
1

A NOTATION FOR THE VISUAL SPECIFICATION OF GEOMETRIC
RELATIONS IN RULE-BASED USER INTERFACE DEVELOPMENT

ENVIRONMENTS

Andrey K. Yeatts
Department of Computer Science

University of Arizona

Scott E. Hudson
Graphics Visualization and Usability Center

College of Computing
Georgia Institute of Technology

ABSTRACT

This paper describes a new visual notation for
specifying geometric relationships (for example, in
a user interface presentation application). This
notation is designed to provide a centerpiece for the
visual specification of predicates and rules in the
BluePrint rule-based user interface development
environment. The notation, while simple and using
only a handful of operator symbols, is extremely
powerful and expressive. It operates in an intuitive
fashion using analogies to the physically based
concepts of alignment and measurement to express
a wide range of linear relationships between
presentation objects, and can be used to express
dynamic as well as static properties.

INTRODUCTION

In recent years, a number of tools have employed
rules of various sorts to support user interface
development. For example, the ITS system
[Benn89, Wiec89, Wiec90] uses rules to
automatically construct user interface presentations
from the structure of application data. The UIDE
system [Fole89] employs rules in the form of pre-
and post-condition predicates in a number of
different ways including the control of run-time
appearance and behavior of an interface [Gies92].
The Object Lens and OVAL systems [Lai88] use
rules to support tailorability of interfaces and
applications by end-users. Finally, our own
previous work [Huds91] has sought to integrate
rule-based inference techniques into direct
manipulation style user interface builders.

As indicated by the diversity of their uses, rules
offer some significant advantages as a method for
specifying computations. For example, individual
rules are normally quite understandable, employing
a simple if-then structure that indicates an action
(such as the assertion of postconditions) and the
circumstances under which it is to be executed or
fired. In addition, rule sets are normally easily
extensible. Typically new rules can be added to
existing rules without special integration steps. As a
result, rule-based systems are good at taking on

 This work was supported in part by the National Science
Foundation under grant IRI-9015407.

evolutionary roles where increasingly specialized
behavior is added over time.

However, many systems that have taken a rule-based
approach have suffered from at least one drawback
— the lack of an easily accessible visual notation
for rules. These systems have often used
programming language-like textual notations for
rules or have simply hidden the rules from view (a
notable exception is [Bell91]). This lack of an
adequate visual notation for rules means that a
number of these systems have been unable to
exploit the advantages inherent in visually oriented
tools such as interface builders (see for example
[Card87, Myer89, Huds90]).

This problem is particularly acute for systems
designed to work in geometric settings, for example,
systems that apply inferencing techniques in the
construction of user interface presentations
[Meye86, Meye87, Meye89, Sing88, Sing89]. In
these visual, or geometrically oriented domains, the
objects, relationships, and actions that contribute to
the construction of rules are often most easily
expressed and manipulated in a visual manner.

The work described in this paper is designed to
overcome this problem by providing a visual
notation for expressing a wide range of geometric
relationships between objects. This notation is
specifically designed to support the specification of
rules, allowing both pre-condition predicates and
post-condition assertions or actions to be cleanly
expressed.

NOTATIONAL PRINCIPLES

The design of the BluePrint visual notation is based
on several notational principles including: explicit
representation of all relationships, avoidance of
strict WYSIWYG constructs, elimination of
coincidental meanings, use of a minimal set of
operators, and use of minimal hidden machinery.
Each of these principles are described below.

Explicit representations

Each object and relationship expressed in the
notation should have a visible manifestation. A
number of previous systems (particularly those

2

taking by-example approaches [Meye87, Kurl91]),
while directly representing the objects of interest,
have provided no permanent representation for
relationships that have been established between
objects. While this approach may be adequate
during initial specification, it is problematical if any
modification or reuse of specifications is being
supported.

This principle leads to the more direct corollary that
a specification should be completely under-
standable from its printed representation and never
rely solely on feedback or other dynamics to
express meaning.

Avoidance of strict WYSIWYG constructs

WYSIWYG specifications have an intuitive appeal
because of their directness. However, for geometric
specifications that go beyond the simple size and
placement of objects, and attempt to support
expression of more abstract and semantically rich
relationships, typical WYSIWYG notations actually
begin to violate principles of direct manipulation.
In particular, these notations typically provide no
visual representation for the key objects of interest
— the relationships between objects.

While it is possible to try to embed these
representations in a WYSIWYG presentation (see for
example [Huds91]), our experience shows that even
with extremely compact representations, there is
simply not enough space available in most
situations to adequately express even moderately
complex relationships. In addition, when dynamic
as well as static aspects are being considered, the
particular sizes and positions found in the notation
are normally only instances of a larger class and
take on lesser importance.

Rather than restrict the understandability of
relationships to that of size and position, the
notation described here avoids use of a strict
WYSIWYG approach.

Elimination of coincidental meanings

As specifications increase in size and complexity it
is important to avoid the occurrence of coincidental
meanings — that is the assignment of meaning
based on the coincidental placement of objects. As
a corollary to the previous two principles this
implies that geometric attributes (e.g., size and
position of objects) should be given "don't care"
values by default, rather than assuming specific
values from their placement in the specification.

Use of a minimal set of operators

This principle is based on the need for simplicity.
Notational style should remain consistent
throughout the specification, with the fewest

different operator symbols being employed. In
general, if less specialized meaning is expressed by
operator symbols, then more specialized meaning
can be imparted by the geometric configurations
themselves (which are inherently more direct).

Use of minimal hidden machinery

As a final principle, it is important to avoid hidden
components and machinery. This implies among
other things that more complex operations should
typically be expressed in terms of simpler
primitives.

BASIC NOTATION

In the physical world, we naturally employ notions
of position, alignment, measurement, and
comparison. In particular, we are accustomed to
mechanically manipulating the position of real
objects to make measurements and comparisons.
For example, to cut two sections of pipe to the same
length we would align their ends use one pipe as a
guide for cutting the other. In the notation
described here we attempt to exploit this familiar
behavior.

The notation consists of a small set of operators to
compare graphical attributes, and an operator that
allows the introduction of an assumption (such as
alignment). Each notational construct has both an
intuitive, or analogous, interpretation and a more
formal mathematical interpretation. For example,
as will be discussed below, the assumption operator
can be seen as applying a transformation (or linear
map) to a set of comparison operators.

Objects

For the examples used in this paper, we will assume
that objects can be characterized primarily by the
four graphical attributes (x1, x2, y1, and y2) that
make up their bounding boxes. As a result, objects
will be represented by (or more generally simply
enclosed in) a rectangle. Non-geometric attributes,
such as highlighting, color, etc., will be expressed
directly by modifying the attributes or example
object contained within the bounding box, (but will
not be discussed in detail in this paper).

According to the principles of the last section, the
relative placement of objects implies no meaning in
itself. For example, the apparent placement of
object B to the right of object A does not specify or
imply any actual relation of A to B.

The Mouse Object

To support the description of dynamic behavior
based on user input, we introduce a special object,
the mouse object, to model the X and Y attributes of

3

the pointing device and its button state. The
notation corresponding to four mouse states is
illustrated in Figure 1. The cross hair at the top of
the mouse symbol is used to denote the X, Y
position of the mouse, while the notation within the
mouse is used to indicate a button press event, a
button release event, and movement with the button
in the up and down states, respectively.

* *
Figure 1. Mouse states press, release, and movement

with down and up button values.

Ruler Lines

To refer to constants, indicate a common value, or
allow drawings to be extended across more space
for clarity, we use ruler lines. Figure 2 shows ruler
lines denoting the value 100 and the symbolic value
S.

S

100
Figure 2. Two Ruler Values

Operator Symbols

The overall notation uses three basic operator
symbols and a negation modifier as shown In
Figure 3.

Figure 3. Operator Symbols

The top two operator symbols (left to right) are
comparison operators expressing equality and less
than respectively. The third operator is the assume
operator described below. Finally, a negation may
be applied to either of the first two operators by
placing an X over it as shown at the bottom of
Figure 3. To improve readability when negation is
applied, we "hollow out" each comparison operator.

Comparison Operators

To describe a comparison of two or more attributes,
we link the attributes with graphical symbols
denoting the relative ordering of the attributes. In
the example of Figure 4A below, we show the
notation for expressing the relationship
A.y2 < B.y1. An ordering of three or more

attributes can be illustrated similarly, as in Figure
4B.

A B

A. Comparison A.x2 < B.x1

A B C

B. Comparison A.x2 < B.x1 < C.x1
Figure 4.

To describe the equality of the attributes of A.y2
and B.y1, we adjoin the attributes and place an
equal symbol over the equal attributes (Figure 5A).

To negate a test, a cross is placed over the
comparison operator, as in Figure 5B.

A B

A B

A. A.x2 = B.x1 B. A.x2 ≠ B.x1
Figure 5.

Figure 6 shows the use of a ruler line to extend a
value for several common references.

A

B

C

Figure 6. Comparison of C.y1 < A.y1 < B.y1

TRANSLATIONS AND DIFFERENTIAL
MEASUREMENTS

When object widths are measured in the physical
world, two objects are aligned to a common
reference point and the opposite ends are compared
for distance to the common point. We exploit this

4

model for making differential comparisons in our
notation.

The Assume Operator

To define a common reference for the purposes of
measurement, we use the assume operator. This
operator acts by introducing an assumption of
alignment (e.g., equality) as in "assuming that X
and Y are the same...". The mathematical effect of
the operator is to apply a mapping — that is, to
rewrite one or more tests making them relative to
the points assumed to be common. Figure 7 below
compares the width of objects A and B.
Specifically, the test A.x2 < B.x2 is made relative to
the assumption that A.x1 = B.x1. Another way of
viewing the diagram is that if two objects, A and B,
happened to have their x1 coordinates coincident as
indicated by the assumption, then the test would
hold as shown.

A

B

Figure 7. Comparisons of widths of A and B using
the assume operator

The Translation Semantics of Assume

More formally, an assume operator defines a map
for each graphical object. Each map transforms
points in one object to a common reference point
by means of a translation. If the common reference
point is a ruler line, then the translation is to that
value, otherwise the value 0 is used. For example, in
the Figure 7 above, the map MA.x1(x) = x − A.x1
transforms points of object A into points relative to
0, and map MB.x1(x) = x − B.x1 transforms points
in object B into points relative to 0. The tests on the
x2 attributes of A and B are then rewritten by
applying those maps to the comparison
A. x2 < B. x2 , resulting in MA (A.x2) < MB(B.x2),
o r , subs t i tu t ing the map def in i t ion
A. x2 − A. x1 < B. x2 − B. x1, which is just
A.width < B.width.

Combining the assume operator and rulers with
values allows us to compare widths to specific
numerical values. In Figure 8, the object A's height
is compared to the value 80. Again, we might read
the diagram as "if a matching object A were to have
its y1 attribute equal to 0, then its y2 attribute would
be less than 80."

80

0
AA

Figure 8. Comparison A.width < 80

Square Configuration

In another application of this technique, we can
compare the object to itself to see if its width and
height are the same. In Figure 9, an instance of the
object A is rotated 90 degrees with respect to
another copy of A, with its x1 and y1 edges made
relatively equal to each other and the x2 and y2
edges compared for equality.

A

A

Figure 9. Comparison of A.width = A.height

Sum of Widths Comparison

By the use of these maps, several assumption points
can be used in a configuration to "stack" objects for
comparisons. In Figure 10, we describe a test for
A.width + B.width < C.width . The progression
through map application follows the figure.

A B

C

Figure 10. Comparison
A.width + B.width < C.width

5

The initial test is B. x2 < C. x2 which is
transformed by the maps MB.x1 and MC.x1 into

MB.x1(B. x2) < MC.x1(C. x2)
or:

B. x2 − B. x1 + A. x2 < C. x2 − C. x1.

The map MA.x1 is applied to A.x2 to yield:

B. x2 − B. x1 + MA.x1(A. x2) < C. x2 − C. x1,
or:

B. x2 − B. x1 + A. x2 − A. x1 < C. x2 − C. x1.
which, finally, is the same as :

B.width + A.width < C.width .

TRANSFORMATION SCOPE

As we have seen, if an assumption is applied to an
object, the other attributes of the object are
considered to be in the scope of the assumption. We
may extend this scope to apply to other "non-
member" attributes by completely enclosing the
object to be mapped inside the object about which
we are making assumptions.

 In Figure 11, two maps are defined by the
assumptions that A.y1 = B.y1. These assumptions
induce transformations MA.y1 and MB.y1 . By the
enclosure scoping mechanism, the maps are applied
to C.y1 < D.y1 to describe the condition
C.y1 − A.y1 < D.y1 − B.y1. Thus, an object's
graphical representation provides both a
transformation and a scope for the transformation.

A B

C

D

Figure 11. Comparison C.y1 - A.y1 < D.y1 - B.y1

To describe the desired scope of map application
from objects that may not have a bounding
rectangle (e.g., a ruler or the mouse), we can create
explicitly a scope by the use of a "virtual object"
that allows enclosure of the attributes to which the
map is to be applied. In Figure 12, the map induced
by the assumption that the mouse y value is equal to
10 is applied to the condition that the mouse x
value is between 5 and 15.

10

5 15

Figure 12.

The map Mmouse.y (z) = z − mouse.y + 10 applied

to 5 < mouse. x < 15 yielding:
 5 < mouse. x − mouse.y + 10 < 15.

If two assumptions are made about the X and Y
axes, then those assumptions are applied
preferentially to their axes; see Figure 28 for an
example.

Comparison to a Unit Slope Diagonal

One use of the enclosure scoping describes the
configuration of a pair of attributes lying
equidistant in x and y from another pair of x and y
attributes. As in the previous mouse example, we
may use more than one copy of an object in a
configuration; in Figure 13, we condition B.x1 and
B.y1 to lie equally distant from A.x1 and A.y1,
describing the path along the line of slope -1
passing through (A.x1, A.y1).

A

A

B

B

Figure 13. Comparison B.y1 − A.y1 = B. x1 − A. x1

Composition of Assumptions

To create more complicated relations, we may nest
assumptions. This is accomplished by graphically
nesting the assumptions, which are applied from the
inside out. An assumption nested inside one
assumption scope applies to other objects enclosed
at the same nesting level. For example, nesting the
assumption of Figure 12 inside Figure 13 (shown
below in Figure 14) results in the test:
5 < mouse. x − A. x1 − (mouse.y − A.y1) + 10 < 15
which tests whether the mouse is within 5 of the unit
diagonal passing through the point (A.x1, A.y1).

6

10

5 15

A

A

Figure 14. Composition of assumptions.

PROPORTIONALITY AND LINEAR COMPARISON

Carrying physical measurement models a step
further, we describe proportionality as an extension
of the assume operator discussed earlier. We may
intuitively pose proportionality as comparing
objects that have been stretched to occupy similar
intervals. Thus, the span of two object attributes (or
values along an axis) denotes a stretched interval
that may be considered equal to another such
interval.

Proportionality

Here, we use two of the assume operators to
logically "pin" two attributes together, thus creating
maps from one interval to another. By analogy, we
are making the assumption that "were these two
intervals identical, the following would hold." In
Figure 15 below, we make the assumption that A.y1
and B.y1 are the same, and that A.y2 and B.y2 are
the same. The map MA takes points in the interval
[A.y1, A.y2] and maps them to points in a
reference interval [0,1] via the transformation

MA(y) = y − A.y1
A.y2 − A.y1

. Likewise, the map MB

takes points in the interval [B.y1, B.y2] to points in
the same reference interval. Note the use of ruler
lines to represent the relative points of reference.

A B

C D

Figure 15. Comparison of C.x1 = D.x1,
proportionally relative.

As in the nested transformations case, we signify the
application of MA and MB to points by enclosure
of the attributes to be mapped inside the objects A

and B themselves. In Figure 15 below, C.y1 is tested
against D.y1 proportionally to the y span of objects
A and B. After the applications of the maps, the test
C.y1 = D.y1 is transformed to
MA(C.y1) = MB(D.y1) o r
C.y1 − A.y1
A.y2 − A.y1

= D.y1 − B.y1
B.y2 − B.y1

.

Scroll Window Example

An obvious application of this device is the
scrolling area of a window controlled by a scroll bar
thumb or pointer. There is a direct modeling
analogy between the file span and the span of the
scroll bar, and the position of the thumb and the file
window. In Figure 16, this situation is described as
"assuming that the file and scroll bar occupied the
same reference interval," the file window and
scroller thumb would be at the same point.

Now is the time for all good men
to come to the aid of their
country. Now is the time for all
good men to come to the aid of
their country. Now is the time for
all good men to come to the aid
of their country. Now is the time
for all good men to come to the
aid of their country. Now is the
time for all good men to come to
the aid of their country. Now is
the time for all good men to
come to the aid of their country.

Figure 16. Scroll bar with thumb and window tops
proportionally positioned.

Another common configuration for scroll
controllers is that the scroll thumb top and bottom
are proportional to the window top and bottom.
This is described in Figure 17 below.

Now is the time for all good men
to come to the aid of their
country. Now is the time for all
good men to come to the aid of
their country. Now is the time for
all good men to come to the aid
of their country. Now is the time
for all good men to come to the
aid of their country. Now is the
time for all good men to come to
the aid of their country. Now is
the time for all good men to
come to the aid of their country.

Figure 17. Scrollbar with proportionally sized
thumb and window.

7

Comparison to Diagonal or Arbitrary Line

If we take the comparison to unit diagonal diagram
(Figure 13) and make the distances proportionally
equal, rather than strictly equal, we may describe a
point lying on an arbitrary diagonal. The diagram
of Figure 18 below is almost identical to that of
Figure 13, but we make the distances proportional
by using interval maps, rather than translation maps.

A

B

B
A

Figure 18. Comparison of point (B.x1, B.y1) to line
through (A.x1, A.y1),(A.x2, A.y2)

Comparison to Half Plane

A slight modification to Figure 18, so that
inequality, rather than equality of points is tested,
results in requiring the X distance offset to be
proportionally greater (with respect to A) than the Y
distance offset. This is illustrated in Figure 19.

A

B

B
A

Figure 19. Configuration of (B.x1, B.y1) lying in
upper right hand half plane

Though a full exposition is beyond the scope of
this paper, proportionality is an extremely versatile
device, allowing the visual expression of such
concepts as aspect ratio and area.

USING THE NOTATION IN AN INTERFACE
BUILDER

The preceding sections have considered how the
notation can be used to create a wide variety of
descriptions of geometric relationships. This
section will consider how these descriptions can be
employed in a rule-based user interface tool,

specifically the BluePrint system under construction
at the of University of Arizona. BluePrint describes
both static and dynamic aspects of a user interface
in terms of if-then rules. These rules describe
transitions between object states and object
configurations. As objects in the BluePrint system
receive updates for their attributes this may trigger
the application of rules that can create and delete
components, modify the state of existing
components, and transform object configurations.
Rules that can be expressed in geometric terms are
specified using the visual notation described here.

In general, this notation can be used in several
different ways in a rule-based system. Most
importantly, it can be used to provide preconditions
or predicates that describe the test portion of a rule
(the conditions under which rules fire) and it can be
used to indicate the action portion of a rule with a
form of postcondition assertion.

Both test and action portions of a rule in BluePrint
contain visual specifications describing an object
layout using the notation above. When an object
configuration described in the test portion of a rule
is found to hold true for some part of the interface,
the action that follows the test is executed. Multiple
configurations or descriptions in a rule head form
conjunctions ("ands"). To specify disjunctive
conditions ("ors"), multiple rules are used.

A Graphical Editor Example

To illustrate the character of a BluePrint
specification, we present a complete specification
for a button that creates a new line object and the
line's subsequent manipulation by the mouse, such
as might be found in a graphical object editor.

LineBut LineBut

Figure 20. Rule enabling line button

The test (left hand side) of Figure 20 requires a
mouse down event to occur within the bounds of a
line button object. The action taken is to highlight
the line button. The next two rules (Figures 21 and
22) return an active button to an inactive state when
the mouse is outside it. Note the use of two rules to
implement disjunction.

8

0

0

0

x

y

h

w

LineLine Line

Line Line

0

0

5 -5

-5 5

0

100

Figure 24. Specification initiating line's movement without changing its length or width.

LineBut LineBut

Figure 21. Rule disabling button when mouse is
outside button.

LineBut LineBut

Figure 22. Rule similar to 21 above.

The button's action (creating a line) is performed
when a mouse up event is received within an active
button. The button is made inactive (by un-
highlighting) and a line object is created at position
(10, 10) as illustrated in Figure 23.

The remaining rules of the interaction specify how
the mouse object can manipulate the line object.
The interactions allow changing the line's (x1, y1)
position. Figures 24-26 illustrate rules for selecting
then moving the line as a whole, while Figures 27-
29 show the rules for stretching the line.

The selection rules, shown in Figures 24 and 27,
look for mouse down events in different
configurations and change the appearance of the
line to indicate its activated state. The rules
following the selection rules update the line
attributes to implement an appropriate drag
operation, and the final pair of rules await mouse up
events to de-select the line and end the interaction.

LineBut

LineBut

Line
10

10
Figure 23. When the mouse button is released, the

line button is un-hilighted and a line object is
created.

9

*

0

0
x

y
h

w

Line
Line

Figure 25. On mouse movement in down state with an activated line, adjust the line accordingly.

In the rule of Figure 24, the first condition specifies
that a mouse down event occurs in within the central
portion of the line (e.g., not within 5 units of the y
component of the ends of the line). The second
condition insures that the mouse is within a
proportional distance of 5% from the line.

The mathematical interpretation of the first
condition is: line.y1 + 5 < mouse.y < line.y2 − 5.
Scoping objects allow the use of two separate
translation assumptions — one for each end of the
line.

To understand the mathematical interpretation of
the second condition, we first examine the right
hand part which introduces an assumption that
mouse. x = 0, or a map: Mmouse.x (x) = x − mouse. x .

This map applied to the test −5 < mouse.y < 5
yields

−5 < mouse.y − mouse. x < 5.

The proportionality assumptions applied between
the two components yields maps of:

Mline.x (x) = x − line. x1
line. x2 − line. x1

⋅100 + 0

and

Mline.y (y) = y − line.y1
line.y2 − line.y1

⋅100 + 0

that are then applied to the enclosed attributes,
yielding the final test:

−.05 < mouse.y − line.y1
line.y2 − line.y1

− mouse. x − line. x1
line. x2 − line. x1

<.05

.

More intuitively, we read the notation as: "if a given
line object happened to have the dimensions
(0,0),(100,100), and the mouse x value were 0, then
the mouse y value would lie in the interval [-5,5]."

On the right hand side of the rule, the actions taken
by the rule highlight the chosen line object and

establish offsets x, y, w and h to be used later by the
position update rule.

The rule illustrated in Figure 25 updates the line's
x1, x2, y1 and y2 coordinates to drag the line as a
whole. Note the similarity to the action appearing
in the rule of Figure 24. The specifications differ
only in the assumptions applied, i.e., assuming that
the mouse is at (x,y) as opposed to the previous
assumption that the Line object was positioned at
(0,0).

The final rule illustrated in Figure 26 returns the
line to an inactive state on a mouse up event.

LineLine

Figure 26. On mouse up with active line, inactivate
line.

The rules of Figure 27 to Figure 29 describe a
similar interaction that only modifies the x1 and y1
values of the line (i.e., stretches it). A different line
appearance is used to distinguish the active state of
the previous interaction (Figures 24-26) and that of
Figures 27-29.

CONCLUSION

This paper has presented a very simple but
expressive visual notation for describing geometric
relationships and its application to rule specification
in the BluePrint user interface development system.
With this notation it is possible to express a rich set
of geometric relationships and build rules
governing visual behavior in a visual notation.

10

Line
0

Line

0 x

y

0
Line

0 5

5

-5

-5

Figure 27. On down event within 5 units of upper left corner of line, activate line for (x1,y1) modification.

Line
0

Line

0
x

y
*

Figure 28. On mouse movement during button down, update line object's x1,y1 attributes.

Line Line

Figure 29. Rule returning line to the inactive state.

REFERENCES

[Bell91] B. Bell, "ChemTrains: A Visual
Programming Language for Building
Simulations", University of Colorado
Technical Report CU-CS-529-91, June
1991.

[Benn89] W. Bennett, S. Boies, J. Gould, S.
Greene, C. Wiecha, "Transformations on
a Dialog Tree: Rule-Based Mapping of
Content to Style", Proceedings of the
ACM SIGGRAPH Symposium on User
Interface Software and Technology,
November 1989, pp. 67-75.

[Card87] L. Cardelli, Building User Interfaces by
Direct Manipulation, Digital Systems
Research Center Tech. Report, October,
1987.

[Fish92] G.L. Fisher, D.E. Busse, D.A. Wolber,
"Adding Rule-Based Reasoning to a
Demonstrational Interface Builder",
Proceedings of the ACM Symposium on
User Interface Sof tware and
Technology, November 1992, pp. 89-
97.

[Fole88] Foley, J., Gibbs, C., Kim, W. Kovacevic,
S., "A Knowledge-Based User Interface
Management System", Proceedings of
CHI'88, April 1988, pp. 67-72.

[Fole89] J.D. Foley, W. Kim, S. Kovacevic, K.
Murray, "Defining Interfaces at a High
Level of Abstraction", IEEE Software,
vol 6, no 1, January 1989, pp. 25-32.

[Gies92] D.F. Gieskens, J.D. Foley, "Controlling
User Interface Objects Through Pre-
and Postconditions", Proceedings of
CHI '92, May 1992, pp. 189-194

[Huds90] S.E. Hudson and S.P. Mohamed,
Interactive Specification of Flexible
User Interface Displays, A C M
Transactions on Information Systems,
Vol. 8, No. 3, July 1990, pp. 269-288.

[Huds91] S. Hudson, A. Yeatts, "Smoothly
Integrating Rule-Based Techniques Into
a Direct Manipulation Interface
Builder", Proceedings of the ACM
Symposium on User Interface Software
and Technology , pp. 145-153,
November 1991.

11

[Kurl91] D. Kurlander and S. Feiner, Inferring
Constraints from Multiple Snapshots,
Columbia University Technical Report,
May 1991. Tech. Rep. CUCS 008-91

[Lai88] K.Y. Lai, T. Malone, K-C Yu, "Object-
Lens: A Spreadsheet for Cooperative
Work", ACM Transactions on Office
Information Systems, vol 6, no 4, 1988,
pp. 332-353.

[Myer86] Myers, B., Buxton, W., "Creating
Highly-Interactive Graphical User
Interfaces by Demonstration", Computer
Graphics, v20, n4, August 1986, pp.
249-258.

[Myer87] B.A Myers, Creating User Interfaces by
Demonstration, University of Toronto
Computer Systems Research Institute
Tech. Report, May 1987. CSRI-196
(Ph.D. Thesis).

[Meyr89] Myers, B., Vander Zanden, B.,
Dannenberg, R., "Creating Graphical
Interactive Application Objects by
Demonstration", Proceedings of the
ACM Symposium on User Interface
Software and Technology, November
1989, pp. 95-104.

[Sing88] G. Singh, M. Green, "Designing the
Designer's Interface", Proceedings of the
ACM SIGGRAPH Symposium on User
Interface Software, Banff, Alberta,
Canada, October 1988, pp. 109-116.

[Sing89] G. Singh, M. Green, "Chisel: A System
for Creating Highly Interactive Screen
Layouts", Proceedings of the ACM
Symposium on User Interface Software
and Technology, November 1989, pp.
86-94.

[Wiec90] C. Wiecha,, S. Boies, "Generating User
Interfaces: Principles and Use of ITS
Style Rules", Proceedings of the ACM
SIGGRAPH Symposium on User
Interface Software and Technology,
November 1990, pp. 21-30.

