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SUMMARY 
 
 
 

The focus of my work is to elucidate the role of β-arrestin in regulating the M2 

mAChR which is currently unclear in the literature.  In particular, we examined the 

involvement of β-arrestin in mediating internalization and down-regulation of stimulated 

M2 mAChRs.  

 Muscarinic acetylcholine receptors belong to the superfamily of GPCRs that are 

commonly expressed in a variety of tissues and are classified into five known subtypes 

(M1-M5).  Of these subtypes, the M2 mAChRs are expressed predominantly in the heart 

and brain where their stimulation leads to the regulation of myocardial contractility and 

neurotransmission.  Given the critical role of M2 mAChRs in cardiovascular and 

neurotransmitter homeostasis, the mechanism behind M2 mAChR regulation is important 

to investigate.  Since β-arrestin 1 and 2 regulate the activity of many other GPCRs, we 

sought to identify their roles in regulating M2 mAChR activity.  To achieve this goal we 

utilized mouse embryonic fibroblasts (MEF) derived from β-arrestin knockout mice 

lacking one or both isoforms as well as exogenous expression of wild type and β-arrestin 

mutants.  In the first study, M2 mAChRs transiently expressed in wild type MEF cells 

underwent agonist-induced internalization and were subsequently sorted into intracellular 

compartments.  In contrast, stimulated M2 mAChRs failed to undergo internalization and 

sorting into intracellular compartments in MEF β-arrestin double knockout cells (MEF 

KO1/2).  In MEF KO1/2 cells, expression of either β-arrestin 1 or 2 isoforms resulted in 

rescue of agonist-promoted internalization.  Stimulation of M2 mAChRs led to a stable 

co-localization with GFP-tagged β-arrestin within endocytic structures in multiple cell 
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lines; the compartment to which β-arrestin localized was determined to be the early 

endosome.  Agonist-promoted internalization of M2 mAChRs was moderately rescued in 

MEF β-arrestin 1 and 2 double knockout cells expressing exogenous arrestin mutants that 

were selectively defective in interactions with clathrin (β-arrestin 2 ΔLIELD), AP-2 (β-

arrestin 2-F391A), or both clathrin/AP-2.  Expression of a truncated carboxy-terminal 

region of β-arrestin 1 (319-418) and Eps 15 mutants, potent inhibitors of clathrin-

mediated endocytosis, completely abrogated agonist-promoted internalization of M2 

mAChRs in wild type MEF cells.  Once internalized, post-endocytic trafficking of the M2 

mAChR appeared to be regulated by both Rab5 and Rab7 GTPases suggesting that the 

receptor is sorted from the early endosome to the lysosome for degradation.  In summary, 

this study demonstrates that agonist-induced internalization of M2 mAChR is β-arrestin- 

and clathrin-dependent, and that the receptor stably co-localizes with β-arrestin in early 

endosomal vesicles suggesting it behaves as a class B receptor.   

 Given that stimulated M2 mAChRs remain stably associated with β-arrestin in the 

cytosol (class B receptor), we sought to identify its function in regulating the post-

endocytic trafficking (down-regulation) of the M2 mAChR.  In the second study, we 

investigated the role of ubiquitination of β-arrestin in the agonist-promoted lysosomal 

sorting and subsequent degradation of the M2 mAChRs.  MEF cells lacking both isoforms 

of β-arrestin (MEF KO1/2) were unable to down-regulate M2 mAChRs whereas MEF 

cells from single knockout mice (MEF KO1 or KO2) retained the ability to do so.  

Expression of β-arrestin 1 or 2 in MEF KO1/2 cells rescued down-regulation.  In wild 

type MEF cells, both M2 mAChR and β-arrestin exhibited basal ubiquitination that was 

increased following agonist stimulation.  Receptor degradation appeared to be regulated 
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by the ubiquitination status of β-arrestin 2, since expression of a chimeric form fused to 

ubiquitin increased both constitutive and agonist-promoted down-regulation, whereas 

expression of a β-arrestin 2 mutant lacking putative ubiquitination sites, β-arrestin 2K18R, 

K107R, K108R, K207R, K296R, significantly blocked receptor degradation.  Expression of the β-

arrestin 2K11R, K12R mutant, in contrast, did not prevent degradation of M2 mAChRs while 

both mutants had no affect on agonist-promoted internalization.  Further localization 

studies in MEF KO1/2 cells revealed that β-arrestin 2K18R, K107R, K108R, K207R, K296R mutant 

did not disrupt stable arrestin/receptor complexes in the cytosol but did block delivery of 

M2 mAChRs to the late endosome/lysosome.  Pretreatment of cells with lactacystin, 

which inhibits proteasome-dependent recycling of ubiquitin, blocked down-regulation 

without affecting internalization or the ubiquitination state of the M2 mAChR while 

ubiquitination of β-arrestin 2 diminished significantly.  These results support a role for 

ubiquitinated β-arrestin in mediating M2 mAChR degradation in the lysosome.  Stable 

association with β-arrestin, stable agonist promoted ubiquitination of β-arrestin, and 

agonist-promoted down-regulation of the receptor supports the notion that M2 mAChR 

belongs to the class B.  We further propose a mechanism for differential ubiquitination of 

β-arrestin in regulating agonist-promoted degradation of the M2 mAChR. Colletively, 

these studies give us new insight on the function of β-arrestin in regulating the activity of 

the M2 mAChR, a class B receptor.   
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 

 
G protein-coupled receptors  

Activation and Regulation 

G protein-coupled receptors (GPCRs) belong to the largest family of membrane 

bound-receptors with over 600 genes identified to date, accounting for 2% of the human 

genome [1, 2].  GPCRs are seven transmembrane proteins that reside embedded in the 

plasma membrane and are involved in mediating a broad range of biological processes 

including sensory perception, neurotransmission, cellular metabolism, cellular growth 

and differentiation, and immune responses [3]. The localization of GPCRs on the cell 

surface allows them to detect extracellular stimuli (e.g., hormones, light, odorant, growth 

factors, neurotransmitters) and to respond to those stimuli by triggering an intracellular 

signaling cascade, which culminates in a cellular response such as apoptosis, 

differentiation, growth, and secretion.  Because GPCRs are involved in many 

physiological and pathophysiological processes, understanding on a cellular and 

molecular level how GPCR signaling processes are regulated is of great importance.  

Indeed, over 30% of the pharmaceutical therapeutics on the market today are targeted to 

modulating the activity of GPCRs [4].    

GPCRs exert these physiological responses by coupling to a heterotrimeric G 

protein comprised of α-, β-, γ- subunits.  On activation, GPCRs promote the exchange of 

GDP for GTP on the Gα subunit.  This in turn leads to a liberation of G protein 

 1 
 



complexes into Gα-GTP and Gβγ subunits that are then free to interact and modulate 

downstream enzymes and effectors including adenylyl cyclase, phosphatidylinositol 

kinases, nonreceptor tyrosine kinases, ion channels, and phospholipases [5]. Changing 

levels of second messengers via G protein activation leads to amplification of a signal 

transduction cascade which culiminates in a cellular response.   GPCRs are defined by 

their ability to activate a G protein signaling pathway(s).  These pathways include Gαi, 

Gαq, Gαs, Gα12/13 subfamilies that inhibit adenylyl cyclase, stimulate phospholipase C, 

stimulate adenylyl cyclase, and activate Rho pathways, respectively (Fig. 1) [6, 7].  The 

signal transduction cascade is terminated following hydrolysis of GTP bound to the Gα 

by regulator of G protein signaling proteins (RGS) [8].  The heterotrimeric complex can 

reform and reassociate with an unstimulated GPCR.     
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Fig. 1.  Signaling pathways exhibited by GPCR mediated G protein activation. 
Agonist-induced activation of GPCRs stimulates or inhibits effector proteins by 
functionally coupling to a heterotrimeric G protein.  Upon GPCR activation, the G 
protein exchanges GDP for GTP on the Gα subunit.  Both the α subunit and βγ-complex 
can interact with effectors to evoke a cellular response. PKA, protein kinase A; IP3, 
inositol 1,4,5-trisphosphate; DAG, diacylglycerol; PKC, protein kinase C; PLC, 
phospholipase C.  
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To monitor the broad array of signaling events that can occur following GPCR 

activation, complex regulatory mechanisms are in place to tightly control the 

responsiveness of the receptor [9].  To ensure a controlled signaling event, GPCRs 

undergo three modes of regulation: desensitization (1), which is typically accompanied 

by internalization (2), and recycling or down-regulation (3).  Desensitization is a complex 

event that involves agonist-dependent phosphorylation of the receptor by G protein-

coupled receptor kinases (GRKs) followed by binding of a cytosolic adaptor protein 

known as β-arrestin to phosphorylated receptors.  β-arrestin association uncouples the 

receptor from its cognate G protein by sterically blocking further interaction, thereby 

attenuating receptor-mediated G protein activation [10-12].  This desensitization process 

is typically followed by internalization or endocytosis whereby the receptor is removed 

from the cell surface.  Receptor internalization can serve to resensitize deactivated 

receptors or to target the receptor for degradation, a process known as down-regulation.  

Resensitization promotes “reactivation” of receptors by dephosphorylating them in 

endocytic vesicles in preparation for recycling them back to the plasma membrane as 

functional receptors whereas down-regulation serves to diminish the sensitivity of a cell 

to stimuli by decreasing the total number of functional receptors presumably by 

proteasomal or lysosomal mediated degradation [13, 14].  Typically, chronic stimulation 

of receptors leads to down-regulation [9, 15]. 
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Mechanisms of Desensitization, Internalization, and Down-regulation 

The best-characterized mechanism of desensitization and subsequent agonist-

induced endocytosis stems from work performed on the β2-adrenergic receptor (β2-AR).  

Desensitization of ligand occupied β2-AR is mediated by GRK2 whereby specific 

serine/theronine residues in the cytoplasmic tail are phosphorylated.  Phosphorylation of 

β2-AR facilitates its interaction with β-arrestin.  β-arrestins contribute to β2-AR 

desensitization by physically disrupting receptor/G protein association and can further 

serve as an adaptor protein to target the receptor to pre-formed clathrin coated pits at the 

plasma membrane [12, 16, 17].  Redistribution of β2-AR into clathrin coated pits and 

subsequent scission from the plasma membrane into primary endocytic vesicles via the 

GTPase dynamin forms the basis for receptor removal from the plasma membrane (Fig. 

2).  

Although many GPCRs utilize the same clathrin-mediated pathway as the β2-AR, 

other receptors are internalized through an alternative endocytic pathway.  Additional 

internalization routes include caveolae or non-clathrin, non-caveolae mediated pathways, 

which differ in size and composition of the vesicle coat [18].  Caveolae are flask shaped 

invaginations that are rich in caveolin proteins, glycosphingolipids and cholesterol [19].  

Many receptor systems are targeted to and internalize via caveolae which further require 

dynamin activity [20-23].  However, β-arrestin does not contribute to this endocytic route 

[24].  Clathrin- and caveolae-independent endocytosis remains to be fully characterized; 

however, reports indicate that Arf6 GTPase facilitates internalization independent of 

dynamin function [25-27].  
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Fig. 2.  Model summarizing internalization and endocytic sorting of the β2-
adrenergic receptor (β2-AR).  Upon agonist addition, β2-AR is phosphorylated at 
specific serine/threonine residues in the cytoplasmic tail by GRK2 resulting in β-arrestin 
translocation and binding to the receptor.  β-arrestin directs the receptor to clathrin-coated 
pits prior to clathrin- and dynamin-mediated endocytosis.  Delivery of GPCRs to the 
early endosome promotes receptor dephosphorylation, ligand removal, and β-arrestin 
disassociation.  The resensitized receptor than enters the recycling pathway via a PDZ 
domain-mediated interaction with proteins NSF and/or NHERF which can interact with 
the actin cytoskeleton.  
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The ADP-ribosylation factor (Arf6 GTPase) belongs to a family of Ras-related, 

GTP binding proteins that affect trafficking between the cell surface and endosomes [28].  

Activation of Arf6 has been shown to alter the lipid composition of membranes and to 

promote actin remodeling [29, 30].  Interestingly, Arf6 GTPase appears to participate in 

all three endocytic processes thereby regulating a variety of GPCRs including the β2-AR 

[27, 31]. Other players involved in the non-clathrin, non-caveolae endocytic pathway 

remain to be elucidated (Fig. 3).   

The functional consequence of agonist-induced endocytosis has been shown to 

include either resensitization and/or down-regulation.  Many internalized GPCRs are 

sorted to recycling endosomes whereby endosome specific phosphatases dephosphorylate 

the receptor.  Dephosphorylated receptors are then recycled back to the cell surface as 

functional receptors [10, 32, 33].  Specific sequences in the C-terminal domain of GPCRs 

have been determined to be required for efficient recycling.  The β2-AR contains a PDZ 

binding domain that binds and interacts with N-ethylmaleimide-sensitive fusion protein 

(NSF) and Na+/H+ -exchanger regulator factor 1 (NHERF1) that serve to regulate sorting 

to recycling compartments (Fig. 2) [34, 35].  The µ-opioid receptor lacks these 

interacting motifs but presumably contains another signal for recycling [36].  The N-

formyl peptide receptor requires the presence of β-arrestin proteins for efficient recycling 

through an unknown mechanism [37].   
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Fig. 3.  Multiple internalization routes and subsequent post-endocytic trafficking of 
GPCRs.  Agonist-induced endocytosis of GPCRs can lead to internalization through 
multiple pathways including caveolae, clathrin, and non-clathrin/non-caveolae pathways.  
Once internalized from the cell surface, GPCRs can be recycled back to the cell 
membrane or be targeted for lysosomal degradation dependent on protein interactions.  
Receptors such as the β2-AR interact with NHERF and NSF proteins that regulate β2-AR 
sorting to recycling compartments.  Other GPCRs such as the N-formyl peptide receptor 
require β-arrestin for efficient recycling.  In contrast, receptors sorted to the lysosome 
may interact with GASP or SNX-1 proteins to mediate transport.  Other signals such as 
receptor ubiquitination can also be a major player in lysosomal targeting.      
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In contrast, many GPCRs that are acutely or chronically stimulated can be rapidly 

internalized and delivered to lysosomes for degradation [14, 38-40].  The sorting 

mechanism for lysosomal delivery is still not well understood; however, recent efforts 

have also identified several interacting proteins and sorting motifs that specify this 

process.  It has been shown that some GPCRs can undergo ubiquitination, which serves 

as a signal for entry into the degradative pathway.  Presumbably, the ubiquitin 

moiety(ies) interacts with sorting machinery on endosomes to shuttle the receptor to the 

lysosome.  Other interacting proteins can also facilitate movement of GPCRs along the 

degradative pathway.  Lysosomal sorting of some GPCRs requires that the C-terminal 

domain of the GPCR binds to GPCR-associating sorting protein (GASP) or sorting nexin-

1 (SNX-1) proteins [41-43].  Interestingly, normally recycled receptors can enter the 

degradative pathway upon chronic stimulation (Fig. 3).  The mechanism behind this 

“traffick switch” appears to be dependent upon the concentration of agonist.  For 

example, exposure of the neurokinin-1 receptor (NK1R) to low concentrations of agonist 

induces minimal phosphorylation, transient association with β-arrestin, and fast recycling.  

Higher concentrations of agonist lead to extensive phosphorylation, prolonged 

interactions with β-arrestin and eventual degradation.  Thus, the extent of NK1R 

phosphorylation, dependent upon concentration of agonist, can determine whether the 

receptor is recycled or degraded [44-47].  Like the NK1R, the cannabinoid 1 receptor 

switches to the degradative pathway following chronic stimulation.  The authors 

suggested that high doses of agonist lead to stronger association of GASP with the C-

terminal tail of the cannabinoid 1 receptor [43]. 
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GPCR Post-Endocytic Trafficking 

Recycling and degradative pathways utilized by receptors are managed by 

proteins known to control membrane trafficking along these endocytic routes.  Some of 

the key regulators of post-endocytic trafficking are the Rab GTPase members, Ras-like 

GTP binding proteins.  Activation of Rab5 GTPase plays a key role in early endosomal 

localization of GPCRs by mediating fusion of primary endocytic vesicles with the early 

endosome [48-50].  Rab5 GTPase has also been implicated in mediating agonist-induced 

endocytosis of some GPCRs via direct or indirect interactions with the receptor [48, 51].  

Once receptors enter the early endosome, receptors are then delivered to recycling and/or 

degradative pathways depending on the signals that specify their transport (mentioned 

previously).   

Receptors destined for the recycling compartment enter early endosomal 

extensions that bud off into recycling compartments.  Delivery of cargo back to the cell 

surface is controlled by activation of Rab4 and Rab11 GTPases [50, 52, 53].  In contrast, 

receptors that enter the degradative pathway remain in the vesicular portion of the early 

endosome, which then invaginates into the lumen forming specialized vesicles [54, 55].  

These compartments are known as mulitvesicular bodies (MVB) and/or late endosomes.  

Cargo within the mulitvesicular bodies can then fuse with the lysosome for degradation 

[56].  Fusion of late endocytic vesicles with the lysosome appears to involve activation of 

Rab7 GTPase (Fig. 4) [55, 57-60].  

Recent studies indicate that sorting along the lysosomal pathway requires the 

cargo to be ubiquitinated.  Ubiquitinated proteins are thought to interact with 

microdomains within the vesicular region of the early endosome thereby preventing entry 
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into the recycling pathway [61].  These microdomains are thought to contain a 

scaffolding protein known as HRS (hepatocyte growth factor-regulated tyrosine kinase 

substrate) that interacts with ubiquitinated cargo via a UIM (ubiquitin interacting motif) 

and subunits of the mammalian ESCRT (endosomal sorting complex required for 

transport) [56, 61-63].  It has been demonstrated that the sorting of ubiquitinated cargo to 

the lysosome for degradation is mediated by HRS since a mutant form of HRS lacking 

UIM blocks trafficking of epidermal growth factor receptor (EGFR) and E-caderin to the 

lysosome [56, 64, 65].  Interestingly, it has been reported that delivery of cargo to the 

lysosome requires its deubiquitination at the late endosome/MVB.  Alwan et al. reported 

that deubiquitination of the EGFR by the 26S proteasome occurs prior to its lyososomal 

degradation [66, 67]. 
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Fig. 4.  Schematic of lysosomal and recycling sorting of receptors by Rab GTPases 
and ubiquitination.  Following ligand activation, receptors are internalized into primary 
endocytic vesicles that fuse with the early endosome mediated by Rab5 GTPase.  
Dependent on the receptor’s association with interacting proteins, a sorting decision is 
made to either recycle the receptor (blue) or down-regulate the receptor (purple).  
Delivery of receptor to the plasma membrane via recycling compartments is mediated by 
Rab4 and Rab11 GTPases.  Receptors destined for the lysosome are sorted into MVB/late 
endosome.  One such pathway involves ubiquitinated receptor that can interact with 
hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) at specific 
microdomains of the early endosome (green).  Maturation of MVB/late endosome leads 
to fusion with the lysosome, a process mediated by Rab7 GTPase.  
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Mechanism of GPCR Regulation by β-arrestin 

Two widely coexpressed isoforms of nonvisual β-arrestin (β-arrestin-1, β-arrestin-

2) are now known to regulate nearly all GPCRs studied to date [9].  As mentioned 

previously, β-arrestins are major players involved in mediating GPCR desensitization and 

internalization but have since been implicated in GPCR post-endocytic trafficking and G 

protein independent signaling.  The diverse roles they play have enormous implications 

on the functionality of GPCR-mediated signaling. 

The classical role of nonvisual β-arrestins is to selectively bind to phosphorylated 

activated forms of GPCRs to attenuate receptor-mediated signaling at the cell surface.  β-

arrestin bound to GPCRs can then promote direct interaction with the clathrin heavy 

chain and the heterotetrameric AP-2 adaptor complex, essential components of clathrin-

coated pits [16, 68].  β-arrestin-GPCR complexes are subsequently removed from the 

plasma membrane via clathrin-mediated endocytosis, which further requires dynamin 

GTPase activity.  Thus, β-arrestins can mediate agonist-induced endocytosis by directly 

interacting with the endocytic machinery.  

β-arrestin’s ability to attenuate receptor mediated signaling at the cell surface by 

functioning at both the desensitization and internalization level would support the notion 

that cell-signaling cascades are arrested.  However, elaborate studies have now revealed 

that β-arrestins can further serve as scaffolds to recruit signaling components for receptor 

mediated signaling independent of G proteins at the site of endosomes.  Some of the β-

arrestin binding partners that may link GPCRs to intracellular signaling pathways include 

nonreceptor tyrosine kinases such as the c-Src family, c-Jun amino-terminal kinase (JNK) 

and ERK-1 or -2 mitogen-activated protein kinase (MAPK).  Some evidence indicates 
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that spatially restricting Src to the cytoplasm can modulate the endocytic proteins directly 

involved in the regulation of GPCRs.  Src has been shown to activate dynamin GTPase 

and mediate GRK2 down-regulation thereby providing a feedback mechanism to enhance 

and prevent further GPCR endocytosis, respectively [69, 70].  Interactions of β-arrestin 

with JNK and ERK1/2 appear to participate in distinct cellular processes.  One apparent 

role for intracellular β-arrestin-ERK1/2 complexes is the reorganization of the 

cytoskeleton to drive chemotaxis [71-75].  It has been proposed that β-arrestin/MAPK 

complexes can facilitate phosphorylation of proteins involved in chemotaxis since these 

complexes are found at the leading edge during protease-activated receptor 2 (PAR2) 

induced cell migration [72, 76].  The targets for MAPK phosphorylation, however, are 

currently unknown.  Moreover, β-arrestin signaling complexes further appear to facilitate 

proliferation and protect cells from apoptosis [77, 78].  Although the role for β-arrestin in 

other biological functions is unknown, the implications that GPCR-β-arrestin complexes 

participate in subcellular localization of signaling cascades suggests that more biological 

activities dependent on the GPCR are involved.  

Recent reports also suggest that β-arrestins can function at post-endocytic stages 

to govern receptor trafficking.  It has been shown that receptors show differential 

affinities for β-arrestin and therefore they are classified into two groups.  Class A 

receptors, including the β2-AR, α1b-adrenergic receptor, and endothelin A receptor, bind 

to β-arrestin 2 with higher affinity than β-arrestin 1 [79, 80]. These receptors are thought 

to recruit β-arrestin to the plasma membrane whereby translocation to clathrin-coated pits 

occurs.  Following clathrin-coated pit localization and subsequent internalization, β-

arrestin disassociates from the receptor.  Hence receptors enter early endosomes devoid 

- 14 - 
 



of β-arrestin and are subsequently resensitized and rapidly recycled [81].  In contrast, 

class B receptors, including the vasopressin V2 receptor (V2R), angiotensin II type 1A 

receptor (AT1AR), and neurotensin receptor 1, bind to both β-arrestin isoforms with equal 

affinity [82].  These receptors stably associate with β-arrestin so that β-arrestin/receptor 

complexes remain intact and are internalized together into early endosomes.  This 

interaction can be maintained for prolonged periods of time.  This stable association may 

dictate the kinetics of receptor recycling since AT1AR and V2R recycle very slowly (Fig. 

5) [83, 84].  Whether or not stable β-arrestin/receptor complexes contribute to receptor 

down-regulation is currently unknown. 
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Fig. 5.  Role of β-arrestin in the intracellular trafficking and signaling of GPCRs.  
Class A GPCRs exhibit transient interactions with β-arrestin such that the receptor enters 
the early endosome devoid of β-arrestin.  These GPCRs undergo resensitization and are 
subsequently rapidly recycled to the plasma membrane.  Class B GPCRs remain stably 
bound with β-arrestin at early endosomal compartments.  These receptors are either 
slowly recycled or targeted for degradation by the lysosome.  Stable β-arrestin 
association correlates with sustained ubiquitination patterns.  β-arrestin can also serve as 
a scaffold in GPCR signal transduction to c-Src or MAPK family proteins in the cytosol. 
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The mechanism behind stable β-arrestin binding to GPCRs appears to involve 

ubiquitination.  Upon receptor activation, β-arrestin undergoes ubiquitination, which 

serves to facilitate receptor endocytosis.  The ubiquitination state of β-arrestin directly 

correlates with the binding pattern of GPCRs.  Thus, β-arrestin when bound to class A 

receptors shows a transient ubiquitination pattern while β-arrestin association with class 

B receptors reveals sustained ubiquitination [85, 86].  For example, Shenoy and 

coworkers showed that expression of a β-arrestin 2-ubiquitin chimera converted the class 

A β2-AR receptor into a class B receptor.  The data infer that liberation of β-arrestin 2 

from β2-AR requires its deubiquitination [87].  

 
GPCR Ubiquitination 

Ubiquitination is a highly conserved process that involves the covalent attachment 

of an ~8-kDa polypeptide to ε-amino groups of lysine residues in target proteins.  

Ubiquitin attachment is achieved through a series of enzymatic events involving classes 

of enzymes known as ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes 

(E2s), and ubiquitin-protein ligases (E3s) [88].  Polyubiquitination of substrate proteins 

has long been known as a potent targeting signal for degradation in the 26S proteasome; 

however, recognition by the proteasome requires more than 4 ubiquitin moieties 

appended to one lysine residue [89].  Shorter ubiquitin chains known as 

monoubiquitination or multi-monoubiquitination are now shown to regulate a wide 

variety of cellular process, including virus budding, histone activity, DNA repair, 

endocytosis, and lysosomal degradation [90-93].  
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 It has been shown that several cell-surface receptors are labeled with a single 

ubiquitin polypeptide, monoubiquitination, in response to agonist. This process is 

sufficient to target these receptors to endocytic vesicles [94-97].  In particular, the Ste2p 

receptor, a GPCR equivalent in yeast, undergoes ligand-mediated monoubiquitination in 

the C-terminal tail that is required for internalization [98]. Interestingly, mutation of a 

lysine residue within the SINNDAKSS motif abolishes ubiquitination and dramatically 

reduces internalization.  Alternatively, internalization of the growth-hormone-receptor in 

mammalian cells is mediated by the ubiquitin-proteasome system although ubiquitination 

of the receptor itself is not necessary [99].  These data suggest that ubiquitin moieties 

may bind adaptor complexes involved in endocytosis directly or that ubiquitination of 

some associating protein is required for receptor internalization.  In fact, Eps15 and epsin, 

adaptor proteins that interact directly with AP-2 and clathrin, respectively, possess a 

ubiquitin interacting motif (UIM) that recognizes ubiquitin and promotes 

monoubiquitination of the adaptor proteins themselves [100].  Thus, these molecules act 

as ubiquitin receptors to link monoubiquitinated receptors with the endocytic machinery 

of clathrin-coated pits [101].  Moreover, β-arrestin 2 has recently been shown to recruit 

E3 ubiquitin ligase Mdm2 upon stimulation of the β2-AR, which then catalyzes 

ubiquitination of β-arrestin 2.  Concurrently, β2-AR undergoes multi-monoubiquitination 

in a β-arrestin dependent fashion by an unknown ubiquitin ligase.  Interestingly, 

ubiquitination of β-arrestin 2 is essential for rapid receptor internalization whereas β2-AR 

ubiquitination is required for efficient receptor degradation [85].   

Indeed, ubiquitin modification of membrane bound proteins including some 

GPCRs may be important for shuttling receptors to the lysosome for degradation rather 
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than serving as an endocytosis signal [85, 102].  The PAR2, platelet activating factor 

(PAF), β2-AR, neurokinin receptor, and chemokine receptor 4 all appear to undergo 

agonist-mediated multi-monoubiquitination which serves to function as a sorting signal 

downstream of internalization by directing receptors to the lysosome for degradation [47, 

85, 102-104].  Lysosomal degradation of the V2R requires polyubiquitination at lysine 

268 [86].  Mutant forms of these receptors that fail to become ubiquitinated lose the 

ability to undergo lysosomal/proteasomal-mediated degradation while internalization 

remains unaltered.  β2-AR and V2R both require the β-arrestin 2 isoform for receptor 

ubiquitination since receptor ubiquitination is abolished in mouse embryonic fibroblasts 

lacking the β-arrestin 2 isoform [85, 86].  The authors speculate that β-arrestin serves as a 

platform for the recruitment of an as yet unidentified E3 ligase.  

  

Muscarinic Acetylcholine Type 2 Receptor: M2 mAChR 

Physiological and Pathophysiological Processes of M2 mAChR 
 

Members of the muscarinic acetylcholine receptor family (M1-M5) are known to 

be involved in mediating the effects of the neurotransmitter, acetylcholine, in the central 

and peripheral nervous systems [105].  M1, M3, and M5 are selectively coupled to the Gq 

proteins while M2 and M4 are preferentially linked to Gi proteins [106-108].  The M2 

mAChR subtype is found throughout the parasympathetic nervous system where it 

controls pulmonary and urinary function, movement, pain, body temperature, 

neurotransmission, and cardiac function [108-110].   

 Interest in the M2 mAChR subtype resides in the fact that this receptor plays a 

fundamental role in the peripheral and central nervous systems.  Peripheral M2 mAChR 
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actions reduce the rate and force of contraction in the heart and facilitate smooth muscle 

cell contractility [108, 111-114].  These physiologic effects occur when vagal nerve 

endings release acetylcholine to the target tissues expressing M2 mAChRs.  Signaling 

through the Gi-protein results in adenylyl cyclase inhibition and opening of K+ channels 

[115].  A reduction in heart rate can be ascribed to an influx of potassium ions that leads 

to hyperpolarization thereby opposing the pacemaker current. Concurrently, decreases in 

cAMP levels reduce calcium channel activation via a reduction in cAMP dependent 

protein kinase (PKA) activity (Fig. 6).  Lower intracellular calcium levels lead to a lower 

force of heart contraction.  Chronic stimulation of M2 mAChR can lead to the 

development of congestive heart failure as shown in patients afflicted with chronic 

Chagas’s disease and cardiomyopathy [116-118].  

  In airway, urinary, and stomach smooth muscle, however, decreased PKA 

activation contributes to contractility while Gαi activation appears to stimulate Rho, 

which can mediate actin polymerization and contraction [119, 120].  Alterations in M2 

mAChR mediated signaling have been implicated in disorders of smooth muscle 

function, including chronic obstructive pulmonary disease (COPD) and urinary 

incontinence [112, 121, 122].  

To decrease the magnitude of central and peripheral tissue responses, 

acetylcholine activation of M2 mAChR present on presynaptic nerve endings inhibits 

further acetylcholine release [109, 123].  This feedback control mechanism also known as 

autoinhibition appears to involve liberated Gβγ subunits that interact with voltage-

operated calcium channels to inhibit calcium influx which is involved in neurotransmitter 

release [108, 124, 125].  Blockade or loss of pulmonary M2 mAChR autoreceptors has 
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been implicated in COPD and asthma [126-130].  Indeed, elevated acetylcholine levels 

are found in asthmatic patients [131].  Therefore, excessive acetylcholine levels must be 

controlled via presynaptic M2 mAChR autoinhibition to avoid bronchoconstriction 

mediated by the M3 mAChR subtype in the target tissue, airway smooth muscle [112, 

130]. 

This autoinhibition of presynaptic M2 mAChR (autoreceptors) appears to be of 

particular importance in the central nervous system since maintenance of acetylcholine 

levels is critically important to memory, learning, and locomotor control [123, 132-134].  

Cholinergic transmission of acetylcholine to postsynaptic neurons forms the basis for 

cognition particularly in the hippocampus, striatum, and cortex [135, 136].  However, 

proper receptor density must be maintained since excessive acetylcholine levels reported 

in M2 mAChR knockout mice lacking presynaptic M2 mAChR autoreceptors severely 

impaired cognition [137].  Indeed, dementia of the Alzheimer’s type appears to be a 

result of lower levels of M2 mAChR autoreceptors probably due to loss of cholinergic 

neurons [138].  To help with cognitive defects, Alzheimer’s patients are administered 

acetylcholinesterate inhibitors to prolong acetylcholine levels in the synapse [139, 140].  

In contrast, others have reported that blockade of M2 mAChR autoreceptors can enhance 

acetylcholine release as well as other neurotransmitters (GABA and glutamate) which 

contributes to enhanced memory and learning [133, 138].  Irrespective of the mechanism 

by which cognition occurs, dysregulation of M2 mAChR autoreceptors may contribute to 

the pathogenesis of many diseases including age-associated memory loss, Alzheimer’s 

and Parkinson’s disease [141, 142].    

- 21 - 
 



Given the complex nature of M2 mAChR function in numerous physiological and 

pathophysiological processes, understanding the mechanisms involved in regulating its 

activity at a cellular level is of high clinical relevance.  It is feasible that the pathway 

involved in modulating M2 mAChR cell surface levels can provide alternative therapeutic 

targets.  This is of particular importance since treatment of M2 mAChR related illnesses 

has been limited because subtype specific agonists or antagonists are lacking which lead 

to unwanted side effects via activation of various mAChR subtypes [143, 144].  The 

development of pharmacological agents selectively targeted to M2 mAChR or proteins 

involved in its regulation could potentially treat incontinence, pain management, 

dementia, psychosis, and COPD more effectively.         
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Fig. 6.  The role of M2 mAChR activation in presynaptic neurons and target cells.  In 
the target cell, M2 mAChR activation leads to inhibition of adenylyl cyclase (AC) by the 
Gαi subunit resulting in a decrease in cAMP levels while the βγ subunit opens K+ 
channels.  The physiological consequence includes a decrease in heart rate and an 
increase in smooth muscle cell contractility.  Activation of M2 mAChR autoreceptors on 
presynaptic terminals leads to an inhibition of high voltage-activated calcium channels 
which decreases Ca2+ levels and blocks release of acetylcholine.  

 

- 23 - 
 



  

Regulation of M2 mAChR 
 

As mentioned previously, M2 mAChRs belong to the superfamily of GPCRs and 

are therefore highly regulated.  The molecular events regulating M2 mAChR mediated 

signaling have been characterized to a limited degree.  Desensitization of the M2 mAChR 

occurs following phosphorylation at serine/threonine residues in the central part of the 

third intracellular loop by GRK2 and other members of the GRK family [145-148]. 

GRK2 mediated phosphorylation appears to be sufficient for M2 mAChR desensitization 

and internalization [145, 148, 149].  Whether β-arrestin proteins are involved in this 

process is somewhat obscure.  Evidence suggests that β-arrestin 1 and 2 can bind to M2 

mAChR in vivo and in vitro implicating a role in desensitization and subsequent 

internalization [150-154].  However, reports in the literature have been unclear and 

contradictory and as such the internalization pathway utilized by M2 mAChR remains 

contentious.   

It has been shown that an atypical endocytic pathway independent of β-arrestin, 

clathrin, and dynamin proteins regulates M2 mAChR [24, 155-157].  These studies 

performed in HEK 293 cells utilized β-arrestin dominant negative mutant proteins that 

lack interactions with AP-2, clathrin, and/or the phosphorylated form of the receptor.  

Moreover, an additional study introduced a dominant negative form of dynamin GTPase, 

a potent inhibitor of clathrin mediated endocytosis [158].  While these mutants have been 

reported to severely abrogate agonist-induced endocytosis of the prototypic β2-AR as 

well as M1, M3, and M4 mAChR subtytpes, they had no affect on M2 mAChR 

internalization [24, 153, 156-158].  Lack of β-arrestin and dynamin involvement suggests 
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that activated M2 mAChRs may interact with an as yet unidentified arrestin-like molecule 

to mediate endocytosis. Indeed, Wu and coworkers demonstrated that a peptide sequence 

from the M2 mAChR third intracellular loop does not bind with β-arrestin from an 

enriched brain fraction while that peptide fragment of the M3 mAChR is able to do so 

[159].  However, it has also been reported that the phosphorylated form of M2 mAChR 

binds with high affinity to β-arrestin proteins [150-154].  Thus, it is plausible that β-

arrestin proteins may facilitate desensitization and internalization in one cell line while 

not in another.  In agreement with this statement, others have reported that M2 mAChRs 

translocate to caveolae, a process that does not require β-arrestin, in response to receptor 

stimulation in cardiac myocytes where they are internalized in a dynamin-dependent 

manner [160, 161]. Additionally, others have reported a role for Arf6 GTPase in 

regulating agonist-mediated endocytosis in the HeLa cell line [26, 27].    

Although a mechanism for β-arrestin interaction with M2 mAChR is unclear, even 

less is known about the post-endocytic trafficking events exhibited by the M2 mAChR, a 

key component to receptor regulation.  Previous reports suggested that internalized M2 

mAChRs recycle to the cell surface at a very slow rate without any appreciable down-

regulation [149, 162].  In contrast, others have shown significant agonist-induced down-

regulation of the M2 mAChR as well as receptor delivery to multivesicular bodies in 

neurons in vivo [163, 164].  Based on these observations, it is conceivable that M2 

mAChR behaves as a class B receptor and that β-arrestin may indeed participate in the 

post-endocytic trafficking of the M2 mAChR.   

Taken together, these observations raise the possibility that regulation of the M2 

mAChR may involve an atypical pathway for internalization distinct from other classical 
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endocytic mechanisms but may require β-arrestin at stages later in the trafficking 

pathway.   Therefore, this study is designed to clarify the role of β-arrestin proteins in 

regulating the M2 mAChR at the internalization and post-endocytic level.   To examine 

the importance of β-arrestin in regulating M2 mAChR activity, studies were conducted in 

mouse embryonic fibroblasts derived from β-arrestin knockout mice.  Because the M2 

mAChR appears to be regulated differently from other mAChR subtypes, elucidation of 

this pathway may assist in the development of therapeutic agents that are specific to the 

M2 mAChR subtype, a problem with mAChR selective ligands [165].   
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AGONIST MEDIATED INTERNALIZATION OF THE MUSCARINIC 
ACETYLCHOLINE TYPE II RECEPTOR IS BETA-ARRESTIN DEPENDENT 
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CHAPTER 2 
 
 
 

BETA-ARRESTIN INVOLVEMENT IN MUSCARINIC ACETYLCHOLINE TYPE II 
RECEPTOR INTERNALIZATION 

 
 
 

INTRODUCTION 
 
 

 
Muscarinic acetylcholine receptors belong to the superfamily of G-protein 

coupled receptors (GPCRs) that are commonly expressed in a variety of tissues and are 

classified into five known subtypes (M1 -M5 mAChR).  M1, M3, and M5 mAChRs are 

selectively coupled to Gq proteins while M2 and M4 mAChRs are linked to Gi/G0 proteins 

[143, 166].  M2 mAChRs are the primary muscarinic subtype in the heart where their 

stimulation leads to the regulation of myocardial contractility [108].  As with other 

GPCRs, M2 mAChR activity is tightly regulated by desensitization and internalization.  

These regulatory mechanisms are typically associated with receptor phosphorylation 

followed by either recycling or down-regulation [148, 149, 167-170]. 

Desensitization is a complex process that involves agonist-dependent 

phosphorylation at specific serine/threonine residues by G-protein-coupled receptor 

kinases (GRKs) followed by β-arrestin binding.  Two widely expressed isoforms of β-

arrestin (1 and 2) are known to be involved in uncoupling receptors from their cognate G-

proteins thereby attenuating receptor signaling [12, 68].  Typically, agonist-induced 

phosphorylation facilitates receptor internalization, which serves to either resensitize or 

down-regulate desensitized receptors [79].  β-arrestins have been shown to facilitate 

internalization by directly interacting with the β2 subunit of the clathrin-AP2 (adaptor 
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protein 2) complex and clathrin itself [16, 68].  Thus, β-arrestins can induce receptor 

sequestration by directly interacting with the endocytic machinery.  Many receptors such 

as the prototypic β2-adrenergic receptor (β2-AR) internalize in a clathrin and β-arrestin 

dependent fashion.  Hence, β-arrestin facilitates clathrin-mediated endocytosis [16, 68].   

 In addition to desensitization and internalization, β-arrestins are known to play a 

role in other cellular processes that include intracellular trafficking and signaling [79].  

Association of β-arrestin with agonist-occupied receptors has been shown to initiate 

intracellular signaling by functioning as an assembly site for signaling components such 

as Src, JNK3, and ERK1/2 [171-174].  Therefore, β-arrestin-receptor complexes can lead 

to cytosolic retention and activation of signaling molecules following receptor-mediated 

signaling at the cell surface.  The physiological roles of this process include decreasing 

cell proliferation and regulating cytoskeletal rearrangements by spatially restricting ERK 

activation to the cytosol [71, 173].  Recent reports have also suggested that β-arrestins 

can function at post-endocytic stages to regulate receptor sorting.  It has been shown that 

receptors exhibit differential affinities for β-arrestin and therefore are classified into two 

groups [82].  Class A receptors (including β2-AR and dopamine receptors) are thought to 

interact with β-arrestin at the plasma membrane but immediately disassociate following 

localization to clathrin-coated pits. Hence receptors enter early endosomes devoid of β-

arrestin and are typically resensitized and rapidly recycled [84].  In contrast, class B 

receptors (vasopressin-V2R, angiotensin-AT1AR, and neurotensin receptors) stably 

associate with β-arrestin so that β-arrestin/receptor complexes remain intact and are 

internalized into juxtanuclear endosomal compartments [83].  This interaction can persist 

for prolonged periods of time.  This stable association may dictate the kinetics of receptor 
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recycling since AT1AR and V2R recycle very slowly [83, 84].  A functional consequence 

of β-arrestin association may also be to facilitate receptor down-regulation. 

The role of β-arrestins in regulating the trafficking of M2 mAChRs has been 

contradictory and unclear.  Reports have demonstrated that phosphorylation by GRK2 on 

serine/threonine residues in the third intracellular loop of M2 mAChRs recruits β-arrestin 

and leads to receptor desensitization and subsequent internalization [148].  Whether β-

arrestin is involved directly in agonist-promoted endocytosis of M2 mAChRs remains 

unclear.  Indeed over-expression of β-arrestin has been reported to increase agonist-

promoted internalization of M2 mAChRs but not of M1 or M3 mAChRs [156].  

Furthermore, Claing and coworkers have shown that M2 mAChRs internalize in a 

dynamin- and β-arrestin-insensitive manner when expressed in HEK293 cells [24].  

Others have reported that the Arf6 GTPase (ADP-ribosylation factor 6) facilitates M2 

mAChR entry into primary vesicles, which fuse with clathrin-derived early endosomes 

[26, 27].  These data do not necessarily rule out β-arrestin as a regulator in agonist-

promoted endocytosis of M2 mAChRs.  Therefore, to clarify whether agonist-promoted 

internalization of M2 mAChRs is arrestin dependent, we utilized mouse embryonic 

fibroblasts (MEFs) derived from β-arrestin null mice that lack expression of one or both 

isoforms (β-arrestin 1 and 2) and their wild type littermates as control cells [80].  Here we 

report that agonist-promoted internalization of M2 mAChRs is β-arrestin dependent and 

M2 mAChRs form stable complexes with β-arrestin at the early endosome.  Furthermore, 

we demonstrate that agonist-promoted internalization of M2 mAChRs is clathrin-

dependent in MEF cells while clathrin independent mechanisms appear to function in 

HeLa cells.  Subsequent post-endocytic trafficking of M2 mAChR is regulated by both 
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Rab5 and Rab7 GTPases.  Taken together, these results suggest that β-arrestin and Rab 

GTPases play important roles in regulating M2 mAChR activity.  
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CHAPTER 3 
 
 
 

MATERIALS AND METHODS 
 
 

 
Materials 

[3H]-N-methylscopolamine (NMS) (81-84 Ci/mmol) was purchased from Amersham 

Corp. (Buckinghamshire, England).  Dulbecco's Modified Eagle's Medium (DMEM), F-

10, penicillin/streptomycin, fetal bovine serum, restriction enzymes and LipofectAMINE 

2000 were purchased from Invitrogen (Carlsbad, CA). EX-GEN was purchased from 

Fermentas (Hanover, MD).  The anti-FLAG M2 monoclonal antibody and mouse anti-

M1 FLAG antibody were purchased from Sigma-Aldrich (St. Louis, MO); mouse 

antibodies against β-arrestin 1 and 2 were purchased from Santa Cruz (Santa Cruz, CA).  

The anti-HA.11 monoclonal antibody was purchased from Covance Research Product 

(Berkley, California).  Secondary HRP-conjugated antibodies were purchased from 

Jackson Immunoresearch Laboratories Inc. (West Grove, PA).   Alexa 594-conjugated 

goat anti-mouse and Alexa 488-conjugated goat anti-rabbit were purchased from 

Molecular Probes (Eugene, OR).  Lysophosphatidic acid (1-oleoyl-2-hydroxy-sn-

glycerol-3-phosphate; LPA) was purchased from BIOMOL Research Laboratories 

(Plymouth Meeting, PA).  Carbachol, atropine, isoproterenol, and all other reagents were 

purchased from Sigma-Aldrich.  Dr. Neil Nathanson (University of Washington) kindly 

provided the construct expressing the porcine FLAG-tagged M2 mAChR [175].  FLAG-

tagged LPA1 was a kind gift of Junken Aoki (University of Tokyo, Japan) [176].  HA-

tagged M1, M3, M4, and M5 mAChRs and HA-tagged β2AR were purchased from UMR 
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cDNA Resource Center (University of Missouri). Arrestin mutants, β-arrestin 2-ΔLIELD, 

β-arrestin 2-F391A, β-arrestin 2 ΔLIELD /F391A, and truncated carboxyl-terminal region 

of β-arrestin 1 (319-418) were kindly provided by Dr. Jeffrey Benovic (Thomas Jefferson 

University) [177, 178].  The MEF wild type, β-arrestin 1 and 2 single knockouts, β-

arrestin 1 and 2 double knockout cells, and constructs for FLAG-tagged β-arrestin 1 and 

2 were kindly provided by Dr. Robert Lefkowitz (Duke University Medical Center) [80].  

Constructs encoding β-arrestin 2-GFP and β-arrestin 1-GFP were generous gifts from Dr. 

Stefano Marullo and have been previously described [179].  The plasmids encoding GFP-

tagged Rab7 and Rab5 wild type and mutant forms were provided by Dr. Bo van Deurs 

and Dr. Stephen Fergusson, respectively [48, 59]. Eps15 constructs were generous gifts 

from Alexandre Benmerah [180].  

 

Cell Culture and Transient Transfection 

HeLa, MEF wild-type, MEF single and double β-arrestin knockout, rat aortic smooth 

muscle cells (RASMCs), and COS-7 cells were maintained in DMEM supplemented with 

10% fetal bovine serum (FBS), 100 I.U. /ml penicillin, and 100 μg/ml streptomycin at 

37°C with 5% CO2.  For immunocytochemistry, HeLa cells were grown on glass 

coverslips at a density of 120,000 cells/well in six-well dishes and transfected with EX-

GEN or LipofectAMINE 2000 according to the manufacturer’s protocol using 1 μg of 

DNA/well.  For ligand binding assays, MEF cells were plated at 80,000 cells/well in 24 

well plates and transfected with EX-GEN or LipofectAMINE 2000 according to the 

manufacturer’s protocol using 1 μg of DNA/well. 
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Radioligand Binding Assay 

Receptor internalization was determined by measuring the binding of the membrane 

impermeable muscarinic antagonist [3H]-N-methylscopolamine ([3H]-NMS) to intact 

cells as previously described [181].  Briefly, 24-42 h after transfection, MEF cells 

cultured in 24-well plates were treated or not treated with 1 mM carbachol for 60 min at 

37°C.  Cultures were washed twice with 1 ml of ice-cold PBS, and labelled with 720 

fmol of [3H]-NMS in 1 ml PBS for 4 h at 4°C.  Non-specific binding was determined as 

the bound radioactivity in the presence of 1 µM atropine.  Labelled cells were washed 

two times with 1 ml of ice-cold PBS, solubilized in 0.5 ml of 1% Triton X-100 and 

combined with 3.5 ml of scintillation fluid followed by measurement of radioactivity.  

Receptor internalization is defined as percent of surface M2 mAChRs not accessible to 

[3H]-NMS at each time relative to non-carbachol-treated cells. 

 

Immunoblotting 

Western blot analysis was performed on cells cultured in 6-well plates.  The cells were 

solubilized in 0.5 ml of lysis buffer containing: 50 mM HEPES (pH 7.5), 0.5% (v/v) 

Nonidet P-40, 250 mM NaCl, 2 mM EDTA, 10% (v/v) glycerol, 1 mM sodium 

orthovanadate, 1 mM sodium fluoride and 1 µg/ml of protease inhibitors leupeptin, 

aprotinin, pepstatin A, and 100 µM benzamidine.  The protein concentration was 

determined using the Bradford assay method.  Fifty μg of cell lysates were subjected to 

4-20% SDS-PAGE.  After transfer, the nitrocellulose membrane was blocked and then 

probed with anti-FLAG monoclonal antibody.  Immunoreactive bands were visualized by 

enhanced chemiluminescence after adding HRP-conjugated anti-mouse antibody.  After 
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stripping with 0.1M glycine (pH 2.5), the membrane was re-probed with anti-β-actin 

using a detection kit from Oncogene (Cambridge, MA). 

 

Indirect Immunofluorescence 

24 h following transfection, cells were treated as described in the figure legends, fixed in 

4% formaldehyde in PBS for 5 minutes, and rinsed with 10% adult calf serum and 0.02% 

azide in PBS (PBS/serum).  Fixed cells were incubated with primary antibodies diluted in 

PBS/serum containing 0.2% saponin for 45 minutes, and then washed with PBS/serum (3 

x 5 min.).  The cells were then incubated with fluorescently labelled secondary antibodies 

in PBS-serum and 0.2% saponin for 45 minutes, washed with PBS/serum (3 x 5 min.) and 

once with PBS, and mounted on glass slides.  Images were acquired using a Zeiss LSM 

510 scanning confocal microscope or an Olympus BX40 epifluorescence microscope 

equipped with a 60x Plan pro lens, and photomicrographs were prepared using an 

Olympus MagnaFire SP digital camera (Olympus America, Inc.).  All images were 

processed with Adobe Photoshop 7.0 software. 

 

RNA Isolation and RT-PCR 

Total cellular RNA from MEF cells, cortex and cerebellum of 2-3 week old Sprague 

Dawley rat pups was isolated using TriZol according to the manufacturer's instructions.  

A 50 µl reaction solution containing 1 µg total RNA was reverse-transcribed, and PCR 

was performed using gene-specific primers and the Qiagen One-step RT-PCR kit.  Gene 

specific primers and amplification reactions were as follows: Rat M1 mAChR (175 bp 

amplified product): CCTCTGCTGCCGCTGTTG (sense) and 
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GGTGGGTGCCTGTGCTTCA (antisense); Rat M2 mAChR (686 bp amplified product): 

CACGAAACCTC TGA CCTACCC (sense) and TCTGACCCGACGACCCAACTA 

(antisense); Rat M4 mAChR (587 bp amplified product): TGGGTCTTGTCCTTTGT 

GCTC (sense) and TTCATTGCCTGTCTGCTT TGTTA (antisense); Rat β-actin (764 bp 

amplified product): TTGTAACCAACTGGGACGATATGG (sense) and GATCTT 

GATCT TCATGGT GCTAGG (antisense).  Cycling parameters were 30 minutes at 50°C 

for reverse transcription followed by 1 minute 95°C hot start followed by 28 cycles at 

95°C for 1 minute, 62°C for 1 minute, and 72°C for 45 seconds and a final cycle at  

72°C for 7 minutes. 
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CHAPTER 4 
 
 
 

RESULTS 
 
 
 

Endogenous Expression of mAChR Subtypes in MEF Cells 

To determine whether the MEF cells used in this study expressed endogenous mAChRs, 

we performed RT-PCR aimed at detecting mRNA encoding M1, M2 and M4 mAChR 

subtypes.  As positive controls, we used postnatal rat cerebellum tissue for M2 mAChR 

mRNA and postnatal rat cortical tissue for M1 and M4 mAChR mRNA.  RT-PCR 

analysis clearly demonstrated that MEF wild type as well as MEF double knockout cells 

(MEF KO1/2) did not express mRNA encoding M1, M2, or M4 mAChR subtypes (Fig. 7).  

Accordingly, radioligand-binding assays also confirmed that MEF wild type as well as 

MEF KO1/2 did not express mAChRs at any detectable level (data not shown).  

Therefore, we concluded that MEF cells do not express endogenous mAChRs. 
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Fig. 7.  Mouse embryonic fibroblasts (MEF) cells do not express mRNA encoding 
M1, M2 or M4 mAChR subtypes.  A representative gel showing lack of mAChR 
expression in MEF wild type and KO1/2 cells.  Lanes consisted of 100 bp ladder (lane 1), 
wild type MEF cells (lanes 2, 5, 8 and 11), MEF β-arrestin KO1/2 (lanes 3, 6, 9, and 12), 
rat cortex (lanes 4 and 10 and 13), and rat cerebellum (lane 7).  The white arrows point to 
M1, M2 and M4 mAChR PCR product from cDNA as positive controls.  The 
electrophoresis gel shown is a representative of at least 3 independent experiments. 
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Internalization of M2 mAChR, LPA1, and β2-AR is β-arrestin Dependent  

To examine whether ectopically expressed M2 mAChRs undergo agonist-promoted 

internalization in MEF cells, we transiently transfected MEF wild type and corresponding 

β-arrestin null cells with a plasmid encoding a FLAG-tagged porcine M2 mAChR.  

Following 24 h transfection, MEF wild type, MEF KO1, MEF KO2, and MEF KO1/2 

cells were stimulated with 1 mM carbachol for 1 h at 37ºC.  The number of receptors 

remaining at the cell surface was measured using a saturating concentration of the 

hydrophilic ligand [3H]-NMS.  Approximately 40% of surface M2 mAChRs were 

internalized in wild type MEF cells while M2 mAChRs in MEF KO1 and MEF KO2 cells 

were internalized by 33% and 42%, respectively.  In contrast, M2 mAChRs were not 

internalized in MEF KO1/2 cells (Fig. 8A).  These results demonstrated that exogenously 

expressed M2 mAChRs undergo agonist-promoted internalization in MEF wild type cells 

and either β-arrestin isoform was sufficient for sequestration.  To further evaluate where 

M2 mAChRs were localized, we used confocal immunofluorescence microscopy in MEF 

wild type or MEF KO1/2 cells transiently expressing a FLAG-tagged M2 mAChR in the 

absence or presence of 1 mM carbachol.  As indicated in Figure 8B, diffuse cell surface 

localization of M2 mAChRs was observed prior to carbachol addition in both MEF 

phenotypes, although a portion of receptors are localized intracellularly, possibly as 

Endoplasmic Reticulum or Golgi vesicular pools.  Upon addition of agonist, M2 mAChRs 

transiently expressed in MEF wild type cells redistributed into discrete intracellular 

vesicles dispersed throughout the cell while M2 mAChRs expressed in MEF KO1/2 cells 

remained primarily at the cell surface (Fig. 8B).     
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Fig. 8. Agonist-promoted internalization of M2 mAChR in MEFs is β-arrestin–
dependent.  (A) Approximately 24 h following transfection with FLAG-tagged M2 
mAChR, MEF KO1, MEF KO2, MEF KO1/2, and MEF wild type cells were stimulated 
with 1 mM carbachol for 1 h and agonist-promoted internalization was determined using 
[3H]-NMS.  Data are presented as the mean ± standard error from 3 separate experiments 
with each experiment consisting of 8 to 11 independent determinations.  Statistical test 
was performed using ANOVA with the post hoc Bonferroni/Dunn test (asterisk indicates 
* p<0.001).  (B) MEF wild type and MEF KO1/2 cells were transfected as described 
above and then incubated in the presence or absence of 1 mM carbachol for 30 minutes 
prior to indirect immunofluorescence to assess FLAG-tagged receptor localization.  
Images were acquired at 40X. This figure is representative of the results obtained in 3 
independent experiments where more than 50 cells were examined.  
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To further evaluate β-arrestin’s function in mediating GPCR endocytosis, we 

compared agonist-promoted internalization of the β2-AR and LPA1 receptor in these cell 

lines.  MEF wild type and MEF KO1/2 cells were transiently transfected with plasmids 

encoding either FLAG-tagged LPA1 or HA-tagged β2-AR receptor and subsequently 

treated with and without LPA or isoproterenol, respectively.  Stimulated and 

unstimulated β2-AR and LPA1 receptors remained at the cell surface in MEF KO1/2 cells 

while addition of agonist for 30 minutes led to the redistribution of receptors into discrete 

punctate vesicles in wild type MEF cells (Fig. 9A and B).  The diffuse pattern shown in 

MEF KO1/2 and MEF wild type cells represents surface plasma membrane localization 

since the absence of detergent leads to an identical staining pattern as seen in untreated 

cells (data not shown).  The FLAG- or HA-tag is located at the N-terminus of these 

receptors and is accessible to exogenously added antibody even in the absence of 

detergent.   These findings further indicate that β-arrestins are important in the agonist-

induced endocytosis of M2 mAChRs and other GPCRs.  
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Fig. 9. Agonist-promoted internalization of FLAG-tagged LPA1 and HA-tagged β2-
AR in MEF cells is β-arrestin–dependent.  (A) Approximately 24 h following 
transfection with either plasmid encoding for FLAG-tagged LPA1 or HA-tagged β2-AR, 
MEF wild type cells were stimulated with or without 10 µM LPA or 20 µM 
isoproterenol, respectively.  Cells were fixed and processed for indirect 
immunofluorescence localization of the epitope tagged receptors.  (B) MEF KO1/2 cells 
were transfected as described above and then incubated in the presence or absence of 
agonist for 30 minutes.  Images were acquired at 40X.  Bar, 10 µM.  This figure is 
representative of the results obtained in 3 independent experiments where more than 50 
cells were examined. 
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Given that agonist-promoted internalization of the M2 mAChR does not occur in 

MEF KO1/2 cells, we were interested in determining whether β-arrestin can rescue this 

endocytic defect.  To examine this question we analyzed agonist-promoted internalization 

in MEF KO1/2 cells co-expressing M2 mAChR and FLAG-tagged β-arrestin 1 and/or 2 

(Fig. 10A).  Western blotting analysis confirmed that FLAG-tagged β-arrestins were 

expressed (Fig. 10B).  Cells were treated with 1 mM carbachol for 1 h and the extent of 

receptor internalization was assessed using [3H]-NMS.  MEF KO1/2 cells reintroduced 

with β-arrestin 1, β-arrestin 2, or both isoforms exhibited M2 mAChR uptake similarly 

(Fig. 10A).  These data suggest that not only is agonist-promoted internalization of M2 

mAChR β-arrestin-dependent but also there is no selectivity between β-arrestin isoforms 

(Fig. 8A and 10A).   
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Fig. 10. Expression of β-arrestin 1 or 2 rescued agonist-promoted internalization of 
M2 mAChRs in MEF KO1/2 cells.  Approximately 24 h following co-transfection with 
constructs encoding M2 mAChR and β-arrestin, cells were stimulated with 1 mM 
carbachol for 1 h. (A) Agonist-promoted internalization was determined as described in 
Methods.  Data are presented as the mean ± standard deviation of 5 independent 
experiments consisting of 8-11 determinants. (B) A representative immunoblot of FLAG-
tagged β-arrestin and internal protein control β-actin is shown.  Lanes consisted of: non-
transfected MEF KO1/2 (1), MEF KO1/2 expressing β-arrestin 1 (2), MEF KO1/2 
expressing β-arrestin 2 (3), and MEF KO1/2 expressing β-arrestin 1 and 2 (4).  Western 
blot shown is a representative of at least 3 independent experiments. 
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Agonist-Promoted Internalization of the M2 mAChR is Clathrin-Dependent in MEF 

Cells 

Having demonstrated that β-arrestin is required for internalization, we wanted to know if 

its function in mediating this process requires clathrin and AP-2 binding.  Previously, 

sequestration of M1, M3, and M4 mAChRs was shown to be both β-arrestin and clathrin-

dependent [24, 182].  In contrast, sequesteration of M2 mAChR was reported to be 

largely β-arrestin and clathrin-independent [153, 156].  To address whether the β-

arrestin-dependent internalization we observed in MEFs was independent of clathrin, we 

expressed in MEF KO1/2 cells β-arrestin mutants that were selectively defective in 

interaction with clathrin (β-arrestin 2 ΔLIELD), AP-2 (β-arrestin 2-F391A), or both 

clathrin/AP-2 (β-arrestin 2 ΔLIELD/F391A) [183].  Expression of either the β-arrestin 2 

ΔLIELD or β-arrestin 2-F391A mutant rescued agonist-promoted M2 mAChR 

internalization in MEF KO1/2 cells (Fig. 11).  However, internalization was only 

moderately rescued by transient expression of a β-arrestin 2 mutant defective in both 

clathrin and AP-2 interaction (Fig. 11).  These results indicate that β-arrestin-dependent 

internalization of M2 mAChR may include a component that is independent of 

interactions between clathrin and AP-2. 
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Fig. 11.  Expression of β-arrestin mutants deficient in clathrin and/or AP-2 binding 
interaction partially supports agonist-promoted internalization of M2 mAChRs in 
MEF KO 1/2 cells.  Approximately 24 hr following co-transfection with FLAG-M2 
mAChR and β-arrestin 2 clathrin (ΔLIELD), AP-2 (F391A), or clathrin and AP-2 
(ΔLIELD/ F391A) mutants, MEF KO1/2 cells were stimulated with 1 mM carbachol for 
1 h and agonist-promoted internalization was determined as described in Methods.  Data 
are presented as mean ± standard deviation from 4 independent experiments consisting of 
8-11 determinants.   
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In contrast, recent studies by Santini and co-workers [178] showed that agonist-

mediated activation of the β2-AR was still capable of inducing recruitment into clathrin 

coated pits in cells expressing mutant β-arrestin proteins that were defective in binding 

with clathrin or AP-2, albeit to a reduced degree.  To address this question further we 

utilized a more potent inhibitor of clathrin-mediated endocytosis, a peptide inhibitor 

known as β-arrestin 1 (319-418).  Expression of this truncated COOH-terminal region of 

β−arrestin 1 (319-418), which is constitutively localized to preformed clathrin-coated pits 

but lacks receptor binding thereby blocking endogenous clathrin-binding sites, 

completely inhibited the β2-AR mediated clustering of clathrin coated pits [177].  

Therefore, we conducted experiments with the truncated β−arrestin 1 (319-418) to 

determine whether agonist-promoted internalization of the M2 mAChR in MEFwt cells 

would be affected.  Transient expression of the truncated β−arrestin 1 (319-418) 

completely inhibited the agonist-promoted internalization of the M2 mAChR in MEF 

wild type cells (Fig. 12).   
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Fig. 12. Expression of truncated carboxyl-terminal region of β-arrestin 1 (319-418) 
completely blocked agonist promoted M2 mAChR internalization in MEFwt cells.  
Approximately 24 hr following transfection with the β-arrestin 1 C-terminal domain 
peptide (319-418), wild type MEF cells were stimulated with 1 mM carbachol for 1 h and 
agonist-promoted internalization of receptor was determined using [3H]-NMS.  Data are 
presented as the mean ± standard error from 3 separate experiments with each experiment 
consisting of 8 to 11 independent determinations.  Statistical test was performed using 
ANOVA with the post hoc Bonferroni/Dunn test (asterisk indicates * p<0.001).   
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Eps15 is known to constitutively associate with AP-2 (adaptor protein-2) that 

plays a critical role in both the organization and function of plasma membrane coated pits 

by directly binding to clathrin [184]. To further confirm that activated M2 mAChRs 

undergo clathrin-mediated endocytosis, we co-expressed potent clathrin inhibitors known 

as DIII and EΔ95/295 Eps15 mutants in MEF wild type cells and assessed subcellular 

localization following receptor stimulation.  Both DIII and EΔ95/295 Eps15 mutants are 

known to potently inhibit clathrin-mediated pathways by outcompeting endogenous 

Eps15 for AP-2 binding sites, or lacks EH domains required for proper localization with 

clathrin pits, respectively [185].  The DIII Δ2 mutant lacks AP-2 binding sites and 

therefore serves as a control.   Here we show that MEF wild type cells transiently 

expressing M2 mAChR and DIII or EΔ95/295 Eps15 mutants lacked the ability to 

undergo agonist-mediated endocytosis (Fig. 13).  Expression of DIII Δ2 had no affect on 

M2 mAChR uptake.  Taken together, it could be argued that the agonist-promoted 

internalization of M2 mAChR involved a clathrin-dependent pathway in MEF wild type 

cells. 
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Fig. 13.  Eps15 mutants block agonist promoted endocytosis of the M2 mAChR in 
MEF wild type cells.  MEF cells were transiently transfected with HA-tagged M2 
mAChR and GFP-tagged DIII, DIIIΔ2, or EΔ95/295 Eps15 mutants.  Cells were treated 
with 1 mM carbachol for 30 minutes at 370C and subsequently processed for indirect 
immunofluorescence microscopy.  Eps15 constructs (green) and M2 mAChR (red) were 
visualized by confocal microscopy.  This figure is representative of the results obtained in 
3 independent experiments where more than 50 cells were examined. 
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Agonist-Promoted Internalization of the M2 mAChR is Clathrin-Independent in 

HeLa Cells 

As mentioned previously, it has been shown by others that activated M2 mAChRs 

internalized into various cell lines via a poorly understood non-clathrin mediated pathway 

[145, 153, 155-157, 175].  Reports have also indicated a possible role for caveolae in 

mediating agonist-induced internalization [160].  To determine whether stimulated M2 

mAChRs exogenously expressed in the HeLa cell line internalize in a clathrin-dependent 

manner as shown with the MEF wild type cells, we introduced potent inhibitors of 

clathrin endocytosis, DIII and EΔ95/295 Eps15, and of both clathrin- and caveolae- 

mediated endocytosis, dynamin K44A.  Dynamin regulates the budding of vesicles from 

the plasma membrane through c-src mediated activation.  Dynamin K44A significantly 

inhibits clathrin- and caveolae-mediated endocytosis, but it does not affect detachment of 

uncoated vesicles.  Although M2 mAChR exhibits sensitivity to other dynamin mutants 

(DynK535M), this particular mutant does not prevent its internalization [158].  We found 

that dynamin and Eps15 dominant negative mutants had no significant effect on the 

extent of M2 mAChR internalization as shown by the presence of discrete vesicles by 

confocal microscopy in stimulated cells and by [3H]-NMS binding (Fig. 14A and B).   

These results may indicate that clathrin may not be important in agonist-promoted 

internalization of the receptor in the HeLa cell line.  This suggests that exogenous 

expression of M2 mAChR in different cell types may exhibit different pathways of 

endocytosis.     
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Fig. 14.  Potent inhibitors of clathrin-mediated endocytosis do not significantly 
affect agonist-promoted internalization of the M2 mAChR in HeLa cells.  (A) HeLa 
cells transiently expressing M2 mAChR with Dynamin K44A or Eps15 mutants were 
treated with 1 mM carbachol for 30 minutes at 37°C.  Cells were exposed to [3H]-NMS to 
assess receptor internalization.  (B) HeLa cells co-expressing Eps15 constructs and HA-
tagged M2 mAChR were incubated in presence of 1 mM carbachol for 30 minutes.  
Eps15 mutants (green) and receptor (red) were visualized by immunofluorescence 
microscopy as described in Materials and Methods.   This figure is representative of the 
results obtained in 3 independent experiments where more than 50 cells were examined.   
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 Interaction between M2 mAChR and β-arrestin  

Having demonstrated that β-arrestins are essential in mediating internalization of the M2 

mAChR, we were interested in determining if M2 mAChR behaves as a class A or class B 

receptor in the MEF cells.  To address this question, we introduced GFP-tagged β-

arrestin 1, 2, or both isoforms with FLAG-tagged M2 mAChRs into MEF KO1/2 and wild 

type cells and assessed their localization by immunofluorescence microscopy.  

Internalized M2 mAChRs remained associated with β−arrestin 1-GFP (data not shown) or 

β−arrestin 2-GFP (Fig. 15) in intracellular compartments following 30 minutes 

stimulation with 1 mM carbachol.  This phenomenon suggests that M2 mAChR behaves 

as a class B receptor.   
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Fig. 15.  Stimulation of M2 mAChRs leads to stable co-localization of β-arrestin 2-
GFP at intracellular sites.  MEF wild type or KO1/2 cells were transiently co-
transfected with the human FLAG-tagged M2 mAChR and β-arrestin 2-GFP constructs.  
Following 30 minutes of 1 mM carbachol stimulation, cells were fixed and processed for 
indirect immunofluorescence.  Localization of β-arrestin 2-GFP and M2 mAChR was 
visualized by confocal microscopy.  This figure is representative of the results obtained in 
3 independent experiments where more than 50 cells were examined. 
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To determine if this phenomenon occurs in other cell types we expressed M2 

mAChRs in HeLa, COS-7, and rat aortic smooth muscle cells (RASMCs).  As observed 

in MEF KO1/2 and wild-type cells, stimulated M2 mAChRs remained co-localized with 

β−arrestin 2-GFP in HeLa, COS-7, and RASMCs (Fig. 16).   
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Fig. 16.  Agonist-promoted internalized FLAG-tagged M2 mAChRs exhibit overlap 
with β-arrestin 2-GFP at intracellular sites in various cell lines.  Cells were 
transiently transfected with FLAG-tagged M2 mAChR and β-arrestin 2-GFP and treated 
with 1 mM carbachol for 30 min at 37°C and processed for indirect immunofluorescence.  
Co-localization of β-arrestin 2-GFP with internalized M2 mAChRs occurred in HeLa, 
COS-7 and rat aortic smooth muscle cells (RASMCs).  Arrows indicate overlap between 
β-arrestin 2-GFP and M2 mAChRs in intracellular compartments.  This figure is 
representative of the results obtained in 3 independent experiments where more than 50 
cells were examined. 
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To ensure that our observations are not a result of β-arrestin overexpression, we 

investigated whether stimulation of M2 mAChR would lead to recruitment of endogenous 

β-arrestin to receptor-positive endosomes.  Here, we show that HeLa cells transiently 

expressing M2 mAChR significantly colocalized with both endogenous and 

overexpressed β-arrestin 1 following 30 minute carbachol stimulation (Fig. 17).  Taken 

together, these results demonstrate that internalized M2 mAChRs stably associate with 

either β−arrestin isoform in multiple cell lines when overexpressed and endogenously.
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Fig. 17.  Addition of agonist leads to the redistribution of both endogenous and 
transfected β-arrestin 1 to internalized M2 mAChRs in HeLa cells.  HeLa cells were 
transiently transfected with FLAG-tagged M2 mAChR alone or with β-arrestin 1-GFP 
and treated with 1 mM carbachol for 30 min at 370C.  Singly transfected cells were 
processed for indirect immunofluorescence microscopy using mouse anti-β-arrestin 1 and 
rabbit anti FLAG antibodies followed by Alexa488-labeled goat anti-mouse secondary 
and Alexa594-labeled goat anti-rabbit antibodies.  Co-transfected cells were stained for 
the FLAG epitope.  Arrows indicate endosomal structures that contain both M2 mAChR 
and β-arrestin 1.  This figure is representative of the results obtained in 3 independent 
experiments where more than 50 cells were examined. 
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Specificity of mAChR Interaction with β-arrestin 

To address whether other muscarinic receptor subtypes stably associate with β-arrestin in 

endosomes, we co-expressed HA-tagged M1, M3, M4, and M5 mAChRs with β-arrestin 2-

GFP in MEF wild type cells and assessed β-arrestin localization using confocal 

microscopy (Fig. 18 and Fig. 19).  Each frame of the figure shows localization of the 

muscarinic receptor subtype co-expressing β-arrestin 2-GFP.  Overlay images indicate 

co-immunostaining of mAChRs (red) with β-arrestin 2-GFP (green) and their extent of 

co-localization (yellow).  In the absence of carbachol, β-arrestin 2-GFP was primarily 

diffusely localized in the cytosol of cells expressing M1 - M5 mAChR subtypes (Fig. 18).  

Following 30 minute carbachol stimulation only cells expressing FLAG-tagged M2 

mAChRs exhibited β-arrestin 2-GFP localization in intracellular compartments as shown 

by arrows indicating overlap and corresponding overlay image (Fig. 19); in cells 

expressing other receptor subtypes, β-arrestin 2-GFP remained diffusely distributed.  

Hence, only cells expressing the FLAG-tagged M2 mAChR subtype exhibited a stable 

interaction with β-arrestin at intracellular sites compared to the other muscarinic 

subtypes.   
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Fig. 18.  Unstimulated mAChR subtypes are diffusely distributed at the cell surface 
while β-arrestin 2-GFP is found in the cytosol.  HeLa cells were transiently co-
transfected with plasmids encoding β-arrestin 2-GFP and either HA-tagged M1, M3, M4, 
M5 mAChR or FLAG-tagged M2 mAChR.  Cells were fixed and processed for confocal 
microscopy.  Grayscale images indicate β-arrestin 2-GFP and mAChR subtype while the 
overlay represents co-immunostaining of mAChR (red) and β-arrestin 2-GFP (green) 
expression.
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Fig. 19.  Internalized M2 mAChRs exhibit a differential affinity for β-arrestin 2- 
GFP compared to other muscarinic subtypes.  HeLa cells were transiently co-
transfected with plasmids encoding β-arrestin 2-GFP and either HA-tagged M1, M3, M4, 
M5 mAChR or FLAG-tagged M2 mAChR.  Cells were treated with 1 mM carbachol for 
30 minutes at 370C.  Arrows indicate overlap between internalized M2 mAChRs and β-
arrestin 2-GFP.  This figure is representative of the results obtained in 3 independent 
experiments where more than 50 cells were examined. 
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Intracellular Trafficking of the M2 mAChR to Early Endosome and Late Endosome 

Compartments 

Based upon the findings described above, we sought the identity of the endosomal 

structures to which β-arrestin/receptor complexes reside.  Delaney and coworkers have 

shown previously that M2 mAChRs expressed in HeLa cells internalized in an Arf6 

GTPase sensitive fashion that quickly merges with clathrin-derived early endosomes 

[26].  Therefore, we wanted to determine whether β-arrestin/receptor complexes localized 

to early endosomal compartments following agonist addition.  To determine this we 

performed co-localization analyses using markers of the early endosome, the early 

endosomal autoantigen-1 (EEA-1) and the transferrin receptor (TfnR), in combination 

with β-arrestin 1-GFP.  β-arrestin 1-GFP and FLAG-M2 mAChRs were co-expressed in 

HeLa cells, and cells were stimulated with 1 mM carbachol for 30 minutes.  Our results 

showed that β-arrestin 1-GFP partially co-localized with EEA-1 and TfnR following 

carbachol addition (as indicated by arrows in Fig. 20).  β-arrestin 1-GFP was not 

observed to be associated with EEA-1 or TfnR in unstimulated HeLa cells (Fig. 20).  

These results indicate that internalized M2 mAChRs remain co-localized with β-arrestin 

in clathrin-derived early endosomes.   
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Fig. 20.  M2 mAChR stimulation leads to the redistribution of β-arrestin 1-GFP to 
early endosomal structures in the cytosol.  HeLa cells were transiently transfected with 
human FLAG-tagged M2 mAChR and β-arrestin 1-GFP and treated with 1 mM carbachol 
for 30 minutes.  Cells were processed for confocal microscopy.  β-arrestin 1-GFP 
complexes localized to the early endosome as shown by colocalization with markers of 
that compartment (EEA-1 and TfnR).  Arrows indicate signficant overlap between TfnR 
or EEA-1 with β-arrestin 1-GFP.  This figure is representative of the results obtained in 3 
independent experiments where more than 50 cells were examined. 
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To better characterize the steps involved in M2 mAChR intracellular trafficking, 

we investigated the general role of Rab GTPases, known regulators of GPCR membrane 

and endosomal trafficking.  Given that internalized M2 mAChRs co-localized with 

clathrin-dependent, early endosomal markers within 30 minutes of agonist stimulation, 

we were interested in determining whether Rab5 GTPase regulated the trafficking of 

internalized M2 mAChRs.  Rab5 GTPase is involved in delivery of primary endocytic 

cargo to the early endosome and is a known regulator of clathrin-dependent endocytosis 

[49, 51, 186]. Therefore, we examined whether internalized M2 mAChRs were delivered 

to Rab5-positive early endosomes and what effects a dominant-negative Rab5 S34N and 

constitutively active Rab5 Q79L had on receptor localization.  Here we show in HeLa 

cells that stimulated M2 mAChR significantly co-localized with wild type GFP-tagged 

Rab5, further supporting the notion that internalized M2 mAChRs localize to the early 

endosome (Fig. 21).  Expression of Rab5 S34N led to small, vesicular structures 

containing M2 mAChRs while expression of Rab5 Q79L induced hypertrophy of M2 

mAChR positive compartments (Fig. 21).  The dominant inhibitory mutant, Rab5 S34N, 

appeared to prevent fusion of the primary M2 mAChR vesicles into larger endosomal 

structures while internalization remained unaltered.  These results indicate a role for 

Rab5 GTPase in regulating the post-endocytic trafficking of the M2 mAChR and also 

support the notion that M2 mAChRs undergo clathrin-independent endocytosis in the 

HeLa cell line.  Overexpression of Rab5 S34N in the MEF wild type cells significantly 

blocked agonist-induced endocytosis of the M2 mAChR (data not shown).   
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Fig. 21.  Rab5 GTPase regulates post-endoctyic trafficking of the M2 mAChR.  HeLa 
cells were transiently transfected with plasmids encoding M2 mAChR and either GFP-
tagged Rab5 wild type, Rab5 Q79L, or Rab5 S34N.  Cells were treated with 1 mM 
carbachol for 15 minutes, fixed and processed for confocal microscopy. Dominant 
negative Rab5S34N blocks the formation of distinct vesicular structures although 
internalization appeared to occur.  Arrows indicate extensive co-localization between 
GFP-Rab5 wt and GFP-Rab5 Q79L with internalized M2 mAChR.  This figure is 
representative of the results obtained in 3 independent experiments where more than 50 
cells were examined. 
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We next sought to determine the role of Rab7 GTPase in regulating the post-

endocytic trafficking of the M2 mAChR.  Rab7 GTPase has been shown to mediate the 

progression of cargo from the early endosome to the late endosome/lysosome 

compartments [59].  Following 1 hour of agonist treatment, M2 mAChRs partially co-

localized with wild type GFP-tagged Rab7 and overexpression of dominant inhibitory 

Rab7 T22N caused enlargement of M2 mAChR-containing compartments (Fig. 22).  

GFP-tagged Rab7 wt and EEA-1 appear to partially co-localize; however, the observed 

association is eliminated upon the addition of dominant inhibitory Rab7 T22N.  

Furthermore, Rab7 T22N produced swollen early endosomal structures that presumably 

contain M2 mAChRs since this mutant significantly swells early endosome and receptor 

positive compartments.   These data suggest that Rab7 GTPase may regulate the targeting 

of internalized M2 mAChRs to the lysosome for receptor down-regulation.  Since both 

Rab5 and Rab7 GTPase mutants perturb the morphology of M2 mAChR containing 

endosomes, we can infer that these Rab GTPases are key elements in post-endocytic 

trafficking of M2 mAChRs in the HeLa cell line.  
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Fig. 22.  Rab7 GTPase regulates the post-endocytic trafficking of the M2 mAChR. 
HeLa cells were transiently transfected with plasmids encoding FLAG-tagged M2 
mAChR and either GFP-tagged Rab7 wt (A) or the dominant negative mutant, Rab7 
T22N (B).  Cells were stimulated with 1 mM carbachol for 1 hour, fixed, and 
immunolabeled using anti-EEA-1 or anti-FLAG antibody.  Images were captured by 
confocal microscopy. Arrows indicate sites of co-localization.   This figure is 
representative of the results obtained in 3 independent experiments where more than 50 
cells were examined. 
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CHAPTER 5 
 
 
 

DISCUSSION 
 
 

In the present study, we investigated the role of β-arrestin in agonist-promoted 

internalization of the M2 mAChR, which has previously been reported to be β-arrestin 

independent.  In previous studies, heterologous over-expression of wild type and 

dominant-negative forms of arrestins was used to assess the function of these proteins 

[156, 175].  Unfortunately, such studies are difficult to interpret because of the 

complications associated with overexpressed mutants and endogenous proteins.  In an 

attempt to alleviate these complications, we utilized mouse embryonic fibroblasts (MEFs) 

derived from β-arrestin knockouts in which endogenously expressed β-arrestin 1 and 2 

have been genetically eliminated [80].  These cells provide us a unique opportunity to 

assess whether β-arrestin proteins are involved in the process of agonist-promoted 

internalization of M2 mAChRs.  Herein, we show that agonist-promoted endocytosis of 

the M2 mAChR in MEF cells is β-arrestin- and clathrin-dependent.   

Both β-arrestin 1 and 2 isoforms were reported to form high affinity complexes 

with the agonist-activated M2 mAChR [152], suggesting that either isoform is capable of 

mediating agonist-promoted internalization of the receptor.  In agreement with these 

findings, we observed no selectivity between β-arrestin isoforms in mediating agonist-

promoted internalization of M2 mAChRs.  Perhaps this lack of selectivity between β-
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arrestin 1 and 2 may explain why using over-expression of a single mutant form of β-

arrestin fails to completely block the agonist-promoted internalization of M2 mAChRs.   

Interestingly, our studies further revealed that β-arrestin remained stably 

associated with the M2 mAChR in juxtanuclear endosomes for prolonged periods of time 

following agonist exposure.  Given that MEF cells do not endogenously express 

mAChRs, we compared our observations in a physiologically relevant cell line 

(RASMCs) and two model cell lines (HeLa and COS-7).  Similar findings were also 

observed in these cells.  Additionally, we observed recruitment of endogenous β-arrestin 

to internalized M2 mAChRs in the HeLa cell line.  Since a heterologous overexpression 

system was used, caution should be taken in intrepretating these results.  To confirm 

these findings, immunohistochemical studies should be employed in an endogenous cell 

line to examine M2 mAChR and β-arrestin interaction in vivo. 

M2 mAChRs follow the general pattern utilized by most GPCRs in that they are 

internalized via a β-arrestin-dependent mechanism.  Additionally, the stable binding of β-

arrestin with activated M2 mAChRs within microcompartments follows the paradigm of 

other class B GPCRs.  Implications of these findings are that β-arrestin may dictate the 

intracellular trafficking and/or signaling of the M2 mAChRs.  Since β-arrestin has 

emerged as a versatile adaptor and scaffolding protein, its role in regulating M2 mAChR-

dependent cellular activity may be significant.  It has been shown that β-arrestins interact 

with trafficking machinery such as Arf6, RhoA, NSF, and a variety of signaling proteins 

such as ASK1, JNK3, and ERK1/2 [187].  Stable β-arrestin/receptor complexes, as 

exhibited by class B receptors, appear to redirect signaling complexes to the cytoplasm 

thereby activating cytoplasmic targets while preventing ERK translocation to the nucleus 
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[172, 173, 188].  The physiological role of this process may be to participate in actin 

cytoskeleton reorganization and chemotaxis [71, 189].  With regard to intracellular 

trafficking, patterns of β-arrestin binding to activated receptors appear to modulate 

receptor recycling and/or degradation [87].  Class A receptors are typically resensitized 

and subsequently recycled while class B receptors undergo slow recycling and/or down-

regulation.  M2 mAChRs have been shown to undergo slow recycling back to the plasma 

membrane upon agonist removal [162].  What role or roles β-arrestin plays in M2 

mAChR recycling and/or degradation is currently unknown.  The functional consequence 

of stable β-arrestin/M2 mAChR complexes remains to be determined.    

Previous studies have suggested that M2 mAChR internalization does not proceed 

through a clathrin-mediated pathway [24, 153, 156].  Evidence presented here suggests 

that M2 mAChR internalization requires β-arrestin association, which would infer a role 

for clathrin in mediating receptor endocytosis. Therefore, we conducted experiments with 

arrestin mutants that were selectively deficient in interaction with clathrin, AP-2, or both 

clathrin and AP-2, to determine whether rescue of agonist-mediated internalization of M2 

mAChR in MEF KO1/2 cells required AP-2 and/or clathrin association.  Expression of 

arrestin mutants defective in interaction with either clathrin (β-arrestin 2-ΔLIELD) or 

AP-2 (β-arrestin 2-F391A) failed to antagonize M2 mAChR internalization.  Moreover, 

over-expression of a dominant-negative β-arrestin mutant that was defective in 

interaction with both clathrin and AP-2 only modestly antagonized M2 mAChR 

internalization in MEF KO1/2 cells.  Thus, it is reasonable to conclude that these data 

corroborate previous studies indicating that M2 mAChR internalization is clathrin-

independent.  However, Santini and co-workers have reported that arrestin mutants with 
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impaired binding to clathrin or AP-2 were still capable of displaying recruitment of β2-

AR to clathrin-coated pits, albeit to a reduced degree [178].  Therefore, it may be 

premature to conclude that M2 mAChR internalization is β-arrestin-dependent but 

clathrin/AP-2-independent.   

Expression of the truncated carboxy-terminal region of β-arrestin 1, which 

functions as a dominant negative to sequester available clathrin while lacking receptor 

binding, has been shown to completely abrogate β2-AR mediated clustering of clathrin 

coated pits without altering the integrity of clathrin coats [177].  Introduction of this 

mutant completely blocked agonist-promoted internalization of M2 mAChRs in wild type 

MEFs.  In addition, potent inhibitors of clathrin mediated endocytosis, DIII and 

EΔ95/295 Eps15 mutants, significantly blocked agonist induced endocytosis of the M2 

mAChR in MEFwt cells.  Collectively, these results indicate that agonist-promoted 

internalization of M2 mAChRs is β-arrestin-dependent and most likely clathrin/AP-2-

dependent in MEFwt cells.  Interestingly, exogenous expression of Eps15 mutants in the 

HeLa cell line had no effect on agonist-mediated internalization of the M2 mAChR.  

Similarly, previous studies using dominant negative mutants have shown that β-arrestin, 

dynamin, and clathrin do not play a role in mediating endocytosis of the M2 mAChR in 

the HEK 293 cell [145, 153, 155-157, 175].  However, upon further analysis, expression 

of a N-terminal deletion dynamin-1 mutant N272 that lacks the complete GTP-binding 

domain strongly inhibited agonist-promoted M2 mAChR internalization [158].  Based on 

these observations it is conceivable that M2 mAChRs are delivered to a membrane 

environment that is less sensitive to dynamin-, arrestin-, and clathrin-dominant negative 

mutants but still require these proteins for endocytosis.  Regardless, reports have also 

- 71 - 
 



shown that M2 mAChRs utilize a caveolae-dependent pathway in cardiac myocytes while 

an alternate, ill-defined pathway takes form in HeLa and HEK 293 cells [26, 27, 160]. 

Therefore this evidence raises the intriguing possibility that the internalization profile of 

the M2 mAChR may depend on the cellular system in which it is expressed.   

Closer examination of β-arrestin post-endocytic trafficking revealed that M2 

mAChR stimulation led to β-arrestin partial redistribution into Tfn and EEA-1 positive 

compartments, markers of the early endosome.  In accordance with our findings, Delaney 

and coworkers have reported that stimulated M2 mAChRs internalize in a manner that 

quickly merges with clathrin-derived early endosomes [26].   

This study further provides evidence for the role of Rab GTPases in regulating the 

intracellular trafficking of internalized M2 mAChRs.  Rab GTPases regulate trafficking of 

endocytic cargo between distinct microcompartments and therefore serve as markers for 

these compartments [190, 191].  Using these markers, we showed that M2 mAChR is 

internalized to Rab5 GTPase positive early endosomes in HeLa cells.  Subsequently, the 

receptor appeared to transit to Rab7 late endosome/lysosome compartments.  Partial co-

localization of M2 mAChR with Rab7 GTPase endosomes suggests that a portion of 

receptors may undergo lysosomal targeting and subsequent down-regulation.  These 

results are consistent with the radioligand degradative assay that indicates chronic 

stimulation of the M2 mAChRs leads to appreciable down-regulation [163]. 

Previous studies have shown that expression of a dominant-negative Rab5 S34N 

mutant could prevent clathrin-mediated endocytosis [48, 192].  Seachrist and coworkers 

have shown that the GTP-binding defective Rab5 S34N potently inhibits agonist 

endocytosis of the β2-AR while a constitutively active form, Rab5 Q79L, causes 
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accumulation of the receptor in swollen early endosomes [48].  The overexpression of 

this mutant blocked M2 mAChR internalization in the MEF cells while internalization 

remained unaltered in the HeLa cell line.  These results suggest that M2 mAChR may 

undergo an atypical pathway in the HeLa cell line.  Nevertheless, this mutant appeared to 

block entry into early endosomal compartments in both cell lines thereby preventing 

proper receptor sorting. 

The differential trafficking of β-arrestin with mAChRs to endosomes appears to 

be subtype specific.  There are five muscarinic subtypes termed M1 mAChR- M5 mAChR.  

M1, M3, and M5 mAChRs couple to Gq proteins and activate phospholipase C whereas M2 

mAChR and M4 mAChR couple to Gi/o to inhibit adenylyl cyclase and activate K+ 

channels [143, 166].  As shown in Figure 19, stimulated muscarinic subtypes aside from 

M2 mAChRs are sequestered into endocytic vesicles that are devoid of β-arrestin.  It has 

been shown that M1 mAChR, M3 mAChR, and M4 mAChR require β-arrestin in 

mediating agonist-promoted internalization [24] so we do not rule out the possibility that 

arrestin is recruited to the plasma membrane following stimulation and then rapidly 

disassociates from the receptor.  It is possible that carbachol may induce receptor 

conformations that may not promote stable β-arrestin associations with the other mAChR 

subtypes.  However, sequence alignment of the M2 and M4 mAChR (using the T-coffee 

program) revealed that the subtypes exhibit high sequence similarities; interestingly, the 

sequence differences lie in the third intracellular loop, specifically at residues 293-313 

within the M2 mAChR.  As described by Pals-Rylaarsdam and others, a cluster of serine 

and threonine sites at positions 307-311 undergo agonist promoted phosphorylation, 

which is necessary and sufficient for β-arrestin interaction [149].  This site may be 
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important for designating stable interactions with β-arrestin.  M2 mAChR sequences 

downstream from this site at 348-368 also differ significantly from the M4 mAChR 

suggesting that an additional motif may be involved.  The observed difference between 

mAChR subtypes and the nature of their interaction with β-arrestin is of remarkable 

interest and should be considered when elucidating the fundamental differences in the 

role they play within a target tissue.   
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PART II 
 
 
 

DOWN-REGULATION OF MUSCARINIC ACETYLCHOLINE TYPE II 
RECEPTOR IS BETA-ARRESTIN DEPENDENT 
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CHAPTER 6 
 
 

 
INTRODUCTION 

 
 
 

There are five subtypes of muscarinic acetylcholine receptors (mAChRs) with 

distinct though overlapping tissue distributions.  Like all GPCRs, mAChRs couple to 

downstream effectors through heterotrimeric G-proteins.  The M1, M3 and M5 subtypes 

couple preferentially to Gαq whereas the M2 and M4 subtypes couple to Gi and Go.  The 

M2 mAChR regulates a variety of physiological responses ranging from cardiac 

homeostasis to cholinerigic signaling in the brain [193].  A common feature of mAChRs, 

and in fact all GPCRs, is that their activity and expression are tightly regulated.  Agonist-

promoted trafficking of mAChRs and most other GPCRs can be broken down into five 

distinct phases [193]: agonist-binding promotes G-protein dissociation from the receptor 

(I) which allows phosphorylation of specific serine and threonine residues on internal 

loops of the receptor (II) by G-protein receptor kinases (GRKs).  This phosphorylation 

allows the binding of β-arrestins (III), which promotes homologous desensitization, and 

subsequent internalization of the receptor into clathrin coated pits.  Following 

internalization, the receptor can either be dephosphorylated and recycled to the cell 

surface as a functional receptor (IV) or targeted for degradation in proteasomes or 

lysosomes (V). 

β-arrestins have emerged as a central control point in the trafficking of nearly all 

GPCRs [194].  In addition to mediating desensitization of GPCRs, it is recognized that β-

arrestin participates in clathrin-dependent endocytosis of activated receptors by directly 
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interacting with clathrin and the clathrin-associated adaptor AP-2 [16, 68].  The binding 

of the β2-AR/β-arrestin complex to AP-2 facilitates receptor internalization from the cell 

surface through clathrin-coated pits [195].  Once internalized, β-arrestins also function to 

regulate GPCR post-endocytic trafficking and further serve as a scaffolding protein for 

the recruitment of signaling components [187, 194].    

The extent of interaction between β-arrestins and GPCRs led to the classification 

of two types of GPCRs: class A and class B receptors.  Class A receptors, such as the β2-

AR, dopamine 1A receptor, and endothelin type A receptor, interact with β-arrestin 

transiently so that disassociation occurs prior to receptor internalization.  These receptors 

typically undergo rapid recycling [79].  Class B receptors, such as the vasopressin 2 

receptor (V2R), angiotensin receptor (AT1aR), and neurotensin 1 receptor, recycle and 

resensitize slowly and internalize in a stable association with β-arrestin [81, 84].  

Delineation of class A and B receptors has been shown to be directly correlated with the 

ubiquitination status of β-arrestin [87].  Class A receptors, which do not internalize with 

β-arrestin, display a pattern of transient β-arrestin ubiquitination whereas class B 

receptors, which do internalize with β-arrestin, display sustained β-arrestin ubiquitination 

[87].   

Ubiquitination of proteins is a signal for degradation that leads to delivery of 

those proteins to, and their subsequent degradation in, the 26 S proteasome [196].  

However, recent studies have revealed that ubiquitination of proteins can further serve as 

a signal in endocytic and post-endocytic sorting of these proteins [90].  There are a 

number of examples where ubiquitination has been shown to be involved in the 

regulation, both endocytosis and degradation, of GPCRs, including the opioid receptors 
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[197], yeast pheromone receptor [98], human immunodeficiency virus co-receptor 

CXCR4 [102], protease activating receptor PAR2 [103], β2-AR and its associated protein 

β-arrestin [85], and neurokinin receptor NK1R [47].  In the case of the β2 -AR, Shenoy 

and coworkers [85] showed that agonist stimulation led to the ubiquitination of both β-

arrestin, an essential step for receptor internalization, and β2-AR, a necessary event for 

receptor degradation.  Lysine deficient mutants of these receptors abolished agonist-

promoted degradation while internalization remained unaltered [47, 85, 102, 103].   

In the present study, we sought to determine what role β-arrestin has in regulating 

the post-endocytic sorting of the M2 mAChR and whether ubiquitination contributes to 

this process.  Initial reports examining the role of β-arrestin, clathrin, and dynamin in 

mediating the internalization of the M2 mAChR indicated that agonist-promoted 

internalization of the receptor was largely independent of clathrin and dynamin and that 

the M2 mAChR internalized via both β-arrestin-dependent and -independent pathways 

[153, 156].  Later work, however, revealed the essential role of β-arrestin and clathrin in 

M2 mAChR internalization, and suggests that M2 mAChR internalization is, in fact, 

dynamin-dependent [158, 198].  Moreover, M2 mAChR internalized into perinuclear 

compartments remained associated with both isoforms of β-arrestin for prolonged periods 

of time [198].  This observation, coupled with the fact that M2 mAChRs display a pattern 

of slow recycling [162], suggests that M2 mAChR behaves as a class B receptor.  Here 

we show that β-arrestin mediates agonist-promoted down-regulation of the M2 mAChR 

which is dependent upon specific lysine residues and ubiquitin in β-arrestin.  In addition, 

the data indicate that down-regulation occurs in lysosomes and involves proteasomal 

function.    
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CHAPTER 7  
 
 
 

MATERIALS AND METHODS 
 
 

 

Materials 
 
Reagents were purchased as follows: [3H]-N-methyl-scopolamine ([3H]-NMS) (81-84 

Ci/mmol) and [3H]-L-quinuclidinyl benzilate ([3H]-QNB) (43 Ci/mmole) from 

Amersham Corp. (Buckinghamshire, England);  Dulbecco's Modified Eagle's Medium 

from Mediatech (Herndon, VA); penicillin/streptomycin, fetal bovine serum, and 

LipofectAMINE 2000 from Invitrogen (Carlsbad, CA);  n-dodecyl-β-D-maltoside was 

from Calbiochem (San Diego, CA); BCA protein assay kit and Supersignal West Pico 

from Pierce Biotechnology (Rockford, Il); Atropine, N-ethyl maleimide (NEM), 

carbamyl choline chloride (carbachol), monoclonal anti-FLAG M2 antibody (F3165), 

rabbit anti-LAMP1 antibody (L1418), 100X protease inhibitor and all other chemicals 

from Sigma Aldrich (St. Louis, MO); Anti-HA affinity matrix from Roche Applied 

Science (Indianapolis, IN); monoclonal anti-Ub antibody P4D1 (sc 8017) from Santa 

Cruz Biotech (Santa Cruz, CA); The anti-HA.11 monoclonal antibody was purchased 

from Covance Research Products (Berkley, CA); HRP-conjugated secondary antibodies 

from Jackson Immunoresearch Laboratories, Inc. (West Grove, PA) and Bio-Rad 

Laboratories (Hercules, CA); pIRESeGFP from Clontech (Palo Alto, CA).  Alexa594-

conjugated goat anti-mouse and Alexa488-conjugated goat anti-rabbit antibodies were 

purchased from Molecular Probes (Eugene, OR).   
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Expression Constructs and Cell Lines 

Expression constructs and cell lines were generously provided by the following:  MEF 

wild-type cells, β-arrestin 1 and 2 single knockout cells, β-arrestin 1 and 2 double 

knockout cells, FLAG-tagged β-arrestin 1 and 2, YFP-β-arrestin-2-Ub, β-arrestin 

2K11R,K12R, and β-arrestin 2K18R,K107R,K108R,K207R,K296R by Dr. Robert Lefkowitz (Duke 

University Medical Center, Durham, NC); HA tagged human M2 mAChR by Dr. Audrey 

Claing (University of Montreal, Montreal, Canada). 

 

Cell Culture and Transient Transfection 

Mouse embryonic fibroblast (MEF) cells (wild-type and knockouts) were maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM).  Media were supplemented with 10% 

fetal bovine serum (FBS), 100 IU /mL penicillin, and 100 μg/mL streptomycin.  All cells 

were maintained at 37°C with 5% CO2.  At 24 hr prior to transfection, cells were plated at 

7.5x104 cells/well (12-well plate), 1.5x105cells/well (6-well plate), or 1.5x106 cells/dish 

(10 cm dish) in serum containing DMEM without antibiotics.  Cells were transfected 

using LipofectAMINE 2000 according to the manufacturer’s protocol with 1.6, 2.0 or 2.5 

μg total DNA per well/plate on a 12-well, 6-well and 10 cm dish, respectively.  

Transfection efficiencies of 20 – 50 % were routinely obtained [determined by including 

10% of total DNA as eGFP construct (pIRESeGFP) or indirect immunofluorescence 

against proteins and visualizing transfected cells using an Olympus 1X71 fluorescence 

microscope]. 
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Indirect Immunofluorescence 

Cells were treated as described in figure legends, 24 hours after transfection.  Cells were 

then fixed in 2% formaldehyde in phosphate buffered saline (PBS) for 10 minutes and 

rinsed with 10% adult calf serum and 0.02% azide in PBS (PBS/serum).  Fixed cells were 

incubated with primary antibodies diluted in PBS/serum containing 0.2% saponin for 45 

minutes, and then washed with PBS/serum (3 x 5 min.).  The cells were then incubated 

with fluorescently labeled secondary antibodies in PBS-serum and 0.2% saponin for 45 

minutes, washed with PBS/serum (3 x 5 min.) and once with PBS, and mounted on glass 

slides.  Images were acquired using a Zeiss LSM 510 scanning confocal microscope.  All 

images were processed with Adobe Photoshop 7.0 software. 

 

Crude Membrane Preparation 

Two wells of a 6-well plate were rinsed twice with ice cold PBS and cells were scraped 

in 50 mM sodium phosphate pH 7.0, pooled, and homogenized with 20 strokes in a 

Dounce homogenizer.  Homogenate was spun at 10,000 rpm for 20 min at 4°C in a 

Sorvall Mach 1.6R fixed angle rotor.  Pellet was resuspended in 50 mM sodium 

phosphate pH 7.0 and spun again.  Pellet was resuspended in 0.55 mL 50 mM sodium 

phosphate pH 7.0 and used for protein assay and radioligand binding. 

 

Detection of Ubiquitinated β-arrestin 2 

At 24 hr post transfection with FLAG-β-arrestin 2 and HA-tagged M2 mAChR, MEFwt 

cells were serum-starved for 1 hr prior to 1 mM carbachol treatment.  Cells were then 

rinsed twice with 1X PBS and scraped in 0.5 mLs of 1% Triton X-100 lysis buffer on ice 

- 81 - 
 



(50 mM HEPES, pH 7.5, 1% Triton X-100, 10% glycerol, 10 mM NaCl, 1 mM EDTA, 1 

mM EGTA, 50 mM NaF, 10 mM NEM, and protease inhibitors).   Lysates were 

solubilized end-over-end for 2 hours at 4°C and subsequently centrifuged at 14,000 rpm 

for 30 minutes at 4°C.  Supernatant was diluted 1:1 with Tris buffer (50 mM Tris, pH 7.4, 

150 mM NaCl, 5 mM MgCl2, 1 mM EDTA, 1 mM DTT) containing fresh protease 

inhibitor and 10 mM NEM.  Samples (600 μg of protein) were then incubated with 30 μl 

of anti-FLAG agarose (Sigma) overnight at 4°C.  Samples were washed three times in 

0.1% Triton X-100 lysis buffer and eluted in 2X SDS sample buffer for 15 minutes at 

370C.   Proteins were resolved by SDS-PAGE (7.0%), transferred to nitrocellulose, and 

blocked for 1 h at room temperature in 2% milk powder and 0.02% Tween 20 in TBS.  

Blots were then incubated overnight at 4°C in TBST with mouse anti-FLAG antibody 

(Sigma) or mouse anti-Ub antibody (Covance).  After overnight incubation, blots were 

washed twice with TBST for 10 minutes each and incubated with HRP-labeled secondary 

antibodies for 1 h at room temperature.  Following three washes with TBST for 10 

minutes each, detection was performed by chemiluminescence with Supersignal West 

Pico reagents (Pierce) according to manufacturer’s protocol, then developed on film.    

 

Detection of Ubiquitinated M2 mAChR 

At 24 hr post transfection, treated cells were rinsed with 1X PBS and scraped in 2% n-

dodecyl-β-D-maltoside lysis buffer on ice (2% maltoside, 50 mM Tris, pH 7.4, 150 mM 

NaCl, 5 mM MgCl2, 1 mM EDTA, 1 mM DTT, 1.0 mg/mL iodoacetamide, 10 mM N-

ethyl maleimide, and protease inhibitor cocktail).  Lysates were solubilized end-over-end 

for 2 hours at 4°C and subsequently centrifuged at 14,000 rpm for 30 minutes at 4°C.  
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Supernatant was diluted 1:1 with Tris buffer containing fresh protease inhibitor and 10 

mM NEM.  Samples (600 μg of protein) were then incubated with 30 μL of anti-HA 

affinity matrix (Roche) overnight at 4°C.  Samples were washed three times in 0.2% n-

dodecyl-β-D-maltoside lysis buffer and eluted in 2X SDS sample buffer for 15 minutes at 

37°C.   Proteins were resolved by SDS-PAGE (7.0%), transferred to nitrocellulose, and 

blocked for 1 h at room temperature in 2% milk powder and 0.02% Tween 20 in TBS.  

Blots were then incubated overnight at 4°C in TBST with mouse anti-HA antibody 

(Covance) or mouse anti-Ub antibody (Covance).  After overnight incubation, blots were 

washed twice with TBST for 10 minutes each and incubated with HRP-labeled secondary 

antibodies for 1 h at room temperature.  Following three washes with TBST for 10 

minutes each, detection was performed by chemiluminescence with Supersignal West 

Pico reagents (Pierce) according to manufacturer’s protocol, then developed on film.     

 

Radioligand Binding: 

Internalization - Internalization was determined by measuring the binding of the 

membrane impermeable muscarinic antagonist [3H]-NMS to intact cells.  Briefly, 24-48 

hr after transfection, MEF cells were treated or not treated with 1 mM carbachol for 60 

min at 37°C.  Cultures were washed 3 x 1 mL with serum-free media and incubated with 

100 nM [3H]-NMS in 1 mL PBS for 30 min at 37°C or 4 hr at 4°C.  Nonspecific binding 

was determined as the bound radioactivity in the presence of 1 µM atropine.  Labeled 

cells were washed 3 x 1 mL with ice-cold PBS, solubilized in 0.5 mL 1% Triton X-100, 

and combined with 3.5 mL scintillation fluid followed by measurement of radioactivity.  

Cpm were converted to receptors per well which were then corrected to receptors per cell 
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by dividing by cells/well.  Receptor internalization is defined as percent of surface M2 

mAChR not accessible to [3H]-NMS at each time relative to untreated or control cells.   

Down-regulation – Down-regulation was determined by measuring the binding of the 

membrane permeable muscarinic antagonist [3H]-L- quinuclidinyl benzilate (QNB).  

Crude membranes (100 μL) were incubated with 30 nM [3H]-QNB in a total volume of 1 

mL 50 mM sodium phosphate pH 7.0 for 2 hr at 25°C.  Nonspecific binding was 

determined as the bound radioactivity in the presence of 1 µM atropine.  Membranes 

were harvested on glass fiber filters using a Brandell cell harvester (Gaithersburg, MD) 

and washed 3 x 2 mL with ice-cold 50 mM sodium phosphate pH 7.0.  Filter discs were 

combined with 3.5 mL scintillation fluid followed by measurement of radioactivity. 

Cpm per tube were converted to fmoles receptor, which was then corrected to mg of total 

protein per tube. Percent down-regulation was determined as percent of sites remaining 

compared to untreated control membranes. 

 

Densitometry: 

Band intensity of Western blot signals was quantified using Metamorph imaging software 

(Universal Imaging, West Chester, PA).  To quantify relative ratios of protein 

ubiquitination, ubiquitinated protein signals were compared with total protein bands 

immunoprecipitated. 
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CHAPTER 8  
 
 
 

RESULTS 
 
 
 

Down-Regulation of M2 mAChR is β-arrestin Dependent  

For a number of years there has been some controversy as to the role of β-arrestin in the 

internalization and down-regulation of M2 mAChR.  A significant body of work on the 

role of β-arrestin in the internalization of mAChRs has been performed using dominant-

negative or knockdown strategies.  In order to avoid any possible complications that 

could arise from the presence of low levels of endogenous arrestin proteins, we 

performed our down-regulation experiments in MEF cells derived from β-arrestin 1, β-

arrestin 2 or β-arrestin 1 and 2 double knockout mice (MEF KO1, MEF KO2, and MEF 

KO1/2, respectively).  These cells have been characterized to confirm the absence of 

mAChR expression using both PCR and radioligand binding assays [198].  

To investigate whether any selectivity between β-arrestin isoforms existed, we 

transiently transfected MEF KO1 and KO2 cells with constructs encoding HA-tagged M2 

mAChRs and examined the time course of agonist-promoted down-regulation by 

measuring receptor abundance using [3H]-QNB.  After 24 hr, cells were treated with 1 

mM carbachol for 3, 6, 12, or 24 hr.  M2 mAChRs were similarly down-regulated (~ 

35%) in both MEF KO1 and KO2 cells following 6 hr of agonist stimulation (Fig. 23A).  

It did appear that the KO1 cell line (which expresses only endogenous β-arrestin 2) 

showed a slight recovery at 18 and 24 hours where the KO2 cell line (expressing only 

endogenous β-arrestin 1) did not.  We then performed similar time course experiments 
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with MEFwt cells expressing HA-M2 mAChR and MEF KO1/2 co-expressing FLAG-β-

arrestin 2 and HA-M2 mAChR since internalization and subsequent down-regulation was 

not observed in the MEF KO1/2 cells (data not shown).  After 24 hr, cells were treated 

with 1 mM carbachol for 6, 12, 18 or 24 hr.  The MEFwt and KO1/2 cells had slightly 

different time courses of down-regulation, with what appeared to be a maximum of ~ 21 

and 31% at ~ 6 and 12 hr, respectively (Fig. 23B).  However, stastical analysis revealed 

that the time courses of receptor down-regulation were similar enough that we could 

confidently perform all subsequent single point down-regulation experiments at 12 hr in 

all cell lines (Fig. 23B). 
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Fig. 23.  Time-course of agonist-promoted down-regulation of the M2 mAChR in 
MEF cells.  All cells were transfected with HA-tagged M2 mAChR.  MEF KO1/2 cells 
were also co-transfected with FLAG-β-arrestin 2.  At 24 hrs following transfection, cells 
were treated with 1 mM carbachol for the indicated time.  Down-regulation was 
determined using [3H]-QNB binding (fmol/mg protein) in crude membranes as described 
in Materials and Methods.  (A)  MEF KO1 and  KO2.  Down-regulation was ~ 35% 
after 6 hr for both MEF KO1 and KO2.  (B)  MEFwt and KO1/2.  Down-regulation was 
at a maximum at ~ 21 and 31% at ~6 and 12 hr for MEFwt and MEF KO1/2, 
respectively.  Data are expressed as percent down-regulation compared to t = 0 control 
and are presented as mean ± standard error of the mean for three independent 
experiments with duplicate data points. 
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Next, we examined the ability of the different isoforms of β-arrestin to rescue the 

agonist-promoted down-regulation of the M2 mAChR in MEF KO1/2 cells.  The MEF 

KO1/2 cells were transfected in 6-well plates with constructs encoding HA-M2 mAChR 

and either FLAG-β-arrestin 1 or 2.  After 24 hr, cells were treated with 1 mM carbachol 

for 12 hr.  In the absence of exogenous β-arrestin there was no down-regulation in 

response to agonist in the double knockout cell line (Fig. 24A and B).  When, however, 

cells were co-transfected with either β-arrestin 1 or β-arrestin 2 there was a rescue of the 

ability to down-regulate in response to agonist (Fig. 24A and B).  The rescue of agonist-

promoted down-regulation was greater in cells expressing β-arrestin 2 (40%) vs. β-

arrestin 1 (25%).  In addition, although not stastically significant, there does appear to be 

some constitutive (agonist-independent) down-regulation of M2 mAChR levels in non-

stimulated MEF KO1/2 expressing β-arrestin 2 (15%) that was not observed in cells 

expressing β-arrestin 1 (Fig. 24A and B open bars).   
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Fig. 24.  Rescue of M2 mAChR down-regulation in MEF KO1/2 cells with β-arrestin 
1 or β-arrestin 2.  MEF KO1/2 cells were transfected with HA-M2 mAChR with and 
without either FLAG-β-arrestin 1 (A) or 2 (B).  At 24 hr following transfection, cells 
were treated with 1 mM carbachol for 12 hr.  Down-regulation was determined using 
[3H]-QNB binding (fmol/mg protein) in crude membranes as described in Materials and 
Methods.  Note the effect of β-arrestin 2 on constitutive down-regulation (B).  Data are 
expressed as percent of [3H]-QNB bound (fmol/mg total protein) compared to untreated 
control and are presented as mean ± standard error of the mean for three independent 
experiments with duplicate data points.  Statistical analysis was performed using a paired 
t-test; ns indicates not significant.  

- 89 - 
 



β-arrestin Ubiquitination is Important in Mediating M2 mAChR Down-Regulation  

Recent efforts in our laboratory have revealed that stimulation of the M2 mAChR in MEF 

cells leads to a stable interaction of the M2 mAChR and β-arrestin in endosomes, 

suggesting that M2 mAChRs are class B receptors [198].  Shenoy and coworkers reported 

that stable association of class B receptors with β-arrestin involves agonist-promoted 

ubiquitination of β-arrestin [87].  The data demonstrated a direct relationship between 

stable association of the receptor with β-arrestin and sustained ubiquitination of β-

arrestin.  Having established that agonist-promoted down-regulation of the M2 mAChR in 

MEF cells is β-arrestin-dependent, we examined whether receptor stimulation led to 

sustained β-arrestin ubiquitination.  To do this, MEFwt cells co-expressing FLAG-tagged 

β-arrestin 2 and HA-tagged M2 mAChR were incubated with carbachol for 0-30 minutes.  

FLAG-β-arrestin 2 was immunoprecipitated via the FLAG tag and Western blots were 

probed with antibodies against ubiquitin and the FLAG epitope (Fig. 25).  In untreated 

cells, basal levels of ubiquitination were detected as broad smears with apparent 

molecular masses of ~100-170 kDa.  There were no significant changes following 3 min 

carbachol stimulation.  Exposure to carbachol for 15 and 30 min, however, led to an 

increase in the levels of ubiquitination by ~2 and 3.5 fold, respectively, over basal levels 

as compared by densitometry (Fig. 25). Metamorph software allowed the generation of 

relative ratios of ubiquitination by quantifying the intensity of the ubiquitin smear 

normalized to the amount of FLAG-β-arrestin 2 pulled down.  The ubiquitination 

appeared to be stable rather than transient, since the signal continued to rise after 30 min 

of agonist exposure indicated by the broader range (~70-170 kDa) and intensity of 

immunoreactivity.   Analysis of immunoprecipitates from mock-transfected cells shows 
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no detectable signal of β-arrestin or ubiquitin indicating specificity. Stable ubiquitination 

of β-arrestin in response to agonist adheres to previous findings [87], which further 

implies that M2 mAChRs belong to class B. 
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Fig. 25.  Agonist treatment promotes ubiquitination of β-arrestin2 in MEFwt cells 
co-expressing HA-tagged M2 mAChR.  MEFwt cells were co-transfected with HA-
tagged M2 mAChR and FLAG-β-arrestin 2 DNA constructs.  At 24 hr following 
transfection, cells were treated with 1 mM carbachol for the indicated times.  Top panel: 
cells were lysed and immunoprecipitated (IP) with anti-FLAG PAb and blotted (IB) with 
anti-ubiquitin-MAb (P4D1).  There was an increase in ubiquitination of β-arrestin 2 with 
15 and 30 min exposure to 1 mM carbachol.  The blot is representative of two 
independent experiments.  Bottom panel: lysates were blotted with anti-FLAG MAb, 
demonstrating β-arrestin 2 expression levels.  Numbers under blot correspond to 
densitometric quantification of ubiquitin band intensity normalized against the 
corresponding densitometric value of β-arrestin. 
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Given the ubiquitination status of β-arrestin following treatment with carbachol, 

we sought to determine the effects of β-arrestin ubiquitination on regulating down-

regulation of stimulated M2 mAChRs.  To do this we employed a constitutively 

ubiquitinated β-arrestin 2 chimera in which ubiquitin is fused to the C-terminus and 

yellow fluorescent protein (YFP) is fused to the N-terminus (YFP-β-arrestin 2-Ub).  MEF 

KO1/2 cells were transfected with HA-M2 mAChR and either FLAG-β-arrestin 2 or 

YFP-β-arrestin 2-Ub.  After 24 hr, cells were treated with and without 1 mM carbachol 

for 12 hr and the extent of down-regulation was assessed using [3H]-QNB.  There was a 

26% decrease in total receptor abundance with expression of β-arrestin 2 wild type due to 

the constitutive (agonist-independent) receptor turnover, which increased to 62% upon 

treatment with agonist (Fig. 26).  The 26% decrease rose to 87% in the presence of 

constitutively ubiquitinated β-arrestin 2 (YFP-β-arrestin 2-Ub), which was further 

increased to 95% in the presence of agonist (Fig. 26).  Total receptor abundance was 

approximately the same in all untreated samples (data not shown).  It is clear from these 

data that ubiquitination enhances the ability of β-arrestin 2 to mediate both constitutive 

and agonist-promoted down-regulation of the M2 mAChR. 
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Fig. 26.  Expression of a constitutively ubiquitinated form of β-arrestin 2 enhanced 
the agonist-promoted down-regulation of the M2 mAChR in MEF KO1/2 cells.  MEF 
KO1/2 cells were transfected with HA-M2 mAChR and either FLAG-β-arrestin 2 or 
YFP-β-arrestin 2-Ub.  24 hr following transfection cells were treated with 1 mM 
carbachol for 12 hr.  Down-regulation was determined using [3H]-QNB binding (fmol/mg 
protein) in crude membranes as described in Materials and Methods.  Total receptor 
abundance was decreased 26% with wildtype β-arrestin 2 alone, 62% in the presence of 
both β-arrestin 2 and agonist, 87% with β-arrestin 2-Ub alone, and 95% in the presence 
of both β-arrestin 2-Ub and agonist.  Data are expressed as percent of [3H]-QNB bound 
compared to the untreated control and are presented as mean ± standard deviation for two 
independent experiments with duplicate data points.  Statistical analysis was performed 
using a repeated measures ANOVA with Bonferroni post test ;** indicates p<0.001 
(compared to untreated control); ns indicates not significant.  
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Because ubiquitinated β-arrestin appeared to be involved in agonist-promoted 

degradation, we were interested in disrupting potential ubiquitination sites in the β-

arrestin sequence. Several lysine residues on β-arrestin are known to be putative sites of 

ubiquitination [199].  In order to determine which residues are most important and to 

further confirm a role of ubiquitination in agonist-promoted down-regulation, we utilized 

two β-arrestin 2 mutants in which specific lysine residues are mutated to arginine so as to 

prevent ubiquitination at these sites.  Therefore, MEF KO1/2 cells were transfected with 

HA-M2 mAChR and either empty vector (control), FLAG-β-arrestin 2 (wild type), 

FLAG-β-arrestin 2K18R, K107R, K108R, K207R, K296R or FLAG-β-arrestin 2K11R, K12R constructs.  

After 24 hr, cells were treated with and without 1 mM carbachol for 12 hr and extent of 

degradation was assessed using [3H]-QNB.  As shown previously, there was no down-

regulation in the control cells lacking β-arrestin (Fig. 24 and 27).  Both wild-type β-

arrestin 2 (24%) and β-arrestin 2K11R, K12R (27%) were able to mediate agonist-promoted 

down-regulation (Fig. 27).  β-arrestin 2K18R, K107R, K108R, K207R, K296R, however, was not able 

to rescue agonist-promoted down-regulation (Fig. 26).  Therefore, lysine residues at one 

or more of these sites in β-arrestin 2K18R, K107R, K108R, K207R, K296R appeared to be important 

in mediating agonist-promoted degradation of the M2 mAChR.   
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Fig. 27.  Effect of expression of β-arrestin 2 lysine mutants on the agonist-promoted 
down-regulation of the M2 mAChR in MEF KO1/2 cells.  MEF KO1/2 cells were 
transfected with constructs encoding HA-M2 mAChR and either empty vector (control), 
FLAG-β-arrestin 2 (WT), FLAG-β-arrestin 2K18R, K107R, K108R, K207R, K296R or FLAG-β-
arrestin 2K11R, K12R.  After 24 hr cells were treated with 1 mM carbachol for 12 hr.  Down-
regulation was determined in crude membranes (fmol/mg protein) as described in 
Materials and Methods.  All β-arrestin 2 constructs were able to mediate agonist-
promoted down-regulation except the β-arrestin 2K18R, K107R, K108R, K207R, K296R mutant.  
Data are expressed as percent of [3H]-QNB bound compared to untreated control and 
presented as mean ± standard deviation for three independent experiments with duplicate 
or quadruplicate data points.  Statistical analysis was performed using a repeated 
measures ANOVA with Bonferroni post test; ns indicates not significant.  
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We used [3H]-NMS to measure internalization to ensure that the effect of β-

arrestin 2 lysine mutants on down-regulation was not due to an effect on agonist-

promoted internalization.  After 24 hr, cells were treated with and without 1 mM 

carbachol for 1 hr.  All β-arrestin 2 constructs (wild type and/or lysine mutants) were able 

to rescue agonist-promoted internalization in the MEF KO1/2 cells (Fig. 28).   These data 

suggest that lysine residues at either one or more sites that have been mutated in β-

arrestin 2K18R, K107R, K108R, K207R, K296R is critical for receptor down-regulation but not for 

receptor internalization. 
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Fig. 28.  Effect of expression of β-arrestin 2 lysine mutants on the agonist-promoted 
internalization of the M2 mAChR in MEF KO1/2 cells.  MEF KO1/2 cells were 
transfected with constructs encoding HA-M2 mAChR and either empty vector (control), 
FLAG-β-arrestin 2 (WT), FLAG-β-arrestin 2K18R, K107R, K108R, K207R, K296R or FLAG-β-
arrestin 2K11R, K12R.  After 24 hr cells were treated with 1 mM carbachol for 1 hr.  
Sequestration was determined in whole cells as described in Materials and Methods.  All 
constructs were able to rescue agonist-promoted sequestration.  Data are expressed as 
percent of [3H]-NMS bound compared to untreated control and presented as mean ± 
standard deviation for three independent experiments with duplicate data points.  
Statistical analysis was performed using a repeated measures ANOVA with Bonferroni 
post test; ns indicates not significant.  
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We have previously shown that agonist-promoted internalization of the M2 

mAChR is β-arrestin dependent and that the receptor exhibits a prolonged interaction 

with β-arrestin in perinuclear compartments [198]. Therefore, we wanted to determine 

whether these β-arrestin lysine mutants disrupted the stable β-arrestin/receptor complexes 

observed previously.  To assess whether blockade of M2 mAChR degradation is due to 

loss of receptor/β-arrestin complexes, we incubated MEF KO1/2 cells co-expressing 

FLAG-β-arrestin mutants and HA-M2 mAChR with 1 mM carbachol for 10 hours and 

cells were processed for confocal microscopy.  Prior to receptor activation, wild type and 

β-arrestin proteins remained cytosolic and uniformly distributed (data not shown).  Upon 

10 hour agonist treatment, internalized M2 mAChR remained stably associated with β-

arrestin 2K18R, K107R, K108R, K207R, K296R to a similar extent as that observed in the β-arrestin 

2K11R, K12R and wild type β-arrestin 2 cells as indicated by the yellow puncta (Fig. 29).  

Therefore, these data suggest that β-arrestin 2K18R, K107R, K108R, K207R, K296R maintains a high 

affinity for the M2 mAChR thereby ruling out the possibility that this mutant converts the 

M2 mAChR from a class B to a class A receptor.   
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Fig. 29.  β-arrestin 2K11R, K12R and β-arrestin 2K18R, K107R, K108R, K207R, K296R remain  
stably associated with internalized M2 mAChRs in MEF KO1/2 cells.  MEF KO1/2 
cells were transiently transfected with plasmids encoding HA-M2 mAChR and 
FLAG-β-arrestin 2K18R, K107R, K108R, K207R, K296R, β-arrestin 2K11R, K12R, or wild type β 
arrestin 2 and treated with 1 mM carbachol for 10 hours.  Cells were processed for 
confocal immunofluorescence microscopy and co-localization (merge/yellow) was 
assessed using Rbanti FLAG (green) and Manti HA (red) primary antibodies followed by 
secondary antibodies.  This figure is representative of the results obtained in 3  
independent experiments where more than 50 cells were examined. 
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Since expression of β-arrestin 2K18R, K107R, K108R, K207R, K296R blocked agonist-

promoted degradation; we asked whether receptor entry into late endosomal/lysosomal 

compartments was altered.  We have previously shown that internalized M2 mAChRs 

partially co-localized with a marker of the late endosome, Rab7 GTPase (Fig. 21), which 

suggested that M2 mAChRs undergo lysosomal-mediated degradation.  To determine if 

the degradation of the M2 mAChR was indeed lysosomal in nature and that β-arrestin 

2K18R, K107R, K108R, K207R, K296R disrupted lysosomal targeting; we performed 

immunocytochemistry to examine the co-localization of the M2 mAChR with the 

lysosomal membrane protein LAMP-1.  MEF KO1/2 cells were transfected with 

constructs encoding HA-M2 mAChR and either empty vector (control), FLAG-β-arrestin 

2 (wild type), FLAG-β-arrestin 2K11R, K12R or β-arrestin 2K18R, K107R, K108R, K207R, K296R.  

After 24 hr, cells were treated with and without 1 mM carbachol for 12 hr.  There was 

partial co-localization of the receptor with LAMP-1 in the presence of wild type β-

arrestin 2 or β-arrestin 2K11R, K12R (Fig 30).  It is clear, however, that expression of β-

arrestin 2K18R, K107R, K108R, K207R, K296R significantly reduced the co-localization of the M2 

mAChR with LAMP-1 (Fig. 30).  Since ~25% of receptors are degraded following 12 hr 

carbachol treatment we can assume that our observations are representative of the sub-

population of total receptors localized to lysosomes.  Taken together, the data suggest 

that β-arrestin 2K18R, K107R, K108R, K207R, K296R blocks receptor delivery to lysosomes for 

degradation while the stable interaction with receptor remains intact.   
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Fig. 30.  Exogenous expression of β-arrestin 2K18R, K107R, K108R, K207R, K296R in MEF 
KO1/2 cells blocked delivery of M2 mAChR to lysosomal compartments.  MEF 
KO1/2 cells transiently expressing HA-M2 mAChR and FLAG-β-arrestin constructs were 
treated for 12 hours with 1 mM carbachol and processed for confocol 
immunofluorescence microscopy.  Cells were stained for HA-tagged M2 mAChR (red) 
and the lysosomal marker, LAMP-1 (green).  Merged image shows extent of overlap 
(yellow).  This figure is representative of the results obtained in 3 independent 
experiments where more than 50 cells were examined. 
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M2 mAChR Undergoes Agonist-Promoted Ubiquitination in a β-arrestin- 

Independent Manner  

Although agonist induced ubiquitination of β-arrestin appears to be tightly linked to M2 

mAChR degradation, it is conceivable that M2 mAChR itself may undergo agonist-

induced ubiquitination on intracellular lysine residues and that this modification may 

serve as the signal for delivery and degradation in the lysosome.  Indeed, it has been 

shown that activation of the CXCR4 [102], PAR2 [103], NK1R [47], and β2-AR [85]  

induces ubiquitination of the receptor which is necessary for receptor sorting and 

degradation.  Therefore, we asked whether M2 mAChRs are modified with ubiquitin 

moieties following agonist stimulation.   Serum-starved MEFwt cells expressing HA-M2 

mAChR were incubated with 1 mM carbachol at 0, 45, 90, and 180 minutes.  Following 

stimulation, the receptor was immunoprecipitated and immunoblotted for the presence of 

ubiquitin and receptor via the HA-tag.  As shown in Figure 31, in the absence and 

presence of agonist, significant levels of receptor ubiquitination were detected with 

antibody (P4D1) that recognizes both mono- and polyubiquitinated proteins.  However, 

densitometric analysis revealed that the relative ratios of ubiquitination increased ~ 3-fold 

after 3 hrs of receptor stimulation when compared to untreated cells (Fig. 31).  Since M2 

mAChR interacts with β-arrestin with high affinity, it is plausible that 

immunoprecipitation pulls down these complexes and we are observing β-arrestin 

ubiquitination.  To rule out this possibility, we tested the immunoprecipitates from 

MEFwt cells co-expressing FLAG- β-arrestin 2 and HA-M2 mAChR and found that 

modest levels of FLAG-β-arrestin 2 were pulled down with receptor (data not shown).  

Therefore, it is plausible that the ubiquitination pattern observed arises from both 
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receptor and β-arrestin 2 ubiquitination although we cannot rule out the presence of other 

protein partners that are ubiquitinated.  Irrespective of this finding, the data suggest that 

although basal levels of receptor ubiquitination are evident, agonist-induced increases in 

receptor ubiquitination are observed.  This modification could potentially play a role in 

the delivery and degradation of the M2 mAChR in the lysosome.   
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ig. 31.  Agonist addition promotes further ubiquitination of M2 mAChR.  MEF wt 
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F
cells were transfected with a construct encoding HA-tagged M2 mAChR and following 
24 hrs post-transfection cells were serum starved for 1 hr prior to 1 mM carbachol 
treatment for various time points.  Equal amounts of cell lysates were 
immunoprecipitated (~600 µg of protein) with anti-HA affinity matrix, resolved on a 7% 
polyacrylamide gel, and transblotted onto nitrocellulose.  Top panel: Blots were probed 
with an anti- ubiquitin antibody (PD41). Bottom panel: lysates were blotted with a 
monoclonal anti-HA antibody, demonstrating receptor levels.  Shown is a representative 
blot from two independent experiments.  Numbers under blot correspond to the 
densitometric quantification of ubiquitin band intensity normalized against the 
corresponding densitometric value of receptor. 
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Because receptor ubiquitination can contribute to receptor degradation, we 

examined whether β-arrestin 2K18R, K107R, K108R, K207R, K296R affected ubiquitination of 

stimulated receptors.  The rationale behind examining β-arrestin 2K18R, K107R, K108R, K207R, 

K296R effects on receptor ubiquitination resides in the fact that the V2R and β2-AR require 

β-arrestin 2 to mediate their ubiquitination in response to agonist [85, 86].  Moreover, 

ubiquitination of these receptors is required for efficient degradation.  To examine this 

question, MEF KO1/2 cells were co-transfected with constructs encoding HA-tagged M2 

mAChR and FLAG-tagged β-arrestin 2K18R, K107R, K108R, K207R, K296R, FLAG-tagged β-

arrestin 2wt, or receptor alone.  Cells were treated with and without 1 mM carbachol for 

30 min and the extent of receptor ubiquitination was assessed using immunoprecipitation 

and subsequent western blotting analysis.  Immunoblot analyses revealed that basal 

ubiquitination is evident in cells co-expressing HA-M2 mAChR and β-arrestin 2K18R, 

K107R, K108R, K207R, K296R that increase ~2-fold following receptor stimulation (Fig. 32, far 

right).  This suggests that β-arrestin 2K18R, K107R, K108R, K207R, K296R can mediate agonist-

induced increases in ubiquitination of the M2 mAChR; therefore, β-arrestin 2K18R, K107R, 

K108R, K207R, K296R does not alter the ubiquitination state of the M2 mAChR.  However, the 

control experiments conducted alongside β-arrestin 2K18R, K107R, K108R, K207R, K296R samples 

revealed interesting results.  Receptor expressed alone in the MEF KO1/2 cells exhibited 

basal levels of ubiquitination that did not increase following receptor stimulation 

suggesting that the M2 mAChR is basally ubiquitinated in a β-arrestin 2 independent 

manner (Fig. 32, far left).   As mentioned above, this finding is in sharp contrast to 

previous reports.  Introduction of β-arrestin 2wt, however, lowered basal levels of 

receptor ubiquitination that increased ~3 fold following receptor stimulation (Fig. 32, 
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middle).  Collectively, this result suggests that M2 mAChR is basally ubiquitinated in a β-

arrestin independent manner while increases in ubiquitination require β-arrestin 

expression.  Whether receptor ubiquitination serves as a signal for lysosomal targeting 

requires further investigation.   
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Fig. 32.  β-arrestin 2K18R, K107R, K108R, K207R, K296R did not prevent agonist promoted 
ubiquitination of the M2 mAChR.  MEF KO1/2 cells were transfected with HA-tagged 
M2 mAChR and FLAG-tagged β-arrestin 2K18R, K107R, K108R, K207R, K296R or FLAG-tagged β-
arrestin 2 wild type.  Cells were treated with or without 1 mM carbachol for 30 minutes.  
Receptor was immunoprecipitated and immunoblotted for ubiquitin (upper panel) and 
HA epitope (bottom panel).  Relative ubiquitination levels are reported below bottom 
panel.  Shown is a representative blot from four independent experiments.   
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Inhibition of Proteasome Blocks M2 mAChR Down-Regulation by Preventing β-

arrestin Ubiquitination  

Since ubiquitin appears to serve as a signal for protein degradation [196], we asked 

whether disruption of the ubiquitin/proteasome pathway would affect agonist-promoted 

degradation of the M2 mAChR.  We examined agonist-promoted down-regulation of the 

M2 mAChR in the presence of lactacystin with the intent to block proteasome dependent 

recycling of ubiquitin thereby indirectly depleting available ubiquitin pools in the cell 

[200, 201].  Therefore, a reduction in the levels of free ubiquitin would affect the 

ubiquitination state of target proteins.  To address this question, MEFwt cells expressing 

HA-tagged M2 mAChR were pretreated with and without 10 μM lactacystin for 20 

minutes prior to agonist exposure.  In control cells, following 4 hrs of carbachol 

treatment, M2 mAChR underwent agonist-promoted degradation by ~30% (Fig. 33).  In 

cell pretreated with lactacystin, agonist-promoted degradation of the receptor was 

abolished (Fig. 33) suggesting that ubiquitin and/or a proteasome-dependent pathway is 

involved in agonist-promoted degradation of the M2 mAChR. 
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Fig. 33.  The proteasome inhibitor lactacystin interfered with agonist-promoted 
down-regulation of the M2 mAChR in MEFwt cells. MEFwt cells were transfected 
with a construct encoding HA-M2 mAChR, and after 24 hr cells were incubated for 20 
min with or without 10 μM lactacystin, then treated with 1 mM carbachol for 4 hr.  
Lactacystin inhibited the β-arrestin 2 mediated down-regulation of the M2 mAChR 
receptor in response to agonist.  Down-regulation was determined using [3H]-QNB 
binding in crude membranes as described in Materials and Methods.  Data are expressed 
as [3H]-QNB bound (fmol/mg total protein) and are presented as mean ± standard 
deviation from three independent experiments with duplicate data points.  Statistical 
analysis was performed using a paired t-test; ns indicates not significant.  
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Since MG 132, another inhibitor of proteasome activity, strongly blocked agonist-

induced endocytosis of the β2-AR [85], we also determined whether or not the effects of 

lactacystin were occurring at the level of receptor internalization.  We examined the 

effect of lactacystin on the agonist-promoted internalization of M2 mAChR using the 

membrane impermeable ligand [3H]-NMS.  MEFwt cells were transfected with plasmid 

encoding HA-M2 mAChR, and after 24 hr cells were incubated for 20 min in the absence 

or presence of 10 μM lactacystin, then treated with 1 mM carbachol for 30 min.  

Pretreatment with lactacystin had no effect on agonist-promoted internalization (Fig. 34) 

suggesting that the ability of lactacystin to block receptor degradation was not occurring 

at the level of internalization.     
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Fig. 34.  Agonist-mediated internalization of M2 mAChR is not impaired following 
pretreatment with proteasomal inhibitors.  MEFwt cells were transfected with a 
construct encoding HA-M2 mAChR and after 24 hr cells were incubated for 20 min with 
or without 10 μM lactacystin then treated with 1 mM carbachol for 30 min.  The presence 
of lactacystin had no effect on the agonist-promoted internalization of the M2 mAChR.  
Internalization was determined using [3H]-NMS binding in whole cells as described in 
Materials and Methods.  Data are expressed as cpm [3H]-NMS bound per well (plated at 
1x105 cells) and presented as mean ± standard deviation from three separate experiments 
with duplicate data points.  Statistical analysis was performed using a paired t-test. 
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Our data suggested that ubiquitination of β-arrestin or M2 mAChR promotes 

degradation of the M2 mAChR.  Disruption of the proteasome/ubiquitin system involved 

in maintaining ubiquitin levels blocked receptor degradation.  Therefore, we next 

determined the ubiquitination status of HA-tagged M2 mAChR as well as FLAG-β-

arrestin in the presence of proteasome inhibitors.  To address this question, we pretreated 

MEFwt cells expressing HA-M2 mAChR and FLAG-β-arrestin 2 with 50 µM MG 132 or 

20 µM lactacystin before carbachol stimulation.  Receptor was immmunoprecipitated and 

assayed for agonist-stimulated ubiquitination.  Although preliminary, both treatments 

appeared to enhance ubiquitination of the receptor in both stimulated and unstimulated 

conditions as compared to Figure 31.  We see that proteasome inhibitor treatment 

increased the relative ratio of ubiquitination (~10.4) to the same extent as receptor 

stimulation for 3 hr with carbachol (~7.7) (Fig. 31 and 35).   Interestingly, lactacystin 

treatment promoted ubiquitination in a ligand-independent manner while agonist-

promoted ubiquitination of the M2 mAChR was retained upon exposure to MG 132 (Fig. 

35).  In contrast, preliminary data reveal that pretreatment of lactacystin strongly 

diminished basal and stimulated levels of β-arrestin 2 ubiquitination (Fig. 36).  

Comparison to Figure 25 reveals that the relative ratio of ubiquitination of FLAG-β-

arrestin 2 decreased from ~0.3 to ~0.04 upon pretreatment with lactacystin.  The relative 

ratio remained low even after agonist-stimulation (Fig. 36).  This experiment should be 

repeated in conjunction with untreated cells to confirm that this observation is valid.  To 

ensure that β-arrestin and M2 mAChR association remained intact, we visualized the 

extent of co-localization in lactacystin-treated cells using indirect immunofluoroscence.  

We observed extensive overlap of the M2 mAChR and β-arrestin 2 in discrete punctate 
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vesicles following 30 min stimulation (date not shown).  These findings, although 

preliminary, suggest that β-arrestin ubiquitination may potentially play an important role 

in mediating down-regulation of the M2 mAChR. 
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Fig. 35.  Inhibition of the proteasome/ubiquitin pathway enhances agonist-promoted 
ubiquitination of the M2 mAChR.  Serum starved MEFwt cells expressing HA-tagged 
M2 mAChR were incubated with or without 50 µM MG 132 or 20 µM lactacystin for 2 
hrs before treatment with 1 mM carbachol for 0 and 45 minutes.  Receptor was 
immunoprecipitated and immunoblotted for ubiquitin (upper panel) and HA epitope 
(bottom panel).  Western blot is representative of two independent experiments. 

- 115 - 
 



 

1 mM Carbachol                - - +

Time (min)                          - 0             30              

20 μM Lactacystin             - +              +

IP: FLAG
IB: Ubiquitin

IB: FLAG
50 kDa

130 kDa

100 kDa 

170 kDa

mock

MEF wild type

HA-M2 mAChR +
FLAG-β-arrestin 2

Ubiquitin/FLAG           0             0.04             0.11

 
 
 
Fig. 36.  Inhibition of the proteasome/ubiquitin pathway by addition of lactacystin 
significantly reduces FLAG-β-arrestin 2 ubiquitination. Serum starved MEF wt cells 
co-expressing HA-M2 mAChR and FLAG-β-arrestin 2 were incubated with or without 20 
µM lactacystin for 2 hrs prior to 1 mM carbachol treatment for 0 and 30 minutes.  FLAG-
β-arrestin 2 was immunoprecipitated using anti-FLAG agarose and immunoblotted for 
ubiquitin (upper panel) and FLAG epitope (bottom panel).  Western blot is representative 
of one experiment. 
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CHAPTER 9 
 
 
 

DISCUSSION 
 
 
 

The role of β-arrestin in mediating agonist-promoted internalization and post-

endocytic trafficking of the M2 mAChR has been unclear and inconclusive.  Initial 

reports suggested that M2 mAChR utilized both β-arrestin-dependent and -independent 

pathways upon exposure to agonist [153, 156].  Other work suggested that Arf6 GTPase 

was important in regulating agonist-promoted endocytosis of the receptor [26, 27].  

However, our recent work performed in MEF cells lacking both isoforms of β-arrestin 

has demonstrated that agonist-promoted endocytosis of the M2 mAChR is β-arrestin-

dependent and that the receptor remains bound to β-arrestin in endosomes [198].  

Accordingly, the present study extends the observations of previous work and examines 

the role of ubiquitination of β-arrestin in the agonist-promoted down-regulation of the M2 

mAChR.   

Our first set of experiments demonstrated that M2 mAChRs undergo time- and β-

arrestin-dependent down-regulation in response to agonist.  All four cell lines displayed a 

similar down-regulation between 6 and 12 hr.  The MEF KO1 cell line, which expresses 

only endogenous β-arrestin 2, reproducibly showed a recovery period late in the time 

course, which can easily be ascribed to new receptor synthesis whereas MEF KO2 cells, 

which express only endogenous β-arrestin 1, did not display any type of recovery in total 

receptor abundance at the same time points.  This difference suggests an ability of the M2 
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mAChR to differentiate between the two subtypes of β-arrestin, particularly under 

chronic stimulation.   

The M2 mAChR displayed a similar β-arrestin 2 preference in the down-

regulation rescue experiments in MEF KO1/2 cells.  Both isoforms of β-arrestin were 

able to rescue down-regulation but there was selectivity, demonstrated by more down-

regulation via both the agonist and constitutive (agonist-independent) pathways seen with 

β-arrestin 2 vs. 1.  Although not statistically significant these differences may reflect a 

preferential interaction of the M2 mAChR with the β-arrestin 2 isoform under chronic 

conditions.  However, in vitro binding experiments [152] and in vivo β-arrestin 

translocation experiments [82] were not able to detect a difference in binding affinity 

between β-arrestin 1 and 2 for the M2 mAChR.  Additionally, class B receptors have been 

shown to form high affinity and prolonged interactions with both β-arrestin 1 and 2 [82].   

A hallmark of class B receptors is that β-arrestin proteins stably associated with 

the receptor exhibit a sustained ubiquitination pattern [87].  This stable ubiquitination 

correlates with the affinity of receptor/β-arrestin complexes since deubiquitination of β-

arrestin leads to rapid disassociation of this complex.   In agreement with this study, we 

previously showed that M2 mAChRs form stable complexes with arrestin within discrete 

intracellular microcompartments for prolonged periods of time [198].   Herein, we 

demonstrated carbachol-induced ubiquitination of β-arrestin 2 that displayed a slower 

onset (15 min) that further increased over time.  The time course of ubiquitination of β-

arrestin 2 in response to muscarinic stimulation was quite different from that observed 

following stimulation of the β2-AR, where β-arrestin 2 is ubiquitinated rapidly (within 1 

min) and transiently, showing prompt deubiquitination within 15 minutes [85].  These 
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data combined with the observations of Jones et al. [198] suggest that the M2 mAChR 

behaves as a class B receptor.   

Once we had established that β-arrestin is gradually ubiquitinated via activation 

of M2 mAChR, we examined whether constitutive ubiquitination of β-arrestin enhances 

its ability to mediate agonist-promoted down-regulation.  Shenoy and Lefkowitz have 

previously demonstrated that co-expression of a constitutively ubiquitinated β-arrestin 2 

chimera with β2-AR converted the β2-AR from a class A to a class B receptor and 

significantly enhanced agonist-promoted down-regulation under chronic conditions [87].  

In accordance with this finding, M2 mAChR levels were nearly ablated in the presence of 

β-arrestin 2-Ub compared to wild type β-arrestin 2.  It was clear from these data that 

constitutive ubiquitination of β-arrestin greatly increased its ability to mediate down-

regulation of the M2 mAChR.  These data support the role of ubiquitinated β-arrestin in 

promoting agonist-mediated M2 mAChR down-regulation, but the question remained as 

to which lysine residue(s) of β-arrestin are ubiquitinated.  Shenoy and coworkers have 

generated mutants of β-arrestin 2 at two lysines near the amino terminus (β-arrestin 2K11R, 

K12R) as well as other sites (β-arrestin 2K18R, K107R, K108R, K207R, K296R) [199].  Wild type β-

arrestin 2 is stably ubiquitinated upon stimulation of the AT1a receptor, a prototypic class 

B receptor.  However, when co-expressed with β-arrestin 2K11R, K12R, stimulation of the 

AT1a receptor resulted in transient β-arrestin 2 ubiquitination and transient association 

with the receptor, thereby converting the receptor into a class A type.  This same mutant 

had no effect on endosomal recruitment of β-arrestin to other class B receptors, which 

included the V2R and NK1R [199].  Since these β-arrestin mutants affected trafficking 

patterns of β-arrestin in complex with various GPCRs, we were interested in determining 
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the functional consequences of these mutations on trafficking of the M2 mAChR itself.  

We found that exogenous expression of β-arrestin 2K11R, K12R had no effect on agonist-

promoted endocytosis, down-regulation, or complex formation with the M2 mAChR.  In 

contrast, the β-arrestin 2K18R, K107R, K108R, K207R, K296R mutant, shown to impair association 

of V2R with β-arrestin on endosomes [199], significantly reduced M2 mAChR 

degradation while internalization and stable association remained unaltered.  Our data are 

consistent with Shenoy’s conclusion [199] that the trafficking of different GPCRs is 

dictated by the ubiquitination state of β-arrestin on specific lysines, which is determined 

by distinct receptor bound conformation states of β-arrestin.  The resulting ubiquitination 

state of β-arrestin appears to have different consequences for different GPCRs as in the 

case of the M2 mAChR. 

However, what is unclear is whether receptor sorting to the degradative pathway 

arises from ubiquitination of β-arrestin and/or the receptor, itself.  Indeed, recent studies 

of CXCR4, β2-AR, PAR2, PAF, NK1R, and V2R receptors provided evidence that 

agonist-induced ubiquitination of the receptor is essential for lysosomal or proteasomal 

targeting and degradation [85, 86, 102-104].   Our results showed that ubiquitination of 

M2 mAChR was detected under unstimulated conditions and increased over time.  This is 

in partial agreement with previous findings, which showed an agonist-independent 

ubiquitination of the PAF receptor [104].  Because ubiquitination of the receptor 

increased with time, the prospect of additional lysine residues modified with ubiquitin is 

considerable.  This ubiquitin modification may participate in the pathway that leads to 

degradation as reported with other GPCRs.  To establish a role for lysine and ubiquitin in 

receptor degradation, attempts to engineer mutant receptors lacking lysine residues in the 
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third intracellular loop were made.  The M2 mAChR mutants, HA-M2 mAChRK375R, K376R, 

K377R, K383R and HA-M2 mAChRK383R, K384R, were found to localize in intracellular 

compartments that did not traffick to the cell surface (data not shown).  These mutants 

were not studied further.  Thus, we cannot rule out the possibility that ubiquitination of 

the M2 mAChR facilitates receptor sorting to the lysosome.  

Since ubiquitination of receptor may be important for degradation, we were 

interested to see whether β-arrestin 2K18R, K107R, K108R, K207R, K296R had any effect on the 

ubiquitination state of the receptor.  It has been shown that agonist-promoted 

ubiquitination of the V2R and β2-AR requires β-arrestin 2 but not β-arrestin 1 [85, 86].   

Our results indicated that ubiquitination of the receptor is not affected when expressed in 

MEF KO1/2 cells suggesting that the receptor is constitutively ubiquitinated in a β-

arrestin-independent manner. This is in sharp contrast to previous reports [85, 86].   

Moreover, the ubiquitination state of the receptor increases following receptor 

stimulation in the presence of both β-arrestin 2K18R, K107R, K108R, K207R, K296R and β-arrestin 

2wt suggesting that arrestin is required for agonist-induced increases in receptor 

ubiquitination and that receptor ubiquitination is not affected by the expression of β-

arrestin 2K18R, K107R, K108R, K207R, K296R.  Since ubiquitination of endogenous β2-AR was 

analyzed in MEF cells, it is feasible that we are observing an artifact of heterologous 

overexpression system.  However, Martin and coworkers showed that ubiquitination of 

exogenously expressed V2R does not occur in MEF KO1/2 cells but is restored when 

expressed in MEF KO1 cells [86].  Therefore, we may have a case where basal 

ubiquitination exists.  Interestingly, we still observe a dose-dependent increase in 
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ubiquitination of the M2 mAChR in MEFwt cells as well as MEF KO1/2 cells co-

expressing β-arrestin 2.    

To further characterize the mechanism of agonist-promoted down-regulation of 

M2 mAChR, we employed the use of a proteasomal inhibitor lactacystin, a specific 

inhibitor of the 26 S proteasome that functions by covalently modifying the active site 

and inhibiting the enzymatic activity of the proteasome [196].  Because inhibition of the 

proteasome inhibits recycling of cellular ubiquitin, this results in depletion of available 

ubiquitin pools that could indirectly affect the ability of other substrates to be modified 

with ubiquitin.   Lactacystin was able to completely block agonist-promoted down-

regulation with no effect on agonist-promoted sequestration.  Upon further analysis, we 

found that while ubiquitination levels of M2 mAChR were slightly enhanced, β-arrestin 2 

ubiquitination was drastically reduced.  Accumulation of ubiquitinated M2 mAChR in 

cells treated with lactacystin and MG 132 is consistent with previous findings suggesting 

that preventing receptor down-regulation leads to the stabilization of ubiquitinated 

receptor species [86, 197, 202].  It is possible that inhibition of receptor degradation by 

proteasome inhibitors arises from either an associated regulatory protein, normally 

degraded by the proteasome, which becomes stabilized so as to prevent receptor sorting 

and degradation, or that depletion of available ubiquitin prevents the conjugation of 

regulatory proteins with ubiquitin that is known to be a factor in proper sorting.  The 

latter is consistent with our preliminary finding in that β-arrestin 2 does not undergo 

agonist-promoted ubiquitination in the presence of lactacystin. However, it is plausible 

that protein normally degraded by the proteasome may obscure the ubiquitination signal 

of β-arrestin 2 in the presence of lactacysin.  One approach would be to analyze 
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immunoprecipitation eluents for changes in protein interaction using 2D-gel analysis.  

Further investigation is also required to establish that ubiquitin pools are in fact depleted 

by testing the stability of a known proteasome target.  Moreover, caution must be 

employed when intrepretating these results since a dose dependent effect of lactacystin 

should be included to analyze agonist-promoted M2 mAChR degradation, internalization, 

and ubiquitination.  Thus, these preliminary results suggest that the mechanism behind 

lactacystin blockade of M2 mAChR degradation may involve the prevention of β-arrestin 

ubiquitination.  Collectively, our data may support the notion that ubiquitin modification 

of β-arrestin provides the signal for receptor sorting to the lysosome.   

Many studies indicate that post-endocytic sorting of cargo to the lysosome 

involves interactions of ubiquitin with sorting machinery such as hepatocyte growth 

factor-regulated tyrosine kinase (HRS) [56, 62]. To successfully enter into the 

degradative pathway (multivesicular bodies/late endosomes), cargo is required to be 

ubiquitinated, which serves to interact with sorting proteins.  It has been shown that M2 

mAChR activation in neurons leads to their redistribution into multivesicular bodies 

[164].  Therefore, it is conceivable that β-arrestin/receptor complexes interact with 

lysosomal sorting machinery at the site of mulitivesicular bodies via ubiquitinated β-

arrestin.  Other mechanisms may also be involved in the lysosomal targeting of the M2 

mAChR which include association between receptor and proteins such as G-protein-

coupled receptor-asscociated sorting protein (GASP) and sorting nexin-1 (SNX-1) [41-

43].  These proteins are shown to bind to the C-terminal tails of receptors to facilitate 

lysosomal sorting.  Whether or not arrestin or M2 mAChR interacts with sorting 

machinery remains to be determined.   
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We conclude that agonist-promoted down-regulation of M2 mAChR is β-arrestin- 

dependent and is modulated by the ubiquitination state of β-arrestin, which 

specifically targets the receptor for degradation in lysosomes.  Muscarinic stimulation 

leads to ubiquitination of β-arrestin 2 and this ubiquitination enhances the agonist-

promoted down-regulation of the receptor.  Finally, where it has been suggested that class 

A receptor down-regulation proceeds primarily via receptor ubiquitination, these data 

imply that ubiquitination at specific lysine residues on β-arrestin 2 are critical in 

mediating the down-regulation of the class B M2 mAChR.  
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CHAPTER 10 
 
 
 

PERSPECTIVE AND FUTURE DIRECTIONS 
 
 
 

Regulation of the M2 mAChR  

The first study of this thesis provides evidence to support the notion that agonist-induced 

internalization of the M2 mAChR is β-arrestin- and clathrin-dependent in MEF cells.  

However, the role of clathrin in mediating receptor sequestration may depend on the cell 

line expressed.  Moreover, expression of M2 mAChR in multiple cell lines led to a stable 

interaction with β-arrestin in early endosomal compartments.  This suggests that β-

arrestin may be facilitating receptor recycling or degradation kinetics given its role in 

these processes for other GPCRs.  Additionally, β-arrestin may serve as an intracellular 

signaling scaffold to intiate a second wave of signaling which may give rise to a M2 

mAChR-dependent cellular response.  Following internalization, the fate of M2 mAChR 

appears to involve Rab GTPases, known regulators of cargo trafficking.   

In the second study of this thesis, M2 mAChR regulation is further extended to 

include a role for β-arrestin in agonist-induced down-regulation.  Lysosomal degradation 

of the M2 mAChR appears to be dependent on the ubiquitination state of β-arrestin since 

expression of a mutant form of β-arrestin 2 lacking five lysine residues abolished agonist-

promoted down-regulation of the M2 mAChR.  Similarly, blockade of receptor 

degradation in the presence of a proteasome inhibitor, lactacystin, may perhaps be 

explained by its effect on diminishing β-arrestin 2 ubiquitination.  In contrast, 

constitutive ubiquitination of β-arrestin 2 strongly induced basal and agonist-promoted 
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down-regulation.  The hypothesis is that M2 mAChR/β-arrestin 2 complexes undergo 

lysosomal sorting via interactions between ubiquitin on β-arrestin 2 and ubiquitin-

dependent sorting machinery at the site of multivesicular bodies/late endosomes.  

Disruption of β-arrestin 2 ubiquitination traps the receptor in unknown 

microcompartments so that lysosome-mediated degradation does not occur.  The 

functional consequence of this process remains to be determined.  Given the findings 

from this study, a proposed mechanism of M2 mAChR regulation is provided (Fig. 37).   
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Fig. 37.  Proposed model summarizing internalization and endocytic sorting of the 
M2 mAChR.  Stimulation of the M2 mAChR leads to phosphorylation at specific 
serine/threonine residues in the third intracellular loop by GRK2 resulting in β-arrestin 
translocation and binding to the receptor.  Concurrently, β-arrestin and M2 mAChR 
undergo an enhanced modification with ubiquitin moieties (yellow and pink).  Following 
internalization in a β-arrestin- and clathrin-dependent manner, M2 mAChR/β-arrestin 
complexes are delivered to the early endosome via activation of Rab5 GTPase.  Ubiquitin 
proteins conjugated to β-arrestin or M2 mAChR may then interact with sorting machinery 
such as HRS (green) for delivery to multivesicular bodies/late endosomes.  The cargo is 
then delivered to the lysosome via activation of Rab7 GTPase.  Presumably, receptors 
that do not enter the degradative pathway are delivered to recycling compartments where 
recovery to the cell surface occurs very slowly.    
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The two studies presented in this thesis have broadened our knowledge regarding 

the regulation of M2 mAChR intracellular trafficking and the role for β-arrestin in 

regulating this process, which has been contentious in the literature.  Moreover, although 

β-arrestin has been implicated in promoting down-regulation of class B GPCRs, a 

mechanism for this process has not been fully established.  Here, we provide evidence to 

support a mechanism that includes β-arrestin-mediated GPCR sorting to the lysosome for 

degradation.  Given the multifaceted function of β-arrestin proteins as well as other key 

regulators, many questions have arisen, some of which are addressed below.   

 

Future Directions 

The basic mechanism regarding the entry route and subsequent post-endocytic sorting of 

the M2 mAChR has been characterized to a certain degree in these studies.  We found 

that β-arrestin regulates the levels of receptor at the cell surface in a ligand-dependent 

manner and further can participate in the sorting of the M2 mAChR to the degradative 

pathway.  However, approximately 30% of receptors undergo agonist-induced down-

regulation suggesting that a significant fraction of total receptors are unaccounted for.  

While this study focused on the mechanism and kinetics of receptor down-regulation, 

Roseberry and coworkers demonstrated that a significant portion of internalized M2 

mAChRs exhibit slow recycling [162].  It would be of interest to examine the effects of 

β-arrestin mutants and proteasome inhibitors in the recycling kinetics of the M2 mAChR.   

Earlier studies have proposed that whether a receptor enters the recycling or 

degradative pathway depends upon the strength and duration of agonist-mediated 
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stimulation [203].  Addition of high concentrations or longer exposure to agonist is 

thought to promote robust phosphorylation of the receptor that distinguishes whether the 

receptor interacts transiently or stably with β-arrestin [203, 204].   With respect to these 

findings, it would be interesting to ask how acute or chronic stimulation with varying 

concentrations of ligand would affect the phosphorylation state of the M2 mAChR, 

affinity with β-arrestin proteins, as well as degradation kinetics.  This may have 

enormous implications as to how surface receptor levels are modulated when exposed to 

acetylcholine in a native tissue.    

This leads us to another important question.  These studies were performed in a 

model cell line that does not endogenously express the receptor; therefore, it is feasible 

that the fate of the receptor depends on the cell in which it is expressed.  Indeed, many 

studies including one presented in this thesis have shown that the endocytic mechanism 

of the M2 mAChR differs in different cell lines [26, 27, 160, 161].  So far, it is not known 

if receptor entry through these alternate pathways leads to a different sorting fate of the 

M2 mAChR.  Future work in dissecting the intracellular trafficking pathway should be 

considered in a neuronal cell line such as PC12 that endogenously express mAChRs and 

would thus provide a better model to study M2 mAChR trafficking [205].  Furthermore, 

since our work was performed in MEF cells derived from knockout mice it may be 

relevant to examine endogenous M2 mAChR trafficking in vivo using 

immunohistochemical studies in tissues such as the brain and heart harvested from the β-

arrestin single knockout or wild type mice.   

Since an overexpression system was used to study the role of β-arrestin in 

regulating the M2 mAChR, we initially performed a DNA titration experiment to achieve 
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optimal transfection efficiency.  No major differences were observed from 0.3-3.0 μg 

although higher concentrations resulted in cell death.  Massive overexpression was 

observed so that in some cases intracellular staining was evident as a result of de novo 

synthesis.  To eliminate this intracellular staining, cells could be treated with 

cyclohexamide, a protein synthesis inhibitor, to chase receptors retained in the Golgi or 

Endoplasmic Reticulum to the plasma membrane.  Therefore, following treatment only 

surface receptors would be studied.   Since overexpressed receptors and β-arrestin 

proteins are used, the stable interaction we observed with M2 mAChR and both β-arrestin 

isoforms may be a result of differences in expression levels. Caution should be taken in 

interpretating these results. A way to circumenvent this problem is to generate a stable 

cell line so that a constant level of receptor expression is achieved.   

The observation that both β-arrestin and M2 mAChR exhibits a high basal steady-

state of ubiquitination suggests that perhaps we may be observing an artifact of 

heterologous overexpression system or that we are detecting ubiquitination of associated 

proteins that have been pulled down during the immunoprecipitation process.  Although 

we do observe agonist-promoted changes in ubiquitination suggesting our key findings 

are preserved, the use of heterologous expression systems has many limitations.  One 

potential caveat is that exogenous overexpression of proteins can lead to a partial 

accumulation of misfolded proteins or protein aggregates in the endoplasmic reticulum.   

These unfolded proteins are removed by proteasome-dependent ER-associated 

degradation (ERAD) that involves polyubiquitination of substrate proteins [206].   

Therefore, we may be detecting polyubiquitination of unassembled membrane receptors 

that do not reach the cell surface.  This may explain why we observe augmented levels of 
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ubiquitinated receptor in the presence of proteasome inhibitors.  Future studies will need 

to be performed to rule out this possibility.   One likely approach to circumvent this 

limitation is to examine endogenous M2 mAChR ubiquitination using biochemical studies 

in native cells or tissues.  This may lead to a better understanding of M2 mAChR 

regulation in a physiologically relevant cell line.  Alternatively, one could tag surface-

resident receptors to ensure that only those receptors that reached the cell surface and 

were functional were included in biochemical analyses. This approach could also be used 

to assess the time course of agonist-promoted degradation of surface M2 mAChRs.  For 

example, a surface biotinylation assay could be used prior to immunoprecipitation and 

subsequent immunoblotting with HRP-conjugated streptavidin to assess the effects of β-

arrestin and lactacystin on M2 mAChR down-regulation.  Moreover, the aforementioned 

findings and proposed studies should be conducted in animal models of human diseases 

such as dementia associated with Alzheimer’s type.  Comparisons between the studies 

could elucidate potential mechanisms of M2 mAChR-associated pathologies.  

Because β-arrestin was found to stably associate with the receptor at early 

endosomal compartments, questions arise as to the purpose or function of high affinity 

interactions with the M2 mAChR aside from its role in receptor sorting.  Once again, a 

fraction of these receptors are degraded while presumbably the other fraction is slowly 

recycled; however, the extent of co-localization between β-arrestin and M2 mAChR is 

significant.  Do cellular events depend on this tight interaction?  Do receptor/arrestin 

complexes remain active in signaling at these intracellular sites?  It has been shown that 

β-arrestin can function to assemble multi-protein signaling complexes within intracellular 

sites [187, 194].  These signaling complexes were shown to function in either 
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reorganization of the cytoskeleton or in inducing proliferative signaling pathways, to 

promote cell survival and migration, respectively [76-78].  Speculation would suggest 

that a similar signaling pathway would be initiated from intracellular M2 mAChR/β-

arrestin complexes, perhaps depending on the cellular system.  Future directions would 

be to identify what signaling events occur and what cytoplasmic targets are activated.  

Another obvious question would be to address whether these β-arrestin mutants or 

proteasome inhibitors alter these intracellular signaling pathways.   

The physiological consequence of the differences in trafficking between mAChR 

subtypes, particularly stable β-arrestin association, may be attributed to their differential 

localization in various cells [207].  M2 mAChR modulates neurotransmitter release 

(autoreceptors) and therefore predominate presynaptically in the brain and the lung while 

other mAChR subtypes are found postynaptically to mediate acetylcholine signals within 

the target cell.  It has been shown that activation of the M2 mAChR blocks voltage-

operated calcium channels via Gβγ while M2 mAChR interacts directly with proteins of 

the exocytic apparatus, specifically syntaxin and SNAP-25 to prevent neurotransmitter 

release [208, 209].  Therefore, it is likely that a portion of these autoreceptors are 

desensitized and internalized into intracellular compartments with β-arrestin intact.  

Given that β-arrestin can promote receptor-mediated signaling inside the cell to induce 

cytoskeletal rearrangements, we can hypothesize that this further prevents 

neurotransmitter release since Moralles and coworkers have shown that actin 

depolymerization is required for neurotransmitter release [210].  Therefore, this could 

serve as a compensatory mechanism to ensure proper neurotransmitter levels within the 

synapse.  Moreover, Ilouz and coworkers have suggested that when an action potential 
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reaches the nerve terminal, M2 mAChRs undergo a conformational change which 

converts it to a lower affinity state for acetylcholine resulting in the release of its 

interaction with syntaxin and SNAP-25 inside the cell [208]. Depolarization further 

serves to open voltage-operated calcium channels for Ca2+ influx to further allow for 

neurotransmitter release.  Therefore, one can speculate that the purpose of M2 mAChR 

retention inside the cell with β-arrestin serves as a major mechanism to control 

acetylcholine release, a primary function of the M2 mAChR.   

Since the majority of the mAChR subtypes are found postsynaptically, the 

receptor must be able to constantly sample the environment to relay acetylcholine- 

mediated signaling events.  Therefore, these subtypes that include M1, M3, M4, and M5 

mAChR tend to rapidly recycle [157, 211].  Therefore, the differences observed in post-

endoctyic trafficking and differential affinities with β-arrestin may be due to their 

fundamental differences in the role they play inside the cell. Since M2 mAChRs are also 

expressed postsynaptically, the ability of M2 mAChR to sequester β-arrestin inside the 

cell could potentially prevent desensitization and internalization of other GPCRs at the 

plasma membrane.  This could allow acetylcholine-mediated signaling events to persist 

through other mAChR subtypes.  

The characterization of M2 mAChR sorting along the degradative pathway 

represents one of the major questions for future research.  While we provide evidence 

that ubiquitination of β-arrestin targets the M2 mAChR to the lysosome, the complete 

molecular mechanism and machinery involved remains to be determined.  Does sorting 

of M2 mAChR to the lysosome involve HRS binding via interactions with ubiquitin 

conjugated to receptor or β-arrestin?  Do other sorting mechanisms play a role?  It would 
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be of interest to investigate whether interaction of the M2 mAChR occurs in a 

stoichometric manner with proteins that control lysosomal sorting of other GPCRs such 

as GASP and SNX-1 [41-43].  In the case of the cannabinoid 1 receptor, endogenous 

ligands induce internalization and subsequent functional receptor recycling whereas 

chronic stimulation leads to down-regulation.  They propose that GASP forms a higher 

affinity complex with the C-terminal tail of the receptor that has been chronically 

stimulated.   Moreover, expression of GASP appears to show regional differences in 

tissues which may explain why some of the cannabioid receptors are more prone to enter 

the degradative pathway [43].  

Additionally, since we have not ruled out the possibility that ubiquitination of M2 

mAChR serves as a signal for sorting to lysosomes, it may be worth investigating other 

mutant forms of M2 mAChR, particularly phosphorylation defective mutants.  It has been 

shown that receptor ubiquitination requires receptor phosphorylation [85, 102].  Lee and 

coworkers have generated many phosphorylation deficient mutants of the M2 mAChR 

that could potentially elucidate whether receptor phosphorylation preceeds receptor 

ubiquitination [212].  To further define whether receptor or β-arrestin contains the sorting 

signal presumbably via ubiquitin modification, a M2 mAChR mutant in which mutation 

of a serine/threonine cluster to a series of alanines in residues 307-311 within the third 

intracellular loop should be examined.  Mutation of this sequence within the M2 mAChR 

has been shown to impair its ability to associate with β-arrestin 1 and 2 while signaling, 

densensitization and subsequent internalization remained unaltered [149, 153, 212]; 

however, our data strongly support a role β-arrestin in receptor internalization.  Testing 

the above mutant may clarify whether β-arrestin, M2 mAChR, or some other accessory 
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protein such as GRK2 participates in ubiquitin-dependent or -independent sorting to the 

lysosome.   

 

Broad Implications of Research 

The M2 mAChR is abundantly expressed in the central nervous system where its 

activation is critical to the regulation of several functions, including neurotransmission, 

cardiac heart rate, and smooth muscle contraction/bronchoconstriction.  Receptor 

availability at the cell surface directly controls the signaling events involved in mediating 

these physiological events.  The molecular mechanisms that regulate the cell surface 

density of M2 mAChR are an important component of maintaining proper signaling 

events.  Thus, the studies provided here have broadened our understanding of the cellular 

mechanisms that regulate M2 mAChR surface expression.   

Further characterization of the regulation of M2 mAChR including post-endocytic 

trafficking could offer additional targets for the development of neuronal and 

cardiovascular therapeutics.  There is growing evidence that alterations in M2 mAChR 

cell surface density contribute to the pathology of aging and disease in both the heart and 

brain [118, 138, 141, 142, 213].  Therefore, manipulation of the mechanisms that regulate 

M2 mAChR activity could provide potential therapeutic hope for those afflicted with M2 

mAChR related disorders.      
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APPENDIX A 

 
 
 

PROTOCOLS 
 
 
 

Splitting Mammalian Cells 
 

1. Aspirate media and add 2 mL trypsin and incubate for 2-3 minutes at 370C. 
2. Add 4 mL complete media to cells and pipet cells 20 times to get uniform 

suspension. 
3. Add 0.4-1.0 mL suspended cells to 10 cm dish containing 10 mL of complete 

media. 
4. Label dish with date, split number, cell line, dilution, and initials. 
5. If using cells for experimental purposes, count number of cells using 

hemacytometer. 
 
Plating Mammalian Cells 
 

1. Flame ethanol soaked coverslips and let air dry for a few seconds before adding to 
10 cm dish or 6-well plate. 

2. After counting number of cells, place appropriate amount of cells into a conical 
tube containing media and mix well. 

3. Dispense 2 mL or 6 mL of cells into 6-well plate or 10 cm dish, respectively. 
 
Lipofectamine 2000 Transfection 
 

1. For a 10 cm dish, plate 0.6 x 106 MEF KO1/2 cells or 1.3 x 106 MEF wt cells in 
complete media without antibiotics for ~ 24 hrs. (density depends on cell type) 

2. Following day, aspirate media and rinse cells with 1 mL prewarmed OPTI-MEM. 
3. Add 4 mL of OPTI-MEM media to cells prior to transfection.   
4. For each transfection, dilute 3.0 µg of DNA total into 200 µl of OPTI-MEM. 
5. Dilute 6 µl of lipofectamine 2000 into a separate tube containing 200 µl of OPTI-

MEM. 
6. Incubate for 5 minutes at room temperature. 
7. Combine diluted DNA and diluted reagent together and mix gently. 
8. Incubate at room temperature for 20 minutes. 
9. Add to cells and incubate for 5 hrs. 
10. Change media to complete and assay following day. 

 
ExGen 500 Transfection 
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1. For a 10 cm dish, plate 1.0 x 106 HeLa cells in complete media without antibiotics 
for ~ 24 hrs. 

2. Following day, dilute 2.0-3.0 µg of DNA into 200 µl of 150 mM NaCl. 
3. Add 8 ul of ExGen 500 to DNA solution and vortex for 10 seconds. 
4. Incubate at room temperature for 10 minutes. 
5. Add DNA solution to cells. 
6. Incubate overnight and assay following day. 

 
Indirect Immunofluorescence 
 

1. Day 1: Plate 0.10 x 106 HeLa, 0.13 x 106 MEF wt, 0.08 x 106 MEF KO 1/2 cells 
on flamed 12 mm circle glass coverslips in a 6-well dish. 

2. Day 2: Begin transfection protocol according to manufacturer’s protocol. 
3. Day 3: Treat as required for experimental protocol. 
4. Transfer coverslips to a 12-well dish containing 1 mL of chilled 2% formaldehyde 

in PBS pH 7.4 
5. Incubate for 10 minutes at room temperature. 
6. Remove fixative and add 1 mL of 10% adult calf serm and 0.02% sodium azide in 

PBS (PBS/serum). 
7. Incubate for 5 minutes at room temperature. 
8. Dilute primary antibodies into PBS/serum containing 0.2% saponin and spin for 5 

minutes at 14,000 rpm. 
9. Add parafilm to the bottom of a 150 mm Petri dish and label for each 

corresponding coverslip in the 12-well plate. 
10. Add 25 µl of the diluted antibody solution to appropriate spot on the parafilm. 
11. Using forceps pick up individual coverslips, wick off excess fluid on paper towel, 

and add cell side down directly onto 25 µl of diluted antibody. 
12. Place cover on 150 mm Petri dish and incubate for 45 minutes. 
13. Carefully transfer coverslip, cell-side up, back into 12-well dish containing 

PBS/serum. 
14. Wash cells with 1 mL PBS/serum (3 x for 5 minutes) 
15. Dilute fluorescently-labeled secondary antibodies in PBS/serum + 0.2% saponin 

and spin for 5 minutes at 14,000 rpm. 
16. Invert coverslips onto 25 µl of diluted secondary on parafilm as described above. 
17. Incubate for 45 minutes. 
18. Wash coverslips 3 x 5 minutes with PBS/serum. 
19. Rinse coverslips with 1X PBS and mount onto glass slides with fluoromount G. 
20. Seal coverslips with nail polish. 

 
 
Cell Lysis and Immunoprecipiation of M2 mAChR 
 

1. Rinse cells with twice with ice-cold 1X PBS. 
2. Add 600 µl of Tris Buffer + 2% DβM to each sample 

a. 50 mM Tris pH 7.4      0.24g in 30 mls  
b. 150 mM NaCl     0.35g  
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c. 5 mM MgCl2       0.04g 
d. 1 mM EDTA  400 µl of 100 mM EDTA pH 7.4 
e. 1mM DTT  0.006g 

i. Fill to 40 mLs with ddH2O 
ii. DβM: n-dodecyl-β-D-maltoside, Calbiochem (#324355) 

1. 0.4g in 20mls of Tris buffer 
f. Add fresh 1X protease inhibitor cocktail (Roche or Sigma) 
g. Iodoacetamide Final = 1.0 mg/ml 
h. 10 mM N-ethylmaleimide    

i. Dilute to 0.2M in ethanol. 
3. Incubate on ice 15 minutes, then scrape cells into centrifuge tube. 
4. Solubilize end-over-end at 40C for 2 hrs. 
5. Add lysate to ultracentrifuge tubes, and spin at 100,000 x g for 30 minutes at 40C 

to pellet insoluble material.   
6. Remove soluble lysate to new tube.  Save ~ 100 µl of sample to run on SDS-

PAGE and to perform BCA assay (store at -200C).  
7. Dilute lysate 1:1 in Tris buffer containing fresh protease inhibitor, iodoacetamide, 

NEM so that the final concentration of DβM is 1%. 
8. Add 50 µl of HA-affinity matrix (Roche). 
9. Incubate overnight with end-over-end rotation at 40C.   
10. Following day, wash beads 3Xs with Tris buffer + 0.2% DβM. 

a. For 6 samples, wash 500 µl each.  
i. 1 ml of 2% DβM + 9 mls of Tris + PI cocktail, NEM, 

iodoacetamide. 
11. Add ~50 ul of 2X Laemmli Sample buffer with β-mercaptoethanol to beads. 

a. 950 µl of 2X Laemmli Sample buffer + 50 µl of β-mercaptoethanol. 
12. Incubate at 370C for 15 minutes to elute receptor.  
13. Spin down beads and add supernatant (~20 ul) to SDS-PAGE. 

 
 
SDS-PAGE Gel recipe: 
 
MINIGEL: SEPARATING GEL (10 mL) 
Reagent:    7%  10% 
40% Acrylamide   1.75 mL 2.5 mL 
1.5M Tris, 0.4% SDS pH 8.8   2.5 mL  2.5 mL 
ddH2O     5.25 mL 5.0 mL 
10% APS *fresh   50 µl  50 µl 
TEMED    10 µl  10 µl 
MINIGEL: STACKING GEL (5 mL) 
Reagent:     
40% Acrylamide   0.375 mL  
0.5M Tris, 0.4% SDS pH 6.8   1.25 mL   
ddH2O     3.375 mL  
10% APS *fresh   50 µl   
TEMED    7.5 µl  
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SDS-PAGE Set Up 
 

1. Assemble two glass plates using green casting stand from Bio-Rad. 
2. Place cast upright in the Bio-Rad assembly stand to seal bottom of gel. 
3. Pour mixed separating gel using a Pasteur pipet ensuring no air bubbles form. 
4. Overlay gel with isopropanol to ensure a flat surface and to exclude air.   
5. Allow ~45 minutes for gel to polymerize. 
6. Pour stacking gel onto top of set separating gel and insert comb.   
7. Allow gel to set.  May store gel overnight at 40C. 
8. Place one or two gels into the slots of the Mini Tran Blot Cell, ensuring that the 

short plate faces the interior of the cell.   
9. Remove comb and remove bubbles from wells using a syringe. 
10. Load 5 µl of protein standard and ~20 µl of protein sample to corresponding 

wells. 
11. Fill the middle buffer chamber with 1X SDS running buffer (196 mM glycine, 50 

mM Tris-Cl pH 8.3, 0.1% SDS).  Once running buffer reaches lanes slowly add 
rest of running buffer and ensure that samples do not run over into adjacent lanes.  
Fill to top.  

12. Fill the lower buffer chamber with 1X SDS running buffer until it covers the wire 
found on the inside of the gel apparatus. 

13. Connect the electrode cables to power supply. 
14. Run gel at 150V for ~1 hour or until dye runs off gel. 

 
Western Blotting (ECL Detection) 
 

1. Following SDS-PAGE, carefully separate glass plates and float the gel off the 
glass plate under chilled transfer buffer.   

2. Assemble sandwich in this order on top of black side of sandwich. 
a. Scotch-brite pad (presoaked in transfer buffer) 
b. Whatman filter paper (presoaked in transfer buffer) 
c. SDS-PAGE Gel 
d. Nitrocellulose paper (presoaked in transfer buffer) 

i. Roll out air bubbles  
e. Whatman filter paper (presoaked in transfer buffer) 
f. Scotch-brite pad 

3. Seal cassette, place in Mini Protean II Cell, fill with chilled transfer buffer, and 
add ice pack. 

4. Connect the electrode cables to power supply. 
5. Run gel at 50V for 1.5 hrs. 
6. Transfer nitrocellulose to blocking buffer (Tris buffered saline with 0.1% Tween 

20 (0.1% TBST) and 2% milk) 
a. For better resolution of ubiquitinated species, add 20 mL denaturation 

solution and place at 600C for 30 minutes. 
b. Wash 3Xs with 0.1% TBST. 
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7. Block nitrocellulose for 30 minutes at room temperature. 
8. Transfer nitrocellulose to ziplock bag containing diluted primary antibody in 10 

mL of blocking buffer. 
9. Incubate on rocker overnight at 40C.    
10. Wash nitrocellulose 2Xs with 0.1% TBST. 
11. Incubate with secondary antibody diluted in blocking buffer for 1 hour on rocker 

at room temperature.  (HRP conjugated donkey 1:5000) 
12. Wash nitrocellulose 3Xs with 0.1% TBST. 
13. Add 1.5 mL of ECL solution (1:1 mixture of Soln A and Soln B) for 5 minutes. 
14. Transfer nitrocellulose to syran wrap and place in film cassette. 
15. Expose film for 1 minute. 
16. Develop film in dark room. 

 
BCA Assay 
 

1. Add 0, 5, 10, 15, 20 µl of 1 mg/mL of BSA standard to corresponding wells in a 
96-well plate. 

2. Add 5 µl of protein sample (lysate) to 96-well plate. 
3. Add 200 µl of BCA mixture to each well containing sample. 

a. 1 part solution B to 50 parts solution A. 
4.  Incubate plate for 30 minutes at 370C.    
5. Read plate at 562 nm using a microplate reader. 

 
 
[3H]-NMS Assay 
 

1. Day 1:  Plate 1.2 x 106 cells in a 10 cm dish. 
2. Day 2:  Transfect cells using Lipofectamine 2000 protocol. 
3. Day 3:  Trysinize cells and replate in a 24-well plate at a density of 0.1 x 106 

cells/well.  
4. Day 4:  Treat cells as required for experimental protocol. 
5. Rinse cells 3Xs with chilled 1X PBS over a ice-water bath. 
6. To indicated wells add 1.0 µM of the atropine (muscarinic antagonist) diluted in 

1X PBS.  This step accounts for nonspecific [3H] NMS binding. 
7. Dilute 10 µl of [3H]-NMS into 990 µl of 1X PBS. 
8. Calculations of cpm needed for each well (sample): 

a. Determine efficiency of scintillation counter. (0.65 cpm/dpm) 
b. The specific activity of [3H]-NMS = 81 Ci/mmol (found on container) 

Conversion factor:  2.2 xs 10-6 dpm/uCi 
The KD of NMS = 120pM    

c. Determine the specific activity of [3H]-NMS in terms of cpm/fmol: 
81Ci    x     2.2 x 10-6 dpm   x   0.65 cpm   x    mmol   =    115.83 cpm 
mmol          1 x 10-6 Ci                  dpm            1012 fmol        fmol 

d. Determine the number of cpm to use per well: 
i. For saturation binding experiment use 6 x KD. 

                  6 x 120pM = 720 pmol  =  720,000 fmol   =   720 fmol 
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                      liter                1000 mL                mL  
 

     For 0.5ml reaction use: 360 fmol  x  115.83 cpm  =  41,698cpm 
                          well        fmol                  well 

 
9. Each well should contain 41,698 cpm of [3H]-NMS for complete saturation.  To 

test activity of diluted [3H]-NMS, add 10 µl of [3H]-NMS into 4 mL of 
scintillation fluid and test radioactivity in scintillation counter. 

a. Example:  The scintillation counter gave a reading of 54, 477 cpm/ 10 µl.  
Therefore, the diluted [3H]-NMS contains 5,447 cpm/µl.   

b. 41,698 cpm/5,477 cpm/µl = 7.3 µl per sample 
c. 7.3 µl x 66 samples = 481.8 µl in 34 mLs of 1X PBS. 

10. Dispense 0.5 mL of [3H]-NMS in 1X PBS to each well. 
11. Incubate on ice-water bath for >5 hrs. 
12. Remove [3H]-NMS solution using glass pipette and discard in liquid waste 

container. 
13. Rinse wells 3 x 1ml with ice cold PBS, discarding all liquids in radiation waste 

container.  Use new pipette each wash.  
14. Solubilize cells with 0.5 mL of 1% Triton X in 1X PBS.  Once triton is added, the 

plates can be removed from ice. 
15. After 5 minutes, pipette up and down and add 400 µl of solution into 4 mL of 

scintillation fluid. 
16. Vortex each sample immediately.  The sample should go from cloudy to clear.  
17. Read counts in a scintillation counter.  
18. Amount of [3H]-NMS detected in the presence of 1 µM atropine (nonspecifically 

bound, cpm) is subtracted from total bound (cpm) to get specifically bound [3H]-
NMS. 

 
[3H]-QNB Assay 
 

1. Day 1:  Plate 0.5 x 106 cells in a 6-well plate. 
2. Day 2:  Transfect cells using Lipofectamine 2000 protocol. 
3. Day 3:  Treat cells as required for experimental protocol. 
4. Rinse cells 2Xs with chilled 1X PBS over a ice-water bath. 
5. Scrape cells in 50 mM NaPO4, pH 7.0, pool two wells, and homogenize with 20 

strokes in a Dounce homogenizer.   
6. Homegenate was spun at 10,000 rpm for 20 min at 40C in a Sorvall Mach 1.6R 

fixed angle rotor.    
7. Resuspend pellet in 50 mM NaPO4, pH 7.4 and spin again. 
8. Resuspend pellet in 500 µl of 50 mM NaPO4, pH 7.4 
9. Add 100 µl of membrane homogenate to 0.67 nM [3H]-QNB in a final volume of 

1 mL with 50 mM NaPO4, pH 7.0. 
10. Incubate at room temperature for 90 minutes. 
11. Add 5 ml of ice-cold 50 mM NaPO4 to quench binding. 
12. Pass samples through a Whatman glass fiber filter (2.5 cm G/C, presoaked in a 

0.1% solution of BSA in 50 mM NaPO4 buffer.   
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13. Rinse three times with NaPO4 buffer. 
14. Place filter in vials containing 4 mL of scintillation fluid. 
15. Read counts in a scintillation counter. 
16. Amount of [3H]-QNB detected in the presence of 1 µM atropine (nonspecifically 

bound, cpm) is subtracted from total bound (cpm) to get specifically bound [3H]-
QNB. 
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