
c12) United States Patent
Pande et al.

(54) SYSTEMS, METHODS AND COMPUTER
PROGRAM PRODUCTS FOR
LEAKAGE-PROOF PROGRAM
PARTITIONING

(75) Inventors: Santosh Pantle, Norcross, GA (US);
Tao Zhang, Atlanta, GA (US); Andre
Dos Santos, Cunnning, GA (US);
Franz Josef Bruecklmayr, Kaufering
(DE)

(73) Assignees: Georgia Tech Research Corporation,
Atlanta, GA (US); Infineon
Technologies AG, Munich (DE)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 277 days.

(21) Appl. No.: 10/454,037

(22) Filed: Jun. 4, 2003

(65) Prior Publication Data

US 2004/0073898 Al Apr. 15, 2004

Related U.S. Application Data

(60) Provisional application No. 60/385,713, filed on Jun.
4, 2002.

(51) Int. Cl.
G06F 13100 (2006.01)

(52) U.S. Cl. 710/33; 711/173; 713/187
(58) Field of Classification Search 711/173;

(56)

710/1, 100, 33-35, 58-61; 713/185, 187;
717/136-160

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,375,125 A * 12/1994 Oshima et al 714/38

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US007269671B2

(IO) Patent No.: US 7,269,671 B2
Sep.11,2007 (45) Date of Patent:

EP
WO
WO
WO

5,555,417 A * 9/1996 Odnert et al. 717/159
5,790,760 A * 8/1998 Arima 706/45

FOREIGN PATENT DOCUMENTS

0 811 911 A3 12/1997
0203022 Al 1/2002
0242912 Al 5/2002

WO 3102769 A2 * 12/2003

OTHER PUBLICATIONS

Emin Gun Sirer, et al., "A Pratical Approach for Improving Startup
Latency in Java Applications", Workshop on Compilier Support for
System Software and ACM Sigplan, (1999), pp. 47-55.

(Continued)

Primary Examiner-Christopher Shin
(74) Attorney, Agent, or Firm-Sutherland Asbill &
Brennan LLP

(57) ABSTRACT

Systems, methods and computer program products partition
a whole program when it does not fit in a device's memory.
Minimal, safe program partitions are downloaded from the
server on demand into the embedded device just before their
execution. Code and data of the program are partitioned such
that no information regarding the control flow behavior of
the program is leaked out. Thus, by observing the program
partitions that are downloaded from the server to the device,
an attacker is unable to guess which branches are taken in
the program and what is the control flow of the program.
This property of tamper resistance is valuable for secure
embedded devices, such as smart cards, which could hold
sensitive information and/or carry out critical computation
such as financial transactions.

Updated Data
Value(Optional)

50_)

Part1t1on
Request

"-._52

19 Claims, 14 Drawing Sheets

)

US 7,269,671 B2
Page 2

OTHER PUBLICATIONS

Zdancewic, "Untrusted Hosts and Confidentiality: Secure Program
Partitioning", Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, (2000), pp. 1-14.

Zhang, "Leakage-Proof Program Partitioning", Proceedings of the
International Conference on Compiliers, Architecture and Synthesis
for Embedded Systems, (2002), pp. 136-145.

* cited by examiner

U.S. Patent Sep.11,2007 Sheet 1 of 14

Let s0 = 1.
Fork= 0 upto w-1:

If (bit k of x) is 1 then
Let Rk = (sk*Y) mod n.

Else
Let Rk = sk.

Let sk+I = R2k mod n.
EndFor.
Return (Rw-1).

IF-part
16

FIG. 1A

Initialization

Loop Entry
14

Loop End
20

Return

ELSE-part
1.§.

FIG. 1 B

US 7,269,671 B2

~
10

~
11

U.S. Patent

Dynamic
Optimization

38

Requested 0
Partition

40_)

Sep. 11,2007 Sheet 2of14

Mobile Code Server
33

US 7,269,671 B2

Program
Partitions

36
Program

Code & Data ~-+--- Mobile
Analysis Program

Network
39

Updated Data
Value (Optional)

Device
42

50__)

34 J
32

Next
Partition
Request

_52

Execution
48

Partition Manager &
Loader/Linker

46
~---

Program
Partition

44J

'I
30

FIG. 2

U.S. Patent Sep. 11,2007 Sheet 3of14

struct CallGraphNode
{

};

BOOL visited;
BOOL non_recuning;
BOOL is_single_occurrence;
BOOL is_in_loop;
BOOL is_addr_taken;
CallGraphNode * preds;
CallGraphNode * succs;

II only one static occurrence?
II is in a loop body?
II ever assigned to a function pointer?

void find_ nonrecurring_ functions()
{

CallGraphNode *root= build_augmented_call_graph();
en_queue (root);
While (! is_queue_empty())
{

cur_node =de_ queue();
if(cur_node-7visited)

continue;
cur_ node -7 non_recurring =FALSE;
if(cur_node ==root) II root node
{

cur_node-7non_recurring =TRUE;
}
else if(cur_node-7is_single_occurence)
{

pred = cur_ node-7 preds; II single predecessor

US 7,269,671 B2

if(pred -7 non_recurring && !cur_node-7 is_in_loop && !cur_node-7is_addr_taken)
cur_node -7 non_recurring =TRUE;

}

}
cur_node -7 visited= TRUE;

for V succ E cur_node-7 succs
en_queue (succ);

'"]
60

FIG. 3

U.S. Patent Sep.11,2007 Sheet 4 of 14

YES

NO

Mark Non-Root Node ~-Y_E_s-<
As Recurring

74

72

Identify Non-Root
Node In Augmented

Call Graph

YES

NO

YES

FIG. 4

64

NO

US 7,269,671 B2

66

68

70

Mark Non-Root Node
As Non-Recurring

76

U.S. Patent Sep.11,2007 Sheet 5 of 14 US 7,269,671 B2

80

L11
L21 86

Call F1

L22 88

84
92

FIG. 5

U.S. Patent Sep. 11,2007 Sheet 6of14 US 7,269,671 B2

~
94

FIG. 6A

~
96

FIG. 68

U.S. Patent Sep. 11,2007 Sheet 7of14 US 7,269,671 B2

void partition_non_recurring_under_keep_nothing (non_recurring_function)
{

cfg =build_ function_ CFG (non _recurring_function);
dominance_analysis_identify_loop_body(cfg);

for '\/ basic_ block E cfg
{

}

II basic block has been processed?
if (is _in_ created_ safe _partitions (basic_ block))

continue;
if (is_inside_loop_body (basic_block))

ere.ate_ new _minimal_ safe _partition (get_loop _body (basic _block));
else

create_ new_ minimal_ safe _partition (basic_ block);

FIG. 7
':

100

U.S. Patent Sep. 11,2007 Sheet 8of14

void partition _recurring_ under_ keep_ nothing (recurring_ function)
{

cfg = build_function_CFG (recurring_ function);
reduced_cfg = build_reducedCFG (cfg);

for V reducedCFG _node E reduced_ cfg
create_ new_ minimal_ safe _partition (reducedCFG _node);

ReducedCFG * build _reducedCFG (CFG* cfg)
{

}

dominance_analysis_identify_loop_body(cfg);

for V basic_block E cfg
{

}

II basic block has been processed?
if(is_in_created_reducedCFG_node (basic_block))

continue;
if (is_inside _loop_ body (basic_ block))

create_ new _reducedCFG _node (get_ loop_ body (basic_ block));
else

create _new _reducedCFG _node (basic_ block);

return reduced_ cfg;

FIG. 8

US 7,269,671 B2

~
104

U.S. Patent Sep.11,2007 Sheet 9 of 14 US 7,269,671 B2

void non_dereferenced_data_partitioning (SafePartition * safe_partition)
{

for \:;/ cfg_node E safe_partition-7cfg_node_set
{

}

Instr List * instr _list= get_instr _list (cfg_ node);

for \:;/ instr E instr list
{

for (index= O; index< src_opnds_size(instr); index++)
{

}

Opnd opnd = get_src (instr, index);
VariableSymbol* var= NULL;
if (is_ variable (opnd))
{

var= get_ variable (opnd);
}
if(var)

safe_partition-7add _to_ non _dereferenced_ data _set(var);

for (index= 0; index< dst_ opnds_size(instr); index++)
{

Opnd opnd =get_ dst (instr, index);
VariableSymbol* var= NULL;
if (is_ variable (opnd))
{

var= get_ variable (opnd);
}
if(var)

safe_partition-7 add _to_ non_ dereferenced_ data_ set(var);

FIG. 9
~

108

U.S. Patent Sep. 11,2007 Sheet 10 of 14 US 7,269,671 B2

void dereferenced_data_partitioning (SafePartition * safe_partition)
{

for \:/ cfg_node E safe_partition-7cfg_node_set
{

InstrList * instr_list = get_instr_list (cfg_node);

for \f instr E instr list
{

op_code =get_ opcode (instr);
if((op_code=LOD)ll (opcode=STR)ll(opcode==MEMCPY))

{
LocationSet ** location_sets = get_location_sets (instr);

for \f location set E location sets
{

- -

int opnd_index = location_set-7get_ value(O);
if (opnd _index== -2)11(opnd_index== -3))
{

for(int index =I; index< location_set-7size(); index++)
{

int location =location_ set-7 get_ value(index);
VariableSymbol *var= location_to_ variable(location);
if (var)

safe _partiti on-7 add_ to_ dereferenced_ data_ set (var);

1
FIG. 10 110

U.S. Patent Sep.11,2007 Sheet 11 of 14 US 7,269,671 B2

MergedPartition * minimal_ safe _partitions_ merging (SafePartition *topo _ordered_ minimal_partition _Iist)
{

MergedPartition *merged _partition_ list =NULL;
MergedPartition *cur_merged_partition =NULL;
MergedPartition *prev_merged_partition =NULL;
for(cur _partition=topo _ordered_ minimal_partition _list; cur _partition;)
{

if{!cur_merged_partition) //create a new merged partition
{

}

cur_ merged _partition = new_ merged _partition();
if(prev _merged _partition)

prev_merged_partition-7next= cur_merged_partition; //chain it up
if(!merged _partition_ list)

merged _partition_ list = cur_ merged _partition; //merged partition list head

II the first case, the current minimal partition can be merged into the current merged partition
if(((cur_merged_partition-7instrs_count + cur_partition-7instrs_count) <= CODE_LIMIT) &&

}

data_size(cur_merged_partition-7data_set U cur_partition-7data_set) <= DATA_LIMIT)

cur_ merged _partition-7insert(cur _partition);
cur_partition = cur_partition-7next;
continue;

11 the second case, the minimal partition itself is too big, it will be a merged partition itself
else if(cur_merged_partition-7is_empty() &&

(cur_partition-7instrs_count > CODE_LIMIT II
cur_partition-7data_set > DATA_LIMIT))

cur_ merged _partition-7insert(cur _partition);
cur_yartition = cur_partition-7next;

II end of the current merged_yartition
prev _ merged_partition = cur_merged_partition;
cur_ merged _yartition = cur_ merged _yartition-7next;

return merged _partition_list;

~
FIG. 11 111

U.S. Patent Sep. 11,2007 Sheet 12 of 14 US 7,269,671 B2

void identify_hotJunction_set (struct CallTraceElm ** call_trace)
{

int total_misses = O;
for (int index= O; index< length(call_trace); index++)
{

struct CallTraceElm* call_trace_elm = call_trace[index];
struct HotSetElm* hotset_elm = search_in_current_hotset (call_trace_elm7called_func_id);

if(hotset_elm) II hot set hit
{

hotset _elm 7freq++;
hotset_ elm 7 last_ occurrence = index;

}
else II hot set miss
{

if(number of call trace elements scanned since last hot set eviction> MAX_ HOTSET _SIZE)

}

{
total_ misses++;
if(total_misses > MAX_MISSES_ALLOWED)
{

total_misses = O;
evict_ current_ hotset();

struct HotSetElm* new_ hotset_ elm = new_ hotset_ elm();
new_hotset_elm7freq =I;
new_hotset_elm7func_id = call_trace_elm7called_func_id;
new_ hotset_ elm7first_ occurence = new_ hotset_ elm7 last_ occurrence = index;
add _to_ current_ hotset(new _ hotset_ elm);

void evict_current_hotset(struct CallTraceElm **call_ trace)
{

for V' hotset_elm E current_hotset
{

if(hotset_elm7freq >= MIN_HIT_FREQENCY)
{

for(int index= hotset_elm7first_occurrence; index<=hotset_elm7last_occurrence; index++)
{

}

struct CallTraceElm * call_ trace_ elm= call_trace[index];
struct FunctionSet * to_ be_ cached_ function_ set = get_ to_ be_ cached

(call_ trace_ elm7calling_ func _id, call_trace _ elm7calling_ BB _id);
to_ be_ cached_ function_ set7add _function(hotset_ elm7called _ func _id);

FIG. 12
)

112

U.S. Patent Sep.11,2007 Sheet 13 of 14 US 7,269,671 B2

call foo()

116

~
call foo2() 114

FIG. 13A

121 122

call foo() call foo2()

123

\
call foo3() 120

FIG. 138

U.S. Patent Sep.11,2007 Sheet 14 of 14 US 7,269,671 B2

void determine_ additional_ call_ neededO
{

Iteratively do the following until the state is stable:

for 'If basic_ block E program control flow graph
{

CallSite* p = basic_block~get_call_siteO;
//normal case, we have to ask the runtime environment to find out the difference
if(p) p-7need_update_call =TRUE;
II the exit_ cached _in_ runtime function set of all the predecessors during runtime can be determined
II statically and they all have the same function set
if (for any predecessor pred ofbasic_block, pred-7exit_determinable ==TRUE &&

pred-7exit_cached_in_runtime is same as that of other predecessors)

//we know at the entry of the basic block, the cached set in runtime is guaranteed to be
II basic_ block-7entry_ cached _in_runtime
basic_block~entry_determinable =TRUE;
basic_ block-7entry _cached _in_ runtime= pred-7exit_ cached _in_ runtime;
if(p)
{

//if to-be-cached set at pis same as entry_cached_in_runtime, no update is needed
if(p-7to _be_ cached== basic _block-7entry _cached _in_ runtime)

p-7need _update_ call =FALSE;
//otherwise, we can derive the difference in compile time and save runtime environment
//from computing the difference
else

p-7only_need_simple_update_call =TRUE;

else
{

basic_ block-? entry_ determinable= FALSE;

II if there is a call site, then we know the cached set at the exit of the basic block
if(p)
{

basic block-7exit determinable= TRUE;
basic= block-7exi(cached_ in_ runtime = p-7to _be_ cached;

II no call site, information passes through
else
{

basic_ block-7exit_ determinable= basic_block-7entry_ determinable;
basic_ block-7exit_ cached _in_ runtime =basic_ block-? entry_ cached _in_ runtime;

FIG. 14

)
126

US 7,269,671 B2
1

SYSTEMS, METHODS AND COMPUTER
PROGRAM PRODUCTS FOR

LEAKAGE-PROOF PROGRAM
PARTITIONING

RELATED APPLICATION DATA

2
behavior. For example, by observing timing, one may guess
that a loop is executing or by observing power consumption,
or one may guess that a lot of memory operations are going
on. This information can then be used to tamper with the
secure system. Leakage of timing or power information is a
somewhat indirect way to get information about the program
properties and an attacker might have to resort to somewhat
involved experiments to get the differential behavior. Leak­
age of control flow behavior of an application on the other

The present invention claims the benefit of U.S. Provi­
sional Patent Application Serial No. 60/385,713, filed Jun. 4,
2002, titled "Systems and Methods For Performing Leak­
age-Proof Program Partitioning For Embedded Devices",
the contents of which are hereby incorporated by reference
as if set fully herein.

10 hand, can be very dangerous and it is much simpler for an
attacker to find out the differential behavior. Even arbitrary
partitioning can introduce control flow information leakage
and present a security hazard, which is the central problem
encountered in program partitioning for tamper-resistant

FIELD OF THE INVENTION 15 devices.

The present invention relates generally to systems, meth­
ods and computer program products for partitioning pro­
grams. More particularly, the invention relates to systems,
methods and computer program products for partitioning the 20

code and data of a program to permit program partitions to
run on a memory constrained device and to ensure tamper
resistance during the downloading of the program partitions
to the device.

The potential danger of arbitrary partitioning is illustrated
with reference to FIGS. lA and lB. FIG. lA shows a basic
and naive partitioning algorithm 10, which partitions the
program into basic blocks, and FIG. lB shows a Control
Flow Diagram (CFG) 11 corresponding to the algorithm 10.
Briefly, this algorithm 10 allows fine control over down-
loading only those parts of the program which are needed
during execution.

Systems such as Die-Hellman and RSA, as are known in

BACKGROUND OF THE INVENTION

One of the important embedded devices that offer a
tamper-resistant, secure environment is a smart card. The
typical application execution scenario in smart cards
involves the data being downloaded on it in an encrypted
manner and the entire application executing inside it. This
results in an important property of tamper resistance. Since

25 the art, may include, for example, private key operations
consisting of computing R-y" mod n, where n is public and
y can be found by an eavesdropper. The attacker's goal is to
find x, the secret key. To illustrate the problem, it may be
presumed that the implementation uses the simple modular

30 exponentiation algorithm of FIG. lA which computes R=y"
mod n, where x is w bits long. The corresponding CFG 11
for this small partition of code is shown in FIG. lB.

Assuming the algorithm is used to partition a program
transmitted to a smart card, where the card side will ask for no part of an application resides outside, for an attacker,

smart card is like a black box inside which nobody knows
what is going on. In other words, one is unable to observe
application properties from outside the card offering tamper
resistance.

A big concern of new generation of smart cards is memory
resource limitation. Smart cards typically have only 8-64
KB memory which prevents large applications from residing

35 a program partition every time it needs it (i.e., it does not
cache any program partitions for memory efficiency pur­
pose), it is apparent that inside the loop body if the current
examined bit of x is 1, then the IF-part is executed (block
16). If the current examined bit ofx is 0, then the Else-part

40 is executed (block 18). The algorithm loop (blocks 14, 20)
result in a sequence of IF or ELSE blocks being transmitted
through the network. If the attacker monitors this sequence,
from its knowledge the attacker can guess whether the
respective bits ofx were O's or 1 'sand obtain the secret key

on the smart card. Typically, multiple applications spread
across multiple vendors require a high inter-operability and
need large amount of resources. Added to the resource
limitation are security related overheads which make even
lesser space available to application developers. For
example, complex encryption/decryption schemes,
advanced security and transaction protocols and various
authentication applications such as biometric codes have
large data and/or code segments and it is a major struggle to
put these features inside smart cards. This has led smart card
application domains to be very limited and customized. In
order to facilitate multi-applications and/or to fit large appli­
cations in the card, they must be broken into pieces. In other
words, the smart card memory would hold only those parts 55

of applications currently active or ready-to-execute. How­
ever, partitioning an application means that part of it will
reside outside of the card. Furthermore, application parti­
tions transmitted to the smart card could reveal the appli­
cation behavior which in tum could be used by an attacker 60

to launch a malicious attack. Thus, one must ensure that the
partitions that are downloaded to the card do not reveal
information.

45 x. The attacker need not know whether it is a IF part or ELSE
part; mere ability to differentiate IF part and ELSE part
enables the guess of key x, due to the fact that the key, or its
complement, was guessed. The attack thus utilizes the
different program partition sequences to infer the program

50 behavior.

There are many different means by which information
leakage occurs as a result of program behavior. They are 65

based on observable program properties by the attacker and
include timing behavior, power behavior and control flow

The concept behind the type of attack illustrated in FIGS.
lA and lB is similar to timing and power differential attacks.
Each method seeks to exploit information from the differ­
ences that are available to the attacker. All an attacker needs
to do is to sniff mo bile code packets from the network during
transmission, match them to the ones previously transmitted
and then try to guess the behavior from the sequence
constructed. Armed with a reasonable computing power and
a network tap, an attacker can exploit the security deficien-
cies of a system. It will also be appreciated that even if the
downloaded partitions are encrypted it such an attack is not
prevented. Typically, because a given partition and its
encrypted version will have one to one relationship, an
attacker can match encrypted versions of multiply transmit­
ted partitions, sequence them and then exploit the same
information from the encrypted sequence as she would from
the unencrypted one.

US 7,269,671 B2
3

In the illustrate example described above, it is clear that
the major problem of partitioning by basic blocks is that the
resulting partition exposes all the control flow information.
After multiple iterations of a loop, by watching the sequence
of program partitions transmitted, the attacker can know
there is a loop and which partition is loop entry, which is
loop end. The attacker can also know inside the loop body
there is an IF-ELSE structure and which is the program
partition controlling the branch. The attacker can virtually
deduce all control information of the source program, which 10

will lead to great potential security hole.

4
computers, and the like, which may benefit from increased
security and/or a decrease in the required application and
data memory.

BRIEF DESCRIPTION OF THE DRAWINGS

Having thus described the invention in general terms,
reference will now be made to the accompanying drawings,
which are not necessarily drawn to scale, and wherein:

FIG. lA shows an illustrative basic partitioning algorithm
that reveals program control flow information.

FIG. lB shows a block diagram control flow diagram of
the basic partitioning algorithm of FIG. lA.

As is apparent from the above discussion and illustrative
example, what is therefore needed are systems, methods and
computer program products for partitioning a program while
concealing control flow information such that an attacker
can not guess a program's behavior by observing the pro­
gram partitions transmitted through the network that are
downloaded to a device. What is also needed is a method and

FIG. 2 shows a block diagram illustrating a program
15 partitioning system, according to one embodiment of the

present invention.
FIG. 3 shows a C language algorithm for finding recurring

and nonrecurring functions within a mobile program,
according to one aspect of the present invention.

FIG. 4 shows a block diagram flow chart illustrating the
steps implemented by the algorithm of FIG. 3 for identifying
recurring and non-recurring functions, according to one
embodiment of the present invention.

computer program products for partitioning the code and
data of a program to permit program partitions to run on a 20

memory constrained device while ensuring tamper resis­
tance during the downloading of the program partitions to
the device.

FIG. 5 shows an illustrative safe partition comprising a
25 function call, according to an illustrative example of the

SUMMARY OF THE INVENTION
present invention.

FIG. 6A shows a control flow diagram comprising a loop,
according to an illustrative example of the present invention.

FIG. 6B shows another control flow diagram according to
30 an illustrative example of the present invention.

To facilitate the execution of sizeable programs on
devices having limited available memory, such as smart
cards, systems, methods and computer program products of
the present invention partition a whole program when it does
not fit in the devices memory. Minimal, safe program
partitions are downloaded from the server on demand into
the embedded device just before execution. The systems,
methods and computer program products partition the code
and data of the program such that no information regarding
the control flow behavior of the program is leaked out. In
other words, by observing the program partitions that are
downloaded from the server, an attacker is unable to guess
which branches are taken in the program and what is the

40
control flow of the program. This property, referred to herein

FIG. 7 shows a C language algorithm for partitioning
non-recurring functions, according to one aspect of the
present invention.

FIG. 8 shows a C language algorithm for partitioning
35 recurring functions, according to one aspect of the present

invention.
FIG. 9 shows a C language algorithm for partitioning data

in non-dereferenced data accesses, according to one aspect
of the present invention.

FIG. 10 shows a C language algorithm for partitioning
data in dereferenced data accesses to non-heap objects,
according to one aspect of the present invention.

FIG. 11 shows a C language algorithm for minimal safe
partitions merging, according to one aspect of the present

as tamper resistance, is valuable for secure embedded
devices such as smart cards, which could hold sensitive
information and/or carry out critical computation such as
financial transactions. 45 invention.

According to one aspect of the invention, systems, meth­
ods and computer program products of the present invention
partition mobile code programs for code and data in a server
side (in a system where programs are communicated from
the server side to a device), resulting in independent pro- 50
gram partitions which include both code and the data
accessed by the code. The information included in each
program partition is adequate for its execution. Mobile code
partitions are downloaded into a device, such as an embed­
ded device, one-by-one on demand. After the execution of 55
one partition completes, the next partition is requested from
the server; at the same time the updated data value may be
sent back to the server to achieve data consistency on the
server side. Furthermore, at the server side, each requested
partition may be dynamically optimized at an intermediate 60
form (IF) level before being sent to the embedded device.

FIG. 12 shows trace analysis C language algorithm for use
in function caching, according to one aspect of the present
invention.

FIG. 13A shows an illustrative example of a function call
where an updated cache function call is not required, accord­
ing to one aspect of the present invention.

FIG. 13B shows an illustrative example of a function call
where an updated cache function call is not required, accord­
ing to one aspect of the present invention.

FIG. 14 shows a C language algorithm to determine if an
updated cache function call is needed, according to one
aspect of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

It should be appreciated that although the present inven­
tion is described with respect to smart cards, it will also be
appreciated that the methods and computer program prod­
ucts of the present invention are useful for any security
and/or memory constrained devices, such as mobile or
cellular phones, personal data assistants (PDAs), handheld

The present invention now will be described more fully
hereinafter with reference to the accompanying drawings, in
which preferred embodiments of the invention are shown.

65 This invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi­
ments set forth herein; rather, these embodiments are pro-

US 7,269,671 B2
5

vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art. Like numbers refer to like elements
throughout.

6
be presented with reference to a smart card as the device 42,
it will be appreciated that the device 42 may represent any
security device or memory-limited device which receives
programs from a server 33, such as a PDA, mobile phone,
handheld computer, or the like.

According to the present invention, the mobile code
program 32 first undergoes a program code and data analysis
34. As will be described in further detail below, the program
code and analysis 34 identifies the safe program partitions
that can be downloaded from the server 33 on demand into
the device 42 just before execution of the program partitions
in the device 42. A safe program partition ensures tamper
resistance because a sequence of such partitions does not
reveal control flow information. According to an illustrative
example, if Lu L2 , ... , Ln represent a series of program
partitions transmitted from the server 33 to the device 42
using a particular program partitioning scheme and a device
cache policy (also referred to herein as a client policy), the
following sequence of program partitions as the one which

FIG. 2 shows a block diagram illustrating a program
partitioning system 30 according to one embodiment of the
present invention. It will be appreciated that the systems and
methods of the present invention are described below with
reference to block diagrams and flowchart illustrations. It
should be understood that blocks of the block diagrams and 10

flowchart illustrations, and combinations of blocks in the
block diagrams and flowchart illustrations, respectively,
may be implemented by computer program instructions.
These computer program instructions may be loaded onto a
general purpose computer, special purpose computer, or 15

other programmable data processing apparatus to produce a
mechanism, such that the instructions which execute on the
computer or other programmable data processing apparatus
create means for implementing the functions specified in the
flowchart block or blocks. 20 leaks control flow information (violating tamper resistance):

These computer program instructions may also be stored
in a computer-readable memory that can direct a computer
or other programmable data processing apparatus to function
in a particular marmer, such that the instructions stored in the
computer-readable memory produce an article of manufac- 25

ture including instruction means that implement the function
specified in the flowchart block or blocks. The computer
program instructions may also be loaded onto a computer or
other progranmiable data processing apparatus to cause a
series of operational steps to be performed on the computer 30

or other progranmiable apparatus to produce a computer
implemented process such that the instructions that execute

In this sequence program partition L, appears in the
sequence followed by program partition Lk at some time, but
later, L, appears again followed by program partition Lm
which is different than Lk. If such a sequence appears, then
the attacker can guess that program partition L, might be a
control block which controls the execution path to Lk or Lm.
Therefore, it should be appreciated that a safe partition of a
program is a partition of a program which can never appear
twice in a sequence such as shown by the sequence of
partitions above. The concept of the safe partition is used by
the systems, methods and computer program products of the

on the computer or other programmable apparatus provide
steps for implementing the functions specified in the flow­
chart block or blocks. 35

present invention to partition programs transmitted to a
device 42. Furthermore, a minimal safe partition is the
smallest safe partition such that any sub partition of the
minimal safe partition will reveal sequence and thus, control
information.

Accordingly, blocks of the block diagrams and flowchart
illustrations support combinations of means for performing
the specified functions, combinations of steps for perform­
ing the specified functions and program instruction means
for performing the specified functions. It will also be under- 40

stood that each block of the block diagrams and flowchart
illustrations, and combinations of blocks in the block dia­
grams and flowchart illustrations, can be implemented by
special purpose hardware-based computer systems that per­
form the specified functions or steps, or combinations of
special purpose hardware and computer instructions.

Referring again to FIG. 2, according to the present
invention the mobile program 32 is partitioned in the server
33 for its code and data, resulting in independent program
partitions which include both code and the data accessed by
the code. Despite the partitioning, the information included

Referring again to FIG. 2, the program partitioning sys­
tem 30 includes a mobile code server 33 and a device 42.
The server 33 and device 42 communicate with each other
via the network 39. The network 39 may comprise, e.g., a
wired electrical connection, and infrared communication
path, a cellular connection, a Bluetooth wireless connection,

45 in each program partition is adequate for its execution. By
observing these program partitions downloaded to the
device 42 from the server 33, an attacker is unable to guess
which branches are taken in the program and what is the
control flow of the program. This tamper resistance property

50 is valuable for secure embedded devices, such as smart
cards, which may hold sensitive information and/or carry
out critical computation such as financial transactions.
According to one aspect of the invention, the program code
and data analysis 34 is implemented by a program partition-

or any like communication medium known to those of
ordinary skill in the art. The methods and computer program
products of the present invention operate on the mobile code
server 33 to partition mobile programs 32 such that only
partitions of the mobile program 32 are transmitted to the
memory-limited device 42. The information included in
each program partition is adequate for its execution and the
mobile code partitions are downloaded into the 42 one-by- 60

one on demand. Because the device only receives execut­
able, partitioned portions of the mobile program 32, the
device 42 can execute programs the device cannot otherwise
execute due to the limited memory of the device 42. Accord­
ing to one illustrative embodiment of the present invention, 65

the device 42 is a memory-limited tamper resistant device,
such as a smart card. Though the remaining disclosure will

55 ing algorithm (not illustrated) operable to compile C and
C++ mobile programs.

After the program partitions are identified, the server 33
partitions the program into multiple program partitions 36.
The partitioning may also be implemented by the program
partitioning program. After the partitions are generated, the
partitions are dynamically optimized 38 such that a minimal
number of safe program partitions are combined while still
ensuring that the combined partitions do not reveal infor­
mation regarding the control flow behavior of the program
when they are transmitted to the device 42. The merging of
partitions is discussed in detail with reference to a merging
algorithm, below. It should be appreciated that combining

US 7,269,671 B2
7

partitions minimizes the number of transmissions from the
server 33 to the device 42. From the memory utilization
point of view, it is preferred that the safe partition be as small
as possible, or a minimal safe partition. However, because
transmitting a number of small code snippets through a
network at runtime may lead to very low efficiency, adjacent
minimal safe partitions may be combined into a larger one
and the result will still be safe in that the transmission of the
partitions to the device 42 will not result in control flow
information leakage.

Dynamic optimization, which may also be performed by
the program partitioning program, can also query the device

10

42 to determine its memory requirements or cache policies
such that the appropriate number and size of partitions are
transmitted to the device 42. It will be appreciated that in 15

partitioning a program to prevent control flow information
from being discoverable as program partitions are transmit­
ted from the server 33 to the device 42, it is important that
the systems, methods and computer program products of the
present invention select only those safe partitions that will 20

not leak program control flow information by observation of
their sequence when transmitted at a client's request. Safe
partitioning according to the present invention is based not
only on how a program is divided and transmitted, but also
on how and when those partitions are sent via the network 25

39 to the device 42. Because what is transmitted to the
device 42 depends on the cache policy of device 42 (e.g.,
whether to cache whole or part of incoming program parti­
tions or not), it will be appreciated to those of skill in the art
that safe program partitioning depends both on how to 30

divide the program and on client policy of managing parti-
tions.

8
embedded program finishes execution. This policy is the
least memory efficient one and puts highest memory burden
on the client device. Even if a program partition will never
be accessed again in the future, the device has to keep it in
its local memory, wasting precious memory resource in
embedded devices. However, because the device perma­
nently stores program partition, this policy does not raise
significant security concerns because program partitions
need not be transmitted to the device more than once.

Under 'Keep Nothing Received', a device will discard the
program partition immediately after its execution. This
policy puts least memory burden on client device because
the device only needs to keep a single program partition
currently executing. This policy may be applied in the
situations where client's memory is very limited. Because
client will keep nothing, every program partition must be
retransmitted when it is needed.

Under the third policy, 'Keep Partitions To Which Control
Is Guaranteed To Return', a device will keep the safe
partitions which control is guaranteed to return back. For
examples of such partitions, consider a basic block contain-
ing a function call. Under this policy, after the function call,
the control is guaranteed to return back to the calling basic
block which is kept in memory under this policy. This policy
places much less memory burden on client device than keep
everything received policy because it only keeps partitions
which will be definitely accessed again in the future.

Next, program partitioning algorithms according to the
present invention will be considered. These partitioning
algorithms partition the code and data of the program such
that no information regarding the control flow behavior of
the program is leaked out.

According to one aspect of the present invention, systems,
methods and computer program products of the present

According to one aspect of the invention, the requested
mobile code partitions 40, 44 are downloaded into the device
42 one-by-one on demand. According to one aspect of the
present invention, at the server side, each requested partition
might be dynamically optimized at an intermediate form (IF)
level before being sent to the embedded device. Because the
program partitions are not transmitted in assembly code, the
communication between the server 33 and device 42 can
occur faster than otherwise possible if the partitions are
transmitted in native code, such as binary form, which may

35 invention implement a program partitioning algorithm
applied to each function of a mobile program. Thus, accord­
ing to one embodiment of the invention, the program par­
titioning is applied on a function by function basis. Con­
tinuing with the illustrative embodiment in which the device

be several times larger than the intermediate form.

40 is a smart card, functions, which are well known in the art,
may be transmitted to the smart card with data suitable for
the smart card to execute the function. The smart card will
then execute the function, returning a response to the server

Upon receiving a partition, the device 42 executes its
partition manager and loader/linker 46, which determines 45

the correct destination for the partition. The partition man­
ager 46 therefore resolves the partitions and registers their
locations in memory. After executing a program 48, the
device 42 communicates any required results, or updated
data values 50, back to the server 33. Because the device 42 50

may not update data values each time a partition is executed,
the updating of data values is optional. After execution 48
the device 42 may transmit a next transmission request 52 to
the server to request the next partition required to execute a
function. 55

which provided the function. As described above, control
information leakage comes from repeatedly sent partitions
from server. Therefore, whether a function is capable of
being invoked multiple times during a program run is critical
to tamper-resistant partitioning algorithm.

Because retransmission of a program partition (or a
function) will result in the possibility of control flow infor­
mation leakage, methods and computer program products of
the present invention classify functions as non-recurring and
recurring functions. Only after this classification occurs can
the partitioning of a program occur.

Non-recurring functions are those functions that will be
called at most once during the program execution. As such,
the functions need not be transmitted to the device multiple
times for a program to execute. An illustrative example of a
non-recurring function is the main function in C language

As noted above, tamper resistance is affected both by
program partitioning methods or techniques and a client's
caching policies because together these determine the par­
titions that are transmitted through the network. Systems,
methods and computer program products of the present
invention may function to download partitions to a device
operating under any of three separate device cache policies:
(1) 'Keep Everything Received'; (2) 'Keep Nothing
Received'; and (3) 'Keep Partitions To Which Control Is
Guaranteed To Return'.

60 because it occurs only once in a C program. Other examples
of non-recurring functions include program initialization
functions and finalization functions. On the other hand,
recurring functions are those functions which may be called
multiple times. These raise a clear and significant concern of

Under 'Keep Everything Received', a device will keep
every program partition the server sends to it until the

65 control flow information leakage which the systems, meth­
ods and computer program products of the present invention
seek to eliminate.

US 7,269,671 B2
9

According to the present invention, a simple static pro­
gram analysis reveals whether a function is recurring or
non-recurring. An algorithm 60 implementing such an
analysis, in C language, is illustrated in FIG. 3. According to
one aspect of the invention, the algorithm 60 comprises at
least a portion of the program partitioning algorithm
executed by the server 33. As shown in the algorithm 60, an
augmented program call graph, as is well known in the art,
is first built. Each node in the call graph is augmented by
three pieces of information: (1) whether the function has 10

only one static occurrence; (2) whether the function is ever
called in a loop body; and (3) whether the address of the
function is ever assigned to a function pointer. A breath first
traversal of the augmented call graph then occurs.

The function of the algorithm 60 is illustrated in block 15

diagram form in the flow chart of FIG. 4. The flow chart
illustrates that after an augmented call graph is constructed,
a non-root node in the augmented call graph is identified
(block 64). As shown in FIG. 4, each non-root node is then
subjected to a series of queries to determine if the non-root 20

node is non-recurring. First, the algorithm determines ifthe
non-root node has only one static occurrence (block 66). If
not, the non-root node is marked as recurring (block 72).
Otherwise, the algorithm determines ifthe non-root node is
within a loop body (block 68). If so, the non-root node is 25

marked as recurring (block 72). If not, the algorithm next
determines ifthe non-root node's unique calling function is
a non-recurring one (block 70). If not, the non-root node is
marked as recurring (block 72). Otherwise, the algorithm
determines whether the non-root node's function is assigned 30

to a function pointer (block 74). If so, the non-root node is
marked as recurring (block 72). Otherwise, the non-root
node is marked as non-recurring (block 76). Finally,
although not illustrated, each non-root node follows this
series of inquiries, and each is marked as either recurring or 35

non-recurring using this process.

10
The minimal safe partitions are each basic program block,
and the server can simply send out, using the program
partition algorithm, each program partition the client
requests.

On the other hand, the program partitioning algorithm
must prevent partitions from being retransmitted under both
the 'Keep Nothing Received' and 'Keep Partitions To Which
Control Is Guaranteed To Return' policies. The reason for
this is that partitions may be transmitted regularly and
multiple times under each of these policies due to the fact
that the device memory does not retain a permanent copy of
all program information it needs to execute under all con­
ditions. Before the partitioning algorithms implemented by
the present invention for each of these policies are discussed,
the effect of function calls to tamper-resistant program
partitioning should be briefly addressed so as to make clear
the purpose and function of the partitioning algorithms of
the present invention.

A sample function call within a safe partition is illustrated
with respect to FIG. 5. As shown in FIG. 5, in safe partition
Lu 80, there is a function call F 1 82. The function body 92
of F 1 82 is shown on the right hand side of FIG. 5. When a
client device encounters the function call, it will ask for the
safe partitions of function F 1 82 and it will discard safe
partition Lu 80 to maximize the available memory for the
incoming program partitions under the 'Keep Nothing
Received' policy. When the execution of function F 1 82 is
complete, the control will return to Lu 80. The client then
has to request the retransmission of Lu 80. Therefore, the
resulting partition sequence sent through network is:

... , Lu 80, L21 86, L22 88, L23 90, Lu 80, L12 84.

Lu 80 is followed by L 21 86 and L 12 84 respectively. This
violates the strict tamper resistance definition due to the fact
that Lu can be noted as a possible control partition. Thus, it
will be appreciated that a function with a function call
cannot be partitioned under the 'Keep Nothing Received'
policy. A similar result occurs under the 'Keep Partitions To
Which Control Is Guaranteed To Return' policy. Neverthe­
less, Lu 80 is not a control block which controls the branch
to L21 86 or L12 84 and from the above sequence, an attacker
can not get any correct control flow information inside a
function. In a worst case scenario, an attacker may know
there is a function call in Lu and L 21 , L 22 , L 23 consist of the
function body. However, under both the 'Keep Nothing
Received' and 'Keep Partitions To Which Control Is Guar­
anteed To Return' policies function calls do not reveal

It will be appreciated that the algorithm 60 illustrated in
FIG. 3 and represented by the block diagram flow chart of
FIG. 4 does not handle functions without static occurrence
that are not included in the augmented call graph. That is, if 40

a function has no static occurrence, the method of the
present invention will assume it is called through a function
pointer, and will be categorized as a recurring function by
default. Therefore, this algorithm 60 is a conservative one
because it does not perform pointer analysis. Rather, when- 45

ever the address of a function is assigned to a function
pointer, the algorithm 60 assumes that the function is a
recurring one. Because there are typically only a few non­
recurring functions, the conservativeness of the algorithm 60
has little impact in practice. 50

control flow information of the program as branches do, as
the block following function call is always executed assum­
ing normal return of the call. Rather, function calls simply
are manifestations of modular design and might reveal
modularity information which can not be utilized effectively

According to one aspect of the present invention, the
simple static program analysis revealing whether a function
is recurring or non-recurring is implemented by the program
partition algorithm. After dividing the partitioning problem
into non-recurring function partitioning and recurring func- 55

ti on partitioning, the program partitioning algorithm is ready

to alter control flow.

Next, methods and computer program products to parti­
tion programs under the 'Keep Nothing Received' and
'Keep Partitions To Which Control Is Guaranteed To Return'
policies will be described for partitioning a non-recurring

to partition the program. The function of the program
partitioning algorithm of the present invention will net be
discussed with respect to the three client cache policies
discussed above. 60 function and a recurring function. Because the partitioning

algorithms for partitioning non-recurring and recurring
functions are the same for both the 'Keep Nothing Received'
and 'Keep Partitions To Which Control Is Guaranteed To

First, under the 'Keep Everything Received' policy, a
client device will keep every partition it receives. Thus,
every partition of the program will be sent through the
network at most once. As such, there is no potential danger
that the control leakage will occur because it only occurs 65

from repeatedly transmitted partitions. Therefore, arbitrary
partitioning can occur and the transmission will remain safe.

Return' policies, the partitioning algorithms for each policy
will be considered simultaneously.

Referring now to non-recurring functioning partitioning,
the present invention will not partition a loop body, where a

US 7,269,671 B2
11

loop occurs when two or more separate part1t10ns may
follow a particular partition. FIG. 6A shows a CFG 94
including a loop, according to an illustrative example of the
present invention. The loop comprises partitions Bu B2 , B3

and B4 . Because B1 can be followed by either B2 , B4 or by
B3 , B4 , it will be appreciated that the partitions which
comprise the loop must remain together, or control flow
information may be accessible. As a result, methods and
computer program products of the present invention, and in
particular, the program partition algorithm, maintain loop
bodies together (i.e., the partitions comprising the loops) for
transmission to a device.

AC language algorithm 100 for partitioning non-recur­
ring functions is illustrated in FIG. 7, according to one
embodiment of the present invention. Although the algo­
rithm 100 is directed to devices operating under a 'Keep
Nothing Received' policy, the same algorithm 100 is appli­
cable to devices operating under the 'Keep Partitions To
Which Control Is Guaranteed To Return' policy. The algo­
rithm 100 creates minimal safe partitions using the rules set
forth above. According to one aspect of the present inven­
tion, the algorithm 100 may be implemented by the program
partitioning algorithm. Applying the algorithm 100 to the
illustrative example of FIG. 6A, the minimal safe partitions
should be Ll={B 1 , B2 , B3 , B4 } and L2={B5 }. The program
partition execution sequence is given by L1 , L2 but the
sequence sent through the network is Lu L2 , which is
tamper-resistant. It will be appreciated by those of skill in
the art that the device may not require all of the partitions in

12
For the CFG 96 of FIG. 6B, the server will predetermine a
topological sequence for example R1 , R2 , R3 , R4 , Rs- In
runtime, the server always sends out this sequence to the
client regardless of control flow. Among the program parti­
tions sent, there are d=y safe partitions. For example, if
the real execution path is R1 , R2 , R5 , then R3 , R4 are dummy
partitions.

It will be appreciated that the partitioning algorithms
described above with respect to FIGS. 7 and 8 provide the

10 safest minimal partitions. According to a less preferred
embodiment of the present invention, safe, but not neces­
sarily minimal, partitions may also be identified. To execute
such a partition, the following steps may be taken to
partition a main program into safe regions: (1) locate each

15 loop entry and loop exit, and take the union of the nodes as
a safe region; and (2) make the other basic blocks in the loop
body, but not in the first safe region, the second safe region.
These steps are similar to the partitioning of non-recurring
functions described above, but do not ensure minimal par-

20 titians. Additionally, the following steps may be imple­
mented to partition a procedure body: (1) create reduced
CFG for the procedure body; (2) because the entry node of
the reduced CFG for that procedure is a minimal safe region
itself, set last minimal safe region to this safe region; (3) for

25 all the successors of the reduced nodes in the last minimal
safe region: if all the predecessor nodes of a particular
successor node have been processed, add this successor
node to the current minimal safe region, else do nothing. (4)

L1 to execute a desired function. For instance, the device 30

may follow the flow of sub-partitions B1 , B2 and B4 , in
which case partition B3 is not needed for execution. How­
ever, this partition is transmitted to the device to maintain
tamper resistance, as not including it may require its retrans­
mission to the device violating tamper resistance. 35

after all the successor nodes have been processed, set last
minimal safe region to current minimal safe region; and (5)
repeat steps 3 and 4 until the exit node of the reduced CFG
has been processed. These steps are an alternative to, but
similar to the partitioning of recurring functions described
above, but do not ensure minimal partitions.

As noted above, each of the algorithms discussed herein
may be implemented by the program partitioning algorithm
within the server 33. Therefore, the program partitioning
algorithm can effectively identify recurring and nonrecur­
ring functions within a mobile program, and can partition the
mobile program according to the methods set forth above.
Given the cache policy of a device, the program partitioning
algorithm can also transmit the appropriate partitions to a
client device.

Although the partitioning of programs has been described
in detail, it will be appreciated that another aspect of the
present invention is in the partitioning of data. It will be
appreciated that memory-limited devices such as smart cards
contain not only limited memory available for executing
programs, but also limited memory for storing data. There-

Next, methods and computer program products for par­
titioning a recurring function will be discussed. Like the
partitioning of a non-recurring function, a recurring function
having a loop therein ay result in control flow information
leakage during transmission of the partitions from a server 40

to a device. Therefore, the same rule applies that a loop-body
camiot be partitioned. A C language algorithm 104 for
partitioning recurring functions is illustrated in FIG. 8,
according to one embodiment of the present invention.
Although the algorithm 104 is directed to devices operating 45

under a 'Keep Nothing Received' policy, the same algorithm
104 is applicable to devices operating under the 'Keep
Partitions To Which Control Is Guaranteed To Return'
policy. The algorithm 104 creates minimal safe partitions
using the rules set forth above and can be implemented by
the program partitioning algorithm executing in the server.

50 fore, the systems, methods and computer program products
of the present invention and described above with respect to
program partitioning may also be used to effect data parti­
tioning. In particular, using the present invention the server
33 may transmit only the data required for use by the device

It will be appreciated that the partitioning algorithm 104
for recurring functions is virtually same as the algorithm 100
for non-recurring functions, but the runtime behavior of the
server side is different. For non-recurring functions, a server
according to the present invention simply sends the safe
partitions as requested by the client. But for recurring
functions, the server will send a predetermined safe partition
sequence which includes all the reduced nodes in the recur­
ring function. However, this sequence cannot be an arbitrary
sequence. FIG. 6B shows CFG partition sequence 96
according to another illustrative example of the present
invention. For example, in FIG. 6B, R2 should not be
transmitted before R1 . Rather, the sequence corresponds to
one of the topological order of the reduced graph nodes. Due
to acyclic nature of the reduced graph and topological order
imposed on the sequence, the sequence is tamper-resistant.

55 42 to execute a current algorithm. To run program partitions
on the client side, the data needed by the code partitions is
required. Rather than transmitting the sending the whole
data segment plus stack and heap of the program, which is
very inefficient, methods and computer program products of

60 the present invention only send the data accessed by the
particular code partitions.

The data accesses of a partition of code can be divided
into three categories: (1) non-dereferenced data accesses,
which corresponds to direct accesses to locally defined

65 variables in stack and globally defined variables in data
segment (no pointer dereference is involved); (2) derefer­
enced data accesses to non-heap objects, in which a pointer

US 7,269,671 B2
13

can point to an object residing in stack or program data
segment. Those objects are statically defined and allocated
in the program so accurate points-to information statically
for such objects are identifiable; and (3) dereferenced data
accesses to heap objects: a pointer pointing to a heap object.
Heap objects are allocated and freed dynamically. Algo­
rithms 108, 110 for partitioning data in the first two catego­
ries above are illustrated, respectively, in FIGS. 9 and 10.
Like the algorithms considered above, these algorithms may
be implemented by the program partitioning algorithm such 10

that the program partitioning algorithm can effectively par­
tition both a program and the data necessary to operate a
partitioned program. It should be appreciated that the third
category, dereferenced heap accesses, is preferably managed
independently by the client device because of the complexi- 15

ties associated with extracting accessed heap objects.
Next, an additional method of the present invention, the

merging of safe partitions, will be explained in detail. Like
the above methods, which may be implemented by computer
program products, and more specifically, the program par- 20

titioning algorithm, the methods of merging safe partitions
also occurs within the server 33. The merging of safe
partitions may also be implemented by the program parti­
tioning algorithm.

The algorithms disclosed above illustrated how the 25

present invention is operable to identify minimal safe par­
titions under different device cache policies. According to
the tamper-resistant partitioning algorithms described
herein, a function body is partitioned into multiple safe
partitions in such a way as to guarantee that during every 30

invocation of the function, the sequence of safe partitions
sent is identical, so as to eliminate the leakage of program
control information from the differential of sequences of
program partitions. Thus, the sending sequence of the safe
partitions during a program execution is actually predeter- 35

mined and fixed, and every time the same sequence will be
transmitted. Because of this important property, adjacent
safe partitions may be merged into a larger one while not
compromising tamper resistance.

14
Finally according to yet another aspect of the present

invention, systems, methods and computer program prod­
ucts of the present invention can further optimize the ability
of a device having inadequate memory to store program
functions. In particular, in the absence of any mandatory
requirement to keep partitions in memory, a rather large
overhead may be incurred to fetch the needed partitions
from the server every time they are needed. For instance,
where the device and server communicate via a cellular
network, these communications may become expensive.
Even with safe partitions merging, a huge communication
and downloading overhead can result. To reduce runtime
overheads, the present invention can implement function
caching in the client device. Function caching will enable a
client to leave a part of memory dedicated for caching a set
of functions. When the cached function is called again, client
will not request it from the server but will fetch it from local
memory directly. Which function(s) should be kept in the
client memory at a given program point may be determined
statically by the program partitioning algorithm, which is
also referred to hereinafter as the compiler. A static solution
is preferred because a dynamic cache eviction algorithm on
a client side device is expensive.

The framework of the function caching mechanism of the
present invention consists of three steps: (1) program instru­
mentation; (2) hot function set identification and optimiza­
tion; and (3) compilation/runtime environment support. In
particular, certain sets of functions, or hot function sets, are
regularly called by a program during a period of time.
Function caching identifies the hot function set at each call
site. The hot function set for each call site is decided
statically and fixed during program run. For each user­
defined function call, instructions dump out the ID of the
calling function, the ID of the calling basic block, the ID of
the called function. In this way, a trace is generated with the
information of which function is called at which program
point. After obtaining the function call trace, methods and
computer program products of the present invention are
operable to capture patterns in the trace. Hot functions are

Merging multiple partitions reduces the transmission time
for downloading programs to the device. Minimal safe
partitions create inefficiencies due to the fine granularity
during execution. In order to alleviate this problem, the
present invention provides a novel solution that is scalable

40 those functions whose IDs are in high frequency patterns
over a certain period.

to the amount of available data and code memory on the 45

device. This is achieved by merging adjacent minimal safe
partitions under the memory capacity constraint. It is shown
that doing so does not violate the tamper resistance property.

The merging algorithm (e.g., implemented by the pro­
gram partitioning algorithm or a separate merging algorithm 50

within the server) is guided by resource limitations of the
device's code size limit and data size limit. Therefore, the
merging algorithm takes the original minimal safe partitions
and the device's code size limit and data size limit as an
input. The merging of code partitions then occurs to ensure 55

that a merged partition, which is the sum of multiple
partitions, will not exceed the device's memory resources.
Additionally, this merging can occur for both code and data.
Therefore, the result of data merging is the union of refer­
enced data. To effect merging, methods of the present 60

invention find a partition of items so that the number of
partitions is minimum under two conditions: (1) the partition
can not reorder the items; and (2) if a single original item has
exceeded resource limit by itself, it is not merged with other
items. FIG. 11 shows an algorithm 111, according to one 65

embodiment of the present invention, for minimal safe
partitions merging.

The trace analysis algorithm then divides the lifetime of
a hot function set for a trace region into three phases. For
each phase, a different strategies may be applied as follows:

(1) Hot set growing and stabilizing. In this phase, a new
hot set is being built and maybe not all the hot functions
in this region have been included in the hot set. In this
phase, the algorithm allows the current hot set to grow
without interference. When the length of calling trace
scanned exceeds the predefined maximum size of a hot
set, current hot set enters maintaining phase.

(2) Hot set maintaining. In this phase, hot set for this
region has been built up. The function calls that follow
are supposed to exhibit a hit in the hot set. During this
phase, the total hot set misses since the hot set was built
up are counted. If the misses exceed the predefined
maximum misses allowed, current hot set enters dis­
carding phase.

(3) Hot set discarding. Hot set enters this phase because
hot set misses are observed which are indications of the
hot set transition point. Once upon a hot set enters this
phase, the functions in the hot set are evicted and if the
hit count of a function is greater than or equal to a
predefined minimum hit frequency, the region currently
examined will be guided to cache this function. A
frequency check is executed to get rid of the noises in
the hot set.

US 7,269,671 B2
15

There are several control parameters in the trace analysis
algorithm. By increasing the max hot set size longer patterns

16
there is no way to know which set is cached currently in
runtime, so an updated cache function call is needed. FIG.
14 shows a C language algorithm 126 to determine if an
undated cache function call is needed, according to one
aspect of the present invention.

After identifying the compiler guided function set to be
cached at each call site, the compiler can derive the memory
requirement of the program. It will first guarantee the hot
functions memory requirement at each call site to achieve

in the trace may be discovered while at the same time taking
risk to introduce noise and combine multiple hot sets into
one. Max misses allowed has a similar effect to max hot set
size. Minimum hit frequency is a guard to filter noise in the
hot set and to ensure the hot functions found are hot enough.
Different programs show different calling trace behavior.
These parameters allow us to find a per application balance
between performance and memory requirement easily. The
C language algorithm 112 of FIG. 12 shows the trace
analysis algorithm in a high-level view.

The hot function set at each call site is the function set to

10 good performance, then it will examine the maximum size
of minimal safe partitions as seen when a specific hot set is
active. It takes the sum of these two as compiler recom­
mended memory allocation size at a specific call site.

As is disclosed herein, the present invention provides be cached at that point. The to-be-cached set might be
different from one point to another. Compilation and runtime
environment support is necessary to enable hot function set
transition. During compilation of the mobile code program,
our compiler inserts a function call update_cached_function
(int current_func_id, int current_BB_id) just before a user
defined function call when necessary. Such a function call is
necessary unless statically compiler can establish the fact
that in runtime, currently cached function set at the call site

15 efficient and tamper-resistant program partitioning for
secure embedded devices (such as smart cards). The present
invention provides tamper resistance in the transmission of
programs to devices because there are no observable differ­
entials in the sequences of program partitions sent through

is equal to the function set to be cached. Whether the two
sets are equal might be unknown at a join node due to
different sets being in cache on different edges of the join.
The mobile program requests the runtime environment to
update the cached functions through the inserted function
call. When the runtime environment loads a program, it also
loads a map of call sites to their corresponding hot function
sets. When it receives a request, it will compare the corre­
sponding hot function set for current call site with the
functions currently cached, find out the functions to be
cached but not locally available, then ask for them from
server.

20 the network. The different policies of caching partitions in
the device receiving program partitions impacts tamper­
resistant program partitioning techniques and the perfor­
mance of the device in executing functions (including
memory requirements inside the device and the speed of

25 execution of a program application). The partitioning algo­
rithms of the present invention can partition applications
into very fine-grained pieces. However, because runtime
performance may be degraded if partitioning is performed
without further optimizations, merging of safe partitions and

30 function caching are two optimizations to reduce runtime
overhead encountered due to program partitioning.

Many modifications and other embodiments of the inven­
tions set forth herein will come to mind to one skilled in the
art to which these inventions pertain having the benefit of the

It will be appreciated that the hot function set to be cached 35 teachings presented in the foregoing descriptions and the
associated drawings. Thus, it will be appreciated by those of
ordinary skill in the art that the present invention may be
embodied in many forms and should not be limited to the
embodiments described above. Therefore, it is to be under-

at each call site is known as a result of the trace analysis
algorithm. However, each call site potentially has different
hot function set. To dynamically change the current cached
function set to the function set to be cached at a particular
call site, an updated cache function call may compute the
change. This function may be implemented by the program
partitioning algorithm. Preferably, the call occurs just before
each user-defined procedure call and will introduce some
runtime performance overhead. On the other hand, if the
compiler can guarantee that the current cached function set 45

is equal to the function set to be cached, the inserted updated
cache function call is unnecessary to improve performance.
Moreover, according to one aspect of the present invention,

40 stood that the inventions are not to be limited to the specific
embodiments disclosed and that modifications and other

if two hot function sets are not equal, it is possible to utilize
a simpler version of the call which provides the difference to 50

runtime environment explicitly so that runtime environment
doesn't need to compute the difference itself, resulting in
lower cost. An illustrative example is illustrated in FIG.
13A.

In the example 114 of FIG. 13A, in basic block B1 115, 55

there is a function call foo(). To be cached set is f1 , f2 , fy
The only predecessor of basic block B2 116 is B1 . So when
program runs to B2 , 116, it is guaranteed that the control
comes from B1 115. As such, it is known that the current
cached set is { fu f2 , f3 }. It is same as the to-be-cached set 60

at function call site foo2(). Therefore, an updated cache
function call to change the cached function set is not
required. FIG. 13B shows an example where an updated
cache function call is needed. In this example, block B3 123
has two predecessors, block B1 121 and block B2 122. The 65

current cached function set will be different depending on
the control comes from which predecessor. Thus, statically

embodiments are intended to be included within the scope of
the appended claims. Although specific terms are employed
herein, they are used in a generic and descriptive sense only
and not for purposes of limitation.

That which is claimed:
1. A method of transmitting a program to a device,

comprising:
analyzing a program to identify one or more executable

functions in said program;
determining whether each of the one or more executable

functions is a recurring or non-recurring function,
wherein a non-recurring function is executed only once
during operation of the program, and wherein a recur­
ring function is executed more than once during opera­
tion of the program;

partitioning the program into a plurality of program
partitions based at least in part on the determination of
whether each of the one or more executable functions
is a recurring or non-recurring function; and

transmitting the plurality of program partitions to the
device, wherein each of said plurality of program
partitions are transmitted to the device only once to
avoid revealing control flow information of said pro­
gram during the transmission.

2. The method of claim 1, wherein analyzing said program
is implemented by computer program code.

US 7,269,671 B2
17

3. The method of claim 1, wherein partitioning the pro­
gram into the plurality of program partitions is implemented
by computer program code.

4. The method of claim 1, further comprising merging at
least two of said plurality of program partitions to generate
a merged program partition.

5. The method of claim 4, further comprising determining
a memory capacity of the device prior to merging at least
two of said plurality of program partitions to generate the
merged program partition.

6. The method of claim 4, further comprising transmitting
said merged program partition to the device.

10

18
wherein each of said plurality of program partitions
are transmitted to the device only once to avoid
revealing control flow information of said program
during the transmission.

12. The computer program product of claim 11, further
comprising computer readable program code means for
merging at least two of said plurality of program partitions
to generate a merged program partition.

13. The computer program product of claim 12, further
comprising computer readable program code means for
identifying the memory capacity of the device prior to
merging at least two of said plurality of program partitions.

14. The computer program product of claim 12, further

7. The method of claim 1, wherein partitioning the pro­
gram into a plurality of program partitions comprises par­
titioning the program into a plurality of program partitions
based at least in part on the identification of one ore more
minimal safe partitions, wherein at least one of the one or
more minimal safe partitions comprises two or more execut­
able functions that form a program loop.

15 comprising computer readable program code means for
transmitting said merged program partition to the device.

8. The method of claim 7, wherein each of the minimal 20

safe partitions are transmitted in a fixed sequence to the
device during execution of a recurring or non-recurring
function.

9. The method of claim 7, further comprising merging at
least two of said minimal safe program partitions to create 25

a safe merged program partition.
10. The method of claim 1, further comprising reserving,

in said device, memory allocated for caching at least one of
said plurality of program partitions.

11. A computer program product for partitioning a pro- 30

gram for transmission to a device, said computer program
product comprising:

a computer usable medium having computer-readable
code means embodied in said medium, said computer­
readable code means comprising:
computer readable program code means for analyzing

a program to identify one or more executable func­
tions in said program;

35

computer readable program code means for determin­
ing whether each of the one or more executable 40

functions is a recurring and or non-recurring func­
tion, wherein a non-recurring function is executed
only once during operation of the program, and
wherein a recurring function is executed more than
once during operation of the program; 45

computer readable program code means for partition­
ing the program into a plurality of program partitions
based at least in part on the determination of whether
each of the one or more executable functions is a
recurring or non-recurring function; and

computer readable program code means for transmit­
ting the plurality of program partitions to the device,

50

15. The computer program product of claim 11, wherein
the computer readable program code means for partitioning
the program into a plurality of program partitions comprises
computer readable program code means for partitioning the
program into a plurality of program partitions based at least
in part on the identification of one ore more minimal safe
partitions, wherein at least one of the one or more minimal
safe partitions comprises two or more executable functions
that form a program loop.

16. The computer program product of claim 15, wherein
each of the safe partitions are transmitted in a fixed sequence
to the device during execution of a recurring or non­
recurring function.

17. The computer program product of claim 15, further
comprising computer readable program code means for
merging at least two of said minimal safe program partitions
to create a safe merged program partition.

18. The computer program product of claim 11, further
comprising computer readable program code means for
reserving, in said device, memory allocated for caching at
least one of said plurality of program partitions.

19. A method for optimizing the performance of a device,
comprising:

analyzing a program to identify at least one recurring and
at least one non-recurring function in said program; and

using the identification of said recurring and non-recur­
ring functions to partition the program into a plurality
of program partitions; and

transmitting to the device a request that the device
memory be divided into ideal code and data segment
components for receiving the plurality of program
partitions.

* * * * *

