
pervision and evaluation throughout all stages of the training procedure. However, the man-
ual assessment of surgical skills poses a significant resource problem to medical schools
and teaching hospitals and results in complications in executing and scheduling their day-
to-day activities. In addition to the extensive time requirements, manual assessments are
often subjective and domain experts do not always agree on the assessment scores

Surgery is a complex task and even basic surgical skills such as suturing and knot tying
(that involve hand movements in a repetitive manner) require every surgical resident to go
through training in order to master these basic skills before moving on to more complicated
procedures. Considering the volume of trainees that need to go through basic surgical
skills training along with the time consuming and subjective nature of manual evaluation,
automated assessment of these basic surgical skills can be of tremendous benefit to medical
schools and teaching hospitals.

Medical literature recognizes the need for objective surgical skill assessment in surgi-
cal training [1]. Yu et al. [2] have suggested evaluations from residents and interns who
frequently supervise the students instead of the consultant surgeons who do not have the
opportunity to directly observe the medical students. However, the subjectivity and time-
consuming nature of these evaluations still cannot be ruled out.

For basic surgical tasks like suturing and knot tying in a training setup, structured grad-
ing systems such as the Objective Structured Assessment of Technical Skills (OSATS) [3]

have been developed to reduce the subjectivity. Table 1.1 summarizes the OSATS scoring



Table 1.1: Summary of the OSATS scoring system [3]. The score is a Likert scale from
levels 1-5 but the guidelines are provided only for levels 1, 3, and 5. The diversity of the
criteria, lack of guidelines for all levels, and the need to manually observe each surgeon,

makes the manual OSATS scoring a time consuming and challenging process.

Score| Respect for Time and Instrument Suture Flow of op- | Knowledge | Overall per-
tissue (RT) motion handling handling eration (FO) of formance
(TM) (IH) (SH) procedure (OP)
(KP)
1 Unnecessary | Unnecessary | Inappropriate | Repeated en- | Seemed un- | Insufficient Very poor
force on tis- | moves instrument tanglement, sure of next | knowledge
sue, caused use poor knot | move
damage tying
2 _ _ _ _ _ _ _
3 Occasionally | Some unnec- | Occasionally | Majority of | Some  for- | Knew all im- | Competent
caused essary moves | stiff or | knots placed | ward plan- | portant steps
damage awkward correctly ning
4 _ _ _ _ _ _ _
5 Minimal tis- | Economy of | Fluid move- | Excellent su- | Planned op- | Familiarity Clearly supe-
sue damage movement ments ture control eration with all steps | rior

system. OSATS consists of seven generic components of operative skill that are marked on
a 5 point Likert scale. OSATS criteria are diverse and depend on different aspects of mo-
tion. For instance, qualitative criteria such as “respect for tissue” depend on overall motion
quality while sequential criteria such as “time and motion” and “knowledge of procedure”
depend on motion execution order.

For more complex surgical training, like on the da Vinci robotic system, most of the
objective assessment is based on efficiency metrics like economy of motion, speed, camera
movement etc. However, unlike basic training where the surgeon is only performing a sin-
gle task (e.g only suturing), clinical procedures being performed on robotic systems usually
involve multiple steps and can take a few hours to complete. This makes the assessment of
surgical skills even harder than that compared to basic training. Currently, intraoperative
assessment has been limited to feedback from attendings and/or proctors. Aside from the
qualitative feedback from experienced surgeons, quantitative feedback has remained ab-
stract to the level of an entire procedure, such as total duration. Performance feedback for
one particular task within a procedure can potentially be more helpful to direct opportuni-
ties of improvement. Similarly, statistics from the entire surgery may not be ideal to show

an impact on outcomes. For example, one might want to closely examine the performance



of a single task if certain adverse outcomes are related to only that specific step of the entire
procedure. Scalable methods to recognize automatically when particular tasks occur within
a procedure are needed to generate these metrics to then provide feedback to surgeons or
correlate to outcomes.

The growing need for automated assessment of surgical skills in various stages of train-
ing and practice motivated us to develop machine learning based methods that can help
provide objective automated score-based feedback to surgeons. This work focuses on as-
sessment of basic surgical skills like that of suturing and knot tying, and assessment in
robot-assisted clinical procedures while tackling the problem of procedure segmentation in

order to achieve that.

1.1 Challenges

Replicating the assessments provided by experts is not an easy task to achieve. There are
many challenges that make this problem quite hard to solve using machine learning. A few

of them are listed below.

1. Disagreement between experts: The subjective nature of assessment results in dif-
ferences between scores that different experts give to the same trainee. This is mainly
due to the fact that surgeons can vary significantly on their style of surgery and can
perform the same task with competency in a very different way. Naturally, as a result,

the trainee more near to their own style would be given better scores.

2. Availability of data: Any machine learning problem requires good amount of data
to start with. Unfortunately, there are very few data sets available in the surgical
domain, and those present are very small in size. Therefore, for our work, new data
needs to be collected and annotated before machine learning based models can be

developed.

3. Huge variation in clinical procedures: For assessment in clinical robot-assisted



procedures, the first problem to solve is that of segmenting the procedure into indi-
vidual steps. This is an extremely challenging task by itself since each surgeon will
have different kinds of motion and each person’s anatomy will look different. There
is nothing standard in such a task which requires very robust models to be developed
that can take in all the information coming from the robotic system to recognize in-
dividual tasks. Since procedure segmentation is hard to fully solve, assessment on
top of that becomes challenging as well since that is all dependent on how well the

procedure segmentation works.

1.2 Organization of the thesis

This thesis is organized as follows: Chapter 2 provides a detailed review on previous lit-
erature revolving around surgical skill assessment and surgical activity recognition that
provided the motivation behind this PhD work. In chapter 3, we introduce novel motion
based features for surgical skill assessment using video and accelerometer data for open
surgical training. Chapter 4 extends the evaluations of features proposed in Chapter 3 to
robot-assisted (RA) basic surgical training tasks. The thesis then drives into the domain
of more complex RA procedures and covers unsupervised and supervised surgical activity
work proposed in Chapter 5 and 6, respectively. Chapter 7 uses the work of supervised ac-
tivity recognition from Chapter 6 to propose an automated system for surgical performance
report generation for RA procedures. Chapter 8 finishes the technical part of this thesis and
covers methods proposed for video highlight generation in surgical procedures. A brief

summary and possible future work are given at the end of this thesis.



CHAPTER 2
BACKGROUND

In this section we will look at some of the key works done in the field that motivated
the work presented in this thesis. The first section of this chapters provides a survey on
various papers presented in literature for surgical skills assessment. The next section gives a
background on work done in surgical activity recognition, which is followed by conclusion.

Table 2.1 summarizes some of the key works from both sections.

2.1 Surgical Skill Assessment

The problem of automated surgical skills assessment has recently seen some good progress
[4, 5, 6, 7, 8, 9]. Pioneering efforts were based on robotic minimally invasive surgery
(RMIS) and focused on gesture recognition and skill assessment using Hidden Markov
Models [10, 11, 12]. These initial endeavors attempted to identify gestures or motion
sequences for a specific surgical task. These gesture based methods were mostly used for
surgical activity recognition and in some cases for surgical skill assessment.

For assessment of surgical skills in RMIS, one of the earlier works proposed a variant
of HMM - sparse HMM [13]. Other works like [7] studied the differences in needle-driving
movements and reported significant differences between beginner and expert surgeons. In
[8], the authors proposed descriptive curve coding-common string model (DCC-CSM) for
simultaneous surgical gesture recognition and skill assessment. Support Vector Machine
(SVM) have also been used on basic metrics like time for completion, path length, speed
etc, for skill evaluation [9]. [7] studied robotic surgical movements and reported significant
difference in the needle-driving movements of experienced surgeons and novices. GEARS
(Global Evaluative Assessment of Robotic Skills) is an assessment tool specifically devel-

oped to assess levels of robotic surgical expertise and is known to be consistent and reliable



as reported in [14]. More recently, some works have explored the use of crowd sourcing
techniques to evaluate surgeon skill [15].

Despite advances in basic robotic surgical training, assessment of conventional surgical
skills is done using OSATS [3] in medical schools and teaching hospitals (see table 1.1
for details on OSATS grading scheme). Some works based on automated assessment of
the OSATS criteria for general surgical training have also been proposed recently. In [6],
the authors introduced Augmented BoW (ABoW), in which time and motion are modeled
as short sequences of events and the underlying local and global structural information is
automatically discovered and encoded into BoW models. They classified surgeons into
different skill levels based on the holistic analysis of time series data. In [4], the authors
proposed Motion Texture (MT) analysis technique in which each video is represented as a
multi-dimensional sequence of motion class counts to obtain a frame kernel matrix. The
textural features derived from the frame kernel matrix are used for prediction of OSATS
criteria. Although MT technique provided good OSATS prediction, it is computationally
intensive (N x N sized frame kernel matrix for a video with N frames) and does not account
for the sequential motion aspects in surgical tasks. A variant of MT, called Sequential
Motion Texture (SMT) [5], encoded both the qualitative and sequential motion aspects.

The techniques mentioned above do provide encouraging results for video based OSATS-
like surgical skill assessment. However, these studies use very few participants which limits
their ability to capture the wide variation in surgical skills. An expert surgeon’s hand mo-
tion might be more clean, distinct, ordered and sequential as compared to a non-expert and
having more samples helps capture skills of varying levels. However, most of the works
mentioned above have not tried to utilize the disorder and repetitiveness in motion for skill
assessment. Also, they do not include studies on wearable motion sensing devices such as

accelerometers that may provide precise motion information for surgical skills assessment.



Table 2.1: Key works on surgical skill assessment and surgical phase recognition. CNN:
Convolutional Neural Network, SMT: Sequential Motion Texture, CRF: Conditional Ran-
dom Field, BoW: Bag-of-Words, ABoW: Augmented Bag-of-Words, LDS: Linear Dy-
namical Systems, DTW: Dynamic Time Warping, CCA: Canonical Correlation Analysis,
HMM: Hidden Markov Model

Reference Technique Phase Analysis goal Data

Dipietro RNN Yes Surgical gesture recognition | RMIS (only kinematic data from

(2016) [16] robotic surgery), 23 subjects

Twinanda CNN Yes Surgical tool detection and | Laparoscopic cholecystectomy (endo-

(2016) [17] phase recognition scopic video), 13 subjects

Lea (2015) [18] CRF Yes Surgical action segmenta- | RMIS (both kinematic and video data
tion and recognition from robotic surgery), 8 subjects

Sharma (2014) [4, | MT,SMT No OSATS prediction, classifi- | General suturing task (only video data),

5] cation 16 subjects

Tao (2013) [12] CRF Yes Surgical gesture segmenta- | RMIS (both kinematic and video data
tion and recognition from robotic surgery), 8 subjects

Bettadapura ABoW No OSATS classification General suturing task (only video data),

(2013) [6] 16 subjects

Haro (2012), Za- BoW, Yes Surgical gesture recognition | RMIS (both kinematic and video data

pella (2013) [19, LDS from robotic surgery), 8 subjects

20]

Padoy (2012) [21] DTW, Yes Surgical phase recognition Laparoscopic cholecystectomy (endo-

HMM scopic video), 4 subjects
Lalys (2011) [22] DTW Yes Surgical phase recognition Cataract surgery, 20 videos
Blum (2010) [23] CCA, Yes Surgical phase recognition Laparoscopic surgery, 10 videos
HMM

Lin (2009) [24] HMM Yes Skill classification but not | RMIS (both kinematic and video data
on individual OSATS crite- | from robotic surgery), 6 subjects
ria




2.2 Surgical Activity Recognition

The problem of surgical activity recognition has been of interest to many researchers. Sev-
eral methods have been proposed to develop algorithms that automatically recognize the
phase of a surgery. Some of the initial works focused on very low level gesture recogni-
tion in RMIS training [25, 26, 13, 27], while more recently, many works have focused on
recognizing high level phases in surgeries [17, 28, 29, 30].

Several RMIS works have used Hidden Markov Models (HMMs) to represent the sur-
gical motion flow. The motivation for HMMs and gesture based analysis is derived from
speech recognition techniques and the goal is to develop a language of surgery where a
surgical task can be modeled as a sequence of predefined gestures (also known as surgemes
analogous to phonemes in speech recognition). [12] proposed a combined Markov/semi-
Markov conditional random field (MsM-CRF) model for gesture segmentation and recog-
nition for RMIS. [19] and [20] employed both kinematic and video data while using linear
dynamical systems (LDS) and bag-of-features (BoF) for surgical gesture (surgeme) classi-
fication in RMIS surgery. [18] developed a method to capture long-range state transitions
between actions by using higher-order temporal relationships using a variation of the Skip-
Chain Conditional Random Field. Some more recent works have presented unsupervised
methods to identify similar low-level trajectories with strong alignment to human labels
[31, 32].

Unlike most of the RMIS based work described above where the focus was on recog-
nizing low level gestures, multiple approaches have been presented to recognize high level
surgical tasks in laparascopic surgeries[21, 17, 29, 30]. In [21], the authors presented a
DTW and HMM based method for recognizing surgical phases using tool usage record-
ings as a multidimensional time series. [30] proposed a fully data-driven and real-time
method for segmentation and recognition of surgical phases using a combination of video

data and instrument usage signals. More recently, with the immense success of deep learn-



ing in image recognition fields, some works have proposed convolutional neural networks
(CNN) based methods for surgical phase recognition. [17] collected a new dataset of 80
laparascopic cholecystecomies (Cholec80) and proposed ‘EndoNet’, a modified version of
AlexNet, to simultaneously recognize surgical tools and phase. A few works have then
tried to improve surgical tool and phase recognition using various deep learning models
[28, 33, 34]. Outside of laparascopic domain, some works have also presented methods on
recognizing surgical tasks in ENT [35] and cataract surgeries [36].

Most of the surgical activity recognition work described above has focused on low level
gesture recognition in basic RMIS tasks. The few works presented for recognizing steps
of clinical procedures mainly focused on laparoscopic surgeries with little to no work done

on recognizing surgical steps in a robot-assisted clinical procedure.

2.3 Conclusion

To better guide our research forward, we can derive the following conclusions from the

literature survey:

1. The majority of the work done on surgical skills assessment has been focused on
basic RMIS training. Very few papers have presented methods for OSATS based
assessment in general surgical training. Moreover, most of such works use small

datasets.

2. Most of the real surgery phase recognition work has been done on laparoscopic pro-
cedures - little to no research has been done on recognizing surgical steps in clinical

robot-assisted surgeries.

3. There is a lack of work done on providing automated feedback to surgeons for robot-
assisted surgeries in a clinical setting. Most of the feedback given in such cases
is limited to gross measures across the entire procedure despite the performance of

particular tasks being largely responsible for undesirable outcomes.



CHAPTER 3
SURGICAL SKILL ASSESSMENT IN BASIC TRAINING

Surgical trainees are required to acquire specific skills during the course of their residency
before performing real surgeries. The first skills that trainees need to master are those of
basic suturing and knot tying. These skills form a base for any future skills that surgical
trainees need to acquire. Therefore, mastering the art of suturing and knot tying is very
essential in the career of any surgeon. However, due to the packed schedule of supervising
surgeons, trainees usually do not get frequent feedback that is necessary for their learn-
ing. Moreover, the manual assessment by experts can be subjective and prone to errors.
Objective Structured Assessment of Technical Skills (OSATS) is adopted in most medical
schools as a standard to assess surgical residents [1] (see Table 1.1 for details on OSATS
grading scheme). While adopting OSATS grading system reduces the subjectivity of as-
sessment to some extent, the grading itself can take up lot of time of the generally few
expert surgeons available. In this chapter, we present a framework for automated OSATS
based surgical skills assessment for basic surgical tasks of suturing and knot tying using

video and accelerometer data.

3.1 Methodology

Figure 3.1 shows the flow diagram for processing video and accelerometer data for sur-
gical skills assessment. The videos are initially preprocessed and converted into a multi-
dimensional time-series, whereas, the accelerometer data is first aligned with the video
data before further processing. We will now go into more details of the different parts in

the pipeline below.

Chapter references: [37, 38, 39]
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Figure 3.1: Flow diagram for processing the video and accelerometer data.

3.1.1 Video/Accelerometer Data Processing

In order to extract motion information from video data, we use Spatio-Temporal Interest
Points (STIPs) [40] proposed by Laptev. Let V' be the set containing all the videos in our
dataset. Then, for all v € V, a Harris3D detector is used to compute the spatio-temporal

second-moment matrix /. at each video point given by

L? L, L,L;
p=9(;0* ) x| L,L, L[> L,L 3.1

L.L, L,L, L}
where g(.; 0%, 72) is a 3D Gaussian smoothing kernel with a spatial scale o and a temporal

scale 7. L, are gradient functions along the x, y and ¢ domains. The final position of the

STIPs is then calculated by finding the local maxima of the Harris corner function given by

H = det(u) — w(trace(p))? (3.2)

Laptev’s STIP implementation [41] was used with default parameters and sparse feature
detection mode for different spatio-temporal scales with w set to be 0.005. Histogram of
of Optical Flow (HOF) and Histogram of Oriented Gradients (HOG) are then computed

on a three-dimensional video patch in the neighborhood of each detected STIP. A 4-bin
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Figure 3.2: Motion class time series samples using KX = 5 for a novice (left), an interme-
diate (center) and an expert (right) surgeon.

HOG and a 5-bin HOF descriptor is calculated resulting in 72-dimensional HOG vector
and a 90-dimensional HOF vector. The final feature vector for each STIP is obtained by
concatenating HOG and HOF vectors resulting in a 162-dimensional vector.

Once the STIPs for all videos are extracted, 'motion classes’ are learned by using k-
means clustering on STIPs from two expert videos. Expert STIPs are used since they
are more distinct and uncluttered as compared to non-experts. Therefore, expert motions
provide exemplary templates for the surgical task to be evaluated. The STIPs from experts
are clustered using k-means for different number of clusters ‘c’. The learned clusters can be
thought of as representing of the number of moving parts in the video. The expert clusters
are then used to transform the remaining videos in the data set into a multi-dimensional
time series. This is done by assigning each STIP in every frame of the video to one of
the ‘c’ learned clusters using minimum Mahalanobis distance from the cluster distribution.
This results in a time series 7' € RX*Y representing each video, where K represents the
dimension of the time series (equivalent to the number of clusters used in k-means) and
N is the number of frames of the video. Figure 3.2 shows some sample motion class time
series for a beginner, intermediate and an expert using KX = 5.

The accelerometer data collected was already in a multi-dimensional time series format.
Each data recording for an individual accelerometer resulted in a time series T € R3*¥,

where the rows denote the 3 acceleration values (x,y and z).

12



3.1.2 Feature Extraction

The difference in motion predictability and repeatability of surgeons with varying skills
levels can potentially be used to assess the basic surgical skills. An expert will have more
predictable hand motion while a beginner will exhibit erratic and irregular patterns. There-
fore, we propose to use frequency based (DCT and DFT) and entropy based (ApEn and
XApEn) features for extracting predictability and repeatability in time series data for skill
assessment. Details of the different features used are given below

Discrete Fourier Transform: Discrete Fourier Transform (DFT) is used to convert data
from time domain into frequency domain and has been extensively used for many applica-

tion across several domains. For our time series X € REXN

, we calculate the frequency
coefficients for each dimension independently and concatenate them to form the frequency

matrix Q € RE*N [37]. The i" row in the frequency matrix Q, Q(7) is calculated by
Qi) = 0.X (i) (3.3)

where X (i) is the 7" dimension of the time series X.  is an N x N matrix and 6(m, n) is
given by

Q(T)’L, TL) = eXp(_jQﬂ-%% (34)

where {m,n} € [0,1,..., N — 1]. Once the matrix () is calculated, the higher frequency
terms are removed in order to eliminate noise. This results in a reduced matrix Q € REXF
where I’ denotes the highest frequency component used from each dimension of the time
series X . This can also be thought of as low-pass filtering of the time series. The elements
of Q are then concatenated to form a final feature vector of K F' dimensions.

Discrete Cosine Transform: Discrete Cosine Transform (DCT) is also a transformation
of data from time domain to frequency just like DFT. However, DCT only uses cosine

functions instead of both sines and cosines. This results in the DCT coefficients being real
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as opposed to DFT where the coefficients can be complex. Similar to DFT, the i row of

the frequency matrix ( € R*X*¥ is also calculated using equation 3.3 [37] but the # matrix
is given by
1
6(0 =1/ = 3.5
0.1) =/ 5 3:5)

O(m,n) = \/%COS(W), (3.6)

where {m,n} € [0,1,..., N — 1]. Similar to DFT, the matrix () is reduced to Q € REXF
and a final K F'-dimensional feature vector is obtained.

Approximate Entropy: Approximate entropy is a measure of regularity in time series data
initially proposed in [42]. A more predictable time series would have a low approximate
entropy value whereas an irregular time series would have a higher entropy. For a one-
dimensional time series, the approximate entropy ApEn is dependent on three parameters:
embedding dimension (m), radius () and time delay (7). The embedding dimension (m)
represents the length of the series which is being checked for repeatability, the radius () is
used for local probabilities estimation and time delay (7) is selected in order to make the
components of the embedding vector independent. For a given time series 7' € RV, we
form a sequence of embedding vectors z(1), x(2),...,2z(N —m + 1), where x(7) is given
by x(i) = [T}, Tixr, - - -, Tiy(m-1)r)» for 1 < i < N — (m — 1)7. Then, for each embedding

vector z(i), the frequency of repeatable patterns C™(r) is calculated by

1

G0 = D ; H(r — dist(x(i), z(j))) (3.7)

where H is a Heaviside step functions and

dist(z(i), z(7)) = max(|T(i + (k — 1)7) = T(j + (k — 1)7)|) for k € [1,2,...,m]. The
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Figure 3.3: (a) Sample sine waves with different SNR. (b) Variation of approximate entropy
(ApEn) with respect to SNR (c¢) Sample sine waves with different phases (d) Variation of
cross approximate entropy (XApEn) with respect to phase difference between signals

conditional frequency estimates are calculated by

1 N—(m-1)r

Q(r) is then used to calculate the approximate entropy for the time series 7' € RV as
ApEn(m,r,7) = Q™(r) — Q™ (r).

In order to show how ApEn varies for signals with different predictability, we generate
a set of sinusoids V. A pure sine wave without any noise can be considered as completely
predictable since it has a fixed repeating pattern. However, adding noise to the same func-
tion would make it less predictable. We induce white Gaussian noise into our set of sinu-
soids V' to vary the signal-to-noise (SNR) of the set of signals. The range of SNR in the
set V' was kept from 1 to 50. Figure 3.3(a) shows some sample sinusoidal waves in the set
V' with different SNR. Figure 3.3(b) shows the variation of ApEn with varying SNR and
radius. As expected, we can see that the higher the SNR (lesser noise), the lower the value
of ApEn gets for any value of 7.
Cross Approximate Entropy: Cross approximate entropy (XApEn) is a measure of asyn-
chrony between two time series [43]. For two given time series [T, S] € R”, the embedding
vectors are defined as @1 (i) = [T}, Titr, - - -, Tip(m—1)-) and 22(7) = [Si, Sivrs - - -, Sitm—1)7)s

for 1 < i < N — (m — 1)7. The frequency of repeatable patterns C!"(r)(T'||.S) for the
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embedding vectors x;(7) and x4 (7) is then calculated by

CP(r)(T1IS) = yeghoye Xy Hr — dist(x1(6), 22(7))) (3.9)

Q™ (r) is then calculated using

1 N—(m-1)7

Q"(r) = N_(m—1)r > In(Cl(r)(T]]9)) (3.10)

=1

This is then used to finally calculate the cross approximate entropy between the two
time series by
X ApEn(m,r,7) = Q™ (r)(T||S) — Q™ (r)(T]]S).

Similar to ApEn, we generate a set of sinusoids IV to show the variation of XApEn for
varying synchrony between different signals. The set W consists of sinusoids with the same
SNR but with phase varying from O to 7. Figure 3.3(c) shows some sample of sinusoids
in this set. Figure 3.3(d) shows how the value of XApEn varies when the phase difference
between the signals varies. We can see that the value of XApEn reaches a max at about 0.57
and then reduces back to 0 at 7 phase difference. It is important to note that two sinusoids
with a phase difference of 7 are completely out of phase but in perfect synchrony. This is
because if one increases the other decreases with the same rate. This should result in a very
low XApEn value which we observe in Figure 3.3(d) as well.

Surgical motions in suturing and knot tying tasks are inherently repetitive in nature.
The repetitiveness of motion can be encoded using frequency features. However, frequency
features would not be able to capture the sudden movements or jerks in motion that define
the competency of a surgeon. They do not quantify the orderliness or predictability of
patterns. On the other hand, approximate entropy represents the likelihood of occurrence
of similar patterns of observations. A time series containing many repetitive patterns has
lower approximate entropy and is more predictable.Therefore, using ApEn features can

potentially capture repetitiveness along with more finer details crucial for skills assessment.
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Moreover, in surgical motions, it is also important for surgeons to move their hands and
tools in a smooth motion together. We think that XApEn features can potentially capture
information on how synchronized the surgeon’s hands and tools are with each other. We use
both the entropy based features described above to encode surgical motion predictability

for our analysis.

3.1.3 Classification

After extracting the features described above, we use Sequential forward selection (SFS)
[44] to reduce the dimensionality of the features. Finally, a Nearest-Neighbor (NN) classi-

fier 1s used for classification.

3.2 Experimental Evaluation

3.2.1 Data Set

Our data set consists of video and accelerometer data for evaluating the performance of
proposed and previous state-of-the-art features for skill assessment. We use the surgical
skills dataset from [37] for direct comparisons. This dataset had 18 participants. We aug-
mented this dataset with additional 23 participants to a total of 41 participants consisting of
surgical residents and nurse practitioners, essentially doubling the data set from previous
studies. In suturing, the participants were asked to perform a “running suture” using an
instrument (needle holder) for a specified amount of time, resulting in varied number of
sutures completed. For knot tying, the participants were asked to tie knots for a given time
using their hands only (without any instruments). In this data set, each participant under-
took two instances each of suturing and knot tying tasks. For each instance, video data
was captured at 30 frames per second at a resolution of 640 x 480 using a standard RGB
camera. We captured a fixed number of frames for each surgical task: 4000 for suturing
and 1000 for knot tying. Each video was captured in different lighting conditions and from

varying camera angles to make the data set invariant to lighting and viewing angle. Figure
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Figure 3.4: OSATS score distribution for both tasks in the dataset. For this plot, the indi-
vidual scores for each criteria were summed for each participant.

3.5 shows some sample frames from the videos. Due to acquisition errors, some videos
had to be excluded from the data set resulting in 74 videos (from 38 participants) for each
surgical task.

The acceleration data was captured using Axivity WAX9! sensors. Two accelerom-
eters were used for each surgical task. For knot tying, one accelerometer was attached
to each hand wrist whereas for suturing, one accelerometer was attached to the dominant
hand wrist and one to the needle-holder. This was done because for suturing, there was
very little movement of the non-dominant hand and would not contribute much. On the
other hand, needle holder is the main instrument used for suturing. Hence we capture the
motion of the dominant hand and the needle holder for suturing. The data captured con-
sisted of z, y and z acceleration values resulting in a 3-dimensional time series for each
accelerometer. At the start of each instance, all participants were asked to rapidly shake
the hands/instruments with the accelerometers to get the synchronization waveform that is
used to align the starting point of acceleration data with the video using the ELAN software
[45] (a snapshot shown in figure 3.5). The accelerometer data had some additional noise as
the accelerometers were not being attached properly, resulting in unwanted jerks. For some
cases, the accelerometer even fell off during a session and had to be reattached. All such

samples were removed from the data set resulting in a final 54 acceleration data samples for

Thttps://axivity.com/downloads/wax9
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Figure 3.5: Image on left shows a screenshot from ELAN software for synchronization of
video and accelerometer data. Middle column and right most columns show sample frames
for suturing and knot tying, respectively. The accelerometers can also be seen placed on
the wrists and the needle-holder

knot tying (from 30 participants) and 62 for suturing (from 33 participants). The average
length with standard deviations of the acceleration data was 8434 4 2030 for suturing and
1919 + 507 for knot tying.

In order to generate the ground truth skill levels, we asked an expert to watch the videos
and give OSATS scores (on a scale of 1 to 5) for each participant. The scores were then
divided into three categories: beginner (score = [1,2]), intermediate (score = 3) and
expert (score = [4,5]). A complete class distribution for video and accelerometer data is
given in Table 3.1. We also show the distribution of the sum of OSATS scores in Figure 3.4
for both tasks. Please note that we only use the OSATS criteria being used in our partner
hospital for actual assessment. For example, RT and IH were not used for knot tying since
there is no direct tissue contact with no instrument being used. Scores for OP in suturing
and KP in both tasks, were not available.

In order to generate the ground truth skill levels, we asked an expert to watch the videos
and give OSATS scores (on a scale of 1 to 5) for each participant. The scores were then
divided into three categories: beginner (score = [1,2]), intermediate (score = 3) and

expert (score = [4, 5]).
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Table 3.1: Skill class distribution for each of the OSATS criteria (RT: Respect for Tissue,
TM: Time and Motion, IH: Instrument Handling, SH: Suture Handling, FO: Flow of Oper-
ation, OP: Overall Performance). Each cell contains two values V' : A, where V' = No. of
samples for video data, A = No. of samples for acceleration data.
Suturing Knot Tying
RT ™ IH SH FO ™ SH FO oP
Beginner 38:28 (46:34 |47:35|47:35|45:33|27:18(27:19|22:15|23:15
Intermediate | 22:20 | 15: 15| 13:13 | 17:17 | 18:18 | 22:17 | 28:21 | 28:22 | 28:22
Expert 14:14 | 13:13 | 14:14 | 10: 10| 11:11 | 25:19|19:14 | 24:17 | 23:17

3.2.2 Parameter Selection

There are multiple parameters that we need to find optimal values for in different parts of
our pipeline. First parameter that we tuned was the dimension of time series data to be used
from videos i.e. the number of motion classes. We used K € [2,3,...,10,12,...,20] for
k-means clustering to learn motion classes (the number of time series dimensions used) for
analysis of video data. Each feature used had different optimal values of K and are given
in Table 3.2.

For frequency based methods described, the only parameter that needs to be selected
empirically is /' which is the highest frequency component selected from each dimension
of the time series (or the cutoff frequency in the low pass filter). Therefore, we calculate the
classification accuracy for F' € [25, 50,100, 200, 500]. Average accuracies were evaluated
over all OSATS criteria and F' = 50 achieved the best performance. We will maintain
F' = 50 for our evaluation and results comparison.

As described in the previous section, entropy based features are dependent on some
parameters which need to be specified. These are the embedding dimension (1m), time delay
(7) and the radius (7). In order to differentiate time series data on the basis of regularity,
radius (1) needs to be equal to 7coer s X std, where 7oy can range from 0.1 to 0.25 and std
denotes the standard deviation of the time series. For the embedding dimension, m = 1 and
m = 2 both work equally well according to [42]. The time delay 7 essentially represents

the factor by which the input data is down sampled for further calculations.
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3.2.3 Evaluation Metrics

Different metrics were used to compare performances of various features on our data set.
For video, we calculate the average classification accuracy over all OSATS criteria for
different features for all values of K in order to find the optimum number of clusters for

each feature type. The average accuracy Ay, is calculated using Ay, = % > Ak, where

OSATS
Af is the accuracy using K clusters for a specific OSATS criteria, and O represents the

total number of applicable OSATS criteria for that task. For accelerometer data, we evaluate
the different features for both the accelerometers attached for each task; wrist and needle-
holder for suturing and hand wrists for knot tying. Accuracies are averaged over all OSATS

criteria for accelerometer data as well.

We also calculate the class wise precision and recall values as precision = tpffp and
recall = tpffn, where tp is true positive, fp is false positive and fn denotes the false

negatives for the corresponding class. Again, the per-class precision and recall values are

averaged over all OSATS criteria for a more compact representation.

3.3 Results

The features and evaluation metrics described in the previous section were evaluated on

video and accelerometer data for suturing and knot tying tasks for all applicable OSATS

Table 3.2: Highest average classification accuracies with standard deviations for different
techniques using multi-modality data. For video data, K corresponding to highest accuracy
is also shown.

Video Accelerometer
Suturing Knot Tying Suturing | Knot Tying
SMT 789 +5.7(K=3) | 61.1 =23 (K=10) | 729 +45 | 72.7£53
DCT 919 +34(K=9) | 89.5+28(K=9) | 845+49 | 83.3+£2.1
DFT 924+ 3.7 (K=7) | 86.8 £2.8 (K=10) | 85.5+3.0 | 84.7 £ 4.1
ApEn 93.7 £ 2.2 (K=20) | 89.2 £5.3 (K=20) | 80.3 +2.1 | 75.0 £ 6.5
XApEn 91.4 £ 3.0 (K=16) | 90.9 £ 4.3 (K=20) | 81.0 4.0 | 66.2 + 4.1
ApEn+XApEn | 95.1 + 3.1 (K=16) | 92.2 4+ 3.0 (K=14) | 86.8 =4.5 | 78.7 5.8
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Figure 3.6: Average classification accuracy (Ak) versus K (number of dimensions of time
series) for video data. (Best viewed in color)

Table 3.3: Per class average precision and recall values over all OSATS criteria with stan-
dard deviations using video data corresponding to Table 3.2. The values in each cell are in
the format Precision | Recall.

Suturing Knot Tying
Beginner Intermediate Expert Beginner Intermediate Expert
SMT 89.0+5.7 | 82.3+4.5 | 66.2+11.8|73.2415.5 | 60.9+14.7 | 72.6+18.1 | 68.445.6 | 65.5+2.0 | 51.849.4 | 58.4+4.7 | 63.74£6.9 | 59.4+11.1
DCT 97.3+2.894.0£1.6 | 79.2414.6 | 90.7+7.6 | 86.0+10.1 | 85.4+10.6 | 86.5+7.4 | 92.2+7.0 | 88.3+5.5]92.2+5.7 | 93.1+5.9 | 85.1+2.1
DFT 96.5+2.894.0+£2.5 | 82.1+11.8]90.7+8.9 | 91.04+9.3]89.3+5.2 | 88.14£7.9 | 85.6+4.9 | 91.5+7.3 | 85.3+5.4 | 79.7+£9.9 | 90.8+7.7
ApEn 97.6+£1.9]96.3+2.9 | 86.7+8.4]90.1£3.0 94.6+5.0 | 95.3+4.4 | 91.1+4.4]90.0+£5.3 | 86.8+4.5 | 84.8+7.8 | 89.54+8.1]93.8+3.7
XApEn 97.6+2.4]92.843.6 | 80.649.0 | 92.6£6.9 93.8+6.2]96.6+4.6 | 91.6+4.1|94.2+3.9 | 88.6+3.3 | 87.94£7.6 | 91.949.4|91.8£7.5
ApEn+XApEn | 98.1+2.2|95243.2 | 92.4+7.0|92.2+5.2 | 89.3+8.6 | 100.0+£0.0 | 95.0+3.9 | 93.0+6.8 | 89.7+5.1 | 91.4+3.1 | 91.6+8.4 | 93.7+6.3

Table 3.4: Per class average precision and recall values over all OSATS criteria with stan-
dard deviations using accelerometer data corresponding to Table 3.2. The values in each
cell are in the format Precision | Recall.

Suturing Knot Tying
Beginner Intermediate Expert Beginner Intermediate Expert

SMT 82.3+4.1[79.0£5.0 | 60.7+7.9]69.0+7.8 | 63.9+11.0|61.6+13.4 | 54.848.4|754+11.5 | 81.0+7.2]66.9+3.2 80.4+3.5180.6+9.6
DCT 95.8+4.4 | 83.1+£5.5 | 80.24+7.5]88.0+£5.2 | 60.5+7.9|84.7+15.0 | 83.6+9.1|79.7+£9.7 85.3+7.6 | 84.7+3.3 80.4+3.5]87.3+9.3
DFT 94.2+5.5(88.7+3.5 | 82.1+7.5[82.8+7.3 | 67.2+12.7|81.9+11.0 | 84.9+3.8]87.8+6.8 | 88.1+5.7|78.3+2.0 | 80.7+6.9 | 91.4+3.8
ApEn 91.9+4.282.5+3.0 | 64.1+£10.0]76.1+£10.0 | 69.1+£6.0 | 76.44+6.0 | 74.0+15.1]69.0+10.3 | 67.7+6.6 | 76.5+6.2 | 82.74+10.7 | 80.9+10.5
XApEn 90.7+5.5 | 82.9+£6.7 | 73.0+£17.2|78249.5 | 61.9+£15.5]82.9+7.4 | 54347.4]70.6+154 | 704+5.3|63.6+6.8 | 72.7+10.7 | 67.7+4.2
ApEn+XApEn | 93.9£2.1[86.2+6.8 | 75.5£13.6 | 86.4+5.9 | 81.7+14.0 | 93.2+7.5 | 77.7+8.9|75.8+£10.7 | 72.3+10.0 | 81.3+£1.8 | 86.0+9.8 | 79.3+8.3
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Figure 3.7: Individual OSATS criteria results for video and accelerometer data. For each
feature, the optimal value of K (as indicated in Table 3.2) was used. (Best viewed in color)
criteria. Figure 3.6 shows the comparison of different features for suturing and knot tying
tasks using video data while using different values of K. Figure 3.8 shows the average
classification results achieved using accelerometer data. The highest average accuracy and
the corresponding standard deviations achieved for different techniques are given in Table
3.2. Along with highest average accuracies, we also show the results for individual OSATS
criteria using optimal K for each feature type (as indicated in Table 3.2) in Figure 3.7.
The per-class precision and recall values corresponding to accuracies given in Table 3.2 are
given in Tables 3.3 and 3.4.

In order to check the statistical significance of the presented results in Table 3.2, we
conducted McNemar’s test [46]. The best performing feature for each modality and surgi-
cal task was compared with the rest of the features. For comparing performance of different
classifiers, a p-value < 0.05 indicates that the difference in classification accuracies is sta-

tistically significant. Table 3.5 shows the p-values achieved conducting the McNemar’s
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Table 3.5: McNemar’s test of statistical significance for results presented in Table 3.2.
For each column, the highest performing feature (denoted by “HPF”) was compared with
all other features to check if the higher accuracy achieved is statistically significant by
evaluating the p-value. For example, in the first column, ApEn+XApEn performance was
compared to rest. The improvement in accuracy is statistically significant if p-value<0.05.

Video Accelerometer
Suturing | Knot Tying | Suturing | Knot Tying
SMT <0.01 <0.01 <0.01 <0.01
DCT <0.01 <0.01 <0.05 <0.05
DFT <0.01 <0.01 <0.05 HPF
ApEn >0.05 <0.01 <0.01 <0.01
XApEn <0.01 <0.05 <0.05 <0.01
ApEn+XApEn HPF HPF HPF <0.01

test. It can be observed that the improvement in average classification accuracy by the
highest performing feature for each column is statistically significant for almost all cases.
This shows that the improvements achieved by the proposed entropy based features, when
using video data for both tasks and using accelerometer data for suturing, is statistically
significant.

We also perform experiments to compare how an early fusion of video and accelerom-
eter data performs for frequency (DCT and DFT) and top performing entropy features
(ApEn+XApEn). The features are fused via concatenation. Since some of the accelerom-
eter data had to be excluded (as described in Section 4), we only use videos for which
the corresponding accelerometer data is available i.e 54 for knot tying and 62 for suturing.
Tables 3.6 and 3.7 show the average accuracies (over all OSATS criteria) with standard
deviations using different modalities for suturing and knot tying, respectively.

Lastly, for a more thorough comparison, we perform another experiment using harder
cross validation schemes. We again compare ApEn+XApEn with DCT and DFT. For this
analysis, we use the Video+Acceleration data for each feature type. Figure 3.9 shows the

average accuracies with standard deviation over all OSATS criteria for 2, 5, and 10 fold

24



Accelerometer - Suturing Accelerometer - Knot Tying

95 100
g %0 g o5
g 85 I g
g ] g I
g 80 § 80
g s E
3 % 70
g g ]
% 65 g o0
o o
g oo L
g > g ii
50 40
SMT pcr DFT ApEn XApEn  ApEn+XApEn SMT pcT DFT ApEn XApEn  ApEn+XApEn

M Instrument ™ Wrist m Combined ELH mRH mCombined

Figure 3.8: Average classification accuracies with standard deviations for accelerometer
data using individual and combination of the two accelerometers. (Best viewed in color)

Table 3.6: Average accuracies with standard deviations for corresponding feature types
using different data modalities for suturing task. Highest performance across all modalities
and feature types is shown in bold

Video Accelerometer | Video+Accelerometer
DCT 90.6 + 3.1 84.5+49 86.8 7.7
DFT 87.1 1.1 85.5+3.0 86.1 2.1
ApEn+XApEn | 93.9 + 3.7 86.8 4.5 932+ 6.6

cross validation schemes. Tables 3.8 and 3.9 show results for ‘hold-out’ cross validation
schemes for suturing and knot tying, respectively. For hold-out validation scheme, h% of
the data was kept as testing data (corresponding to each column in the tables) while the
remaining (100 — k)% was used for training. Within the training data, 10% was used as
validation set. Both validation and testing accuracies are given in Tables 3.8 and 3.9. We
do not show training accuracy since that will always be 100% using a nearest-neighbor

classifier (each point in the training data will be closest to itself, always).

Table 3.7: Average accuracies with standard deviations for corresponding feature types us-
ing different data modalities for knot tying task. Highest performance across all modalities
and feature types is shown in bold

Video Accelerometer | Video+Accelerometer
DCT 91.7 £ 6.1 833 +t2.1 83.8+49
DFT 86.1 £1.9 84.7 £ 4.1 81.0£5.5
ApEn+XApEn | 90.3 £ 3.1 787 £5.8 94.0 + 2.8
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Figure 3.9: Average classification accuracy bars with standard deviations for different cross
validation schemes by using Video+Accelerometer data. (Best viewed in color)

Table 3.8: Average validation and testing accuracies over all OSATS criteria with standard
deviations using hold-out cross-validation for suturing with Video+Accelerometer data.
The values in each cell are in the format Validation Accuracy | Testing Accuracy. Each
column corresponds to the amount of data that was left-out for testing.

Testing Set Percentage

80% 70% 60% 50% 40% 30% 20%
DCT 50.34+8.7 [ 51.84+7.6 | 55.848.4 | 57.749.0 | 60.5+8.9 [ 61.949.2 | 64.3+9.6 | 66.3+9.3 | 69.1+9.5 | 71.8+8.7 | 72.5£8.7 | 75.4+8.9 | 76.3+8.8 [ 79.3+8.3
DFT 53.6+1.8 | 54.0+1.3 | 57.842.3 | 58.7£1.7 | 60.5£1.5 | 63.0+1.9 | 65.0£1.9 | 67.3+2.2 | 69.3+2.2 | 71.6+2.4 | 73.1+1.9 | 75.3£2.4 | 76.2£2.4|79.0+2.4
ApEn+XApEn | 51.6+2.8 | 51.542.3 | 56.0+3.0 [ 56.9+3.2 | 59.943.5 | 62.74+4.0 | 65.5+3.8 | 67.8+4.3 | 71.3+5.0 | 73.74+4.7 | 75.3+5.0 | 78.4+5.3 | 79.845.3 | 83.74+5.7

Table 3.9: Average validation and testing accuracies over all OSATS criteria with standard
deviations using hold-out cross-validation for knot tying with Video+Accelerometer data.
The values in each cell are in the format Validation Accuracy | Testing Accuracy. Each
column corresponds to the amount of data that was left-out for testing.

Testing Set Percentage
80% 70% 60% 50% 40% 30% 20%
DCT 42,4437 45.0+3.6 | 48.5+5.0 | 50.6+3.9 | 53.9+5.1 | 54.9+4.4 | 57.94+4.0 | 60.444.5 | 63.2+4.5]65.0+4.1 | 67.6+4.4 | 70.24+4.6 | 71.8+4.8 | 75.9+5.0
DFT 45.743.2[45.444.5 | 50.945.4 [ 50.4£5.0 | 52.7+4.7 [ 54.944.9 | 57.844.9 [ 58.7+5.3 | 6.3+5.0 | 63.945.3 | 65.6+5.7 | 68.1+5.1 | 70.2+5.5 | 73.346.1
ApEn+XApEn | 46.9+5.8 | 47.0+6.3 | 54.6+5.8 | 54.5+6.7 | 58.5+5.7 | 60.9+6.2 | 64.2+5.5 | 66.6+5.6 | 70.2+4.8 | 73.7+5.2 | 75.4+4.9 | 79.0+4.7 | 80.8+4.2 | 85.4+4.2
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3.4 Discussion

From the results presented in the previous section, we can see that entropy based features
perform better for video data as compared to state-of-the-art techniques in terms of accu-
racy. For accelerometer data, entropy based features attain a higher accuracy for suturing
but not for knot tying (Table 3.2). The reasons for this is mainly because entropy based
features are dependent on the dimension of the time series used (can also be seen in Figure
3.6 for increasing values of K'); the higher the dimension of time series being evaluated, the
more information is captured especially for cross entropy (XApEn). In case of accelerome-
ter data, we only have 3-axis acceleration values so entropy based features cannot capture
enough information. However, entropy based features still have a higher accuracy for su-
turing task. From Tables 3.3 and 3.4, we can see that entropy based features perform well
overall, however, there isn’t a conclusive trend in terms of precision/recall values.

Comparing the performances of using individual or a combination of accelerometers
from Figure 3.8, we can observe that the combination of data from both accelerometers
performs better than individual accelerometers. However, these differences in the perfor-
mance can potentially give us some valuable insights for skill assessment. For example,
in suturing, instrument data works slightly better than wrist for most of the feature types.
The reason for this could be that there is relatively more movement of the instrument in
suturing as compared to the wrist. Therefore, more motion information would be available
to differentiate between different skills. This information can help surgeons improve on
their skills by focusing on their instrument motion a bit more.

Comparing results for individual modalities shows us that using video data performs
much better than accelerometer for all feature types. This can be explained by the fact that
accelerometers only capture the hands/needle-holder 3-D acceleration data whereas videos
can be used to extract all motions (both hands, instruments etc.). From the results of our

video and accelerometer features fusion experiment (Table 3.6 and Table 3.7), we can see
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that combining video and accelerometer data deteriorates performance for DCT and DFT
features as compared to video data. For ApEn+XApEn, the performance improves for knot
tying but slightly decreases for suturing. Overall, the highest performance is achieved using
ApEn+XApEn features for each task (shown in bold). Even while using harder cross vali-
dation schemes, the proposed ApEn+XApEn features outperform frequency based features
for both tasks for most setups (Figure 3.9, Table 3.8, Table 3.9).

While out-performing the previously proposed features for skill assessment, ApEn and
XApEn also have some limitations. Firstly, these features are somewhat dependent on the
dimensionality of the time series data; they work better for high dimensional data, espe-
cially for XApEn (since it can capture more information). However, increasing dimension-
ality also leads to potential over-fitting. Moreover, XApEn is computationally expensive
and can take a long time if extracted using CPU. However, this can be overcome if a GPU
implementation is used. In [47], the authors showed that using GPU for extracting XApEn
from a multi-dimensional time series can be more than 250x faster than using CPU. This
would be particularly important for real time feedback.

Although, previously proposed frequency features perform reasonably well (especially
for accelerometer data), we think that they perform well on repetitive surgical tasks like
suturing and knot tying. We believe that the proposed entropy based features would perform
better in other surgical procedures as well since they try to capture the irregularity in motion
instead of just the repetitiveness. Specifically, it would be interesting to see how these
features perform in the recently published JIGSAWS dataset [48] since it contains similar

surgical tasks being performed on a da Vinci robot.

3.5 Summary

In this chapter, we presented a framework for automated surgical skills assessment for
basic tasks of suturing and knot tying using video and accelerometer data. Overall, our

analysis showed that videos are better for extracting skill relevant information as compared
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to accelerometer. However, a fusion of video and accelerometer features can improve the
performance. Also, the proposed combination of ApEn and XApEn performed best among
all features. Having an automated system for surgical skills assessment can significantly
improve the quality of surgical training. It would allow the surgical trainees to practice
their basic skills a lot more with valuable feedback. Moreover, such a system could also

help save expert surgeon’s time that is spent on trainee assessment.
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CHAPTER 4
SURGICAL SKILL ASSESSMENT IN RMIS TRAINING

With the rapidly increasing amount of Robot-Assisted Minimally Invasive Surgery (RMIS)
around the world, the focus on robotic surgical training has increased tremendously. Typ-
ical robotic surgery training includes simulator based and dry lab exercises like suturing,
knot tying and needle passing. Training on these tasks is crucial since it forms the base for
advanced training procedures on pigs, cadavers and eventually, humans. However, the cur-
rent assessment on such dry lab exercises is done manually by supervising surgeons which
makes it prone to subjectivity and reduces the overall efficiency of training.

In this chapter, we will extend the work presented in the previous chapter to develop an
automated framework for assessment of surgical skills in basic RMIS training and achieve
state-of-the-art performance using frequency and entropy based features. As opposed to
previous chapter’s work where we used video and accelerometer data, here we will only

use robot-kinematics data to assess skill.

4.1 Methodology

4.1.1 Skill Classification/Score Prediction

As opposed to previous proposed works on using different variants of HMMs [50] for skill
assessment, we evaluate holistic features for predicting skill level using robot kinemat-
ics data. Figure 4.1 shows the proposed pipeline. For a given D-dimensional time series
S € RP*L, where L is the number of frames, we extract 4 different types of features:

Sequential Motion Texture (SMT), Discrete Fourier Transform (DFT), Discrete Cosine

Chapter reference: [49]
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Figure 4.1: Flow diagram of the proposed framework for robotic surgical skills assessment.

Transform (DCT) and Approximate Entropy (ApEn). The dimensionality of the features is
reduced using Principal Component Analysis (PCA) before classification/prediction. We
give details of the feature types, fusion method and the prediction model below.

SMT: Sequential motion texture was implemented as presented in the original paper [5].
The time series is divided into NV, number of windows. A frame kernel matrix is calculated
after which Gray Level Co-Occurence Matrices (GLCM) texture features (20 in total) are
evaluated resulting in a feature vector ¢gy € R2Ne,

DCT/DFT: Frequency features were evaluated in a similar fashion as described in the
previous chapter. We evaluate DCT and DFT coefficients for each dimension of the robot
kinematics time series. This results in a matrix of frequency components F' € R*P*L. The
lowest () components from each dimension are then concatenated together to make the
final feature vector ¢pcr/prr € RY Q. Using low frequency features would eliminate any
high frequency noise that could have resulted during data capture.

ApEn: Approximate entropy features were also extracted as presented in previous chap-

ter. Evaluating ApEn for all dimensions of the time series data results in a feature vector

_V[ Feature 1

—b[ Feature N

B
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g

Figure 4.2: Weighted feature fusion for OSATS score and GRS prediction.
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Suturing Knot-Tying Needle-Passing

Figure 4.3: Sample frames from the 3 tasks in the JIGSAWS dataset [48].

®ApEn € RPE, where R is the number of radius values used in evaluation per dimension.
Feature Fusion: A weighted feature fusion technique for skill prediction (as shown in Fig-
ure 4.2) is also used for classification/predictions. The outputs of different prediction mod-
els are combined to produce a skill score. We take our training time series data and evaluate
each feature type to produce a training feature matrix ¢; € R"*”, where f corresponds to
a the feature type used, n is the number of training samples and D is the dimensionality of
the feature type. The output y; € R" corresponding to each ¢; is then evaluated using the
prediction model. A matrix of outputs from different features Y € R"*!" is generated by
concatenating all the y;, where [ corresponds to total number of features used. Given the
ground truth predictions G' € R", the optimal weights vector w* € R is then evaluated by
solving a simple least squares as w* = argmin||Yw — G||3. For a given test set, the output
w
Yrest 18 then calculated using yiest = Yiestw™.
Classification/Prediction: A simple nearest neighbor classifier is used for classification of
skill levels. For exact score prediction,a linear support vector regression (SVR) model [51]

is used.

4.2 Experimental Evaluation

Dataset: The proposed framework is evaluated on the publicly available JIGSAWS dataset
[48]. This dataset is collected from a da Vinci Surgical System (dvSS) and consists of
kinematics and video data from 8 participants for three robotic surgical tasks: Suturing,

Knot Tying and Needle Passing. The video data is captured using the endoscopic camera
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Table 4.1: Table showing optimal number of PCA components estimated. For prediction,

the optimal value of the regularization parameter C is given within parentheses.

SMT DCT DFT ApEn

Classification 50 150 150 40
Prediction | 10 (10%) | 1000 (10°%) | 250 (107%) | 40 (10%)

while the kinematic data consists of the joint information (e.g. Cartesian positions, linear
and angular velocities, gripper angles, etc) from the different robot manipulators resulting
in a 76-dimensional kinematic feature vector per frame. Figure 4.3 shows sample frames
for each task. We only use kinematic data in its raw form without any preprocessing for our
analysis and employ the standard LOSO (leave-one-supertrial-out) and LOUO (leave-one-
user-out) cross validation setups. For LOSO, we leave one randomly selected trial from
each surgeon out for testing and repeat this 20 times. For LOUQO, we leave all trials from
one surgeon out for testing. The dataset has ground truth skill labels of three categories:
self-proclaimed, OSATS and global rating score (GRS). Self-proclaimed category has three
skill levels (dependent on the amount of hours spent on the system) — novice (< 10 hrs),
intermediate (10 — 100 hrs) and expert (> 100 hrs). The OSATS scores are based on six
criteria on a scale of 1-5 and are generated by an expert watching the videos while grading
them. This is different from the original OSATS [3] (as described in introduction section)
since it contains an extra criteria of suture handling (SH) and that none of the criteria are
graded as Pass/Fail. The GRS is a sum of all individual OSATS scores.

Parameter estimation: There are different parameters that need to be tuned for the extrac-
tion of various features. We use the implementation of different features in their orig-
inal forms as presented in the previous chapter. In SMT, we use number of windows
N,, = 10 and evaluate Gray Level Co-Occurence Matrices (GLCM) texture features with
8 gray levels resulting in a 200-dimensional feature vector. For frequency features, we
take the lowest 50 components (() = 50) for each dimension of the time series and con-
catenate them resulting in a 50 D-dimensional feature vector, where D is the dimension of

time series (76 in our case). In calculating approximate entropy (ApEn), we use radius
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r =10.1,0.13,0.16,0.19,0.22, 0.25] resulting in a 6 D-dimensional feature vector. A value
of 1 was used for both m and 7.

We use Principal Component Analysis (PCA) for dimensionality reduction before pass-
ing features onto the classifier or the regression model. This was done since a lower per-
formance was observed using original feature dimensionality. In order to estimate the
optimal number of PCA componenets Dpc4, we evaluate performance for Dpc 4 rang-
ing from 10 to 3000 for all tasks for each feature type. The value of Dpc4 correspond-
ing to highest average performance accross all tasks was selected. For score predictions,
we need to estimate an optimal value for the regularization parameter C' in SVR. For
each feature type, we evaluated the average correlation coefficient (over all OSATS) for
C € [1077,1075,...,105,107] and selected the best performing value of C for evaluations.
The optimal values of Dpc4 and C are given in Table 4.1. Please note that all parameters
were strictly tuned on the training data only for both validation setups. This includes the

weights being estimated for the fusion of different prediction models.

4.3 Results and Discussion

We evaluate the proposed features for skill classification and OSATS based score predic-
tion using the JIGSAWS dataset. For classification, we compare the performance of these
features with previous HMM based state-of-the-art methods [50]. Table 4.2 shows results
for self proclaimed skill level classification in the JIGSAWS dataset. As evident, using
holistic features significantly out-perform previous approaches of using different variants
of HMMs. Specifically, ApEn performs significantly better than all other methods. This
is interesting to note since experts (with > 100 hrs of practice) would have smoother mo-
tions as compared to beginners (with < 10 hrs of practice) making their movements more
‘predictable’, and hence easily differentiated using ApEn features.

Table 4.3 shows the results for OSATS and global rating score predictions. We use

spearman’s correlation coefficient ‘p’ as an evaluation metric and check for statistical sig-
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Table 4.2: Self proclaimed skill classification results

Suturing Knot Tying Needle Passing
LOSO | LOUO | LOSO | LOUO | LOSO | LOUO
discrete-HMM | 72.0 - - - - -

MFA-HMM 92.3 38.5 86.1 44.4 76.9 46.2
KSVD-HMM | 97.4 59 94.4 58.3 96.2 26.9
SMT 99.0 35.3 99.6 323 99.9 57.1
DCT 100 64.7 99.7 54.8 99.9 35.7
DFT 100 64.7 99.9 51.6 99.9 46.4
ApEn 100 88.2 99.9 77.4 100 85.7

Table 4.3: OSATS scores and GRS prediction results. Each cell contains two numbers in
the form posars | pars, where the first number is the value of p averaged over all OSATS
and the latter is the value of p for GRS prediction. “*” means a p—value < 0.05 for the

corresponding p.

Suturing Knot Tying Needle Passing
LOSO LOUO LOSO LOUO LOSO LOUO

SMT 0.25|0.46* | -0.08]-0.28 | 0.41*|0.39* 0.18 ] 0.21 -0.12 1 0.09 0.07 | -0.60*

DCT 0.57*%]0.68* | 0.100.08 0.59*10.76* | 0.49|0.73* 0.22 | 0.26* -0.16 | 0.09

DFT 0.45%]0.49* | -0.28|-0.29 0.31]0.32% | 0.46*|0.47* | 0.44*|0.53%* 0.370.19

ApEn 0.31%]0.49* | 0.43]0.40* 0.26 | 0.14* 0.02]0.12 0.16 | 0.06 0.21]-0.21
SMT+DCT 0.48%]0.61* | 0.01]0.01 0.66*| 0.71* 0.46 | 0.78* | 0.14-0.16 -0.23|-0.14

SMT+DFT 0.40% | 0.60% | -0.21]-0.49* | 0.36|0.39* | 0.52%]0.48% | 0.39*|0.54* 0.33]0.13
SMT+ApEn 0.28%]0.35% | 0.41]0.42* | 0.18]0.36* 0.06 | 0.12 0.12]-0.06 0.15]-0.29
SMT+DCT+DFT 0.57*%]0.64* | 0.160.10 0.58* | 0.70* | 0.56*| 0.73* | 0.36%]0.38* | 0.50* | 0.23
DCT+DFT 0.56* | 0.66* | 0.13]0.14 0.53*% | 0.68* | 0.55%]0.73* | 0.41*]0.47* | 0.53%]0.28
DCT+DFT+ApEn 0.59% | 0.75*% | 0.43*|0.37* | 0.57*|0.63* | 0.48|0.60* 0.37 | 0.46* 0.23]0.25
SMT+DCT+DFT+ApEn | 0.47* | 0.66* | 0.45%| 0.37* | 0.55* | 0.61* | 0.49]0.62* | 0.45%| 0.45* -0.21 -0.19

Table 4.4: Values of p averaged over all three tasks for the corresponding feature types in

the form posars | pars-

LOSO LOUO

SMT 0.18 [0.31 | 0.05-0.22

DCT 0.46 [0.57 | 0.14[0.24

DFT 0.40 [0.45 | 0.19]0.12

ApEn 0.240.23 | 0.22]0.10
SMT+DCT 0.43]0.39 | 0.08]0.22
SMT+DFT 0.38[0.51 | 0.22]0.04
SMT+ApEn 0.20 [0.22 | 0.210.08
SMT+DCT+DFT | 0.50 [0.57 | 0.41] 0.36
DCT+DFT 0.50 | 0.60 | 0.40[0.38
DCT+DFT+ApEn | 0.51 | 0.61 | 0.38 | 0.41
SMT+DCT+DFT+ApEn | 0.49]0.58 | 0.24|0.27
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Table 4.5: Root-mean-squared-error (RMSE) for each OSATS criteria using the top per-
forming features from table 4.4. Each cell contains RMSE values for each task in the form
Suturing | Knot tying | Needle passing.

Respect for tissue | Suture handling | Time and motion | Flow of operation | Overall performance | Quality of final product
SMT+DCT+DFT 0.86]0.88]0.84 | 1.26]0.75|0.88 | 1.04]0.57]0.79 | 0.96|0.67 | 0.62 1.17]0.84]0.74 0.92]0.83]0.99
DCT+DFT 0.91]0.90]0.83 | 1.40]0.81]0.88 | 1.07]0.53|0.81 | 1.14]0.65|0.61 1.22]0.83]0.74 1.0410.890.97
DCT+DFT+ApEn 0.8810.93]0.90 | 1.02]0.96|1.21 | 0.90]0.55]0.82 | 0.86]0.74|0.71 1.02]092 | 1.11 0.83|1.12]1.17
SMT+DCT+DFT+ApEn | 0.88]0.93]1.28 [ 0.98[0.96|1.40 | 0.89]0.51|1.26 | 0.85]0.74 | 1.00 1.02]0.88 | 1.29 0.82]1.12]1.38

nificance using the p-value. The value of p can range from -1 to +1, where the more positive
the value of p is, the more positively correlated the predicted and ground truth scores are
(which we want in our case). For OSATS score prediction, we show the value of p aver-
aged over all six criteria, whereas, the GRS p values are given as is. Feature combination
results presented in Table 4.3 are evaluated using weighted feature fusion as described in
methodology section. Overall, we can see that individual features and their combinations
achieve good results for the LOSO setup. Specifically, DCT and DFT features perform
better than others. On the other hand, we see a comparatively low performance overall
across all feature combinations for LOUO setup with many negative values of p observed.
This is because LOUO is a harder validation scheme due to less data for training phase.
However, using the proposed feature combination significantly improves performance over
individual features and results in a positive p for most feature combination cases. In gen-
eral, frequency features seem to perform well when used individually or in combination
with other features. We can also see an overall lower performance across all features for
the needle-passing task. The reason for this could be that needle-passing is a relatively
less repetitive task as compared to the other two. Since the features we use try to differ-
entiate between different skill levels using data repeatability, they perform less well for
needle-passing. Table 4.4 shows the average of p values over all three tasks (as given in
Table 4.3) for each feature type. We observe that DCT+DFT+ApEn performs best on av-
erage for OSATS and GRS score prediction. We also evaluate the root-mean-squared-error
(RMSE) values between the predicted and ground truth scores per OSATS criteria for the

top performing features as shown in Table 4.5. We can see that the presented combination
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Figure 4.4: Heatmaps of weight assignments of different features. Each column shows
the weight vector wx (scaled from O to 1) for the corresponding OSATS criteria or GRS.
For each heatmap, the features used in combination are shown next to each row and the
corresponding task, validation scheme and average p (over OSATS) are also shown. (Please
view this figure in color)

of features perform reasonably well for all the different criteria. This is interesting to see
since one would expect that kinematics data alone may not be enough for some criteria like
respect for tissue where visual information would be key in analyzing skill score. How-
ever, as confirmed by our results, robot kinematics data alone can potentially be enough for
assessment of all OSATS criteria.

In order to analyze the role of different features in the proposed weighted late fusion
for skill prediction, we generate heatmaps of the weight vectors learned and show a few
of them in Figure 4.4. It can be seen that DCT features get assigned the highest weight
in most of the cases. DFT and ApEn features generally have similar weight assignments
whereas SMT always gets assigned a low weight. This shows that DCT features capture the
most skill relevant information which is also evident from its high performance compared

to other individual features in Table 4.3.

While the framework presented in this chapter show promising results for automated
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surgical skills assessment for RMIS training, this work is limited by the amount of data
that the analysis is performed on. JIGSAWS is the only publicly available dataset to date
(to the best of our knowledge) for surgical skills assessment in RMIS training. Therefore,
it is hard to claim that such methods would be generalizable. However, we believe that the
idea of using predictability and fluency in surgical motions extracted through features like
DCT, DFT and ApEn, should be able to differentiate skill reasonably well for other kinds

of surgical data too.

4.4 Summary

In this chapter, we extended the framework presented in the previous chapter to RMIS
training assessment and used holistic features like SMT, DCT, DFT and ApEn for skill
assessment in RMIS training. The proposed framework out-performed all existing HMM
based approaches. We also presented a detailed analysis of skill assessment on the JIG-
SAWS dataset and propose a weighted feature combination technique that further improved
performance on score predictions. No video data was used making this method computa-
tionally feasible for real time feedback. This framework can easily be integrated in a robotic
surgery platform (like the daVinci system) to generate automated OSATS based score re-

ports in training.
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CHAPTER §
UNSUPERVISED SURGICAL ACTIVITY RECOGNITION

In the previous two chapter, we looked at methods that can be used to assess surgical skill
in a basic training setup for open and robotic surgeries. The focus of this thesis will now
shift towards assessment of robot-assisted clinical procedures which involves operating on
real tissue - porcine or human. Assessment in such a setup becomes much harder since the
environment is not controlled as before and every data sample would have large variations.
Therefore, the frameworks presented previously cannot directly be applied for assessment
in clinical procedures. The first problem that we need to solve for assessment in clinical
setup is ‘procedure segmentation’. Procedure segmentation refers to finding the start and
stop times of individual tasks within a procedure. This is an essential step for generating
task wise assessment reports for surgeons. In this chapter, we will explore some unsuper-

vised methods for procedure segmentation in robot-assisted surgeries (RAS).

5.1 Introduction

Over the course of entire procedures, surgeons perform certain tasks that are more criti-
cal than others. For example, during a prostatectomy, surgeons must finely coordinate their
tools to carefully avoid damaging nerves during the dissection of the neurovascular bundles
whereas mobilizing the colon and dropping the bladder do not involve similar risks. Despite
these apparent differences across steps, most evaluations of surgical workflow or surgeon
skill at population scales use simple, descriptive statistics (e.g. time) across whole proce-
dures, thereby deemphasizing critical steps and potentially obscuring critical inefficiencies

or skill deficiencies. If we could develop tools and algorithms to automatically recognize

Chapter reference: [52]
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Figure 5.1: Flow diagram of the proposed model for unsupervised surgical phase segmen-
tation.

clinically-relevant surgical tasks within procedures, we might be able to improve surgical
workflow, skill assessment, surgeon training, and, ultimately, patient safety by providing
task-specific performance measures.

Despite the recent successes of video-based methods, there remain compelling reasons
why one would (a) want to use smaller data streams than video and (b) utilize offline meth-
ods without real-time capability. Small data streams enable feasible storage of data across
many procedures, streaming of data over network connections without large bandwidth or
disruption, and smaller compute resources for training the models. Using non-video data
strongly parallels research directions in activity recognition where wearables with simple
accelerometer signals might be used. Additionally, offline methods can utilize data from
entire procedures for phase recognition and remain useful for post-operative feedback, re-
view, and documentation by surgeons. For these reasons, we believe system data from
robotic surgical systems offer a scalable, practical approach to surgical segmentation and
skill estimation.

In this chapter, we will examine temporal clustering methods to perform offline surgical
task recognition using only non-video data from RAS systems. In particular, we will apply
models developed for human activity recognition [53, 54]. The models are evaluated on

clinically relevant tasks performed on porcine models in a training environment.
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Figure 5.2: ‘Pseudo-procedure’ with sample frames for each of the five surgical tasks in
the dataset.

5.2 Methodology

In this section, we describe an approach for unsupervised segmentation of RAS procedures.
Figure 5.1 shows a flow diagram of our method. We collect kinematic and events data from
the da Vinci Si® surgical system (Intuitive Surgical, Inc., Sunnyvale, CA) while surgeons
of varying expertise perform exercises on a porcine model (additional details on data set
are given in Section 3). The events data stream is used directly, whereas, the kinematic
time series is preprocessed before implementing different segmentation algorithms. We
will employ Aligned Cluster Analysis (ACA) [53] and Hierarchical Aligned Cluster Anal-
ysis (HACA) [54] for our surgical procedure segmentation since both these algorithms
have proven to work well for human activity segmentation. For comparison, we also im-
plement two additional temporal clustering algorithms: Gaussian Mixture Models (GMM)

and Spectral Clustering (SC). Descriptions of the clustering algorithms are given below.

5.2.1 Spectral Clustering

Spectral clustering (SC) is a graph based clustering algorithm which has been widely used
for image segmentation in the computer vision community. It has also been used for time
series segmentation in various biomedical applications [55]. For a given time series 1" €

RN SC divides the temporal data depending on a similarity measure s;; between pairs
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of data frames ¢; and ¢;. The data is represented as a similarity graph G = (V, E), where
V' is the vertex set and F is the edge set. Each vertex of the graph v; is represented by
a data frame ¢;, and any two vertices are connected via a Gaussian similarity measure
Sij = exp(—%). Once the graph G is constructed, the problem of clustering becomes
a graph partitioning task. Therefore, in order to cluster different surgical procedures in our

dataset, we partition the graph constructed so that the edges between different groups have

small weights and the edges within a group have large weights.

5.2.2 Gaussian Mixture Models

Gaussian mixture model (GMM) is a popular clustering algorithm and has been extensively
used for various applications. The use of GMM for time series segmentation was originally
proposed in [56]. We use a GMM to model our time series 7' € RV, and segment the
series whenever two consecutive frames belong to different Gaussian distributions. This
is done since data frames from different surgical tasks, or activities in general, would po-
tentially form distinct clusters which can be modeled using Gaussian distributions. We use
the Expectation Maximization (EM) algorithm to estimate the parameters of each of the

Gaussians in the GMM.

5.2.3 Aligned Cluster Analysis and Hierarchical Aligned Cluster Analysis

Given a time series 7' € R4V, Aligned Cluster Analysis (ACA) and Hierarchical Aligned
Cluster Analysis (HACA) algorithms are formulated to decompose 7' into M different
segments with each segment corresponding to one of the K clusters. Each segment (),,
consists of frames of data from position ¢,, till ¢,,.1 — 1, where ¢,,, and ¢,,,1 — 1 represent
the first and the last index of the mth segment. In order to control the temporal regularity,
the length of each segment (),, is constrained to the range l; € [lin, lnas]- A binary
indicator matrix G € R5*M is generated where gy, = 1 if the mth segment belongs to

the kth cluster, otherwise g; ,,, = 0. The objective function for the segmentation problem
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is formulated as an extension to previous work on kernel k-means and is given by:

K M
Jaca(G, s) Z ngm (Qm» 2x) (5.1)

k=1 m=1
where, the distance function Di(Qm, z) = ||U(Tyt417) — 26l|*, Qm represents a

segment, s is a vector containing the start and end of each segment and z;, is the geometric
centroid of the k-th class. Just like kernel k-means, the distance between a segment and a

class centroid is defined using a nonlinear mapping #(.), given by

M M
2 1
2
Ddf(Qm’ Zk) = Tmm — _Mk jE 1 9kiTmj + _M,f ) % 1gkj1.gkj27_j1j2 (52)
= 1,J2=

where, M), denotes the number of segments belonging to class k. The dynamic kernel
function 7 is defined as 7;; = ¥(Q;)"¢(Q;). In matrix form, the objective function for

ACA can be written as

Jaca(G, H) = tr((I,, — GN(GGT)'G)H(F o W)HT) (5.3)

where, IV is the normalized correspondence matrix, H is the segment indicator matrix and
F' is the frame kernel matrix, as defined in [54]. For our analysis, frame kernel matrix is
of particular interest since the preprocessing parameters depend on it. Given a time series

T € RPN, the frame kernel matrix F' € V> is given by

F = ¢(T)"¢(T) (5.4)

Each element of the matrix f;; represents the similarity between the corresponding frames,

t; and ¢;, using a kernel function. We use a Gaussian kernel function for evaluating the

[[ti—t;1?

frame kernel matrix giving f;; = exp(—"53

). Once the energy function J4¢ 4 is formu-
lated, a dynamic programming based approach is used to solve for the optimal G € RRE*M

and s € RM+1 [54].
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Table 5.1: Details of the five surgical tasks used in this study.

Task Name Mean Time (s) | Standard Deviation Time (s)
1 Two-handed robotic suturing 1329.2 733.9
2 Uterine horn dissection 2159.7 492.6
3 Suspensary ligament dissection 1999.3 1097.5
4 Running robotic suturing 617.6 126.7
5 | Rectal artery skeletonization and clipping 1474.7 276.3

For Hierarchical aligned cluster analysis (HACA), the same steps as described above for
ACA are performed in a hierarchy at different temporal scales reducing the computational
complexity; HACA first searches in a smaller temporal scale and propagates the result to
larger temporal scales. Temporal scales over here refers to the number of segments the
time series is randomly segmented into initially; a larger scale would mean less number of
segments. We use a two level HACA; the maximum segment length is restricted to i,
and 12, for the first and second levels in the hierarchy, respectively, where 1 < 12,

Please see [54] for a more detailed description of ACA and HACA.

5.3 Experimental Evaluation

5.3.1 Dataset

We collected data from nine RAS surgeons operating the da Vinci Si surgical system. In-
formed consent was obtained from all individual surgeons included in the study (Western
IRB, Inc. Puyallup, WA). None of the surgeons had performed previous RAS procedures
but they all had prior laparoscopic and/or open experience. Five of the surgeons specialized
in general surgery, three specialized in urology, and one specialized in gynecology. Each of
the surgeons performed multiple training tasks in a single sitting on a porcine model that fo-
cused on the technical skills used during dissection, retraction, and suturing. During each
exercise, instrument kinematics, system events, and endoscope video were recorded and
synchronized. System data was recorded at 50Hz whereas endoscope video was recorded

at 25fps.
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We selected five representative tasks for this study (see Table 5.1). The five tasks were
treated as one ‘pseudo-procedure’ in our analysis as shown in Figure 5.2. The video data
was used to generate ground truth segmentations and was not added as a source of features
in our models. All tasks were performed in the pelvis of the porcine model and the setup
joints (therefore, remote centers of motion) were unchanged for all tasks. The five tasks
were perfomed on common anatomy within the pelvis thus ensuring that the segmentation
algorithms are not simply using positions in the world reference frame to differentiate ac-
tivities. Additional details about the instrument kinematic and system events data are given
below.

Kinematic Data: The kinematic data captured from the da Vinci Si surgical system con-
sisted of the endpoint pose and joint angles from the hand controllers on the surgeon side
console (SSC) and the instruments and camera on the patient side cart (SI). The kine-
matic data stream from SSC consisted of a 56-dimensional time series whereas SI was a
156-dimensional time series. We used individual data streams along with their different
combinations in order to find the data stream most useful for segmenting different surgical
tasks.

Events: A subset of the available system events were used in this study. The events used
included camera control, master clutch for each hand controller, instrument following state
for three patient-side arms, energy activation, and surgeon head in/out of the console. All
events were represented as binary on/off time series. In total, the events data was an 8-

dimensional time series.

5.3.2 Parameter Estimation

The performance of each proposed clustering algorithm depends on various parameters at
each step of the pipeline. We used a subset of 5 randomly selected ‘pseudo-procedures’ to
estimate the different parameters empirically. The details are given below.

In the preprocessing step for kinematic data, we use k-means clustering per trial to
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Figure 5.3: Sample frame kernel matrices for different number of symbols used in the
preprocessing step. The left most image represents the frame kernel matrix when the time
series is not reduced using k-means.

convert the high-dimensional time series data into symbols. The number of symbols, N,
used in this step is important for the clustering performance since selecting too few symbols
would fail in capturing enough information to differentiate the surgical tasks. The structure
of the frame kernel matrix F', as described in Section 3, highly depends on the value of
N;. Ideally, in order to temporally segment different surgical tasks, we would want F’
to have a block structure along its diagonal. A block structure of A would mean a high
variability in frames between different surgical tasks, and a low variability within each task.
In [54], the authors selected the number of symbols (or clusters) based on characteristics
of the synthetic or real data and made sure the chosen number of symbols was greater
than the number of activities to be recognized. Here, we performed a coarse parameter
search for the number symbols by running our clustering algorithms for a range of N, €
[10, 15, 20, 50, 100, 150, 200] and evaluated the clustering accuracies (using equation 6) for
the selected subset of ‘psuedo-procedures’. The value of N, corresponding to the highest
average clustering accuracy (over the subset of ‘pseudo-procedures’) was then selected. We
found that having a smaller value of N, gave better per