
State Estimation using Gaussian Process Regression for
Colored Noise Systems

Kyuman Lee
School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, GA 30332
404-422-3697

klee400@gatech.edu

Eric N. Johnson
School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, GA 30332
404-385-2519

eric.johnson@ae.gatech.edu

Abstract—The goal of this study is to use Gaussian process (GP)
regression models to estimate the state of colored noise systems.
The derivation of a Kalman filter assumes that the process noise
and measurement noise are uncorrelated and both white. In
relaxing those assumptions, the Kalman filter equations were
modified to deal with the non-whiteness of each noise source.
The standard Kalman filter ran on an augmented system that
had white noises and other approaches were also introduced
depending on the forms of the noises. Those existing methods
can only work when the characteristics of the colored noise are
perfectly known. However, it is usually difficult to model a noise
without additional knowledge of the noise statistics. When the
parameters of colored noise models are totally unknown and
the functions of each underlying model (nonlinear dynamic and
measurement functions) are uncertain or partially known, filter-
ing using GP-Color models can perform regardless of whatever
forms of colored noise. The GPs can learn the residual outputs
between the GP models and the approximate parametric models
(or between actual sensor readings and predicted measurement
readings), as a member of a distribution over functions, typically
with a mean and covariance function. Lastly, a series of simu-
lations, including Monte Carlo results, will be run to compare
the GP based filtering techniques with the existing methods to
handle the sequentially correlated noise.
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1. INTRODUCTION
Estimating the state of a dynamic system is a fundamental
problem at modern GNC areas. The most successful tech-
niques for state estimation are Bayesian filters such as a
Kalman filter. The key assumption of the standard Kalman
filter is that the process noise and measurement noise are un-
correlated and both white. These are often too restrictive as-
sumptions, and applications with non-white noise frequently
arise in practice.

Many practical systems exist in which the correlation times
of the random measurement errors are not short compared to

the times of interest in the system; for brevity such errors are
called “colored” noise [1]. In audio engineering, electronics,
physics, and many other fields, the color of a noise signal
is generally understood to be some broad characteristic of
its power spectrum. Different colors of noise have signif-
icantly different properties: for example, as audio signals
they will sound different to human ears, and as images they
will have a visibly different texture. In image processing,
the quality of images will directly influence the accuracy
of locating landmarks. During sampling and transmission,
images are often degraded by noises which may originate
from a multiplicity of sources. These noises are colorful
and their variances are not known beforehand. The original
images having the colored noise must be filtered to ensure
the accuracy of location and measurement [2]. Furthermore,
in radar and sonar signal processing, various colored noise
are: external spurious signals that, intentionally or not, jam
reception; echoes from various reflectors in the landscape;
and, in sonar, reverberation [3]. Therefore, each application
using such signals typically requires the noise of a specific
color and it is necessary to extend conventional Kalman
filtering approach in order to solve the problem of the color
noise effectively.

To deal with colored noise over several decades, the standard
Kalman filter ran on an augmented system that had white
noises. Bryson et al [1] introduced the augmented filter
for colored measurement noise first. For example, due to
the non-stationary nature of the speech signal, augmented
Kalman filtering of colored noise for speech enhancement
was also described [4], [5]. Recently, Liu et al [6] presented
a self-tuning Kalman filter for auto regressive or moving
average (ARMA) signals with colored noise. Also, if the
process noise is colored, then it is straightforward to modify
the Kalman filter equations and obtain an equivalent but
high-order system with white process noise [7]. On the
other hand, the augmented state procedure may lead to ill-
conditioned computations in constructing the data processing
filter. It is a singular problem as the case of no noise in
some of the measurements because the correlation matrix
of the measurement noise is singular, i.e., R−1 does not
exist, in the notation of a Kalman filter. Instead, another
filtering, measurement differencing [8], [9], that was capable
of converting the received colored noise into white noise,
was established. The contribution of the colored part of the
noise to the received noisy signal was first estimated, and
this estimate was then subtracted from the received signal.
This approach, by subtraction of the colored part of the noise,
was strictly equivalent to the whitening approach and had
lower dimension than the augmented state filters. Simon [10]
provided a survey of all previously noted methods. Details
will be described in Section 3. as preliminaries.

Those existing methods can only work when the characteris-
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tics (power and spectral density) of colored noise are assumed
to be known. However, it is typically difficult to model a
noise without a priori knowledge of the noise statistics or a
supplementary measurement.

A Gaussian process (GP) is a function approximation which
can be thought of as a distribution over functions. The true
function at any given point in the domain exists in the Gaus-
sian distribution modeled by mean and covariance functions
evaluated at the same point [11]. GPs are used in several
disciplines when some underlying function is unknown but
needed. In implementation, a GP can be formulated as the
regression of training data (points in the state space and
function evaluations) with respect to a basis function. A GP
can be dynamically updated with new function evaluations or
modeled once at the onset of an algorithm.

The machine learning community has applied GP to both
controls and estimation processes in the past. When a system
has unknown dynamics and measurement models, a GP can
be used to learn them. The GP mean provides approximates
of the state transition matrix and measurement model, while
the GP covariance provides estimates of the process and
measurement white noise. Estimation methods have ranged
from Bayesian filtering with GP to extended and unscented
Kalman filtering with GP [12], [13]. Likely, when the
parameters of colored noise models are totally unknown and
the functions of each underlying model (nonlinear dynamic
and measurement functions) are uncertain or partially known,
filtering using enhanced GP-Color models can perform re-
gardless of whatever forms of colored noise. The GPs can
learn the residual outputs between the GP models and the
approximate parametric models (or between prior estimated
states by the GPs and the outputs of parametric models), as
a member of a distribution over functions, typically with a
mean and covariance function. TheQ andR noise covariance
matrices in the filter can also be learned by the GP-Color
prediction model and observation model, respectively. Input-
dependent noise was described in the article of Kersting et
al [14], but we are not aware of previous work with colored
noise functions using GPs.

The rest of this paper is organized as follows. The next
two sections demonstrate the formulation of the problem and
the outline of the approach. Section 4 explains how each
model with colored noise can be learned by GPs and section
5 presents a novel filtering algorithm using GPs for colored
noisy systems. Next, the simulation environment is described
and results are presented. Finally, conclusion and future work
are discussed.

2. MODELS AND SETUP
We consider discrete-time stochastic dynamics systems of the
form

xk = f(xk−1) + wk−1 (1)
zk = h(xk) + vk (2)

where xk ∈ Rn is the state and zk ∈ Rm is the measurement
at time step k = 1, · · · , T0. f is the nonlinear dynamic
function and h is the nonlinear measurement function. Both
are partially known or uncertain.

Now suppose that we have colored process and measurement
noises. The process noise is itself the output of the dynamic
system and the measurement noise is itself the output of the

observation system.

wk = φ(wk−1) + ηk (3)
vk = ψ(vk−1) + ζk (4)
ηk ∼ N (0, Qk)

ζk ∼ N (0, Rk)

E[ηkη
T
j ] = Qkδk−j

E[ζkζ
T
j ] = Rkδk−j

E[ηkζ
T
j ] = 0

where ηk is zero-mean white noise that is uncorrelated with
wk−1 and ζk is zero-mean white noise that is uncorrelated
with vk−1. φ is the nonlinear colored process noise function
and ψ is the nonlinear colored measurement noise function.
Both functions are totally unknown, and we don’t even know
if each signal has colored noise in the form of Eqs. (3) and
(4). The covariances of the noise functions are given as

E[wkw
T
k−1] = E[φ(wk−1)wTk−1 + ηkw

T
k−1]

= E[φ(wk−1)wTk−1] ≈
(
∂φ

∂w
|wk−1

)
E[wk−1w

T
k−1] 6= 0

E[vkv
T
k−1] = E[ψ(vk−1)vTk−1 + ζkv

T
k−1]

= E[ψ(vk−1)vTk−1] ≈
(
∂ψ

∂v
|vk−1

)
E[vk−1v

T
k−1] 6= 0

We see that wk or vk is colored noise because it is correlated
with itself at other time steps.

3. PRELIMINARIES
Gaussian Process Regression

A Gaussian process is a nonparametric tool for learning
regression functions from sample data. Consider now the case
where we have measurements of the observation which are
corrupted with white noise

yi = h(xi) + νi = hi + νi, ∀ i = 1, · · · , N

where νi ∼ N (0, β−1). Since the white noise is independent
of each data point, we have that

p(y1:N |h1:N ) = N (h1:N , β
−1IN×N )

p(h1:N ) = N (0,K)

⇒ p(y1:N ) = N (0, CN ) (5)

where the covariance matrix CN ∈ RN×N and it is defined
as

CN = K + β−1IN×N

Therefore every element of the covariance matrix C will have
the form

C(xi, xj) = k(xi, xj) + β−1δi,j

The most widely used kernel function is the squared expo-
nential, which has the form

k(xi, xj) = θ0 exp(−θ1

2
‖xi − xj‖2)
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The hyperparameters, θ = [θ0, θ1, β
−1], can be learned

by maximizing the log marginal likelihood of the training
outputs given the inputs:

θmax = arg max
θ
{ln p(y1:N |x1:N , θ)} (6)

The goal in regression is to predict yN+1 for a new input point
xN+1 given the set of training data, D = 〈x1:N , y1:N 〉. From
Eq. (5),

p(y1:N+1) = N (0, CN+1)

where

CN+1 =

(
CN k∗
kT∗ c

)
where c = k(xN+1, xN+1) + β−1 and then p(yN+1) =
N (0, c). Now we can claim the conditional distribution is
a Gaussian distribution with mean and covariance specified
as follows

GPµ(yN+1|D, θ) = kT∗ C
−1
N y1:N (7)

GPΣ(yN+1|D, θ) = c− kT∗ C−1
N k∗ (8)

where k∗ ∈ RN and it has elements k(x1, xN+1), k(x2, xN+1),
..., k(xN , xN+1).

Enhanced GP Models

The GP for regression has a zero mean assumption in Eq. (7),
and if a query state is far away from the training states, then
the output of GP quickly tends towards zero. This makes
the choice of training data for the GP very important. A
parametric model is one which attempts to represent a partic-
ular phenomenon with physical equations. The disadvantage
of parametric models is that substantial domain expertise is
required to build these models, and even then they are often
simplified representations of the actual systems.

Higher prediction accuracy can be obtained by combining GP
models with parametric models. We call the combination
of GP and parametric models enhanced-GP (EGP) models
[12], [13]. The EGP models alleviate some of the problems
found when using either model alone. Using this idea of EGP
method, we can develop novel GP models for colored noise
systems. Details will be described in Section 4.

Existing Methods for Colored Noise Models

There are a couple of ways to solve the colored noise problem
when each parameter of Eqs. (1), (2), (3), and (4) is perfectly
known. Here we will solve the discrete-time problem by
augmenting the state. First, we augment the original dynamic
model as follows:

F aug
k−1 =


∂f
∂x |x̂+

k−1
I 0

0 ∂φ
∂w |ŵ+

k−1
0

0 0 ∂ψ
∂v |v̂+k−1

 ,
Qaug
k−1 =

[
0 0 0
0 Qk−1 0
0 0 Rk−1

]

where the hat ” ˆ ” denotes a estimate or an approximate.
Then, perform the time update of the state estimate and

estimation-error covariance from time (k − 1)+ to time k−

x̂−k = f(x̂+
k−1) + φ(ŵ+

k−2)

P−
k = F aug

k−1P
+
k−1(F aug

k−1)T +Qaug
k−1

where superscript − or + denote the a priori or a posteriori
estimates, respectively. At time k−, compute the follow-
ing Jacobian matrix and augment the original measurement
model as follows:

Haug
k =

[
∂h
∂x |x̂−

k
0 I

]
Then, perform the measurement update of the state estimate
and estimation-error covariance

ẑk = h(x̂−k ) + ψ(v̂+
k−1)

Kk = P−
k (Haug

k )T (Haug
k P−

k (Haug
k )T )−1x̂+

k
ŵ+
k
v̂+
k

 =

x̂−kŵ−
k
v̂−k

+Kk(zk − ẑk)

P+
k = P−

k −KkH
aug
k P−

k

The colored noise problem ends up being solved with the
above augmented extended Kalman filter (EKF). However,
this method can only work when the characteristics of colored
noise are assumed to be known.

4. LEARNING GP MODELS FOR COLORED
NOISE SYSTEMS (GPC)

Training Data

The training data is a sampling from the dynamics and
observations of the system. The training data for each GP
consists of a set of input-output relations.

Given x1:T0
and z1:T0

, let the approximate parametric predic-
tion and observation models be denoted f̂ and ĥ. These are
assumed to be known but not perfect based on partial knowl-
edge of actual systems in Eqs. (1) and (2). The approximate
process and measurement residuals are denoted ŵ and v̂ and
defined as

ŵ1:T0−1 = x2:T0 − f̂(x1:T0−1)

v̂1:T0
= z1:T0

− ĥ(x1:T0
)

where x1:T0 = [x1, x2, ..., xT0 ] and z1:T0 = [z1, z2, ..., zT0 ].

By Eqs (3) and (4), each residual is the function of itself at
previous one time step. The training data sets of each residual
are given as

D̂W = 〈ŵ1:T0−2, ŵ2:T0−1〉
D̂V = 〈v̂1:T0−1, v̂2:T0〉

By optimizing similar to Eq. (6), the hyperparameters θw and
θv can be learned.
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GPC Models

The idea of GPC method is to use a GP to learn the residual
output between the GP model and the approximate parametric
model. In particular, the residuals of prediction model can
be approximate outputs between prior estimated states by
the GPs and the outputs of parametric models. Also, the
residuals of observation model can be approximate outputs
between actual sensor readings and predicted measurement
readings. Then, from Eqs. (1) and (2), GPC models at time
step k = T0 + 1, · · · , T become

xk = f(xk−1) + φ(wk−2) + ηk−1

= f̂(xk−1) + [f(xk−1)− f̂(xk−1)] + φ(wk−2) + ηk−1

⇒ xk = f̂(xk−1) + GPµ
(
ŵk−2, D̂W

)
+ η̂k−1 (9)

zk = h(xk) + ψ(vk−1) + ζk

= ĥ(xk) + [h(xk)− ĥ(xk)] + ψ(vk−1) + ζk

⇒ zk = ĥ(xk) + GPµ
(
v̂k−1, D̂V

)
+ ζ̂k (10)

where

η̂k ∼ N
(

0, GPΣ(ŵk−1, D̂W )
)

and ζ̂k ∼ N
(

0, GPΣ(v̂k−1, D̂V )
)
.

where all parameters of φ, ψ, η, and ζ of colored noise are un-
known since it is typically difficult to model a noise without
a priori knowledge of the noise statistics or a supplementary
measurement.

The key advantages of GPC are their modeling flexibility,
their ability to provide uncertainty estimates, and their ability
to learn noise and smoothness parameters from training data.

5. GPC-BASED BAYES FILTERS
Algorithm of GPC-EKF

The following describes the integration of GPC prediction
and observation models into the EKF. In addition to the GPC
mean and covariance estimates used in Eqs. (9) and (10),
the incorporation of GPC models into the EKF requires a
linearization of the GPC prediction and observation model
in order to propagate the state and observation, respectively.
For the EKF, this linearization is computed by taking the first
term of the Taylor series expansion of the GP function.

By the derivation of Ko et al [12], the Jacobian of the GP
mean function (7) can be expressed as

∂GPµ(x∗, D)

∂(x∗)
=
∂(k∗)

∂(x∗)

T

C−1
N y1:N (11)

where
∂(k∗)

∂(x∗)
=


∂(k(x1,x∗))
∂(x∗[1]) · · · ∂(k(x1,x∗))

∂(x∗[d])

...
. . .

...
∂(k(xN ,x∗))
∂(x∗[1]) · · · ∂(k(xN ,x∗))

∂(x∗[d])


∂(k(x, x∗))

∂(x∗[i])
= −θ1(x∗[i]− x[i]) k(x, x∗), i = 1, · · · , d

where k∗ is the vector of kernel values between the
query input, x∗ = ŵk−1 or v̂k−1, and the training inputs,
ŵ1:T0−2 or v̂1:T0−1, respectively. N(= T0 − 2 or T0 − 1)
is the number of training data, and d(= n or m) is the
dimensionality of the input space.

Eq. (11) defines the d-dimensional Jacobian vector of the GP
mean function for a single output dimension. The full n ×
n Jacobian of a prediction model or m × n Jacobian of a
observation model is determined by stacking n orm Jacobian
vectors together, one for each of the output dimensions.

We are now prepared to incorporate the GPC models into
augmented EKF, as shown in Algorithm 1.

Algorithm 1 The GPC-EKF
1: (ŵ+

T0−1, v̂
+
T0
, x̂+
T0
, P+

T0
, zT0+1) are given:

Require: Xaug = [x̂ ŵ v̂]
T

2: ŵ+
T0

= GPµ(ŵ+
T0−1, D̂W )

3: for k = (T0 + 1) : T do
4: Time Updates:
5: ŵ−

k = GPµ(ŵ+
k−1, D̂W )

6: Q̂k−1 = GPΣ(ŵ+
k−1, D̂W )

7: Φ̂k−1 =
∂GPµ(ŵ+

k−1,D̂W )

∂ŵ+
k−1

8: v̂−k = GPµ(v̂+
k−1, D̂V )

9: R̂k−1 = GPΣ(v̂+
k−1, D̂V )

10: Ψ̂k−1 =
∂GPµ(v̂+k−1,D̂V )

∂v̂+k−1

11: x̂−k = f̂(x̂+
k−1) + ŵ+

k−1

12: F aug
k−1 =

∂f̂∂x |x̂+
k−1

In×n 0n×m

0n×n Φ̂k−1 0n×m
0m×n 0m×n Ψ̂k−1


13: Qaug

k−1 = diag(0n×n, Q̂k−1, R̂k−1)

14: P−
k = F aug

k−1P
+
k−1(F aug

k−1)T +Qaug
k−1

15: Measurement Updates:
16: ẑk = ĥ(x̂−k ) + v̂−k

17: Haug
k =

[
∂ĥ
∂x |x̂−

k
0m×n Im×m

]
18: Kk = P−

k (Haug
k )T (Haug

k P−
k (Haug

k )T )−1

19:

x̂+
k

ŵ+
k
v̂+
k

 =

x̂−kŵ−
k
v̂−k

+Kk(zk − ẑk)

20: P+
k = P−

k −KkH
aug
k P−

k

21: end for

Q̂k is the additive white noise part of the process noise,
which corresponds directly to the GPC uncertainty. Φ̂k,
the linearization of the prediction model, is the Jacobian of
the GPC mean function found in Eq. (11). Similarly, the
noise covariance, R̂k, and the linearization of the observation
model, Ψ̂k, are computed by using the GPC observation
model.
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GPs are typically defined for scalar outputs, and GPC based
Bayes Filters represent models for vectorial outputs by learn-
ing a separate GPC for each output dimension. This forces
the resulting noise covariances, Q̂k and R̂k, to be modeled as
independent diagonal matrices.

6. SIMULATION RESULTS
A variety of cases have been simulated to examine the in-
fluence of the color noise and to test the effectiveness of the
GPC-EKF algorithm for colored-noise systems. The results
will be given by means of Monte Carlo methods.

GPC only

To verify the GPC mean and variance functions given in
Eqs. (9) & (10) as well as the hyperparameter learning via
optimization, one example of GPC regression is given as

True: yk = sin(xk) + 0.99vk−1 + ζk where ζk ∼ N (0, 0.1)

GP: yk = GPµ (xk, D) + νk where νk ∼ N (0,GPΣ (xk, D))

GPC: yk = 0.9 sin(xk) + GPµ(v̂k−1, D̂V ) + ζ̂k

where ζ̂k ∼ N (0,GPΣ(v̂k−1, D̂V ))

Figure 1 contains a sine function with color noise (black),
noisy samples drawn from the function (red plus), the re-
sulting GPC(blue)/GP(green) mean function estimate, and
the GPC(dotted blue)/GP(dotted green) uncertainty sigma
bounds. The GPC hyperparameters are determined by op-
timization of the data likelihood. The uncertainty gets wide
where the data points are sparse.

Figure 1. GP only vs. GPC with improper parametric model

GP GPC
Mean RMS error 0.5989 0.2865

Even though the GPC are learned by using an improper
parametric model that has a 10% modeling error, the RMS
error of the GPC is even smaller than that of the GP only.

EKF only - Standard and Augmented

Let the state vector be the position and velocity of a vehicle,
x(t) = [pos, vel]T . The vehicle flies with following linear
time-invariant dynamics with colored process noise, and a
simple position sensor with colored measurement noise is
used as follows:

xk = Fk−1xk−1 + Φk−2wk−2 + ηk−1 (12)
yk = Hkxk + Ψk−1vk−1 + ζk (13)

where

Fk =

[
1 ∆t
0 1

]
, Hk = [1 0]

Φk =

[
0.99 0

0 0.99

]
, Ψk = 0.99

ηk ∼ N
(

0,

[
0 0
0 1

])
, ζk ∼ N (0, 1).

Initialize a filter

xT0
= [0, 0]T , x̂+

T0
= E(xT0

)

P+
T0

= E[(xT0
− x̂+

T0
)(xT0

− x̂+
T0

)T ] = I2×2

The first simulation compares a standard EKF and an aug-
mented EKF, introduced in Section 3., of given the colored
noise system, Eqs. (12) & (13). For an ideal (but not realistic)
case in this simulation only, let’s assume that we know perfect
underlying functions, Fk and Hk, as well as exact values of
all parameters(Φk,Ψk, etc.) of each colored noise. Since the
augmented EKF is complicated or requires more computa-
tion, there is a question regarding why the augmented EKF is
considered here. See Figure 2 for an answer.

Figure 2. Standard EKF vs. Augmented EKF
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The estimate errors of the standard EKF are not bounded
within 2− σ uncertainties, and they are much bigger than the
estimate errors of augmented EKF. Furthermore, the figure
can give information on the existence of color-noise as well as
on the significance of the color of noisy signals. For example,
if the color noise is not remarkable, the two filters may
perform similarly. Thus, even if there is no modeling error
and all parameters are perfectly known, then the augmented
EKF is necessary in this case.

GPC-EKF with Improper Parametric Models

This simulation presents an execution of the GPC-EKF to the
example system of the colored noise problem.

If an engineer is uncertain of the underlying functions and
ignores the color noise, since the engineer is not even aware
of whether each signal has colored noise, EGP-based EKF,
introduced in Section 3., can be run for the given system.
We can call this approach EGP-White. However, the GPC-
EKF can deal with the improper underlying models as well as
the totally unknown parameters of colored noise in the same
system.

Let’s assume that the approximate parametric model, F̂ , has
10% modeling errors at each time step. From Eq. (12),

Fk =

[
1 ∆t
0 1

]
⇒ F̂k =

[
1 ∆t
0 0.9

]

Figure 3 illustrates, under this circumstance, that the GPC-
EKF outperforms EGP-White. In other words, the GPC-
EKF will in fact result in a significant increase in estimation
performance. The resulting estimation errors of GPC-EKF
method are bounded by 2−σ uncertainties, and unfortunately,
the estimate errors of EGP-White diverge as the simulation
progresses. By comparing Figure 3(a) with Figure 2, the
GPC-EKF is shown here to be suitable to the colored-noise
problem with unknown parameters.

Now we are curious about whether the GPC-EKF method can
work as well in white-noise systems since we do not typically
know if a system has colored noise. Let’s assume a system
where Φ and Ψ are zeros, i.e., the system has white noises.
The next simulation shows how the GPC-EKF method is
robust and suitable to both the color-noise system and white-
noise system.

As shown in Figure 4, even if true signals do not have color-
noise, the GPC-EKF is working here as well. Obviously,
GPC-EKF estimation errors are smaller than the position
sensor errors. That is why an appropriate estimator is needed
to design although some sensors offer noisy signals of state.
Lastly, by comparing Figure 4 with Figure 3(a), the GPC-
EKF can be considered regardless of whatever forms of
noise.

7. CONCLUSION
This paper describes that filtering using Gaussian process
models for colored noise systems (GPC-EKF) is applicable to
the color-noise problem when the characteristics of the noise
are unknown and the underlying parametric functions are
uncertain. Without information on the color noise, the GPC
model demonstrates how Gaussian process regression can be
used to learn the colored noise systems. Furthermore, the

algorithm of GPC-EKF approach to reliably estimate state is
introduced. The various simulations, including Monte Carlo
results, show why augmented filter is required here and why
the color noise should be handled in the GP-based filters. The
performance of a standard EKF that ignores the color of noisy
signals as well as of an augmented EKF that compensates the
colored noise are verified based on each estimation error. As
expected, the accuracy of GPC-EKF increases significantly
rather than the performance of the enhanced GP-based filter
with improper white noise models for colored noise systems.
Lastly, the results validate how the GPC-EKF method is
robust to an improper model and to even a white-noise system
as well.

Future work will examine the application of GPC-EKF ap-
proach to an auto regressive or a moving average (ARMA)
signal that is considered as the parametric model of color
noise. In addition, other novel GPs can directly be incor-
porated into this approach. For example, heteroscedastic
GPs [14] can allow accurate inference for input-dependent
noise models and the sparse spectrum GPs [15] can be used
to reduce the computational complexity of online-fashion
GPs.
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