
Privacy Preserving Grapevines: Capturing Social Network
Interactions Using Delegatable Anonymous Credentials

Vijay A. Balasubramaniyan1, Younho Lee2, and Mustaque Ahamad1

1College of Computing, Georgia Institute of Technology, USA
2Department of Information and Communication Engineering, Yeungnam University, Korea

Abstract

A wide variety of services allow users to meet online and communicate with each other, building new
social relationships and reinforcing older ones. Unfortunately, malicious entities can exploit such services
for fraudulent activities such as spamming. It is critical that these services protect users from unwanted in-
teractions, especially when new relationships are being established - the introduction problem. The problem
of assessing that a social network connection is no longer beneficial is also important due to the dynamic
nature of such networks. A large number of new connections are established through existing, weak social
ties (for example, friend of a friend). On the other hand, the willingness of a user to continue interactions
with an existing relationship is an indication of his or her endorsement of that relationship. The interaction
history of a user provides valuable information about both new social network connections and the validity
of established ones. However, capturing this interaction history is rife with privacy concerns. In this pa-
per, we create a transferable token framework, based on delegatable anonymous credentials (DAC - Crypto
2009), that captures interaction history in a privacy preserving manner. By using the Groth Sahai proof sys-
tem, we extend DACs to allow for single use tokens with the ability to identify token double spenders. We
show that such tokens can, simultaneously, demonstrate the existence of a social network path and capture
the continued validity of a social network connection. We present an implementation of this DAC based
token framework and utilize it in a Voice over IP (VoIP) setting to enable legitimate user interactions in the
presence of a spammer threat model. Our results indicate that we are able to achieve low false positive and
false negative rates for realistic threat scenarios without disclosing a user’s social network connections.

1 Introduction

Social relationships are growing with a wide variety of online systems that allow users to communicate with
each other. Instant Messaging (IM) services such as Yahoo Messenger[24] and AIM[3] offer feature rich text
messaging services. Telecommunications have also been revolutionized with the introduction of Voice over
IP (VoIP) systems such as Skype[19] and Google Talk[20]. The number of active users on these systems
is an indication of their success. As of 2008, Yahoo Messenger boasted of over 200 million users[4] and
currently there are over 400 million Skype users[1]. The biggest advantage of these systems is that users can
communicate, share and collaborate with other users, irrespective of their actual physical location, providing a
platform for building new relationships and renewing old ones.

In such systems, malicious users are constantly trying to exploit a user’s willingness to communicate with
new users. For the system to ensure beneficial interactions, it should try to determine whether a user initiating
contact for the first time is legitimate or malicious - the introduction problem. For example, in IM systems
such as Yahoo Messenger or Google Talk, users explicitly invite people that they would like to chat with, and
subsequently are able to chat with all those who accept the invite. Google Talk goes a step further and allows
users who have had prior email correspondence to automatically chat with each other. Automatic introduction
is especially important in systems like VoIP, where the possibility of prior user interaction is low. To illustrate,

1

consider a scenario where your father’s friend’s son, say Bob, would like to talk to you about admission to a
program at your university (or career openings at your workplace). Social network (SN) theory suggests that
higher the number of such weak ties between users, higher the likelihood of of a new direct tie being established
between them[21, 6]. The legitimacy of Bob’s weak tie should not be determined by active user participation
as that can also be misused by spammers/telemarketers to provide unsolicited information. For example, in IM
based systems such as AIM[3], spammers provide unsolicited content as part of the initial invite request itself.
We, thus, need an automated framework that is able to demonstrate the existence of a social network/interaction
path between two users that are trying to establish communication for the first time.

Along with determining a user’s willingness to interact with another user for the first time, it is equally
important to determine whether a user would like to continue interactions with people that he has been intro-
duced to. To illustrate, consider a user who calls a travel agent and requests for travel quotes to India. If the
travel agent does not specialize in flight tickets to India, he could get fellow travel agents (his SN) to talk to
the user. As long as the user is interested in flight tickets, he will continue interacting with the travel agent
and/or his SN. This interaction stops after he has bought the ticket. However, it is likely that the travel agents
continue to contact him with promotional offers. This information is unsolicited by the user, and constitutes
spam. Therefore, in addition, to being able to determine social network paths, the framework should be able to
capture the willingness of a user to continue interactions with a particular user.

In essence, to provide good user experiences, a system needs to address two different challenges. The first
allows users without a direct link to communicate with each other, and the second monitors the quality and
validity of a link that exists between two users. Both these aspects can, in fact, be determined by capturing the
interaction history of users. A weak social tie exists between two users, if there exists some interaction path
between them. Similarly a users’ willingness to continue interacting with another user is an indication of the
strength of their social tie. Many systems use tokens[26, 17, 2] to capture interaction/transaction information.
However, in social networks, capturing the interaction history is rife with privacy concerns as the interactions
may reveal sensitive information. To illustrate these privacy concerns we consider CallRank[5], a system that
combats the VoIP spam problem.

Application Scenario - VoIP Spam: VoIP spam is unsolicited phone calls through the use of VoIP systems.
Unlike email spam, voice spam cannot filter on content as media content, in addition to being real time, is
received only after a ringing phone is picked up. A spam engine that filters based on the media content,
however successful, cannot prevent phones from ringing. To address this, our previous work, CallRank[5]
uses call duration and call initiation direction, to differentiate between a legitimate user and a spammer. It
is motivated by the observation that a legitimate user, on average, makes and receives calls of significant call
durations. A spammer on the other hand is trying to disseminate information to as many people as possible and
therefore makes a large number of calls. These calls are brief as spammers find it hard to engage legitimate
users in a conversation. In addition, spammers hardly receive any calls. Thus, the calling pattern for a spammer
is largely one way while it is bidirectional for legitimate users. The CallRank system realizes this asymmetry
by using a token/credential mechanism. As shown in figure 1, at the end of a VoIP call between Alice(caller)
and Bob(call recipient) that lasted 10 minutes, Alice issues a digitally signed call token to Bob, represented
by TA→B . At a later instance when Bob talks to Charlie for 20 minutes, he similarly hands him another
token TB→C as shown. Now when Charlie wants to talk to Alice, with whom he has had no previous direct
interaction, he presents TB→C to prove to Alice that someone in her social network was willing to talk to
him. The factors that influence Alice’s decision to accept this call token include how well she knows Bob and
the call duration information embedded. This provides Alice great control on the calls she accepts. However,
she also gets to know precisely when and for how long Bob and Charlie talked, something that violates their
privacy. CallRank restricts itself to friends and friends of friends(two hop) as the loss in privacy, illustrated
above, is aggravated as number of hops increase. The CallRank setting clearly shows how SN interaction

2

Alice

Charlie

 Hmm..So Bob talked to

Charlie last night !

TA B={10 mins, 5 P.M.}

T
B

 C ={2
0

m
in

s,
12

 A
.M

.}
T B

 C
={20 m

ins, 12 A
.M

.}

Alice Bob

Figure 1: Privacy Leak in CallRank

k-hops

Issue

Transfer

Submit

A1 A2 A3 Ak Ak+1

T
A1 T

A1
T

A1
T

A1

T
A1

A1 A2 A3 Ak Ak+1

Figure 2: Multi-hop Token Transfer

history provides a valuable mechanism to differentiate between regular users and spammers. However these
tokens are not privacy preserving. In addition, since they only allow a two hop SN, they are restrictive and lose
valuable weak tie information that can be obtained from a larger hop SN.

In this paper, we create a token framework that uses delegatable anonymous credentials [7] to create N hop
transferable tokens without sacrificing user privacy. The framework allows a user to prove the existence of a
token transfer path between him and the user he is trying to initiate contact with, without actually revealing the
path. If token transfers are associated with a user’s SN interactions then the token transfer path is essentially
equivalent to a SN path. For example, in CallRank, if tokens are issued and transferred as part of call signaling,
the transfer path represents a chain of calls between two callers. This information can be used by legitimate
users to prove the existence of a weak social tie (father’s friend’s son) between them and the user they are trying
to call. In addition, we use the Groth Sahai (GS) proof system[22], to extend DACs to create single use tokens
with the ability to identify token double spenders. This allows tokens to capture a user’s continued endorsement
of a direct link(strong social tie). We implement the token framework using the Pairing Based Cryptography
(PBC) library[27] and utilize it in the VoIP setting to explore its performance in the presence of a spammer
threat model. Other communication systems and social network based services can also use this framework
with minor modifications.

Our paper makes the following contributions:

1. We identify the requirements for a framework that allows a new user, Bob, to prove the existence of an
interaction path between him and Alice, without revealing the actual path. In addition, the framework
allows us to capture a user Alice’s willingness towards continued interactions with Bob.

2. We create a transferable single use token mechanism that enhances delegatable anonymous credentials[7]
to realize this framework.

3. We provide an implementation of this framework using the PBC library and experimentally evaluate the
costs associated with its operations.

4. We apply this framework to the real world application setting of VoIP Spam to demonstrate that it can
combat the spam problem with low false positive and false negative rates.

The rest of the paper is organized as follows. In section 2 we discuss the requirements of the desired
framework, followed by possible approaches in section 3. We show that none of these approaches satisfy all
the requirements and we develop our solution by first discussing the building blocks, the GS proof system and

3

DACs in section 4. In section 5 we discuss how we extend DACs to create our single use privacy preserving
transferable token scheme. We discuss implementation details, and results that include operation times of our
scheme and the performance of the scheme with respect to the VoIP spam threat model in section 7. We finally
conclude and discuss future work in section 8.

2 Requirements Discussion

The two broad goals for our framework is that, in a privacy preserving manner, it is able to: (1) demonstrate
the existence of a social network/interaction path between two users that are trying to establish communication
for the first time and (2) capture the willingness of a user to continue interactions with a particular user and
his SN. One way of demonstrating an interaction path is showing that there exists a sequence of interactions
starting from one particular user and ending at another. This is advantageous as (2) gauges continued interac-
tions, reducing the basic primitive for both these requirements to that of capturing user-user interaction. We
assume this interaction can be captured through tokens. If tokens now need to be able to capture a sequence
of interactions they have to be transferred between users in the path with interaction details appended to the
token as it is transferred. We use the multi-hop transferable token example shown in figure 2 to understand
the requirements of a system that will satisfy our goals. Towards (1), the token needs to satisfy the following
requirements:

Unforgeability: Interaction paths demonstrate the existence of a weak tie to a particular user, specifically,
the token issuer. In figure 2, A1 is the token issuer and any user in the token path is trying to demonstrate a
weak tie to A1, by possession of the token. Therefore, the token that A1 issues should be unforgeable, that is no
other user should be able to issue a token on A1’s behalf. The transfer path itself should be unforgeable, which
means a user can only prove a transfer if that transfer actually occurred. We note that without an all observing
trusted third party there is no way of ensuring token transfers are tied to an interaction or the interaction details
embedded in the token are real. We, therefore, make the assumption that honest users transfer tokens only
during social interactions, and mutually agree on the embedded interaction details. Malicious entities may
choose to transfer the tokens without an interaction. Despite this, a malicious entity should not be able to forge
a token that is issued by an honest party or one that is transferred by an honest user.

Verifiability: The unforgeability of the token should be verifiable by any user in the transfer path. In figure
2, for a transfer leg Ai−1 → Ai, Ai before accepting a token Ai should be able to verify that the token is issued
by A1 and that Ai−1 is the rightful owner of the token. To do this Ai−1 will need to prove that the token was
issued byA1, and subsequently there were a set of transfers culminating at him. The unforgeability requirement
states that Ai−1 cannot do this successfully unless A1 issued the token and all subsequent transfers leading to
Ai−1 did indeed occur. This prevents a solution from verifying a token only when it is finally submitted to
an issuer. Such a solution can lead to a lot of bogus tokens in the system, each of them being discarded only
when they are submitted to the issuer. In such a system, users will never be able judge the validity of a token,
ultimately rendering tokens useless.

Privacy: For honest users, a token is transferred during a social interaction and contains sensitive interaction
details. In achieving the above two requirements the scheme should ensure that details of an interaction should
only be known to users directly participating in that interaction. Consider a transfer leg Ai−1 → Ai → Ai+1

for token TA1 . In this case when Ai transfers the token to Ai+1, Ai+1 should only be able to identify that the
token was issued originally by A1 and that it has been verifiably transferred at each hop culminating at Ai. The
token should not reveal the identities of previous holders of the token including the fact that it was transferred
from Ai−1 to Ai. Therefore, a user in the transfer chain should only know who the token issuer is, who the
token was received from and to who it is transferred. A user not in the transfer chain(example, someone who
snoops a token off the wire) can at most know the identity of the token issuer as this information does not reveal

4

any of his interactions. This notion of privacy should be preserved even if a user is involved in multiple legs of
the token chain. We assume that the token issuer, for tokens issued by him, never acts maliciously. For a more
detailed and formal definition of our anonymity requirements please refer to section 6.3.3.

A scheme that satisfies the above requirements can address the introduction problem. On the other hand,
a user’s willingness (or unwillingness) to continue interactions with another user, is useful in capturing the
evolving nature of social networks. Social network connections can be fleeting as in the travel agent example,
or can be deactivated after a longer association (for example, relationships gone sour). Deactivation can occur
even on account of malicious entities. For example a malicious entity might gain the trust of users and then start
behaving maliciously. Essentially, a scheme that assumes a user’s behavior is going to always remain the same
fails to realize any of these scenarios. It is in this light that being able to capture a user’s continued endorsement
of a social tie is a desirable goal. Towards this the token system needs to satisfy the following requirement:

Limiting Token Reuse: If a token needs to be able to capture a user’s willingness for continued interaction
it cannot be reused infinitely. Revisiting the travel agent example, we see that a non revocable token cannot
capture the user’s unwillingness to talk to the travel agent and his SN. Therefore tokens need to either be single
use, have a restricted lifetime or support a revocation policy. Single use tokens can provide a fair exchange for
users’ interaction time. In the VoIP setting, if A1 talked to A2 for 10 minutes then the token TA1 provides A2

or his social network the ability to talk to A1 for a proportional period of time. If A1 is no longer willing to talk
toA2, as in the travel agent example, thenA2 only has a fixed supply ofA′1s tokens that will eventually run out.
A more time sensitive approach is the use of token lifetimes where tokens expire after a specified time limit.
However, determining what is a good token lifetime is hard, particularly when tokens are transferable, as the
time between token issue and token use will vary. In addition, token lifetimes reveal information about the time
of token issue. A more elaborate mechanism is incorporating token revocation. Anytime a token issuer would
like to deactivate a link to another user and his SN, he could send a token revocation to the user. However,
this would require the user to keep token state of all the other users to whom that token was transferred. All
users who received this token would also need to maintain similar state and an elaborate revocation propagation
mechanism would need to be put in place. Single use tokens seem a practical token control mechanism that
can be tailored to maintain a high level of privacy and provide a fair prediction of a user’s willingness to
interact. Single use tokens also have the desirable property that they favor new user introductions through more
established interaction paths.

A scheme that satisfies the above requirements will need to create a token framework that has single use
transferable tokens that can capture social network interactions in a privacy preserving manner.

3 Possible Approaches and Related Work

Before arriving at our proposed solution, we considered a number of possible approaches. None of them satisfy
all the requirements but provide an insight into the challenges of creating a feasible scheme.

The simplest construct would be creating a token using a message authentication code (MAC) under the
secret key of the issuer. The message can contain a serial number that ensures the uniqueness of the token.
The token issuer can always verify the validity of the token once it is submitted back to him. However, none
of the other users can verify that the MAC was indeed generated by the issuer. To address this, we can create
tokens using digital signatures (DS)[5, 14]. The token issuer signs the token with his secret key and any user
can verify that the token is generated by the issuer. However, this does not verifiably prove the existence of
a transfer path. A malicious entity can snoop the token off the wire and make many copies of the token and
transfer it across different paths. The serial number would prevent the token from being reused but there will
be no way of identifying the user who made copies (double spent) of the token. Since the token double spender
cannot be caught, tokens themselves become useless and cannot really ensure fair use of the system.

5

To prove the existence of a transfer path, user certificates could be employed to validate the transfer. If
a user A1 wants to issue a token TA1 to user A2, he can associate a certificate with the token by signing
A2’s public key with his secret key, CertA1(pkA2). A2 can use a signature with his secret key to prove to
any user that he holds a valid certificate from A1. A2 can transfer the token to A3 and in doing so, needs to
provide a similar certificate for A3, CertA2(pkA3). A3 now holds the token and the associated certificate chain
(CertA1(pkA2), CertA2(pkA3)) to prove that he is the valid owner of the token. To prove the validity of a
token any user must show an associated certificate chain that leads up to him. However, this clearly reveals all
the interactions that have occurred so far. For example, when user A3 further transfers the token to A4, he has
to reveal the certificate to prove token validity, which in turn reveals the interaction A2 → A3.

To hide the identity of a user in a certificate chain, we can assume each user belongs to a group and use
group signatures. Since we don’t have to hide the token issuer’s identity, A1 can issue a certificate signing
A2’s group public key with his secret key, yielding CertA1(pkAG

2
), where AG

2 is the group A2 belongs to.
When A2 transfers the token to A3, he can prove that he is part of group AG

2 by providing a signature using
the group secret key. He then provides a certificate of the form CertAG

2
(pkAG

3
) to complete the token transfer.

The certificate chain (CertA1(pkAG
2

), CertAG
2

(pkAG
3

)) allows A3, who is part of the group AG
3 to prove he has

a valid token. When A3 wants to further transfer the token to A4 he can reveal this certificate chain. A4 only
gets to know that the original issuer of the token is A1, and that some member of group AG

2 transferred the
token to A3. He no longer gets to know the identity of A2. This scheme seems to capture the transfer path
in a privacy preserving manner except for one problem. A4 can decide to transfer the token to A2 as he does
not know that A2 was previously an owner of this token. Though the associated credential chain is of the form
(CertA1(pkAG

2
), CertAG

2
(pkAG

3
), CertAG

3
(pkAG

4
)), due to the uniqueness of the embedded information in the

token(for example, the serial number), A2 knows this is the same token that he transferred to A3. Due to the
deterministic nature of the way the token grows in size (this cannot be avoided[16]), A2 also knows that this
token has undergone only one transfer and therefore knows A3 → A4, again a loss in privacy. In addition, for
group signatures, clients have the overhead of creating sub groups and electing group managers. We could use
ring signatures but since members of a ring need not voluntarily participate, the trustworthiness of a transfer
path significantly degrades. We could avoid using groups or rings completely by using a zero knowledge (ZK)
proof system to hide the identity of previous owners of a token. However, just like the group signature scheme,
when a previous owner of a token sees the token again, he will be able to glean private interaction information.
Detecting a cycle is impossible as a privacy preserving solution cannot reveal previous owners of a token.
However, if cycle detection is impossible then we need to limit the maximum number of hops that a token can
be transferred. An added requirement to our token system is that, in order to avoid looping in a cycle forever,
the token system should be able to restrict the number of hops.

The occurrence of cycles in a token transfer path forms the hardest challenge in determining a solution
that provides accountability and does not leak privacy. The key observation here is that for a token to not leak
privacy, all the information it carries must be sufficiently randomized at each transfer such that a user who has
seen a token previously cannot identify it when it is transferred to him again. We use randomizable proofs[22]
and delegatable anonymous credentials [7] to achieve this.

Other Related Work: Tokens have been used to ensure fairness and provide accountability in P2P systems[26,
17, 2]. Anagnostakis et al[2] advocate the notion of transferable tokens and shows the improvements in scala-
bility and redundancy afforded by introducing such tokens. An alternative to tokens for accountability in P2P
systems is the use of micropayments[35, 32, 25, 23]. However none of these schemes support both anonymity
and unforgeability of the transfer path. Our system is similar to [32] in the sense that each user can issue his
own currency, however [32] is an online system with the issuer having to partake whenever his currency is being
transferred.

Adding privacy requirements to incentive mechanisms(like tokens) has been studied extensively in repu-

6

Algorithm Name Description

GSSetup(1k) Generates common parameters, parGS , shared by all users.

GSCommit(x, o, parGS) Creates a commitment of secret, x with opening, o.

GSGenProof((Cxi
i (xi, ri))1≤i≤n, cond, parGS) Makes an efficient NIZK proof, π which shows that the values committed in

Cxi
i satisfy cond.

GSVerify((Cxi
i)1≤i≤n, π, pubinfo, cond, parGS) If π is a correct proof of cond, it will return 1 else 0. pubinfo gives public

information that tells the verifier that the commitments satisfying the proof hide
some meaningful value.

GSRand((Cxi
i)1≤i≤n, π, pubinfo, cond, parGS) Generates random opening values (o′i)1≤i≤n and updates Cxi

i using o′i, to give
C′xi

i whose updated opening values are oi + o′i. It also updates the proof with
o′i yielding (C′xi

i)1≤i≤n, π
′. π′ can also be verified using GSVerify, if o′i are

known. π and π′ are unlinkable.

Table 1: GS Proof System Cheat Sheet
tation and recommender systems [29] and social networks[14], utilizing a host of cryptographic techniques.
Laurent et al[10] use group signatures, while Carminati et al[14] use digital signatures to provide anonymity.
Kai et al[34] use group signatures to add anonymity to the micropayment scheme proposed in[35]. For our set-
ting, we have demonstrated how any of these techniques would still leak privacy. Belenkiy et al[8] try to achieve
accountability without losing privacy by using an e-cash mechanism to provide a currency model in P2P. How-
ever their system requires a bank and does not support transferable coins. A transferable e-cash mechanism
using the meta proof technique is described in Canard et al[13]. However, the meta proof technique is a general
circuit based proof that is inefficient in practice. Since currency is meaningful only to the resource/service
provider, we allow users to act as banks in their own right, creating, issuing and transferring tokens to each
other. Enhancing delegatable anonymous credentials allows for such a system while providing strong privacy
guarantees.

4 Building Blocks

4.1 Efficient Non Interactive Zero Knowledge (NIZK) Randomizable Proof System

ZK proof systems can prove the existence of a transfer path while maintaining anonymity of previous owners
of the token. However anonymity is lost if the same user is involved in multiple legs (interactions) of the
transfer. To achieve anonymity in this case, the underlying proof system needs to be randomizable such that
the proofs when presented in different legs of the transfer are unlinkable to each other. The Groth Sahai NIZK
proof system[22] has this desirable property. It allows the translation of proof statements arising in real world
settings to be expressed as relations between group elements. The proof system is summarized by the set of
algorithms shown in table 1. Chase et al[7] showed that a proof, π, in this proof system can be randomized
without knowing the original committed secrets or their openings, which is captured by the algorithm GSRand
in table 1. They use this notion of randomizability to create delegatable anonymous credentials, which we
discuss next.

4.2 Delegatable Anonymous Credentials

Delegatable anonymous credentials (DACs) can be used to delegate access rights repeatedly without revealing
the identity of the participants. In order to achieve a high level of anonymity, it requires an underlying proof
system that offers randomizability, like the GS proof system. As described in section 3, a user certificate can
be used to delegate access rights but leaks privacy. DACs provide similar functionality as a user certificate but
ensure that the certificates do not reveal identity and can be randomized. Towards achieving this, Chase et al[7]

7

Algorithm Name Description

AuthSetup(1k) Generates groups G1, G2, GT of prime order p whose bit length is propor-
tional to k, a bilinear map e : G1 × G2 → GT , and group elements
g, u, u∗, u1, · · · , un ∈ G1 and h ∈ G2. It outputs the complete parameter
list parA = (G1, G2, e, p, g, u, u

∗, u1, · · · , un, h).

Auth(sk, ~m = (m1, · · · ,mn), parA) Generates sk $← Zp and pk ← hsk, and returns (sk, pk).

VerifyAuth(pk, ~m = (m1, · · · ,mn), authsk→~m, parA) Parses authsk→~m = (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n and verifies
{e(A∗, pk · B∗) · e(g, h−1) = 1 ∧ e(u∗, B∗) · e(C∗, h−1) = 1 ∧1≤i≤n

(e(Di, Bih
mi) · e(g, h−1) = 1)}. Returns 1, if all equations match, else 0.

Table 2: DAC Cheat Sheet
create an authentication scheme with certain properties.

4.2.1 Authentication Scheme

The authentication scheme creates a tag that authenticates a vector of messages under a secret key. For example,
userA1 can authenticate a set of messages, ~m under his secret key skA1 . If ~m includes the secret key of another
user A2, skA2 , the tag becomes a user certificate from A1 to A2. The scheme is summarized by the set of
algorithms shown in table 2. Using Auth, a user A1 can authenticate the secret key of user A2. However,
since A2’s secret key should not be revealed to A1 we carry out a secure two party computation (2PC) of the
authentication scheme between A1 and A2, summarized below:
• 2PCAuth(I(skI , {mi}1≤i≤l),O(pkI , {mi}1≤i≤n)) is a secure two party computation between an au-

thentication issuer I and a message owner O such that I does not get any information about (mi)l+1≤i≤n as

well as {g
1

Ki+mi }l+1≤i≤n.

4.2.2 Making a NIZK proof of the authenticator

If A1 and A2 ran 2PCAuth, A2 possesses an authenticator authA1→A2 from A1, essentially a certificate on his
secret key. Such an authenticator itself is unchanging and therefore reveals the identity of a user. The DAC
system uses the notion of user pseudonyms to get around this. In pseudonym systems[28], a user has a sin-
gle secret key but multiple public keys. User A2 who has secret key skA2 , can choose a random value o and
use the commitment Commit(skA2 , o) as a public key. Different values of o result in different public keys or
pseudonyms for the same user. A2 can be known to userA1 with public key pkA2 and to userA3 with public key
pk′A2 . Though an adversary cannot link pkA2 and pk′A2 , user A2 can prove that they are actually commitments
to the same secret. In this caseA1 rather than provide the authenticator directly, provides an NIZK proof for the
authenticator, πA1→A2 authenticating the contents of pseudonym pkA2 . When A2 wants to delegate his access
right to A3, he randomizes the pseudonym, proof pair (pkA2 , πA1→A2) to (pk′A2 , π′A1→A2) where π′A1→A2

authenticates the contents of pk′A2 . It uses the GSRand algorithm to achieve this. The new pseudonym, proof
pair can be further randomized by users who don’t know the underlying contents, using the GSRand algo-
rithm, and this provides the strong unlinkability guarantees when the token is transferred hop by hop. The
actual commitment scheme used by DACs is a deterministic double commitment scheme, DoubleCommit(x,
open = (o1, o2)) that outputs (Cx, π). Cx = (Cx

1 , C
x
2) = (GSCommit(gx, o1),GSCommit(hx, o2)). π is

NIZK GS proof that proves both GS commitments committed the same secret. This allows f-extractability of
such proofs[7].

Though DACs provide the desirable level of anonymity, they do not support the notion of single use tokens.
When access rights are delegated to a user, the user can repeatedly delegate the rights to any number of other
users. In the VoIP setting, a user who has a token can transfer it to a large number of other users, all of whom
can call the token issuer. In addition, once a user has a token, he can reuse it multiple times, regardless of the
issuer’s interaction experiences with that user. To address this we extend DACs to create single use tokens.

8

AkA3

[Section 5.3.1] [Section 5.3.2] [Section 5.3.2]

[Section 5.2]

Certificate

Authority

Issue 1
st
 Transfer 2

nd
 Transfer

Cert
CA A

1 Cert CA A
4

sk
A1

m
A2

s
A2

t
A2

t
A2

r
A2

sk
A3

t
A3

t
A3

r
A3

sk
A4

t
A4

t
A4

r
A4

sk
A2

Cert
CA

 A
2

C
er

t
C
A

 A
3

T0
A1

Cert CA A k+1

auth , Cert
A1 m

A2 CA A2
π , Cert ,

A1 m
A2 CA ?

 auth , Cert ,
A2 m

A3 CA A3

S, T1, T1

rand

m
A3 m

A4

π , Cert ,
A1 ? CA ?

 auth , Cert ,
A3 m

A4 CA A4

 T2, T2

 π , Cert , Enc
A1(S)

? m
A3 CA ?

, Enc
A1(T1), Enc

A1(T1), π
Enc

,

rand

rand

‘ ‘ ‘ ‘

A4A2A1
AkAk+1

T1
A1 T2

A1 Tk-1
A1

Figure 3: Single Use Anonymous Transferable Token Scheme

5 Single Use Anonymous Transferable Token Scheme

DACs lend themselves well to providing tokens that are both transferable and privacy preserving. To support
single use tokens, we extend DACs by using techniques employed in e-cash schemes to create single use
coins[11, 13]. In e-cash each coin is associated with a serial number and tags. The serial number is used to
prevent coin duplication, the tags are used to catch the double spender responsible for this duplication. The
primary contribution of our scheme is (1) showing how to create serial number and tags using the DAC’s
authenticator, that ensure single use of tokens and double spender identification and (2) how to randomize these
new components such that token unlinkability is still preserved.

In the DAC setting, users have one secret key and many public keys. In order to catch double spenders we
need to have at least one of these public keys registered with a certificate authority (CA). In VoIP systems, the
authentication server of VoIP providers like Skype, Google Talk and Vonage can play the role of the CA. In
fact, in Skype, user accounts are already associated with a public key, which they use for communication. We,
however need a new certificate issuing protocol because a conventional certificate reveals the identity of the
certificate holder and we need one that reveals the identity only in direct interaction with a user and when the
user behaves dishonestly (for example, double spends a token). The overall scheme is shown in figure 3. We
start by describing the cryptographic setting including the keys that each user needs to generate in section 5.1.
Thereafter, section 5.2 describes the certificate issuing protocol and section 5.3 describes the token framework
and the structure of the serial number and tags used to make single use tokens.

5.1 Cryptographic Preliminaries

We use the GS proof system, the DAC authentication scheme and ElGamal encryption to meet the different
requirements of the token framework. These constructs require common parameters, described in ParamGen,
that are shared across all users. The clients also need to generate a set of keys for different parts of the scheme,
and this is described in KeyGen.
• ParamGen(1k) is probabilistic algorithm that outputs the common parameters for the token scheme, parTS .
It runs GSSetup(1k)(section 4.1) to get parGS and AuthSetup(1k)(section 4.2) to get parA. Then it generates
generators ḡ ∈ G1 and h̄ ∈ G2 for the ElGamal encryption. It returns parTS = (parGS , parA, ḡ, h̄). These

9

common parameters are shared by all users of the system and are used for all the token operations.
• KeyGen(parTS) is a probabilistic algorithm that outputs the key pair for a user, Ai, (skAi , pkAi) and is run
by each user after they obtain the common parameters. This algorithm parses parTS and uses parA to generate
(sk′Ai , pk′Ai

1)← AuthKg(parA) (section 4.1). Remember pk′Ai
1 ← h(sk

′Ai
1). It then computes another public

key, pk′Ai
2 ← usk′Ai (∈ G1). The certificate issuing protocol (section 4.2) and the token issue protocol is

run with only these keys. The algorithm then generates s̄kAi $← G1. It uses this secret key to compute
p̄k

Ai
1 ← ḡs̄k

Ai and p̄kAi
2 ← h̄s̄k

Ai . These keys are used for ElGamal encryption whenever Ai is a token issuer.
Finally, skAi ← (sk′Ai , s̄k

Ai) and pkAi ← (pk′Ai , p̄k
Ai)← ((pk′Ai

1 , pk′Ai
2), (p̄kAi

1 , p̄k
Ai
2)).

5.2 Certificate Issuing Protocol

The certificate issued by a certificate authority, CA, needs to have the following properties: (1) When two users
are directly interacting with each other, the certificate for each user should clearly reveal their identities. This
ensures that each user knows that the other has been certified by the CA. (2) It should be randomizable so
that it can be transferred with a token. On randomization the certificate should no longer reveal the identity
of the user but should still verifiably prove that the certificate has been generated by CA. (3) The certificate
information should help identify a token double spender. In this section, we show how we can satisfy (1) and
(2). After introducing the rest of the scheme we show how (3) can also be satisfied.

To achieve (1) and (2), we use the authentication scheme of DAC. The details of the protocol between
the CA and a user Ai are shown in protocol 1. For brevity, all protocols described hereafter do not explicitly
specify the steps in case certain conditions are not met (for example, when proofs don’t verify, sub protocols
do not complete successfuly). In all such cases the protocol is immediately aborted. We assume that through
some previous interaction the CA has the user’s public key, pk′Ai . As a first step, (Line 1) CA and Ai run
a 2PC for creating a NIZKPK of an authenticator ([7]) with Ai as the authentication issuer, the secret key of
CA as the message being authenticated, and with zero value openings. This yields πsk′Ai→{sk′CA} which is a
proof that the commitment or the pseudonym (Csk′Ai

1 , Csk′Ai

2) ← DoubleCommit(sk′Ai , (0, 0)) authenticates
the secret key of theCA. From the definition of DoubleCommit we can see that the (Csk′Ai

1 , Csk′Ai

2) are exactly
the public keys of Ai, (pk′Ai

1 , pk′Ai
2). CA verifies that this is the case and if so stores Ai’s information and the

proof, πsk′Ai→{sk′CA} as the certificate and then sends this certificate to Ai (Line 3 and 4). πsk′Ai→{sk′CA}

clearly reveals the identity of Ai and hence achieves (1). Since the DAC authentication scheme uses the GS
proof system, the proofs themselves can be randomized using GSRand. On randomization the proof only shows
that some user’s secret key was certified by the CA but does not reveal the identity corresponding to the secret
key. This gives other users a way to reveal Ai’s certificate without revealing that they interacted with him,
achieving (2). In figure 3, the CA initially certifies all users. When A2 interacts with A3 directly, he includes
his unanonymized certificate to A3 in the token. However after A3 randomizes the certificate, it no longer
reveals the identity of A2.

Protocol 1 IssueCertificate(CA(sk′CA, pk′Ai), Ai(sk′Ai , pk′CA))
1: Run 2PC Protocol for generating NIZKPK of authenticator with zero value openings, CA gets
πsk′Ai→{sk′CA}

2: if (2 PC protocol finishes successfully) and (CA verifies πsk′Ai→{sk′CA} is generated correctly) then
3: CA: Store (Ai, pk

′Ai , πsk′Ai→{sk′CA}).
4: CA: Send πsk′Ai→{sk′CA} to Ai.
5: Ai: Set certificate CertCA→Ai as πsk′Ai→{sk′CA}

6: end if

10

5.3 Token Framework

5.3.1 Token Issue

A user issues a token to other users after a direct interaction with them. To ensure tokens are single use we use
serial numbers, similar to e-cash[11, 13]. To preserve privacy, the serial number should not be generated by the
token issuer. To see this, consider a token that is issued byA1 and follows the pathA1 → A2 → A3 after which
A3 submits the token back to A1. If A1 generated the serial number, S, when it is submitted back, along with
the deterministic increase in token length[15], A1 gets to know the interaction A2 → A3. To prevent this, we
need A2 to generate the serial number. Single use of tokens can still be ensured as long as A1 caches the serial
numbers of all tokens submitted to him. The complete token issue protocol is shown in protocol 2. Initially (line
1), A2 generates a set of random values, sA2 , which is used to create the serial number and rA2 , t̂A2 , ťA2 , which
are used to create the tags. We use 2PCAuth so that A1 authenticates these random values without getting to
know them (line 2). This allows A2 to create the serial numbers without revealing them to A1. A2 verifies the
resulting authenticator and stores the authenticator and his certificate as a direct (0-transfer) token, TokenA1

0

(line 4), abbreviated as TA1
0 in figure 3.

Protocol 2 IssueToken(A1(sk′A1 , pk′A2), A2(sk′A2 , pk′A1))

1: A2: Generate sA2 , rA2 , t̂A2 , ťA2
$← Zp.

2: Run 2PCAuth(A1(sk′A1 , {}), A2(pk′A1
1 , ~mA2 = {sk′A2 , sA2 , rA2 , t̂A2 , ťA2})), A2 gets authsk′A1→~mA2

3: if (2PCAuth successfully finishes) and (VerifyAuth(pk′A1
1 , {sk′A1}, authsk′A1→~mA2)) then

4: A2: Set token TokenA1
0 ← (authsk′A1→~mA2 , CertCA→A2).

5: end if

5.3.2 Token Transfer

Tokens are transferred to allow new users to interact with the token issuer. If tokens are transferred only on
interactions, the transfer path represents the interaction path. For example, in the VoIP setting, if tokens are
transferred only at the end of a call, the transfer path represents the SN path from the token issuer. This path
can then be used to prove higher order constructs such as weak social ties. On direct interaction the identity
information of interacting entities does not need to be anonymized. However, as the token is transferred all
previous interaction information in the token needs to be randomized to achieve unlinkability. The crux of
token transfer is to show how we can randomize the different parts of the token. Towards this we divide the
protocol into three cases: (1) the first transfer, that occurs between users who are one hop and two hops away,
(2) the second transfer, between users two hops and three hops away and (3) N th transfer, any transfer after the
second transfer.

First transfer (Case i = 0): In figure 3 when userA2 transfers a token to userA3, the first transfer protocol
described in protocol 3 is carried out. The token contains the authenticator from A1 to A2, authsk′A1→~mA2 and
A2’s certificate. To randomize the authenticator, A2 creates a NIZKPK for it using commitments of the secrets
that were authenticated (Line 1 and 2). To create a ZK proof two independent commitments, committing to the
same secret are required ([22]), something that only A2 can do. Since there is nothing to hide at this point, A2

makes commitments with 0 opening values, as then the commitment, Csk′A2 is essentially his public key and
this can be verified with his certificate. In addition his certificate is randomized to yield CertCA→? (Line 3).
The above steps make sure that the previous form of the token, namely Token0, has been suitably randomized.
A2 uses the authenticated set of values to create serial numbers and tags. The serial number is obtained from

s, using the Dodis and Yampolskiy PRF[18], as S ← g
1

sk′A2+sA2 (Line 4). The remaining elements of the

11

authenticated message vector(except the secret key) are used to compute tags, to identify a token duplicator.
A token is duplicated if a user tries to transfer the same token (same serial number) twice. A tag then should
reveal the identity of a user only when he has duplicated a token and should not leak any identity information
otherwise. We achieve this by constructing a tag that has contributions from both users in the interaction. The
user initiating the token transfer creates partial tags and the user receiving the token completes the tags such
that if the same token was transferred twice, the two resulting completed tags are different enough to yield the
token duplicator’s identity. Towards this end, when user A2 transfers the token to A3, he creates tags of the

form, T̂A2
1 ← g

1

sk′A2+t̂A2 , T̂A2
2 ← pk′A2

2 · (T̂A2
1)rA2 (Line 4).

The NIZKPK of the authenticator, the certificate, the commitments and the serial number and partial tags
are all sent to A3 (Line 5). A3 verifies that πsk′A1→~mA2 is a valid proof of the commitments (Line 6). In
addition it checks that the serial numbers and tags are formed correctly using the same commitments, through
a set of equations (Line 9). These equations are based on one of the properties of a bilinear group, namely
e(ga, hb) = e(g, h)ab. These verifications along with a check to verify A2’s certificate(Line 7) ensures that A2

has a valid authenticator from A1 and that only the secrets authenticated were used to create the serial number
and tags. In order to make sure that A2 does not double spend, A3 creates the completed tags by generating a
random number, rA3 and then calculating T̂11 ← T̂A2

2 ·(T̂
A2
1)sk′A3 , T̂12 ← pk′A3

1 ·CrA2 , Ť11 ← pk′A2
2 ·(ŤA2)rA3 ,

and Ť12 ← hrA3 (Line 12). The public key that satisfies the following equation is the public key of the double
spender, and this is explained subsequently.

e(T̂l1, T̂ ′l2)

e(T̂ ′l1, T̂l2)
= e(pkDS ,

T̂ ′l2

T̂l2

) (1)

To see why this is the case, consider a user Ai transferring the same token to both Aj and Ak.
For Aj For Ak

T̂l1 ← pk′Ai
2 · (T̂Ai

1)sk′Aj +rAi T̂ ′l1 ← pk′Ai
2 · (T̂Ai

1)sk′Ak +rAi

T̂l2 ← (h)sk′Aj +rAi T̂ ′l2 ← (h)sk′Ak +rAi

The random values, rA2 , t̂A2 , ťA2 used to generate the token tags will be the same when Ai transfers the
token to both Aj and Ak. Plugging in these values into the left hand side of equation 1 gives:

e(T̂l1, T̂ ′l2)

e(T̂ ′l1, T̂l2)
=

e(pk′Ai
2 · (T̂Ai

1)sk′Aj +rAi , (h)sk′Ak +rAi)

e(pk′Ai
2 · (T̂Ai

1)sk′Ak +rAi , (h)sk′Aj +rAi)
=

e(pk′Ai
2 , (h)sk′Ak +rAi)

e(pk′Ai
2 , (h)sk′Aj +rAi)

= e(pk′Ai
2 ,

T̂ ′l2

T̂l2

)

From this, pkDS = pk′Ai
2 and thus, Ai will be correctly identified as the double spender. This explains the

need for the first set of tags, T̂l1 and T̂l2. The second set of tags helps catch the token double spender if he
transfers the same token twice to the same user. This is useful, as users never need to store the details of a token
once they have transferred it. In this case, consider the user Ai who transfers the same token twice to Aj . The
first set of tags will both be of the form (pk′Ai

2 · (T̂Ai
1)sk′Aj +rAi , (h)sk′Aj +rAi). On the other hand, the second

set of tags, (Ťl1, Ťl2) will be different asAj generates a new random number, rAj for each token transfer. In this
case a similar equation to equation 1 can be used to identify Ai as the double spender, and is shown in equation
2.

e(Ťl1, Ť ′l2)
e(Ť ′l1, Ťl2)

= e(pkDS ,
Ť ′l2

Ťl2

) (2)

Finally, to complete the token transfer A2 needs to authenticate A3’s secrets to transfer token ownership,
which is done by running 2PCAuth (Line 13). As shown in figure 3 the authenticated message vector contains

12

A3’s secret key, sk′A3 , and the tag creating secrets rA3 , t̂A3 , ťA3 . The tag secrets will be used to create the tags
for the next transfer. Since the serial number for the token has already been created we do not need another
secret for it. The new token Token1 is as shown in figure 3 (TA1

1) and contains the randomized components of
the old token, and the newly computed components appended to it(Line 15).

Protocol 3 TransferToken(A2(sk′A2 , pk′A1 , pk′A3 ,TokenA1
i), A3(sk′A3 , pk′A1 , pk′A2)) i = 0 case

1: A2: Make 0 opening value commitments for sk′A2 , sA2 , rA2 , t̂A2 , ťA2 , represented by
Csk′A2 , CsA2 , CrA2 , C t̂A2 , C ťA2 .

2: A2: Use commitments to create an NIZK proof of authsk′A1→~mA2 using GSGenProof, yielding
πsk′A1→~mA2 .

3: A2: Get randomized certificate, CertCA→? by executing RandomizeCertificate(CertCA→A2).

4: A2: Compute serial number, S ← g
1

sk′A2+sA2 and partial tags, T̂A2
1 ← g

1

sk′A2+t̂A2 , T̂A2
2 ← pk′A2

2 ·
(T̂A2

1)rA2 , ŤA2 ← g
1

sk′A2+ťA2 .
5: A2: Send (Csk′A2 , CsA2 , CrA2 , C t̂A2 , C ťA2 , πsk′A1→~mA2 , CertCA→?, S, T̂A2

1 , T̂A2
2 , ŤA2) to A3.

6: A3: Verify πsk′A1→~mA2 is a valid proof for the commitments using GSVerify.
7: A3: Verify CertCA→? using VerifyCertificate.
8: A3: Parse public key of A2, pk′A2 as (pk′A2

1 , pk′A2
2).

9: A3: Use the commitments andA2’s public key information to check the correctness of the serial number and
tags generated using the following equations: e(S, pk′A2

1 ·CsA2) = e(g, h) ∧e(T̂A2
1 , pk′A2

1 ·C t̂A2) = e(g, h)
∧e(T̂A2

2 , pk′A2
1 · C t̂A2) = e(pk′A2

2 , pk′A2
1 · C t̂A2) · e(g, CrA2) ∧e(ŤA2 , pk′A2

1 · C ťA2) = e(g, h).
10: if (all verification procedures succeed) then
11: A3: Generate rA3

$← Zp

12: A3: Contribute A3 specific information in computing final tags, T̂11 ← T̂A2
2 · (T̂A2

1)sk′A3 , T̂12 ←
pk′A3

1 · CrA2 , Ť11 ← pk′A2
2 · (ŤA2)rA3 , and Ť12 ← hrA3

13: Run 2PCAuth(A2(sk′A2 , {}), A3(pk′A2
1 , ~mA3 = {sk′A3 , rA3 , t̂A3 , ťA3})), A3 gets authsk′A2→~mA3

14: if (2PCAuth finishes successfully) then
15: A3: Set token Token1 ← ((πsk′A1→~mA2 , CertCA→?), (authsk′A2→~mA3 , CertCA→A3 , S, T̂1 =

{T̂11, T̂12}, Ť1 = {Ť11, Ť12}))
16: end if
17: end if

Second transfer (Case i = 1): After the first transfer, in addition to posessing two sets of authenticators and
certificates, the token, Token1, now contains the serial number and tags. When this token needs to be transferred
the components need to be randomized yet again. Randomizing the authenticator and the certificate can be done
as before. However, the serial number and tags, due to the entropy they carry, also need to be randomized. In
addition, the token issuer, A1 needs to be able to retrieve the original serial number and the tags, to detect and
catch a double spender. To satisfy these requirements, we encrypt the serial number and tags with the public
key of the issuer, p̄kA1 , a technique introduced in [12]. As shown in figure 3, whenA3 transfers the token toA4,
(S, T̂11, T̂12, Ť11, Ť12) gets encrypted to (EncA1(S), EncA1(T̂11), EncA1(T̂12), EncA1(Ť11), EncA1(Ť12)), the
two sets being unlinkable with each other. As older components of the token need to be randomized ev-
ery transfer, the serial number and tags can be encrypted each time, still maintaining unlinkability of tokens.
We use the ElGamal encryption as the token issuer requires a single decryption operation even if the con-
tents (serial number and tags) are encrypted multiple times. Specifically, EncA1(S) ← ((p̄kA1

2)r̄1 · S, ḡr̄1),
EncA1(T̂11) ← ((p̄kA1

2)r̄2 · S, ḡr̄2), EncA1(T̂12) ← ((p̄kA1

1)r̄3 · S, ḡr̄3), EncA1(Ť11) ← ((p̄kA1

2)r̄4 · S, ḡr̄4),
EncA1(Ť12)← ((p̄kA1

1)r̄5 · S, ḡr̄5), where r̄1, · · · , r̄5
$← Zp.

13

Encrypting the serial number and tags makes it hard to check if they have been generated correctly. To
resolve this, we attach the ZK proofs that show that the encrypted serial number and tags are generated correctly.
For example, for EncA1(S) whose first term is of the form P · S, A3 generates commitments of P and S,
CP and CS respectively. It uses GSGenProof to create a proof that shows CP and CS have been generated
correctly. It also creates a proof that the multiplication of CP and CS is the commitment to P · S. Similar
proofs are generated for the other encryptions. Using the GS proof system allows us to concatenate[22] all of
the proofs generated, into one final proof, πEnc

1 . Once the token has been randomized, A3 creates partial tags
representing this interaction similar to First Transfer and sends all this information to A4. Once A4 verifies all
the information, and completes the tags the two users run 2PCAuth to complete the token transfer. The final
token is as shown in figure 3 (TA1

2)
Beyond Second Transfer (Case i > 1): As before, randomizing the components is the first step and

generating new tags (representing this transfer) and the authenticator is the next step. Randomization is done
as in the previous transfer cases, except that we have to re-encrypt the serial number and tags to preserve
unlinkability. The ciphertexts encrypting the serial number and tags is of the form (A = (ḡx)r ·m,B = ḡr),
where ḡx is the public key of the decryptor. Then a user who has the ciphertext and the decryptor’s public key
can re-encrypt it again by computing ((ḡx)r′ ·A, ḡr′ ·B). We can then modify the commitments and the proof
according to the new random value r′ using GSRand.

5.3.3 Token Submit

A user who submits a token makes a claim that there is a transfer/interaction path between the issuer and him.
This claim, if verified, provides the token issuer with the ability to make decisions on whether to accept any
further interaction. Token submission is similar to the corresponding token transfer as the submitter needs to
randomize all the previous components of the token. For example, if A2 submits the token that he directly
received from A1, he needs to carry out the same procedure as the first transfer protocol and create the serial
number and tags for the token. This is because A2, after submitting, could still duplicate the token by transfer-
ring it to another user. Similarly, any user Aj submitting the token should randomize the tokens by creating a
proof for the authenticator, randomizing commitments, proof of authenticators, certificates and (re)encrypting
serial number and tags. The only difference is that the authentication procedure between submitter and issuer
need not be carried out. The issuer A1 on receipt of the token must verify all the components to ensure that it
is a valid token. If the token is not valid, then it is rejected and the interaction is aborted. If valid, A1 needs
to decrypt all the serial number and tags with s̄kA1 . The issuer sees the serial number only when the token is
submitted back and detects a duplicate when two tokens with the same serial number have been submitted. To-
wards this end, the token issuer must maintain a database of all tokens submitted indexed by their serial number.
When Aj submits a token, it checks to see if the token already exists in its database. If it is a new token, the
complete token information along with the serial number is stored in the database. If the token already exists
then the two tokens are retrieved and sent to the CA to identify the double spender based of the public key that
satisfies either equations 1 or 2.

Different parts of this token scheme contribute towards satisfying our requirements. The certificates and the
keys ensure unforgeability and verifiability, privacy is supported by randomizing the token at each stage and the
serial number and tags are used to make the token single use. The security evaluation of our scheme is provided
in the next section.

14

6 Security Evaluation

6.1 Algorithms and protocols

We formalize and summarize the algorithms described in the previous sections as follows:

• ParamGen(1k) is probabilistic algorithm that outputs the system parameters parTS .

• KeyGen(parTS) is a probabilistic algorithm that outputs the key pair of user, Ai: (skAi ,pkAi). This pair
represents all the keys that are generated.

• IssueToken(A1(skA1 , pkA2), A2(skA2 , pkA1)) is an interactive protocol where A1 issues a token to A2.
After this protocol ends, A1 gets either its view V issue

A1
or ⊥, and A2 gets either a token TokenA1

0 or ⊥.

• TransferToken(Ai(skAi , pkA1 , pkAi+1 ,TokenA1
i−2), Ai+1(skAi+1 , pkA1 , pkAi)) is an interactive protocol

between Ai and Ai+1. pkA1 is the public key of the issuer of TokenA1
i−2’. At the end, Ai has its view

Vtransfer
Ai

or ⊥, and Ai+1 has either a token TokenA1
i−1 or ⊥.

• SubmitToken(Ak+1(skAk+1 , pkA1 ,TokenA1
k−1), A1(skA1 , pkAk+1 , DA1)) is an interactive protocol be-

tween Ak+1 and A1. A1 will accept TokenA1
k−1 if it was correctly issued by A1 and has never been

submitted before. DA1 represents A1’s token database. At the end of this protocol, Ak+1 gets either its
view Vsubmit

Ak+1
or ⊥, and A1 gets either an updated list D′A1 , or two tokens TokenA1

k+1 and TokenA1
l which

have the same serial number, or ⊥.

• Identify(TokenA1
l ,TokenA1

l′) is a deterministic algorithm. If both TokenA1
l and TokenA1

l′ come from the
same TokenA1

0 , it outputs the public key of the token double spender. Otherwise it returns ⊥.

• VerifyGuilt(pkAi ,Π) is a deterministic algorithm which outputs 0 if Π is a correct proof that the owner
of pkAi double spent the token, or 1 otherwise.

6.2 Correctness

We say a token submit is correct if an honest issuer gets an updated database as part of running protocol
SubmitToken with the token submitter, only when the submitter submits a valid token. We say that a token issue
and token transfer are correct if a honest user gets a valid token by running IssueToken or TransferToken proto-
col respectively, such that the token can be submitted or transferred and the submitter on running SubmitToken
with the issuer, will never have the issuer outputting ⊥.

Pr[{Vsubmit
A1

, D′A1} $← SubmitToken(Ak+1(skAk+1 , pkA1 ,TokenA1
k−1), A1(skA1 , pkAk+1 , DA1)) :

parTS $← ParamGen(1k);

(skA1 , pkA1), ..., (skAk+1 , pkAk+1) $← KeyGen(parTS);

{V issue
A1

,TokenA1
0 }

$← IssueToken(A1(skA1 , pkA2), A2(skA2 , pkA1));

{{Vtransfer
Ai

,TokenA1
i−1}

$← TransferToken(Ai(skAi , pkA1 , pkAi+1 ,TokenA1
i−2), Ai+1(skAi+1 , pkA1 , pkAi))}i=2,··· ,k] = 1,

6.3 Security and anonymity

This section shows the security and anonymity model that any token transfer scheme needs to satisfy. It then
provides the security proofs of our token transfer scheme under this model.

15

6.3.1 Definition of oracles

We follow a similar approach as [12]. Suppose that the parameter parTS is given to the oracles. All the users’
public keys and secret keys are initially created and managed by the oracles in databases PK and SK. They also
manage the set of views of tokens. There are three tables IT, OT and ST. The tokens issued from the oracles
are stored in IT, those issued to, or transferred from or to the oracles in OT, and those submitted to the oracles
in ST. To evaluate the security of our scheme we use the following oracles:

• OCreateUser(i) executes KeyGen(parTS) and stores the output public key pkAi in PK[i] and the secret
key skAi in SK[i].

• OCorrupt(i) outputs skAi and sets SK[i] = ⊥. When an adversary executes this oracle he gets all of Ai’s
tokens. After this protocol is run, the adversary can act as Ai as well as any of the other users that he has
corrupted.

• OIssueI(pkA1 , pkA2) runs IssueToken protocol playing the token issuer. The adversary should have the
secret key skA2 to execute this oracle. The oracle stores V issue

A1
in IT[1].

• OIssueU(pkA1 , pkA2) runs IssueToken playing the token receiver, A2’s side. The adversary should have
skA1 to execute this oracle. The oracle stores the resulting token in OT[2]

• OIssueI&U(pkA1 , pkA2) runs IssueToken protocol playing both the token issuer and receiver. If the result
of the protocol is V issue

A1
and TokenA1

0 , they are stored in IT[1] and OT[2], respectively. The adversary
should have neither skA1 nor skA2 .

• OTransferS(pkAi ,TokenA1
i−2, pk

Ai+1) runs TransferToken protocol playing the user who is transferring
the token. The adversary should have secret key skAi+1 to execute this oracle. If OT[i] does not have
the token, the protocol is aborted. If the protocol is successful then TokenA1

i−2 is removed from OT[i] and
sent to the adversary. OT[i] is updated with the view Vtransfer

Ai
.

• OTransferR(pkAi ,TokenA1
i−2, pk

Ai+1) runs TransferToken protocol playing the token receiver, Ai+1’s
side. The adversary should have skAi and TokenA1

i−2 before executing this oracle. If the protocol com-
pletes successfully, the resulting TokenA1

i−1 is stored in OT[i+ 1].

• OTransferS&R(pkAi ,TokenA1
i−2, pk

Ai+1) runs TransferToken protocol playing both sides. If OT[i] does
not have the token, the protocol is aborted. Otherwise, after running the protocol, TokenA1

i−2 is removed
from OT[i] and sent to Ai+1. TokenA1

i−1 is now stored in OT[i+ 1]. Ai’s output, Vtransfer
Ai

is now stored
in OT[i].

• OSubmitS(pkAk+1 ,TokenA1
k−1, pk

A1) runs SubmitToken protocol playing Ak+1. The adversary should
have skA1 to execute this oracle. If the protocol is not aborted OT[k+ 1] is updated with Ak+1’s view of
the protocol, Vsubmit

Ak+1
. If SubmitToken outputs TokenA1

l ,TokenA1
k−1, it runs Identify(TokenA1

l ,TokenA1
k−1,)

and outputs the resulting public key.

• OSubmitR(pkAk+1 ,TokenA1
k−1, pk

A1) runs SubmitToken protocol playing the issuer’s side. The adver-
sary should have both TokenA1

k−1 and skAk+1 to run this oracle. skA1 should not belong to the adversary.
It updates ST if the protocol completes successfully. If SubmitToken outputs TokenA1

l ,TokenA1
k−1, it runs

Identify(TokenA1
l ,TokenA1

k−1,) and outputs the resulting public key.

16

6.3.2 Unforgeability

As in [12], the unforgeability requirement reduces to the fact that any set of users should not be able to spend
more tokens than those issued or transferred to them.

Game. Suppose an adversary Adv is a probabilistic polynomial-time Turing Machine that has access to all
of the user’s public keys in PK and parTS ← ParamGen(1k). Adv can play with the oracles OCreateUser,
OCurrupt, OIssueI, OIssueI&U, OTransferS, OTransferR, OTransferS&R and OSubmitR, as many times as he
wants. Adv wins the game if qI + qR < qS where qI is the number of successful queries to the oracle OIssueI,
qR is the number of successful queries to the oracle OTransferS, and qS is the number of successful queries to
the oracle OTransferR.

Theorem 6.1 The proposed scheme is unforgeable

Proof: (Sketch) Suppose the adversary, Adv succeeds in forging a token in the unforgeability game. This
means Adv produces at least one new token that is acceptable by the oracle OTransferR. Based on the number
of transfers that the token has undergone, we can divide this into three cases. If the new token is a directly
issued token, then the entire token is essentially a delegatable anonymous credential. The existence of the new
token means breaking F-unforgeability[7], which is a contradiction based on the computational assumption in
[7]. If the new token has undergone a single transfer then it consists of the delgatable anonymous credential, a
serial number, and a tag. The existence of the new token then breaks F-unforgeability, or violates the weak BB
assumption [9]. Based on the assumptions in [7], this is infeasible. The final case is where the new token has
undergone more than one transfer. In this case, the new token is a GS-NIZK proof. Because of the extractability
of the GS-NIZK proof, we can extract the witness of the proof. Thus, like the second case, we can show that this
means breaking the F-unforgeability or violating the weak BB assumption. Therefore, the proposed scheme is
unforgeable.

6.3.3 Anonymity

For the token scheme to be privacy preserving, in our setting, we need it to have strong anonymity guarantees.
In this section we define the exact anonymity requirements, and call it interaction anonymity. We define the
interaction anonymity game analogous to the one in [12]. In [12], the adversary, Adv runs the e-cash credential
transfer protocol (spending protocol) with a challenged user ib, where b could be either 0 or 1, and has to
determine b. In our case, since the identity of a user is known in a direct interaction, Adv can easily win the
same game. We, therefore, modify the game such that the challenged user ib runs the token transfer protocol
with an intermediate userAj first. Aj , then, transfers it toAdv, who tries to determine b. This game captures the
concept of interaction anonymity where the concern is the privacy of previous interactions. We have previously
used A∗ to define all our users. We use i0 and i1 to maintain a similar notation as [12], enabling us to highlight
the difference between the two anonymity games. i0 and i1 could represent any two users. We define the
anonymity game more precisely as follows:

17

Gameanonymity(1k)
1 parTS $← ParamGen(1k)
2 SK, PK, IT, OT, and ST are created.
3 pki0 , pki1 , pkAj ,TokenA1 ,Token′A1 $← AdvSetofOracles, where SK[1] 6= ⊥, SK[j] 6= ⊥, SK[i0] 6= ⊥, SK[i1] 6= ⊥.

TokenA1 ,Token′A1 have the same length.
4 Suppose TokenA1 belongs to Am, and Token′A1 belongs to An, where both users could be corrupted by Adv.

OTransferR(pkAm , pki0 ,TokenA1) and OTransferR(pkAn , pki1 ,Token′A1) are executed.
5 b

$← {0, 1} and OTransferS&R(pkib , pkAj) is executed.
6 OTransferS(pkAj , pkAAdv

) is executed, where AAdv can be any user who is corrupted by Adv.
7 b′ ← AdvSetofOracles′

8 If b = b′ return 1. Else, return 0.
(*) Adv cannot use OSubmitR more than once for each token TokenA1 and Token′A1 through the whole experiment,

even when they are transferred to other users controlled by oracles.
(*) SetofOracles means Adv can play with all the oracles.
(*) SetofOracles′ means Adv can play with all oracles except OTransferS(pki0 ,TokenA1 , ·), OTransferS(pki1 ,Token′A1 ·),

OSubmitS(pki0 ,TokenA1 , A1), and OSubmitS(pki1 ,Token′A1 , A1) are not allowed.

In the above game, the following inequality should hold for a scheme if it has to meet interaction anonymity:

|Pr[Gameanonymity(1k) = 1]− Pr[Gameanonymity(1k) = 0]| < 1
p(k)

Theorem 6.2 The proposed scheme preserves interaction anonymity

Proof: (Sketch) From the anonymity experiment, the token has undergone at least 3 transfers after which the
adversary, Adv needs to determine whether i0 or i1 owned it previously. This means that the token is composed
of GS-Proofs, a serial number, and tags. The serial number and tags are encrypted with the issuer’s public
key. The harder case is if the adversary has seen the token before, by corrupting users Am and An. Since the
GS-proofs are randomized [7], and the serial number and tags are re-encrypted with a new random number
at every transfer, both of which ensure unlinkability, Adv cannot link the token that he obtains to any of the
tokens that he previously owned. More precisely speaking, the randomizability of GS-proofs[22] shows that the
randomized GS-proof cannot be distinguishable from a simulated GS-proof that is generated based on simulated
parameters even though the adversary knows the trapdoor information of the proof. This means the GS-proofs
that were part of the token owned by the Adv are unlinkable to the GS-proof in the token that he obtains at the
end of the experiment. As far as the serial number and tags are concerned, any of the re-encrypted Elgamal
ciphertexts are indistinguishable from the two random element tuple (gr1 , gr2), where r1, r2

$← Zq based on
DDH assumption. Therefore, the serial number and tags previously seen by the adversary are unlinkable to the
ones that are part of the token that he obtains at the end of the experiment. The proposed scheme therefore
preserves interaction anonymity.

6.3.4 Identification of double spender

No user can double spend or transfer a token twice without revealing his identity. We define this requirement
through the following game:

Game. Let an adversary Adv be a polynomial probabilistic Turing Machine that has access to all of the
users’ public keys in PK and parTS . Adv can play any number of times with all of the oracles. Then Adv

18

chooses a challenge token Token that belongs to one of the users that he has corrupted, Ai. After that, Adv
uses Token twice using either OTransferR or OSubmitR. Adv can again play with all of the oracles any
number of times. Adv wins the game if, on running OSubmitR, the Submit protocol outputs Token′, T oken′′,
where both tokens come from Token, and the output of Idenitfy(Token′, T oken′′) is not a public key whose
secret key is ⊥ in SK.

Theorem 6.3 The proposed scheme identifies double spenders

Proof: (Sketch) We divide the double spending into two cases. The first case is where a user Ai transfers his
token to two different users, Am and An. Am and An use their public keys to make the first set of tags (T̂l1,
T̂l2). Therefore, these two tags are different ensuring that when the issuer receives both these tokens, no matter
how many transfers the tokens have undergone, the double spending will be detected as shown in equation 1.
The only way the tags are not different is if Am and An use the same public key, which is not possible, as for
them to be regarded as different entities, their (registered) public keys should be different from each other. If
they are the same entity the situation is considered in the next case.

The second case is if Ai transfers the same token twice, as the receiving user does not have access to the serial
number of the token he receives. In this case, the second set of tags (Ťl1, Ťl2) for the two copies of the double
spent token are different as the receiving user will use a different random number for each interaction. When
these tokens are submitted to the issuer, (Ťl1, Ťl2) will reveal the double spender, Ai as shown in equation 2.
Ai can transfer the token to another user corrupted by Adv, Aj who uses the same random number for both
interactions. Aj will then transfer these tokens to some other set of users. However when these tokens are
submitted to the issuer, Aj will instead be caught as the double spender.

7 Implementation and Evaluation

Our scheme is built on a large number of relatively new cryptographic primitives (DAC - Crypto 2009, GS Proof
System - Crypto 2008) and we are aware of no implementations that exist for them. We, therefore, first built
these primitives, in C, on top of the PBC library[27] which performs pairing based mathematical operations.
We use type D curves with group order of 159-bit length. We then implemented the different algorithms of our
token scheme on top of these primitives. The complete token framework was implemented in ≈ 12000 lines of
code. We rewrote our existing VoIP simulator code to use Google protocol buffers to pass messages between
entities. The protocol buffers offer fast serialization and deserialization, with minimal header overheads, and
allow changes to the message structure without breaking older code. This required an additional ≈ 2500 lines
of code. Since the token framework implements a wide variety of cryptographic primitives we first study the
performance of the token framework with respect to the time taken by operations and the message lengths
(network bandwidth) generated by the interactive protocols.

7.1 Operation Costs

7.1.1 Startup Costs

We initially need to generate the common parameters using the PBC library[27], as described in the algorithm
ParamGen in section 5.1. These include the bilinear groups and all the group generators. Since we use the
SXDH assumption [9] we create an asymmetric bilinear pairing, that is G1 6= G2. These common parameters
need to be shared across all clients. In our system, without loss of generality, we let the CA generate these pa-
rameters. The operation costs that follow were measured on an Intel Xeon 5160 with a 3 GHz processor. Each

19

0

2000

4000

6000

8000

10000

12000

14000

243 100

7351

1575

T
im

e
(m

s)

498

Operation

Certificate
Issue Protocol

Key
Generation

Client Parameter
Initialization

Certificate
Authority

Client 1

Common
Parameter
Generation

Client 2

Token Issue
Protocol

Figure 4: Time - Operation Preliminaries

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

4328

1816

1933

1648

6230

9651

Operation

L
en

g
th

 (
b

yt
es

)

Common Parameter
Generation

Certificate
Authority

Client 1

Client 2

5446

16169
228

49

Certificate Issue
Protocol

Token Issue
Protocol

Figure 5: Length - Operation Preliminaries

operation was run 10 times and the mean and standard deviation of the time taken and the message lengths
generated by these operations are as shown in figure 4 and 5. Many of the operations include two entities (ex-
ample, Client and CA) and the length captures the network bandwidth utilized during this operation. The time
in such interactive operations does not include the network latency. The parameter generation measurements
are as shown in the block marked Common Parameter Generation. The operation takes around 240ms and
the parameters themselves can be encapsulated in a message of length ≈ 4KB. All clients on startup contact
the CA to obtain the common parameters as a 4KB message and use it to initialize their global parameters
structure. The client initialization is relatively quick and takes around 100ms and is shown as block marked
Client Parameter Initialization in figure 4. The CA also needs to initialize its own global parameters structure.

Using the common parameters, the clients and the CA generate the secret keys and the public keys, (sk′Ai ,
pk′Ai) and (s̄kAi , p̄kAi) as described in algorithm KeyGen in section 5.1. Strictly speaking, the CA does not
need to generate the secret key and the corresponding public keys that are used for ElGamal encryption, as it
never issues a token. The key generation is a costly operation as seen in the block marked Key Generation and
takes around ≈ 7 s with a standard deviation of ≈ 5 s. The clients then need to certify their public keys pk′Ai ,
from the CA as described in IssueCertificate. The client and the CA engage in a 2PC protocol for creating the
NIZKPK proof of the authenticator. The details of the 2PC protocol are provided in [7]. The lengths of the
messages exchanged between the client and the CA are shown in the block marked Certificate Issue Protocol.
All the messages are under 2KB, and the overall time of the operation notwithstanding network latencies is
roughly .5 s. All these operations are performed by the clients at startup time, following which clients can
interact with each other to issue, transfer or submit tokens.

7.1.2 Cost of Token Operations

The token issue protocol is a three way exchange between the token issuer and the receiver. They carry out a
secure 2PC of the issuer authenticating the receiver’s secrets as described in IssueToken. The time taken and
the message length generated are depicted by the block Token Issue in figures 4 and 5. A token issue takes on
average 1.5 s to complete, with little variance. Once a token is issued the receiving client can submit it back or
transfer the token further. As described earlier, the submit or the transfer operations vary based on the number
of times this token has already been transferred. The length of the randomized token(essentially all the proofs)
is shown in figure 7. Chase et al[7] was the first to introduce DACs with proof size O(Lk), where L is the
number of hops from the token issuer and k is the security parameter. We rely heavily on the authentication
scheme provided by DACs and we add the notion of single use tokens through the creation of serial number and

20

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

Number of Transfers

T
im

e
(s

ec
)

Token Submit
Token Transfer

Figure 6: Time - Coin Transfer and Submit

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

Number of Transfers

L
en

g
th

 (
K

B
)

Token Submit
Token Transfer

Figure 7: Length - Coin Transfer and Submit

tags. Our construction is also linear in the size of the proof and this can be seen in figure 7. The close similarity
between token submit after L hops (L ≥ 2) and token transfer after L+1 hops is that in order to submit a L hop
transferred token, the owner needs to randomize the token in the exact fashion as a token transfer. For token
submit, token lengths increases by 15KB each transfer. This is important as we plan to use this framework in
a VoIP setting where call signaling and call teardown is performed over both UDP and TCP. In IPv4 for UDP,
the maximum packet size is 65507, dictated by the maximum IP packet size of 65535 less 20 bytes for the IP
header and 8 bytes for the UDP header. This can be overcome by splitting the token or using TCP or using IP
jumbograms in the case of IPv6 networks. In this paper, we do not split the tokens and only allow tokens of size
less than 65KB. We therefore restrict ourselves to only allowing 4 hop token transfers (3-transfer case) which
have token lengths of size 58 KB.

As seen in figure 7 the length of Token Submit 0 is ≈ 3KB and of Token Submit 1 is ≈ 28KB. Token
Submit 0 is when a token directly issued to a user is submitted back. Since we assume that the two entities
engaged in an interaction know each other we simplify the Token Submit 0 operation such that the contents are
not randomized and the token is submitted back as is, except that the serial number and tags for the token are
still calculated (the token can still be double spent). In all other cases the token needs to be randomized as
this prevents the issuer from determining who was the penultimate owner of the token. In our example when
a k hop token issued by A1 is submitted through path Ak → Ak+1 → A1, randomization prevents A1 from
knowing Ak → Ak+1. For Token Submit 0 there is no previous owner to the submitter. In the token transfer
case too there is an increase in token length from Token Transfer 1 and Token Transfer 2. In this case from
Token Transfer 2, the serial number and tags need to be encrypted and the proofs for their correctness need to
be added. This causes the increase in token length.

Figure 6 depicts the most significant time activity for coin transfers and tokens over 10 runs (mean value,
the variance is low). This includes verifying correctness of tokens and in the case of token transfers performing
the final stage of the 2PC for creating NIZKPK of authenticator. The overall time taken for token transfer is
significantly more due to the 2PC protocol. The time taken for both coin transfer and coin submit increases
linearly with the number of hops. The token submit operations increase by 1.5 s per hop and the token transfers
increase by 4 s per hop. These values will dictate feasibility of the token framework in a particular application
setting. In the next section we apply the token framework to the VoIP setting and study its performance in
preventing VoIP spam.

21

7.2 Applying The Token Framework To Prevent VoIP Spam

To evaluate our token framework we applied it to a VoIP setting to assess caller legitimacy based on social
network interactions. VoIP is the umbrella term given to a set of protocols that allow the routing of voice calls
over the internet (IP network). The signaling can be enabled through a variety of ways, though in this paper,
we specifically consider the Session Initiation Protocol (SIP)[30]. For two users to communicate with each
other using SIP, they need to know each other’s SIP Uniform Resource Identifier (SIP URI). SIP uses a three-
way handshake to establish a call and a two way handshake to teardown a call. Call duration as required by
Callrank[5] and our system is the time between the end of call setup to the start of call teardown.

We piggyback our token mechanisms on top of the call signaling messages. Token submit just requires
a single message from one user to the other. We therefore add token details to the call initiation message
(INV ITE) of call setup. Based on the validity of the submitted token, the call can be accepted (200 OK) or
rejected (440 REJECT). E.721[33] recommends an average delay of no more than 3.0, 5.0 or 8.0 s, for local,
toll and international calls, with the 95th percentiles set at 6.0, 8.0 and 11.0 s, respectively. Looking at the token
submit times from figure 6 we see that other than for direct token submits (Token Submit 0), token submit times
are greater than 3 s and increase by 1.5 s every hop. This implies that direct tokens offer acceptable call setup
delays while tokens that have undergone one or two transfers will fall within the 95th percentile. Tokens that
have undergone three transfers (four hops away) and beyond will have unacceptable call setup times. However,
these calls will be infrequent as they introduce new users, who are four hops away and will be incurred only
once for any such introduction. Taking this and the UDP packet size limit into account, we only allow up to
three transfers (users four hops away) in this implementation. Removing these restrictions is part of future
work, including the use of a different set of curves to obtain faster bilinear pairing operations.

Token issue and transfer can be piggybacked onto the call teardown message (BY E). Although token trans-
fer takes significantly more time than the other operations, call teardown does not have strict time constraints.
With the BY E message we can also calculate the duration of the call and embed it within the token as a public
attribute[7]. Since the token does not reveal identities of the interacting parties, the call duration in itself does
not leak privacy. SIP teardowns are two-way handshakes, a BY E message followed by a 200 OK. However,
our token issue and transfer protocols are three-way, necessitating the need for a non piggybacked message.
There can be multiple policies to decide, after a call, whether a caller issues a new token and or transfers a pre-
owned one, to the call recipient. In this paper, each user maintains a max-heap of tokens, ordered on number of
tokens. When user A1 calls user A2, he issues tokens if A2 has lesser than a threshold number of A1’s tokens,
or if A1 does not have sufficient number of tokens of any other user to transfer. In all other cases, A1 transfers
the token of a user from whom it has collected the maximum number of tokens.

To evaluate the combined system, we setup a simulation with 4 domains, each serviced by a proxy that han-
dles 50 users, a total of 200 users in the system. In addition, we have a DNS server, a cryptography server and
a statistics server. The DNS server translates domain names to the correct proxy IP address. The cryptography
server generates the common parameters and doubles up as the CA. The statistics server calculates statistics
including true positives, true negatives, false positives and false negatives. Initially each client requests the
cryptography server for the common parameters and uses them to generate keys. It gets the keys certified by
the CA and then it is ready to make and receive calls. The distribution with which it makes calls is dependent
on the type of user the client represents. Clients can behave either as an honest user or one of two types of
spammers: (1) engaging spammers are able to engage users with a certain probability both when they receive
calls and when they make calls, (2) fleeting association spammers are able to engage users only till the comple-
tion of some activity. Honest users makes calls to other phones with inter call and call duration values that are
Poisson distributed. The choice of call recipient is Zipfian distributed. Spammers make calls to as many other
users as possible. Honest users issue or transfer tokens based on a threshold call duration strategy. Spammers
issue or transfer tokens to increase the number of spam calls. All spammers are inclined to collude with other

22

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (days)

F
P

R

1 Day
2 Days
3 Days
4 Days
5 Days

Learning
Period

Figure 8: Learning Period - False Positive Rate

0 2 4 6 8 10 12 14 16
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Time (days)

S
en

si
tiv

ity
−T

P
R

15%

10%

5%

20%

25%

Figure 9: Engaging Spammers - True Positive Rate

spammers. In the simulation, 100 s of simulation time is equivalent to 1 day of real time. Each run lasts 20
days (2000 s).

7.2.1 Choice of Learning Period

The learning period is a duration of time just after a user is introduced into the system. During this time, the
user accepts all calls to obtain a sizeable starting set of tokens from his SN. These tokens enable the user to
call his SN and also disseminate his tokens so that others can call back. The learning period ensures that when
a honest user is introduced into the system, he becomes selective about the calls he accepts only when he has
a significant supply of tokens from members of his SN and his SN has a significant supply of his tokens. We
assume that during this learning period spammers do not discover the user and therefore cannot spam the user.
The graph in figure 8 shows the false positive rate (FPR) for 200 users, all honest, for different initial learning
periods. The time axis starts 1 day into the running of the system as this is the minimum learning period that
was used. The stabilized false positive rate shows an exponential drop with increasing learning periods. For
learning periods of 1, 2 and 3 days it is≈ 11%,≈ 3%,≈ 1.7%, respectively and thereafter stays around≈ 1.5%
for higher learning periods. After learning periods of 3 days or more, users have a significant supply of tokens
and can obtain tokens of users who are four hops away through the token transfer mechanism, resulting in a low
false positive rate. Shue et al[31] studied the onset of spam and found that accounts that post their addresses on
less popular websites will be discovered and receive spam only after 3 days. If we assume this holds for VoIP
addresses too, then as long as users do not aggressively broadcast their addresses a learning period of 3 days is
feasible and provides a low enough FPR. In addition, since learning periods of more than 3 days do not reduce
the FPR significantly, we use a 3 day learning period for the rest of the simulations.

7.2.2 Spammers that Engage Users In Conversation

In our system, users issue or transfer tokens only when a call lasts for more than a threshold duration. Spammers
without the ability to engage users will never get tokens, even if they do manage to get users to inadvertently
call them. However spammers thrive because some honest users are fooled into believing the legitimacy of the
spam content. To model this, we associate with all users a value between 0 and 1 that represents the ability to
engage another user in conversation. This value is set high for honest users and we configure spammers with
various levels of engagability. Based on the engagability of the spammer, a user will inadvertently either issue or
transfer tokens to spammers. Spammers can collude and therefore can collaboratively glean tokens. Spammers
are introduced into the system immediately after the learning period (3 days). The results for different values

23

of spammer engagability for a system with 20% spammers are shown in figure 9. For all cases our token
framework is able to achieve a high sensitivity, of over 99%, in blocking spam calls. Spammers will find it hard
to engage users in conversation and even when they do, the single use tokens only allows a limited number of
calls. On the other hand, an honest user, due to his ability to carry on a conversation will first receive tokens of
his immediate SN, and then receive tokens from his extended SN. From figure 9, small values of engagability
(5%, 10% and 15%) result in a low false negative rate (FNR) and this rate stabilizes early in the run. However
spammers with a higher ability to engage users (25%), are able to make more calls at an ever increasing FNR,
largely due to the collusions with other spammers. For spammers with 25% enagagability the final stabilized
FNR was close to 1% and for 35% the FNR was close to 1.3%.

7.2.3 Fleeting Association Spammers

0 2 4 6 8 10 12 14 16 18
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (days)

S
en

si
tiv

ity
−T

P
R

1 Day
2 Days
3 Days

Honest User
Duration

Figure 10: Fleeting Association Spammer - True Positive Rate

We also studied the effects of introducing 10% fleeting association spammers who behave dichotomously.
When just introduced to a user, they behave legitimately but soon start spamming the user. We configure these
users to behave normally for periods of 1, 2 and 3 days. Figure 10 shows the results. We find that the longer
the spammer behaves normally the more effective they are in spamming. Spammers who behaved normally
for 1, 2 and 3 days and then started spamming were able to achieve a FNR of ≈ 4.5%, ≈ 17% and ≈ 43%,
respectively. These values show that the success of a spammer increases significantly with the amount of time
he is able to behave normally. These values are particularly alarming as spammers who behave normally for
3 days are able to amass a significant number of tokens and can use it to spam all the users who issued those
tokens. However, the system realises this quickly and within a day reduces the FNR for each of the cases to
under 10%. This reduction is not time based but token based. If a spammer starts making spam calls at a higher
rate his success rate will also drop faster as he quickly run out of tokens (that no longer get replenished). The

24

stabilized FNRs for spammers who behaved normally for 1, 2 and 3 days is ≈ .3%, 1%, 2%. In addition, for
the spammer to be successful again, he needs to engage each user that he wants to spam for for at least 2 days,
after which his success rate is high only for the first day resulting in diminishing returns for the spammer.

The results clearly demonstrate that reasonable performance can be achieved for the token transfer scheme.
In addition, the scheme is effective against the spammer threat model. The transfer mechanism of the token
helps reduce the false positives for feasible values of the learning period. The single use feature protects against
spammers that can engage users in conversation and hence obtain tokens, and users who behave normally
and amass tokens and then start spamming. In both these cases the limited supply of tokens ensures that the
spammers effectiveness rapidly decreases with time. The anonymity and unforgeability features ensure that
users only engage with new users who have some weak social link without revealing what the link is.

8 Conclusion and Future Work

In this paper, we created a single use transferable token framework that captures interaction history in a privacy
preserving manner by enhancing delegatable anonymous credentials. We implemented the framework and
showed the feasibility of using it in a VoIP setting to prevent VoIP spam. Our future work includes extending
the system to provide multiple tokens in a single interaction (compact token scheme), and ways on improving
the efficiency of the system.

References
[1] Presentation on Q1 2009 Earning Report of Ebay Inc. http://www.slideshare.net/earningreport/presentation-on-q1-2009-earning-report-of-ebay-

inc. Last accessed Sep. 18, 2009.
[2] K. G. Anagnostakis and M. B. Greenwald. Exchange-based incentive mechanisms for peer-to-peer file sharing. In 24th International Conference

on Distributed Computing Systems (ICDCS), 2004.
[3] AOL. AOL Instant Messenger. http://dashboard.aim.com/aim. Last accessed. Sep 18, 2009.
[4] L. Baker. Yahoo to Support OpenID for its 248 Million Users, OpenID to Support Yahoo IDs. http://www.searchenginejournal.com/yahoo-to-

support-openid-for-its-248-million-users-openid-to-support-yahoo-ids/6258/. Last accessed Sp. 18, 2009.
[5] V. Balasubramaniyan, M. Ahamad, and H. Park. Callrank: Combating spit using call duration, social networks and global reputation. In CEAS

2007 - The Fourth Conference on Email and Anti-Spam, 2-3 August 2007, Mountain View, California, USA, 2007.
[6] A.-L. Barabási. Linked: The New Science of Networks. Perseus Books Group, May 2002.
[7] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable proofs and delegatable anonymous

credentials. In Crypto, volume 5677 of LNCS, pages 108–25. Springer-Verlag, Aug. 2009.
[8] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, A. Lysyanskaya, and E. Rachlin. Making p2p accountable without losing privacy. In

ACM workshop on Privacy in electronic society (WPES), pages 31–40, New York, NY, USA, 2007. ACM.
[9] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Crypto, LNCS. Springer-Verlag, 2004.

[10] L. Bussard, Y. Roudier, and R. Molva. Untraceable secret credentials: Trust establishment with privacy. In PERCOMW ’04: Proceedings of
the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, page 122, Washington, DC, USA, 2004. IEEE
Computer Society.

[11] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EUROCRYPT, volume 3494 of LNCS, pages 302–321. Springer-Verlag,
2005.

[12] S. Canard and A. Gouget. Anonymity in transferable e-cash. In Applied Cryptography and Network Security, 6th International Conference, ACNS
2008, New York, NY, USA, June 3-6, 2008. Proceedings, pages 207–223, 2008.

[13] S. Canard, A. Gouget, and J. Traoré. Improvement of efficiency in (unconditional) anonymous transferable e-cash. pages 202–214, 2008.
[14] B. Carminati and E. Ferrari. Privacy-aware collaborative access control in web-based social networks. In Proceeedings of the 22nd annual IFIP

WG 11.3 working conference on Data and Applications Security, pages 81–96, Berlin, Heidelberg, 2008. Springer-Verlag.
[15] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO ’88: Proceedings on Advances in cryptology, pages 319–327, New

York, NY, USA, 1990. Springer-Verlag New York, Inc.
[16] D. Chaum and T. P. Pedersen. Transferred cash grows in size. In EUROCRYPT, pages 390–407, 1992.
[17] L. P. Cox and B. D. Noble. Samsara: honor among thieves in peer-to-peer storage. SIGOPS Operating Systems Review, 37(5):120–132, December

2003.
[18] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In Proceedings of the Workshop on Theory and Practice

in Public Key Cryptography, 2005.
[19] eBay. Skype. http://www.skype.com/.
[20] Google. Google talk. http://www.google.com/talk/.

25

[21] M. Granovetter. The strength of weak ties: A network theory revisited. Sociological Theory, 1:201–233, 1983.
[22] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances in Cryptology EUROCRYPT 2008, pages 415–432.

2008.
[23] D. Hausheer. PeerMart: Secure Decentralized Pricing and Accounting for Peer-to-Peer Systems. PhD thesis, ETH Zurich, Aachen, Germany,

Mar. 2006.
[24] Y. Inc. Yahoo! messenger. http://messenger.yahoo.com/.
[25] J. Ioannidis, S. Ioannidis, A. D. Keromytis, and V. Prevelakis. Fileteller: Paying and getting paid for file storage. In Sixth International Conference

on Financial Cryptography, pages 282–299, 2002.
[26] N. Liebau, V. Darlagiannis, A. Mauthe, and R. Steinmetz. Token-Based Accounting for P2P-Systems. 2005.
[27] B. Lynn. Pairing based cryptography library. http://crypto.stanford.edu/pbc/, 2006.
[28] A. Lysyanskaya, R. L. Rivest, and A. Sahai. Pseudonym systems. In Proceedings of SAC 1999, volume 1758 of LNCS, pages 184–199. Springer

Verlag, 1999.
[29] N. Ramakrishnan, B. J. Keller, B. J. Mirza, A. Y. Grama, and G. Karypis. Privacy risks in recommender systems. IEEE Internet Computing,

5(6):54–62, November 2001.
[30] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.

RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393.
[31] C. A. Shue, M. Gupta, J. J. Lubia, C. H. Kong, , and A. Yuksel. Spamology: A study of spam origins. In Conference on Email and Anti Spam

(CEAS), 2009.
[32] D. A. Turner. A lightweight currency paradigm for the p2p resource market. In 7th International Conference on Electronic Commerce Research,

2003.
[33] I. T. Union. Network grade of service parameters and target values for circuit-switched services in the evolving isdn, 2004.
[34] K. Wei, A. J. Smith, Y.-F. R. Chen, and B. Vo. Whopay: A scalable and anonymous payment system for peer-to-peer environments. In ICDCS

’06: Proceedings of the 26th IEEE International Conference on Distributed Computing Systems, page 13, Washington, DC, USA, 2006. IEEE
Computer Society.

[35] B. Yang and H. Garcia-Molina. Ppay: micropayments for peer-to-peer systems. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages 300–310, New York, NY, USA, 2003. ACM.

26

