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SUMMARY 
 
 
 

This research addresses sizing and dimensioning of a forward-reserve warehouse, a 

strategic design problem that has important implications for warehouse life cycle costs 

including construction, inventory holding and replenishment, and material handling. 

Large mixed integer nonlinear models are developed that capture the complex tradeoffs 

among the different costs in order to achieve a global optimal design satisfying 

throughput requirements. We first consider the situation where the forward area includes 

all SKUs so that order picking is performed only in the forward area. In this case, the 

problem can be decomposed and the resulting sub-problem is convex and can be solved 

very efficiently based on the Karush-Kuhn-Tucker (KKT) conditions. This property 

enables the use of a Generalized Benders Decomposition (GBD) method to solve the 

sizing and dimensioning problem exactly.  

We then extend the problem to more general situations where the forward area can 

contain a subset of SKUs. This requires integrating the sizing and dimensioning decisions 

and the decision to assign SKUs to the forward area based on their flow characteristics 

(i.e., the forward reserve allocation). A similar decomposition strategy can be employed, 

but the sub-problem (incorporating the forward reserve allocation) is no longer convex. A 

bi-level hierarchical heuristic approach is proposed that integrates a pattern search 

method for the master problem and optimal and heuristic algorithms for the sub-

problems. Numerical results demonstrate that the proposed heuristic approach is very 

efficient in generating near optimal solutions. 

 x



 

A detailed discussion of the forward reserve allocation problem is also provided 

since it appears in the sizing and dimensioning problem as a sub-problem. The forward 

reserve allocation problem is NP-complete itself and is solved heuristically in the 

previous literature. An alternative branch-and-bound algorithm based on outer 

approximation is developed that can quickly find the optimal solution for realistically 

sized problems. Extensive numerical experiments based on real warehouse data are 

conducted to compare the heuristic and optimal solutions. The results show that, although 

the optimality gap might be big in some small examples, for realistic warehouses the 

heuristic solution is always very close to the optimal solution in terms of both the 

objective value and the forward assignment.  
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CHAPTER 1  

INTRODUCTION 

 
 

Warehouses are an essential component of any supply chain. Their major roles 

include: buffering the material flow along the supply chain to accommodate variability 

caused by factors such as product seasonality and/or batching in production and 

transportation; consolidation of products from various suppliers for combined delivery to 

customers; and value-added-processing such as kitting, pricing, labeling, and product 

customization.  

Market competition requires continuous improvement in the design and operation 

of production-distribution networks, which in turn requires higher performance from 

warehouses. The adoption of new management philosophies such as Just-In-Time (JIT) 

or lean production also brings new challenges for warehouse systems, including tighter 

inventory control, shorter response time, and a greater product variety. On the other hand, 

the widespread implementation of new information technologies (IT), such as bar coding, 

radio frequency communications (RF), and warehouse management systems (WMS), 

provides new opportunities to improve warehouse operations. These opportunities 

include, but are not limited to: real-time control of warehouse operation, easy 

communication with the other parts of the supply chain, and high levels of automation. 

Warehouse design and operation have attracted a lot of research attention in the last 

two decades. Nevertheless they remain complex tasks with few useful decision support 

tools. The difficulties include: the large amount of information to be processed; the large 
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number of possible alternatives; various and often conflicting objectives; and uncertainty 

inherent in the material flow into, through, and out of the warehouse.  

Furthermore, as the literature survey in chapters 2 and 3 shows, most research 

efforts have been devoted to warehouse operation problems instead of design problems. 

This is not surprising since design problems are much more difficult to treat analytically. 

A major difficulty is that design decisions are tightly coupled and good designs require 

considering them in an integrated way. However, integrated design models are more 

difficult to develop and analyze. 

This dissertation addresses a strategic design problem, i.e., the sizing and 

dimensioning problem for warehouses with the forward reserve configuration. The 

forward-reserve configuration is a popular warehouse layout strategy that allows both 

efficient order picking and efficient storage. It divides the warehouse into a forward area 

and a reserve area. The forward area is mainly used for order picking and is characterized 

by: (1) expensive storage and picking equipment that facilitates convenient item selection 

and retrieval; (2) low storage density in terms of the net storage volume per unit storage 

area; (3) high picking efficiency in terms of the average travel and item retrieval time per 

pick. The reserve area is mainly used for bulk storage. It is also used for replenishing the 

forward area and for picking Stock Keeping Units (SKUs) that are not assigned to the 

forward area. Compared with the forward area, it has the following features: (1) 

inexpensive storage methods such as block stacking and pallet racks; (2) high storage 

density; and (3) low picking efficiency. The benefit of the forward-reserve configuration 

lies in the fact that it dedicates different storage areas to the two different and usually 

conflicting warehouse functions, i.e., order picking and storage, so that their relative 
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advantage can be best utilized with the minimum interference between them. However, 

this benefit cannot be fully realized without careful storage space planning to balance the 

tradeoffs among the costs of equipment, inventory, and material handling (e.g., order 

picking, internal replenishment, put away).  

The sizing and dimensioning problem determines the size and dimension of a 

warehouse, the space allocation between the forward and reserve areas, and the space 

allocation for SKUs within each area. It is a strategic decision that has important 

implications for warehouse life cycle costs, which include construction cost, inventory 

holding and replenishment cost, and material handling cost. This research is the first that 

develops integrated models to balance the complex tradeoffs between the different cost 

elements in order to achieve a global optimal design. Two scenarios are modeled: (1) the 

forward area contains all SKUs so that orders are picked only from the forward area; (2) 

the forward area contains a selected subset of SKUs, and customer requests can be picked 

from either area depending on the forward assignment. The sizing and dimensioning 

problem for both scenarios are modeled as large mixed integer nonlinear optimization 

problems. Their structures are explored in order to develop efficient and effective 

solution algorithms. For the first scenario, the problem is solved with a generalized 

Benders decomposition method that can find the guaranteed optimal solution. The 

algorithm for the second scenario is a hierarchical heuristic method that integrates pattern 

search for solving the master problem together with a bisection search method and a 

knapsack-based heuristic for solving the sub-problems. Numerical results will be 

provided with regards to the performance of the proposed algorithms as well as the 

quality of the resulting solutions.  

 3



 

The organization of the dissertation is as follows. Chapters 2 and 3 give a 

comprehensive literature survey on warehouse operation and design problems 

respectively. The scope of this survey is not limited to the specific problem we studied, 

but covers most of the important topics in the warehouse literature. Therefore, they can 

be regarded as results independent from the other chapters. Chapter 4 presents the 

warehouse sizing and dimensioning problem for scenario 1 as well as the GBD based 

global optimal algorithm. Chapter 5 discusses the forward reserve allocation problem, 

which is one of the sub-problems in the sizing and dimensioning problem for scenario 2. 

Chapter 6 then generalizes the model developed in chapter 4 to include the additional 

decision of forward assignment and provides a hierarchical heuristic solution method to 

solve the generalized model. Finally, research results are summarized and future 

directions are given in chapter 7.  
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CHAPTER 2  
 

RESEARCH ON WAREHOUSE OPERATION 
 

 
 

2.1 Introduction 

A number of warehouse operation decision support models have been proposed in 

the literature, but there remains considerable difficulty in applying these models to guide 

warehouse operations. This chapter presents a comprehensive review of the state-of-the-

art in research on warehouse operation planning. The objective is to classify and 

summarize the prior research results, and to identify the research opportunities for the 

future. The intended outcome is both a guide to practitioners on the analytical 

methodologies and tools available to support better warehouse operation planning, and a 

roadmap for academic researchers to future research opportunities.  

We first present a unifying framework to classify the research on different but 

related warehouse planning problems. Within this framework, historical progress and 

major results are summarized with an emphasis on how the research on these problems 

evolved and the relationships between various problems. Future research directions are 

identified and discussed.  

 

2.2 Framework 

The basic requirements in warehouse operations are to receive goods from 

suppliers, store the goods, receive orders from customers, retrieve goods and assemble 

them for shipment, and ship the completed orders to customers. There are many issues 

involved in designing and operating a warehouse to meet these requirements. Resources, 
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such as space, labor, and equipment, need to be allocated among the different warehouse 

functions, and each function needs to be carefully implemented, operated, and 

coordinated in order to achieve system requirements in terms of capacity, throughput, and 

service at the minimum resource cost.  

A scheme to classify warehouse design and operation planning problems and the 

corresponding literature is shown in Figure 2.1 (the numbers in parentheses represent the 

number of papers reviewed for each operation planning problem) and a more detailed 

description of each problem category identified is given in Table 2.1.  This chapter will 

focus on the operation planning problems, while warehouse design and performance 

evaluation are discussed in the next chapter.  

Storage is concerned with the organization of goods held in the warehouse in order 

to achieve high space utilization and facilitate efficient material handling. Goods in 

storage can be organized in department based on physical characteristics of the goods 

(e.g., pallet storage vs. case storage), management considerations (e.g., a dedicated 

storage area for a specific customer), or material handling considerations (e.g., a forward 

area for fast picking). Within departments, goods may be further organized into pick 

zones. A pick zone is a set of storage locations that are often arranged in close physical 

proximity. A department may be divided into zones because of storage requirements, for 

example, when different block-stacking patterns are used for pallet storage. A department 

may also be divided into zones for organizing order picking activities. A particular pick 

zone holds a limited subset of the SKUs, and pickers are dedicated to their zone to pick 

the required items. Because of the limited physical size of the zone, the picker achieves a  
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Figure 2.1 Framework for warehouse design and operation problems 
 

 

 

 7



 

 

Table 2.1 Description of warehouse design and operation problems 
Design and Operation Problems Decisions 

Overall Structure 
• Material flow 
• Department identification 
• Relative location of departments 

Sizing and Dimensioning • Size of the warehouse 
• Size and dimension of departments  

Department Layout 

• Pallet block-stacking pattern (for pallet storage) 
• Aisle orientation 
• Number, length, and width of aisles 
• Door locations 

Equipment Selection 

• Level of automation 
• Storage equipment selection 
• Material handling equipment selection (order picking, 

sorting) 

Warehouse 
Design 

Operation Strategy • Storage rule selection 
• Order picking method selection 

Receiving & Shipping 
• Truck-dock assignment 
• Order-truck assignment 
• Truck dispatch schedule 

SKU-
Department  
Assignment  

• Assignment of items to different warehouse 
departments  

• Space allocation  

Zoning • Assignment of SKUs to zones 
• Assignment of pickers to zones 

Storage 

Storage 
Location 
Assignment 

• Storage location assignment 
• Specification of storage classes (for class-based 

storage) 

Batching • Batch size 
• Order-batch assignment 

Routing & 
Sequencing 

• Routing and sequencing of order picking tours 
• Dwell point selection (for AS/RS) 

Warehouse 
Operation 

Order 
Picking 
 

Sortation • Order-lane assignment 
 

 

 

 

 

 

 

 8



 

high ratio of SKU extracting time to traveling time between locations and an increased 

familiarity with the SKUs in the zone. Within a department /zone, goods are assigned to 

storage locations, and storage location assignment has significant impact on storage 

capacity, inventory tracking, and order picking. For example, dedicated storage (as 

defined in section 2.4.3) has low space utilization, but the warehouse is easier to manage 

since it has a permanent assignment of products to locations.  

Order picking is generally recognized as the most expensive warehouse operation, 

because it tends to be either very labor intensive or very capital intensive (Frazelle 

(2001)).  Managing the order picking process requires the organization of the orders to be 

picked and the material handling operations of the picking. In a given day or shift, a 

warehouse may have many orders to pick.  These orders may be similar in a number of 

respects; for example, some orders are shipped using the same carrier, or transportation 

mode, or have the same pick due date and time. If there are similarities among subsets of 

orders that require them to be shipped together, then they also should be picked roughly 

during the same time period to avoid intermediate storage and staging. Thus, it is 

common practice to use wave picking, i.e., to release a fraction of the day’s (shift’s) 

orders, and to expect their order picking to be completed within a corresponding fraction 

of the day (shift).  

In addition to wave picking, two other commonly used order-picking strategies are 

batch picking and zone picking. Batch picking involves the assignment of a group of 

orders to a picker to be picked simultaneously in one trip. In zone picking, the storage 

space is divided into picking zones and each zone has one or more assigned pickers who 

only pick in their assigned zone. Zone picking can be divided into sequential and parallel 
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zone picking. Sequential zone picking is similar to a flow line, in which containers that 

can hold one or more orders are passed sequentially through the zones; the pickers in 

each zone pick the products within their zone, put them into the container, and then pass 

the container to the next zone. (Bartholdi and Eisenstein (1996) propose a Bucket 

Brigades order picking method that works similar to sequential zone picking, but does not 

require pickers to be restricted to zones). In parallel zone picking, an order is picked in 

each zone simultaneously. The picked items are sent to a downstream sortation system to 

be combined into orders.  

The organization and planning of the order picking process must answer the 

following questions: 

1. Will product be transported to the picker (part-to-picker) or will the picker 

travel to the storage location (picker-to-part)? 

2. Will orders be picked in waves? If so how many waves of what duration? 

3. Will the warehouse be divided into zones? If so, will zones be picked 

sequentially or concurrently? 

4. Will orders be picked in batches or separately? If they are batched, will they 

be sorted while picking or after picking? 

Depending on the operating principles selected, the order picking methods will be: 

• Single order picking 

• Batching with sort-while-pick 

• Batching with sort-after-pick 

• Sequential zoning with single order picking 

• Sequential zoning with batching 
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• Concurrent zoning without batching  

• Concurrent zoning with batching  

Each of the above order picking methods can be decomposed into a set of basic 

steps. For example, using the batching with sort-after-pick method, orders arriving at the 

warehouse are first batched; each batch is routed and a picking list is generated; the batch 

is then assigned to an order picker who travels to the order picking area to pick the 

required items; the picked items are sent to a downstream sortation system to be sorted 

into orders; and finally the picked orders are packed and shipped to customers.  

Therefore, several basic decisions need to be made for each picking method, which 

include pick wave sizing, batching, routing, and sorting. The planning of batching, 

routing, and sorting defines the basic decision making modules at the operational level 

for order picking and will be discussed in detail in Section 2.5. Research on pick wave 

sizing is very limited, and therefore will not be further discussed. 

 

2.3 Receiving and shipping 

Goods arrive to a warehouse in a carrier and are unloaded at the receiving docks. 

Later they are loaded in a carrier and leave the warehouse through the shipping docks. 

For cross docking warehouses, received goods are directly sent from the receiving docks 

to the shipping docks. For traditional warehouses that hold inventory received goods are 

put away into storage and later picked and shipped through shipping docks. In this case, 

the receiving and shipping operations are more complex to manage since they are 

coupled with the storage and order picking functions. For example, the scheduling of 
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shipping trucks may depend on how orders are batched and assigned to picking waves 

and vice versa.  

The basic decisions in receiving/shipping operations are: 

• Assign inbound and outbound carriers to docks. This assignment determines the 

aggregate internal material flows. 

• Schedule the service of carriers at each dock. Assuming a set of carriers is 

assigned to a dock, the problem is similar to a machine-scheduling problem, 

where the arriving carriers are the jobs to be scheduled.  

• Allocate or dispatch material handling resources, such as labor and material 

handling equipment.  

The objective of these decisions is to minimize the resources required to complete 

all shipping/receiving operations with acceptable levels of service.  The criteria may vary 

according to the function of the warehouse, but typical criteria would include the total 

cycle time for the carriers, the load/unload time for the carriers, and the material handling 

cost associated with load/unload operations. 

There are also a variety of constraints on dock operations, including: 

• Layout, or the relative location and arrangement of docks and storage 

departments. 

• Management policies, e.g., one customer per shipping dock. 

• Finish time requirements for some customers or docks. 

• Throughput requirements for all docks. 
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Furthermore, decision making is limited by the level of prior knowledge about 

incoming and outgoing shipments, for which the following scenarios can be 

distinguished: 

• No knowledge, other than warehouse layout.   

• Partial statistical knowledge of arriving and departing processes, such as the 

average level of material flow from an incoming carrier to an outgoing carrier.  

• Perfect knowledge of the content of each arriving carrier and each departing 

carrier.   

In the first scenario, not only do we have no basis for assigning carriers to docks, 

we also have no basis for assigning goods to storage locations.  It is not clear in this case 

if any storage assignment rule is preferred. Public warehouse may operate under this set 

of conditions. The second scenario is most common in company-owned or dedicated 

distribution warehouses and is the basis for most of the decision models in the literature. 

The third scenario is becoming increasingly common through the application of advanced 

information technologies such as RFID, GPS, and advanced shipping notices (ASN).  

The research on receiving and shipping has been focused on the carrier-to-dock 

assignment problem for cross-docking warehouses, assuming statistical knowledge of 

incoming and outgoing shipments.  The cross-docking warehouse is operated as follows: 

inbound trucks arrive in the yard of the warehouse and proceed to the assigned receiving 

door (or strip door) for unloading; the unloaded goods are sorted according to their 

destinations, and then loaded onto outbound trucks at shipping doors (or stack doors) for 

delivery to customers. Often, each stack door is designated to a particular destination, and 

once established, the designations of stack doors generally do not change. The decisions 
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for a cross-docking warehouse manager are then to designate the doors as either strip or 

stack doors, assign destinations to stack doors, and assign inbound trucks to strip doors in 

order to minimize the total operational cost. 

Assuming the designations of doors as either strip or stack doors have already been 

made, Tsui and Chang (1990, 1992) formulate a bilinear model to assign inbound and 

outbound trucks to strip and stack doors respectively. Gue (1999) proposes a model to 

estimate the operational cost by optimally assigning inbound trucks to strip doors given 

the specification of doors as either strip or stack doors and the assignment of destinations 

to stack doors. Based on the cost model, he uses a local search procedure to find an 

efficient door layout. Bartholdi and Gue (2000) consider the cross-docking warehouse 

door layout problem with the objective of minimizing the total travel time and waiting 

time incurred due to congestion. They model the total travel time and waiting time for a 

fixed door layout using transportation and queuing models and then embed the cost 

model in a simulated annealing algorithm to find an efficient door layout.  

In summary, very few formal models have been developed for the management of 

shipping and receiving operations.  Most of the literature that is available in this area 

addresses shipping and receiving operations and truck-to-dock assignment strategies for 

cross-docking warehouses.  

 

2.4 Storage 

Storage is a major warehouse function. Three decisions have to be made regarding 

the storage of goods in a warehouse, i.e., how much inventory should be kept in the 

warehouse for an SKU; how frequently and at what time should the inventory for an SKU 
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be replenished; and where should the SKU be stored in the warehouse and distributed and 

moved among the different storage areas. The first two problems are called the lot sizing 

and staggering problems respectively, which belong to the traditional inventory control 

area and are not further discussed here. Readers may refer to Gallego et al. (1996) and 

Hariga and Jackson (1996) for a detailed review. This section will focus on the storage 

assignment problem, which includes the decisions of assigning SKUs to various storage 

departments and scheduling of inventory moves between the departments, of assigning 

SKUs to different zones (zoning), and of the storage location assignment within a 

department/zone. The two major criteria in making these decisions are the storage 

efficiency, which corresponds to the holding capacity, and the access efficiency, which 

corresponds to the resources consumed by the insertion (store) and extraction (order 

picking) processes.  

2.4.1 Assigning SKUs across departments 

A SKU may be stored in more than one warehouse department. The specification of 

departments is a design decision. Once the departments are specified, one needs to 

determine which SKU should be stored in which department, in what quantity, and what 

are the corresponding inter-departmental moves for that SKU. In some cases, this 

decision is straightforward. For example, if a department is dedicated to a certain 

customer, then all SKUs for that customer are assigned to that department; or if a SKU 

will be stored and picked only in units of pallets, then it will be assigned only to the pallet 

storage area. In other cases, a SKU could be assigned to multiple departments. These 

departments usually differ in terms of their storage and material-handling capability. 
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Therefore, a careful decision needs to be made in order to balance the tradeoff between 

storage and material handling cost and capacities.  

The forward-reserve problem belongs to this category and is a well-researched 

problem. It is a common practice in warehousing to create a separate, physically compact 

forward (or “fast pick”) area for picking high-demand, fast-moving products. This 

reduces order picking costs but at the expense of requiring additional material handling to 

restock the forward area from a reserve area. Furthermore, the size of the forward area is 

limited. Therefore, one needs to determine which SKUs should be stored in the forward 

area and in what quantity in order to achieve the maximum savings in material handling.   

Bozer (1985) first introduces the problem of splitting a pallet rack into an upper 

reserve area and a lower forward picking area. Hackman and Rosenblatt (1990) treat the 

problem of deciding which SKUs to assign to the forward area, and how to allocate space 

among the assigned SKUs, given the forward area has a fixed capacity. The objective is 

to minimize the total material handling costs of order picking and replenishing. They 

propose a knapsack-based heuristic to solve this problem and provide sufficient 

conditions for optimality of this heuristic. Frazelle et al. (1994) extend the problem and 

solution method of Hackman and Rosenblatt (1990) by treating the size of the forward 

area as a decision variable. The costs in their model include the equipment cost of the fast 

pick area (modeled as a linear function of its size), and the material handling cost for 

order-picking and replenishment. 

The above models assume the replenishment of a SKU can be done in a single trip. 

van den Berg et al. (1998) consider the problem for unit-load replenishments, i.e., only 

one unit can be replenished per trip. Assuming the forward area can be replenished 
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instantaneously there is no need to assign more than one unit to the forward area.  They 

consider warehouses that have busy and idle periods, so it is possible to reduce the 

number of replenishments during busy periods by performing replenishments in the 

preceding idle periods. A knapsack-based heuristic is proposed to find the set of SKUs to 

put in the forward area that minimizes the expected total labor-time related to order-

picking and replenishing during a busy period. 

2.4.2 Assigning SKUs across zones (zoning) 

The zoning problem is to specify different storage zones within a department and 

assign SKUs to the specified zones. It can be both a “hard” and a “soft” decision; it is a 

hard decision if it leads to zone-specific storage technology selection and physical 

arrangement, but it is a soft decision if it is simply an organization of similar storage 

locations.  Thus, zoning decisions fall in between warehouse design decisions and 

warehouse operation decisions.  

A department can have zones that use different storage modes. One example that 

has been extensively studied in the literature is the block-stacking problem for a pallet 

storage area. A fundamental decision for the block-stacking problem is to determine lane 

depths to balance the tradeoffs between space utilization and ease of storage/retrieval 

operations, considering the SKUs’ stackability limits, arriving lot sizes, and retrieval 

patterns. Using deep lane storage might increase space utilization because fewer aisles 

are needed, but on the other hand might also decrease space utilization due to the 

“honeycombing” effect that results in unused space in the lane that cannot be assigned to 

other items before the whole lane is totally depleted. Honeycombing effect depends on 

lane depths as well as the withdrawal rate of individual products. Therefore, it might be 
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beneficial to store different classes of products in different lane depths. A careful 

determination of the lane depths is necessary in order to achieve the best storage space 

utilization. Besides lane depths, the pallet block-stacking problem also determines such 

decisions as aisle width and orientation, stack height, and storage clearance to achieve a 

balanced tradeoff between storage space utilization and material handling efficiency. 

Moder and Thornton (1965) propose ways of stacking pallets in a warehouse and discuss 

their influence on space utilization and ease of storage and retrieval. They consider such 

factors as lane depth, pallet placement angle with regards to the aisle, and spacing 

between storage lanes. Berry (1968) develops analytic models to evaluate the total space 

requirement and the average travel distance for given block-stacking patterns with 

different aisle configurations, lane depths, throughput rates, and number of SKUs. Marsh 

(1979, 1983) uses simulation to evaluate the effect of alternate lane depths and SKU-to-

lane assignment rules on space utilization. Goetschalckx and Ratliff (1991) develop an 

efficient dynamic programming algorithm to maximize space utilization by selecting lane 

depths out of a limited number of allowable depths and assigning incoming shipments to 

the different lane depths. Larson et al. (1997) propose a three-step heuristic for the block-

stacking problem of class-based pallet storage with the purpose to maximize storage 

space utilization and minimize material handling cost.  

A storage department also can be divided into zones for organizing order picking 

operations. The fundamental advantages of zone picking are the limited space the picker 

has to travel to pick an order, the increased familiarity of the picker with a subset of the 

SKUs, and the reduced order picking time span for an order if zones are picked in 

parallel. On the other hand, additional costs may be incurred in zone picking, caused by 
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sorting in parallel zone picking and by the queuing in sequential zone picking. Storage 

needs to be planned for zone picking to determine the specification (the number, size, and 

shape) of the zones and to assign SKUs to zones in such a way that minimizes the total 

order picking cost and balance the workloads across zones. The literature on the storage 

planning for zone picking is very limited. Gray et al. (1992) present a hierarchical 

framework for designing warehouses with zone picking to determine the number of zones 

and pickers, zone sizes (storage spaces per zone), storage assignment across and within 

zones, and order batch size. The effects of zone shape (i.e., the number of aisles per zone 

and the length of aisles) on operational cost is investigated by Petersen (2002) with 

simulation. It is shown that zone shape has a substantial impact on the operational cost 

depending on factors such as the zone size and the batch size.  

2.4.3 Storage location assignment  

The storage location assignment problem (SLAP) is to assign incoming products to 

storage locations in storage departments/zones in order to reduce material handling cost 

and improve space utilization. Different warehouse departments might use different 

SLAP policies depending on the department-specific SKU profiles and storage 

technology. The Storage Location Assignment Problem (SLAP) is formally defined as 

follows: 

Given: 
 
1) information on the storage area, including its physical configuration and storage 

layout 

2) information on the storage locations, including their availability, physical 

dimensions, and location  
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3) information on the set of items to be stored, including their physical dimensions, 

demand, quantity, arrival and departure times  

Determine: 
 
The physical location where arriving items will be stored 
 
Subject to performance criteria and constraints such as: 

1)  storage capacity and efficiency 

2)  picker capacity and efficiency based on the picker cycle time 

3) response time 

4) the compatibility between products and storage locations and the compatibility 

between products 

4) item retrieval policy such as FIFO (first-in, first-out), LIFO (last-in, first-out), 

BFIFO (batch first-in, first-out). When using the BFIFO policy, items that 

arrived in the same replenishment batch are considered to be equivalent. 

In typical warehouse operations, the physical storage infrastructure and its 

characteristics are known when planning the storage location assignment. The availability 

of storage locations is always known in automated warehouses and often known in 

mechanized warehouses. The storage assignment problem can be divided into three 

classes depending on the amount of information known about the arrival and departure of 

the products stored in the warehouse: 1) item information, 2) product information, or 3) 

no information. Different operational policies exist for each of these classes, and their 

implementation and performance have been discussed extensively in the literature. Most 

of the research has focused on unit-load warehouses. Of course, these SLAP policies can 

be applied to non unit-load warehouses as well, but it is usually much more difficult to 
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provide analytical results because of the complexity of computing the associated material 

handling times and cost involved in a non unit-load warehouse (for example when 

batching and routing are used). 

Storage Location Assignment Problem based on Item Information (SLAP/II) 

In the SLAP/II problem, it is assumed that complete information is known about the 

arrival and departure time of the individual items. It is very unlikely that information on 

individual items will be available in typical warehousing operations, but it may be 

available in the case of short term planning of container ports or airport gates. The 

resulting problem is a specially structured Assignment Problem (AP), where items are 

assigned to storage locations. The special structure derives from the property that two 

items can occupy the same storage location, provided they do not occupy it at the same 

time. This problem has been called the Vector Assignment Problem (VAP), since the 

occupation is no longer expressed as a single binary status variable but as a vector over 

the different time periods (Goetschalckx (1998)). The optimal solution of this problem 

for typical warehousing operations is computationally impractical because of the very 

large problem instances. The problem is of interest to academic research in warehouse 

operations because it provides a cost lower bound or performance upper bound. An 

example of a heuristic SLAP/II policy is the Duration-of-Stay (DOS) policy of 

Goetschalckx and Ratliff (1990). In DOS-based storage policies, the expected DOS of the 

ith unit of a SKU with replenishment lot size Q is i /λ  for i =1, 2 , …., Q, where λ is the 

demand rate of that SKU. Then the items of all the different products having the shortest 

DOS are assigned to the closest locations. Hence, the items of a single replenishment 

batch of a single product are not stored together in the warehouse. Under some unrealistic 
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assumptions on the scheduling and size of product replenishments, it can be shown that 

the DOS storage policy is optimal for both material handling effort and required storage 

capacity (see also Thonemann and Brandeau (1998)). In practice, DOS-based policies are 

difficult to implement since it requires the tracking and management of each stored unit 

in the warehouse. Also the performance of DOS-based policies depends greatly on 

factors such as the skewness of demands, balance of input and output flows, inventory 

control policies, and the detailed implementations. Kulturel et al. (1999) compare class-

based storage and DOS-based storage using simulation and show that the former 

consistently outperforms the latter in practical settings.  

Storage Location Assignment Problem based on Product Information (SLAP/PI) 

Often only product information is known about the items to be stored, and items are 

instances of products. Products may be classified into product classes. The assignment 

problem now assigns an individual item to a product class based on its product 

characteristics, and assigns a product class to storage locations. The location of an item in 

its class is most often done using some simple rule, such as nearest location, or randomly. 

If the number of classes is equal to the number of products, then this policy is called 

Dedicated Storage. If the number of classes is equal to one, this policy is denoted as 

Random Storage. In real-life warehousing operations, a small number of classes ranging 

from 3 to 5 are used. This policy is called Class-Based Storage. 

Different criteria can be used to assign a product (class) to storage locations. The 

three most frequently used criteria are: 1) demand rate, 2) maximum inventory, and 3) 

turnover. For the demand rate policy, products are ranked by decreasing demand rate and 

the classes with high demand rate are assigned the most desirable locations. For the 
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maximum inventory policy, products are ranked by increasing maximum inventory, 

which is the sum of their safety inventory and replenishment (cycle) inventory. The 

storage classes with the lowest maximum inventory are assigned the most desirable 

locations. For the turnover policy, products are ranked by the ratio of their demand rate 

divided by their maximum inventory. Products with the highest turnover are stored in the 

most desirable locations. The turnover policy is the most comprehensively studied one in 

the literature.  

The turnover-based policy for dedicated storage was first described by Heskett 

(1963, 1964) as the Cube-per-Order index (COI) rule without a proof of its optimality. 

Kallina and Lynn (1976) discussed the implementation of the COI rule in practice. The 

COI rule is easy to implement and has the intuitive appeal of locating compact, fast-

moving items in readily accessible locations. Furthermore, the COI rule is proved to be 

optimal for dedicated storage when the following assumptions are satisfied:  

(1) The objective is to minimize the long-term average order picking cost.  

(2) The travel cost depends only on locations. Examples that do not satisfy 

this assumption include the case when the travel cost is item dependent or 

when there are multiple I/O points, and products have different probability 

of moving from/to the I/O points, i.e., it does not satisfy the factoring 

assumption as defined in Mallette and Francis (1972). 

(3) When dual or multi-command order picking is used, there is no 

dependence between the picked items in the same picking tour.  
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(4) Certain routing policies are assumed for multi-command order picking, 

e.g., Jarvis and McDowell (1991) assume using the traversal routing 

policy for the conventional multi-aisle order picking system.  

(5) There are no compatibility constraints that limit the storage location 

assignment, e.g., certain items must and/or cannot be put together. 

Tables 2.2 and 2.3 give a summary of the literature on dedicated storage assignment 

policies. Table 2.2 classifies the papers that discuss the COI rule and its variants for 

different order picking systems and its optimality based on the above assumptions; Table 

2.3 gives other heuristic algorithms for dedicated storage when some of the previous 

assumptions are not satisfied, and therefore the COI rule is not directly applicable.  

The turnover-based policy for class-based storage is first discussed by Hausman et 

al. (1976), Graves et al. (1977), and Schwarz et al. (1978). They compare randomized 

storage, dedicated storage, and class-based storage in single-command and dual-

command AS/RSs using both analytical models and simulations. The results show that 

the turnover-based policy for class-based storage with relatively few classes could 

achieve good performance in terms of both material-handling cost and storage capacity. 

 

Table 2.2 COI-based dedicated storage assignment policies 
 Single-Command Dual-Command Multi-Command Carousel 

COI rules and 
its variants 

Mallette and Francis 
(1972)  
Harmatuck (1976)  

Malmborg and 
Krishnakumar 
(1987)  
Malmborg and 
Krishnakumar 
(1990)  

Malmborg and 
Krishnakumar 
(1989)  
Jarvis and 
McDowell (1991)  

Bengu (1995)  
Vickson (1996)  
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Table 2.3 Other dedicated storage assignment policies 
Citation Problem Summary Algorithm 

Montulet et al. (1998)  The objective is to minimize the peak 
operations cost.  

Branch and Bound 

Lee (1992)  
Rosenwein (1994)  
Brynzer and 
Johansson (1996)  
van Oudheusden and 
Zhu (1992)  

Items are not independent such that some 
items are more likely to appear on the 
same order. 

Cluster analysis; 
Space filling curve 
based heuristics 

Malmborg (1995)  All items of any SKU must be located in 
the same aisle in a multi-aisle AS/RS 
system. 

Random search 
plus simulated 
annealing 

Lai et al. (2002)  
Zhang et al. (2000)  
Zhang et al. (2002)  

Storage location assignment is 
constrained by product size; all items of 
the same product must be placed at 
adjacent locations; and travel costs are 
item dependent. 

Simulated 
annealing;  
Genetic algorithms 

 

 

The implementation of class-based storage (i.e., the number of classes, the 

assignment of products to classes, and the storage locations for each class) has significant 

impact on the required storage space and the material handling cost in a warehouse. 

Research on this problem has been largely focused on AS/RS, especially single-command 

AS/RS. Hausman et al. (1976) show that for single-command AS/RS with the Chebyshev 

metric, the ideal shape of storage regions is L-shaped. For such systems, the problem 

reduces to determining the number and boundaries of the classes. Explicit analytical 

solutions for the class boundaries can be derived for the case with 2 or 3 classes, as 

shown by Hausman et al. (1976), Kouvelis and Papanicolaou (1995), and Eynan and 

Rosenblatt (1994). For the general n-class case, Rosenblatt and Eynan (1989) and Eynan 

and Rosenblatt (1994) suggest a one-dimensional search procedure to find the optimal 

boundaries. The implementation of class-based storage in multi-command AS/RS is 

discussed in Guenov and Raeside (1992).  
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Dedicated storage requires more storage space than class-based storage since 

sufficient storage locations have to be reserved for the maximum inventory of each 

product, and therefore increases warehouse space cost and material handling cost. On the 

other hand, dedicated storage has the advantage that the control of the warehouse is very 

simple since items of a product will always be stored in the same locations and sufficient 

space is always available for all the items in replenishment batches. The simplicity 

advantage is decreasing in importance because the introduction of information 

technologies such as WMS, bar coding, and radio frequency tags provides a real-time 

accurate inventory map of the warehouse. The advantages of robustness and simplicity of 

dedicated storage must be traded off against the increased required storage space and 

material handling cost. 

Storage Location Assignment Problem based on No Information (SAP/NI) 

If no information is available on the characteristics of the arriving items, only very 

simple storage policies can be constructed. In this case the most frequently used policies 

are 1) Closest-Open-Location (COL), 2) Farthest-Open-Location (FOL), 3) Random 

(RAN), and 4) Longest-Open-Location (LOL). The first two policies pick an open 

location based on its distance to the receiving dock; the last policy picks the location that 

has been vacant for the longest time. It is not known if there is any significant 

performance difference between them.  

SLAP Summary 

Most of the SLAP research has focused on the case of Unit Load systems operating 

under Product Information. The turnover or COI policy has been shown to be optimal for 

the case with restrictive assumptions such as single command, dedicated storage, and 
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product-independent travel costs. However, simulation typically has been used to show 

that the turnover policy nearly always performs the best in more general cases.  

All of the above research on SLAP assumes that replenishment lot sizes of the 

SKUs are given. However, Wilson (1977) demonstrates that the lot sizing problem and 

the SLAP should be considered simultaneously in order to achieve an optimal total cost 

including both inventory cost and material handling cost. Algorithms for the integrated 

lot sizing and SLAP problem can be found in Wilson (1977), Hodgson and Lowe (1982), 

Malmborg et al. (1986), Malmborg and Deutsch (1988), and Malmborg et al. (1988).  

The version of the SLAP problem studied in the literature is most often static, i.e., it 

assumes that the incoming and outgoing material flow patterns are stationary over the 

planning horizon. In reality, the material flow changes dynamically due to factors such as 

seasonality and the life cycles of products. Therefore, the storage location assignment 

should be adjusted to reflect changing material flow requirements. One possibility is to 

relocate those items whose expected retrieval rate has increased (decreased) closer to 

(farther from) the I/O point. Such relocations are only beneficial when the expected 

saving in order picking outweighs the corresponding relocation cost. Therefore, decisions 

must be made carefully concerning which set of items to be relocated, where to relocate 

them, and how to schedule the relocations. Another type of relocation might take place as 

a result of the uncertainty in incoming shipments. For example, Roll and Rosenblatt 

(1987) describes the situation when the storage area is divided into separate zones and 

any incoming shipment must be stored within a single zone. It might happen that none of 

the zones has sufficient space to accommodate an incoming shipment. In such cases, it is 

advisable to free some space in a certain zone to accommodate the incoming shipment by 
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shifting some stored products in that zone to other zones. Table 2.4 gives a summary of 

the literature on the various dynamic storage location assignment problems.  

 

Table 2.4 Dynamic storage location assignment problems 
Citation Problem statement Method 

Christofides and 
Colloff (1972)  

The set of items to be relocated and their destinations are 
given, and the problem is to route the relocation tour to 
minimize the total relocation cost.  

Two-stage heuristics that is 
optimal in a restricted case. 

Muralidharan et 
al. (1995)  

The set of high-demand items to be relocated and their 
destinations are given, and the problem is to route the 
relocation tour to minimize the total relocation cost.  

A nearest-neighbor 
heuristic and an insertion 
heuristic 

Jaikumar and 
Solomon (1990)  

Determine the items to be relocated and their destinations 
with the objective to find the minimum number of 
relocations that results in a throughput satisfying the 
throughput requirement in the following busy periods.  

Optimal ranking algorithm 

Sadiq et al. 
(1996)  

Determine the relocation schedule in face of the 
dynamically changing order structure, i.e., relocate items 
that are more likely to appear in the same order in 
clusters.  

Rule of thumb procedure 
based on cluster techniques 

Roll and 
Rosenblatt 
(1987)  

Using zone storage without splitting, it might happen that 
none of the zones has sufficient space to accommodate an 
incoming shipment. The problem is how to shift some 
stored products in a certain zone to other zones in order 
to free space for the incoming shipment. 

Rule of thumb procedure 

 

 

2.5 Order picking 

Different order picking methods can be employed in a warehouse, for example, 

single-order picking, batching and sort-while-pick, batching and sort-after-pick, single-

order picking with zoning, and batching with zoning (Yoon and Sharp (1996)). Each 

order picking method consists of some or all of the following basic steps: batching, 

routing and sequencing, and sortation.  

2.5.1 Batching 

The batching problem is part of planning for order picking. Orders are received and 

subsequently released for fulfillment. Given a set of released orders, the problem is to 

partition the set into batches, where each batch will be picked and accumulated for 
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packing and shipping during a specific time window, or “pick wave.” The time required 

to pick the items in any batch should not exceed the time window or pick wave duration. 

If zone picking is employed, the batch should balance pick effort across the zones to 

achieve high picker utilization, while minimizing pick time so that the number of pickers 

required is minimized.  

The batching problem can be stated as:  

Given: warehouse configuration, pick wave schedule, and a set of orders to pick 

during a shift  

Find: a partition of orders for assignment to waves and pickers 

Criteria: picker effort, imbalance among pickers  

Constraints: time slots, picker capacity, order due dates  

In creating an abstract statement of the problem, there are potentially two levels of 

partitioning: (1) partitioning in time (into pick waves); and (2) partitioning among pickers 

in a wave or zone. Constraints include the picker capacity during the time interval 

associated with a pick wave, and time constraints on when an order should be completed. 

Partitioning into time slots is essentially a “bin packing” type problem, where the 

goal is to balance the pick time among the time slots or pick waves.  The difficulty, of 

course, is that the time required to pick a batch is not known until the batch has been 

determined, partitioned among individual picker, and the pickers have been routed 

through the warehouse.  

Partitioning of the orders among the pickers is a variation of the classical vehicle 

routing problem (VRP), in which “stops” are assigned to routes and the objective is to 

minimize the total route distance or time. However, in the order-batching problem, 

 29



 

assigning an order to a picker’s route implies that all the picking locations for the SKUs 

in this order are assigned to this route. This is similar to the pick-up and delivery vehicle 

routing problem, or the dial-a-ride problem, where a service request consists of a pick-up 

location and a drop-off location with time precedence. In the order partitioning problem, 

there may be many stops (SKUs) associated with a single service request (order) but there 

are no precedence constraints.  

The published research has focused primarily on the problem of partitioning among 

pickers. There are two major types of batching heuristics that attempt to minimize total 

picking effort and are based on VRP heuristics. A seed algorithm selects initially a single 

seed order in the batch. More orders are then added according to a route closeness 

criterion until no more orders can be added due to a capacity constraint.  The capacity 

constraint can be based on total pick time, number of orders in the batch, or weight. A 

savings heuristic starts by assigning each order to a separate batch.  The algorithm then 

iteratively selects a pair of batches to be combined based on the savings of combining 

them until no more batches can be combined due to the capacity constraint.   

Central to both types of algorithms is an order-to-route closeness metric, which 

defines the order addition rule in the seed algorithms and the combination rule in the 

saving algorithms. Table 2.5 summarizes closeness metrics proposed in the literature. The 

seed and savings algorithms proposed in the literature are similar in terms of their general 

procedure, but differ in the closeness metric used. Table 2.6 shows the different 

algorithms and the closeness metrics they used as shown by the bold number after each 

citation.  
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Table 2.5 Order closeness metrics for batching 
Index Closeness Metric Example 

1 Number of common locations between two orders Elsayed (1981)  
2 Combined number of locations of two orders Elsayed and Stern (1983)  

3 Sum of the distance between each location of one order 
and the closest location on the other order 

Elsayed and Stern (1983)  

4 Difference of the order-theta values of two orders defined 
based on space-filling curves 

Gibson and Sharp (1992)  

5 The number of additional aisles to travel when two orders 
are combined 

Rosenwein (1996)  

6 Savings in travel when two orders are combined Elsayed and Unal (1989)  
7 Center of gravity metric Rosenwein (1996)  
8 Economic convex hull based metric Hwang and Lee (1988)  
9 Common covered regions or areas  Hwang et al. (1988)  

 
 
 
 

Table 2.6 Order batching heuristics by type 
Seed Algorithm Saving Algorithm 

Elsayed (1981)                   (1) 
Elsayed and Stern (1983)   (1, 2, 3) 
Elsayed and Unal (1989)    (6) 
Gibson and Sharp (1992)   (3, 4) 
Hwang and Lee (1988)       (8) 
Hwang et al. (1988)            (9) 
Pan and Liu (1995)             (1, 3, 4, 6, 8) 
de Koster et al. (1999)        (3, 5, 6, 7) 

Rosenwein (1996)              (5, 7) 
Hwang and Lee (1988)       (8) 
Elsayed and Unal (1989)    (6) 
de Koster et al. (1999)        (6) 

 

 

Many of the papers listed in Table 2.6 also provide performance evaluation of the 

different batching algorithms using simulation. It is however difficult to draw general 

conclusions since the performance depends heavily on factors such as storage location 

assignment policies, routing policies, the structure of orders, storage systems, and the 

maximum batch size. A comprehensive study that considers all the above factors and the 

various batch construction heuristics has not been published at this time. A few results 

have been published where two policy classes are studied jointly, for example, de Koster 

et al. (1999) evaluate batching and routing algorithms together, and Ruben and Jacobs 

(1999) evaluate batching algorithms with different SLAP policies.  
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Elsayed et al. (1993) present a heuristic for batching orders that have due dates with 

the objective to minimize earliness and tardiness penalties. Elsayed and Lee (1996) 

consider batching and sequencing of both storage and retrieval orders such that the total 

tardiness of the retrieval orders is minimized. Cormier (1987) propose a heuristic for 

batching and sequencing orders to minimize the weighted sum of order picking time and 

tardiness in an AS/RS.  

Very few papers have developed optimal order batching algorithms. Armstrong et 

al. (1979) present a mixed-integer formulation for order batching problem in a semi-

automated order-picking system with the objective to minimize the total order picking 

time. The model was solved using Bender’s decomposition. Gademann et al. (2001) 

consider the order batching problem with the objective to minimize the maximum lead 

time of any of the batches and solve the formulation optimally using a branch-and-bound 

algorithm.  

2.5.2 Sequencing and routing  

The sequencing and routing decision in order picking operations determines the best 

sequence and route of locations for picking and/or storing a given set of items. The 

objective is typically to minimize the total material handling cost. This problem is a 

warehouse-specific Traveling Salesman Problem (TSP), where the picking/storing 

location of an item is given. The problem where there are several candidate locations for 

the retrieval or storage of an item is much more complex and few research results are 

available, although it is often found in practice. The TSP problem in the warehouse is 

special because of the aisle structure of the possible travel paths. The published research 
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focuses on four classes of warehouse systems, i.e., conventional multi-parallel-aisle 

systems, man-on-board AS/RS systems, unit-load AS/RS systems, and carousel systems.  

Sequencing and routing for conventional multi-parallel-aisle systems 

In a conventional multi-parallel-aisle system, the aisle structure limits the TSP state 

space, which greatly simplifies its solution. Ratliff and Rosenthal (1983) propose a 

polynomial-time dynamic programming algorithm to optimally solve this problem. The 

algorithm depends on the following assumptions: parallel, narrow and equal aisles, a 

single I/O point for the picker in the warehouse, the aisles connected by a cross aisle at 

each end, and the SKU locations given. Other authors have relaxed some of these 

assumptions and their results are summarized in Table 2.7. Hall (1993) compares the 

performance of several simple heuristics for the multi-parallel-aisle systems, such as the 

traversal and return policies, through analytical models. Petersen (1997, 1999) provide a 

similar study through simulation.  

 

Table 2.7 Routing algorithms for conventional multi-parallel-aisle warehouses 
Citation Problem Setting Algorithm Optimal or not 

Ratliff and 
Rosenthal (1983)  

1. Narrow aisles;  
2. A tour starts and ends at the 

central depot 
3. Only two cross aisles located 

at the ends of picking aisles;  
4. Picking locations are given 

A dynamic programming 
based algorithm 

Optimal with 
computational 
time linear in the 
number of aisles 

Goetschalckx and 
Ratliff (1988b)  
Goetschalckx and 
Ratliff (1988a) 

Routing in wide aisles A shortest path algorithm 
and a set-covering based 
algorithm with the 
consecutive ones property 

Optimal for the 
routing within a 
single aisle  

de Koster and van 
der Poort (1998)  

A tour can start and end at the 
head of any picking aisle 

An extension of Ratliff 
and Rosenthal (1983)  

Optimal 

Roodbergen and de 
Koster (2001b)  

There are three cross aisles An extension of Ratliff 
and Rosenthal (1983)  

Optimal 

Vaughan and 
Petersen (1999)  
Roodbergen and de 
Koster (2001a)  

There are arbitrary number of 
cross aisles 

Dynamic programming 
based heuristics 

Heuristics 

Daniels et al. (1998)  Picking locations need to be 
selected before routing 

TSP based heuristics with 
local search methods 

Heuristics 
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Sequencing and routing for man-on-board AS/RS 

The routing problem for man-on-board AS/RS is a TSP problem with a Chebyshev 

distance metric. The literature on this problem has been primarily focused on efficient 

heuristics. Gudehus (1973) describes the band heuristic, which divides the rack into two 

equal height horizontal bands; the points in the lower band are visited in the increasing x-

coordinate direction, while the points in the upper band are visited in the opposite 

direction. If the tour must visit many points, the rack may be divided into several pairs of 

horizontal bands. Goetschalckx and Ratliff (1988c) propose a convex hull algorithm 

based on the property of Chebyshev metric that some points not on the convex hull can 

be inserted into it without incurring additional travel distance. The algorithm constructs 

the convex hull of all the picking locations, then those free insertion locations for each 

segment of the convex hull are identified and inserted into the convex hull, and then the 

remaining points are sequentially inserted into the tour in a way that minimizes the 

increase in tour length for each insertion. The band algorithm is easy to implement and 

computationally efficient, but might give inferior solutions in some cases. On the other 

hand, the convex hull algorithm is effective in finding short tours, but is difficult to 

implement (to find the convex hull and free insertion points) and less computationally 

efficient.  

Bozer et al. (1990) propose the ½ band insertion heuristic, which is a combination 

of the band and convex hull heuristics. The heuristic first divides the rack into three equal 

width horizontal bands, all the points in the first and third band are routed in the same 

way as in the band heuristic to obtain a partial tour, and the points in the middle band are 

then inserted as in the final stage of the convex hull algorithm. Other heuristics in the 
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literature include the center sweep heuristic (Bozer et al. (1990)), the space-filling curve 

based heuristic (Bartholdi and Platzman (1988)), and the combined convex hull heuristic 

for a variation of the man-on-board systems (Hwang and Song (1993)).  Local 

improvement procedures (Bozer et al. (1990), Makris and Giakoumakis (2003)) can be 

used together with all the above heuristics to further reduce the tour length.  

Bozer et al. (1990) give a comprehensive comparison of these heuristics, and 

conclude that the convex hull and ½ band insertion heuristics consistently outperform the 

others, and suggest the use of the ½ band heuristic because it achieves performance close 

to that of the convex hull algorithm, but is very simple to implement and runs very 

efficiently. Bachers et al. (1988) provide a comparison of several traditional TSP 

heuristics, such as the nearest-neighbor method, the successive insertion method, and the 

local search method, through simulation.  

Sequencing and routing for unit-load AS/RS 

The routing problem for unit-load AS/RS (also called the interleaving problem) 

pairs a storage operation with a retrieval operation for a dual command cycle. Graves et 

al. (1977) demonstrate that careful interleaving can effectively reduce the total travel 

distance by reducing the unproductive travel between storage and retrieval locations. The 

algorithms reported in the literature are either static or dynamic. Static algorithms fix a 

block of storage and retrieval requests, sequence the requests in the block, and execute 

the resulting schedule ignoring new storage and retrieval requests. Dynamic algorithms 

re-sequence the storages and retrievals whenever new requests arrive. The static 

sequencing problem for randomized and class-based storage is believed to be NP-hard, 

and most algorithms for this problem use a nearest-neighbor heuristic or one of its 
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variations. Han et al. (1987) proposed a match of a storage location with a retrieval 

location that has the minimum travel distance between them. Lee and Schaefer (1996) 

developed an assignment formulation and can find an optimum or near-optimum solution 

for problems of moderate size. The static case for dedicated storage policies can be 

solved in polynomial time by formulating it as a transportation or assignment problem 

(van den Berg and Gademann (1999), Lee and Schaefer (1997)). Table 2.8 summarizes 

the static algorithms for different systems and storage policies. Dynamic algorithms in 

the literature are mainly direct extensions of the static algorithms that re-sequence the 

requests whenever a new request arrives in the system as reported by Lee and Schaefer 

(1997), Eben-Chaime (1992), and Ascheuer et al. (1999). Seidmann (1988) proposes a 

different dynamic control approach based on artificial intelligence techniques.  

 

Table 2.8 Static sequencing algorithms for dual-command AS/RS 
 Citation Problem Setting Algorithm Optimal or not 

Han et al. (1987)  Unit-load AS/RS Nearest-neighbor 
heuristic Heuristic 

Lee and Schaefer 
(1996)  Unit-load AS/RS Assignment-based 

algorithm ε-optimal 

Mahajan et al. 
(1998)  

Miniload end-of-
aisle AS/RS 

Nearest-neighbor 
heuristic Heuristic 

Keserla and Peters 
(1994)  

Unit-load dual 
shuttle AS/RS 

Minimum-perimeter 
heuristic  Heuristic 

Randomized 
Storage 

Sarker et al. (1991) Unit-load dual 
shuttle AS/RS 

Nearest-neighbor 
heuristic Heuristic 

van den Berg and 
Gademann (1999)  Unit-load AS/RS Transportation 

problem Optimal Dedicated 
Storage Lee and Schaefer 

(1997)  Unit-load AS/RS Assignment problem Optimal 

Eynan and 
Rosenblatt (1993)  Unit-load AS/RS Nearest-neighbor 

heuristic Heuristic Class-based 
Storage Sarker et al. (1994) Unit-load dual 

shuttle AS/RS 
Nearest-neighbor 
heuristic Heuristic 
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In some cases, Just-In-Time performance of the AS/RS is more important than 

minimizing the total operational cost. For example, if the AS/RS is used to feed a 

production line, it is important that the requested materials are retrieved at the time 

determined by the production schedule. Lee and Kim (1995) and Linn and Xie (1993) 

develop heuristics to sequence the storage and retrieval requests in order to improve the 

due date related performance.  

Several authors have studied the dwell point selection problem in a unit-load 

AS/RS. The dwell point is the position where the S/R shuttle stops when the system is 

idle.  The dwell point can be selected to minimize the expected travel time to the position 

of the first transaction after an idle period, and thus improve system response. Bozer and 

White (1984) describe some rules-of-thumb to determine the dwell point. Egbelu (1991) 

and Chang and Egbelu (1997) present LP models to find the optimal dwell point that 

minimizes the expected response time and the maximum response time respectively. 

Hwang and Lim (1993) presents more efficient algorithms to solve the models proposed 

by Egbelu (1991) based on the facility location formulation. Peters et al. (1996) and van 

den Berg (2002) provide closed form solutions for the optimal dwell point to minimize 

the expected response time using analytic models based on continuous approximation of 

the storage rack. Egbelu and Wu (1993) use simulations to evaluate the performance of 

the LP-based rules in Egbelu (1991) and the rules-of-thumb in Bozer and White (1984) in 

practical environments, and find that the former outperforms the latter in most cases, 

especially when the system uses dedicated storage and is not very busy. 

Simulation studies of the operational policies for an unit-load AS/RS can be found 

in Linn and Wysk (1987) and van den Berg and Gademann (2000), which compare 
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different sequencing rules, dwell point selection rules, and storage location assignment 

rules under various conditions of the product mix and the traffic intensity.   

Sequencing and routing for carousel systems 

The sequencing problem in carousel systems was first considered by Bartholdi and 

Platzman (1986). They assume that the orders are picked one at a time, which leads to 

two sequencing problems, i.e., the pick sequencing within an order and the sequencing of 

orders. The effect of the latter is not significant when the order arrival rate is small 

compared with the order retrieval rate, so the problem simplifies to the pick sequencing 

within the orders. They present a polynomial algorithm to optimally solve this problem, 

as well as some simple heuristics that are easier to compute and perform well when the 

number of picks is large relative to the total storage space. When the order arrival rate is 

large, the sequencing of orders must be considered in order to minimize the unproductive 

time of traveling from the end position of one order to the start position of the next. In 

this case, an efficient heuristic is proposed based on the additional assumption that each 

order is picked along its shortest spanning interval, which is the shortest interval that 

covers all the picking locations of the order. It is shown that the proposed heuristic will 

produce a solution that is never more than 1 revolution longer than the optimal, i.e., the 

more orders to be picked, the better the solution.  

Ghosh and Wells (1992) and van den Berg (1996) consider the problem when the 

sequence of orders is fixed (but the pick sequence within the orders are free), and propose 

efficient dynamic programming approaches to optimally solve it. van den Berg (1996) 

also considers the case when both in-order and between-order picking sequences are free 

by assuming that each order is picked along its shortest spanning interval. They formulate 
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this problem as a Rural Postman Problem on a circle and solve it to optimality. 

Furthermore, they show that the solution obtained with the extra constraint is at most 1.5 

revolutions more than the optimal without the extra constraint. The above research treats 

the carousel as a one-dimensional system, i.e., the travel perpendicular to the rotation of 

the carousel was not considered. Wen and Chang (1988) consider a two-dimensional 

carousel system and propose three heuristics that are extensions of Bartholdi and 

Platzman’s optimal algorithm. Han and McGinnis (1986) and Han et al. (1988) extend 

the nearest-neighbor heuristics discussed earlier for the dual-command AS/RS to 

carousels and rotary racks (A rotary rack is similar to a carousel except that it has several 

layers, and each layer can be operated independently).  

In summary, the sequencing and routing problem is the most studied problem in 

warehouse operation. Most of the research assumes that the locations to be visited are 

given. The problem when multiple candidate locations are available for the retrieval or 

storage of an SKU remains an interesting and challenging research problem. Also, in a 

warehouse setting, batching is closely related to sequencing, and therefore those 

problems require a joint solution method. Finally, because of the confined and narrow 

travel paths in a warehouse, another relevant variant of the sequencing and routing 

problem would consider congestion when there are multiple order picking tours executed 

at the same time period in the same area.  

2.5.3 Sortation 

Sorting is required when multiple orders are picked together. It can be performed 

either during the picking process (sort-while-pick) or after the picking process (sort-after-

pick).  Sort-while-pick is quite straightforward and is typically modeled by inflating the 
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item extraction time. For sort-after-pick, a separate downstream sortation system is used 

to perform the sorting function. A number of questions are related to the operation of the 

sortation system.  

Sortation systems used in warehouses usually include an accumulation conveyor, a 

recirculation conveyor, and sortation exit lanes, and they operate simultaneously on all 

the orders in a single pick-wave. Items for a pick wave arrive at the accumulation 

conveyor where they wait to be released into the sortation process. They are put onto the 

recirculation conveyor through an induction point after the items in the previous pick-

wave finish their sorting process (in some cases, the items are allowed to enter the 

recirculation conveyor before the previous wave has totally finished its sorting).  The 

orders are assigned to sortation lanes according to order-to-lane assignment rules. Items 

circulate in the recirculation conveyor and enter the assigned sortation lane if all items of 

the preceding order assigned to that lane have been sorted. If not, the items bypass the 

sortation lane and re-circulate. Eventually, sorted orders are removed from sortation 

lanes, checked, packed, and shipped. Therefore, the operation problem for sortation 

involves decisions such as wave-releasing and order-to-lane assignment so that the orders 

can be efficiently sorted in a given wave. 

There are relatively few research results in this area. Bozer and Sharp (1985) 

consider a system that processes a relatively small number of large orders. In this case, 

each sortation lane is typically dedicated to one order. The authors use simulation to 

analyze the dependence of the system throughput on factors such as the induction 

capacity, the number of lanes, and the length of lanes. Bozer et al. (1988) consider a 

similar problem but with a large number of small orders. In this case, each lane is 
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assigned several orders and an order-to-lane assignment policy determines how and when 

the orders enter the sortation lanes. Orders that are not yet assigned a lane are forced to 

recirculate. Using simulation, they compare different order-to-lane assignment rules, 

which include the simplest FCFS rule and priority rules based on the sizes of orders or 

the time that an order has been in the system. They find that the FCFS rule consistently 

outperforms more elaborated rules. Johnson (1998) verifies this result with analytical 

models for the sortation system operated under different order-to-lane assignment rules. 

Meller (1997) propose an optimal order-to-lane assignment method to minimize the 

sortation time for a pick-wave based on a set-partitioning model.  

In practice, the sortation time in an automatic sortation system might not be a 

critical factor as long as all orders can be sorted within a given wave. Therefore, simple 

heuristics would suffice in most practical cases if orders were partitioned into pick waves 

in a balanced way.   

 

2.6 Conclusions and discussions 

The distribution of the research results among the various warehouse operational 

problems is shown in Figure 2.1, where the number in parentheses represents the number 

of papers addressing the corresponding problem. It is clear that the past research has 

focused strongly on storage and order picking. This is not surprising since these are the 

two warehouse functions that have the largest impact on the overall warehouse 

operational performance including storage capacity, space utilization, and order picking 

efficiency.  
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On the other hand, the development of research is not well balanced. Some 

problems received far more attention from the research community than others. For 

example, the SLAP and routing problems account respectively for 32% and 38% of the 

total surveyed literature, while zoning accounts for less than 6%. Furthermore, there is 

little evidence of collaboration between the academic research community and industry. 

Many of the research results are not sufficiently communicated to industry to make a 

significant impact on the practice of warehouse operations. More communication from 

both sides might help to better identify the real challenges faced in warehouse operations, 

to appreciate the opportunities for better operation, and to realize these opportunities by 

close cooperation between researchers and practitioners. 

The problems discussed in this chapter are at the operational level, which means 

that decisions need to be made quite frequently and the influence of these decisions is 

typically of a short duration and localized.  Such decisions typically need to be made 

quickly without extensive computational resources. This tends to encourage the use of 

heuristic procedures that can reliably find a good solution in a reasonable amount of time.  

In addition, from the management point of view, an ideal solution method should be 

simple, intuitive, and reliable so the training costs in the warehouse are minimized as 

much as possible.  

Another consequence of the operational nature of the problems discussed in this 

paper is that the problems should be considered dynamically by constantly incorporating 

new information about the operating environments. Some research on the dynamic 

planning of warehouse operations exists, but the dynamic problems are much less studied 

than the static variants. Furthermore, research in the literature usually concentrates on 
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certain standard performance measures, such as the total order picking cost.  In many 

practical situations, different objectives such as the tardiness, or the order cycle time, are 

as important as the traditional aggregate performance measure.  

In summary, there continues to be a need for research focusing on the operational 

management of warehousing systems, where the different processes in the warehouse are 

considered jointly, the problems are placed in their dynamic nature, and multiple 

objectives are considered simultaneously. Clearly, the research domain of warehouse 

operations is very rich and challenging.  Given the prevalence of warehouses in the 

supply chains, such research results can have a significant economic impact. 
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CHAPTER 3  
 

RESEARCH ON WAREHOUSE DESIGN 
 
 
 

3.1 Introduction 

This chapter reviews the research on warehouse design, performance evaluation, 

case studies, and computational support tools. Warehouse design consists of five major 

activities (Figure 2.1): determining the overall structure; sizing and dimensioning of the 

warehouse and its departments; determining the detailed layout within each department; 

selecting warehouse equipment; and selecting operational strategies. The overall structure 

(or conceptual design) determines the material flow pattern within the warehouse, the 

specification of functional departments, and the spatial relationship of departments. The 

sizing and dimensioning problem determines the size and dimension of the warehouse as 

well as the space allocation among warehouse departments. Department layout is the 

detailed configuration for warehouse departments, for example, aisle configuration in the 

retrieval area, pallet block-stacking pattern in the reserve storage area, and configuration 

of the AS/RS. The equipment selection problem is to determine an appropriate 

automation level for the warehouse, and specify specific equipment types for storage, 

transportation, order picking, sortation, etc. The operation strategy selection problem is to 

determine how the warehouse is going to be operated, for example, with regards to 

storage and order picking. Here operation strategies refer to those decisions that have 

global effects on other design decisions, and therefore need to be considered in the design 

phase. Examples of such operation strategies include using randomized storage or 

dedicated storage, using zone picking or not, and using sort-while-pick or sort-after-pick. 
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Detailed operational policies, such as how to batch and route the order picking tour, are 

not considered design problems here, and therefore are discussed in chapter 2. It should 

be emphasized that the above design problems are strongly coupled, and it is difficult to 

define a sharp boundary between them. Therefore, the above classification should not be 

regarded as unique, nor does it imply any of the problems should be solved independently 

without regarding the other problems. Furthermore, one should not ignore operational 

problems in the design phase since operational efficiency is strongly affected by the 

design decisions and it can be very expensive or impossible to change the design 

decisions once the warehouse has been constructed.  

Performance evaluation is important for both warehouse design and operation in the 

sense that it assesses the performance of a warehouse in terms of cost, throughput, space 

utilization, and service to provide feedback about how a specific design or operational 

policy performs compared with the requirements, and how it can be improved. 

Furthermore, a good performance evaluation model can help the designer to quickly 

evaluate many design alternatives and narrow down the design space during the early 

design stage. Performance evaluation methods include benchmarking, analytical models, 

and simulation models. This review will mainly focus on the former two. However, this 

should not obscure the fact that simulation is still the most widely used technique in the 

academic literature as well as in practice. 

Some case studies and computational systems are also discussed in this chapter. 

Research in these two directions is very limited. However, it is our belief that more case 

studies and computational tools for warehouse design and operation will help us to bridge 
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the gap between academic research and practical application, and therefore, need to be 

further developed in the future.   

The next four sections will discuss the literature on warehouse design, performance 

evaluation, case studies, and computational systems respectively. The final section gives 

some conclusions and future research directions. 

 

3.2 Warehouse design 

3.2.1 Overall Structure 

The overall structure (or conceptual design) of a warehouse involves tasks such as 

material flow modeling, functional department specification, and spatial relationship 

specification of departments within the warehouse. At this stage, the designer develops a 

preliminary design plan considering requirements for capacity, throughput, budget, and 

space. In order to evaluate different preliminary design alternatives, the designer needs 

specific (although not exact) knowledge about the size of the warehouse, possible 

material handling equipment, and possible operational policies. The methods to perform 

such evaluations are mainly based on rough rule-of-thumb calculations.  

Park and Webster (1989) present a procedure to select a preliminary design for a 

unit-load warehouse among different alternatives that are combinations of alternative 

equipment types, storage rules, and order picking policies. The initial investment cost and 

annual operational cost for each alternative is estimated using simple analytic equations, 

and the best alternative that satisfies all design requirements is chosen. Gray et al. (1992) 

propose a multi-stage hierarchical approach that determines system configuration and 

equipment selection, storage allocation and location assignment, and operation policies in 
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a sequential and iterative way. Simple calculations are employed to evaluate the tradeoffs 

and prune the design space to a few superior alternatives. Simulation is then used to 

provide detailed performance evaluation of the resulting alternatives. Yoon and Sharp 

(1996) propose a structured procedure for the design of order picking systems, which 

includes stages such as design information collection, design alternative development, 

and performance evaluation. Each stage consists of a set of sub-problems, for example, 

the design alternative development stage includes specification of equipments, 

specification of operating strategies, physical transformation of items, and information 

transformation.  

In summary, research in the overall warehouse structure design is very limited. The 

methodologies discussed above are all similar in the sense that they divide the complex 

design problem into a set of simpler sub-problems, which are then solved in a sequential 

and iterative way to develop the design alternatives. The resulting design is not detailed 

enough, and needs to be further refined to determine the detailed design.  

3.2.2 Sizing and dimensioning 

Warehouse sizing and dimensioning determines the size and dimension of the 

warehouse and its departments, which has important implications on costs such as 

construction cost, inventory holding and replenishment cost, and material handling cost. 

Assuming that the warehouse has no control over inventory, warehouse sizing 

determines the appropriate storage capacity in order to satisfy the stochastic demand for 

storage space. White and Francis (1971) studied this problem for a single product over a 

finite planning horizon. Costs considered include those due to warehouse construction, 

storage of products within the warehouse, and storage demand not satisfied by storage in 
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the warehouse. Problems with either fixed or changeable storage size are modeled. In the 

first model, the problem is to determine the optimal fixed storage size and a simple 

procedure is proposed to find the optimum. The second model allows changes in the 

storage size over the planning horizon (e.g. by leasing additional storage space), so the 

decision variables are the storage sizes for each time period. A linear programming 

formulation was presented for the second model, and the optimal solution is found by 

solving a network flow problem. Lowe et al. (1979) give an efficient greedy network 

flow algorithm for the second problem in White and Francis (1971). Similar problems of 

determining fixed and changeable warehouse size are also discussed by Hung and Fisk 

(1984) and Rao and Rao (1998) with different cost formulations.  

Levy (1974), Goh et al. (2001), and Cormier and Gunn (1996) consider 

warehouse sizing problems in the case where the warehouse is responsible for controlling 

the inventory. Therefore, the cost in their models includes not only warehouse 

construction cost, but also inventory holding and replenishment cost. Levy (1974) 

presents analytic models to determine the optimal storage size for a single product with 

either deterministic or stochastic demand. Goh et al. (2001) find the optimal storage size 

for both single-product and multi-product cases with deterministic demand. They 

consider a more realistic piecewise linear model for the warehouse construction cost 

instead of the traditional linear cost model. Furthermore, they consider the possibility of 

joint inventory replenishment for the multi-product case, and propose a heuristic to find 

the warehouse size with a performance bound of 94%. Assuming additional space can be 

leased to supplement the warehouse, Cormier and Gunn (1996) propose closed-form 

formulae to determine the optimal warehouse size, the optimal amount of space to lease 
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in each period, and the optimal replenishment quantity for a single product case with 

deterministic demand. The multi-product case is modeled as a nonlinear optimization 

problem assuming that there is no staggering of the replenishments. Finally, Rosenblatt 

and Roll (1988) conduct a simulation study to investigate the dependency of the total 

required storage capacity on elements such as the reorder point, ordering quantity and 

demand rate in a stochastic environment.  

The warehouse dimensioning problem is first modeled by Francis (1967), who, 

given a fixed storage size, determines the dimension of the storage department in order to 

minimize construction and material handling cost. The proposed model is based on a 

continuous approximation of the storage area without considering aisle structure. Bassan 

et al. (1980) extends the above work to consider different aisle configurations. Similar to 

Francis, they also minimize the warehouse construction and operational cost. Rosenblatt 

and Roll (1984) integrate the optimization model in Bassan et al. (1980) with a 

simulation model to find the optimal size and dimension of a warehouse that minimizes 

the total cost (warehouse construction and materials handling cost, storage space shortage 

cost, management cost due to the use of grouped storage policy). The optimization model 

is used to determine the optimal dimension for a fixed capacity to minimize the 

construction cost and materials handling cost, while the simulation model proposed in 

Rosenblatt and Roll (1988) is used to evaluate the storage shortage cost, which depends 

on the capacity and number of zones. The linking variables between these two models are 

the total capacity and number of zones (randomness of storage). Fixing the linking 

variables, the total cost is obtained by running the sub models. The global optimal 

solution is achieved by enumerating all the possible combinations of the discretized 
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linking variables. The above work assumes single-command tours in order to evaluate the 

effect of warehouse dimension on the operational cost, and therefore is not applicable to 

warehouses that perform multi-command operations. 

The above work has been concentrated on the sizing and dimensioning problem 

assuming the warehouse has a single storage department. In reality, a warehouse might 

have multiple departments, e.g., the forward picking department, or different storage 

departments for different classes of SKU. These different departments must be arranged 

in a single warehouse and compete against each other for space. Therefore, tradeoffs exist 

in determining the total warehouse size, allocating the warehouse space among 

departments, and determining the dimension of the warehouse and its departments. 

Research studying these tradeoffs in the warehouse area is scarce. Pliskin and Dori 

(1982) propose a method to compare alternative space allocations among different 

warehouse departments based on multi-attribute value functions, which explicitly capture 

the tradeoffs among different criteria. Another example is the work by Azadivar (1989), 

who proposes an approach to optimally allocate space between two departments: one is 

efficient in terms of storage but inefficient in terms of operation, while the other is the 

opposite. The objective is to achieve the best system performance by appropriately 

allocating space between these two departments to balance the storage capacity and 

operational efficiency tradeoffs.  

Another limitation of previous research on warehouse sizing and dimensioning is 

that they usually assume some basic operational policies, e.g., single-command 

operations, in order to evaluate the operational cost. However, in reality, which 

operational policy to be employed in the warehouse is usually not clear at the design 

 50



 

phase. Therefore, the designer faces the dilemma of evaluating the operational 

implications of design decisions without knowing exactly how the warehouse is going to 

be operated. How to deal with this uncertainty in the design phase remains a difficult and 

unexplored problem in the warehouse literature.  

3.2.3 Department layout 

This section discusses layout problems within a warehouse department (mainly the 

storage department), which are classified as: (P1) pallet block-stacking pattern, i.e., 

storage lane depth, number of lanes for each depth, stack height, pallet placement angle 

with regards to the aisle, storage clearance between pallets, and length and width of 

aisles; (P2) storage department layout, i.e., door location, aisle orientation, length and 

width of aisles, and number of aisles; and (P3) AS/RS configuration, i.e., dimension of 

storage racks, number of cranes. These layout problems affect warehouse performances 

on: (O1) construction and maintenance cost; (O2) material handling cost; (O3) storage 

capacity, e.g., the ability to accommodate incoming shipments; (O4) space utilization; 

and (O5) equipment utilization. Each problem is discussed in the literature by different 

authors considering a subset of the performance measures, which are summarized in 

Table 3.1.  
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Table 3.1 A summary of the literature on warehouse layout design 
Problem Citation Objective Method Notes 

Moder and 
Thornton 
(1965)  

O4 Analytical 
formulae  

Berry (1968)  O2, O4 Analytical 
formulae  

Marsh (1979)  
Marsh (1983)  O3, O4 Simulation models  

Goetschalckx 
and Ratliff 
(1991)  

O4 Heuristic 
procedure Mainly on lane depth determination 

P1 
 

Larson et al. 
(1997)  O2, O4 Heuristic 

procedure For class-based storage 

Roberts and 
Reed (1972)  O1, O2 Dynamic 

Programming 
Consider the configuration of storage 
bays (unit storage blocks) 

Bassan et al. 
(1980)  O1, O2 

Optimal design 
using analytical 
formulation 

Consider horizontal and vertical aisle 
orientations, locations of doors, and 
zoning of the storage area. 

Rosenblatt and 
Roll (1984)  

O1, O2, 
O3 

Optimal two-
dimensional search 
method 

Based on Bassan et al’s work with 
additional costs due to the use of 
grouped storage. 

P2 

Pandit and 
Palekar (1993)  O2 Queuing model 

Include not only the ordinary travel 
time, but also waiting time when all 
vehicles are busy 

Karasawa et al. 
(1980)  

O1, O2, 
O3 

Nonlinear mixed 
integer problem  

The model is solved by generalized 
Lagrange multiplier method 

Ashayeri et al. 
(1985)  O1, O2 Nonlinear mixed 

integer problem 
Given rack height, the model can be 
simplified to a convex problem 

Rosenblatt et 
al. (1993)  

O1, O2, 
O3 

Nonlinear mixed 
integer problem 

System service is evaluated using 
simulations, if not satisfactory, new 
constraints are added and the 
optimization model is solved again to 
get a new solution 

Zollinger 
(1996)  O1, O5 Rule of thumb 

heuristic   

P3 
 

Malmborg 
(2001)  O1, O5 Rule of thumb 

heuristic 

A more elaborated variation of 
Zollinger’s rules that consider 
explicitly operational policies 
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In the pallet block-stacking problem, a fundamental decision is to determine lane 

depths to balance the tradeoffs between space utilization and ease of storage/retrieval 

operations, considering the SKUs’ stackability limits, arriving lot sizes, and retrieval 

patterns. Using deep lane storage could increase space utilization because fewer aisles are 

needed, but on the other hand could also cause decreased space utilization due to the 

“honeycombing” effect that results in wasted space unusable for storage of other items 

before the whole lot is totally depleted from a lane. Honeycombing effect depends on 

lane depths as well as the withdrawal rate of individual products. Therefore, it might be 

beneficial to store different classes of products in different lane depths. A careful 

determination and coordination of the lane depth for different products is necessary in 

order to achieve the best storage space utilization. Besides lane configuration, the pallet 

block-stacking problem also determines such decisions as aisle width and orientation, 

stack height, and storage clearance, which all affect storage space utilization, material 

handling efficiency, and storage capacity. A number of papers discuss the pallet block-

stacking problem. Moder and Thornton (1965) consider ways of stacking pallets in a 

warehouse and the influence on space utilization and ease of storage and retrieval. They 

consider such design factors as lane depth, pallet placement angle with regards to the 

aisle, and spacing between storage lanes. Berry (1968) discusses the tradeoffs between 

storage efficiency and material handling costs by developing analytic models to evaluate 

the total warehouse volume (given the storage space requirement) and the average travel 

distance. The factors considered include warehouse shape, number, length and orientation 

of aisles, lane depth, throughput rate, and number of SKUs contained in the warehouse. It 

should be noted that the models for total warehouse volume and models for average 
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travel distance are not integrated, and the warehouse layout that maximize storage 

efficiency is different from the one that minimizes travel distance. Marsh (1979) uses 

simulation to evaluate the effect of alternate lane depths and the rules of assigning 

incoming shipments to lanes on space utilization. Marsh (1983) compares the layout 

design developed by using the simulation models of Marsh (1979) and the analytic 

models proposed by Berry (1968). Goetschalckx and Ratliff (1991) develop an efficient 

dynamic programming algorithm to maximize space utilization by selecting lane depths 

out of a limited number of allowable depths and assigning incoming shipments to the 

different lane depths. Larson et al. (1997) propose a three-step heuristic for the layout 

problem of class-based pallet storage with the purpose to maximize storage space 

utilization and minimize material handling cost. To summarize, research for the pallet 

block-stacking problem suggests different rules or algorithms. Some methods give 

“optimal” results when their assumptions are satisfied. However, the real problem is 

really complex considering all the different SKUs with different and ever-changing flow 

activities. It is not clear what method works best in practice, or what is the appropriate 

method to use in a specific environment.    

The storage department layout problem determines the internal layout of a storage 

department in order to minimize the construction cost and material handling cost. The 

decisions considered usually include aisle orientations, number of aisles, length and 

width of aisles, and door locations. In order to evaluate operational costs, some 

assumptions are usually made about the storage and order picking policies, for example, 

random storage and single-command order picking are the most common assumptions. 

Roberts and Reed (1972) assume storage space is available in units of identical bays, and 
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determine the optimal bay configuration to minimize the construction and material 

handling cost. Bassan et al. (1980) present optimal layout with two different aisle 

structures in a rectangular warehouse, i.e., the aisles are either parallel or perpendicular to 

the longitudinal walls. In addition, they also discuss the optimal door locations in the 

storage department, and the optimal layout when the storage area is divided into different 

zones. The cost to be minimized is the total construction and material handling cost. 

Rosenblatt and Roll (1984) extend Bassan et al. (1980) to also include the additional cost 

due to the use of grouped storage policy. Pandit and Palekar (1993) solve the storage 

layout problem in order to minimize the expected response time of storage and/or 

retrieval requests. They propose a queuing model to calculate the total response time 

including waiting and processing time for different types of layouts. Based on this, an 

optimization model is solved to find the optimal storage space configurations.  

Finally, the AS/RS configuration problem is mainly about determining the number 

of cranes and aisles, and storage rack dimension in order to minimize construction, 

maintenance, and operational cost, and/or maximize equipment utilization. The optimal 

design models or rule-of-thumb procedures summarized in Table 3.1 typically utilize 

some empirical expressions of the costs based on simple assumptions of operational 

policies. The AS/RS design problem is discussed by Karasawa et al. (1980), Ashayeri et 

al. (1985), Rosenblatt et al. (1993), and Malmborg (2001). Karasawa et al. (1980) 

presents a nonlinear mixed integer model to design automated warehouses. The decision 

variables are number of cranes, and height and length of storage racks. The model 

minimizes the total costs including construction and equipment costs while satisfying 

services and storage capacity requirements. The optimal system configuration is obtained 
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by solving the above model using the generalized Lagrange multiplier method. Ashayeri 

et al. (1985) solve a similar problem as Karasawa et al. (1980). Given the storage 

capacity requirement and the height of racks, their models can be simplified to include 

only a single design variable, i.e., the number of aisles. Furthermore, the objective 

function is shown to be convex in the number of aisles, which allows a simple one-

dimensional search algorithm to optimally solve the problem. Rosenblatt et al. (1993) 

propose an optimization model that is a slight modification of Ashayeri et al. (1985), 

which allows a crane to serve multiple aisles. A combined optimization and simulation 

approach is proposed. The optimization model is solved to obtain an initial design, which 

might not satisfy some performance constraints (e.g., for service level) that are difficult to 

model analytically. These performance measures are then evaluated in a simulation using 

the outputs from the optimization model. If the corresponding constraints are satisfied, 

then the procedure stops. Otherwise, the optimization model is altered by adding new 

constraints (which are constructed by approximating the simulation results) and solved 

again to find another design. It is reported that the optimal solution can be found in a few 

iterations. Zollinger (1996) and Malmborg (2001) proposes some rule of thumb heuristics 

in designing an AS/RS. The design criteria include the total equipment costs, S/R 

machine utilization, service time, number of jobs waiting in the queue, and storage space 

requirements. Some other less well-discussed AS/RS design problems include 

determining the size of the basic material handling unit and the configuration of I/O 

points. Roll et al. (1989) propose a procedure to determine the optimal size of containers 

in an AS/RS, which is the basic unit for storage and order picking. Assuming only one 

container size is used, container size has an direct effect on space utilization, and 
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therefore on the equipment cost given the storage capacity requirement needs to be 

satisfied. The proposed approach determines the optimal container size to minimize the 

relevant equipment cost. Randhawa et al. (1991) and Randhawa and Shroff (1995) use 

simulations to investigate different I/O configurations on performance such as 

throughput, mean waiting time, and maximum waiting time. The results indicate that 

increased system throughput can be achieved using different I/O configurations instead of 

the common one-dock layout where the dock is located at the end of the aisle.  

3.2.4 Equipment selection 

The equipment selection problem is to determine the level of automation in a 

warehouse, and decide what type of storage and material handling systems should be 

employed. This decision obviously is a strategic one that affects almost all the other 

decisions, and constrains the overall warehouse investment and performance. Selecting a 

suitable level of automation is far from obvious, and in practice it is usually determined 

based on the personal experience of designers and managers. Academic research in this 

category is extremely rare. Cox (1986) provides a methodology to evaluate different 

levels of automation based on a cost-productivity analysis technique called the hierarchy 

of productivity ratios. White et al. (1981) develop analytical models to compare block 

stacking, single-deep and double-deep pallet rack, deep lane storage, and unit load AS/RS 

in order to determine the minimum space design. Matson and White (1981) extend White 

et al. (1981) to develop a total cost model incorporating both space and material handling 

costs, and demonstrate the effect of handling requirements on the optimum storage 

design. Sharp et al. (1994) compare several competing small part storage equipment types 

assuming different product sizes and dimensions. They considered shelving systems, 
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modular drawers, gravity flow racks, carousel systems, and mini-load storage/retrieval 

systems. The costs they considered include operational costs, floor space costs, and 

equipment costs. In summary, research on equipment selection is quite limited and 

preliminary, although it is very important in the sense that it will affect the whole 

warehouse design and the overall lifetime costs. 

3.2.5 Operation strategy 

This section discusses the selection of operation strategies in a warehouse. The 

focus is given to operation strategies that, once selected, has important effects on the 

overall system and is not likely to be changed frequently (e.g., use of randomized storage 

or dedicated storage, or use zone picking or not). Chapter 2 discusses in detail different 

operation policies and their implementations for receiving, storage, order picking, and 

shipping. This section will discuss the literature on the comparison of operational 

strategies, which provides some guides as to which operational strategies should be 

selected in a warehouse. Two major operation strategies are discussed, i.e., the storage 

strategy and the order picking strategy.  

The basic storage strategies include random storage, dedicated storage, class-based 

storage, and DOS-based storage, as explained in chapter 2. Hausman et al. (1976), Graves 

et al. (1977), and Schwarz et al. (1978) compare random storage, dedicated storage, and 

class-based storage in single-command and dual-command AS/RS using both analytical 

models and simulations. They show that significant reductions in travel time are 

obtainable from dedicated storage compared with random storage, and also that class-

based storage with relatively few classes yields travel time reductions that are close to 

those obtained by dedicated storage. Goetschalckx and Ratliff (1990) and Thonemann 
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and Brandeau (1998) show theoretically that DOS-based storage policies is the most 

promising policy in  terms of minimizing traveling costs. In practice, DOS-based policies 

are difficult to implement since it requires the tracking and management of each stored 

unit in the warehouse. Also the performance of DOS-based policies depends greatly on 

factors such as the skewness of demands, balance of input and output flows, inventory 

control policies, and the detailed implementations. In a study by Kulturel et al. (1999), 

class-based storage and DOS-based storage are compared using simulations, and the 

former is found to consistently outperform the latter. This conclusion may be reached 

because the DOS model rarely hold true in practice. Finally, the above results are all for 

unit-load AS/RS; studies on other storage systems are rarely reported. Malmborg and Al-

Tassan (1998) develop analytic models to evaluate the performance of dedicated storage 

and randomized storage in less-than-unit-load warehouses, but no general conclusions 

comparable to the unit-load case are given. 

There are a number of order picking strategies including, for example, single-order 

picking, batching with sort-while-pick, batching with sort-after-pick, sequential zone 

picking with single order, sequential zone picking with batching, concurrent zone picking 

without batching in the zones, and concurrent zone picking with batching in the zones. 

Furthermore, these different order picking strategies can be used with or without wave 

picking. The performance of an order picking strategy depends on the characteristics of 

orders and products, service requirements, as well as the configuration of the warehouse. 

Research on the selection of an order picking strategy is very scarce, which might be a 

result of the complexity of the problem itself. Lin and Lu (1999) compare single-order 

picking and batch zone picking for different types of orders, which are classified based 
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on the order quantity and the number of ordered items. Petersen (2000) simulates five 

different order-picking policies: single-order picking, batch picking, sequential zone 

picking, concurrent zone picking, and wave picking. Two control variables in the 

simulation study are numbers of daily orders and demand skewness, while the other 

factors such as warehouse layout, storage assignment, and zone configuration (when zone 

and wave picking is used) are fixed. The performance measures used to compare the 

different policies include: the mean daily labor, the mean length of day, and the mean 

percentage of late orders. For each order picking policy, the simplest rules regarding 

batching, routing, and wave length are used. It should also be noted that the performance 

measures are mainly related to order picking efficiencies and service qualities; additional 

costs caused by downstream sortation using batch, zone, and wave picking are not 

considered. Furthermore, comparison of these policies are made mainly with regards to 

the order structures, while other important factors such as storage assignment and 

detailed implementations of the order picking policies are assumed to be fixed. Therefore, 

the results should not be considered as general and more research in this direction might 

be worthwhile to provide more guidance for warehouse designers.   

 

3.3 Performance evaluation 

Performance evaluation provides feedback on the quality of a proposed design 

and/or operational policy, and more importantly, on how to further improve it. There are 

different approaches for performance evaluation: benchmarking, analytic models, and 

simulations. This section will only discuss benchmarking and analytic models.  

 60



 

Warehouse benchmarking is a process of systematically assessing the performance 

of a warehouse, identifying inefficiencies, and proposing improvements. Data 

Envelopment Analysis (DEA) is regarded as an appropriate tool for this task because of 

its capability to capture simultaneously all the relevant inputs (resources) and outputs 

(performances), to construct the best performance frontier, and to reveals the relative 

shortcomings of inefficient warehouses. Schefczyk (1993), Hackman et al. (2001), and 

Ross and Droge (2002) shows some approaches and case studies of using DEA in 

warehouse benchmarking. An Internet-based DEA system (iDEAS) for warehouses is 

developed by the Keck Lab in Georgia Tech, which includes information of more than 

200 warehouses (McGinnis (2003)).  

Most of the literature on warehouse performance evaluation addresses analytic 

models for a specific performance measure, especially (or exclusively) for travel time 

estimation. Travel time models deal with the estimation of expected travel time per order 

picking tour given warehouse type, layout, and storage and order picking policy. They are 

classified as models for unit-load AS/RS, man-on-board AS/RS, end-of-aisle AS/RS, 

carousel and rotary racks, and conventional multi-aisle systems, as shown in Table 3.2. 

The factors that affect travel time including warehouse layout (for example, rack 

dimensions for AS/RS or number and length of aisles for conventional multi-aisle 

systems), storage location assignment policies, and routing policies. In general, the 

effects of routing policies are difficult to quantify analytically, which explains the 

relatively small number of papers for conventional multi-aisle systems that require the 

more complex routing of multiple locations. As a result, some basic routing policies are 

usually assumed to simplify the modeling, for example, the first-come-first-serve policy 
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(Graves et al. (1977)) or nearest-neighbor heuristic (Han et al. (1987)) for dual-command 

systems, the traversal policy (Hall (1993)) or return policy (Hall (1993) and Caron et al. 

(1998)) for conventional multi-aisle systems. The readers should keep this in mind when 

referring to the literature in Table 3.2.   

The travel time models for AS/RS usually assume that one S/R machine serves one 

aisle, and the S/R machine travels at a constant speed ignoring acceleration/deceleration. 

Hwang and Ko (1988) develop travel time models for the case where multiple aisles can 

be served by a single S/R machine, and propose a procedure to find the minimum number 

of S/R machines and to identify the number of aisles each S/R machine serves. Hwang 

and Lee (1990) develop travel time models that consider the operating characteristics of 

the S/R machine such as the acceleration/deceleration rate and the maximum velocity. 

Chang and Wen (1997) and Chang et al. (1995) consider a similar problem where the S/R 

machine has various travel speeds and known acceleration/deceleration rates, and use the 

travel time models to determine the optimal rack configuration.   
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Table 3.2 Literature of travel time models for different warehouse systems 
 Randomized Storage Dedicated Storage Class-based Storage 

Single-
Command 

Hausman et al. (1976)  
Bozer and White (1984) 
Thonemann and 
Brandeau (1998)  
Kim and Seidmann 
(1990)  
Hwang and Ko (1988)  
Lee (1997)  
Hwang and Lee (1990)  
Chang et al. (1995)  
Chang and Wen (1997)  
Koh et al. (2002)  
Lee et al. (1999)  

Hausman et al. (1976)  
Thonemann and 
Brandeau (1998)  
Kim and Seidmann 
(1990)  

Hausman et al. (1976)  
Thonemann and 
Brandeau (1998)  
Rosenblatt and Eynan 
(1989)  
Eynan and Rosenblatt 
(1994)  
Kouvelis and 
Papanicolaou (1995)  
Kim and Seidmann 
(1990)  
Pan and Wang (1996)  
Ashayeri et al. (2002)  

Dual-
Command 

Graves et al. (1977)  
Bozer and White (1984) 
Kim and Seidmann 
(1990)  
Hwang and Ko (1988)    
Lee (1997)  
Han et al. (1987)  
Hwang and Lee (1990)  
Chang et al. (1995)  
Chang and Wen (1997)  
Koh et al. (2002)  
Lee et al. (1999)  

Graves et al. (1977)  
Kim and Seidmann 
(1990)  

Graves et al. (1977)  
Kouvelis and 
Papanicolaou (1995)  
Kim and Seidmann 
(1990)  
Pan and Wang (1996)  
Ashayeri et al. (2002)  

Unit-
Load 

AS/RS 

Multi-
Shuttle 

Meller and 
Mungwattana (1997)    

Man-on-Board 
AS/RS 

Hwang and Song 
(1993)    

End-of-Aisle AS/RS 

Bozer and White (1990) 
Bozer and White (1996) 
Foley and Frazelle 
(1991)  
Park et al. (1999)  

Park et al. (2003)   

Carousel and 
Rotary Racks 

Han and McGinnis 
(1986)  
Han et al. (1988)  
Hwang et al. (1999)  

  

Conventional 
Multi-aisle System 

Hall (1993)  
Jarvis and McDowell 
(1991)  
Chew and Tang (1999)  

Caron et al. (1998)  
Caron et al. (2000)  
Jarvis and McDowell 
(1991)  
Chew and Tang (1999)  

Jarvis and McDowell 
(1991)  
Chew and Tang (1999)  
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Other throughput related performance measures can be derived based on the travel 

time models, such as the total average service time (including waiting time and travel 

time), the average queue length, and the system throughput by using queuing models. In 

this case, the distribution of travel time instead of just the average is usually required to 

form the queuing models. Foley and Frazelle (1991) develop the travel time distribution 

for AS/RS with randomized storage. If the exact distribution cannot be derived, it is 

usually approximated by a general distribution using its expected value and variance, e.g., 

Bozer and White (1984) for AS/RS with randomized storage, Park et al. (2003) for 

AS/RS with dedicated storage, and Chew and Tang (1999) for conventional multi-aisle 

systems. Furthermore, detailed information about the travel time distribution is usually 

unavailable in the design phase due to uncertainties with the operational policies. 

Therefore, Foley et al. (2002) develop tight upper and lower bounds on throughput given 

only partial information about the travel time distribution.  

Chow (1986) models the AS/RS as an M/G/1 queue in order to derive the average 

request waiting time and the average queue length. Lee (1997) also presents a stochastic 

analysis of the unit-load AS/RS using a single-server queuing model. Azadivar (1986) 

determines the throughput of a unit-load AS/RS using a stochastic constrained 

optimization problem, where the constraints are on the maximum storage queue length 

and the average waiting time for retrieval requests. Malmborg (2000) evaluates 

performance measures such as S/R machine utilization, queue lengths, average cycle 

time, and expected waiting time for a twin shuttle AS/RS. Bozer and White (1990) 

consider end-of-aisle order picking systems with random storage, and use the 

approximated travel time distribution discussed in the last paragraph to derive the system 
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throughput. Bozer and White (1996) extend Bozer and White (1990) to more general end-

of-aisle order picking systems, which might have multiple pick positions per aisle and 

multiple aisles per picker. Park et al. (2003) determines the throughput of end-of-aisle 

order picking systems with turnover-based storage. Park et al. (1999) further investigate 

the effects of buffer sizes on the throughput of end-of-aisle order picking systems using a 

two-stage cyclic queuing model. While the above research has been focused on unit-load 

AS/RS, Chew and Tang (1999) develop a travel time model for conventional multi-aisle 

warehouses with general storage assignment, which gives the exact probability mass 

functions as well as the first and second moments that characterize the order picking tour 

length. They then apply the model to analyze order batching and storage allocation by a 

queuing model. Bhaskaran and Malmborg (1989) also present a stochastic performance 

evaluation model on the service process for multi-aisle warehouses with an approximated 

distribution for the service time that depends on the batch size and the travel distance. de 

Koster (1994) develops queuing models to evaluate the performance of a warehouse that 

uses sequential zone picking where each bin are assigned to one or more orders, and are 

transported using a conveyer. If a bin needs to be picked at a specific zone, it is 

transported to the corresponding pick station. After it is picked, it is then put on the 

conveyor to be sent to the next pick station. The proposed queuing network model 

evaluates performance measures such as system throughput, picker utilization, and the 

average number of bins in the system based on factors such as the speed and length of the 

conveyor, the number of picking stations, and the number of picks per station.  

The above analytical performance evaluation models have been concentrated on 

throughput-related performance, especially, on the travel time analysis and the service 
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quality in processing storage and retrieval requests. Other performance measures might 

also be very important for a warehouse, e.g., storage capacity, construction cost, and 

operational cost, for which few sophisticated analytical approaches are available. 

Furthermore, it is important to have integrated models that can evaluate the tradeoffs 

between different performance measures in a unified way. Such integrated models are 

especially useful in the early design phase. However, research results in this direction are 

limited. Malmborg (1996) proposes an integrated performance evaluation model for a 

warehouse that has a forward-reserve configuration. The proposed model evaluates costs 

associated with: storage capacity; space shortage; inventory carrying, replenishing, and 

expediting; order picking; and internal replenishment for the forward area, based on 

information about inventory management, forward-reserve space allocation, and storage 

layout. Malmborg and Al-Tassan (2000) presents a mathematical model to estimated 

space requirements and order picking cycle times for less than unit load order picking 

systems that uses randomized storage. The inputs of the model include product 

parameters, equipment specifications, operational policies, and storage area 

configurations. Malmborg (2003) models the dependency of performance measures such 

as expected total system construction cost and throughput on factors such as the vehicle 

fleet size, the number of lifts, and the storage rack configurations for warehouse systems 

that use rail guided vehicles.    

 

3.4 Case studies 

Various warehouse design and operation problems have been discussed in this and 

the previous chapter. This section lists some real industrial case studies, which not only 
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provide applications of the various design and operation methods in practical contexts, 

but more importantly also identify possible future research challenges from the industrial 

point of view. Table 3.3 lists these case studies with the problems and the types of 

warehouse they investigated. The detailed results and discussions are too cumbersome to 

be presented here. Interested readers should refer to the original papers. In general, these 

case studies demonstrate that substantial benefits might be achieved by appropriately 

designing and operating a warehouse, see for example Zeng et al. (2002) and van 

Oudheusden et al. (1988). On the other hand, many practical complications might arise 

when applying even the simplest rule in a practical context, for example, the COI-based 

storage location assignment rule (Kallina and Lynn (1976)). Some of these complications 

have been addressed in the academic research, but many others are still remained 

unexplored. These and more industrial case studies will help the warehouse research 

community to better understand the real issues and to make a more substantial impact on 

the practice.  

Table 3.3 A Summary of the literature on warehouse case studies 
Citation Problems studied Type of warehouse 

Cormier and Kersey (1995)  Conceptual design 
A warehouse for perishable 
goods that requires Just-In-
Time operations 

Yoon and Sharp (1995)  Conceptual design An order picking system 

Zeng et al. (2002)  
Storage location assignment; 
warehouse dimensioning; 
storage and order picking policy 

A distribution center 

Kallina and Lynn (1976)  Storage location assignment 
using the COI rule A distribution center 

Brynzer and Johansson 
(1995)  

Process flow; batching; zone 
picking;  

Kitting systems that supply 
materials to assembly lines 

Burkard et al. (1995)  Vehicle routing 
An AS/RS where a S/R 
machine can serve any aisle 
using a switching gangway 

van Oudheusden et al. (1988)  Storage location assignment; 
batching; routing 

A man-on-board AS/RS in an 
integrated steel mill 

Luxhoj and Skarpness (1986)  Manpower planning A distribution center 
Johnson and Lofgren (1994)  Simulation by decomposition  A distribution center 
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3.5 Computational systems 

This section describes some computational tools that have been developed to aid in 

the design and operation of a warehouse, i.e., Computer-Aided Warehouse Design and 

Planning systems (CAWD and CAWP). There are numerous commercial Warehouse 

Management Systems (WMS) available in the market, which basically help the 

warehouse manager to keep track of the product, order, space, equipment, and human 

resource in a warehouse, and provide rules/algorithms for storage location assignment, 

order batching, pick routing, etc. Detailed review of these systems is beyond the scope of 

this chapter. Instead, we focus on the discussion of some prototyping systems developed 

by academic researchers. As previous sections show, research on various warehouse 

design and operation problems has being going on for almost half a century, and as a 

result, a large number of methodologies, algorithms, and empirical studies have been 

generated. However, we haven’t seen many successful implementations of these 

academic results in current commercial WMS systems. The prototyping systems 

discussed in this section might shed some lights on how academic research results could 

be utilized to develop more sophisticated computer aided warehouse design and operation 

systems.   

Perlmann and Bailey (1988) presents a computer-aided design software that allows 

a warehouse designer to quickly generate a set of conceptual design alternatives including 

building shape, equipment selection, and operational policy selection, and to select 

among them the best one based on the specified design requirements.  

Luxhoj et al. (1993) develop an expert system to select inventory control policies 

based on information on, for example, demand, lead-time, and suppliers. Different 
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inventory control models are linked with the expert system to calculate detailed 

operational parameters, such as order quantity and safety stock level, once an inventory 

policy is selected. Linn and Wysk (1990) develop an expert system for the control of an 

AS/RS in a dynamic environment. A control policy determines decisions such as storage 

location assignment, which item to retrieve if multi-items for the same product are stored, 

storage and retrieval sequencing, and storage relocation. Several control rules are 

available for each decision and the control policy is constructed by selecting one 

individual rule for each decision in a coherent way based on the dynamically changing 

system states such as demand pattern and traffic intensity. A similar AS/RS control 

system is proposed by Wang and Yih (1997) based on neural networks. 

Ito et al. (2002) propose an intelligent agent based system to model a warehouse, 

which is composed of three subsystems, i.e., agent-based communication system, agent-

based material handling system, and agent-based inventory planning and control system. 

Seven basic agents are developed including customer, supplier, order, inventory, product, 

supplier-order, and automatic-guided vehicle, which communicate with each other within 

the framework of the system. The proposed agent-based system is used for the design and 

implementation of warehouse simulation models. Kim et al. (2002) presents an agent 

based system for the control of a novel warehouse for cosmetic products. Besides the 

communication function, the agents also make decisions regarding the operation of the 

warehouse entities they represented in a dynamic real-time fashion. Since the decision 

made by an agent affects other agents, a proper coordination scheme among agents in the 

system needs to be developed. The authors propose a hybrid framework for the 

coordination of agents, which combines the advantages of both hierarchical and 
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heterarchical schemes to allow coordination between different levels as well as within the 

same level.  

 

3.6 Conclusions and discussions 

Figure 3.1 shows the distribution of the surveyed literature among the warehouse 

design problems. The numbers in parentheses represent the number of papers related to 

the corresponding problems. The total number of papers on warehouse design problems 

is 46, which is about 1/3 of the number of papers on warehouse operation problems. 

Although the number might not be exact, it reflects the general situation that most 

warehouse research efforts have been devoted to operation problems instead of design 

problems. This is not because warehouse design is less important than warehouse 

operation, but because warehouse design problems are much more difficult to treat 

analytically. The difficulties are: first, the design decisions are closely interrelated such 

that good decisions are only achievable by considering the decisions in an integrated way, 

but models integrating all design decisions are much more difficult to develop and 

analysis; second, the design problem has significant implications for warehouse 

operations, but in the design stage, it is usually not very clear how the warehouse is going 

to be operated; this introduces uncertainty in modeling the influence of design decisions 

on operation performances. These challenges need to be addressed in the future 

warehouse research.  
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 Figure 3.1 Illustration of the distribution of warehouse design literature 

 

Warehouse performance evaluation has been an important topic in the past, but 

most of the proposed models focus on individual performance measures, such as travel 

time. Integrated models assessing overall warehouse performances are rare. Such 

integrated models are important in order to balance the tradeoffs among different 

performance criteria, and therefore deserve more attention in the future.   

Most of the academic research results are not well validated and accepted in the 

industry. Research on developing industrial case studies and computer aided warehouse 

design and operation tools is very limited. More practical case studies might help us to 

realize the potential benefits of applying academic research results to real problems, and 

identify the hidden challenges that prevent their successful implementations. On the other 

hand, more sophisticated computer aided design and operation systems can facilitate the 

use of advanced methods in practice by imbedding them in the computational systems 
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such that the warehouse designers and/or managers can utilize them without bothering 

too much about implementation details. The impact of computational systems on practice 

has been successfully demonstrated in other engineering disciplines, such as, computer 

aided design tools widely and effectively used in almost every mechanical or electrical 

design project today, resulting in better design results in a shorter cycle time. Similar 

impacts are not yet seen in the warehouse design and operation area, and future research 

efforts might contribute to develop more sophisticated computer aided design and 

operation systems to greatly improve the current warehouse practice.  

Finally, both analytic and simulation models are currently used to analyze 

warehouse problems. Both methods have their advantages and disadvantages. Analytic 

models are usually design-oriented in the sense that they can explore many alternatives 

quickly to find the optimal (or near-optimal) solution. But it is usually difficult to develop 

analytic models that can capture all the relevant details of the system. When such models 

do exist, they are usually too difficult to solve in practice. On the other hand, simulation 

models are usually analysis-oriented in the sense that given a set of design and 

operational parameters, detailed performance measures can be obtained by building and 

running a simulation model. But their capability to explore a large number of alternatives 

is limited. It seems that there is a need to integrate both approaches to achieve more 

flexibility in analyzing warehouse problems. This is also pointed out by Ashayeri and 

Gelders (1985), and its applicability has been demonstrated by Rosenblatt and Roll 

(1984) and Rosenblatt et al. (1993).  
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CHAPTER 4  

THE SIZING AND DIMENSIONING OF A FORWARD-RESERVE 

WAREHOUSE  

 
4.1 Introduction 

Storage and order processing are two basic functions of a warehouse and they have 

different and often conflicting requirements. For example, the use of high-density storage 

technologies, such as block stacking or deep-lane pallet racks, maximizes the space 

utilization; however, these technologies are inefficient for order picking since the goods 

are not easily accessible. Order picking benefits if goods are stored in a compact area 

with sufficient aisle space not only for convenient item access but also with limited non-

productive walk time between order picking stops. Such an arrangement may not provide 

enough storage capacity for required inventory so that a secondary storage area may be 

required for the excess.   

The forward-reserve configuration is a popular warehouse design strategy that 

facilitates efficient order picking while maintaining sufficient storage capacity. The 

primary function of the forward area is order picking. It is compact in size and uses 

equipment types such as bin shelving and gravity flow rack to allow convenient item 

selection and retrieval. The primary function of the reserve area is storage, where goods 

are stored in media such as block-stacked pallets or pallet racks to achieve high space 

utilization. The fundamental characteristic of the forward-reserve configuration is the 

dedication of different warehouse areas to different warehouse functions, i.e., order 

picking in the forward area and storage in the reserve area, so that their respective 
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advantages can be fully utilized and warehouse construction and operation cost can be 

minimized.  

A number of papers have discussed the forward-reserve warehouse. Their main 

focus has been on the tactical level, i.e., the forward-reserve allocation problem, which 

assumes the forward area has a given limited size and determines which SKUs should be 

assigned to the forward area and in what quantity to minimize the total order picking and 

internal replenishment cost (Hackman and Rosenblatt (1990)). This chapter focuses on 

the sizing and dimensioning of a forward-reserve warehouse, i.e., the problem of 

determining warehouse dimensions and allocating space between the forward and reserve 

areas to minimize the total warehouse life cycle cost. Compared with the forward-reserve 

allocation problem, the sizing and dimensioning problem is a strategic level design 

decision. The costs affected by the sizing and dimensioning decisions are construction 

cost, inventory cost, and material handling cost; these costs need to be carefully balanced 

in order to minimize the total life cycle cost.  

We propose a mathematical model for the forward-reserve sizing and dimensioning 

problem, and develop an optimal solution algorithm based on Generalized Benders 

Decomposition (GBD). Section 4.2 presents the mathematical model for the forward-

reserve sizing and dimensioning problem. Section 4.3 develops the solution algorithm 

starting with a brief description of GBD. Section 4.4 presents the computational results. 

Finally, conclusions and future research directions are given in Section 4.5.  
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4.2 Mathematical models 

In developing our model, we assume that pallet racks and shelves are used in the 

reserve and forward area respectively, and the basic block layout of the forward-reserve 

warehouse is as illustrated in Figure 4.1. Some variations of this basic block layout are 

discussed in section 4.3.3.  

 

 

 

 

 

 

 

 

 

 

 
 

Shipping 
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Receiving 

w2 

w1 

Reserve 
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Order 
Picking 
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Figure 4.1 A block layout of the forward-reserve warehouse 
 

The following notation will be used throughout this chapter: 

Parameters: 

Ab  – sum of the travel aisle width in the reserve area and twice the depth of a pallet rack 

Af  – sum of the travel aisle width in the forward area and twice the depth of a shelf 

As  – width of a shelf (measured along the travel aisle) 

Ap  – width of a pallet (measured along the travel aisle) 

Ai  – fixed ordering costs for SKU i per external replenishment 
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1aC  – construction cost per area unit of the forward area  

2aC  – construction cost per area unit of the reserve area 

wC  – construction cost per length unit of the external walls 

Ci  – inventory holding cost per volume unit (e.g. cubic meter) per year for SKU i 

Co  – order picking cost per unit of travel distance 

Cp  – put-away cost per unit of travel distance 

Cr  – internal replenishment cost per unit of travel distance 

Di  – annual demand of SKU i expressed in volume units (e.g., cubic meters) 

I  – index set of the SKUs 

N  – number of the SKUs 

Np  – average number of picks per order picking trip 

Nr  – average number of order picking trips per year 

Vp  – net volume of product stored in a pallet 

βb  – space utilization factor for the reserve area, defined as the net volume of product 

stored per unit area  

βf – space utilization factor for the forward area 

T  – planning time horizon of the warehouse measured in years 

r  – discount rate 

Si – safety stock level of SKU i 

Z  – net present value discount factor 

 ∑
=

−+=
T

t

trZ
1

)1(  
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Variables: 

yl  – number of aisles in the forward area.  

yw1  – number of shelves per aisle in the forward area 

yw2  – number of pallet positions per aisle in the reserve area 

qi  – external order quantity for SKU i in volume units, e.g., cubic meters 

zi  – quantity of SKU i allocated to the forward area in volume units, e.g., cubic meters 

Assumptions: 

• Demand rate is constant over the planned time horizon.  

• The internal replenishment is assumed to be instantaneous so that a SKU is 

replenished when its inventory in the forward area reaches zero. An external 

replenishment happens when the total inventory in the warehouse drops to a given 

safety stock level based on the SKUs’ demand rate and lead-time for replenishment.   

• Randomized storage is used in both reserve and forward areas. 

• Orders are batch picked from the forward area. 

• The internal replenishment for any SKU can be performed in a single trip, while the 

put-away from receiving to the reserve area is performed one pallet a time.  

• The clear height of the warehouse is given. 

The warehouse dimensions are determined by: 

 pwswfl AywAywAyl 2211 ;; ===  

Note that the width of cross aisles, which can be added as a constant to the above 

formula, is not included in the calculation of dimensions to simplify the notation. 

The warehouse construction cost is modeled as a function of the warehouse area 

and perimeter, following White and Francis (1971) and Bassan et al. (1980):  
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 )(2 212211 wwlClwClwConCostConstructi waa ++++=  (4.1) 

The material handling cost includes the cost for put-away, internal replenishment, 

and order picking. A put-away trip starts at the receiving door, goes to a location in the 

reserve area, stores the pallet, and then returns to the receiving door to store another 

pallet. Assuming randomized storage, the average travel distance per put-away trip can be 

calculated based on a continuous approximation of the storage area as follows: 

 ( )∫ ∫−
+2

2 0 2121
2

22 l

l

w
dxdxxx

lw
 

The rectilinear distance metric is used since the trip is single-command and follows 

the aisle structure. Integrating this equation and multiplying the result by the cost 

coefficient, we obtain the average put-away cost per trip as: 

 )
2

( 2wlCc pp +=  (4.2) 

An internal replenishment trip starts by picking the required items from the reserve 

area, traveling to the forward area to place the items, and then returning to the reserve 

area to start the next task. The travel distance per internal replenishment is calculated by: 

( )∫ ∫ ∫ ∫
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Therefore, the average internal replenishment cost per trip can be calculated as: 

 )
3
2( 21 wwlCc rr ++=  (4.3) 

Assuming randomized storage and a traversal routing policy, the average order 

picking cost per batch picking tour can be modeled following Hall (1993) as shown in 

(4.4). Travel cost models for other storage and routing policy can be found in the 

literature listed in Table 3.2. 
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Therefore, the total annual material handling cost is: 
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 (4.5) 

The above equation does not include the insertion and extraction cost of storing and 

picking SKUs from racks and/or shelves, which do not depend on the warehouse 

dimensions and can be modeled as constants. The external replenishment for a SKU is 

performed when the total inventory in the warehouse drops to its safety stock level Si. 

Therefore, the total annual inventory holding and external replenishment cost is 

represented by: 

))
2

(( i
i

i
i

i

i
i SqC

q
DAostInventoryC ++= ∑  (4.6) 

The forward and reserve areas constitute a two-echelon inventory system. Figure 

4.2 illustrates the inventory levels for SKU i in the warehouse where the dashed line 

represents the total warehouse inventory, the solid line represents the inventory in the 

reserve area, and t0 and t1 represent the times that external replenishments are performed. 

The maximum inventory for SKU i in the reserve area occurs when an external 

replenishment is performed, but its value is difficult to determine. For example, at time t0, 

the inventory in the reserve area is qi + Si - zi. But at time t1, the inventory in the reserve 

area is close to qi + Si. Therefore, the maximum inventory of a specific SKU depends not 

only on its lot sizes and safety stock levels, but also on the timing of external and internal 
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replenishments. Furthermore, the total required storage space is less than the sum of the 

maximum inventory for all SKUs since random storage is used and it is not likely that all 

SKUs achieve their maximum inventory level at the same time.  

 

zi 

Si 

qi 

 

 

 

 

 

 

 
t1 t0 

 

Figure 4.2 Inventory level in the warehouse  

 

The effect of timing on the total required storage space is called staggering, which 

has been extensively studied in the literature (see, for example, Gallego et al. (1996)). 

The staggering effect can be represented as the following: 

SKUsIndividualofLevelsStorageMaximumofSum
DemandSpaceStorageTotalFactorStaggering =  

The sum of maximum storage levels of individual SKUs in the above formula is the 

total storage space requirement in the worst case, i.e., all SKUs achieve their maximum 

inventory level at the same time. The actual total storage space demand is always less 

than or equal to that in the worst case, therefore the staggering factor has a value between 

0 and 1.  
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The warehouse design model needs to ensure that the warehouse can provide 

enough storage space in both the reserve and forward areas, which can be represented as 

follows: 

SpaceStorageAvailableNetDemandSpaceStorageTotal ≤  

Or equivalently: 

SpaceStorageAvailableNet
FactorStaggering

SKUsIndividualofLevelsStorageMaximumofSum

×

≤
1  

Therefore, the following inequalities represent the storage space constraints in the 

reserve and forward area respectively: 

      (4.7) 2)( lwSq bi
i

i β≤+∑

  (4.8) 1lwz f
i

i β≤∑

Factors βb and βb in (4.7) and (4.8) are compound factors which include not only 

the effect of staggering as discussed above, but also factors that determine the net 

available storage space for given warehouse dimensions, such as the warehouse clear 

height, volumetric limitations (e.g., obstructions in the rack area), and space utilization 

(e.g., the honeycombing phenomenon). The selection of values for βb and βb depend on 

the tradeoff between warehouse life-cycle cost and the risk of running out of storage 

space during peak inventory periods.  A detailed discussion on these various factors and 

their typical values can be found in Section 3.2.1 of Sharp (2000). Furthermore, the 

maximum storage levels of SKU i in the reserve area is represented as qi + Si, which can 

be achieved (or nearly achieved) at certain specific time points but most of the time 
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overestimates the actual storage space requirements as discussed earlier. This should be 

considered in selecting the value for βb.  

In summary, the forward-reserve warehouse sizing and dimensioning optimization 

model is: 

 (P) min Constructi ZMHCostostInventoryConCost )( ++  

  s.t. (4.7) and (4.8) 

  zq Iiii ∈∀≥ 0,  ,

  ,, yyy  3
21 +∈ Zwwl

The above model is based on the fluid assumption (Bartholdi and Hackman (2005)), 

which approximates each SKU as an incompressible and continuously divisible fluid. The 

objective function represents the total life-cycle cost including the construction cost and 

the net present value of the discounted operation cost. The model can also include other 

constraints, such as physical layout constraints and/or bounds on the space allocations, as 

discussed in Section 4.3.3. This problem is a non-convex mixed integer problem with a 

large number of continuous variables. In general, such problems are difficult to solve by 

general-purpose optimization packages. An efficient algorithm that exploits the special 

problem structure is developed in the next section. 

 

4.3 Solution method 

If the warehouse dimension variables (yl, yw1, yw2) in problem (P) are temporarily 

fixed, the remaining problem is convex with only continuous variables, and as discussed 

below is easy to solve. This property suggests using a decomposition strategy in solving 
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problem (P). In the remaining parts of this section, a solution method based on 

Generalized Benders Decomposition (GBD) (Geofferion (1972)) is proposed.  

4.3.1 Generalized Benders Decomposition 

The Generalized Benders Decomposition approach can be applied to problems that 

have the following general form:  

 YyXxyxGtsyxf ∈∈≤ ,,0),(..),(min  (4.9) 

where x and y are vectors of decision variables and G is a m-vector of constraint 

functions.  By fixing y, the problem reduces to the following sub-problem:  

 XxyxGtsyxfyv x ∈≤≡ ,0),(..),,(min)(  (4.10) 

Assuming problem (4.10) is convex for any fixed Yy ∈ , problem (4.9) can be 

reformulated to the following equivalent form based on the duality of convex problems 

(see Geofferion (1972) for the details):  

  (4.11.1) oRyYy y∈∈ 0,min

 { } 0),(),(inf.. 0 ≥∀≤+∈ uyyxGuyxfts t
Xx  (4.11.2) 

 { } Λ∈∀≤∈ λλ 0),(inf yxGt
Xx  (4.11.3) 

where: 
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Problem (4.11) is called the master problem, where the objective function (4.11.1) 

and constraints (4.11.2) enforce yo equal to v(y) (i.e., the optimal function value of the 

sub-problem) by duality and therefore the problem is to find an optimal y that minimizes 

v(y); constraints (4.11.3) ensure the feasibility of a given y. There are an infinite number 

of constraints because µ and λ are continuous. The GBD algorithm employs a relaxation 

strategy to solve the master problem. The algorithm starts by solving a relaxed version of 
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(4.11) that includes only a subset of all the constraints, and the result (ŷ, ŷo) is passed to 

the sub-problem (4.10). Solving (4.10) for fixed (ŷ, ŷo) can result in three possible 

outcomes: (1) it is infeasible; (2) it is feasible, but v(ŷ) > ŷo; or (3) it is feasible, and v(ŷ) ≤ 

ŷo. Note that v(ŷ) may be unbounded, which means the original problem is also 

unbounded. In case (3), the master problem is optimally solved. For case (1) or (2), the 

sub-problem will generate a value for the Lagrange multipliers λ or u such that the 

corresponding constraint will be violated by (ŷ, ŷo). The violated constraint is then added 

to the relaxed master problem and the process is repeated. 

4.3.2 Solving the forward-reserve warehouse sizing and dimensioning model 

Using the notation defined in Table 4.1, Problem (P) can be transformed to the 

following: 
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Note that f2 depends on y since cr is a function of the dimension variables as shown 

in (4.3). If y is fixed, (P’) reduces to the following two independent sub-problems: 
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Table 4.1 Notation for the definition of problem (P’) 
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Problems (P1) and (P2) are both convex problems and can be solved very 

efficiently. The following describes the solution algorithms for solving (P1), (P2) and the 

master problem (P’) respectively. 

Solution algorithm for (P1) 

 Since (P1) is a convex problem, a feasible solution is optimal if it satisfies the 

Karush-Kuhn-Tucker (KKT) conditions as stated in equations (4.14):  

 
 

  Iiu
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 (4.14.1) 
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   (4.14.3) 0≥u

The following algorithm can be used to find a feasible solution that satisfies the 

KKT condition and therefore solves (P1): 

(1) Let u = 0, and 

  Iiq
i

i
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β
α

 (4.15) 

It is easy to check that the above result satisfies the KKT condition. If it is also 

feasible, i.e., it satisfies ByyBq wl
Ii

i +≤∑
∈

22 , the algorithm stops with an 

optimal solution. 

(2) Otherwise, we have ByyBq wl
Ii

i +>∑
∈

22 . Find a u > 0, and   
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 (4.16) 
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such that . The solution is feasible and satisfies the KKT 

condition, and therefore is optimal. 

ByyBq wl
Ii

i +=∑
∈

22

According to Equation (4.16), qi is monotonically decreasing with u. Therefore, 

there is a unique solution of u at which ByyBq wl
Ii

i +=∑
∈

22  is satisfied. A bisection 

search on u can be used in Step (2) to find this solution efficiently. 

Solution algorithm for (P2) 

Problem (P2) is even simpler since its objective function is a decreasing function in 

zi, therefore the constraint is always tight at the optimal solution. The 

KKT conditions for (P2) are: 
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From (4.17.1), we can calculate zi as follows: 
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Since  in the optimal solution, we can substitute (4.18) into it to 

get the optimal u: 
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Therefore, the optimal solution for zi can be calculated as follows: 
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Solve the master problem (P’) 
 

The master problem takes the form of Problem (4.11). In our case, the sub-problems 

are always feasible for any . Therefore, only constraints (4.11.2) need to be 

considered, which can be explicitly represented as:   
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where u1 and u2 are the Lagrange multipliers of sub-problems (P1) and (P2).   

Therefore, the master problem for the forward-reserve warehouse sizing and 

dimensioning problem can be stated as follows: 
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Problem (4.21) is a mixed integer nonlinear problem, but has only four variables, 

i.e., yl, yw1, yw2, and yo. Therefore, it can be solved using a Branch-and-Bound algorithm 

(for example, see Ryoo and Sahinidis (1996)). 

Since u1 and u2 are continuous, problem (4.21) has an infinite set of constraints. It is 

solved with a relaxation strategy. The detailed algorithm for solving the master problem 

is as follows: 

(1) Select a starting point y , an initial upper bound UBD and a lower bound LBD, 

and the convergence tolerance parameter ε > 0. 
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(2) Solve the sub-problems (P1) and (P2) for y . If the optimal objective value v( y ) 

of the sub-problem is less than the current upper bound, update UBD to v( y ). If 

LBD ≥ UBD - ε, terminate. Otherwise, determine the value of the multipliers 1u  

and 2u , and add the corresponding constraint to the relaxed master problem.  

(3) Solve the current relaxed master problem. Let ( y , 0y ) be the optimal solution. 

0y  is the new lower bound, set LBD = 0y . Go to step (2). 

 

4.3.3 Variations of the model 

Problem (P) can be extended to include other practical considerations, for example: 

(1) Additional constraints 0)( ≤yg  on the warehouse dimension variables can be 

added. These constraints may represent construction site limitations, 

construction budget limitations, and/or layout feasibility constraints. The same 

solution method developed in Section 4.3.2 still can be applied by directly 

adding these constraints to the master problem (4.21).  

(2) Lower and upper bounds on the space allocation variables can be added to 

problem (P). They may represent bounds for a single space allocation variable 

in the form of iii UqL ≤≤ , or constraints on the total allocated space for a 

group of SKUs as represented by k
Ii

ik UqL
k

≤≤ ∑
∈

, where is a subset of 

the SKUs. For illustration purpose, we will only discuss sub-problem (P1) by 

including the general upper bounds as follows: 

II k ⊂
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The corresponding KKT conditions become: 
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The modified solution algorithm is similar to that discussed in section 4.3.2. It 

starts by letting all 0=ku  and iiiq βα /= . If the solution is feasible, the 

algorithm stops with an optimal solution. Otherwise, the algorithm picks a uk for 

which the corresponding constraint is violated (i.e., ∑
∈

>
kIi

ki Uq ), and  is 

decreased by increasing  until 

kIiq ∈

ku k
Ii

i Uq
k

=∑
∈

. If the resulting solution is feasible, 

the algorithm stops; otherwise, the same process repeats until all constraints are 

satisfied.  

 (3) It has been assumed that orders are only picked from the forward area. In 

reality, it might be beneficial to put only fast-moving SKUs in the forward area. 

In this case, orders will be picked from both the forward area for the fast-

moving SKUs and from the reserve area for the slow-moving SKUs. If the set of 

fast-moving SKUs assigned to the forward area is given, then Equation (4.5) 

can be changed correspondingly to reflect the changes in order picking and 
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internal replenishment. The overall problem structure and solution method will 

remain the same. However, the GBD-based algorithm cannot be applied directly 

when the assignment of SKUs to the forward area needs to be determined by the 

model, since it requires introducing additional integer decision variables to 

represent the assignment and therefore results in a non-convex sub-problem. 

This problem will be discussed in chapter 6. 

(4) The proposed approach can be extended to other types of forward-reserve block 

layouts, as shown in Figure 4.3. Figure 4.3(a) is similar to Figure 4.1 except for 

the orientation of the aisles. In this case, the major modification is to replace 

equation (4.4) with a different model to calculate the batched order picking cost 

for the horizontal aisle structure (for example, see Caron et al. (1998)). The 

block layout shown in Figure 4.3(b) has a U-shaped reserve area and its 

representation requires 4 dimension variables, i.e., l1, w1, l2, w2, with l1 < l2 and 

w1 < w2. The construction cost (i.e., equation (4.1)) and the average put-away 

and internal replenishment cost per trip (i.e., equation (4.2) and (4.3)) need to be 

revised following the same assumptions (e.g., a continuous approximation of the 

storage area and randomized storage).   
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(a) Horizontal aisle structure 

w2 

w1 

(b) U-Shaped reserve area 
 

Figure 4.3 Alternative block layouts of the forward-reserve warehouse 
 



 

4.4 Numerical results 

This section provides numerical evaluation of the proposed GBD-based algorithm. 

The algorithm is first compared with other solution methods to demonstrate its 

performance in terms of computational time. Sensitivity analysis is then performed to 

show how the uncertainty in design parameters affects the optimal solution.  

The GBD-based algorithm is compared with two other solution methods, i.e., 

GAMS/CONOPT (Brooke et al. (1998)) and total enumeration. CONOPT solves Problem 

(P) as a continuous nonlinear problem, and therefore might result in a fractional solution. 

The final solution is obtained by rounding the fractional solution to its nearest integer 

solution. The enumeration method enumerates all the possible combinations of the 

dimension variables, solves the sub-problems for each of them, and finally selects the one 

that has the best objective value. Three problems are tested, which have different number 

of SKUs (8,000, 15,000 and 30,000 respectively) and represent different warehouse sizes. 

Table 4.2 shows the parameter values used to generate the testing problems. The GBD-

based algorithm and CONOPT require the user to provide an initial design solution that 

might affect the computational time. In order to evaluate the effects of the starting point, 

three different starting points (i.e.,  and ) are tested for each problem. Let 

( ) be the optimal solution of any of the three problems solved with the total 

enumeration method,  and  are set as follows:  

21 , InitInit yy

3
Inity

3
Inity

*
2

*
1

* ,, wwl yyy

21 , InitInit yy

)5,5,5( *
2

*
1

*1 +++= wwlInit yyyy  

)15,15,15( *
2

*
1

*2 +++= wwlInit yyyy  

)25,25,25( *
2

*
1

*3 +++= wwlInit yyyy  
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Table 4.2 Parameter values for the numerical example 

 

Af 8  
Ab 20  
As 4  
Ap 4  
Ai Uniform [20, 100]  

1aC  30 

2aC  25 

wC   1000 
Ci Uniform [0.3, 6.5]  
Co  0.0068  
Cp  0.0024  
Cr  0.0028 
Di Uniform [10, 200]  
Np 80 
Vp 64  

βb 5.38 

βf 1.75 
T 10 
r 0.2 
Z 4.191 
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All tests are performed on a Sun 280R server with 2×900MHz UltraSparc-III CPU 

and 2GB RAM. Table 4.3 shows the warehouse size (i.e., l*(w1+w2)), shape ratio (i.e., 

(w1+w2)/l), and the ratio of the forward area and the total warehouse area (i.e., 

w1/(w1+w2)) in the optimal solutions of the three tested problems. As the number of SKUs 

and the corresponding warehouse area increase, the warehouse shape ratio becomes 

smaller (with a diminishing decreasing rate), and the fraction of the warehouse area 

allocated to the forward area increases. It should be noted that these observations are 

based only on the single case investigated in the numerical experiment with all its listed 

assumptions. Table 4.4 shows the computational time for the different algorithms. The 

GBD-based algorithm is very efficient in solving the problem. In all the tested cases, it 

terminates with an optimal solution within 90 seconds. The efficiency of the GBD-based 

algorithm is not affected when the number of SKUs increases as compared with the other 

two algorithms. This is because the number of SKUs only affects the sub-problem, and 

the solution algorithm for the sub-problem is very efficient even when there are a large 

number of SKUs. Furthermore, the results in Table 4.4 also show that the solution time of 

the GBD-based algorithm is not sensitive to the starting points, which is a desirable 

property since the designer can be relieved from the effort to identify a good initial 

solution. Figure 4.4 illustrates the convergence history of the GBD-based algorithm for 

the problem with 15,000 SKUs using three different starting points. Although the initial 

gap is quite different, the number of iterations it takes for the algorithm to converge is 

similar for all three starting points; the behavior is similar for other problem sizes. 

Compared with the GBD-based algorithm, CONOPT can find a fractional solution that is 
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close to the optimum and is efficient when the number of SKUs is small. However, the 

computational time of CONOPT increases dramatically as the problem size increases.  

 

Table 4.3 Layout features of the optimal solutions  
 l *(w1+w2) (ft2) (w1+w2) / l w1/(w1+w2) 

8000 SKUs 63232 0.68 0.15 
15000 SKUs 128960 0.52 0.18 
30000 SKUs 278880 0.4 0.23 

 

 
Table 4.4 Computational time of different algorithms (seconds) 

Number 
of SKUs 

Starting 
Points GBD CONOPT Enumeration 

1
Inity  78.59 40.23 
2
Inity  73.27 47.96 8000 
3
Inity  68.04 57.13 

6358.83 

1
Inity  81.78 246.29 
2
Inity  76.25 1047.28 15000 
3
Inity  81.53 1437.58 

14360.32 

1
Inity  84.93 3614.84 
2
Inity  78.96 4045.73 30000 
3
Inity  84.12 4516.99 

26402.04 
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(c) Iterations with  

 Figure 4.4 Convergence of the GBD-based algorithm with 15,000 SKUs 
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Since many of the parameter values driving design are based on long-term 

forecasting, it is important to investigate how forecasting errors would affect the quality 

of the solutions. A set of parameters that may have a significant impact on the optimal 

solution is selected (i.e., ), and their values are varied to represent 

realizations that are different from the forecasts. Experiments are conducted on the three 

warehouse problems with 8000, 15,000, and 30,000 SKUs respectively. The values of the 

selected parameters are increased one at a time by 10%, 20%, 30%, and 40% relative to 

the forecasted values. By denoting p and p’ as the forecasted and “realized” parameter 

values, x(p) and x(p

piroii NDCCCA ,,,,,

’) as the design based on the forecasted and “realized” values, v(x(p)) 

represents the total cost incurred for the forecasting-based design operated under the 

realized parameter values, and v(x(p’)) represents the optimal cost if the design had 

originally been based on the actual parameters values. The following formula measures 

the opportunity cost (or the cost of imperfect information) due to forecasting errors: 

 %100
))((

))(())((
'

'

×
−

pxv
pxvpxv  (4.22) 

Numerical results summarized in Table 4.5 show that the design solution is quite 

robust with regard to the total warehouse life-cycle cost. In most cases, the loss is less 

than 1% of the cost for the ideal solution, i.e., assuming the realized parameter values 

were known perfectly at the design stage. The results also show that  (external 

replenishment cost) and  (demand rate) have a larger impact on the robustness of the 

solution from the cost perspective than the other parameters.  

iA

iD
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Table 4.5 Cost of imperfect information (%) 
  8000 SKUs 15000 SKUs 30000 SKUs 

10% 0.13 0.08 0.07 
20% 0.39 0.29 0.27 
30% 0.76 0.61 0.58 Ai 

40% 1.23 1.02 0.97 
10% 0.00 0.01 0.01 
20% 0.02 0.05 0.06 
30% 0.06 0.11 0.12 Ci 

40% 0.11 0.18 0.20 
10% 0.01 0.01 0.01 
20% 0.06 0.08 0.08 
30% 0.15 0.19 0.16 Co 

40% 0.26 0.32 0.29 
10% 0.07 0.04 0.05 
20% 0.22 0.17 0.17 
30% 0.42 0.36 0.37 Cr 

40% 0.66 0.60 0.62 
10% 0.16 0.11 0.10 
20% 0.52 0.39 0.38 
30% 1.00 0.83 0.80 Di 

40% 1.58 1.36 1.32 
10% 0.00 0.00 0.00 
20% 0.01 0.02 0.03 
30% 0.03 0.04 0.06 Np 

40% 0.05 0.08 0.11 
 
 

A detailed look at the different cost elements reveals that the robustness is due to 

the fact that the proposed integrated model pools different costs so that tradeoffs among 

them can be balanced to minimize the effect of the change in design parameters on the 

total cost. Table 4.6 shows the change in the optimal warehouse dimensions and the cost 

of imperfect information (as decomposed into construction cost, inventory and external 

replenishment cost, and material handling cost) when the actual value of Ai is increased 

from the forecasted value by 20%, 40% and 200%. The optimal warehouse dimensions 

(yl, yw1, yw2) based on forecasted values are (38, 8, 44). Intuitively, the optimal warehouse 

size will increase as Ai increases in order to provide more storage capacity to reduce the 
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number of external replenishments. Therefore, the forecasting based design, as compared 

to the ideal design, will have a higher inventory and external replenishment cost (due to 

the increase in Ai), but a smaller construction and material handling cost (due to its 

smaller size). This results in a relatively small change in the total cost. However, this 

does not suggest that the warehouse size and dimensions can be determined arbitrarily. 

Although the total cost is robust when the value of design parameters varies in a small 

neighborhood of the forecasted value, the cost of imperfect information is significant 

when the design parameter is inappropriately estimated or the design has been determined 

arbitrarily by some ad-hoc methods (as illustrated in the case with a 200% change in Ai).  

It should also be noted that in our experiments the design parameters are increased 

one at a time for the purpose of sensitivity analysis. Future research might also be 

performed to investigate the joint effects of different parameters on the quality of design 

solutions. 

 
Table 4.6 Dimension change and cost of imperfect information (%) as Ai increases 

Ai y Total 
Cost Construction

Inventory & 
External 

Replenishment

Material 
Handling 

20% (40, 8, 47) 0.39 -8.22 5.48 -2.40 
40% (41, 8, 50) 1.23 -13.7 10.31 -4.32 
200% (49, 8, 64) 13.54 -37.49 44.59 -12.51 

 

 

4.5 Conclusions 

A GBD-based algorithm is proposed to solve the sizing and dimensioning problem 

for the forward-reserve warehouse to minimize the total life-cycle cost. Computational 

results demonstrate that it is very efficient in finding the global optimum, and the solution 
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is quite robust with regards to uncertainty in design parameters. Chapter 6 will develop a 

model as well as a heuristic solution method that includes the decision of assigning SKUs 

to the forward area instead of assuming the assignment is given. This general model 

includes the forward reserve allocation problem as a sub-problem. We will focus first on 

this sub-problem in chapter 5.  
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CHAPTER 5  
 

SOLVING THE FORWARD RESERVE ALLOCATION PROBLEM 

 
 

5.1 Introduction 

The previous chapter assumed that the forward area contains all SKUs so that order 

picking is performed only in the forward area. A major advantage of this arrangement is 

that it simplifies the order picking process by avoiding management complications 

involved in picking orders from different storage areas, such as order splitting and 

combination. However, one might also choose to assign only a subset of SKUs in the 

forward area, mainly for the following two reasons:  

(1) The forward area usually has a limited storage capacity since it is compact in 

size and uses low-density storage equipment for efficient order picking. As 

more SKUs are assigned to the forward area, less space can be allocated to 

each SKU and consequently more frequent internal replenishing must occur. 

(2) The picking activities are not evenly distributed among all SKUs. Some SKUs 

are fast movers for which demands occur on a daily basis; others are slow 

movers that are seldom requested. It is intuitive to leave those slow movers in 

the reserve area to save space for fast movers in the forward area.  

In this case, it is important to carefully determine which SKUs should be assigned 

to the forward area and in what quantity so that the maximum benefit of the forward area 

can be achieved. This chapter discusses the forward reserve allocation problem, which 

determines the SKU assignment and space allocation in the forward area assuming it has 
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a fixed storage capacity. Later, it will become a sub-problem in the generalized 

warehouse sizing and dimensioning problem discussed in Chapter 6.  

Hackman and Rosenblatt (1990) proposed a mathematical model for the forward-

reserve allocation problem. The model has a set of integer variables indicating whether or 

not a SKU is assigned to the forward area and a set of continuous variables indicating 

how much space is allocated for each SKU assigned to the forward area. The objective is 

to maximize the total benefit of the forward area, i.e., the total savings in order picking 

minus the total replenishing cost. The model is similar to the classical knapsack problem 

with the difference that it has a nonlinear objective function that is discontinuous at zero. 

Hackman and Rosenblatt (1990) propose a greedy heuristic to solve the forward-reserve 

allocation problem based on an index that ranks SKUs in terms of their desirability to be 

put in the forward area. 

This chapter provides an alternative algorithm for the forward-reserve allocation 

problem that can find the guaranteed optimal solution. Extensive numerical experiments 

are performed to evaluate how the heuristic solutions compare with the optimal ones in 

terms of both the objective value and the forward assignment using problem instances 

based on real warehouse data. The objectives are two-fold: (1) it provides numerical 

justifications for using Hackman and Rosenblatt’s heuristic in solving the sub-problem in 

the model discussed in Chapter 6; this is important since the accuracy of the sub-problem 

solution will greatly affect the performance of the whole algorithm; (2) it enables us to 

find the optimal solution of the generalized warehouse sizing and dimensioning problem.  
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5.2 The forward-reserve allocation problem 

This section gives a brief introduction to the forward-reserve allocation model and 

the greedy heuristic proposed by Hackman and Rosenblatt (1990). We will illustrate the 

non-optimality of the heuristic through a small example and discuss its effects when the 

heuristic is used in a decomposition scheme to solve the sub-problem. The following 

notation adopted from Hackman and Rosenblatt (1990) will be used throughout this 

section:  

Parameters: 

ei – “savings” per order picking request for SKU i if it is picked in the forward area 

versus in the reserve area 

ci – cost per internal replenishment  

Ri – the number of requests per unit time for SKU i 

Di – the demand per unit time for SKU i converted into units of volume 

N – number of SKUs in the warehouse 

V – the volume of the forward area       

Variables: 

zi – volume in the forward area allocated to SKU i                

xi – binary decision variable determining if SKU i is assigned to the forward area 

The forward-reserve allocation model is then: 
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To simplify notation, let iii Rea =  and iii Dcb = , then: 
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zif

zif
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Problem (P1) is similar to the classical knapsack problem with the additional 

difficulty that fi(zi) is nonlinear and discontinuous at zero. Hackman and Rosenblatt 

(1990) proposed an index (i.e., iii baL /= ) to measure an SKU’s desirability to be 

assigned to the forward area, and based on the index, developed the following simple 

heuristic to solve the problem: 

Step 1: Sort the SKUs so that 

1...,,2,1,1 −=∀≥ + NiLL ii  

Step 2: For each ordered set of items }...,,2,1{ kSk =  where 1 , solve 

problem (P1) by assuming the forward area contains only the items in S

Nk ≤≤

k. 

Note that problem (P1) is easy to solve if the items stored in the forward 

area are known (see discussions in the next section).  

 105



 

Step 3: Select the set from all the ordered set  (kS Nk ≤≤1 ) that has the maximum 

objective value v(Sk).  

Steps 2 and 3 of the above algorithm require checking all N ordered subsets to find 

the one that has the maximum value of v(Sk). A more efficient implementation can be 

developed by exploiting the fact that the function v(Sk) is unimodal for Nk ≤≤1  (see 

Proposition 1 in Hackman and Rosenblatt (1990)), and therefore a bisection search on k 

will quickly find the solution. 

Bartholdi and Hackman (2005) show that the above heuristic will produce a 

solution that is no farther from optimum than the net-benefit of a single SKU. However, 

this gives no predetermined performance bound and the actual optimality gap maybe 

quite big as shown by the following small example. The problem has 3 SKUs to be 

considered for forward storage. The saving per pick is $1 if a SKU is stored in the 

forward area and the cost per internal replenishment is $40. The numbers of picks per 

unit time for the three SKUs (SKU1, SKU2, SKU3) are 86, 644, and 245 respectively, 

and the demand per unit time for the three SKUs (SKU1, SKU2, SKU3) are 122.8, 

10449, and 1513.8 cubic feet respectively. The size of the forward area is 804 cubic feet. 

It can be verified that the heuristic will produce a solution that has an objective value of 

91 with SKU1 and SKU2 in the forward area, and the optimal solution has an objective 

value of 207 with SKU 1 and SKU 3 in the forward area. In this particular case there is a 

56% optimality gap between the heuristic and optimal solutions. It can be expected that 

the optimality gap will become smaller as the number of SKUs increases. Hence the 

heuristic algorithm will provide satisfactory solutions for practically sized problems. 

However, one should be more cautious when the heuristic is employed in a 
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decomposition scheme for solving a sub-problem as the case in Chapter 6. The reason is 

that the master algorithm uses responses of the sub-problems to determine its search 

direction, and this direction is very sensitive to the response values. Even a small change 

(e.g., 1%) in response value can dramatically change the search direction and therefore 

lead to an inappropriate termination of the algorithm or significantly increases the 

computation time.  

  

5.3 An optimal branch-and-bound algorithm based on outer approximation 

In this section we develop an alternative algorithm to find the optimal solution for 

the forward-reserve allocation problem. For a given set of values for the binary variables 

, the forward-reserve allocation problem reduces to determining the space 

allocation in the forward area for those items with 

NBx ∈

1=ix . If we let , the 

sub-problem for a fixed  is: 

}1:{ ==+
ixiX

NBx ∈

  ∑
+∈

−=
Xi i

i
i z

b
axv )(max)(  

   ∑
+∈

≤
Xi

i Vzts ..  

+∈∀≥ Xiz i ,0  

Since v(x) is concave in z, its optimal value can be determined from its Lagrangian 

dual, i.e.,  

  ))()((maxmin)( 00 ∑∑
++ ∈∈

≥≥ −+−=
Xi

i
Xi i

i
izu zVu

z
b

axv  

The Lagrangian dual can be solved analytically, and we obtain: 
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This result can be written equivalently as: 
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Therefore, the original problem P1 becomes: 

   )(max xvNBx∈

which is a binary nonlinear problem. We will develop a branch-and-bound algorithm 

based on outer approximation to solve it (see also Ryoo and Sahinidis (1996)). First, the 

above problem can be restated in the following equivalent form: 

 (PM) ∑
=

−
N

i
ii V

w
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A linear relaxation of this problem can be developed by relaxing the nonlinear 

constraint  as follows. Suppose the variable  has a lower and upper bound: 

 and . In our case, we can take 0 and  as the respective lower and upper 

bound. A linear relaxation of  for  is represented by the following 

set of inequalities: 

2
21 ww =

U
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2
2221 )(2 UU wwww −≥   (5.5) 

2
2221 )(2 LL wwww −≥   (5.6) 

ULUL wwwwwww 2222221 −+≤   (5.7)  

 A relaxation of PM for  can be represented by the following mixed 

integer problem P

],[ 222
UL www ∈

R. Figure 5.1 illustates the linear relaxation of  for 

, where the shaded area is the relaxed region bounded by the three linear 

constraints, i.e., (5.5, 5.6, and 5.7).  
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 Figure 5.1 Illustration of the outer-approximation 

 

The following proposition characterizes the optimal solution of PR, and provides a 

lower and upper bound for PM over [ . ], 22
UL ww

 

Proposition 1. If ( ) is an optimal solution of P'
2
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R over the interval [ , then 

it must satisfy . An upper and lower bound 

of P
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,( ' wxfM over the specified interval is provided by  and  

respectively, where is the objective function of P
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2

'
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R (and PM). 

Proof: Let . If ( ) is an optimal 

solution of P
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R, then  because it must satisfy (5.8.3) and (5.8.4). Suppose , it 

is easy to check that (

cw >'
1

′′ ) is a feasible solution of PR, and 

> ) . Therefore, ( ) cannot be optimal, which is a 

contradiction.  
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Since ( ) is an optimal solution of P'
2

'
1

' ,, wwx R,  provides an upper 

bound for P

),,( '
2

'
1

' wwxf

'
1

' , wx

)(,( '
2

' wx

M because PR relaxes PM. On the other hand, since ( ) is an optimal 

solution of P

'
2, w

, '
2

2 wR, it must satisfy (5.8.2) and (5.8.7). Therefore,  is a feasible 

solution of P

)

M, which provides a lower bound for PM. 

 

Two situations could arise for the optimal solution of PR over any interval 

, i.e.,  or , or . In the first case, the lower and upper 

bounds for P

],[ 22
UL ww

2w

Lww 2
'
2 =

2
Lw

2
2w

,2 wwL

'
2, w

Uw2

]2
U

UL www 2
'
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], 22
Uw′

2
21 ww =

M over [  are equal since the relaxation is tight at the end points of 

the interval. In the second case, the lower and upper bounds for P

, w

]2′

M over [  are not 

equal, and therefore the previous relaxation needs to be further refined to provide a more 

precise approximation for P

], 22
UL ww

, 22
L ww

M. From Proposition 1, ( ) always lies on the boundary 

defined by the two linear functions (i.e., (5.8.3) and (5.8.4)) that underestimate the 

function . A better approximation can be constructed by dividing [  into 

two sub-intervals [  and [ , and developing outer approximations on each 

of the sub-intervals (as illustrated by the shaded area in Figure 5.2, note that the previous 

solution ( ) is already cut off). Based on this idea, a branch-and-bound procedure 

can be developed to solve P

'
2

'
1 , ww

1w =

'
1

' , wx

]U

w

M optimally by recursively dividing the original interval of 

 into smaller sub-intervals to provide more accurate approximations of PM. At any 

iteration of the branch-and-bound procedure, a list of sub-intervals is maintained that 

define the current approximation of PM. The algorithm terminates if the optimality gap is 

sufficiently small; otherwise, one of the sub-intervals is selected and further divided to 

provide a refined approximation of .  
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Figure 5.2 Illustration of the branch-and-bound procedure 

 

Let ( ) be the optimal solution of P*
2

*
1

* ,, wwx M. Denote U  as the 

current set of sub-intervals in the  space that contains  and defines the current 

approximation of P

Ii
i

U
i

L ww
∈

])(,)[( 22

2w *
2w

M. Let UBi and LBi be the local upper and lower bounds for PM over 

subinterval i, and UB and LB be the global upper and lower bounds. We have the 

following relations: 

}|max{),,(}|max{
)()(|

*
2

*
1

*

2
*
22

IiUBUBwwxfIiLB iwwwii
i

U
i

L ∈≤≤≤∈
≤≤

 

The first inequality in the above equation is due to the fact that each LBi 

corresponds to a feasible solution of PM and therefore is less than or equal to the optimal 

solution. The second inequality is because if  for any ])(,)[( 22
*
2 i

U
i

L www ∈ Ii  (in other 

words there exits an i for which this is true), then the optimal solution is less than or 

equal to the relaxed optimal solution of P

∈

M over that sub-interval, i.e., UBi. Therefore, the 

global upper and lower bounds are given by: 

}|max{ IiLBLB i ∈=  and UB }|max{ IiUBi ∈=  
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The branch-and-bound algorithm for solving PM is formally stated as follows. 

Define set I as a list of the sub-intervals in the w  space. Each sub-interval has a relaxed 

optimal solution and the lower and upper bounds (i.e., UB

2

i and LBi) for PM over that sub-

interval. 

Branch-and-Bound Algorithm   
       

1. Initialization: select the convergence tolerance parameter ε > 0; define the initial 

bound  for ; solve P],[ 22
UL ww

], 22
UL ww

2w R over [  to obtain the initial global 

lower and upper bound: and ; define the set I, which initially contains 

only [  with its associated relaxed optimal solution and bounds.  

], 22
UL ww

LB UB

2. Termination test: if ε≤− LBUB , then terminate and the solution that yields the 

current global lower bound (i.e., the best feasible solution) is optimal. 

3. Branch and Bound: remove from I the interval [(  that has the 

maximum upper bound (i.e., the interval that defines the current global upper 

bound); divide [(  into two sub-intervals [(  and 

, solve P

])(,) 22 i
U

i
L ww

)2 i
Lw])(,) 22 i

U
i

L ww ])(, '
2 iw

: iLBi

])(,)[( 2
'
2 i

U
i ww R over the sub-intervals to obtain the relaxed optimal 

solution as well as the lower and upper bound for PM over the corresponding 

sub-intervals, and insert the sub-intervals into I; Update LB = max{ }I∈  

and UB = }: IiUBimax{ ∈ ; delete all intervals that satisfy UB  from I; go 

to Step 2. 

LBi <

In the above algorithm, if the termination criterion is not satisfied, we select an 

interval and further divide it into two smaller intervals in hope of finding better bounds. 

This explains why the interval that has the maximum upper bound among all intervals 
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currently in I is selected as the candidate for branching; it defines the current global upper 

bound (UB = ) and by branching on it we hope to reduce the global 

upper bound. The following proposition shows that the branch-and-bound algorithm will 

converge to the optimal solution in a finite number of iterations. 

}:max{ IiUBi ∈

 

Proposition 2:  The branch-and-bound algorithm will converge to the optimal solution 

after a finite number of branchings on . 2w

Proof: In step 3 of the branch-and-bound algorithm, an interval [  is selected and 

branched into two sub-intervals [ and , where  corresponds to the 

optimal solution of P

], 22
UL ww

'
2w

=w '
2

], '
22 wwL

],[ 22
UL ww

'
2w

],[ 2
'
2

Uww

R for . Therefore, it satisfies  for a 

certain  due to constraint (5.8.2). Since x is a discrete variable, there are only a 

finite number of possible values for , or in other words, the interval can only be 

branched into a finite number of sub-intervals according to the algorithm.  

2w ∈ ∑
=

N

i
iibx

1

2/1

NBx ∈

If a sub-interval [(  cannot be further branched, it means we cannot find 

a relaxed optimal solution that satisfies ( . Therefore, the relaxed 

optimal solution over [(  must satisfy  or ( . Because the 

relaxation is tight at the end points of the intervals, the lower and upper bounds on the 

interval [(  are equal (i.e., UB

])(,) 22 i
U

i
L ww

])(,) 22 i
U

i
L ww

]

i
U

ii
L www )()() 2

'
22 <<

i
L

i ww )()( 2
'
2 = i

Uw )2

)(,) 22 i
U

i
L ww i = LBi).  

So after a finite number of iterations, the algorithm will terminate either because the 

optimality gap is sufficiently small or all sub-intervals cannot be further branched. In the 

latter case, the global upper (UB = max{ }: IiUBi ∈ ) and lower (LB = }:max{ IiLBi ∈ ) 
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bounds must be equal since UBi = LBi for all i. Therefore, the branch-and-bound 

algorithm converges to the optimal solution after a finite number of branching.  

 

5.4 Computational results 

This section provides numerical results that demonstrate the computational 

performance of the proposed algorithm and compare the heuristic and optimal solutions 

using a set of practical examples.  

5.4.1 Test problems 

Test problems used in the numerical experiments are generated based on two basic 

data sets from real warehouses as provided by Bartholdi and Hackman (2005). The first 

data set (S1) is from an office product warehouse and the second (S2) is from a tire 

warehouse. Table 5.1 shows the summary statistics of these two data sets. It can be seen 

that these two data sets represent quite different warehouse scenarios as seen from the 

statistics of Li, i.e, the ranking index measuring a SKU’s desirability to be assigned to the 

forward area used by the heuristics algorithm. This difference is mainly due to the fact 

that the average picking size is much smaller in the office product warehouse (e.g., 

staplers and clips) than that in the tire warehouse (e.g., tires). For each scenario, samples 

are randomly generated with different sizes (i.e., N = 50, 100, 500, 1000, 5000, and 

10000 SKUs) following the same distribution (frequency histogram) of ai and bi in the 

basic data set. The size of the forward area is set at three difference levels (i.e., V1, V2, 

and V3) for each scenario and each sample size so that there are approximately 20%, 

50%, and 80% SKUs assigned to the forward area in the optimal solution. In summary, 

there are totally 36 cases (2×6×3) with different warehouse scenarios, different numbers 
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of SKUs, and/or different sizes of the forward area. For each case, 50 instances are 

randomly generated that gives a total of 1800 testing problems.  

 

Table 5.1 Summary statistics for the two basic data sets 
  Mean Median StDev Minimum Maximum

ai 18.85 14.5 12.88 1.5 55.5 
bi 17.45 10.56 18.43 0.28 90.1 S1 
Li 5.219 4.74 2.517 0.873 11.3 
ai 27.521 15.309 30.49 0.945 186 
bi 927.7 470.4 1238.7 11.2 7661 S2 
Li 0.88145 0.76421 0.41755 0.08929 2.28 

 
 

5.4.2 Computational efficiency of the optimal algorithm 

The proposed algorithm is implemented in C, which calls ILOG\CPLEX to solve 

the relaxed problem PR. All tests are performed on a Sun 280R server with 2×900MHz 

UltraSparc-III CPU and 2GB RAM. Table 5.2 shows the average and range of 

computation time for the different testing cases (each has 50 randomly generated problem 

instances). In general, the algorithm is very efficient and in most cases can converge to 

the optimal solution within 60 seconds. The results in Table 5.2 also suggest that the 

computation time is much shorter for cases with a larger forward area. A detailed look at 

the convergence history of the algorithm shows that for otherwise identical parameters, 

increasing the size of the forward area usually results in a smaller initial optimality gap, 

as illustrated in Figure 5.3.  Figures 5.3(a, b, c) (i.e., the three figures on the left) show 

the convergence history of the optimal algorithm for scenario 1 (S1) with 5000 SKUs, 

and Figures 5.3(d, e, f) (i.e., the three figures on the right) for scenario 2 (S2) with 5000 

SKUs. The two lines in each sub-figure represent the normalized upper and lower bounds 

(i.e., the actual bounds divided by the corresponding optimal value). It can be seen that 
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the algorithm gives a very tight bound after the first iteration for both scenarios when the 

size of the forward area is set at V3. Figure 5.3 also suggests that the algorithm can 

quickly locate a near optimal solution within a few iterations. For example, the relative 

optimality gap is within 0.01% of the optimal value after 5 iterations for all cases shown 

in Figure 5.3. Similar results were found in all other tested cases.  

 

Table 5.2 Computational time of the optimal algorithm (seconds) 
  50 SKUs 100 SKUs 500 SKUs 1K SKUs 5K SKUs 10K SKUs 

V1 
0.14 

(0.05, 0.25) 
0.34 

(0.13, 0.56)
4.40 

(1.99, 7.76)
8.33 

(4.21, 16.54)
64.00 

(25.1, 153.9) 
135.68 

(15.9, 314.1)

V2 
0.07 

(0.03, 0.15) 
0.12 

(0.05, 0.23)
1.08 

(0.56, 2) 
2.03 

(1.17, 3.23)
6.63 

(1.88, 15.1) 
10.3 

(4.04, 37.76) S1 

V3 
0.02 

(0.01, 0.05) 
0.04 

(0.02, 0.07)
0.41 

(0.26, 0.53)
0.95 

(0.7, 1.26) 
1.53 

(0.99, 2.13) 
3.49 

(2.73, 4.79)

V1 
0.09 

(0.05, 0.16) 
0.18 

(0.1, 0.29) 
2.04 

(1.13, 3.35)
3.83 

(2.16, 6.96)
18.50 

(6.57, 56.79) 
31.01 

(6.12, 91.14)

V2 
0.05 

(0.01, 0.11) 
0.10 

(0.05, 0.17)
1.07 

(0.56, 1.67)
1.65 

(0.91, 2.64)
3.84 

(1.43, 7.47) 
4.71 

(3.06, 9.99)S2 

V3 
0.02 

(0.01, 0.04) 
0.03 

(0.01, 0.06)
0.30 

(0.21, 0.46)
0.71 

(0.56, 0.99)
0.98 

(0.72, 1.27) 
2.32 

(1.79, 3.15)
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Note: The vertical axes are scaled differently in order to clearly show the gaps in 
different cases.   

 
Figure 5.3 Convergence of the optimal algorithm with 5000 SKUs 

 

5.4.3 Comparing the optimal and heuristic solutions  

The optimal algorithm not only provides an alternative method to solve the 

forward-reserve problem, but also allows us to evaluate the optimality of the heuristics by 

comparing the heuristic and optimal solutions for practical problems. Table 5.3 shows the 

number of times that the heuristic objective value coincides with the optimum within a 

calculation precision of ± 10-3 for the 50 randomly generated instances of each tested 

case. The results suggest that the heuristic solution can often find the optimal solution 
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(within a precision of ± 10-3). For instances where an optimal solution is not found by the 

heuristic, the actual optimality gap is always very small. Table 5.4 shows the maximum 

relative optimality gap (i.e., the absolute gap divided by the corresponding optimal value) 

for all instances that the heuristics failed to find the optimal solution. It can be seen that 

even for cases with 50 SKUs and a forward area size of V1 (i.e., approximately 10 SKUs 

are assigned to the forward area), the relative optimality gap is very small: less than 

0.313% for the office product warehouse and less than 0.039% for the tire warehouse. 

The relative gap becomes even smaller as the number of SKUs increases. Besides 

comparing the objective value, we also compared the optimal and heuristic solution in 

terms of their forward assignment (i.e., xi). In order to do this, we use the difference index 

DI to measure the similarity of two solutions, which is defined as the ratio of the number 

of SKUs that have different assignment in the optimal and heuristic solutions (i.e., xi not 

equal in the optimal and heuristic solutions) and the total number of SKUs. The smaller 

the index value is, the more similar the two solutions are. Table 5.5 shows the maximum 

DI over the 50 randomly generated instances of each test case. Note that it is possible that 

two solutions have the same objective value but different forward assignments. The 

results suggest that the heuristic solution is very close to the optimal in terms of the 

forward assignment. Even for cases with 10000 SKUs, there are less than 5 SKUs (10000 

× 0.0005) that are different in terms of the optimal and heuristic assignments. In 

summary, although the heuristic may produce a large gap in some small examples, the 

solutions when it is applied to larger practical problems are always very close to the 

optimal in terms of both the objective value and the forward assignment. This 
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demonstrates that the ranking index Li is a very effective measure in selecting the set of 

SKUs to assign to the forward area.  

 

Table 5.3 Number of times (out of 50) that the heuristic solution is optimal 
  50 SKUs 100 SKUs 500 SKUs 1K SKUs 5K SKUs 10K SKUs

V1 44 40 44 40 45 42 
V2 47 49 50 41 43 S1 
V3 50 50 46 47 38 50 
V1 48 47 46 47 49 43 
V2 48 50 50 44 47 43 S2 
V3 49 50 50 44 37 39 

42 

 
 
 

Table 5.4 Maximum relative optimality gap (%) 
  50 SKUs 100 SKUs 500 SKUs 1K SKUs 5K SKUs 10K SKUs

V1 3.13E-01 2.37E-01 5.50E-03 1.10E-03 5.70E-06 3.32E-05 
V2 4.91E-02 1.20E-02 0 9.19E-06 1.84E-06 1.78E-06 S1 
V3 0 0 5.13E-05 4.40E-06 1.11E-06 0 
V1 3.90E-02 5.86E-03 5.39E-04 5.07E-06 7.82E-07 2.81E-04 
V2 7.95E-03 0 0 3.52E-06 5.97E-07 2.53E-05 S2 
V3 3.81E-04 0 0 3.78E-06 7.13E-07 3.68E-06 

 
 
 

Table 5.5 Maximum DI of the optimal and heuristic solutions 
  50 SKUs 100 SKUs 500 SKUs 1K SKUs 5K SKUs 10K SKUs

V1 0.04 0.02 0.004 0.002 0.0002 0.0001 
V2 0.02 0.01 0 0.005 0.0004 0.0002 S1 
V3 0 0.02 0.004 0.001 0.0002 0 
V1 0.04 0.01 0.004 0.002 0.0006 0.0005 
V2 0.02 0 0.002 0.001 0.001 0.0004 S2 
V3 0.04 0 0 0.002 0.0004 0.0004 

 

5.5 Conclusions  

This chapter develops a branch-and-bound algorithm based on outer approximation 

to optimally solve the forward-reserve allocation problem. The outer approximation 

method is different from the piecewise linearization method (SOS2) in that, at each 
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iteration, it can provide a relaxation of the original nonlinear model and therefore a upper 

bound to the optimal solution. This, combined with the lower bound obtained from a 

feasible solution, enables us to use the branch and bound scheme to iteratively find a 

guaranteed optimal solution. Computational results demonstrate that the proposed 

algorithm is effective in solving the problem such that the optimal solution can be found 

in less than 60 seconds for most of the realistically sized problem instances. The heuristic 

solutions based on raking of the SKUs are compared with the optimal solutions in terms 

of both the objective value and the forward assignment using problem instances based on 

real warehouse data. The results suggest that the greedy heuristic solutions for practical 

problems are so close to the optimum that the difference can almost be ignored as 

rounding errors.  

 

 

 

 

 

 

 

 

 

 

 

 

 121



 

CHAPTER 6  

THE SIZING AND DIMENSIONING PROBLEM WITH FORWARD 

RESERVE ALLOCATION 

 
  

6.1 Introduction 

This chapter presents a decision model for the sizing and dimensioning problem 

incorporating the decision of forward reserve allocation. The decisions in the model 

include: (1) the warehouse size and dimension; (2) the space allocation between the 

forward and reserve area; (3) the SKU assignment to the forward area and in what 

quantity; and (4) the space allocation in the reserve area. The objective is to minimize the 

total cost of equipment, inventory, and material handling for order picking, internal 

replenishment, and put-away.  

A simplified version of this problem was discussed in Chapter 4, where the forward 

area is assumed to hold all SKUs so that order picking is performed only in the forward 

area. This restriction enables the problem to be solved optimally with a Generalized 

Benders Decomposition method. The general problem has the additional decision of 

whether to assign an SKU to the forward area or not. This warehouse assignment 

problem (without sizing decision) is shown by Hackman and Rosenblatt (1990) to be NP-

complete. In this chapter we propose a two-level hierarchical heuristic algorithm to solve 

the general problem in which the assignment of SKUs to the forward area together with 

the warehouse sizing and dimensioning are decision variables.  

The remaining sections of this chapter are organized as follows: Section 6.2 

develops an integrated mathematical model for the generalized forward reserve sizing 
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and dimensioning problem; Section 6.3 presents an efficient hierarchical heuristic 

algorithm to solve the problem; Section 6.4 gives numerical results with regards to the 

performance of the proposed heuristic algorithm; and Section 6.5 summarizes the results 

and conclusions.   

 
6.2 Mathematical models 

We follow the discussion in section 4.2, but relax the assumption that all SKUs are 

included in the forward area. It is assumed that if an SKU is assigned to the forward area, 

all customer requests for that SKU are fulfilled from the forward area. Otherwise, the 

SKU is assigned only to the reserve area and customer requests are fulfilled from the 

reserve area. Many of the notations are adopted from section 4.2, and therefore will not 

be repeated here. The following additional notations will be used in the generalized 

model. 

Parameters: 

Co1 – order picking cost per unit of travel distance for order picking in the forward area 

Co2 – order picking cost per unit of travel distance for order picking in the reserve area 

Nf  – average number of picks per order picking tour in the forward area 

Nb  – average number of picks per order picking tour in the reserve area 

Ri  – annual number of picks for SKU i  

W  – width of the cross aisle in the middle of the forward area (see Figure 6.1) 

Variables: 

xi  – binary decision variable determining if SKU i is assigned to the forward area 
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The total life-cycle cost of the warehouse is the sum of the construction cost for 

space and equipment and the net present value of the discounted operational cost for 

order picking, internal replenishment, put-away, inventory holding, and external 

replenishment. The cost models are discussed in the following paragraphs.  

(1) Construction cost 

The warehouse layout shown in Figure 6.1 is slightly different from that in Figure 

4.1 in that there is a wide cross aisle in the middle of the forward area. It is used to allow 

material flow from the reserve area to the shipping dock for orders picked in the reserve 

area.   
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Figure 6.1 A block layout of the forward-reserve warehouse 
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Warehouse construction cost is modeled as a function of the warehouse area and 

perimeter. The warehouse dimensions are given by: 

 pwswfl AywAywWAyl 2211 ;; ==+=  

Warehouse construction cost is then modeled following White and Francis (1971) 

and Bassan et al. (1980) as: 

 )(2 212211 wwlClwClwCC waaConst ++++=  (6.1) 

 (2) Material handling cost 

The material handling cost in the warehouse includes the cost of put-away, internal 

replenishment, and order picking.  

Cost of put-away 

The cost of put-away is the same as discussed in Section 4.2, which is 

 ∑+=
i p

i
pPutAway V

DwlCC ))(
2

( 2  (6.2) 

where the first two factors represent the average cost per put-away trip and the last factor 

represents the total number of put-away trips per year.  

Cost of internal replenishment 

The cost of internal replenishment is derived following the same method as 

discussed in Section 4.2. However, the representation for the average interval 

replenishment cost per trip (Equation (6.3)) is different to account for the cross aisles in 

the middle of the forward area.  

)
)(24

316( 21

233

ww
Wll

WlWlCc rr ++
−

−−
=  (6.3) 

If we let W = 0, it can be seen that the above formula is equivalent to Equation 

(4.3). The total annual internal replenishment cost can then be calculated as: 
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DxcC  (6.4)  

Note that the last term represents the annual number of internal replenishments for all 

SKUs assigned to the forward area as indicated by the assignment variables xi.  

Cost of order picking 

Orders are batch picked using the traversal routing policy from the forward area for 

SKUs assigned to the forward area, and from the reserve area for SKUs not assigned to 

the forward area. If an order consists of SKUs to be picked from both areas, the picked 

items need to be consolidated before the order can be shipped to the customer. The 

consolidation cost is not captured in this model since it is independent of the sizes and 

dimensions of the forward and reserve areas. The average cost per batch picking in the 

forward area is modeled similarly to Equation (4.4) with the additional factor 2W to 

account for the effects of the cross aisle in the middle of the forward area:  
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The annual cost for order picking in the forward area is then: 
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The average cost per batch picking in the reserve area is estimated by: 
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The factor 2w1 represents the distance for crossing the forward area in order to pick 

SKUs in the reserve area. The annual cost for order picking in the reserve area is given 

by: 
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The above models are based on the layout shown in Figure 6.1 with randomized 

storage and traversal routing policy. Other layout structures can be used as well, for 

example, the aisles can be oriented horizontally as shown in Figure 4.3. Other storage and 

routing policies can be employed as well, for example, dedicated storage and/or return 

routing policy. Travel cost models for these variations are discussed in Caron et al. 

(1998).  

(3) Inventory holding and external replenishment cost 

An external replenishment for a SKU is performed when its total inventory in the 

warehouse drops to a constant safety stock level Si that is given based on the 

replenishment lead time and product demand. The total annual inventory holding and 

external replenishment cost is represented by (6.7) following the standard EOQ model: 

))
2

((∑ ++=
i

i
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i
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i
iInvt SqC

q
DAC  (6.7) 

(4) The mathematical model 

The problem can be described as follows: Determine the dimensions of the 

warehouse, the assignment of SKUs to the forward area, and the space allocation in both 

the forward and reserve areas, to minimize the total warehouse life-cycle cost including 
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the construction cost and the net present value of the discounted operational cost, subject 

to the storage capacity constraints in both the forward and reserve areas. The optimization 

model can be stated as: 

 (P) min C ZCCCCC InvtPickRPickFInRplPutAwayConstruct ×+++++ )(  (6.8.1) 

 s.t. )S ≤+∑  (6.8.2) 2( lwq bi
i

i β
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ii

   q ],1[,0, Nizii ∈∀≥  (6.8.4) 

   x ],1[},1,0{ Nii ∈∀∈  (6.8.5) 

  ,, yyy  (6.8.6) 3
21 +∈ Zwwl

Constraints (6.8.2) and (6.8.3) are the storage space constraints in the reserve and 

forward area respectively. Section 4.2 gave a detailed discussion of these constraints. The 

quadratic term in (6.8.3) ensures that the storage space requirement is calculated only for 

SKUs that are assigned to the forward area (i.e., xi = 1). Additional constraints can be 

added to the above model, for example, constraints on the dimension variables due to 

construction site limits and/or warehouse shape ratio limits, and constraints on the space 

allocation variables representing lower and upper bounds for the space allocation of a 

single SKU and/or a group of SKUs. The same algorithm can be applied with slight 

modifications as discussed in the next section. The model incorporates the binary 

assignment variables xi to indicate whether or not a product is assigned to the forward 

area. The number of binary and continuous variables is each roughly proportional to the 

number of SKUs. For realistic problem instances this implies that the number of variables 

will equal the tens of thousands.  
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6.3 Solution method 

Problem (P) can be transformed to the following equivalent form: 

 (P’) min )()()( 321 yfyfyf −+  (6.9.1) 
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and )(2 yf , )(3 yf  are the solutions to the following sub-problems: 
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 Note that P2 is similar to the forward reserve allocation model discussed in 

Chapter 5, with the difference that the savings per request (i.e., e) if an SKU is stored in 

the forward area and the cost per internal replenishment (i.e., c) are no longer constants, 

but are functions of the dimension variables represented as follows: 
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The above transformation decomposes the original large mixed-integer nonlinear 

problem into a master problem and two sub-problems. The master problem (P’) is a small 

problem consisting of only three integer variables. Sub-problem (P1) is the constrained 

EOQ model, which is convex and can be solved very efficiently as shown in Section 

4.3.2. Sub-problem (P2) is the forward-reserve allocation problem discussed by Hackman 

and Rosenblatt (1990) for any fixed y . It determines for a given size of the forward area 

the set of SKUs to be assigned to the forward area and in what quantity so that the total 

benefit of such an assignment is maximized. Chapter 5 shows that the heuristic proposed 

by Hackman and Rosenblatt (1990) produce solutions that are very close to the optimal in 

practical cases. Therefore, we use the heuristic presented in Section 5.2 to solve problem 

(P2). 
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Solving the master problem 

Problem (P’) is the master problem, which determines an optimal y  to minimize 

the total life-cycle cost. Its objective function cannot be analytically represented due to 

the fact that )(2 yf  and )(3 yf  are solutions of two other optimization problems, i.e., (P1) 

and (P2). This section presents a pattern search based heuristic to solve the master 

problem, which does not require the estimation of the gradient but rather uses only the 

function values.  

Several pattern search methods have been proposed in the past for deterministic 

function optimization (Torczon (1997)). The method used in this section is the Nelder-

Mead simplex method, which is one of the most popular pattern search methods (Nelder 

and Mead (1965)). The original Nelder-Mead method is proposed for a continuous 

optimization problem, so problem (P’) is first treated as a continuous problem, and the 

result will be rounded to its nearest integer solutions when the algorithm terminates. The 

algorithm is stated as follows (see Barton and Ivey (1996) for more details as well as 

some improvements to the original algorithm): 

Step 1: Initialization. Choose 4 affinely independent points to form an initial 3-

dimensional simplex. Evaluate the objective function )( iyF  (by solving the 

sub-problem) at each point iy  for i = 1, 2, …, 4. 

Step 2: Stopping criterion. Iterations continue until the standard deviation of the 4 

function values at the extreme points of the simplex falls below a particular 

value, or the size of the simplex becomes sufficiently small, or the 

maximum number of function evaluation is reached. 
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Step 3: Reflect worst point. At the start of each iteration, identify the vertices where 

the highest, second highest, and lowest function values occur. Let highy , 

hysec , and lowy  denote these points respectively, and let , , and 

 represent the corresponding function values. Find 

highF hFsec

lowF centy , the centroid of 

all vertices other than highy . Generate a new vertex refly  by reflecting highy  

through centy . Reflection is computed according to the following equation, 

where α  is the reflecting coefficient ( 0>α ): 

 highcentrefl yyy αα −+= )1(  

Step 4a: Accept reflection. If hrefllow FFF sec≤≤ , then refly  replaces highy  in the 

simplex, and go to step 2. 

Step 4b: Attempt expansion. If lowrefl FF < , then the reflection is expanded in the 

hope that more improvement will result by expanding the search in the same 

direction. The expansion point is calculated using the following equation, 

where the expansion coefficient is γ ( 1>γ ). 

 reflcent yyy γγ +−= )1(exp  

If , then reflFF <exp expy  replaces highy  in the simplex; otherwise, the 

expansion is rejected and refly  replaces highy . Go to step 2. 

Step 4c: Attempt contraction. If , then the simplex contracts. If 

, then 

hrefl FF sec>

highrefl FF ≤ refly  replaces highy  and  replaces  before 

attempting contraction or shrinking. The contraction vertex is calculated by 

the following equation, where the contraction coefficient is 

reflF highF

β ( 10 << β ). 
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 highcentcont yyy ββ +−= )1(  

If , then the contraction is accepted and go to step 2. highcont FF <

Step 4c’: Shrink. If , then the contraction has failed, and the entire 

simplex shrinks by a factor of 

highcont FF >

δ ( 0 1<< δ ), retaining only lowy . This is 

done by replacing each extreme point iy  (except lowy ) by: 

 ilowi yyy δδ +−= )1(  

The algorithm then evaluates the function value at each vertex (except lowy ) 

and goes to step 2. 

Step 5: Termination. Round up the resulted solution to its nearest integer solution.  

The above algorithm is for unconstrained optimization. It can be extended to solve 

problems that have bound and linear constraints (for details see Lewis and Torczon 

(1999, 2000)). These constraints may represent layout feasibility constraints such as 

construction site limits and warehouse shape ratio limits.  

 

6.4 Numerical results 

Three basic problems are tested that each has a different number of SKUs (i.e, 8000 

SKUs, 15000 SKUs, and 30000 SKUs respectively). The optimal solutions of these 

problems are obtained using a naïve enumeration method that enumerates all the possible 

combinations of the dimension variables and finds the one that has the minimum 

objective value. In order to ensure the optimality of the enumeration method, sub-

problem (P2) is solved using the optimal algorithm proposed in Chapter 5 instead of the 

heuristic algorithm. It should be noted that the enumeration method is very inefficient 
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(usually takes hours and in some cases days), but it can provide the optimal solution. Two 

scenarios are considered: (1) all SKUs are included in the forward area; (2) a subset of 

the SKUs is assigned to the forward area. Table 6.1 shows the total cost, the warehouse 

size (i.e., l*(w1+w2)), shape ratio (i.e., (w1+w2)/l), and the ratio of the forward area and 

the total warehouse area (i.e., w1/(w1+w2)) in the optimal solutions of the three tested 

problems under both scenarios. It can be seen that by allowing the additional flexibility of 

assigning SKUs to the forward area based on their flow activities, it is possible to reduce 

the total life-cycle cost with a smaller warehouse and a smaller forward area. However, 

this cost savings needs to be balanced against the additional complexity introduced by 

picking orders from two different areas, e.g., splitting and assembling an order picked 

from different areas. In general, scenario 2 is more attractive in the following situations: 

(1) the construction cost of the forward area is high; (2) the internal replenishing cost is 

high; (3) the picking activities for the SKUs are highly skewed. This is illustrated in 

Table 6.2, in which the construction cost per unit of the forward area (C ) and the 

internal replenishment cost per unit of travel distance (C

1a

r) are increased by a factor of 1, 5 

and 10 from their base level (i.e., C  = $30/ft1a
2 and Cr = $0.0028/ft), and the number of 

picks for SKUs (Ri) are skewed at three different level, i.e., 50/50, 30/70, and 15/85 (x/y 

represents x% of SKUs account for y% of picking requests). Table 6.2 shows that the cost 

saving of scenario 2 as compared to scenario 1 increases as C  and C1a r increase, and/or 

when the picking activities become more skewed.  
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Table 6.1 Layout features of the optimal solution 
  Cost l*(w1 +w2) (ft2) (w1+ w2)/l w1/( w1+ w2)

8000 SKUs 12833149 68672 0.78 0.16 
15000 SKUs 26545355 129504 0.62 0.18 Scenario 1 
30000 SKUs 59480913 253344 0.48 0.23 
8000 SKUs 11758377 57344 1.14 0.06 
15000 SKUs 24442367 104960 1.03 0.09 Scenario 2 
30000 SKUs 55195459 205568 0.60 0.10 

 
 

Table 6.2 Cost savings of scenario 2 over scenario 1 
  8000 SKUs 15000 SKUs 30000 SKUs 

× 1 8.37% 7.92% 7.20% 
× 5 13.04% 19.56% 9.87% Ca1 
× 10 16.68% 20.92% 12.86% 
× 1 8.37% 7.92% 7.20% 
× 5 27.08% 28.72% 29.35% Cr 
× 10 37.59% 40.30% 41.85% 

50/50 8.37% 7.92% 7.20% 
30/70 11.65% 12.86% 12.93% Skewness 

of Ri 15/85 17.25% 21.26% 24.70% 
 

 

The proposed heuristic algorithm is implemented in C and run on a Sun 280R 

server with 2×900MHz UltraSparc-III CPU and 2GB RAM. The coefficient values of the 

Nelder-Mead method for reflection, expansion, contraction, and shrinking are set as: 

1=α , 2=γ , 5.0=β , and 5.0=δ , as suggested in Nelder and Mead (1965). The three 

problems with 8000, 15000, and 30000 SKUs are solved, and for each of them the 

algorithm is run 30 times with different randomly generated starting points. A solution is 

called near optimal if each of its dimension variables differs from the optimum by at most 

1 (i.e., ), or locally optimal otherwise. Table 6.3 shows the 

performance of the proposed algorithm, where the upper part shows the average and 

1|≤opt
iy|),, 21 iwwl ymax ∈i { −heu
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maximum computational time for the three problems with different starting simplex and 

the lower part shows the number of times that the algorithm reaches a near-optimal or 

locally optimal solution and the corresponding maximum optimality gap. The results 

show that the algorithm is very efficient and converges quickly in all tested cases. The 

algorithm can also find a near-optimal solution for most of the randomly generated 

starting points. There are a few cases in problems with 15000 and 30000 SKUs in which 

the algorithm ends up with a local optimal solution, but the corresponding optimality 

gaps are not significant (i.e., within 1.43% for the problem with 15000 SKUs and within 

3.56% for the problem with 30000 SKUs).  

 

Table 6.3 Performance of the heuristic algorithm 
  8000 SKUs 15000 SKUs 30000 SKUs

Average 24.45 52.62 128.12 Computational 
Time (s) Max 44.56 78.62 189.73 

Near Opt Solutions 30(30) 22(30) 27(30) 
Max Gap 0.146% 0.002% 0.001% 
Local Opt Solutions 0(30) 8(30) 3(30) Optimality 

Max Gap - 1.43% 3.56% 
 

 

The robustness of the design solution with regards to possible long-term-forecasting 

errors in design parameters is also investigated. The result is similar to what is reported in 

chapter 4 for the problem where all SKUs are assigned to the forward area, and therefore 

are not reported here in detail. Mostly, the penalty cost due to inexact information at the 

design stage is within 1% of the optimal cost when the design parameters subject to a 

forecasting error up to 40%. 
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6.5 Conclusions  

This chapter discusses the general sizing and dimensioning problem in a forward-

reserve warehouse that determines the warehouse size and dimensions as well as the 

forward-reserve allocation to minimize the total warehouse life-cycle cost. The problem 

is formulated as a mixed integer nonlinear programming model, which is very large for 

realistic cases. The model is solved with a heuristic algorithm based on the 

decomposition strategy. Numerical results shows that the heuristic approach is very 

efficient and can effectively find near-optimal solutions for the cases investigated. It is 

also shown that cost savings can be achieved by allowing the assignment of SKUs to the 

forward area based on their flow activities. However, this needs to be balanced against 

the additional planning and consolidation costs due to picking orders from different 

storage areas in order to determine the best forward assignment strategy. 
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CHAPTER 7 
 

CONCLUSIONS AND FUTURE RESEARCH 
 
 

Warehousing is ubiquitous in logistics and supply chain. A comprehensive literature 

survey is conducted on warehouse design and operation problems. The results show that 

previous research had been focused on warehouse operation planning problems, while 

warehouse design received less attention in the academic research field. However, 

warehouse design is very important since it provides the framework for on warehouse 

operations and consequently determines the long-term warehouse life cycle cost. 

This research develops an optimization-based approach to designing a forward-

reserve warehouse with the objective to minimize its total warehouse life-cycle cost 

including construction cost, inventory holding and replenishment cost, and material 

handling cost. The problem is complex due to the various tradeoffs among the different 

cost elements and the large number of decision variables. A large mixed integer nonlinear 

optimization model is developed. The solution algorithm uses a decomposition strategy 

that divides the problem into several smaller problems that are easier to solve and can be 

coordinated to find the solution of the original problem.  

Two decomposition methods are explored: the first is the Generalized Benders 

Decomposition method, which applies to the special case where all SKUs are assigned to 

the forward area; the second is a pattern search based method, which applies to the 

general case that allows the assignment of SKUs to the forward area based on their flow 

activities. Numerical results demonstrates that the problems can be efficiently solved with 

the proposed methods, and the resulting optimal (or near optimal) solutions are robust 
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with regards to possible forecasting errors in design parameters that are unavoidable in 

any design problem.  

As far as we know, this research is the first that provides mathematical models and 

solution algorithms for comprehensive warehouse design. Future research in warehouse 

design can be pursued in the following directions: (1) Develop analytic and/or simulation 

models for cost, capacity, and throughput with different warehouse layouts and 

operational scenarios. These models should provide accurate performance evaluations for 

different design alternatives and are fundamental to any warehouse design project. 

Current research in this direction has been mainly focused on order picking cost models 

for AS/RS. This greatly limits our ability in modeling and solving integrated warehouse 

design problems, as well as in warehouse performance evaluation. Extending the research 

to other performance measures (e.g., throughput) for different warehousing systems (e.g., 

sortation system) is required to improve the practice of warehouse design. (2) This 

research has been focused on a single but common warehouse type, i.e., the forward-

reserve warehouse. Future research should extend the models and solution methods to 

more general warehouses that have multiple departments and more complex material 

flows. This depends not only on our capability in providing accurate performance 

evaluation models as discussed in (1), but also on our capability in integrating these 

models into a design model which can be efficiently solved to provide a satisfactory 

solution. The proposed decomposition strategy, especially the pattern search based 

method, appears a promising approach since it allows combining different sub-models 

into an integrated design model and solving them in a systematical way to find an optimal 

or near-optimal solution. (3) Evaluate the robustness of design decisions with regards to 
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specific operational policies, which has important implications on model development 

and solution method. For example, if the design is robust with regards to operational 

policies, the design model needs not to represent full operational details, which usually 

can be much simplified and easier to solve. It is also important since in the early design 

stage there is a great uncertainty about how the warehouse is going to be operated. If the 

design is not robust, an optimal design made based on forecasted operational policies 

might turn out to be a bad solution when the warehouse is actually in operation. 

Numerical results in this research show that the sizing and dimensioning decision is quite 

robust with regards to operational policies from the perspective of the total warehouse 

life cycle cost. This is probable due to the fact that the life cost model includes different 

cost factors (e.g., construction, inventory, and material handling), which respond 

differently to any specific change in operational polices and therefore counteracts with 

each other so that the total life cycle cost is less affected. Future research needs to be 

conducted to investigate whether this is true for general warehouse design problems.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 140



 

REFERENCES 
 

 
 
Armstrong, R. D., Cook, W. D. and Saipe, A. L. (1979). Optimal batching in a semi-

automated order picking system. Journal of the Operational Research Society, 30(8): 
711-720. 

 
Ascheuer, N., Grotschel, M. and Abdel-Hamid, A. A.-A. (1999). Order picking in an 

automatic warehouse: solving online asymmetric TSPs. Mathematical Methods of 
Operations Research, 49(3): 501-515. 

 
Ashayeri, J., Gelders, L. and Wassenhove, L. V. (1985). A microcomputer-based 

optimization model for the design of automated warehouses. International Journal of 
Production Research, 23(4): 825-839. 

 
Ashayeri, J. and Gelders, L. F. (1985). Warehouse design optimization. European Journal 

of Operational Research, 21: 285-294. 
 
Ashayeri, J., Heuts, R. M., Valkenburg, M. W. T., Veraart, H. C. and Wilhelm, M. R. 

(2002). A geometrical approach to computing expected cycle times for zone-based 
storage layouts in AS/RS. International Journal of Production Research, 40(17): 
4467-4483. 

 
Azadivar, F. (1986). Maximizing of the throughput of a computerized automated 

warehousing system under system constraints. International Journal of Production 
Research, 24(3): 551-566. 

 
Azadivar, F. (1989). Optimum allocation of resources between the random access and 

rack storage spaces in an automated warehousing system. International Journal of 
Production Research, 27(1): 119-131. 

 
Bachers, R., Dangelmaier, W. and Warnecke, H. J. (1988). Selection and use of order-

picking strategies in a high-bay warehouse. Material Flow, 5: 233-245. 
 
Bartholdi, J. J. and Eisenstein, D. D. (1996). Bucket Brigades: a self-balancing order-

picking system for a warehouse, Working Paper. School of Industrial and Systems 
Engineering, Georgia Institute of Technology. 

 
Bartholdi, J. J. and Gue, K. R. (2000). Reducing labor costs in an LTL crossdocking 

terminal. Operations Research, 48(6): 823-832. 
 
Bartholdi, J. J. and Hackman, S. T. (2005). Warehouse & Distribution Science. 

http://www.warehouse-science.com. 
 

 141

http://www.warehouse-science.com/


 

Bartholdi, J. J. and Platzman, L. K. (1986). Retrieval strategies for a carousel conveyor. 
IIE Transactions, 18(2): 166-173. 

 
Bartholdi, J. J. and Platzman, L. K. (1988). Design of efficient bin-numbering schemes 

for warehouses. Material Flow, 4: 247-254. 
 
Barton, R. R. and Ivey, J. S. (1996). Nelder-Mead simplex modifications for simulation 

optimization. Management Science, 42(7): 954-973. 
 
Bassan, Y., Roll, Y. and Rosenblatt, M. J. (1980). Internal layout design of a warehouse. 

AIIE Transactions, 12(4): 317-322. 
 
Bengu, G. (1995). An optimal storage assignment for automated rotating carousels. IIE 

Transactions, 27: 105-107. 
 
Berry, J. R. (1968). Elements of warehouse layout. International Journal of Production 

Research, 7(2): 105-121. 
 
Bhaskaran, K. and Malmborg, C. J. (1989). Modelling the service process in a multi-

address warehousing system. Applied Mathematical Modelling, 13(7): 386-396. 
 
Bozer, Y. A. (1985). Optimizing throughput performance in designing order picking 

systems. PhD thesis. Department of Industrial and Systems Engineering. Atlanta, 
Georgia, Georgia Institute of Technology. 

 
Bozer, Y. A., Quiroz, M. A. and Sharp, G. P. (1988). An evaluation of alternative control 

strategies and design issues for automated order accumulation and sortation systems. 
Material Flow, 4: 265-282. 

 
Bozer, Y. A., Schorn, E. C. and Sharp, G. P. (1990). Geometric approaches to solve the 

Chebyshev traveling salesman problem. IIE Transactions, 22(3): 238-254. 
 
Bozer, Y. A. and Sharp, G. P. (1985). An empirical evaluation of a general purpose 

automated order accumulation and sortation system used in batch picking. Material 
Flow, 2(2): 111-131. 

 
Bozer, Y. A. and White, J. A. (1984). Travel-time models for automated storage/retrieval 

systems. IIE Transactions, 16(4): 329-338. 
 
Bozer, Y. A. and White, J. A. (1990). Design and performance models for end-of-aisle 

order picking systems. Management Science, 36(7): 852-866. 
 
Bozer, Y. A. and White, J. A. (1996). A generalized design and performance analysis 

models for end-of-aisle order-picking systems. IIE Transactions, 28: 271-280. 
 

 142



 

Brooke, A., Kendrick, D., Meeraus, A., Ramesh, R. and Rosenthal, R. E. (1998). GAMS: 
a user's guide. GAMS Development Corporation. 

 
Brynzer, H. and Johansson, M. I. (1995). Design and performance of kitting and order 

picking systems. International Journal of Production Economics, 41: 115-125. 
 
Brynzer, H. and Johansson, M. I. (1996). Storage location assignment: using the product 

structure to reduce order picking times. International Journal of Production 
Economics, 46-47: 595-603. 

 
Burkard, R. E., Fruhwirth, B. and Rote, G. (1995). Vehicle routing in an automated 

warehouse: analysis and optimization. Annals of Operations Research, 57: 29-44. 
 
Caron, F., Marchet, G. and Perego, A. (1998). Routing policies and COI-based storage 

policies in picker-to-part systems. International Journal of Production Research, 
36(3): 713-732. 

 
Caron, F., Marchet, G. and Perego, A. (2000). Optimal layout in low-level picker-to-part 

systems. International Journal of Production Research, 38(1): 101-117. 
 
Chang, D.-T. and Wen, U.-P. (1997). The impact of rack configuration on the speed 

profile of the storage and retrieval machine. IIE Transactions, 29: 525-531. 
 
Chang, D.-T., Wen, U.-P. and Lin, J. T. (1995). The impact of acceleration/deceleration 

on travel-time models for automated storage/retrieval systems. IIE Transactions, 27: 
108-111. 

 
Chang, S.-H. and Egbelu, P. J. (1997). Relative pre-positioning of storage/retrieval 

machines in automated storage/retrieval systems to minimize maximum system 
response time. IIE Transactions, 29: 303-312. 

 
Chew, E. P. and Tang, L. C. (1999). Travel time analysis for general item location 

assignment in a rectangular warehouse. European Journal of Operational Research, 
112: 582-597. 

 
Chow, W.-M. (1986). An analysis of automated storage and retrieval systems in 

manufacturing assembly lines. IIE Transactions, 18(2): 204-214. 
 
Christofides, N. and Colloff, I. (1972). The rearrangement of items in a warehouse. 

Operations Research, 21: 577-589. 
 
Cormier, G., Ed. (1987). On the scheduling of order-picking operations in single-aisle 

automated storage and retrieval systems. Modern Production Management Systems, 
Elsevier Science Publishers B.V. 

 

 143



 

Cormier, G. and Gunn, E. A. (1996). On coordinating warehouse sizing, leasing and 
inventory policy. IIE Transactions, 28: 149-154. 

 
Cormier, G. and Kersey, D. F. (1995). Conceptual design of a warehouse for just-in-time 

operations in a bakery. Computers and Industrial Engineering, 29(1-4): 361-365. 
 
Cox, B. (1986). Determining economic levels of automation by using a hierarchy of 

productivity ratios techniques. Proceedings of 7th International Conference on 
Automation in Warehousing. 

 
Daniels, R. L., Rummel, J. L. and Schantz, R. (1998). A model for warehouse order 

picking. European Journal of Operational Research, 105: 1-17. 
 
de Koster, M. B. M., van der Poort, E. S. and Wolters, M. (1999). Efficient orderbatching 

methods in warehouse. International Journal of Production Research, 37(7): 1479-
1504. 

 
de Koster, R. (1994). Performance approximation of pick-to-belt orderpicking systems. 

European Journal of Operational Research, 72(3): 558-573. 
 
de Koster, R. and van der Poort, E. S. (1998). Routing orderpickers in a warehouse: a 

comparison between optimal and heuristic solutions. IIE Transactions, 30: 469-480. 
 
Eben-Chaime, M. (1992). Operations sequencing in automated warehousing systems. 

International Journal of Production Research, 30(10): 2401-2409. 
 
Egbelu, P. J. (1991). Framework for dynamic positioning of storage/retrieval machines in 

an automated storage/retrieval system. International Journal of Production Research, 
29(1): 17-37. 

 
Egbelu, P. J. and Wu, C.-T. (1993). A comparison of dwell point rules in an automated 

storage/retrieval system. International Journal of Production Research, 31(11): 2515-
2530. 

 
Elsayed, E. A. (1981). Algorithms for optimal material handling in automatic 

warehousing systems. International Journal of Production Research, 19(5): 525-535. 
 
Elsayed, E. A. and Lee, M.-K. (1996). Order processing in automated storage/retrieval 

systems with due dates. IIE Transactions, 28(7): 567-577. 
 
Elsayed, E. A., Lee, M.-K., Kim, S. and Scherer, E. (1993). Sequencing and batching 

procedures for minimizing earliness and tardiness penalty of order retrievals. 
International Journal of Production Research, 31(3): 727-738. 

 

 144



 

Elsayed, E. A. and Stern, R. G. (1983). Computerized algorithms for order processing in 
automated warehousing systems. International Journal of Production Research, 21(4): 
579-586. 

 
Elsayed, E. A. and Unal, O. I. (1989). Order batching algorithms and travel-time 

estimation for automated storage/retrieval systems. International Journal of 
Production Research, 27(7): 1097-1114. 

 
Eynan, A. and Rosenblatt, M. J. (1993). An interleaving policy in automated 

storage/retrieval systems. International Journal of Production Research, 31(1): 1-18. 
 
Eynan, A. and Rosenblatt, M. J. (1994). Establishing zones in single-command class-

based rectangular AS/RS. IIE Transactions, 26(1): 38-46. 
 
Foley, R. and Frazelle, E. H. (1991). Analytical results for miniload throughput and the 

distribution of dual command travel time. IIE Transactions, 23(3): 273-281. 
 
Foley, R., Frazelle, E. H. and Park, B. C. (2002). Throughput bounds for miniload 

automated storage/retrieval systems. IIE Transactions, 34(10): 915-920. 
 
Francis, R. L. (1967). On some problems of rectangular warehouse design and layout. 

The Journal of Industrial Engineering, 18: 595-604. 
 
Frazelle, E. H. (2001). World class warehousing and material handling. McGraw-Hill. 
 
Frazelle, E. H., Hackman, S. T., Passy, U. and Platzman, L. K., Eds. (1994). The 

forward-reserve problem. Optimization in Industry 2. New York, John Wiley & Sons 
Ltd. 

 
Gademann, A. J. R. M. N., van den Berg, J. P. and van der Hoff, H. H. (2001). An order 

batching algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 
33: 385-398. 

 
Gallego, G., Queyranne, M. and Simchi-Levi, D. (1996). Single resource multi-item 

inventory systems. Operations Research, 44(4): 580-595. 
 
Geofferion, A. M. (1972). Generalized benders decomposition. Journal of Optimization 

Theory and Applications, 10(4): 237-260. 
 
Ghosh, J. B. and Wells, C. E. (1992). Optimal retrieval strategies for carousel conveyors. 

Mathematical Computer Modelling, 16(10): 59-70. 
 
Gibson, D. R. and Sharp, G. P. (1992). Order batching procedures. European Journal of 

Operational Research, 58(1): 57-67. 
 

 145



 

Goetschalckx, M. (1998). A review of unit load storage policies in warehouse operations. 
Proceedings of EURO XVI Conference, Brussels, July 12-15. 

 
Goetschalckx, M. and Ratliff, H. D. (1988a). An efficient algorithm to cluster order 

picking items in a wide aisle. Engineering Costs and Production Economics, 13: 263-
271. 

 
Goetschalckx, M. and Ratliff, H. D. (1988b). Order picking in an aisle. IIE Transactions, 

20(1): 53-62. 
 
Goetschalckx, M. and Ratliff, H. D. (1988c). Sequencing picking operations in a man-

aboard order picking system. Material Flow, 4: 255-263. 
 
Goetschalckx, M. and Ratliff, H. D. (1990). Shared storage policies based on the duration 

stay of unit loads. Management Science, 36(9): 1120-1132. 
 
Goetschalckx, M. and Ratliff, H. D. (1991). Optimal lane depths for single and multiple 

products in block stacking storage systems. IIE Transactions, 23(3): 245-258. 
 
Goh, M., Ou, J. and Teo, C.-P. (2001). Warehouse sizing to minimize inventory and 

storage costs. Naval Research Logistics, 48(4): 299-312. 
 
Graves, S. C., Hausman, W. H. and Schwarz, L. B. (1977). Storage-retrieval interleaving 

in automatic warehousing systems. Management Science, 23(9): 935-945. 
 
Gray, A. E., Karmarkar, U. S. and Seidmann, A. (1992). Design and operation of an 

order-consolidation warehouse: models and applications. European Journal of 
Operational Research, 58: 14-36. 

 
Gudehus, T. (1973). Principles of order picking: operations in distribution and 

warehousing systems, (in German). Essen, West Germany. 
 
Gue, K. R. (1999). The effects of trailer scheduling on the layout of freight terminals. 

Transportation Science, 33(4): 419-428. 
 
Guenov, M. and Raeside, R. (1992). Zone shapes in class based storage and 

multicommand order picking when storage/retrieval machines are used. European 
Journal of Operational Research, 58: 37-47. 

 
Hackman, S. T., Frazelle, E. H., Griffin, P. M., Griffin, S. O. and Vlasta, D. A. (2001). 

Benchmarking warehouse and distribution operations: an input-output approach. 
Journal of Productivity Analysis, 16: 79-100. 

 
Hackman, S. T. and Rosenblatt, M. J. (1990). Allocating items to an automated storage 

and retrieval system. IIE Transactions, 22(1): 7-14. 
 

 146



 

Hall, R. W. (1993). Distance approximation for routing manual pickers in a warehouse. 
IIE Transactions, 25(4): 76-87. 

 
Han, M. H. and McGinnis, L. F. (1986). Carousel application for work-in-process: 

modelling and analysis. Atlanta, Georgia, Material Handling Research Center, 
Georgia Institute of Technology. 

 
Han, M. H., McGinnis, L. F., Shieh, J. S. and White, J. A. (1987). On sequencing 

retrievals in an automated storage/retrieval system. IIE Transactions, 19(1): 56-66. 
 
Han, M. H., McGinnis, L. F. and White, J. A. (1988). Analysis of rotary rack operation. 

Material Flow, 4: 283-293. 
 
Hariga, M. A. and Jackson, P. L. (1996). The warehouse scheduling problem: 

formulation and algorithms. IIE Transactions, 28: 115-127. 
 
Harmatuck, D. J. (1976). A comparison of two approaches to stock location. The 

Logistics and Transportation Review, 12(4): 282-284. 
 
Hausman, W. H., Schwarz, L. B. and Graves, S. C. (1976). Optimal storage assignment 

in automatic warehousing systems. Management Science, 22(6): 629-638. 
 
Heskett, J. L. (1963). Cube-per-order index - a key to warehouse stock location. 

Transportation and Distribution Management, 3: 27-31. 
 
Heskett, J. L. (1964). Putting the Cuber-Per-Order Index to work in warehouse layout. 

Transportation and Distribution Management, 4: 23-30. 
 
Hodgson, T. J. and Lowe, T. J. (1982). Production lot sizing with material-handling cost 

considerations. IIE Transactions, 14(1): 44-51. 
 
Hung, M. S. and Fisk, C. J. (1984). Economic sizing of warehouses - a linear 

programming approach. Computers and Operations Research, 11(1): 13-18. 
 
Hwang, H., Baek, W. and Lee, M.-K. (1988). Clustering algorithms for order picking in 

an automated storage and retrieval system. International Journal of Production 
Research, 26(2): 189-201. 

 
Hwang, H., Kim, C.-S. and Ko, K.-H. (1999). Performance analysis of carousel systems 

with double shuttle. Computers and Industrial Engineering, 36: 473-485. 
 
Hwang, H. and Ko, C. S. (1988). A study on multi-aisle system served by a single 

storage/retrieval machine. International Journal of Production Research, 26(11): 
1727-1737. 

 

 147



 

Hwang, H. and Lee, M.-K. (1988). Order batching algorithms for a man-on-board 
automated storage and retrieval system. Engineering Costs and Production 
Economics, 13: 285-294. 

 
Hwang, H. and Lee, S. B. (1990). Travel-time models considering the operating 

characteristics of the storage and retrieval machine. International Journal of 
Production Research, 28(10): 1779-1789. 

 
Hwang, H. and Lim, J. M. (1993). Deriving an optimal dwell point of the 

storage/retrieval machine in an automated storage/retrieval system. International 
Journal of Production Research, 31(11): 2591-2602. 

 
Hwang, H. and Song, J. Y. (1993). Sequencing picking operations and travel time models 

for man-on-board storage and retrieval warehousing system. International Journal of 
Production Economics, 29: 75-88. 

 
Ito, T., Abadi, J. and Mousavi, S. M. (2002). Agent-based material handling and 

inventory planning in warehouse. Journal of Intelligent Manufacturing, 13(3): 201-
210. 

 
Jaikumar, R. and Solomon, M. M. (1990). Dynamic operational policies in an automated 

warehouse. IIE Transactions, 22(4): 370-376. 
 
Jarvis, J. M. and McDowell, E. D. (1991). Optimal product layout in an order picking 

warehouse. IIE Transactions, 23(1): 93-102. 
 
Johnson, M. E. (1998). The impact of sorting strategies on automated sortation system 

performance. IIE Transactions, 30: 67-77. 
 
Johnson, M. E. and Lofgren, T. (1994). Model decomposition speeds distribution center 

design. Interfaces, 24(5): 95-106. 
 
Kallina, C. and Lynn, J. (1976). Application of the cube-per-order index rule for stock 

location in a distribution warehouse. Interfaces, 7(1): 37-46. 
 
Karasawa, Y., Nakayama, H. and Dohi, S. (1980). Trade-off analysis for optimal design 

of automated warehouses. International Journal of Systems Science, 11(5): 567-576. 
 
Keserla, A. and Peters, B. A. (1994). Analysis of dual-shuttle automated storage/retrieval 

systems. Journal of Manufacturing Systems, 13(6): 424-434. 
 
Kim, B., -I., Graves, R. J., Heragu, S. S. and Onge, A. S. (2002). Intelligent agent 

modeling of an industrial warehousing problem. IIE Transactions, 34(7): 601-612. 
 

 148



 

Kim, J. and Seidmann, A. (1990). A framework for the exact evaluation of expected 
cycle times in automated storage systems with full-turnover item allocation and 
random service requests. Computers and Industrial Engineering, 18(4): 601-612. 

 
Koh, S. G., Kim, B. S. and Kim, B. N. (2002). Travel time model for the warehousing 

system with a tower crane S/R machine. Computers and Industrial Engineering, 
43(3): 495-507. 

 
Kouvelis, P. and Papanicolaou, V. (1995). Expected travel time and optimal boundary 

foumulas for a two-class-based automated storage/retrieval system. International 
Journal of Production Research, 33(10): 2889-2905. 

 
Kulturel, S., Ozdemirel, N. E., Sepil, C. and Bozkurt, Z. (1999). Experimental 

investigation of shared storage assignment policies in automated storage/retrieval 
systems. IIE Transactions, 31(8): 739-49. 

 
Lai, K. K., Xue, J. and Zhang, G. (2002). Layout design for a paper reel warehouse: a 

two-stage heuristic approach. International Journal of Production Economics, 75(3): 
231-243. 

 
Larson, N., March, H. and Kusiak, A. (1997). A heuristic approach to warehouse layout 

with class-based storage. IIE Transactions, 29: 337-348. 
 
Lee, H. S. (1997). Performance analysis for automated storage and retrieval systems. IIE 

Transactions, 29: 15-28. 
 
Lee, H. S. and Schaefer, S. K. (1996). Retrieval sequencing for unit-load automated 

storage and retrieval systems with multiple openings. International Journal of 
Production Research, 34(10): 2943-2962. 

 
Lee, H. S. and Schaefer, S. K. (1997). Sequencing methods for automated storage and 

retrieval systems with dedicated storage. Computers and Industrial Engineering, 
32(2): 351-362. 

 
Lee, M.-K. (1992). A storage assignment policy in a man-on-board automated 

storage/retrieval system. International Journal of Production Research, 30(10): 2281-
2292. 

 
Lee, M.-K. and Kim, S.-Y. (1995). Scheduling of storage/retrieval orders under a just-in-

time environment. International Journal of Production Research, 33(12): 3331-3348. 
 
Lee, Y. H., Tanchoco, J. M. A. and Chun, S. J. (1999). Performance estimation models 

for AS/RS with unequal sized cells. International Journal of Production Research, 
37(18): 4197-4216. 

 

 149



 

Levy, J. (1974). The optimal size of a storage facility. Naval Research Logistics 
Quarterly, 21(2): 319-326. 

 
Lin, C.-H. and Lu, I.-Y. (1999). The procedure of determining the order picking 

strategies in distribution center. International Journal of Production Economics, 60-
61: 301-307. 

 
Linn, R. J. and Wysk, R. A. (1987). An analysis of control strategies for an automated 

storage/retrieval system. INFOR, 25(1): 66-83. 
 
Linn, R. J. and Wysk, R. A. (1990). An expert system framework for automated storage 

and retrieval system control. Computers and Industrial Engineering, 18(1): 37-48. 
 
Linn, R. J. and Xie, X. D. (1993). A simulation analysis of sequencing rules for ASRS in 

a pull-based assembly facility. International Journal of Production Research, 31(10): 
2355-2367. 

 
Lowe, T. J., Francis, R. L. and Reinhardt, E. W. (1979). A greedy network flow 

algorithm for a warehouse leasing problem. AIIE Transactions, 11(3): 170-182. 
 
Luxhoj, J. T., Agnihotri, D., Kazunas, S. and Nambiar, S. (1993). A prototype 

knowledge-based system (KBS) for selection of inventory control policies. 
International Journal of Production Research, 31(7): 1709-1720. 

 
Luxhoj, J. T. and Skarpness, B. O. (1986). A manpower planning model for a distribution 

center: a case study. Material Flow, 3: 251-261. 
 
Lewis, R.M., and Torczon, V. (1999). Pattern search algorithms for bound constrained 

minimization. SIAM Journal of Optimization, 9(4): 1082-1099. 
 
Lewis, R.M., and Torczon, V. (2000). Pattern search methods for linearly constrained 

minimization. SIAM Journal of Optimization, 10(3): 917-941. 
 
Mahajan, S., Rao, B. V. and Peters, B. A. (1998). A retrieval sequencing heuristic for 

miniload end-of-aisle automated storage/retrieval systems. International Journal of 
Production Research, 36(6): 1715-1731. 

 
Makris, P. A. and Giakoumakis, I. G. (2003). k-Interchange heuristic as an optimization 

procedure for material handling applications. Applied Mathematical Modelling, 
27(5): 345-358. 

 
Mallette, A. J. and Francis, R. L. (1972). A generalized assignment approach to optimal 

facility layout. AIIE Transactions, 4(2): 144-147. 
 
Malmborg, C. J. (1995). Optimization of cube-per-order index warehouse layouts with 

zoning constraints. International Journal of Production Research, 33(2): 465-482. 

 150



 

Malmborg, C. J. (1996). An integrated storage system evaluation model. Applied 
Mathematical Modelling, 20(5): 359-370. 

 
Malmborg, C. J. (2000). Interleaving models for the analysis of twin shuttle automated 

storage and retrieval systems. International Journal of Production Research, 38(18): 
4599-4610. 

 
Malmborg, C. J. (2001). Rule of thumb heuristics for configuring storage racks in 

automated storage and retrieval systems design. International Journal of Production 
Research, 39(3): 511-527. 

 
Malmborg, C. J. (2003). Design optimization models for storage and retrieval systems 

using rail-guided vehicles. Applied Mathematical Modelling, 27(12): 929-941. 
 
Malmborg, C. J. and Al-Tassan, K. (1998). Analysis of storage assignment policies in 

less than unit load warehousing systems. International Journal of Production 
Research, 36(12): 3459-3475. 

 
Malmborg, C. J. and Al-Tassan, K. (2000). An integrated performance model for order 

picking systems with randomized storage. Applied Mathematical Modelling, 24(2): 
95-111. 

 
Malmborg, C. J., Balachandran, S. and Kyle, D. M. (1986). A model based evaluation of 

a commonly used rule of thumb for warehouse layout. Applied Mathematical 
Modelling, 10(2): 133-138. 

 
Malmborg, C. J. and Deutsch, S. J. (1988). A stock location model for dual address order 

picking systems. IIE Transactions, 20(1): 44-52. 
 
Malmborg, C. J. and Krishnakumar, B. (1987). On the optimality of the cube per order 

index for conventional warehouses with dual command cycles. Material Flow, 4: 169-
175. 

 
Malmborg, C. J. and Krishnakumar, B. (1989). Optimal storage assignment policies for 

multiaddress warehousing systems. IEEE Transactions on Systems, Man, and 
Cybernetics, 19(1): 197-204. 

 
Malmborg, C. J. and Krishnakumar, B. (1990). A revised proof of optimality for the 

cube-per-order index rule for stored item location. Applied Mathematical Modelling, 
14(2): 87-95. 

 
Malmborg, C. J., Krishnakumar, B. and Simons, G. R. (1988). A mathematical overview 

of warehousing systems with single/dual order-picking cycles. Applied Mathematical 
Modelling, 12(1): 2-8. 

 

 151



 

Marsh, W. H. (1979). Elements of block storage design. International Journal of 
Production Research, 17(4): 377-394. 

 
Marsh, W. H. (1983). A comparison with Berry. International Journal of Production 

Research, 21(2): 163-172. 
 
Matson, J. O. and White, J. A. (1981). Storage system optimization. Atlanta, Georgia, 

Production and Distribution Research Center, Georgia Institute of Technology. 
 
McGinnis, L. F. (2003). Best of Breed Warehouse Performance Assessment. Council on 

Logistics Management Annual Conference, Chicago, IL (see also 
http://www.isye.gatech.edu/ideas/). 

 
Meller, R. D. (1997). Optimal order-to-lane assignments in an order 

accumulation/sortation system. IIE Transactions, 29: 293-301. 
 
Meller, R. D. and Mungwattana, A. (1997). Multi-shuttle automated storage/retrieval 

systems. IIE Transactions, 29(10): 925-938. 
 
Moder, J. J. and Thornton, H. M. (1965). Quantitative analysis of the factors affecting 

floor space utilization of palletized storage. The Journal of Industrial Engineering, 
16(1): 8-18. 

 
Montulet, P., Langevin, A. and Riopel, D. (1998). Minimizing the peak load: an alternate 

objective for dedicated storage policies. International Journal of Production Research, 
36(5): 1369-1385. 

 
Muralidharan, B., Linn, R. J. and Pandit, R. (1995). Shuffling heuristics for the storage 

location assignment in an AS/RS. International Journal of Production Research, 
33(6): 1661-1672. 

 
Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. 

Computer Journal, 7: 308-313. 
 
Pan, C.-H. and Liu, S.-Y. (1995). A comparative study of order batching algorithms. 

Omega International Journal of Management Science, 23(6): 691-700. 
 
Pan, C.-H. and Wang, C.-H. (1996). A framework for the dual command cycle travel 

time model in automated warehousing systems. International Journal of Production 
Research, 34(8): 2099-2117. 

 
Pandit, R. and Palekar, U. S. (1993). Response time considerations for optimal warehouse 

layout design. Journal of Engineering for Industry, 115: 322-328. 
 

 152

http://www.isye.gatech.edu/ideas/)


 

Park, B. C., Foley, R. D., White, J. A. and Frazelle, E. H. (2003). Dual command travel 
times and miniload system throughput with turnover-based storage. IIE Transactions, 
35(4): 343-355. 

 
Park, B. C., Frazelle, E. H. and White, J. A. (1999). Buffer sizing models for end-of-aisle 

order picking systems. IIE Transactions, 31: 31-38. 
 
Park, Y. H. and Webster, D. B. (1989). Modelling of three-dimensional warehouse 

systems. International Journal of Production Research, 27(6): 985-1003. 
 
Perlmann, A. M. and Bailey, M. (1988). Warehouse logistics systems - a CAD model. 

Engineering Costs and Production Economics, 13: 229-237. 
 
Peters, B. A., Smith, J. S. and Hale, T. S. (1996). Closed form models for determining the 

optimal dwell point location in automated storage and retrieval systems. International 
Journal of Production Research, 34(6): 1757-1771. 

 
Petersen, C. G. (1997). An evaluation of order picking routing policies. International 

Journal of Operations and Management Science, 17(11): 1098-1111. 
 
Petersen, C. G. (1999). The impact of routing and storage policies on warehouse 

efficiency. International Journal of Operations and Production Management, 19(10): 
1053-1064. 

 
Petersen, C. G. (2000). An evaluation of order picking policies for mail order companies. 

Production and Operations Management, 9(4): 319-335. 
 
Petersen, C. G. (2002). Considerations in order picking zone configuration. International 

Journal of Operations and Production Management, 22(7): 793-805. 
 
Pliskin, J. S. and Dori, D. (1982). Ranking alternative warehouse area assignments: a 

multiattribute approach. IIE Transactions, 14(1): 19-26. 
 
Randhawa, S. U., McDowell, E. D. and Wang, W.-T. (1991). Evaluation of scheduling 

rules for single- and dual-dock automated storage/retrieval system. Computers and 
Industrial Engineering, 20(4): 401-410. 

 
Randhawa, S. U. and Shroff, R. (1995). Simulation-based design evaluation of unit load 

automated storage/retrieval systems. Computers and Industrial Engineering, 28(1): 
71-79. 

 
Rao, A. K. and Rao, M. R. (1998). Solution procedures for sizing of warehouses. 

European Journal of Operational Research, 108: 16-25. 
 

 153



 

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse: a 
solvable case of the traveling salesman problem. Operations Research, 31(3): 507-
521. 

 
Roberts, S. D. and Reed, R. (1972). Optimal warehouse bay configurations. AIIE 

Transactions, 4(3): 178-185. 
 
Roll, Y. and Rosenblatt, M. J. (1987). Shifting in warehouses. Material Flow, 4: 147-157. 
 
Roll, Y., Rosenblatt, M. J. and Kadosh, D. (1989). Determining the size of a warehouse 

container. International Journal of Production Research, 27(10): 1693-1704. 
 
Roodbergen, K. J. and de Koster, R. (2001a). Routing methods for warehouses with 

multiple cross aisles. International Journal of Production Research, 39(9): 1865-1883. 
 
Roodbergen, K. J. and de Koster, R. (2001b). Routing order pickers in a warehouse with 

a middle aisle. European Journal of Operational Research, 133: 32-43. 
 
Rosenblatt, M. J. and Eynan, A. (1989). Deriving the optimal boundaries for class-based 

automatic storage/retrieval systems. Management Science, 35(12): 1519-1524. 
 
Rosenblatt, M. J. and Roll, Y. (1984). Warehouse design with storage policy 

considerations. International Journal of Production Research, 22(5): 809-821. 
 
Rosenblatt, M. J. and Roll, Y. (1988). Warehouse capacity in a stochastic environment. 

International Journal of Production Research, 26(12): 1847-1851. 
 
Rosenblatt, M. J., Roll, Y. and Zyser, V. (1993). A combined optimization and simulation 

approach for designing automated storage/retrieval systems. IIE Transactions, 25(1): 
40-50. 

 
Rosenwein, M. B. (1994). An application of cluster analysis to the problem of locating 

items within a warehouse. IIE Transactions, 26(1): 101-103. 
 
Rosenwein, M. B. (1996). A Comparison of Heuristics for the Problem of Batching 

Orders for Warehouse Selection. International Journal of Production Research, 34(3): 
657-664. 

 
Ross, A. and Droge, C. (2002). An integrated benchmarking approach to distribution 

center performance using DEA modeling. Journal of Operations Management, 20: 19-
32. 

 
Rowenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J. and Zijm, 

W. H. M. (2000). Warehouse design and control: framework and literature review. 
European Journal of Operational Research, 122: 515-533. 

 154



 

Ruben, R. A. and Jacobs, F. R. (1999). Batch Construction Heuristics and Storage 
Assignment Strategies for Walk/Ride and Pick Systems. Management Science, 45(4): 
575-596. 

 
Ryoo, H. S. and Sahinidis, N. V. (1996). A branch-and-reduce approach to global 

optimization. Journal of Global Optimization, 8: 107-138. 
 
Sadiq, M., Landers, T. L. and Taylor, G. D. (1996). An assignment algorithm for 

dynamic picking systems. IIE Transactions, 28: 607-616. 
 
Sarker, B. R., Mann, L. and Santos, J. D. (1994). Evaluation of a class-based storage 

scheduling technique applied to dual-shuttle automated storage and retrieval systems. 
Production Planning & Control, 5(5): 442-449. 

 
Sarker, B. R., Sabapathy, A., Lal, A. M. and Han, M. (1991). The performance evaluation 

of a double shuttle automated storage retrieval system. Production Planning & 
Control, 2(3): 207-213. 

 
Schefczyk, M. (1993). Industrial benchmarking: a case study of performance analysis 

techniques. International Journal of Production Economics, 32: 1-11. 
 
Schwarz, L. B., Graves, S. C. and Hausman, W. H. (1978). Scheduling policies for 

automatic warehousing systems: simulation results. AIIE Transactions, 10(3): 260-
270. 

 
Seidmann, A. (1988). Intelligent control schemes for automated storage and retrieval 

systems. International Journal of Production Research, 26(5): 931-952. 
 
Sharp, G. P. (2000). Warehouse Management, in: Salvendy G. Ed., Handbook of 

Industrial Engineering, John Wiley & Sons, Inc., New York, 
 
Sharp, G. P., Vlasta, D. A. and Houmas, C. G. (1994). Economics of storage/retrieval 

systems for item picking. Atlanta, Georgia, Material Handling Research Center, 
Georgia Institute of Technology. 

 
Thonemann, U. W. and Brandeau, M. L. (1998). Optimal storage assignment policies for 

automated storage and retrieval systems with stochastic demands. Management 
Science, 44(1): 142-148. 

 
Torczon, V. (1997). On the convergence of pattern search algorithms. SIAM Journal of 

Optimization, 7(1): 1-25. 
 
Tsui, L. Y. and Chang, C. H. (1990). A microcomputer based decision support tool for 

assigning dock doors in freight yards. Computers and Industrial Engineering, 19(1-4): 
309-312. 

 

 155



 

Tsui, L. Y. and Chang, C. H. (1992). An optimal solution to a dock door assignment 
problem. Computers and Industrial Engineering, 23(1-4): 283-286. 

van den Berg, J. P. (1996). Multiple order pick sequencing in a carousel system: a 
solvable case of the rural postman problem. Journal of Operational Research Society, 
47: 1504-1515. 

 
van den Berg, J. P. (2002). Analytic expressions for the optimal dwell point in an 

automated storage/retrieval system. International Journal of Production Economics, 
76(1): 13-25. 

 
van den Berg, J. P. and Gademann, A. J. R. M. N. (1999). Optimal routing in an 

automated storage/retrieval system with dedicated storage. IIE Transactions, 31: 407-
415. 

 
van den Berg, J. P. and Gademann, A. J. R. M. N. (2000). Simulation study of an 

automated storage/retrieval system. International Journal of Production Research, 
38(6): 1339-1356. 

 
van den Berg, J. P., Sharp, G. P., Gademann, A. J. R. M. N. and Pochet, Y. (1998). 

Forward-reserve allocation in a warehouse with unit-load replenishments. European 
Journal of Operational Research, 111: 98-113. 

 
van Oudheusden, D. L., Tzen, Y.-J. and Ko, H.-T. (1988). Improving storage and order 

picking in a person-on-board AS/R system: a case study. Engineering Costs and 
Production Economics, 13: 273-283. 

 
van Oudheusden, D. L. and Zhu, W. (1992). Storage layout of AS/RS racks based on 

recurrent orders. European Journal of Operational Research, 58: 48-56. 
 
Vaughan, T. S. and Petersen, C. G. (1999). The effect of warehouse cross aisle on order 

picking efficiency. International Journal of Production Research, 37(4): 881-897. 
 
Vickson, R. G. (1996). Optimal storage locations in a carousel storage and retrieval 

system. Location Science, 4(4): 237-245. 
 
Vidal, C. J. and Goetschalckx, M. (1997). Strategic production-distribution models: a 

critical review with emphasis on global supply chain models. European Journal of 
Operational Research, 98: 1-18. 

 
Wang, J.-Y. and Yih, Y. (1997). Using neural networks to select a control strategy for 

automated storage and retrieval systems (AS/RS). International Journal of Computer 
Integrated Manufacturing, 10(6): 487-495. 

 
Wen, U.-P. and Chang, D.-T. (1988). Picking rules for a carousel conveyor in an 

automated warehouse. Omega International Journal of Management Science, 16(2): 
145-151. 

 156



 

 
White, J. A., DeMars, N. A. and Matson, J. O. (1981). Optimizing storage system 

selection. Proceedings of the 4th. International Conference on Automation in 
Warehousing, Tokyo, Japan. 

 
White, J. A. and Francis, R. L. (1971). Normative models for some warehouse sizing 

problems. AIIE Transactions, 9(3): 185-190. 
 
Wilson, H. G. (1977). Order quantity, product popularity, and the location of stock in a 

warehouse. AIIE Transactions, 9(3): 230-237. 
 
Yoon, C. S. and Sharp, G. P. (1995). Example application of the cognitive design 

procedure for an order pick system: case study. European Journal of Operational 
Research, 87: 223-246. 

 
Yoon, C. S. and Sharp, G. P. (1996). A structured procedure for analysis and design of 

order pick systems. IIE Transactions, 28: 379-389. 
 
Zeng, A. Z., Mahan, M. and Fluet, N. (2002). Designing an efficient warehouse layout to 

facilitate the order-filling process: an industrial distributor's experience. Production 
and Inventory Management Journal, 43(3-4): 83-88. 

 
Zhang, G., Xue, J. and Lai, K. K. (2000). A genetic algorithm based heuristic for adjacent 

paper-reel layout problem. International Journal of Production Research, 38(14): 
3343-3356. 

 
Zhang, G., Xue, J. and Lai, K. K. (2002). A class of genetic algorithms for multiple-level 

warehouse layout problems. International Journal of Production Research, 40(3): 731-
744. 

 
Zollinger, H. A. (1996). Expanded methodology to concept horizontal transportation 

problem solutions. Progress in Material Handling Research. Graves, R. J., McGinnis, 
L. F., Medeiros, D. J., Ward, R. E. and Wilhelm, M. R.: 651-663. 

 
 

 157


	CHAPTER 2 RESEARCH ON WAREHOUSE OPERATION5
	CHAPTER 3 RESEARCH ON WAREHOUSE DESIGN44
	CHAPTER 4 THE SIZING AND DIMENSIONING OF A FORWARD-
	RESERVE WAREHOUSE 73
	CHAPTER 5 SOLVING THE FORWARD RESERVE ALLOCATION
	PROBLEM102
	CHAPTER 6 THE SIZING AND DIMENSIONING PROBLEM WITH
	FORWARD RESERVE ALLOCATION122
	
	
	
	
	CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH138
	
	
	Table 4.1 Notation for the definition of problem 





	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	RESEARCH ON WAREHOUSE OPERATION



	Design and Operation Problems
	Decisions
	Citation
	
	SLAP Summary
	Sequencing and routing for conventional multi-parallel-aisle systems
	Sequencing and routing for unit-load AS/RS
	Sequencing and routing for carousel systems
	CHAPTER 3
	RESEARCH ON WAREHOUSE DESIGN



	Problem
	Randomized Storage

	Unit-Load AS/RS
	CHAPTER 4
	THE SIZING AND DIMENSIONING OF A FORWARD-RESERVE WAREHOUSE
	Introduction
	4.2Mathematical models
	
	
	
	
	
	
	
	Table 4.1 Notation for the definition of problem 


	Problems \(P1\) and \(P2\) are both convex p�
	Solution algorithm for (P1)
	Since (P1) is a convex problem, a feasible solution is optimal if it satisfies the Karush-Kuhn-Tucker (KKT) conditions as stated in equations (4.14):
	Solution algorithm for (P2)
	
	8000 SKUs
	GBD
	CONOPT
	Enumeration
	�
	�








	CHAPTER 5
	SOLVING THE FORWARD RESERVE ALLOCATION PROBLEM
	Branch-and-Bound Algorithm
	CHAPTER 6
	THE SIZING AND DIMENSIONING PROBLEM WITH FORWARD RESERVE ALLOCATION
	Introduction
	6.2Mathematical models
	
	
	
	Optimality
	CHAPTER 7


	CONCLUSIONS AND FUTURE RESEARCH
	
	Warehousing is ubiquitous in logistics and supply chain. A comprehensive literature survey is conducted on warehouse design and operation problems. The results show that previous research had been focused on warehouse operation planning problems, while w
	REFERENCES






