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Abstract Trajectory optimization precisely scanning

an irregular terrain is a challenging problem since the

trajectory optimizer needs to handle complex geome-

try topology, vehicle performance, and a sensor spec-

ification. To address these problems, this paper intro-

duces a novel framework of a multi-UAV trajectory op-

timization method for an aerial imaging mission in an

irregular terrain environment. The proposed framework

consists of terrain modeling and multi-UAV trajectory

optimization. The terrain modeling process employs a

Non-Uniform Rational B-Spline (NURBS) surface fit-

ting method based on point cloud information result-

ing from an airborne LiDAR sensor or other sensor

systems. The NURBS-based surface model represents

a computationally efficient terrain topology. In the tra-

jectory optimization method, the framework introduces
a multi-UAV vehicle routing problem enabling UAV to

scan an entire area of interest, and obtains feasible tra-

jectories based on given vehicle performance character-

istics, and sensor specifications, and the approximated

terrain model. The proposed multi-UAV trajectory op-

timization algorithm is tested by representative numer-
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ical simulations in a realistic aerial imaging environ-

ment, namely, San Diego and Death Valley, California.
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1 Introduction

Unmanned Aerial Systems (UAS) have been adopted

in various aerial missions, such as surveillance, inspec-

tion, surveying, and 2D/3D mapping applications be-

cause of their endurance capability resulting from high

specific energy battery technologies, light weight struc-

tures, and high-efficiency propeller/actuator systems.

UAS have particularly gained much attention in aerial

imaging missions (e.g., three-dimensional mapping, build-

ing inspection, and crop-monitoring missions) due to

rapid scanning of an area of interest and high-quality

sensor systems.

To collect aerial images of an entire area of inter-

est (AOI), solving a coverage path-planning problem

is critical. This is because most current off-the-shelf

Unmanned Aerial Vehicles (UAVs) depending on their

type (i.e., fixed wing, VTOL, and quadcopter), have

limited endurance capabilities, with approximately 10

∼ 120 minutes endurance, and payload weight con-

straints [6]. Even, if a UAV carries higher payload weight,

its flight endurance tends to significantly decrease. There-

fore, the coverage path planning problem must consider

this endurance constraint more precisely to generate a

feasible coverage trajectory. The areas for agricultural

aerial imaging missions and surveillance missions are

often too large to be completed by a single UAV due
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to the endurance limitation. Hence, the coverage path-

planning problem should also handle multi-UAV oper-

ations and generate their coverage paths.

In the trajectory optimization problem, many tech-

niques/methods have been introduced for a real-time

or off-line process. These techniques can be classified

by five groups [7]: stochastic methods, roadmap meth-

ods, potential field methods, geometric methods, and

optimization-based methods. For the coverage path plan-

ning problem, a common technique is a road map method,

which is a grid-based approach, because a grid map can

be determined by an image field of view defined from

sensor specifications and a flight altitude [12].

One of the classical grid-based approaches is the

coverage path-planning using an exact cellular decom-

position method that uses a back-and-forth search tra-

jectory [12]. Because the back-and-forth search trajec-

tory cannot generate a full-coverage path in a non-

convex AOI, a cellular decomposition method is adopted

to obtain multiple small convex regions from a non-

convex AOI [1][17][26]. Based on the decomposition re-

sults, first it defines the back-and-forth search trajec-

tory in each region, and then it solves the optimal vis-

iting sequence of all the sub-regions. To determine the

flight sequence to visit all the sub-regions, a traveling

salesman problem has been implemented [12].

Another classical approach is a wavefront-based al-

gorithm that defines a coverage path based on the score

of each grid cell, which depends on the locations of

the initial point, terminal point, and any restricted ar-

eas [8][29]. This method uses a pseudo-gradient that

is computed by the neighborhood scores to select the

next visit sequence. This method is powerful because

it can generate an optimal coverage path in a non-

convex AOI. However, the wavefront-based algorithm

cannot directly solve a multi-UAV coverage path plan-

ning problem.

An alternative method is a traveling salesman prob-

lem (TSP)-based routing optimization approach that

generates a route visiting all customers’ locations from

a depot location [9]. The TSP-based approach has been

extended to handle more complex problems, commonly

referred to as a vehicle routing problem (VRP) that

generates an optimal route by minimizing a cost func-

tion (e.g., total distance, and total mission time) with

constraints. The major benefits of the VRP-based ap-

proach are that it easily constructs constraints defined

from the concept of operation and vehicle characteris-

tics, it efficiently controls design variables, and it rapidly

solves the optimization problem. Hence, a great quan-

tity of literature has applied the VRP to address UAV

coverage path-planning problems [2].

In an agriculture or disaster monitoring UAS mis-

sion, even though some scanning areas may not have

flat terrain, most UAS coverage path-planning prob-

lems solve a two-dimensional coverage problem since

their main assumption is that a trajectory is determined

on Above Ground Level (AGL) [8]. However, without

considering the elevation changes of the terrain, the re-

sult of the coverage trajectory cannot accurately ac-

count for a UAV endurance constraint, which is the

critical element to determine how many UAVs are re-

quired to complete a mission. Hameed et al. highlights

that the AGL assumption is too idealistic since the to-

tal distance of the optimal coverage trajectory can be

much shorter than the actual coverage distance depend-

ing on elevation variations [13]. Moreover, the camera

view direction based on a surface shape can minimize

image distortion. In other words, to generate a more

precise optimal coverage path, terrain topology should

be considered in the trajectory optimization problem.

The existing coverage path-planning articles using 3D

terrain geometry information mostly address inspection

missions for buildings or houses [3][15]. Few articles

have actually studied the coverage path-planning deal-

ing with terrain geometry features [6][13].

In the aerial imaging mission with a large AOI, a

single UAV is unable to scan the entire AOI because of

its short endurance caused by the limitation of battery

capacity or heavy payload weight. Therefore, some re-

search has proposed multi-UAV VRP formulations to

address the multi-UAV scanning problem. Arman Ne-

diati et al. proposed a multi-UAV VRP approach to

generate a two-dimensional coverage path for a post-

earthquake assessment, which enabled multi-tour and

multi-location coverage path-planning [20]. Avellar et

al. introduced a multi-UAV coverage VRP formulation

for a remote sensing mission. Their approach applied

the traditional VRP with practical aspects such as the

number of operators and setup time [2].

This paper presents a novel framework of a multi-

UAV three-dimensional trajectory optimization algo-

rithm to execute a coverage path-planning mission in

a large/irregular terrain environment. This is an exten-

sion of the work of a single UAV-based three-dimensional

trajectory optimization for an aerial scanning mission

[6]. The proposed approach includes the generation of

an approximated terrain model, the determination of

scanning waypoints, and the VRP-based multi-UAV tra-

jectory optimization. The approximated terrain model

applies a Non-Uniform Rational B-Spline (NURBS)-

based fitting method to capture the geometry charac-

teristics of a terrain. Using the approximated terrain

model, it obtains scanning waypoints depending on the

terrain surface topology. Then, the framework adopts a
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distance-constrained multi-vehicle routing problem to

solve the multi-UAV coverage path-planning problem.

The main contributions of this work are:

– NURBS-based terrain surface model that improves

computational efficiency

– A framework for multi-UAV three-dimensional tra-

jectory optimization that considers terrain topology

characteristics, vehicle performance, and a multi-

UAV vehicle routing problem to minimize total mis-

sion time.

This paper is organized as follows. The paper introduces

the NURBS-based surface fitting method in Section 2.1.

Section 2.2 presents the waypoints selection and view

angle determination depending on the topology char-

acteristics from the approximated model. Section 2.3

introduces the formulation of a multi-UAV vehicle rout-

ing problem to generate optimal trajectories of multiple

UAVs. Section 3 demonstrates the proposed multi-UAV

trajectory optimization algorithm with realistic exam-

ple scenarios. The conclusions are summarized in Sec-

tion 4.

2 Framework for Multi-UAV Trajectory

Optimization in an Irregular Terrain

Environment

The multi-UAV trajectory optimization problem for an

irregular terrain scanning mission is inherently chal-

lenging because the terrain is not flat, which requires
more sophisticated trajectory based on the terrain topol-

ogy and has impacts on the required flight endurance.

Therefore, the multi-UAV trajectory optimization needs

to consider terrain geometry characteristics, satisfy UAV

endurance constraints, and account for a sensor specifi-

cations. However, typical aerial coverage path-planning

problems only deal with vehicle characteristics and sen-

sor specifications, neglecting terrain topological features.

To improve the traditional coverage path-planning prob-

lem, this paper proposes a novel framework accommo-

dating three major steps summarized in Figure 1. In

the first step, the terrain model is generated by the

NURBS-based surface fitting method to create a com-

putationally efficient terrain model. In the second step,

waypoints are specified by different view angles. This

step uses terrain topology information based on the

NURBS-based surface model. In the last step, a multi-

UAV trajectory optimization is formulated which is based

on a distance-constraint and arc-based vehicle routing

problem.

NURBS-based 
approximated 
terrain model

Selection of  
scanning 
waypoints

Multi-UAV 
trajectory 
optimization

Fig. 1 Framework of Multi-UAV Trajectory Optimization

2.1 NURBS-based Terrain Modeling

Defining a simplified terrain model based on LiDAR or

optical sensor information is a difficult task because in-

herent sensor noise is inevitable, and a typical terrain

dataset includes a large amount of information. There-

fore, to address these difficulties, many terrain model-

ing methods have been introduced. Triangulation based

on terrain point cloud information is a popular tech-

nique due to its simplicity. However, because of the in-

herent noise and large dataset, the triangulation-based

approach leads to a low signal to noise ratio, which

is not efficient with respect to accurate modeling and

computational perspectives. Therefore, to resolve these

drawbacks, a interpolation-based terrain modeling is

adopted, which uses proximity points to determine a

new point location [13]. Another terrain modeling tech-

nique is Gaussian Process (GP)-based approaches [28].

One of the GP-based terrain modeling methods com-

bines with KD-Trees to handle large amounts of terrain

information [27]. The other GP-based approach uses

sparse GP-based terrain modeling, which uses pseudo-

input points and applies a variation learning method to

generate a terrain prediction model [6][25]. This sparse-

GP based terrain model enables us to generate a scal-

able terrain model, which reduces the computational

cost to O(n2m) from O(n3), the typical full-GP com-

putational cost, where n is the number of training data

points and m is the number of pseudo-input points.

However, the terrain modeling result of the GP-based

approach is highly dependent on the formulation of the

covariance function. In other words, if the shape of a

terrain is highly complex, this GP-based approach may

not precisely capture its topology features. The other

terrain modeling technique is the NURBS-based surface

fitting method. The NURBS function is a well-known

method in computer graphics fields, which generates 2D

or 3D flexible and versatile models. Thus, the NURBS-

based curve and surface modeling method has been

adopted in various areas, such as the reconstruction of

medical imaging, reverse engineering, and CAD model-

ing software [4][14]. The NURBS-based fitting method

has been successfully implemented to reconstruct a digi-

tal terrain model using a triangulated irregular network

[30]. Because of its flexibility and computationally effi-

cient characteristics, we adopt the NURBS surface fit-
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ting method to reconstruct a terrain model from point

cloud information. The fundamental mathematical for-

mulation of NURBS is described in literature written

by Piegl et al. [21]. A NURBS curve C(u) with degree

p can be defined as a piecewise rational function:

C(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

(1)

=

n∑
i=0

Ri(u)Pi, (2)

where wi is weight, and Pi is a control point. Ni,p(u)

defined as pth-degree basis function on knot vector U

can be specified by the Cox-de Boor recursion formulas,

Ni,0(u) =

{
1, if ui ≤ u < ui+1

0, otherwise
(3)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u)

+
ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (4)

where ui is a knot element, (ui ∈ U). In a similar way,

the pth-by-qth-degree NURBS-based surface model can

be expressed by two knot vectors, U and V, as follows:

S(u, v) =

∑n
i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,jPi,j∑n

i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,j

(5)

=

n∑
i=0

m∑
j=0

Ri,j(u, v)Pi,j , (6)

where Ni,p(u) and Nj,q(v) are basis functions along the

knot vectors, U and V, wi,j is a weight, and Pi,j is

a control point. Generally, there are two ways to fit a

surface: interpolation and approximation. Interpolation

constructs a surface model that passes through all the

data points [5]. Approximation allows the fitted surface

to deviate from the given data within a specified max-

imum bound [10][19]. Since the data normally gener-

ated by LiDAR or optical sensors may contain measure-

ment or computational noise, fitting through interpola-

tion will include all this noise, which is not ideal. On

the other hand, approximation with certain constraints

only captures the shape and avoids the noise. For these

reasons, the global NURBS surface approximation is

applied in this paper. In the approximation problem,

the number of control points remains unknown and is

defined by the desired accuracy. For the determination

of the number of control points, we apply a general pro-

cess proposed by Piegl et al. [21], which is described as

follows:

1. Initialize with degree one and interpolate a surface

with the maximum number of allowed control points

2. Remove as many control points as possible within a

preset error bound

3. If the desired degree hasn’t been achieved, elevate

the degree of the surface and fit a new surface model

4. Update the information of the deviation and knot

vectors and return to step 2

5. Final fit with the reduced-size knot vectors

In step 1, we initialize the knot vector and create a first

degree model by using the data points as initial control

points. The method to build the initial knot vector is

described below:

d =

n∑
k=1

|Qk −Qk−1| (7)

ū0 = 0, ūn = 1 (8)

ūk = ūk−1 +
|Qk −Qk−1|

d
k = 1, . . . , n− 1 (9)

U = {0, 0, ū1, . . . , ūn−1, 1, 1} (10)

This step measures the 3D distance between the data

points, builds a ūk vector based on it, and uses Equation(10)

to build the initial knot vector.

In step 2, a knot removal algorithm is introduced.

This knot removal technique has been widely applied

in NURBS-based surface fitting to create a surface fit-

ting model with the minimum number of control points.

Kjellander first discussed removing one knot from the

knot vector to smooth the curve [16]. Later, Farin dis-

cussed locally fairing a B-Spline curve, and Lyche et al.

discussed applying a knot removal algorithm for para-

metric splines and surfaces [11][18]. Recently, Sederberg

has applied the knot removal technique to T-Spline sim-

plification and local refinement [22]. This paper employs

the knot removal algorithm in the literature written by

W. Tiller [24].

Before going deeper into the mathematical details,

a brief introduction of the knot removal algorithm will

be given here. The knot removal algorithm aims to keep

reducing the number of control points as long as the

surface model is within some deviation bounds Γ . It

is obvious that removing one knot in the knot vector

changes the basis functions and thus has an impact on

the surface model. Therefore, the quantification of the

deviation between the original surface and the surface

after removing one knot is required. If the deviation cal-

culated by removing one knot is within the bound, this

knot will be removed from the knot vector and the devi-

ation by this process will be saved for later calculation.

On the contrary, if the computed deviation for removing

one knot exceeds the predetermined deviation bound,

that knot will be kept and flagged. If none of the re-

maining knots are removable, the resulting knot vector
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will be the shortest knot vector with bound Γ . A sur-

face model with fewer knots to represent a raw dataset

can save quite a lot of computational time. Looking

back to the quantification of the deviation resulted from

removing one knot, the following equations determine

whether one knot is removable or not. Let Bj
r represent

the distance between the new control points and the

original one in the jth curve if removing the rth knot

of the knot vector in the u direction. Tiller [24] proved

that the maximum deviation |S(u, v)− Ŝ(u, v)| between

the original surface model and the new one satisfies the

following conditions:

if (p+ s)mod 2 = 0, set k = (p+ s)/2 and

Bj
r =

∣∣Pr−k,j − αr−kP
1
r−k+1,j − (1− αr−k)P1

r−k−1,j
∣∣

where αr−k =
ur − ur−k

ur−k+p+1 − ur−k

Then |S(u, v)− Ŝ(u, v)| ≤ Nr−k,p(u)

m∑
j=0

Nj,q(v)Bj
r = ϕ1

(11)

if (p+ s)mod 2 = 1, set k = (p+ s+ 1)/2 and

Bj
r = |P1

r−k,j −P1
r−k+1,j |

Then |S(u, v)− Ŝ(u, v)|

≤ (1− αr−k+1)Nr−k+1,p(u)

m∑
j=0

Nj,q(v)Bj
r = ϕ2

with αr−k+1 =
ur − ur−k+1

ur−k+p+2 − ur−k+1
(12)

To judge whether the rth knot is removable or not,

the process checks two conditions, ϕ1 ≤ Γ or ϕ2 ≤ Γ .

If ϕ1 or ϕ2 does not exceed the error bound, it re-

moves that knot, and updates the deviation informa-

tion and the knot vector. The algorithm selects the

knot with the minimum deviation and iteratively re-

moves the knots until the accumulated deviation ex-

ceeds the bound. The pseudocode in Algorithm 1 will

describe this process. Step 3 applies the degree eleva-

tion because it reduces the number of control points and

captures highly non-linear responses as well, which im-

proves computational efficiency. In general, the rule of

the degree elevation starts from a low-degree curve. To

create a fitting surface with a given degree of a curve,

the typical NURBS-based surface approximation uses

the least squares method, which can mathematically

be written as:

f =

r∑
k=0

s∑
l=0

|Qk,l − S(ūk, v̄l)|2, (13)

Algorithm 1 Knot Removal Algorithm
Inputs: n,m, p, q,U,V,P, ū, v̄, ek, E
Outputs: ek, n̂, m̂, Û, V̂, P̂
Get the values Bj

r for all distinct interior knots
while 1 do

Find knot with the smallest Br bound
if Br =∞ then

break
end if
Use Eq.(11) and Eq.(12) to compute the new error and

update ek
if knot is removable (all the errors are within the

bound) then
Remove the knot and update the knot vectors
if No more internal knots then

break
end if

else
Set this Br to ∞

end if
end while

where Qk,l is the data point and S(ūk, v̄l) is the cor-

responding point on the fitting model. In the NURBS-

based surface approximation problem, solving the above

function requires a large amount of computational re-

sources. However, this process can be optimized and

improved to be more computationally favorable by us-

ing the concepts of curve approximation which applies

the least squares technique to each row(column) of data

first, then uses the resulting control points to do an-

other curve fitting across each column(row) to obtain

the final control points grid. For each curve approxima-

tion, the control point vector P is solved through the

following linear equation:

(NTN)P = R (14)

where,

N =

 N1,p(ū1) . . . Nn−1,p(ū1)
...

. . .
...

N1,p(ūm−1) . . . Nn−1,p(ūm−1)

 (15)

R =

 N1,p(ū1)R1 + · · ·+N1,p(ūm−1)Rm−1
...

Nn−1,p(ū1)R1 + · · ·+Nn−1,p(ūm−1)Rm−1


(16)

Rk = Qk −N0,p(ūk)Q0 −Nn,p(ūk)Qm (17)

After creating a model by surface approximation, the

deviation information, mentioned in step 4, needs to be

updated. To compute the deviation, the point inversion

algorithm, based on Newton-Raphson method [21], that

searches for the nearest point on the fitting surface, is
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applied. With the projected point, the deviation can be

measured through a 3D distance calculation. For each

projected point on the surface, one condition should be

satisfied: The dot product of the vector, which starts

from the projected point on the surface and points to

the true data points, and the first derivative at the pro-

jected point on the surface should be zero. Therefore, at

the projected point, the following dot product functions

should be satisfied:

f(u, v) = r(u, v) · Su(u, v) = 0

g(u, v) = r(u, v) · Sv(u, v) = 0 (18)

r(u, v) = S(u, v)−P

P is the point in the point cloud. Given an initial guess,

we apply the Newton-Raphson method to iteratively

search for the final solution that satisfies Equation (18).

The following linear equation is being solved for each

iteration and updates the projection point:

Jiδi = κi (19)

δi =

[
∆u

∆v

]
=

[
ui+1 − ui
vi+1 − vi

]
Ji =

[
fu fv
gu gv

]
=

[
|Su|2 + r · Suu Su · Sv + r · Suv

Su · Sv + r · Svu |Sv|2 + r · Svv

]
κi = −

[
f(ui, vi)

g(ui, vi)

]
The first-order gradients Su and Sv and second-order

derivatives Suu, Svv and Suv are calculated through the

finite difference method [23]. The following equations
describe how that works for the second-order gradient.

Forward difference and backward difference are applied

at the boundary while central difference is applied to

the rest of the curve.

Central difference:

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
(20)

Forward difference:

f ′′(x) ≈ f(x+ 2h)− 2f(x+ h) + f(x)

h2
(21)

Backward difference:

f ′′(x) ≈ f(x)− 2f(x− h) + f(x− 2h)

h2
(22)

In Equations 20 ∼ 22, h is the spacing and should be

small enough to achieve an accurate result. The conver-

gence criteria to control whether to stop finding a more

accurate projection point are given by:

|(ui+1 − ui)Su(ui, vi) + (vi+1 − vi)Sv(ui, vi)| ≤ ε1 (23)

|S(ui, vi)−P| ≤ ε1 (24)

|Su(ui, vi) · (S(ui, vi)−P)|
|Su(ui, vi)||S(ui, vi)−P|

≤ ε2 (25)

|Sv(ui, vi) · (S(ui, vi)−P)|
|Sv(ui, vi)||S(ui, vi)−P|

≤ ε2 (26)

The algorithm to find the projection point on the sur-

face model can be summarized in Algorithm 2. In sum-

Algorithm 2 Point Projection Algorithm
Input: n,m, p, q,U,V,P
Output: ū, v̄
u0, v0 ← initial value
Check the last three three conditions in the convergence
criteria
while One of them not satisfied do

Call Eq. (19) to update the initial guess
Check with all the conditions in the convergence criteria
if One of them is satisfied then

return u, v
end if

end while

mary, the whole approximation process from step 1 to

step 5 can be described in Algorithm 3: To demonstrate

Algorithm 3 Surface Approximation Method
Inputs:
r, the number of data points for each row
s, the number of data points for each column
p, the final degree in the row direction
q, the final degree in the column direction
Q, the point cloud
E, the maximum error bound
Outputs: U,V,P
Compute ūk and v̄l
Use Qk to interpolate a 1st degree surface
for deg = 1; deg ≤ p; deg + + do

Call the algorithm to remove knots
if deg = p then

break
end if
Increase the surface degree by degree elevation
Fit a new surface model with the updated knot vectors
Use point inversion technique to update the error and

ūk,v̄l
end for
if No more knots have been removed in the last knot re-
moval process then

return
end if
Do final fitting and update the knot vectors and error
Make a final call to the knot removal algorithm
return

the surface approximation process, a numerical experi-

ment is conducted using a simple example to show how
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the knots are removed and compare between the knot

vectors with the original point cloud and the knot vec-

tors with point cloud from the approximation model.

The simple surface model is

f(x, y) = y sinx− x cos y (27)

From this surface model, we collect 41 × 41, the number

of points, and set the error bound Γ to be 0.1. Figure

2(a) illustrates the point cloud generated from Equation

(27), and Figure 2(b) shows the approximation result.

Figure 2(c) is the error calculated by projecting all the

data points in the point cloud to the surface model, and

thus calculates the error distance between the projected

point and the original one. Even if the error bound is

set to 0.1, only a small portion of the points have an

error greater than 0.03, which implies the surface model

fits the point cloud well. As the result of the knot re-

moval process, we are left with 23 × 21 control points.

The original knot vector grid represents the initial knot

vectors generated by using all the data points as the

control points, which has a size of 43 × 43. (Note that

knot vector will have a different size with the control

points). The size of the knot vector grid after applying

the knot removal algorithm is 26 × 23. Since degree el-

evation will duplicate the original knot vectors, some of

the final knots will overlap with each other. Therefore,

the distinct knots in the knot vectors may not equal the

knot vector size. Results reveal that even if the remain-

ing grid is not evenly divided, it still has some pattern

in which more control points remain where the surface

has a larger curvature. Results also show that the al-

gorithm is capable of the reduction of the number of

control points, which is computationally more efficient.

2.2 Determination of Scanning Waypoints

The method for selecting the waypoints uses the ap-

proach proposed by Choi et al. [6] in which waypoints

which are determined from the center of the grid cells.

The size of a grid cell is computed by the Field of View

(FOV), the ground coverage of a single image. Its size

defines grid cells in the NURBS-based terrain model.

Note that the size of each grid cell is defined by sen-

sor specifications, a Ground Sampling Distance (GSD)

requirement, and an overlap ratio, min(G̃x, G̃y), where

G̃x and G̃y are the x and y ground sampling distance.

More detailed information can be found in the litera-

ture [6].

Once the size of the grid cells is defined, three-

dimensional flight waypoints are specified by two differ-

ent view angle conditions: vertical and normal views. In

the vertical view, the vertical offset is considered, which

translates the center of all the grid cells, xc, into the

z-direction with the offset distance H. We note that

H is computed from the GSD requirement, and sensor

specifications, and z-direction is the down direction in

the North East Down (NED) coordinate system. Math-

ematically, UAV scanning waypoints xw by the vertical

view can be given by

xw = xc + [0 0 H]T , (28)

Because the optical sensor points down, the vertical

view approach may not be a dense point cloud after

imaging processing or generate a distorted image when

the surface slope of a terrain is steep. To minimize the

impact of the terrain surface slope, Choi et. al suggested

the normal offset approach using the gradient informa-

tion of an approximated terrain model. This paper ap-

plies the same approach using the gradient information

of the approximated NURBS-based terrain model. The

waypoints xw with the normal view can be written as

xw = xc +NTH, (29)

Here, N is determined from the NURBS gradient in-

formation, which is N = [∂f∂x ,
∂f
∂y , −1]. The NURBS

gradient information is applied to the finite difference

method.

2.3 Multi-UAV Trajectory Optimization

The framework of the distance-constrained UAS tra-

jectory optimization proposed by Choi et al. can effi-

ciently scan an irregular terrain to collect aerial images

[6]. However, this trajectory optimization algorithm is

limited in a large AOI since it solves the trajectory op-

timization problem for a single UAV. To address a large

area of interest that requires multiple UAVs, this paper

suggests a multi-UAV trajectory optimization frame-

work that is the extended version of the distance-constrained

vehicle routing problem Choi et al. proposed. The multi-

UAV trajectory optimization is defined on a graph G =

(N ,A), whereN indicates a set of nodes,N = {0, 1, · · · , n, n+

1}, and A is a set of arcs, A = {(i, j) : i, j ∈ N , i 6= j}
that represents the connectivity between two nodes.

The 0th and the n + 1th nodes are an initial depot

position, and a terminal depot position that is an ar-

tificial depot node, respectively. Note that the physical

location of the two nodes (initial and terminal depot

positions) are the same. We also define a set of way-

points W = {1, · · · , n} that is a subset of the nodes N ,

(W ∈ N ). The optimization problem involves a set of

UAVs, (V = {1, · · · ,m}). To formulate the multi-UAV

vehicle routing problem, there are three main assump-

tions. All UAVs start their missions from the initial
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(a) Point cloud generated from the
function

(b) Approximation result (c) Error between the point cloud
and surface model

Fig. 2 Example to show the surface approximation process

node (0th node) and finish their missions on the ter-

minal nodes (n + 1th node). Each waypoint must be

scanned by a single UAV. Each route of a UAV must

satisfy its endurance requirement. Based on these as-

sumptions, the cost function that minimizes the total

distance of all the UAVs is defined as:

J = min
∑
k∈V

∑
i∈N

∑
j∈N

dijxijk, (30)

where dij is the corresponding distance between two

nodes (i, j) and xijk represents the edge connection. If

the edge between two nodes (i, j) by the kth vehicle is

connected, then xijk is defined as 1, otherwise, it is de-

fined as 0. The constraint to visit all the waypoints and

meet the vehicle endurance constraint can be written

as:

g1 =
∑
k∈V

∑
j∈N

xijk = 1, (∀i ∈ W) (31)

g2 =
∑
j∈N

x0jk = 1, (∀k ∈ V) (32)

g3 =
∑
i∈N

xi(n+1)k = 1 (∀k ∈ V) (33)

g4 =
∑
i∈N

xihk −
∑
j∈N

xhjk = 0, (∀h ∈ W,∀k ∈ V) (34)

g5 =
∑
j∈N

yijk −
∑
j∈N

yjik

−
∑
j∈N

dijkxijk = 0, (∀i ∈ N ,∀k ∈ V) (35)

g6 = y0jk = d0jkx0jk, (∀j ∈ N ,∀k ∈ V) (36)

g7 = yijk ≤ (D − dj(n+1)k)xijk, (∀i, j ∈ N ,∀k ∈ V)

(37)

g8 = yi(n+1)k ≤ Dxi(n+1)k, (∀i ∈ N ,∀k ∈ V) (38)

g9 = yijk ≥ (d0ik + dijk)xijk, (∀i ∈ N ,∀j ∈ N ,∀k ∈ V)

(39)

g10 = xij ∈ {0, 1} , (∀(i, j) ∈ N ), (40)

where yijk is a flow variable that presents the distance

between the ith node and the jth node given the kth

UAV. The constraints g1 ∼ g4 represent network con-

struction constraints. To be more specific, the constraint

g1 forces all the waypointsW to be visited exactly once,

the constraint g2 ensures that all the vehicles V are de-

ployed from the initial depot node (0th node), the con-

straint g3 means that all the vehicles V arrive at the

artificial node (n + 1th node), and the constraint g4
makes sure that a UAV arrives on the hth node and

leaves on the same node (hth node). Constraint g5 pre-

vents sub-tours, and constraints g6 ∼ g9 allow all the

UAVs to satisfy the endurance constraint.

This multi-UAV vehicle routing formulation can min-

imize the total endurance time of UAVs when UAVs are

deployed sequentially, but it may not minimize the to-

tal mission time when all the UAVs perform the aerial

imaging mission at the same time. This is because min-

imizing the total endurance time, Equation 30, can re-

sult in large variations of mission time between UAVs.

In the concurrent operation, ideally, all the UAVs would

have similar mission times that can minimize the total

mission time. In the vehicle routing problem, we can

revise the minimization cost function into a minmax

formulation that minimizes the maximum distance of

all the UAVs’ trajectories. The objective function of

the minmax approach can be written as:

J = min max
k∈V

∑
i∈N

∑
j∈N

dijkxijk

 (41)

subject to

Equations(31)− (40)

To solve this minmax objective function using the mixed

integer programming model, it needs to be converted

into a general linear programming formulation that has

a linear objective function and linear constraints. The
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typical transformation method is introducing an addi-

tional decision variable z in the objective function as

follows:

J̄ = min z (42)

In order to impose this decision variable, an additional

constraint ḡ10 that z will be greater than or equal to the

total distance of each vehicle should be included with

the other constraints, which are:

ḡ1 =
∑
k∈V

∑
j∈N

xijk = 1, (∀i ∈ W) (43)

ḡ2 =
∑
j∈N

x0jk = 1, (∀k ∈ V) (44)

ḡ3 =
∑
i∈N

xi(n+1)k = 1 (∀k ∈ V) (45)

ḡ4 =
∑
i∈N

xihk −
∑
j∈N

xhjk = 0, (∀h ∈ W,∀k ∈ V)

(46)

ḡ5 =
∑
j∈N

yijk −
∑
j∈N

yjik

−
∑
j∈N

dijkxijk = 0, (∀i ∈ N ,∀k ∈ V) (47)

ḡ6 = y0jk = d0jkx0jk, (∀j ∈ N ,∀k ∈ V) (48)

ḡ7 = yijk ≤ (D − dj(n+1)k)xijk, (∀i, j ∈ N ,∀k ∈ V)

(49)

ḡ8 = yi(n+1)k ≤ Dxi(n+1)k, (∀i ∈ N ,∀k ∈ V) (50)

ḡ9 = yijk ≥ (d0ik + dijk)xijk, (∀i ∈ N ,∀j ∈ N ,∀k ∈ V)

(51)

ḡ10 =
∑
i∈N

∑
j∈N

dijkxijk ≤ z, (∀k ∈ V) (52)

ḡ11 = xij ∈ {0, 1} , (∀(i, j) ∈ N ), (53)

The minmax-based reformulated vehicle routing prob-

lem leads to the actual minimum of the total mission

time.

3 Numerical Simulation

For the numerical simulation, we assume that the UAS

platform is the DJI Matrice 210, and the optical cam-

era sensor is the ZenmuseX5S model summarized in

Table 1. The simulation parameters are illustrated in

Table 2. We note that the operating altitude is defined

from the GSD requirement, sensor specifications, and

the overlap ratio. The vehicle endurance is only for an

aerial imaging mission segment and does not include

the endurance for takeoff and landing segments. As re-

alistic aerial imaging mission areas, San Diego around

Point Loma and Death Valley are selected and their

point cloud dataset is collected. The simulation results

compare four different algorithms: min-vertical view,

min-normal view, minmax-vertical view, and minmax-

normal view. The ‘min-vertical view’indicates that it

solves the minimization optimization problem with the

vertical view angle, and the ‘min-normal view’indicates

that it solves the minimization optimization problem

with the normal view angle on the terrain surface shape.

The ‘minmax-vertical view’means that it solves the min-

max optimization problem with the vertical view an-

gle, and the ‘minmax-normal view’solves the minmax

optimization problem with the normal view angle on

the terrain surface. Figures 3(a), 3(b), and 3(c) show

the image of Point Loma in San Diego, the raw point

cloud (262,144 points), and the result of the NURBS-

based terrain model. The NURBS-based approximation

model visually shows that it can precisely capture the

topology features in the given area. To quantify the

quality of the NURBS-fitting model, Mean Squared Er-

ror (MSE) is computed, which is a common metric to

inspect the quality of the terrain approximation model

[27][28]. The MSE is 8.966 square meters, which is lit-

tle high because the area around the ocean changes the

slope radically. Figure 4 shows the results of the multi-

UAV trajectory optimization based on different objec-

tive functions and view angles. All four optimization

results cover the entire AOI and require three UAVs to

complete the aerial imaging mission. Table 3 summa-

rizes the scanning time of each UAV depending on the

optimization problem. As expected, all three UAVs of

each method satisfy the endurance constraint. We can

also observe that the results from the minimization ob-

jective function have a short total mission time that is

the sum of all the UAVs’ scanning mission times. On

the other hand, the result from the minmax objective

function has the shortest mission time of all the UAVs.

This implies that when we operate UAVs sequentially,

the trajectory result from the minimization objective

is a better approach, but when we operate UAVs si-

multaneously, the trajectory result from the minmax

objective function is more attractive. Figures 3(d), 3(e)

and 3(f) present the Google image of the Death Valley

area, the raw point cloud (409,600 points), and the re-

sult of the NURBS-based terrain model. The MSE of

the NURBS-based approximation model is 0.760 square

meter, which is better than the result for San Diego.

The reason is that this terrain has more moderate cur-

vature compared to the terrain of San Diego and a

larger number of points. Figure 5 represents the trajec-

tory optimization results depending on the optimiza-

tion formulation. All the trajectories are able to gener-

ate the complete scanning paths in the given AOI. This

mission requires three UAVs to cover the AOI. Table
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4 describes the summary of the experiment results re-

garding the scanning time of each UAV. The results

show that all their scanning times meet the endurance

constraint. Like the previous San Diego result, the opti-

mization results with the minimization objective func-

tion provides the trajectories with the minimum total

mission time. On the other hand, the minmax optimiza-

tion results lead to the shortest trajectories when UAVs

are deployed simultaneously.

Table 1 Specifications of Zenmuse X5S

Sensor width 17.3 (mm)
Sensor height 13 (mm)

Resolution 20.8 (Mpix)
Lens Focal length 9 (mm)

Table 2 Numerical simulation parameters

Vehicle speed 8 (m/s)
Vehicle endurance 10 (minutes)

Ground Sampling Distance (GSD) 0.05 (m)
Overlap ratio 0.4

Operating altitude 150 (m) in AGL

4 Conclusion

The approach proposed in this paper features a multi-

UAV optimal scanning trajectory algorithm that con-

sists of a NURBS-based terrain approximation, way-

point selection depending on terrain surface shape and

view angle, and a distance-constrained multi-UAV ve-

hicle routing problem. In the framework, we suggested

four optimization structures: min-vertical view, min-

normal view, minmax-vertical view, and minmax-normal

view. These formulations are tested and compared in

numerical simulations using realistic aerial imaging sce-

narios, San Diego and Death Valley. Numerical sim-

ulations with four different algorithms are conducted

to compare their performances in terms of the total

scanning time. Results indicate that the optimization

solution with a minimization cost function provides a

better solution for the sequential UAVs operation con-

cept, while the minmax optimization solution is a more

desirable method for the concurrent UAVs operation

concept. In summary, the proposed approach can pre-

cisely capture terrain geometry features and generate

multi-UAV trajectories based on an area of interest and

system constraints. The proposed framework is also a

flexible structure since one can easily change the ter-

rain approximation technique and the formulation of

the vehicle routing optimization problem with diverse

operational constraints and vehicle performance char-

acteristics.

Acknowledgements This paper is a major enhancement of
the ICUAS 2018 accepted paper.

References

1. Acar, E.U., Choset, H., Rizzi, A.A., Atkar, P.N., Hull,
D.: Morse decompositions for coverage tasks. The In-
ternational Journal of Robotics Research 21(4), 331–344
(2002)

2. Avellar, G.S., Pereira, G.A., Pimenta, L.C., Iscold, P.:
Multi-UAV routing for area coverage and remote sensing
with minimum time. Sensors 15(11), 27783–27803 (2015)

3. Bircher, A., Alexis, K., Burri, M., Oettershagen, P.,
Omari, S., Mantel, T., Siegwart, R.: Structural inspection
path planning via iterative viewpoint resampling with
application to aerial robotics. In: Robotics and Automa-
tion (ICRA), 2015 IEEE International Conference on, pp.
6423–6430. IEEE (2015)

4. Brujic, D., Ainsworth, I., Ristic, M.: Fast and accurate
NURBS fitting for reverse engineering. The International
Journal of Advanced Manufacturing Technology 54(5-8),
691–700 (2011)

5. Carr Jonathan C., W.R.F., Beatson., R.K.: Surface in-
terpolation with radial basis functions for medical imag-
ing. IEEE transactions on medical imaging 16(1), 96–107
(1997)

6. Choi, Y., Choi, Y., Briceno, S., Mavris, D.N.: Three-
dimensional UAS trajectory optimization for remote
sensing in an irregular terrain environment. In: 2018 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS) (2018)

7. Choi, Y., Jimenez, H., Mavris, D.N.: Two-layer obsta-
cle collision avoidance with machine learning for more
energy-efficient unmanned aircraft trajectories. Robotics
and Autonomous Systems 98, 158–173 (2017)

8. Choi, Y., Payan, A.P., Briceno, S.I., Mavris, D.N.: A
framework for unmanned aerial systems selection and
trajectory generation for imaging service missions. 2018
Aviation Technology, Integration, and Operations Con-
ference (2018)

9. Dantzig, G.B., Ramser, J.H.: The truck dispatching prob-
lem. Management science 6(1), 80–91 (1959)

10. Dierckx, P.: Curve and surface fitting with splines. Ox-
ford university press (1995)

11. Farin Gerald, e.a.: Fairing cubic b-spline curves. Com-
puter Aided Geometric Design 4(1-2), 91–103 (1987)

12. Galceran, E., Carreras, M.: A survey on coverage path
planning for robotics. Robotics and Autonomous Systems
61(12), 1258–1276 (2013)

13. Hameed, I.A., la Cour-Harbo, A., Osen, O.L.: Side-to-
side 3D coverage path planning approach for agricultural
robots to minimize skip/overlap areas between swaths.
Robotics and Autonomous Systems 76, 36–45 (2016)

14. Iglesias, A., Galvez, A., Avila, A.: Immunological ap-
proach for full NURBS reconstruction of outline curves
from noisy data points in medical imaging. IEEE/ACM
transactions on computational biology and bioinformat-
ics (1), 1–1 (2017)



Multi-UAV Trajectory Optimization Utilizing a NURBS-based Terrain Model for an Aerial Imaging Mission 11

15. Jing, W., Polden, J., Lin, W., Shimada, K.: Sampling-
based view planning for 3D visual coverage task with
unmanned aerial vehicle. In: Intelligent Robots and Sys-
tems (IROS), 2016 IEEE/RSJ International Conference
on, pp. 1808–1815. IEEE (2016)

16. Kjellander, J.A.: Smoothing of cubic parametric splines.
Computer-Aided Design 15(3), 175–179 (1983)

17. Li, Y., Chen, H., Er, M.J., Wang, X.: Coverage path plan-
ning for uavs based on enhanced exact cellular decompo-
sition method. Mechatronics 21(5), 876–885 (2011)

18. Lyche, T., Mrken., K.: Knot removal for parametric b-
spline curves and surfaces. Computer Aided Geometric
Design 4(3), 217–230 (1987)
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Table 3 Result of multi-UAV trajectory optimization in San Diego

Scanning mission time (sec)
Minimization + Vertical view Minimization + Normal view Minmax + Vertical view Minmax + Normal view

UAV-1 553.34 550.52 573.67 542.17
UAV-2 597.74 403.72 579.28 548.84
UAV-3 526.85 580.67 580.92 548.44

Table 4 Result of multi-UAV trajectory optimization in Death Valley

Scanning mission time (sec)
Minimization + Vertical view Minimization + Normal view Minmax + Vertical view Minmax + Normal view

UAV-1 572.53 459.92 554.64 580.50
UAV-2 593.36 595.25 542.08 581.56
UAV-3 442.92 599.44 556.15 572.09

(a) Point Loma in San Diego
(Google Image)

(b) Point cloud of Point Loma in San Diego
(262,144 points)

(c) NURBS-based terrain model

(d) Death Valley (Google Im-
age)

(e) Point cloud of Death Valley (409,600
points)

(f) NURBS-based terrain model

Fig. 3 Results of NURBS-based terrain models in San Diego and Death Valley
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(a) 3D view (Min-vertical view) (b) Top view (Min-vertical view)

(c) 3D view (Min-normal view) (d) Top view (Min-normal view)

(e) 3D view (Minmax-vertical view) (f) Top view (Minmax-vertical view)

(g) 3D view (Minmax-normal view) (h) Top view (Minmax-normal view)

Fig. 4 Results of multi-UAV scanning trajectories in San Diego
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(a) 3D view (Min-vertical view) (b) Top view (Min-vertical view)

(c) 3D view (Min-normal view) (d) Top view (Min-normal view)

(e) 3D view (Minmax-vertical view) (f) Top view (Minmax-vertical view)

(g) 3D view (Minmax-normal view) (h) Top view (Minmax-normal view)

Fig. 5 Results of multi-UAV scanning trajectories in Death Valley


