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Simple Newsvendor Heuristics for  
Two-Echelon Distribution Networks 

 
 
We consider the problem of determining stocking levels in a multi-echelon distribution network 

consisting of a warehouse and n non-identical retail locations.  Lead-times are deterministic, there are no 

fixed ordering costs, and unmet demand is backlogged.  Both Clark and Scarf (1960) and Federgruen and 

Zipkin (1984b) propose heuristic solutions for such a problem based on a stochastic dynamic 

programming formulation.  The disadvantage of their formulations lies in the very large state space 

needed for its solution.  For a serial supply chains, Shang and Song (2003) provide single period 

newsvendor problems that bound the optimal stocking levels determined by the Clark and Scarf (1960) 

serial supply chain model.  Newsvendor bounds have a number of valuable qualities; they are 

considerably less computationally intensive, allow for ready parametric analysis, and facilitate the 

development of intuition.  In this paper, we extend the newsvendor bounds technique to distribution 

systems, thus providing a simple and surprisingly accurate heuristic.  Through a simulation study, we 

show that our heuristic significantly outperforms other common heuristics over a wide range of parameter 

values.  The closed form solutions provided by the newsvendor bounds also allows us to gain insights 

into the system behavior of a distribution network that was not previously possible through alternative 

solution techniques. 
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1. Introduction 
We consider the problem of determining stocking levels in a two-echelon distribution network 

consisting of a warehouse and n non-identical retail locations.  Optimal solutions of these systems are 

problematic, typically requiring stochastic dynamic programming formulations with very large state 

spaces.  Several simpler heuristics have since been proposed, requiring a trade-off between performance 

and complexity.   

For serial supply chains, Shang and Song (2003) provide a series of single period newsvendor 

problems, the solution to which bound the optimal stocking levels as determined by Clark and Scarf 

(1960).  Newsvendor bounds have a number of valuable qualities; they are considerably less 

computationally intensive, allow for ready parametric analysis, and facilitate the development of 

intuition.  In this paper, we extend the newsvendor bounds technique to distribution systems and show 

that it outperforms other proposed heuristics in both simplicity and performance. 

This newsvendor heuristic avoids a recursive search over stocking levels, requiring only the solution 

of a set of simple closed form functions to set base-stock levels.  To do so, we bound the costs of the 

distribution system by a single serial system on the low side and a set of n independent serial chains on 

the high side.  These constructed systems also suggest bounds for the inventory base-stock levels at each 

installation, thus we take the average of the resulting system wide echelon base-stock levels as our 

heuristic for the original distribution system. 

Due to the unavailability of practical analytical solution methods, we test our heuristic through an 

extensive and rigorous simulation experiment and compare its performance against other common 

heuristics.  We find that our approach results in an average difference in costs from the best found 

solution of 0.44% for symmetric retailers and 0.87% for asymmetric retailers, and 0.60% and 0.66% for 

systems with 2 or 4 retailers, respectively, easily outperforming all other tested heuristics.  Our closed 

form approach also allows us to generate insights on the effects of altering system parameters on the 

stocking levels and system costs.  For example, we show how increasing asymmetry among retailers 

leads to lower stocking levels and total system costs.   
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The rest of the paper is organized as follows.  In Section 2 we review the related literature and in 

Section 3 we describe the setting and foundation for our model.  In Section 4 we present our heuristic and 

describe the simulation methodology for testing it in Section 5.  In Section 6 we present our numerical 

results and observations based on test over a wide range of parameter values and demand distributions.  

In Section 7 we present our parametric analysis and conclude in Section 8.  Appendix 1 provides the 

details from the numerical test and our proposition proofs are provided in Appendix 2. 

2.  Literature Review 

 Two main challenges exist in determining optimal supply chain strategies for distribution systems; 

determining the stocking policies for each installation and the allocation policy of inventory to 

downstream stages when demand exceeds supply at the upstream stage.  Prior work on these elements of 

the problem is discussed in §2.1 and §2.2 below.   

2.1.   Allocation Policies 

In their seminal analysis of serial systems, Clark and Scarf (1960) find that echelon inventory 

stocking policies are optimal.  They suggest that arborescent systems may be approximated by a serial 

system under a balance allocation assumption, which is a relaxation of the traditional dynamic program 

formulation that states that the warehouse may reallocate downstream inventory by imposing negative 

inventory shipments on downstream installations (rebalance relaxation).  This approach is utilized 

frequently in this literature (e.g. see Eppen and Schrage (1981), Federgruen and Zipkin (1984a, b), 

Federgruen (1993), Verrijdt and de Kok (1996), Garg and Tang (1997), van der Heijden et al. (1997)) 

although in practice such a policy may not always be feasible.  Eppen and Schrage (1981) and Erkip et al 

(1990) provide simulation results suggesting that for high service level systems, such an allocation policy 

may sometimes be feasible.  Unfortunately, the rebalance relaxation may be inappropriate when 

downstream installations are substantially asymmetric in inventory cost profiles and lead times (e.g. see 

Clark and Scarf (1960), Federgruen and Zipkin (1984a), and Axsater et al. (2002)).  Additionally, the 
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rebalance relaxation is often unrealistic in practice, as it implies the existence of costless and 

instantaneous transshipments.   

There are also a number of proposed allocation policies that do not rely on the rebalance relaxation.  

Graves (1996) utilizes a virtual assignment rule, where echelon inventory is devoted to a given retailer as 

demand occurs.  This allocation policy is essentially the opposite of the rebalance relaxation; rather than 

assigning inventory at the end of the supply chain, the assignment occurs before the inventory enters the 

system.  By using a random allocation policy, Cachon (2001) develops exact results for the retailer and 

warehouse costs, although such a policy is somewhat crude and thus increases total costs.  Myopic 

allocation policies, used by Federgruen and Zipkin (1984b) and Axsater et al. (2002), allocate inventory 

to minimize the expected costs at the retailers in the period the inventory arrives (e.g. after the warehouse 

to retailer shipment lead-time).  Federgruen and Zipkin (1984b) show that, for identical retailers, this 

myopic policy is approximately optimal under general cost structures when orders may be placed every 

period.  Jackson and Muckstadt (1989) and Jackson (1988) use a similar allocation rule, denoted the “run-

out allocation rule”, where the allocation is determined by solving an optimization problem over the 

horizon until the next arrival of inventory at the warehouse stage.  Our allocation rule is most similar to 

that of McGavin, Schwarz, and Ward (1993), who assume identical retailers and allocate stock so as to 

maximize the minimum retailer inventory position.  The main difference is that we minimize the 

maximum deviation between each installation’s echelon inventory-transit position and its echelon base-

stock level.  This modification allows for the treatment of non-identical downstream stages. 

2.2 Stocking Policies 

The traditional approach used in determining stocking levels for a distribution system is to formulate 

the problem as a stochastic dynamic program and apply relaxations or restrictions to the system to allow 

for tractability.  The large solution space of the optimal policy is accompanied by considerable 

computational burden.   Hence researchers tend to approximate the system to create a policy and then 

compare that policy via numerical solutions or simulation to either known bounds or the “best found 

system” (e.g. McGavin et al, 1993).   
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One approach is to treat the warehouse as a cross-dock that may not hold inventory, introduced by 

Eppen and Schrage (1981), and extended by Erkip et al. (1990) and Garg and Tang (1997).  Unlike these 

works, we allow the warehouse to hold inventory, thus exploiting risk pooling and holding cost savings at 

the warehouse.   

When inventory is allowed to be held at the warehouse, Federgruen and Zipkin (1984a) show that 

one may approximate a two-echelon distribution system with identical retailers by relaxing a dynamic 

programming formulation, initially allowing rebalancing to determine shipment quantities to a collapsed 

retail stage.  This relaxation provides a lower bound on the cost and stocking levels, and we adopt a 

similar approach for our lower bounds.  Jackson (1988) provides an extension of the Eppen and Schrage 

(1981) model to allow the warehouse to hold inventory.  Jackson’s approximate cost function is a nested 

optimization problem, where internal newsvendor problems depend on the warehouse stock level.  While 

Jacksons’ approximate cost function is minimized by a search over a single variable, our heuristic does 

not require a recursive solution. 

Axsater et al. (2002) consider a two-echelon multiple retailer distribution system with a virtual 

assignment heuristic that determines stocking levels.   They decompose the system into multiple 

independent distributor-retailer systems and utilize Graves’ (1996) virtual assignment rule.  Although 

future reallocation at the warehouse stage is permitted, they argue that virtual assignment creates an upper 

bound on stocking levels and costs.  We apply the same argument for our upper bounds. 

Thus far we have discussed a number of works where the solution technique has been to relax or 

constrain the problem to establish tractability.  Cachon (2001) considers a periodic review system with 

batch ordering, but shows that a random allocation policy provides exact results obtained through a 

recursive process.  Cachon uses a bounded iterative search to determine stocking levels, and finds that 

other simple and commonly used heuristics fail to reliably perform well.  We confirm these findings 

while introducing a simple closed form heuristic that does perform well.  We show that as the allocation 

policy becomes more sophisticated, shifting from a random to a myopic allocation policy, our approach 



 6

outperforms a random allocation heuristic.  This suggests that, like the use of the rebalancing assumption, 

the use of random allocation policies improves tractability but at the cost of decreased performance.   

3. Model 

We consider a two-echelon supply chain with a single supplier of an abundantly available 

commodity.  There are n retail sites, and installations are labeled with index ( ,1,2,..., )i W n∈ , where the 

warehouse is denoted by the index W. Let t
iD denote the demand over t unit length periods at retailer 1i 

(we omit the superscript when t = 1).  We assume demand to be stationary and independent across 

retailers and time, with known but not necessarily identical distributions across retailers.  In each period, 

the following sequence of events occurs: previously shipped replenishments arrive at each installation, 

demand occurs at each retailer, excess demand is fully backordered, replenishment orders are placed, 

costs are assessed, and replenishment orders are shipped.  Inventory is reviewed every period and a 

centralized decision maker places replenishment orders based on knowledge of the entire supply chain’s 

inventory positions.   

We assume per unit local inventory holding costs (Hi) and backordering costs (bi) are linear, and 

ordering costs throughout the system are zero, resulting in the optimality of base-stock policies at each 

installation (si).  Before costs are assessed in each period, the following variables are measured:  

Bi = number of backorders at installation i. 

'
iI  = on-hand inventory at installation i. 

Ti = inventory in transit to stage i.  

Ii = echelon inventory at installation i, '
i iI I= for i = 1, …, n, and ( )'

1

n

W W j i
j

I I T I
=

= + +∑ . 

IPi  = echelon inventory-transit position at installation i, IPi = Ii – Bi + Ti. 

IOi = inventory orders outstanding for installation i, IOi = si - IPi 
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The total system costs in a period is the sum ( )
1

n

W w i i i i
j

h I b B h I
=

+ +∑ .  Replenishments for an installation 

arrive Li periods after being shipped.  While the warehouse’s supplier has infinite capacity, the warehouse 

may not have sufficient inventory on hand to fill all retailer demands.  In this case, the allocation policy is 

to ship all on hand inventory while minimizing IOi.  Thus, the allocation policy allocates scarce inventory 

to installations on the basis of their relative need. 

4. Newsvendor Heuristic for Distribution Systems 
 
In this section, we present a heuristic for determining echelon base-stock levels for a two-echelon 

distribution network.  We construct two serial supply chain systems whose costs bound the optimal costs 

and echelon base-stock levels of distribution system from above and below.  Our illustrative network, 

depicted in the center of Figure 1, faces demand processes D1, D2, ... , Dn   at the terminal ends of the 

chain segments.   

To determine the upper bound, we restrict the warehouse to designate and maintain retailer specific 

inventories.  That is, the centralized decision maker specifies which retailer each unit of inventory will 

eventually be shipped to as that unit of inventory is ordered from the supplier.  In spirit, this is similar to 

the virtual assignment approach of Graves (1996), who notes that because it may be desirable to un-

commit stock, this assignment rule will not perform as well as a dynamic allocation policy.  The 

restriction decomposes the distribution network into a set of n independent serial systems, one system for 

each retailer, as depicted on the left of Figure 1.  We refer to these serial chains as ‘decomposed’. 

 

 

 

 

 

 

D1+D2+…+Dn W 1 

D1 W1 1 

D2 2 

Dn n 

W2 

Wn 

D1 

Dn 

W

1 
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Figure 1: Constructed Serial Chains 

In Figure 1, we introduce the labels Wi  to denote a warehouse installation that exclusively serves 

retailer i.  To describe our Newsvendor Heuristic, we need the following notation.   

hi   = echelon holding cost rate for installation i, hW  = HW  and  hi  = Hi –HW for i = 1, …, n. 

µi = mean demand rate at installation i, µi = E[Di] 

(x)- = max{0, -x} 
*x

is  = the “best found” echelon base-stock level for installation i in topology x, where 

( , , )x d c a∈  

xs  = a vector of echelon base-stock levels for all installations in topology x 

( )x xC s  = the expected per period cost of the topology x under echelon base-stock vector xs , where 

( , , )x d c a∈  

d, c = superscripts denoting decomposed and collapsed systems, respectively 

a = superscript denoting the distribution system 

The optimal base-stock policy of each decomposed serial chain may by obtained by solving the 

equations: 

( ) ( )( ) i iL L
i i i i i iC y h y D b H y D

−  = Ε − + + −   
     

( ){ }* arg mind
i is C y=           

( ) ( )

( ) ( )

* *

* *

( ) E

w wi i i

i

i

wi i

L L Ld d
W i i i i i i

d
W

L Ld d
i i i i i i

h y D h s y D s D
C y

b H s y D s D

−

−
−

   − + − − − −      =
   + + − − − −      

 

( ){ }* arg min
i i

d
W Ws C y= . 

The optimal expected cost for each of the decomposed systems is ( )*
i i

d
W WC s , and the expected overall 

cost of the total system of decomposed chains is simply the sum 

( ) ( )* *

1
i i

n
d d d
W W

i
C s C s

=

=∑ .         (1) 
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Because this sum is obtained by applying a constraint to the warehouse, it is an upper bound for the 

optimal cost of the distribution network.  Additionally, removing the decomposition constraint allows for 

risk pooling, suggesting that if backordering costs are sufficiently high to induce installations to carry 

positive safety stock, the sum  

* *

1
j

n
d d
W W

j
s s

=

=∑           (2) 

is expected to be an upper bound for the optimal echelon base stock level at the warehouse.  A similar 

argument is made by Gallego et al. (2003). 

Having constructed an upper bound for the cost of the distribution network, we next construct a 

single serial system that serves as a lower bound.  Here, our approach is similar to Federgruen and Zipkin 

(1984a), who assume that instantaneous and costless transshipments within an echelon are allowable.  

The result of this assumption is an artificial distinction between installations in an echelon.  The retailers 

may thus be collectively treated as a single virtual installation which fills all system demands, as shown 

on the right of Figure 1.  We refer to this system as ‘collapsed’. 

As with the decomposed system, this serial system is solved by the above optimization equations.  

Let sc* and Cc(sc*) represent the optimal echelon base-stock policy and expected system wide cost of the 

collapsed system, respectively.  By introducing inventory commitment constraints on the retail stage of 

the collapsed system, we achieve the original distribution network.  For identical retailers, Cc(sc*) is a 

lower bound for Ca(sa*) because the distribution network is the result of adding constraints on the 

collapsed network.    

Additionally, the retailer echelon base-stock level under the collapsed system suggests lower bounds 

for the echelon base-stock levels for the distribution network.  To see this, consider that by combining the 

retail stages from the distribution network, we gain the opportunity to exploit risk pooling.  Assuming 

that the chain carries nonnegative safety stocks, the pooling potentially reduces inventory in this 

installation and also the optimal echelon base-stock level of the warehouse.    

The decomposition and collapsed system results combine to give 
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( ) ( ) ( )* * *

1

n
c c a a d d

j
C s C s C s

=

≤ ≤ ∑                 (3) 

and suggests that  

      * * *c a d
W W Ws s s≤ ≤  .                         (4) 

We use these serial systems to approximate the optimal echelon base-stock levels for the distribution 

network.  Our approach is to utilize the Shang and Song (2003) heuristic for each of the n+1 constructed 

chains.  Using an illustrative two-retailer system, for the collapsed serial chain system, the stocking level 

at the warehouse is  

1 1

1

2

W W
W Wc

W

b bF F
b h h b h

s

− −   
+   + + +   = .  (5) 

 

For the decomposed serial chain system, the stocking levels at echelon i are, for our illustrative system,  

1 1

1

1 11 1

1 1 1

2

W W
W Wd

W

b bF F
b h h b h

s

− −   
+   + + +   =    and   

2 2

2

1 12 2

2 2 2

2

W W
W Wd

W

b bF F
b h h b h

s

− −   
+   + + +   = .   (6,7)  

 
The sum of these stock levels, 

1 2

d d d
W W Ws s s= +  represents an approximation for an upper bound of the 

echelon base-stock policy of the distribution system.  

When backorder costs or holding costs differ between retailers, we must adjust the collapsed system 

equation (5).  To do so, we use the mean demand weighted average backorder and holding costs for the 

distribution stage.  Thus, for a two-retailer system, the terms in equation (5) are  

 
21

2211

µµ
µµ

+
+

=
bb

b  and 1 1,1 2 1,2
1

1 2

h h
h

µ µ
µ µ

+
=

+
 (8, 9) 

 
In this case, our argument that the total inventory costs of the distribution system are bounded from below 

by that of the collapsed system may not hold.  However, in our numerical experiments below, we find no 
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instances where the collapsed system costs exceed that of the distribution system.  Thus we present the 

results for asymmetric retailers under the numerical conjecture that the bound holds.  

      The Newsvendor Heuristic for the stocking level at the warehouse is a simple average of the stocking 

levels from the constructed systems: 

 
2

c d
a W W
W

s ss +
= . (10) 

5. Simulation Methodology 
A majority of previous papers on distribution system stocking policies use simulation to test the 

accuracy of dynamic programming relaxations because close form cost equations do not exist for most 

realistic allocation policies.  Thus, we also use simulation to test the performance of our approach against 

prior work and commonly used practitioner heuristics.   

Our simulation methodology is an unequal variance, two-stage screening-subset selection procedure 

presented in Nelson et al. (2001).  We first create a set of base-stock level candidates.  For distributions 

with finite support, these candidates are obtained by enumerating over the entire range of potential lead-

time demands at each installation.  For distributions with infinite support, candidates cover a range of the 

expected minimizing base-stock level, +/- at least 5 inventory units for each installation.  For the 

parameter settings in these examples, this range covers approximately 50% of the cumulative distribution 

of the lead-time demand at each installation, centered on the cost minimizing stocking level as suggested 

by the Newsvendor Heuristic.   

For each stocking level, we initially conduct a steady state simulation of our model and allocation 

policy for 50,000 periods.  We batch periods into groups of 10 to reduce deviations from normality and 

correlations between single period costs.  Based on the lead-times used in our study, we omit the first 10 

periods to eliminate initialization effects.  The remaining data points are used in the initial screening 

phase. 

Potential sets of stocking levels that survive the initial screening are subjected to a second round of 

simulation experiments where we retain our batch mean sizes and generate a sufficient number of data 
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points to eliminate all but one of the systems.  After this experiment, the set of stocking levels that has the 

lowest per period cost is selected.  This procedure ensures a confidence level of at least 1-α that the 

selected system performs within a quantity δ of the best found system cost.  Hence we refer to the 

selected system as a δ−best system.  For our purposes, we consider α = 5% and δ = 0.2% of the average 

per period system cost of the best system found in the first stage.   

The simulation model was verified by using the same approach to simulate a serial chain, whereupon 

the results are identical to those found by Shang and Song (2003).   In the next section, we compare the 

performance of our NH to other simple and widely used heuristics. 

6. Problem Design and Results 

6.1. Symmetric Two-Echelon Networks  

Our first experimental design considers two network topologies, with either two or four symmetric 

retailers.  We test the heuristics using a full factorial design over a range of holding cost, backorder cost, 

and lead-time parameters.  We consider (hW, hi)= {(1,1), (1,2), (2,1)}, (LW, Li) = {(1,1), (1,2), (2,1)}, and 

bi = {5,10,20}. We hold the total periodic system demand, µ, constant at 20 units per period, distributed 

according to a Poisson distribution.  This demand is split among the retailers, resulting in µi = 10 for the 

2-retailer network and µi = 5 for the 4-retailer network. These parameter values are similar to those used 

by Jackson (1988), Cachon (2001), Axsater et al. (2002) and Shang and Song (2003), and are summarized 

in Tables A1 and A2 in Appendix 1 for the two-retailer and four-retailer networks, respectively.   

6.1.1 Random Allocation Policies  

For the parameter settings in Table 1, we compare the results of the Newsvendor Heuristic (NH) to 

those of Cachon (2001), whose results are optimal when a random allocation policy is used.  These results 

are presented in Table A3 in Appendix 1 and are summarized in Table 1.  Based on this test, we make the 

following three observations. 
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Table 1: Random Allocation Summary 

Observation 1: A small but significant error exists from using the NH under a random allocation setting.  

The error grows as the number of retailers increase but the heuristic reacts to parametric changes in a 

similar manner as the exact procedure. 

Observation 2: The exact strategy holds more inventory at the distribution point than does the NH.  

We argue below that this is a result of poor management of inventory at the distribution point. 

Observation 3: As backorder costs increase, the total system stock held by the NH falls relative to the 

exact analysis.   

For backorder rates of 5, the exact analysis tends to hold less inventory than the NH.  For backorder 

rates of 10, there is no clear trend, but for backorder rates of 20, the NH carries less total inventory than 

the exact analysis.  We discuss this further in the next section. 

6.1.2 Myopic Allocation Policies  

In this section we compare the systems generated by the NH to the δ-best system found via the 

simulation procedure described in §5.  We also investigate the performance of three other alternative 

heuristics.  First, we use the results of Cachon’s (2001) exact analysis under random allocation as a 

heuristic under our proposed allocation policy.  Since Graves (1996) finds that holding no safety stock at 

the upstream stage is frequently a good (and simple) heuristic, we also consider this approach (termed the 

zero safety stock policy in the results below).  Finally, we investigate the performance of setting a fixed 

service rate at the warehouse stage, as is frequently encountered in practice.  We choose a 99% fill rate 

because in practice, managers frequently require high fill rates from the warehouse (Lee and Tang, 1997).  

The results of these experiments are presented in Tables A4 and A5 in Appendix 1 for the two-retailer 

and four-retailer networks, respectively.  From these results, we make the following observations. 

% Error Under Random Allocation 
  Two-Retailer Four-Retailer
Exact 0.00% 0.00% 
Bounds 2.68% 3.38% 
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Observation 4: The NH performs best of all the tested heuristics.  It is followed by the Cachon exact 

analysis and zero safety stock heuristics, while the fixed high fill-rate heuristic performs poorly in all 

problems.   

A summary of these results is presented in the symmetric columns in Table 2. 

% Error Under Myopic Allocation 
  2-Retailer 4-Retailer 
Heuristic Symmetric Asymmetric Symmetric Asymmetric 
Newsvendor 0.40% 0.85% 0.48% 0.89%
Cachon 1.75% NA 2.24% NA
99% Fill Rate 22.06% 24.59% 21.21% 24.66%
Zero Safety Stock 2.21% 1.96% 2.95% 3.96%

 
Table 2: Myopic Allocation Summary 

 
 

Observation 5: The additional upstream inventory held by Cachon’s exact analysis causes it to under 

perform the NH when non-random allocation is allowed.   

By allocating inventory randomly, the exact analysis increases the variance of the demand placed 

upon the warehouse by the terminal stages, increasing the required inventory at the warehouse.  In 

contrast, allocating inventory myopically is more efficient.  A myopic allocation reduces the penalty 

induced by preventing the retailer from redistributing inventory (in a random allocation), allowing 

inventory to be placed further downstream, as the lower inventory at the distribution point results in less 

frequent stock outs.  This effect becomes more important as the backorder costs increase. 

Observation 6: All else held constant, increasing the number of retailers increases the total system cost.  

Additionally, increasing the holding costs, lead-times, or backorder costs also increases the total system 

cost.   

These effects are congruent with prior work and intuition.  Increasing the number of retailers reduces 

risk-pooling savings, while increasing other parameters increases costs directly.  We address these effects 

further in section 7. 

6.2. Asymmetric Two-Echelon Networks 
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We now consider networks where the terminal stages are asymmetric or non-identical.  We consider 

a full factorial design over hi = {1,2} and bi = {5,10,20} for both two and four-retailer chains, while 

holding L2 = L1 = 1 and the system demand as described in section 6.1.  The parameters for each problem 

investigated are presented in Tables A1 and A2.  We compare the performance of the NH, Zero Safety 

Stock, and 99% Fill Rate heuristics to that of the δ-best system.  The results are presented in Tables A6 

and A7 in Appendix 1 and are summarized in the asymmetric columns in Table 2. 

Observation 7:  Observations 4 and 6 hold in the asymmetric case.  Additionally, asymmetric networks 

introduce slightly more error in the NH performance.   

This increase is present in the other tested heuristics as well, and may be due in part to a larger 

number of candidate policies.  The NH returns an average error of 0.87%, while the holding costs 

between retail locations vary by 100% and the backorder costs between locations vary by 400%.  We 

believe this range covers most realistic distribution systems. 

6.3 Heuristic Robustness Tests 

     Having established that the NH performs well over a broad range of cost parameters, we next examine 

its robustness.  Our primary goal in this section is to determine where the NH breaks down, thus the range 

for the tested parameter values may exceed those ever found in practice.  We begin by examining the 

performance of the NH across other demand distributions than Poisson.  We investigate three other 

demand distributions: discrete uniform (5,15), negative binomial (with µ = 10 and σ2 = 16.54), and a 

constructed bimodal distribution whose pmf is depicted in Figure 2.  The variance of the negative 

binomial distribution was selected to match that of the constructed distribution, while the mean demand 

of each distribution matches those of the Poisson distribution from the previous tests. 
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Figure 2: PMF of the Constructed Bimodal Distribution 

We test the NH on these distributions over a broader range of parameters.  We consider a full factorial 

design of n = {2,10}, b1 = {1,10,50}, (hW, h1) = {(1,1), (10,1), (1,10)}, and (LW, L1) = {(1,1), (1,3), (3,1)}, 

and continue to use the simulation methodology presented in §5.  A summary of the results of these tests 

is presented in Table 3 (full results are available in Tables A8-A10), where we report the number of test 

cases where the cost exceeded the δ-best policy by the range given in the left most column. 

 

 

 Number of Retailers 
 2 10 

Range of Error 
Discrete 
Uniform 

Negative 
Binomial

Constructed 
Bimodal 

Discrete 
Uniform 

Negative 
Binomial 

Constructed 
Bimodal 

0% 13 12 11 1 2 0 
<1% 7 10 12 11 11 11 

1% to 5% 5 5 4 4 4 6 
>5% 2 0 0 11 10 10 

Table 3: Robustness Tests Across Demand Distributions and Number of Retailers  

Observation 8: The accuracy of the NH does not significantly depend on the type of demand distribution. 

The error the NH incurs is approximately the same across each demand distribution investigated.  

Additionally, the errors generated by the two retailer tests are approximately equal to those under the 

Poisson tests in §6.1.2.  
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Observation 9: Increasing the number of retailers significantly decreases the performance of the NH. 

As the number of retailers increase from two to ten, the performance of the NH drops precipitously.  

This trend is common across demand distributions but is not common across cost parameters.  A further 

investigation into the trend cited in Observation 9 reveals that the NH’s performance is heavily dependent 

on the relative holding cost patterns, as depicted in Table 4.  This leads to our next observation. 

 Holding Cost (hW, h1) 
Range of Error (1,1) (10,1) (1,10) 

0% 2 1 0 
<1% 12 21 0 

1% to 5% 7 5 2 
>5% 6 0 25 

Table 4: Performance of the NH with 10 Retailers 

Observation 10: The NH fails when there are many retailers and the holding cost increases dramatically 

between the warehouse and the retail stages. 

Interestingly, the warehouse echelon base-stock level under these conditions is approximately equal 

to that of the δ-best system.  The majority of the error arises instead from the allocation of inventory 

within the system. In these cases, the NH carries too little inventory at the retail stages, overcompensating 

for the exceptionally high holding costs.  Thus the NH is useful in setting the total inventory stock, but 

should not be used to determine the base-stock levels at the retailers.   

We believe these scenarios, where holding costs at the retailers exceed that at the warehouse by 

orders of magnitude are rare in practice.  For instance, in the electronics industry in the United States, 

warehouse and retail space rents are approximately $4/ft2 and $7.1/ft2, respectively (www.bizstats.com).  

On average, the firms generate $355/ft2 in sales on 13.8 inventory turns a year, generating $58/ft2 in gross 

profit. If the cost of capital is 10%, the capital cost component of local holding costs at the retail and 

warehouse locations are $9.25/ft2 and $6.15/ft2 for the average US electronics seller respectively.  Taking 

backordering costs as solely the forfeited margin of lost sales, and scaling such that h1 = 1, these 

correspond to cost parameter settings of h1 = 1, h2 = 0.5, and b = 9.52.  These values easily fall within the 

parameter value range where the NH performs well. 
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     We next consider the effects of asymmetry in the retail parameter values.  There were no significant 

differences in the accuracy of our results between the four different demand distributions so we utilize the 

discrete uniform distribution in the following tests.  Because the discrete uniform distribution has finite 

support, we are able to fully enumerate over all possible lead-time demands.  We consider two sets of 

problems, each with two retailers, where the demand or lead-time to one retailer varies, respectively.  The 

first set of examples is a full factorial design over the parameter values (b1, b2) = {(1,1), (1,50), (50,1)}, h2 

= 1, LW = L1 = L2 = 1, (h1, h2) = {(1,1), (1,10), (10,1)}, D1 ~ U(5,15), and D2 ~ {U(15,25), U(35,45), 

U(55,65), U(75,85), U(95,105)}.  This test captures asymmetries in retail demand; the results are 

summarized in Table 5 (full data are presented in Table A11). 

 Demand Ratio (µ2/µ1) 
Range of Error 2 4 6 8 10 

0% 1 0 1 0 1 
<1% 2 3 5 5 4 

1% to 5% 6 6 2 3 3 
>5% 0 0 1 1 1 

Table 5: NH Performance over Demand and Cost Asymmetry 

The second set of test problems is a full factorial design over the parameter values (b1, b2) = {(1,1), 

(1,50), (50,1)}, hW = 1, LW = L1 = 1, L2 = {2,3,4,5}, (h1, h2) = {(1,1), (1,10), (10,1)}, D1 ~ U(5,15), and D2 

~ U(5,15).  This test captures asymmetries in the lead-times between the warehouse and the two retailers.  

The results of this test are summarized in Table 6 (full data are presented in Table A12).  Our final 

observation summarizes our asymmetric results. 

 Lead-time Ratio (L2/L1) 
Range of Error 2 3 4 5 

0% 0 0 0 3 
<1% 1 3 4 1 

1% to 5% 8 5 4 4 
>5% 0 0 1 1 

Table 6: NH Performance over Lead-time and Cost Asymmetry 

Observation 11: The NH is robust to asymmetry in both the lead-times and demand rates. 

 Tables 5 and 6 show the NH is robust across widely varying cost, lead-time, and demand rates.  

Although the NH typically fails to identify the δ-best policy, it performs within 5% of the δ-best policy 
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costs in 76 of the 81 test cases.  That this performance occurs under a wide disparity in retailer parameter 

values gives further support to the robustness of the NH. 

7. Cost Functions and Analysis of Parameter Value Effects 
As noted by Shang and Song (2003), the simple newsvendor bounds presented above enable the 

analysis of the effects of the system parameters much more readily than previous solution methods.  

Although these bounds and cost functions are general, assuming normally distributed demand allows us 

to obtain some analytical results.  Hence, for Propositions 1 and 2 below, we assume demand at each 

retailer is normally distributed.   

Recall that our method of bounding the distribution system is through the construction of a set of 

serial systems.  The analysis of the resulting cost functions has a number of parallels to the serial supply 

chain system studied by Shang and Song (2003).  Under symmetric profiles, increasing either the 

backordering cost or the lead-time increases both total system costs and echelon stocking levels.  

Increasing the warehouse echelon holding cost rate increases system costs and stocking levels at the 

retailers, while increasing the echelon holding cost rate at the retailers while decreasing the echelon base 

stock levels at the warehouse.  Thus the parametric results for symmetric distribution systems are 

identical to those of a serial chain.  The analysis becomes slightly more complex when considering 

asymmetric problems.  Here, a change in a given retailer’s parameter value does not affect the base-stock 

levels of the other retailers.  Proposition 1 describes the impact on the retailer whose parameter value is 

modified along with the impact on the warehouse.     

Proposition 1.  For i = 1, 2, ... n, and i ≠ j 

(a) as bj  increases, Ca(sa*) increases, sW and sj increase, while si remains unchanged.   

(b) as hj increases, Ca(sa*) is non-decreasing, sW and sj
 decrease, and si remains unchanged. 

(c) as Lj  increases, Ca(sa*) increases, sW and sj increase, while si remains unchanged.   

Thus, increasing the backorder cost or lead-time at one retailer increases the total system costs and 

increases the echelon stocking levels of both the warehouse and that retailer.  However, the stocking 
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levels of the other retailers are independent of the effects of the change in the parameter value.  An 

increase in the echelon holding cost at the retailer decreases the echelon stocking levels, while the total 

system costs are non-decreasing (and likely increasing).     

Standard risk pooling arguments yield the intuition that, keeping the system demand constant, 

increasing the number of retailers increases both system stocking levels and total system costs.  We 

formalize this intuition in Proposition 2. 

Proposition 2.  For  i= 1, 2, ... n, and j= 1, 2, ... n, n+1, and assuming safety stocks are positive,  

Ca(sa*) and sW are non-decreasing, and sj < si where i ≠ j. 

Proposition 2 states that while increasing the number of retailers in a distribution network while keeping 

the total system demand constant reduces the inventory held at each retailer, it also likely increases the 

total amount of system stock and total system costs.  These effects arise due to the limited ability of the 

centralized decision maker to exploit risk-pooling opportunities. 

Finally, we examine the effects of increasing asymmetry in the retailer parameter values.  We begin 

by addressing asymmetry in backorder costs.  Consider an initially symmetric system, and increase b1 

while decreasing b2 by ∆, such that b1 = bi (1+∆) and b2 = bi (1-∆).  Because there is no closed form for the 

inverse of the normal cdf, we condition Propositions 3 and 4 assuming uniform lead-time demand 

distributions.  Our numerical tests verify the results hold for normal distributions as well, although we 

note that certain pathological distributions exist for which the results will not hold.   

Proposition 3.  For i =  3, ..., n, b1 = bi(1+∆) and b2 = bi(1-∆),  sW  and Ca(sa*) are non-increasing with ∆. 

Proposition 3 states that increasing asymmetry in backordering costs does not increase and often 

decreases stocking levels and system costs, as the decomposed echelon stock levels and system costs are 

non-increasing while the collapsed values remain unchanged.  This seemingly counter intuitive result 

arises due to the tendency of the system to behave as a serial chain as asymmetry increases.  Taken to an 

extreme, the retailer with the high backordering cost captures the majority of the inventory related costs.  

Thus, this high-backorder cost retailer dominates the system, which begins to resemble a serial chain 
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consisting solely of the high-backorder cost retailer.  Recall that we expect the collapsed serial chain to 

serve as an approximate lower bound for the distribution system.  In effect, we find that symmetric sub-

chains may be thought of as ‘worst case’ scenarios for total system costs.  Proposition 3 is illustrated by a 

small set of numerical test problems, as presented in Figure 3.  We compare the difference in Ca(sa) for 

two-retailer networks with bi = 10, ∆ = {0,0.5}, normally distributed demands with µ = 20 and σ2 = 20, 

and three holding cost cases where (h1,h2) = {(1,1), (1,2), (2,1)}.   

Effect of Backorder Cost Asymmetry
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Figure 3: Effect of Backorder Cost Asymmetry 

In a similar manner, we examine the effect of asymmetry in the holding costs in Proposition 4.  To do 

so, we modify the retailer’s echelon holding cost such that h1 = hi(1+∆) and h2 = hi(1-∆).  

Proposition 4.  For i = 1, ..., n, h1 = hi(1+∆) and h2 = hi(1-∆), s2  increases while s1 decreases with 

increasing ∆.  Also, sW  is non-increasing and Ca(sa*) is non-decreasing in ∆.    

Proposition 4 shows that the system echelon stocking level is non-increasing but total system 

inventory costs are non-decreasing in asymmetry of the retailer holding costs.   This is illustrated by a set 

of numerical test problems, as presented in Figure 4.  We compare the difference in Ca(sa) for two-retailer 

networks with hi = 1, ∆ ={0,0.5} demand distributed normally with µ = 20 and σ2 = 20 and three 

backorder cases where b = {5,10,15}.   
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Holding Cost and Demand Rate Asymmetry
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Figure 4: Effects of Holding Cost and Demand Rate Asymmetry 

Finally, in Proposition 5 we present the effect of demand asymmetry on the stocking levels and 

supply chain costs.  The critical fractile computations of our newsvendor approach are independent of the 

demand distribution, hence we return to considering normal distributions for this result. 

Proposition 5. For i = 3, ..., n, µ1 = (1+∆)µi, and µ2 = (1-∆)µi, both sW  and Ca(sa*) are non-increasing 

with ∆.   

Proposition 5 states that increasing asymmetry in demand rates does not increase and often decreases 

both echelon stocking levels and system costs.  By a similar argument as for Proposition 3, the results of 

Proposition 5 arise due to the tendency of the resulting network to more closely resemble a serial chain.  

Although the increase in asymmetry decreases the risk pooling savings at the warehouse, it also 

introduces a virtual pooling effect in the retail stages of the network.  A numerical depiction of 

Proposition 5 is illustrated in Figure 4 where we compare the difference in Ca(sa) for  two-retailer 

networks with µi = 10 and ∆ ={0,0.5}. 

8. Concluding Remarks 
In this paper, we present a simple heuristic for two-echelon distribution system with n non-identical 

retailers.  The Newsvendor Heuristic requires only the computation of 4(n+1) newsvendor problems, but 

performs well over a wide range of parameters, resulting in an average cost that is 0.44% and 0.87% 

greater than the cost of the best found stocking policies for symmetric and asymmetric cost parameters, 
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respectively, outperforming all other commonly used heuristics.  The heuristic is robust over multiple 

demand distributions and widely varying cost parameters.  For asymmetric (non identical) systems, the 

heuristic is shown to perform well with backordering costs ranging from 50% to 2,500% of the local 

holding costs, and mean demand and lead-times varying by up to 500%.  Although the heuristic does 

break down when holding costs increase by 1,000% between the warehouse and retailers, even here the 

NH provides useful insights, correctly predicting the amount of total system stock.  The simplicity of our 

heuristic also facilitates insights on parametric analysis that are difficult or impossible to obtain based on 

the competing heuristics.  For example, we show that the supply chain’s inventory and costs increase in 

the number of retailers, but decrease as backordering costs and demands at the retailers become 

asymmetric.  Our results simplify the teaching of supply chain distribution system concepts in the 

classroom and provide practical insights for managers. 
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Appendix 1: Numeric Experimental Data and Results 
 

Two-Echelon Two-Retailer Problem Parameter Settings 
Problem hW h1 H2 b1 b2 LW L1 

1 1 1 1 5 5 1 1 
2 1 1 1 10 10 1 1 
3 1 1 1 20 20 1 1 
4 1 2 2 5 5 1 1 
5 1 2 2 10 10 1 1 
6 1 2 2 20 20 1 1 
7 2 1 1 5 5 1 1 
8 2 1 1 10 10 1 1 
9 2 1 1 20 20 1 1 

10 1 1 1 5 5 1 2 
11 1 1 1 10 10 1 2 
12 1 1 1 20 20 1 2 
13 1 2 2 5 5 1 2 
14 1 2 2 10 10 1 2 
15 1 2 2 20 20 1 2 
16 2 1 1 5 5 1 2 
17 2 1 1 10 10 1 2 
18 2 1 1 20 20 1 2 
19 1 1 1 5 5 2 1 
20 1 1 1 10 10 2 1 
21 1 1 1 20 20 2 1 
22 1 2 2 5 5 2 1 
23 1 2 2 10 10 2 1 
24 1 2 2 20 20 2 1 
25 2 1 1 5 5 2 1 
26 2 1 1 10 10 2 1 
27 2 1 1 20 20 2 1 
28 1 1 1 5 10 1 1 
29 1 1 1 5 20 1 1 
30 1 1 1 10 20 1 1 
31 1 1 2 5 5 1 1 
32 1 1 2 10 10 1 1 
33 1 1 2 20 20 1 1 
34 1 1 2 5 10 1 1 
35 1 1 2 5 20 1 1 
36 1 1 2 10 20 1 1 
37 1 2 1 5 10 1 1 
38 1 2 1 5 20 1 1 
39 1 2 1 10 20 1 1 
40 2 1 1 5 10 1 1 
41 2 1 1 5 20 1 1 
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Table A1: Two Retailer Parameter Settings 
 
 
 
  

Two-Echelon, Four-Retailer Network Problem Parameter Settings 
Problem h2 h1,1 h1,2 h1,3 h1,4 b1 b2 b3 b4 L2 L1 

49 1 1 1 1 1 5 5 5 5 1 1
50 1 1 1 1 1 10 10 10 10 1 1
51 1 1 1 1 1 20 20 20 20 1 1
52 1 2 2 2 2 5 5 5 5 1 1
53 1 2 2 2 2 10 10 10 10 1 1
54 1 2 2 2 2 20 20 20 20 1 1
55 2 1 1 1 1 5 5 5 5 1 1
56 2 1 1 1 1 10 10 10 10 1 1
57 2 1 1 1 1 20 20 20 20 1 1
58 1 1 1 1 1 5 5 5 5 1 2
59 1 1 1 1 1 10 10 10 10 1 2
60 1 1 1 1 1 20 20 20 20 1 2
61 1 2 2 2 2 5 5 5 5 1 2
62 1 2 2 2 2 10 10 10 10 1 2
63 1 2 2 2 2 20 20 20 20 1 2
64 2 1 1 1 1 5 5 5 5 1 2
65 2 1 1 1 1 10 10 10 10 1 2
66 2 1 1 1 1 20 20 20 20 1 2
67 1 1 1 1 1 5 5 5 5 2 1
68 1 1 1 1 1 10 10 10 10 2 1
69 1 1 1 1 1 20 20 20 20 2 1
70 1 2 2 2 2 5 5 5 5 2 1
71 1 2 2 2 2 10 10 10 10 2 1
72 1 2 2 2 2 20 20 20 20 2 1
73 2 1 1 1 1 5 5 5 5 2 1
74 2 1 1 1 1 10 10 10 10 2 1
75 2 1 1 1 1 20 20 20 20 2 1
76 1 1 1 1 1 5 5 10 10 1 1
77 1 1 1 1 1 5 5 20 20 1 1
78 1 1 1 1 1 10 10 20 20 1 1
79 1 1 2 1 2 5 5 5 5 1 1

42 2 1 1 10 20 1 1 
43 2 1 2 5 5 1 1 
44 2 1 2 10 10 1 1 
45 2 1 2 20 20 1 1 
46 2 1 2 5 10 1 1 
47 2 1 2 5 20 1 1 
48 2 1 2 10 20 1 1 
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80 1 1 2 1 2 10 10 10 10 1 1
81 1 1 2 1 2 20 20 20 20 1 1
82 1 1 2 1 2 5 5 10 10 1 1
83 1 1 2 1 2 5 5 20 20 1 1
84 1 1 2 1 2 10 10 20 20 1 1
85 2 1 1 1 1 5 5 10 10 1 1
86 2 1 1 1 1 5 5 20 20 1 1
87 2 1 1 1 1 10 10 20 20 1 1
88 2 1 2 1 2 5 5 5 5 1 1
89 2 1 2 1 2 10 10 10 10 1 1
90 2 1 2 1 2 20 20 20 20 1 1
91 2 1 2 1 2 5 5 10 10 1 1
92 2 1 2 1 2 5 5 20 20 1 1
93 2 1 2 1 2 10 10 20 20 1 1

 
Table A2: Four Retailer Parameter Settings 

 
 
 
 

Random Allocation Policy Results  
Problem Exact Results Bounds Heuristic Results 

  s2 s1 Cost s2 s1 Cost % Error 
1 41 22 48.15 39 23 48.40 0.53 
2 43 24 55.29 39 25 56.44 2.08 
3 44 26 62.28 40 26 64.57 3.68 
4 42 21 54.22 41 22 54.76 0.99 
5 43 23 64.32 42 23 64.47 0.23 
6 44 25 74.58 43 24 75.52 1.26 
7 38 22 77.35 35 24 79.12 2.29 
8 41 23 88.56 36 25 90.67 2.38 
9 42 25 99.71 38 26 102.27 2.56 

10 40 33 72.42 37 35 73.34 1.27 
11 42 35 80.75 38 36 81.90 1.42 
12 43 37 88.89 38 38 91.70 3.16 
13 41 31 79.95 40 33 80.87 1.15 
14 42 34 91.80 40 35 92.72 1.01 
15 44 36 103.67 41 36 104.78 1.07 
16 38 32 122.56 34 35 124.40 1.50 
17 40 34 135.45 34 37 137.96 1.85 
18 42 36 148.42 35 38 152.71 2.89 
19 62 22 49.91 61 23 49.91 0.01 
20 64 24 57.38 60 25 58.33 1.65 
21 66 26 64.69 62 26 66.15 2.25 
22 62 21 56.03 62 22 56.48 0.80 
23 64 23 66.50 64 23 66.50 0.00 
24 66 25 77.04 65 24 77.84 1.04 
25 58 22 79.85 56 24 81.08 1.54 
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26 60 24 91.86 58 25 92.62 0.82 
27 63 25 103.76 59 26 105.61 1.79 
49 41 11 57.35 39 12 58.08 1.27 
50 43 12 67.60 39 13 68.46 1.27 
51 44 14 77.35 39 14 80.19 3.67 
52 42 10 65.74 42 11 66.90 1.76 
53 43 12 80.28 42 12 80.31 0.04 
54 45 13 94.32 43 13 94.68 0.38 
55 38 11 89.05 32 13 93.33 4.81 
56 40 12 104.10 36 13 106.35 2.16 
57 42 13 119.62 36 14 124.19 3.82 
58 39 17 83.73 37 18 84.94 1.44 
59 42 18 95.32 33 20 99.02 3.89 
60 43 20 106.86 34 21 112.41 5.20 
61 40 16 94.19 39 17 96.40 2.35 
62 43 17 110.60 40 18 111.80 1.09 
63 44 19 127.73 41 19 128.53 0.63 
64 37 16 136.55 29 19 140.77 3.09 
65 40 17 154.55 30 20 158.54 2.58 
66 41 19 172.19 30 21 179.29 4.12 
67 62 11 58.94 61 12 59.52 0.99 
68 63 13 69.47 61 13 69.64 0.24 
69 65 14 79.40 62 14 80.25 1.07 
70 63 10 67.45 63 11 68.44 1.48 
71 64 12 82.15 64 12 82.15 0.00 
72 66 13 96.55 65 13 96.69 0.14 
73 57 11 91.15 53 13 94.71 3.90 
74 61 12 106.99 58 13 108.17 1.10 
75 63 13 123.20 58 14 125.13 1.56 

 
Table A3: Random Allocation Results 
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Table A4: Myopic Allocation Policy Results for Two-Retailer Symmetric Networks 

 
Myopic Allocation Policy Results for 2-Echelon, 4-Retailers Symmetric Networks 

Problem g-Optimal System Bounds Heuristic Cachon Heuristic 99% Fill Rate Heuristic 
Zero Safety Stock 

Heuristic 

  s2 s1 Cost s2 s1 %Error s2 s1 % Error s2 s1 %Error s2 s1 %Error

49 17 7 44.4 19 7 0.53 21 6 2.6 31 7 22 20 7 1.336 

50 18 8 51.3 19 8 0.21 23 7 3.06 31 8 18.7 20 8 0.814 

51 18 9 58.3 19 9 0.1 24 9 5.02 31 9 16.4 20 9 0.622 

52 19 6 50.5 22 6 1.55 22 5 4.79 31 6 16.6 20 6 0.241 

53 20 7 60.4 22 7 0.87 23 7 1.71 31 7 13.2 20 7 0 

54 20 8 70.7 23 8 1 25 8 2.93 31 8 10.8 20 8 0 

55 15 7 70.8 12 8 0.4 18 6 1.14 31 8 44 20 8 13.87 

56 15 8 81 16 8 0.16 20 7 1.45 31 8 28.8 20 8 4.331 

57 16 9 91.6 16 9 0 22 8 2.49 31 9 25.5 20 9 3.707 

58 15 13 72.7 17 13 0.26 19 12 0.59 31 13 15.7 20 13 2.136 

Myopic Allocation Policy Results for 2-Echelon, 2-Retailer Symmetric Networks 

Problem g-Optimal System Bounds Heuristic Cachon Heurisitc 99% Fill Rate Heuristic 
Zero Safety Stock 

Heuristic 

  s2 s1 Cost s2 s1 %Error s2 s1 %Error s2 s1 %Error s2 s1 %Error 

1 17 14 38.53 19 13 0.00 21 12 1.21 31 13 23.44 20 13 0.50 

2 20 14 43.47 19 15 0.54 23 14 2.49 31 15 23.12 20 15 1.32 

3 18 16 47.82 20 16 1.63 24 16 6.33 31 16 20.14 20 16 1.63 

4 19 12 42.88 21 12 0.96 22 11 1.48 31 12 20.23 20 12 0.31 

5 21 13 49.99 22 13 0.62 23 13 1.42 31 13 14.93 20 13 0.45 

6 22 14 57.40 23 14 0.28 24 15 3.35 31 14 10.95 20 14 1.69 

7 14 14 63.66 15 14 0.18 18 12 0.65 31 14 39.90 20 14 7.61 

8 16 15 71.22 16 15 0.12 21 13 1.73 31 15 33.03 20 15 4.66 

9 19 15 78.75 18 16 0.64 22 15 2.90 31 16 27.71 20 16 2.73 

10 14 26 64.11 17 25 0.29 20 23 0.79 31 25 18.09 20 25 2.49 

11 18 26 70.70 18 26 0.00 22 25 1.19 31 26 13.63 20 26 0.60 

12 18 28 76.18 18 28 1.27 23 27 2.79 31 28 14.15 20 28 1.83 

13 17 24 70.60 20 23 0.46 21 21 1.06 31 23 13.77 20 23 0.46 

14 17 26 80.13 20 25 0.24 22 24 0.30 31 25 11.97 20 25 0.24 

15 19 27 88.09 21 26 1.63 24 26 3.22 31 26 10.35 20 26 1.59 

16 11 26 110.56 14 25 0.22 18 22 0.93 31 25 24.27 20 25 5.62 

17 9 29 120.20 14 27 0.28 20 24 1.23 31 27 22.93 20 27 5.50 

18 15 28 130.40 15 28 0.00 22 26 1.82 31 28 18.22 20 28 2.71 

19 40 13 40.64 41 13 0.27 42 12 1.32 55 13 26.97 40 13 0.23 

20 40 15 46.05 40 15 0.00 44 14 1.09 55 15 24.97 40 15 0.34 

21 41 16 51.35 42 16 -0.08 46 16 3.63 55 16 19.73 40 16 0.84 

22 40 12 45.20 42 12 0.35 42 11 1.13 55 12 22.99 40 12 0.23 

23 43 13 52.72 44 13 0.38 44 13 0.38 55 13 16.65 40 13 2.09 

24 45 14 60.46 45 14 0.00 46 15 2.24 55 14 12.03 40 14 6.02 

25 35 14 66.91 36 14 0.32 38 12 0.99 55 14 45.13 40 14 5.07 

26 37 15 75.32 38 15 0.22 40 14 0.34 55 15 36.48 40 15 2.19 

27 39 16 83.70 39 16 0.00 43 15 1.38 55 16 29.78 40 16 0.69 
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59 17 14 81.7 13 15 0.01 22 13 1.71 31 15 17.5 20 15 4.398 

60 14 16 90.8 14 16 0 23 15 2.14 31 16 14.3 20 16 2.836 

61 16 12 81.1 19 12 0.85 20 11 0.7 31 12 13.5 20 12 1.505 

62 18 13 94.4 20 13 0.3 23 12 1.78 31 13 10.1 20 13 0.297 

63 19 14 108 21 14 0.1 24 14 1.57 31 14 7.73 20 14 0 

64 0 16 121 9 14 0.08 17 11 1.29 31 14 28.7 20 14 10.96 

65 10 15 135 10 15 0 20 12 2.2 31 15 24.3 20 15 8.429 

66 3 18 149 10 16 0.05 21 14 1.32 31 16 20.5 20 16 6.224 

67 38 7 46.2 41 7 1.17 42 6 3.08 55 7 26 40 7 0.64 

68 39 8 53.5 41 8 0.42 43 8 2.05 55 8 21.5 40 8 0.107 

69 40 9 60.7 42 9 0.54 45 9 3.35 55 9 18.3 40 9 0 

70 40 6 52.5 43 6 1.15 43 5 5.07 55 6 19.6 40 6 0 

71 41 7 62.8 44 7 1 44 7 1 55 7 15.4 40 7 0.546 

72 42 8 73.3 45 8 0.9 46 8 1.68 55 8 12.3 40 8 1.428 

73 31 8 73.5 33 8 0.64 37 6 1.97 55 8 49.5 40 8 11.03 

74 36 8 84.5 38 8 0.6 41 7 1.7 55 8 33.1 40 8 2.483 

75 37 9 95.6 38 9 0.14 43 8 2.16 55 9 28.6 40 9 1.783 

 
Table A5: Myopic Allocation Policy Results for Four-Retailer Symmetric Networks 

 
 

Myopic Allocation Policy Results for Two-Echelon, Two-Retailer Asymmetric Networks 

Problem g-Optimal System Bound Heuristic 99% Fill Rate Heuristic Zero Safety Stock Heuristic 

  s2 s1,1 s1,2 Cost s2 s1,1 s1,2 % Error s2 s1,1 s1,2 % Error s2 s1,1 s1,2 
% 

Error 

28 19 13 14 40.97 20 13 15 1.31 31 13 15 23.33 20 13 15 1.31 
29 19 13 16 43.42 21 13 16 1.26 31 13 16 20.85 20 13 16 0.45 
30 19 15 16 45.93 20 15 16 0.92 31 15 16 20.75 20 15 16 0.64 
31 19 13 12 40.66 20 13 12 0.39 31 13 12 21.84 20 13 12 0.37 
32 20 14 13 46.73 21 15 13 0.91 31 15 13 18.77 20 15 13 0.47 
33 22 15 14 52.88 22 16 14 0.72 31 16 14 14.33 20 16 14 0.79 
34 20 13 13 44.29 21 13 13 0.46 31 13 13 18.55 20 13 13 0.00 
35 19 13 15 47.97 22 13 14 1.02 31 13 14 16.19 20 13 14 0.50 
36 21 14 14 50.41 21 15 14 0.65 31 15 14 16.34 20 15 14 1.15 
37 20 12 14 43.18 20 12 15 1.19 31 12 15 21.61 20 12 15 0.80 
38 19 12 16 45.65 21 12 16 0.97 31 12 16 19.51 20 12 16 0.53 
39 21 13 15 49.21 21 13 16 0.61 31 13 16 16.60 20 13 16 0.69 
40 15 14 15 67.39 16 14 15 0.27 31 14 15 36.33 20 14 15 5.87 
41 17 13 16 71.27 18 14 16 1.51 31 14 16 32.96 20 14 16 4.92 
42 16 15 16 74.98 17 15 16 0.35 31 15 16 30.21 20 15 16 3.26 
43 17 13 12 65.47 17 14 12 0.59 31 14 12 34.76 20 14 12 4.62 
44 18 14 13 74.04 18 15 13 0.41 31 15 13 28.18 20 15 13 2.17 
45 18 16 15 82.93 19 16 15 0.79 31 16 15 25.21 20 16 15 1.79 
46 16 13 14 70.35 18 14 13 1.15 31 14 13 30.79 20 14 13 3.33 
47 17 13 15 75.33 18 14 15 1.33 31 14 15 30.06 20 14 15 3.47 

48 18 14 15 79.09 18 15 15 0.52 31 15 15 27.57 20 15 15 2.49 

 
Table A6: Myopic Allocation Policy Results for Two-Retailer Asymmetric Networks 
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Myopic Allocation Policy Results for Two-Echelon, Four-Retailer Asymmetric Networks 

Problem g-Optimal System Bounds Heuristic 99% Fill Rate Heuristic Zero Safety Stock Heuristic 

  s2 s1,1 s1,2 s1,3 s1,4 Cost s2 s1,1 s1,2 s1,3 s1,4 
% 
Error s2 s1,1 s1,2 s1,3 s1,4 

% 
Error s2 s1,1 s1,2 s1,3 s1,4 

% 
Error 

76 18 7 7 8 8 47.8 19 7 7 8 8 0.5 31 7 7 8 8 20.4 20 7 7 8 8 1.2 
77 18 7 7 9 9 51.2 20 7 7 9 9 1.0 31 7 7 9 9 19.1 20 7 7 9 9 1.0 
78 18 8 8 9 9 54.7 19 8 8 9 9 0.3 31 8 8 9 9 17.6 20 8 8 9 9 0.8 
79 19 7 6 7 6 47.4 21 7 6 7 6 1.3 31 7 6 7 6 19.1 20 7 6 7 6 0.5 
80 19 8 7 8 7 55.8 20 8 7 8 7 0.4 31 8 7 8 7 15.9 20 8 7 8 7 0.4 
81 19 9 8 9 8 64.5 21 9 8 9 8 0.7 31 9 8 9 8 13.3 20 9 8 9 8 0.3 
82 18 7 6 8 7 51.6 21 7 6 8 7 1.2 31 7 6 8 7 17.4 20 7 6 8 7 0.5 
83 19 7 6 9 8 55.8 21 7 6 9 8 1.2 31 7 6 9 8 16.1 20 7 6 9 8 0.2 
84 19 8 7 9 8 60.1 21 8 7 9 8 1.0 31 8 7 9 8 14.6 20 8 7 9 8 0.4 
85 15 7 7 8 8 75.9 14 8 8 8 8 0.4 31 8 8 8 8 36.0 20 8 8 8 8 8.5 
86 15 7 7 9 9 81.0 16 8 8 9 9 2.0 31 8 8 9 9 33.9 20 8 8 9 9 8.2 
87 15 8 8 9 9 86.2 16 8 8 9 9 0.3 31 8 8 9 9 27.4 20 8 8 9 9 4.2 
88 15 7 7 7 6 73.2 14 8 7 8 7 0.9 31 8 7 8 7 40.2 20 8 7 8 7 11.2 
89 15 8 8 8 7 84.9 16 8 8 8 8 1.0 31 8 8 8 8 30.3 20 8 8 8 8 6.2 
90 16 9 9 9 8 97.1 16 9 9 9 9 0.9 31 9 9 9 9 26.8 20 9 9 9 9 5.5 
91 16 7 6 8 7 79.0 15 8 7 8 8 1.2 31 8 7 8 8 35.0 20 8 7 8 8 8.5 
92 16 7 6 9 8 85.1 15 8 7 9 9 0.9 31 8 7 9 9 32.6 20 8 7 9 9 7.8 

93 17 8 7 9 8 91.0 16 8 8 9 9 0.9 31 8 8 9 9 28.4 20 8 8 9 9 5.8 

 
Table A7: Myopic Allocation Policy Results for Four-Retailer Asymmetric Networks 

 
 
 
 
 

Problem hW hi b LW Li n s*W s*i sa
W sa

i Cost % Error 
bp1 1 1 1 1 1 2 10 13 11 14 30.1 0.26 
bp2 1 1 10 1 1 2 23 15 23 15 41.6 0.00 
bp3 1 1 50 1 1 2 28 15 28 15 44.3 0.00 
bp4 1 10 1 1 1 2 18 6 23 5 35.4 4.34 
bp5 1 10 10 1 1 2 21 12 23 12 81.2 0.20 
bp6 1 10 50 1 1 2 27 15 25 15 91.5 3.07 
bp7 10 1 1 1 1 2 10 8 0 13 216.7 0.02 
bp8 10 1 10 1 1 2 10 15 10 15 285.4 0.00 
bp9 10 1 50 1 1 2 20 15 21 15 351.2 0.16 

bp10 1 1 1 3 1 2 50 14 50 14 32.4 0.00 
bp11 1 1 10 3 1 2 66 15 66 15 47.4 0.00 
bp12 1 1 50 3 1 2 77 15 77 15 54.4 0.00 
bp13 1 10 1 3 1 2 58 6 61 5 38.0 1.68 
bp14 1 10 10 3 1 2 64 14 65 12 87.2 4.49 
bp15 1 10 50 3 1 2 77 15 72 15 99.5 0.61 
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bp16 10 1 1 3 1 2 32 15 32 15 222.6 0.00 
bp17 10 1 10 3 1 2 50 15 50 15 306.8 0.00 
bp18 10 1 50 3 1 2 63 15 64 15 397.9 0.18 
bp19 1 1 1 1 3 2 10 34 10 34 74.9 0.00 
bp20 1 1 10 1 3 2 14 41 14 41 97.1 0.00 
bp21 1 1 50 1 3 2 20 44 19 44 108.4 0.45 
bp22 1 10 1 1 3 2 12 25 23 24 86.7 3.57 
bp23 1 10 10 1 3 2 26 31 27 31 158.0 0.27 
bp24 1 10 50 1 3 2 26 36 30 36 227.1 0.35 
bp25 10 1 1 1 3 2 10 25 0 31 627.0 0.09 
bp26 10 1 10 1 3 2 10 34 0 40 726.8 0.02 
bp27 10 1 50 1 3 2 6 44 6 44 836.0 0.00 
bp28 1 1 1 1 1 10 68 12 49 14 140.9 0.01 
bp29 1 1 10 1 1 10 102 15 96 15 171.8 2.18 
bp30 1 1 50 1 1 10 118 15 113 15 180.3 1.25 
bp31 1 10 1 1 1 10 55 11 118 5 169.0 14.58 
bp32 1 10 10 1 1 10 101 15 103 12 276.9 33.26 
bp33 1 10 50 1 1 10 114 15 100 15 260.6 17.23 
bp34 10 1 1 1 1 10 68 8 8 13 1065.6 0.14 
bp35 10 1 10 1 1 10 62 13 45 15 1396.8 0.04 
bp36 10 1 50 1 1 10 97 15 89 15 1605.2 1.51 
bp37 1 1 1 3 1 10 237 15 245 14 142.9 0.16 
bp38 1 1 10 3 1 10 309 15 305 15 182.0 0.78 
bp39 1 1 50 3 1 10 330 15 350 15 206.2 3.76 
bp40 1 10 1 3 1 10 239 13 311 5 170.2 12.35 
bp41 1 10 10 3 1 10 302 15 307 12 292.3 31.97 
bp42 1 10 50 3 1 10 330 15 324 15 245.2 1.59 
bp43 10 1 1 3 1 10 205 13 176 15 1079.1 0.31 
bp44 10 1 10 3 1 10 251 15 245 15 1409.1 0.06 
bp45 10 1 50 3 1 10 299 15 298 15 1675.0 0.07 
bp46 1 1 1 1 3 10 68 33 45 34 362.4 0.04 
bp47 1 1 10 1 3 10 60 43 45 41 462.9 5.13 
bp48 1 1 50 1 3 10 91 45 60 44 547.6 17.51 
bp49 1 10 1 1 3 10 65 29 121 24 403.5 6.87 
bp50 1 10 10 1 3 10 58 40 117 31 633.9 23.50 
bp51 1 10 50 1 3 10 86 44 114 36 845.1 44.80 
bp52 10 1 1 1 3 10 50 24 6 32 3138.1 0.26 
bp53 10 1 10 1 3 10 68 33 5 39 3600.7 0.01 
bp54 10 1 50 1 3 10 66 40 8 44 4142.8 1.17 

 
Table A8: Constructed Bimodal Distribution Robustness Tests 
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Problem hW hi b LW Li n S*W s*i sa

W sa
i Cost % Error 

up1 1 1 1 1 1 2 11 13 15 12 29.1 1.48 
up2 1 1 10 1 1 2 20 15 20 15 37.6 0.00 
up3 1 1 50 1 1 2 25 15 25 15 41.6 0.00 
up4 1 10 1 1 1 2 15 8 23 6 33.4 5.54 
up5 1 10 10 1 1 2 25 10 26 10 70.2 0.71 
up6 1 10 50 1 1 2 24 14 24 14 85.3 0.00 
up7 10 1 1 1 1 2 11 9 0 15 213.3 0.01 
up8 10 1 10 1 1 2 10 15 10 15 265.1 0.00 
up9 10 1 50 1 1 2 18 15 18 15 318.9 0.00 

up10 1 1 1 3 1 2 47 15 54 12 29.6 0.11 
up11 1 1 10 3 1 2 63 15 63 15 42.0 0.00 
up12 1 1 50 3 1 2 69 15 71 15 48.3 -0.03 
up13 1 10 1 3 1 2 56 8 61 6 35.0 2.79 
up14 1 10 10 3 1 2 66 12 68 10 74.8 6.89 
up15 1 10 50 3 1 2 69 15 68 14 92.7 1.40 
up16 10 1 1 3 1 2 35 15 35 15 217.8 0.00 
up17 10 1 10 3 1 2 50 15 50 15 282.4 0.00 
up18 10 1 50 3 1 2 59 15 61 15 354.6 0.13 
up19 1 1 1 1 3 2 13 32 14 32 71.5 0.10 
up20 1 1 10 1 3 2 17 38 17 38 88.6 0.00 
up21 1 1 50 1 3 2 18 42 19 41 98.9 0.52 
up22 1 10 1 1 3 2 14 27 23 25 81.1 3.62 
up23 1 10 10 1 3 2 26 30 28 30 139.0 1.14 
up24 1 10 50 1 3 2 25 36 24 36 179.7 -0.02 
up25 10 1 1 1 3 2 13 25 9 36 621.4 0.05 
up26 10 1 10 1 3 2 13 33 2 39 697.3 -0.07 
up27 10 1 50 1 3 2 9 41 9 41 782.8 0.00 
up28 1 1 1 1 1 10 76 12 69 12 130.3 0.50 
up29 1 1 10 1 1 10 93 15 81 15 167.8 5.74 
up30 1 1 50 1 1 10 108 15 101 15 175.5 3.86 
up31 1 10 1 1 1 10 70 11 117 6 160.0 17.20 
up32 1 10 10 1 1 10 85 15 114 10 279.6 45.12 
up33 1 10 50 1 1 10 106 15 97 14 278.3 31.53 
up34 10 1 1 1 1 10 62 9 6 15 1054.7 0.00 
up35 10 1 10 1 1 10 57 14 45 15 1288.5 0.10 
up36 10 1 50 1 1 10 85 15 75 15 1526.3 2.47 
up37 1 1 1 3 1 10 269 13 266 12 132.9 0.97 
up38 1 1 10 3 1 10 296 15 294 15 166.9 0.28 
up39 1 1 50 3 1 10 318 15 324 15 183.1 0.66 
up40 1 10 1 3 1 10 247 13 308 6 157.4 12.85 
up41 1 10 10 3 1 10 287 15 323 10 292.3 44.88 
up42 1 10 50 3 1 10 312 15 316 14 260.8 15.36 
up43 10 1 1 3 1 10 220 13 187 15 1066.6 0.47 
up44 10 1 10 3 1 10 269 13 245 15 1306.8 0.10 
up45 10 1 50 3 1 10 288 15 285 15 1542.8 0.10 



 34

up46 1 1 1 1 3 10 68 33 66 32 348.1 0.23 
up47 1 1 10 1 3 10 50 42 64 38 426.3 4.64 
up48 1 1 50 1 3 10 66 44 64 41 501.8 14.14 
up49 1 10 1 1 3 10 50 32 118 25 383.6 6.67 
up50 1 10 10 1 3 10 60 39 123 30 589.4 27.03 
up51 1 10 50 1 3 10 53 44 96 36 665.2 25.47 
up52 10 1 1 1 3 10 58 26 7 33 3102.5 0.12 
up53 10 1 10 1 3 10 68 33 5 39 3458.4 0.03 
up54 10 1 50 1 3 10 56 40 25 41 3914.1 1.67 

 
Table A9: Discrete Uniform Distribution Robustness Results 

 
 
 
 

Problem hW hi b LW Li n s*W s*i sa
W sa

i Cost % Error 
nb1 1 1 1 1 1 2 11 12 15 11 29.0 0.28 
nb2 1 1 10 1 1 2 19 16 19 16 45.2 0.00 
nb3 1 1 50 1 1 2 20 20 22 19 57.5 0.93 
nb4 1 10 1 1 1 2 13 8 21 6 34.5 3.01 
nb5 1 10 10 1 1 2 24 10 25 10 78.1 0.16 
nb6 1 10 50 1 1 2 27 14 27 14 123.9 0.00 
nb7 10 1 1 1 1 2 9 9 1 13 212.2 -0.06 
nb8 10 1 10 1 1 2 8 15 5 17 276.1 0.06 
nb9 10 1 50 1 1 2 9 20 9 20 357.7 0.00 

nb10 1 1 1 3 1 2 34 21 53 11 31.7 0.08 
nb11 1 1 10 3 1 2 63 16 63 16 51.2 0.00 
nb12 1 1 50 3 1 2 59 22 68 19 65.1 0.48 
nb13 1 10 1 3 1 2 53 8 57 6 37.1 1.13 
nb14 1 10 10 3 1 2 65 12 67 10 85.1 2.90 
nb15 1 10 50 3 1 2 72 16 72 14 132.9 2.70 
nb16 10 1 1 3 1 2 19 22 29 16 217.7 -0.06 
nb17 10 1 10 3 1 2 44 17 44 17 299.8 0.00 
nb18 10 1 50 3 1 2 46 23 52 20 402.0 0.01 
nb19 1 1 1 1 3 2 8 32 11 32 73.1 -0.11 
nb20 1 1 10 1 3 2 8 43 17 39 97.6 0.23 
nb21 1 1 50 1 3 2 15 46 16 45 115.4 0.59 
nb22 1 10 1 1 3 2 11 25 23 23 84.2 3.69 
nb23 1 10 10 1 3 2 28 29 29 29 159.3 0.44 
nb24 1 10 50 1 3 2 28 36 28 36 229.7 0.00 
nb25 10 1 1 1 3 2 0 13 3 37 613.7 -0.07 
nb26 10 1 10 1 3 2 10 33 4 41 710.7 -0.08 
nb27 10 1 50 1 3 2 11 41 0 46 831.2 -0.01 
nb28 1 1 1 1 1 10 34 15 79 11 133.1 -0.15 
nb29 1 1 10 1 1 10 67 18 86 16 189.3 0.48 
nb30 1 1 50 1 1 10 68 21 73 19 256.0 9.92 
nb31 1 10 1 1 1 10 39 13 108 6 147.2 4.18 
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nb32 1 10 10 1 1 10 74 16 123 10 272.6 18.40 
nb33 1 10 50 1 1 10 86 18 110 14 367.1 18.50 
nb34 10 1 1 1 1 10 33 11 8 13 1048.7 0.05 
nb35 10 1 10 1 1 10 42 15 25 17 1319.0 0.05 
nb36 10 1 50 1 1 10 35 20 39 20 1668.6 0.05 
nb37 1 1 1 3 1 10 198 18 275 11 137.2 0.29 
nb38 1 1 10 3 1 10 223 22 295 16 198.6 0.98 
nb39 1 1 50 3 1 10 263 22 310 19 245.3 2.22 
nb40 1 10 1 3 1 10 160 21 301 6 153.4 5.89 
nb41 1 10 10 3 1 10 248 18 327 10 319.3 31.44 
nb42 1 10 50 3 1 10 259 21 334 14 427.9 32.53 
nb43 10 1 1 3 1 10 141 19 166 16 1057.3 0.09 
nb44 10 1 10 3 1 10 205 18 225 17 1351.8 0.14 
nb45 10 1 50 3 1 10 214 22 248 20 1739.1 1.03 
nb46 1 1 1 1 3 10 73 30 65 32 353.1 -0.20 
nb47 1 1 10 1 3 10 50 42 65 39 455.1 2.35 
nb48 1 1 50 1 3 10 69 46 50 45 554.3 9.24 
nb49 1 10 1 1 3 10 46 30 131 23 407.8 10.58 
nb50 1 10 10 1 3 10 67 38 137 29 682.1 31.99 
nb51 1 10 50 1 3 10 75 44 114 36 832.5 32.33 
nb52 10 1 1 1 3 10 76 21 6 32 3072.6 0.24 
nb53 10 1 10 1 3 10 33 35 5 39 3514.6 0.04 
nb54 10 1 50 1 3 10 67 39 8 44 4089.0 0.36 

 
Table A10: Negative Binomial Distribution Robustness Results 

 
 
 
 

Problem H1 h2 B1 b2 µ2 s*W s*1 s*2 sa
W sa

1 sa
2 Cost Error

ad1 1 1 1 1 20 22 13 22 22 12 22 38.7 0.08 
ad2 1 1 50 1 20 35 15 18 32 15 22 51.8 3.82 
ad3 1 1 1 50 20 33 9 25 33 12 25 50.5 3.25 
ad4 1 1 1 1 40 42 13 42 42 12 42 58.7 0.05 
ad5 1 1 50 1 40 55 15 38 51 15 42 73.3 4.80 
ad6 1 1 1 50 40 53 9 45 54 12 45 70.8 2.76 
ad7 1 1 1 1 60 62 13 62 62 12 62 78.7 0.04 
ad8 1 1 50 1 60 75 15 58 70 15 62 94.8 5.42 
ad9 1 1 1 50 60 74 8 65 74 12 65 90.8 1.93 
ad10 1 1 1 1 80 80 14 83 82 12 82 98.7 0.04 
ad11 1 1 50 1 80 95 15 78 89 15 82 117.1 6.59 
ad12 1 1 1 50 80 94 8 85 94 12 85 110.8 1.58 
ad13 1 1 1 1 100 100 14 103 102 12 102 118.7 -0.03
ad14 1 1 50 1 100 114 15 97 109 15 102 137.1 5.50 
ad15 1 1 1 50 100 114 8 105 114 12 105 130.8 1.33 
ad16 10 1 1 1 20 27 7 20 26 6 22 41.7 1.87 
ad17 1 10 1 1 20 24 10 17 25 12 16 41.3 0.22 
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ad18 10 1 1 1 40 47 7 39 46 6 42 61.7 1.14 
ad19 1 10 1 1 40 48 10 36 45 12 36 61.3 0.76 
ad20 10 1 1 1 60 67 7 60 67 6 62 81.7 0.98 
ad21 1 10 1 1 60 66 11 57 65 12 56 81.3 0.59 
ad22 10 1 1 1 80 85 8 81 87 6 82 101.7 0.64 
ad23 1 10 1 1 80 88 10 76 85 12 76 101.3 0.46 
ad24 10 1 1 1 100 107 7 100 107 6 102 121.7 0.66 
ad25 1 10 1 1 100 106 11 97 105 12 96 121.3 0.39 
ad26 10 1 50 1 20 35 14 18 31 14 22 91.5 2.54 
ad27 1 10 50 1 20 35 15 16 35 15 16 51.4 0.00 
ad28 10 1 50 1 40 55 14 38 50 14 42 112.5 3.07 
ad29 1 10 50 1 40 54 15 36 53 15 36 70.8 0.30 
ad30 10 1 50 1 60 72 15 57 70 14 62 132.5 0.66 
ad31 1 10 50 1 60 73 15 56 73 15 56 91.5 0.00 
ad32 10 1 50 1 80 95 14 78 89 14 82 154.5 3.56 
ad33 1 10 50 1 80 95 15 75 92 15 76 112.1 0.71 
ad34 10 1 50 1 100 115 14 98 109 14 102 174.6 3.19 
ad35 1 10 50 1 100 115 15 95 112 15 96 132.1 0.60 
ad36 10 1 1 50 20 34 6 25 37 6 25 52.3 3.53 
ad37 1 10 1 50 20 33 10 24 31 12 24 89.4 1.60 
ad38 10 1 1 50 40 54 6 45 58 6 45 73.1 3.76 
ad39 1 10 1 50 40 54 9 44 52 12 44 109.2 1.02 
ad40 10 1 1 50 60 74 6 65 78 6 65 93.2 2.97 
ad41 1 10 1 50 60 73 10 64 72 12 64 129.2 0.95 
ad42 10 1 1 50 80 94 6 85 98 6 85 113.2 2.43 
ad43 1 10 1 50 80 94 9 84 92 12 84 149.2 0.75 
ad44 10 1 1 50 100 114 6 105 118 6 105 133.2 2.06 
ad45 1 10 1 50 100 113 10 104 112 12 104 169.2 0.73 

 
Table A11: Asymmetric Demand Robustness Results 

 
 
 
 

Problem hW h1 h2 b1 b2 L2 s*W s*1 s*2 sa
W sa

1 sa
2 Cost % Error

al1 1 1 1 1 1 2 11 13 21 15 12 22 40.4 1.19 
al2 1 1 1 50 1 2 24 15 17 21 15 22 54.4 4.70 
al3 1 1 1 1 50 2 18 10 29 20 12 29 55.7 1.68 
al4 1 1 1 1 1 3 11 13 30 14 12 32 51.2 0.33 
al5 1 1 1 50 1 3 24 15 26 21 15 32 65.5 5.27 
al6 1 1 1 1 50 3 14 12 42 19 12 41 70.0 0.30 
al7 1 1 1 1 1 4 14 11 38 13 12 43 62.3 0.56 
al8 1 1 1 50 1 4 23 15 35 21 15 43 77.4 5.18 
al9 1 1 1 1 50 4 17 10 52 18 12 53 83.4 0.02 

al10 1 10 1 1 1 2 16 7 19 18 6 22 43.2 2.49 
al11 1 1 10 1 1 2 17 10 14 19 12 15 44.6 2.83 
al12 1 10 1 1 1 3 16 7 28 18 6 32 54.4 2.01 
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al13 1 1 10 1 1 3 12 13 24 18 12 25 56.5 2.11 
al14 1 10 1 1 1 4 16 7 37 17 6 43 65.9 2.43 
al15 1 1 10 1 1 4 12 13 33 19 12 34 68.7 2.97 
al16 1 10 1 50 1 2 24 14 16 21 14 22 92.5 2.31 
al17 1 1 10 50 1 2 23 15 13 26 15 15 55.1 1.49 
al18 1 10 1 50 1 3 23 14 26 21 14 32 103.6 2.40 
al19 1 1 10 50 1 3 23 15 21 26 15 25 68.1 2.54 
al20 1 10 1 50 1 4 24 14 35 20 14 43 116.6 3.83 
al21 1 1 10 50 1 4 23 15 31 27 15 34 80.4 3.46 
al22 1 10 1 1 50 2 21 6 28 24 6 29 58.1 2.52 
al23 1 1 10 1 50 2 23 8 24 22 12 25 111.7 0.51 
al24 1 10 1 1 50 3 19 6 40 23 6 41 72.4 1.33 
al25 1 1 10 1 50 3 21 9 35 22 12 36 137.7 0.56 
al26 1 10 1 1 50 4 16 6 52 22 6 53 86.9 0.57 
al27 1 1 10 1 50 4 19 10 46 23 12 46 162.2 0.10 
al28 1 1 1 1 1 5 10 13 49 13 12 53 73.2 0.51 
al29 1 1 1 50 1 5 23 15 45 20 15 53 89.7 5.30 
al30 1 1 1 1 50 5 15 11 64 17 12 64 96.7 -0.24 
al31 1 10 1 1 1 5 16 7 46 17 6 53 76.7 1.95 
al32 1 1 10 1 1 5 13 11 41 20 12 43 80.7 1.84 
al33   10 1 50 1 5 23 14 44 20 14 53 127.5 3.49 
al34 1 1 10 50 1 5 23 15 39 27 15 43 91.6 2.63 
al35 1 10 1 1 50 5 21 6 64 21 6 64 98.7 0.00 
al36 1 1 10 1 50 5 21 9 56 21 12 57 184.0 -0.16 

 
Table A12: Asymmetric Lead-time Robustness Results 
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Appendix 2: Proofs of Propositions 1-5 
 
Define the critical fractiles 
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Let φ(·) and Φ(·) represent the standard normal pdf and cdf, respectively.  Following the 
approach in Zipkin (2000) (see also Shang and Song, 2003),  
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( ) ( ) ( ), , , 2
, , , , ,

l d u d u d
W i W i i W W i i W i W i W iC s b h z L h Lφ σ µ= + +      (A8) 

, ,
,

1

n
l d l d
W W i

i
C C

=

= ∑           (A9) 

( ) ( ) ( ), , , 2
, , , , ,

u d l d l d
W i W i i W i W i i W i W i W iC s b h h z L h Lφ σ µ= + + +     (A10) 

, ,
,

1

n
u d u d
W W i

i
C C

=

= ∑           (A11) 

( ) ( ) ( ), , , 2l c u c u c
W W W W W W WC s b h z L h Lφ σ µ= + +       (A12) 

( ) ( ) ( ), , , 2u c l c l c
W W W i W W W WC s b h h z L h Lφ σ µ= + + +      (A13) 

, ,l d d u d
W W WC C C≤ ≤          (A14) 

, ,l c c u c
W W WC C C≤ ≤          (A15) 

 
and from (3),  
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( )c a a d
WC C s C≤ ≤          (A16) 

 
Proof of Proposition 1.   

  
Proposition 1 follows by inspection of equations A1 through A16. 
 

(a) As bi increases, 
a. iΘ , ,

,
l d
W iΘ , ,

,
u d
W iΘ , ,l c

WΘ ,and ,u c
WΘ increase, increasing A1 to A13.   

b. jΘ remains unchanged where j i≠  
(b) As hi increases, 

a. iΘ , ,
,

l d
W iΘ , and ,l c

WΘ , decrease, decreasing A1, A2, A4, and A6. 
b. Examination of equations A7, A8, A10, A12, and A13 shows that for a 

fixed y, Ci(y) increases with hi due to the increase in the first 
coefficient in A7, A10, and A13.  Meanwhile, A8 and A12 are 
independent of changes in hi.  Hence the collapsed system remains 
unchanged while the decomposed systems increase in costs. 

c. jΘ and hence A1 remains unchanged where j i≠  
(c) As Li increases,  

a. equations A1 through A13 increase 
b. equations A1 and A7 remain unchanged where j i≠  

 
 

Proof of Proposition 2. 
 

In this proposition, we hold the total system demand constant.  Assuming demand is 
distributed normally with mean µ and variance σ2, splitting among n identical 

terminal locations gives 
1

n

i
i

µ µ
=

= ∑ and 2 2

1

n

i
i

σ σ
=

= ∑ , or i n
µµ =  and 

2
2
i n

σσ =  while 

splitting the demand process across n+1 identical terminal locations gives 
1j n

µµ =
+

 

and 
2

2

1j n
σσ =
+

. 

 
(a) We consider three cases, the retail stages, and the collapsed and decomposed 

serial systems. 
a. For the retail stages, µj < µi and σj

2 < σi
2, hence is > js from equations 

A1.   

b. For the collapsed serial system, 
1

n

i
i

µ µ
=

= ∑ and 2 2

1

n

i
i

σ σ
=

= ∑ remain 

unchanged.  Hence Equations A4 and A5 remain unchanged.  
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c. For the decomposed systems, consider 
1

, ,
, ,

1 1

n n
l d l d
W i W j

i j
s s

+

= =

−∑ ∑ .  From equations 

A2,  

= ( ) ( )1
, 2 , 2

1 1

n n
l d l d

i i i i i j i i j i
i j

L z L L z Lµ σ µ σ
+

= =

+ − +∑ ∑  

= ( )
21

, 2 ,

1 1 1 1

n n
l d l di i

i i i i i i i i
i j

n nL z L L z L
n n

µ σµ σ
+

= =

 
+ − + 

 + + 
∑ ∑  

= ( )
21

, 2 ,

1 1 1

n n
l d l d i
i i i i i

i j

nz L z L
n
σσ

+

= =

 
−  

 + 
∑ ∑  

  
2

, 2 ( 1)
1

l d i
i i

nz L n n
nα
σσ

 
= − + 

 + 
 

  ( ), 2 2 2( 1)l d
i i i iz L n n nσ σ= − +  

 ,l d
i i iz nLσ= −  

  <  0 
 

  The above holds for 
1

, ,
, ,

1 1

n n
u d u d
W i W j

i j
s s

+

= =

−∑ ∑ as well. 

Hence the echelon base stock level of the warehouse is non-decreasing in the number 
of retailers.  To see the effects on the system costs, consider 
 

d.   For the retail installations, let K be a positive constant equal to 
( ) ( )i i W ib h h zφ+ + .  Then 

1

1 1

n n

i j
i j

C C
+

= =

−∑ ∑  

= ( ) ( )1
2 2

1 1

n n

i i j i
i j

K L K Lσ σ
+

= =

−∑ ∑   

= ( )
21

2

1 1 1

n n
i

i i i
i j

nK L K L
n
σσ

+

= =

 
−  

 + 
∑ ∑   

= ( ) ( )
2

2 1
1
i

i i i
nn K L n K L
n
σσ

 
− +  

 + 
 

= ( )2 2( 1)i i i iK n L n n Lσ σ− +  

= 2
iK n Lασ−  

< 0 
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e.  For the collapsed system, 
1

n

i
i

µ µ
=

= ∑ and 2 2

1

n

i
i

σ σ
=

= ∑ remain unchanged.  

Hence Equations A11 and A12 remain unchanged. 

   
f.  For the decomposed systems, let K be a positive constant equal to 
( ) ( ),

,
u d

W W ib h zφ+ .  Then 

1
, ,
, ,

1 1

n n
l d l d
W i W j

i j
C C

+

= =

−∑ ∑  

= ( ) ( )1
2 2

1 1

n n

i i W i i j i W j i
i j

K L h L K L h Lσ µ σ µ
+

= =

+ − +∑ ∑   

( )
21

2

1 1 1 1

n n
i W i

i i W i i i i
i j

n nhK L h L K L L
n n
σ µσ µ

+

= =

 
= + − + 

 + + 
∑ ∑  

( )
21

2

1 1 1

n n
i

i i i
i j

nK L K L
n
σσ

+

= =

 
= −  

 + 
∑ ∑  

( ) ( )
2

2 1
1

i
i i i

nK n L n L
n
σσ

  
 = − +  

  +  
 

2
i iK n Lσ= −  

 
< 0 

 
The proof for ,

,
u d
W iC follows exactly as above if we instead let K = 

( ) ( ),
,

l c
W i W ib h h zφ+ + .    

Hence the costs of both the retailer and warehouse echelons are non-decreasing in the 
number of retailers. 

 
 
For Propositions 3 and 4, we assume the lead-time demand at retailer i is uniformly 
distributed.  Specifically, we will consider Uniform(0,1) distributions.  Let f(·) and F(·) 
represent the Uniform(0,1) pdf and cdf, respectively.  The base stock levels become F-

1(Θ) = Θ. 
 
Following the standard approach (e.g. see pp 205-209 in Zipkin (2000); proofs of these 
derivations are available from the authors upon request ) 

( ) ( )( )1 1
2i i i i WC s b h= − Θ +          (A17) 

( ) ( ), , ,
, , ,

1 1
2

l d u d u d
W i W i W i i W i iC s b h Lµ= − Θ +        (A18) 
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( ) ( ), , ,
, , ,

1 1
2

u d l d l d
W i W i W i i W i iC s b h Lµ= − Θ +        (A19) 

( ) ( ), , ,1 1
2

l c u c u c
W W W W iC s b h Lµ= − Θ +         (A20) 

( ) ( ), , ,1 1
2

u c l c l c
W W W W iC s b h Lµ= − Θ +        (A21) 

 
Proof of Proposition 3. 

 
Here we investigate the effects of backorder asymmetry.  We consider two cases, the 
collapsed and decomposed systems.  Let b1 = bi(1+∆) and b2 = bi(1-∆) where 1,2i ≠ . 

(a) For the collapsed systems, 
1

1 n

i i
i

b bµ
µ =

= ∑ remains unchanged.  Hence the critical 

fractiles ,u c
iΘ and ,l c

iΘ remain unchanged and hence base stocking level equations 
A4 and A5,  and equations A20 and A21 remain unchanged. 

 
(b) For the decomposed systems, let B = i Wh h+ , and note that B > 0.  Consider 

 
, , ,
, ,1 ,22 l d l d l d

W i W Ws s s− −  

= ( ) ( ) ( )1 1 1
, ,1 ,22 d d d

i i iF F Fα
− − −Θ − Θ − Θ  

1 1 11 2

1 2

2 i

i

b b bF F F
b B b B b B

− − −     
= − −     + + +    

 

= 1 1 12 b b bF F F
b B b B b B

− − −+ ∆ − ∆     − −     + + + ∆ + − ∆     
 

= 2 b b b
b B b B b B

+ ∆ − ∆
− −

+ + + ∆ + − ∆
 

 

= ( )( )( )
( )( )( )
2 b b B b B
b B b B b B

+ + ∆ + − ∆
+ + + ∆ + − ∆

 ( )( )( )
( )( )( )

b B b b B
b B b B b B

+ + ∆ + − ∆
−

+ + + ∆ + − ∆
 

   ( )( )( )
( )( )( )

b B b B b
b B b B b B

+ + + ∆ − ∆
−

+ + + ∆ + − ∆
 

 
 
After expansion and intermediate collection of like terms,  
 

( )
( )( )( )

3 2 2 22 2b b B bB b
b B b B b B

+ + − ∆
=

+ + + ∆ + − ∆ ( )( )( )
3 2 2 2 2 22b b B bB bB B b B

b B b B b B
+ + ∆ + + ∆ − ∆ − ∆

−
+ + + ∆ + − ∆

 

( )( )( )
3 2 2 2 2 22b b B bB b bB B B

b B b B b B
+ + − ∆ − ∆ − ∆ − ∆

−
+ + + ∆ + − ∆
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Which, further simplified is 
 

( )( )( )
22B

b B b B b B
∆

+ + + ∆ + − ∆
 

 
> 0, and increasing in ∆. 
 
The above also holds for , , ,

, ,1 ,22 u d u d u d
W i W Ws s s− −  if we define B = Wh . 

 
Thus increasing asymmetry in backordering costs decreases equations A2 and A3.  
To see the results for the effects on system costs, let A = W ih h+ . First consider  

( ) ( ) ( ), , , , , ,
, , ,1 ,2 ,1 ,22 u d l d u d l d u d l d

W i W i W W W WC s C s C s− −   

( )( ) ( )( ) ( )( ), , ,
, ,1 1 ,2 2

1 11 1 1
2 2

l d l d l d
W i i W Wb b b= − Θ − − Θ − − Θ 1 22 W i i W i W ih L h L h Lµ µ µ+ − −  

( ) ( )( ) ( )( ), , ,
, ,1 ,2

1 11 1 1
2 2

l d l d l d
W i i W i W ib b b= − Θ − − Θ + ∆ − − Θ − ∆

( ) ( ) ( )1 11 1 1
2 2

i i i
i i i

i W i i W i i W i

b b bb b b
b h h b h h b h h

     + ∆ − ∆
= − − − + ∆ − − − ∆     + + + ∆ + + − ∆ + +       

( ) ( ) ( )1 11 1 1
2 2

i i i
i i i

i i i

b b bb b b
b A b A b A

     + ∆ − ∆
= − − − + ∆ − − − ∆     + + ∆ + − ∆ +       
 

( ) ( )
( )

( ) ( )
( )

2 22

2 2 2 2
b b b bbb

b A b A b A
+ ∆ + ∆ − ∆ − ∆

= − − + − +
+ + ∆ + − ∆ +

 

( )
( )

( )
( )

2 22

2 2
b bb

b A b A b A
+ ∆ − ∆

= − + +
+ + ∆ + − ∆ +

 

( )( ) ( )( ) ( ) ( )( ) ( )
( )( )( )

2 2221
2

b b A b A b A b b A b A b b A
b A b A b A

+ ∆ + − ∆ + − + + ∆ − ∆ + − + − ∆ + ∆ +
=

+ + ∆ + − ∆ +
 
And after expansion and collection of terms, 

 

( )( )( )
2 2A

b A b A b A
∆

=
+ + ∆ + − ∆ +

 

  
 >  0, and increases with ∆ 
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Note that the above analysis also holds for ( ) ( ) ( ), , , , , ,
, , ,1 ,2 ,1 ,22 l d u d l d u d l d u d

i i i i i iC s C s C sα α − −  if we 

define A= Wh .  Thus asymmetry in backorder cost decreases equations A18 and A19.  
Combined with the above results, we find that both stocking levels and system costs 
are decreasing in backorder cost asymmetry. 

 
 
Proof of Proposition 4. 
 

We show the effects of holding cost asymmetry on stocking levels and total system 
costs.  Beginning with the effects on stocking levels, we consider two cases, the 
collapsed and the decomposed systems. 

 
(a) For the collapsed system, with h1 = hi(1+∆), and h2 = hi(1-∆), consider that the 

weighted holding cost ( ) ( )1 2
1,2

1
i j

j
h h h h

µ ≠

 
= + + ∆ + − ∆ 

 
∑ is independent of ∆.  

Hence ,l c
WΘ and ,u c

WΘ , and thus the collapsed system stocking levels are 
independent of ∆.    

 
(b) For the decomposed system, consider , , ,

, ,1 ,22 l d l d l d
W i W Ws s s− −  where α ≠ 1,2.  Letting A = 

W ih h+ , 
, , ,
, ,1 ,22 l d l d l d

W i W Ws s s− −  

, 2 , 2 , 2
, , 1 ,1 , 2 ,2 ,2 2 l d l d l d

i W W i i W i W W i W i W W i W iL z L L z L L z Lµ σ µ σ µ σ= + − − − −  

, 2 , 2 , 2
, , ,1 , ,2 ,2 l d l d l d

W i i W i W i W i W i W iz L z L z Lσ σ σ= − −  

( )2 , , ,
, , ,1 ,22 l d l d l d

i W i W i W WL z z zσ= − −  

2
, 2 i i i

i W i
i W i i W i i W i

b b bL
b h h b h h b h h

σ
 

= − − + + + + + ∆ + + − ∆ 
 

2
, 2 i i i

i W i
i i i i

b b bL
b A b A b A

σ
 

= − − + + + ∆ + − ∆ 
 

( )( ) ( )( ) ( )
( )( )( )

2
,

2 i i i i i i i i i i i
i W i

i i i i

b b A b A b b A b A b b A b A
L

b A b A b A
σ

 + + ∆ + − ∆ − + + − ∆ − + + + ∆
=   + + + ∆ + − ∆ 

 
After expansion and collection of terms, 
 

( )( )( )
22 i

i i i

b
b A b A b A

− ∆
=

+ + + ∆ + − ∆
 

< 0, and decreasing in ∆ 
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Note that the above also holds for , , ,
, ,1 ,22 u d u d u d

W i W Ws s s− −  if we let A = Wh .  Thus the 
warehouse echelon base stock level is non-decreasing in holding cost asymmetry. 
 
To see the effects of holding cost asymmetry on total system costs, consider 

 
(c) For the collapsed systems, the weighted holding cost 

( ) ( )1 2
1,2

1
i j

j
h h h h

µ ≠

 
= + + ∆ + − ∆ 

 
∑ is independent of ∆.  Hence equations A20 

and A21 are independent of holding cost asymmetry. 
  

(d) For the decomposed systems, let A = W ih h+ . First consider 

( ) ( ) ( ), , , , , ,
, , ,1 ,1 ,2 ,22 u d l d u d l d u d l d

W i W i W W W WC s C s C s− −  

( ) ( ) ( ), , ,
, ,1 ,2

1 11 1 1
2 2 2 2

l d l d l dW i i W i i
W i i W i i W i W i

h L h Lb h L b bµ µµ= − Θ + − − Θ − − − Θ −  

( ) ( ) ( ), , ,
, ,1 ,2

1 11 1 1
2 2

l d l d l d
W i i W i W ib b b= − Θ − − Θ − − Θ  

1 2

1 11 1 1
2 2

i i i
i i i

i W i i W i W

b b bb b b
b h h b h h b h h

     
= − − − − −     + + + + + +     

 

2 2 2

1 2

1 1
2 2

i i i

i W i i W i W

b b b
b h h b h h b h h

= − + +
+ + + + + +

 

2 2 21
2

i i i

i W i i W i i W i

b b b
b h h b h h b h h

= − + +
+ + + + + ∆ + + − ∆

 

2 2 21 1
2 2

i i i

i i i

b b b
b A b A b A

= − + +
+ + + ∆ + − ∆

 

( )( ) ( )( ) ( )( )
( )( )( )

2 2 22
2

i i i i i i i i i

i i i

b b A b A b b A b A b b A b A
b A b A b A

− + + ∆ + − ∆ + + + − ∆ + + + + ∆
=

+ + + ∆ + − ∆
 

( )( ) ( )( ) ( )( )( )
( )( )( )

2 2
2

i i i i i i i

i i i

b b A b A b A b A b A b A
b A b A b A

+ + − ∆ + + + + ∆ − + + ∆ + − ∆
=

+ + + ∆ + − ∆
 

( )( ) ( )( ) ( )( )( )
( )( )( )

2 2
2

i i i i i i i

i i i

b b A b A b A b A b A b A
b A b A b A

+ + − ∆ + + + + ∆ − + + ∆ + − ∆
=

+ + + ∆ + − ∆
 

( ) ( )( )
( )( )( )

2 2 2 2 2

2

b b b Ab Ab A A b b Ab Ab A A

b A b A b A

− ∆ + + − ∆ + + + ∆ + + + ∆ +
=

+ + ∆ + + − ∆
 

( )
( )( )( )

2 2 2 22

2

b b Ab b Ab A A b A
b A b A b A

+ − ∆ + + − ∆ + ∆ + ∆ − ∆
−

+ + ∆ + + − ∆
 

 
and collecting like terms gives 



 46

( )( )( )
2 2b

b A b A b A
∆

=
+ + ∆ + + − ∆

 

 
> 0, and increasing in ∆. 
 

Note that the above also holds for ( ) ( ) ( ), , , , , ,
, , ,1 ,1 ,2 ,22 l d u d l d u d l d u d

W i W i W W W WC s C s C s− − if we let 

WA h= .  Thus the total system costs are non-decreasing in holding cost asymmetry. 
 

 
We next consider asymmetry in demand.  Because demand does not appear in the critical 
fractiles, we revert to normal distributions. 
 
 
Proof of Proposition 5. 
 

We consider two cases, the collapsed and decomposed systems. 

(a) For the collapsed system, note that
1

n

i
i

µ µ
=

= ∑ and 2 2

1

n

i
i

σ σ
=

= ∑ are independent of 

∆.  Thus the collapsed stocking levels , , 2l c l c
W W W Ws L z Lµ σ= + and 

, , 2u c u c
W W W Ws L z Lµ σ= +  are likewise independent of asymmetry in iµ and 2

iσ .  

Also, the cost equations ( ) ( ) ( ), , , 2l c u c u c
W W W W W W iC s b h z L h Lφ σ µ= + +  and 

( ) ( ) ( ), , , 2u c l c l c
W W W i W W W iC s b h h z L h Lφ σ µ= + + +  are likewise independent of 

asymmetry in αµ and 2
ασ .   

 
 

(b) For the decomposed system, first consider , , ,
, ,1 ,22 l d l d l d

W i W Ws s s− −  
 

, 2 , 2 , 2
, , 1 ,1 1 , 2 ,2 2 ,2 2 l d l d l d

i W W i i W i W W W i W W W iL z L L z L L z Lµ σ µ σ µ σ= + − − − −  
, 2 , 2 , 2
, , ,1 1 , ,2 2 ,2 l d l d l d

W i i W i W W i W W iz L z L z Lσ σ σ= − −  

( ), 2 2 2
, , 1 , 2 ,4l d

W i i W i W i W iz L L Lσ σ σ= − −  

, 2 2 2
, , 4l d

W i W i i i iz L µ µσ σ σ
µ µ

 + ∆ − ∆
= − −  

 
 

, 2
, , 4l d

W i i W iz L µ µσ
µ µ

 + ∆ − ∆
= − −  

 
 

, 2
, , 2l d

W i i W iz L µ µσ
µ µ µ µ

 ∆ ∆
≥ − − − +  
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, 2
, , 2 0l d

W i i W iz L µ µσ
µ µ

 
= − − =  

 
 

Note that the above follows for , , ,
, ,1 ,22 u d u d u d

W i W Ws s s− − as well if we substitute ,
,

u d
W iz for 

,
,

l d
W iz .  Thus the echelon base stock level at the warehouse is non-increasing in 

demand rate asymmetry. 
 

(c) Next, consider ( ) ( ) ( ), , , , , ,
, , ,1 ,1 ,2 ,22 u d l d u d l d u d l d

W i W i W W W WC s C s C s− −  

( ) ( ) ( ) ( )
( ) ( )

, 2 , 2
, , , ,1 1 , 1 ,

, 2
,2 2 , 2 ,

2 2l d l d
i W i W i i W i W i W i i W i W W i W W i

l d
i W i W W i W W i

b h h z L h L b h h z L h L

b h h z L h L

φ σ µ φ σ µ

φ σ µ

= + + + − + + −

− + + −

( ) ( ) ( ) ( )( ), 2 , 2 , 2
, , ,1 1 , ,2 2 ,2 l d l d l d

i W i W i i W i W W i W W ib h h z L z L z Lφ σ φ σ φ σ= + + − −  

( ) ( ), 2
, , 4l d

i W i W i i W ib h h z L µ µφ σ
µ µ

 + ∆ − ∆
= + + − −  

 
 

( ) ( ), 2
, , 2 0l d

i W i W i i W ib h h z L µ µφ σ
µ µ µ µ

 ∆ ∆
≥ + + − − − + =  

 
 

Note that the above follows for ( ) ( ) ( ), , , , , ,
, , ,1 ,1 ,2 ,22 l d u d l d u d l d u d

W i W i W W W WC s C s C s− − as well if we 

substitute ,
,

u d
W iz for ,

,
l d
W iz .  Thus the total system inventory costs are non-increasing 

in demand rate asymmetry. 
 


