On The Inverse Shortest Path Length Problem

A Thesis

Presented to
The Academic Faculty

by

Cheng-Huang Hung

In Partial Fulfillment

of the Requirements for the Degree
Doctor of Philosophy

School of Industrial and Systems Engineering
Georgia Institute of Technology
December 2003



On The Inverse Shortest Path Length Problem

Approved by:

pL .

/ﬁ. Joel S. Sokol, Committee Chair

Dr. Ellis L. Jo(mson

/

Dr. ﬁhﬁ)}bir Ahm;zd

/D;X Ozlem Elyém

Dr. S@e;/y’t%ti

Date Approved

o/ 30 /63




To my Mom, Jim, Sophie, and Susan

for their unwavering love and support

iii



ACKNOWLEDGEMENTS

I first acknowledge my advisor, Joel Sokol. Joel guided me into the right direction, gave
valuable feedback and comments, and was supportive during every step of this journey. He
is not only my advisor in academics, but also an instructor of my career and life. Joel made
this journey unforgettable and guided me through every bottleneck. His brilliant insight
and inspiration helped me to explorev this new frontier of research. Without Joel’s patient
and guidance, I could not reach the end of this joufney. Joel made this impossible mission
possible.

1 mﬁst thank my thesis committee members, Shabbir Ahmed, Ozlem Ergun, Ellis John-
son, and Samer Takriti. They looked through every word I wrote and gave me useful
" comment and suggestions for future research. I especially thank Shabbir and Ozlem for
their valuable time in numerous discussions to give me invaluable advice and supervision
during this research. Their involvement made this thesis more complete and solid.

I have to thank my professors in optimization, including Ellis Johnson, George Nemhauser,
Renato Monteiro, Martin Savelsbergh, and John Vande Vate. Their teaching built up my
foundation in optimization. I also thank Anthony Hayter, Earl Barnes, and Craig Tovey
for their support when I worked with them.

Other membefs of the Geprgia TQCh cqmmﬁnify who have been helpful include Paul
Brooks, Junxia Chang, Jin-Hwa Song, Se‘—iKybijmg‘ Oh, Pamela Morrison, Patti Parker,
Valarie DuRant-Modeste, and Gary P:arker?. 'Ithcl)uld like to thank CPLEX, a division of
ILOG, for its software support. '

I am thankful for many good people frorh Taiwan who helped me in Atlanta over the
years, particularly Chien-Tai & Chen—Cheri,j. James & Tina, Jack & Miawshian, Ivy &
George, Wen-Chih, Ke-Hau, Po-Hsun, and I—Lin.

Special thanks go out to Anthony Haytef énd his wife, Miki. Their friendship made my

graduate school experience unforgettable.

iv



Most importantly, I have to thank my family. My Mom’s love and encouragement always
surround me in this lonely journey. My dear wife, Susan, raised our two lovely children alone
in Taiwan. She is not only the mother of my children, but also played the role of a father
in these years. Her love and support accompanied with me at each step of this journey. My
lovely children, .]im and Sophie, lived a life without a father around. Their sacrifice and
support made this happen. If there is any contribution in this thesis, it belongs to them
and not me. Without the support of my family, nothing would have been accomplished. I

love them so much. I would not leave them at any moment of the rest of my life.




TABLE OF CONTENTS

DEDICATION . . . o vt e e e e e e e e e e s s iii

ACKNOWLEDGEMENTS . . ..o\ttt iv
LIST OF TABLES . . . « oo oo oo e e e e ix
LIST OF FIGURES ........ s, xi
SUMMARY . « + .« o o oo oo e xiii
I INTRODUCTION . ... ... L

1
1.1 Motivation of Inverse Problems . . ...................... 1
1.2 Motivation of Inverse Shortest Path Problem . .. .............. 2
1.3 Motivation and Problem Statement of Inverse Shortest Path Length Problem 3
3
4
6

1.3.1 ISPL in Telecommunication Pricing . . . . . ... ... ... ....

1.3.2 Statementof ISPL . ... ... ... ... ... ... .. ...

1.4 Thesis Objective. . . . . .. ... ... ... ... e e e
" II LITERATURE REVIEW . ... ... ... ... 7
2.1 Inverse Solution Optimization Problem . . ... ... ... .. ....... 7
2.2 Methods for Solving Inverse Solution Optimization Problems . . . . . . .. 8

2.3 Inverse Objective Value Optimization Problems and Their Complexity .. 12

IIT COMPLEXITY OF ISPL . . .. ... ... . ... . .. 15
3.1 Formal Statement . . . . . . . . . 0 i e e e e e e e e e e e e e e e 15

3.2 Summary of Previous ISPL Complexity Results . . . ... ......... 17

3.3 Complexity Results . . ... .. . . . i i e 18
3.3.1 Tree and Complete Graph ISPL . . . . .. ... .. ... ...... - 18

332 OycleISPL . ..ottt 25

3.3.3 ISPL Complexity aﬂd the Number of Commodities . ... ... .. 37

34 SUMMAIY . . . . v it e e e e e e e e e e e e e e e e e e e 39

IV ALGORITHMS. .. ... .. e e e 41
41 HeuristicIdeas. . . .. ... .. . .. . . e 41
4.1.1 Spanning Tree Enumeration Scheme . ................ 41

vi



4.2 ISPL Algorithms . . . . . . . . . . i it e et i 45
4.2.1 Shortest Path Subproblem . . ... ... ... ............ 45
4.2.2 Minimization of Infeasibility . . .. ... ... ... ......... 46
4.2.3 Cost Perturbation Subproblem . ........... L 47

4.3 Description of Algorithms . . . .. ... ... ... ... ... ....... 48
43.1 AlgorithmO . ... ......... ... ......... e 49
432 Algorithm 1 . ... ... ... ... .. . ... ....... ... 49
433 Algorithms2& 3 . ... . ... . . . . i e 51
4.3.4 | Algorithms 4 &5 . . . . . . . .. ... .. . . . 51

4.4 Properties of Algorithms . . . .. ... ... ... ... .. .. . ... ... 59

. 4.4.1 Initialization of the Algorithm . . . . . e e e e . 59
| 4.4.2 Termination of the Algorithm . ... ... ... ........... 60
4.4.3 Perturbation Benefit .. ... ...... ... ... .. 0 0. 61
4.4.4 Monotonicity Properties . . ... .......... . ........ 65

4.5 Worst-Case Bounds . . . . . e e e e e e e e e e e e e e e e 68

46 SUMMATY . . . . v v v e e e e e e e e e e e e e e e e e e e e e e e e 79

COMPUTATIONAL RESULTS . .. ... .ot ittt 81

5.1 Random ISPL Instance Generation . ... .................. 81
5.1.1 General Framework . . . .. ... ... ...... ... .. ... .. 82
512 RandomISPL 1. ... .otinnninnnn o, 83
513 RandomISPL2 .. ..............ouuuoounoo.. 83
514 RandomISPLB .. .. .............oooouoeo ... 84
5.1.5 Random Instance Generation Results . . .. ............. 85

5.2 Sample Algorithm Pe;fo?mance ........................ 88

5.3 Performance of Algorijthrjn’s on Random Instances . ............. 90
5.3.1 Intermediat&djifﬁicﬁlty Instances . . . ... ...... e e e e 90
5.3.2 Hard Instanceg e e e et h e e e et e i e 99

5.4 Telecommunication E)?arhple .......................... 104

55

4.1.2 Path Iteration Algorithm . . . . ... ... .............. 42

SUMMATY . . . ot e e e e e e e e e e e e e e e e e e e e e e 109

vii



VI CONCLUSIONS AND FUTURE RESEARCH . . . . ... ........ 111

6.1 Conclusions . . . . . . . i i i i i e e e e e e e e e 111
6.2 FutureResearch . . ... ... ... ... ... ... ... ... . ... 112
REFERENCES . . . . . .. . i it e i i et ittt e et e 114
VITA . e e e 117

viii



© 00 g O ot s W N e

[ S S Y
N = O

13

14
15
16

17
18

19
20
21
22
23
24
25
26
27

LIST OF TABLES

Summary of the complexity result . ... ................... 39
Percentage of similarity in shortest path set when (p1,p2)=(0.15,0.7) . . . . 86
Percentage of similarity in the shortest path set for switching edge type by pl 86
Similarity in SP path sets when (|N|,|E|,|K|,p1,p2)=(30,50,435,0.5,0.4) .. 87
Similarity in SP path sets when (|N|,|E|,| X|,p1,p2)=(30,100,435,0.5,0.4) . . 87
Similarity in SP path sets when (|N|,|E|,|K|,i)l,p2)=(30,200,435,0.5,0.4) .. 87
Similarity in SP path sets when (|N|,|E|,| X|,p1,p2)=(30,300,435,0.5,0.4) . . 88
Similarity in SP path sets when (|N|,|E|,|K|,p1,p2)=(30,435,435,0.5,0.4) . . 88
Average performance for intermediate-difficulty ISPL instances (%) . . . . . 91

Standard deviation of the performance for intermediate-difficulty ISPL (%) 91

Average performance for algorithms under 95 and 99 percent certainly (%) 91

Lower bound of probability of solving intermediate-difficult ISPL within 3

andSpercent . . . . .. . e e 93
t-value cdmparing the performance starting with the minimum cardinality

Path . . . e e e e e 94
t-value comparing the performance starting with random paths . . . . . .. 94
t-value comparing two initial paths for all algorithms . . . . . ... ... .. 94
Average number of iterations for intermediate-difficulty ISPL . . . ... .. 95

Standard deviation of the number of iterations for intermediate-difficulty ISPL: 95
Average number of iterations to converge for intermediate-difficulty ISPL. . 95
t-value comparing the speed of convergence between different initial p.aths . 96
Algorithm performance: (ISPL instance I, the minimum cardinality paths) 97
Algorithm performance: (ISPL instance I, uniform random paths) . . ... 98
Algorithm performance: (ISPL instance II, the minimum cardinality paths) 98
Algorithm performance: (ISPL instance II, uniform random paths) .... 99

Algorithm performance: (ISPL instance III, the minimum cardinality paths) 100

Algorithm performance: (ISPL instance III, uniform random paths) . ... 100
Mean and standard deviation of the performance for hard ISPL (%) . ... 100
The performance of algorithms for hard ISPL (%) . ............. 100

ix



28
29
30
31

32

33
34
35
36
37

Lower bound of probability of solving hard ISPL within 3 and 5 percent .

t-value comparing the performance of algorithms for hard ISPL . . . . . . .
Algorithm performance for hard ISPL in different scenario . . . . . ... ..
Mean and étandard deviation of iterations to converge for hard ISPL . . . .
Average iterations for convergence for hard ISPL under 95 and 99 percent .
Algorithm performance for Tyco (%) . . . . ... ... .. .. . .
Algorithm performance for Level 3 (%) . . v+« oo v v v e ie e e
Algorithm performance for Global Crossing (%) . . . . . ... ... .. ...
Two infeasibilities of Telecom ISPL instances . . . . .. D

Adjusted performance by infeasibility bounds . . . ... ... ... .....



© 00 N O Tt s W N

[ I N S . T N R R N T N R N R . T N S S S S T Ty
© ® T O Ut R W D R O © 0N O U A W N R O

LIST OF FIGURES

Distance graph must be a Euclidean graph. . . .. ... ...........
Partition of vertices in a complete graph without edge (u,v) . . . . ... ..
If K,\{(u,v)} is feasible, then 3P,, such that |Py,|=2 ... .. ... ...
Original Cycle ISPL to Induced CycleISPL. . . . ... ... .........
Two commodities have disjoint paths on the general cycle ISPL instance .

Logic graph of general cycle ISPL ........................
Restricted cycle has 3 disjoint paths . . . ... ... ... ... ......
Logic graph of restricted cycle ISPL. . . . ... ... ... ... .......
Logical ‘graph with clique of size 5 has unique shortest pathset . ... ...
A has no tWo disjoint paths . . . . . ... . ..
Largest restricted cycle ISPL with no 3 disjoint paths . .. ... ... ...
All commodities have 3disjoint paths . .. ... ... ... .. .......
Decompose cycle nodes intotwosets . . . ... ............ e
Matching origihs and destinations for commodities . . ... .........
Perfecf matching of origins and destinations with no cross edges ... ...

The union of two commodities path existscycle ... ............

. Only one spanﬁing treeisfeasible . . . . . ... ... . L o oo ,

Example of the unique feasible solutionisacycle . . . . ... ... .. ...
Example with exponentially many constraints . . . . . . ... ... ... ..
Constraint genefating scheme flow chart I
Algorithm 0 . . . . . .. e e e
Algorithm 1 .. ... .. I
Algorithm 2 . . . . . . . ... ... . . . o e
Algorithm 3 . . . . . . . o e e e e e

Algorithm 4 . . . . . e e e e e e e e e e e e e e e e e e e

‘Algorithm 5 . . . .. S

Perturb the cost to reach a better solution . . .~. . ... ... ........
Linear function of lengthofapath . .. ... ... ... ...........

Shortest path length function for one commodity is piecewise linear

xi

28



30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Number of constraints generated is neither convex nor concave . ... ... 64

Example of cost perturbation doesnot work . . . .. ... ... . 65
Feasible cost of ISPL . . . . . .. .o oo oo 65
Inner loop and outer loop . . . .. ......... B 66
Feasible ISPL instance with 2 commodities . . ... ... ... .... ... 71
Feasible ISPL solution and shortest paths . . . ... ... ... ....... 71
Worst solution for 2-commodity ISPL. . . . ... ... ............ 72

The performance bound on this ISPL with 3 commodities is tight at Z3+72-Z1 73
The performance bound on this ISPL with 3 commodities is tight at 2Z3-Z2-21 74

A feasible solution for 2-commodity ISPL worstcase . . . ... ....... 75
A feasible solution for 3-commodity ISPL worst case1 . . ... ... .. .. 76
A feasible solution for 3-commodity ISPL worst'case2 . ... ... ... .. 76
The worst performance of the algorithmsisd=|K|-1 . ............ 78
ISPL example 1. ... ... e e e e e e e e e e e e e e e e e 89
ISPLexample 2. . . . . . . . o o i e e e e e e e 89
ISPLexample3. ... . ... ... ......... T e e e e e e e e e 90
Performance of algorithms starting at the minimum cardinality paths ... 92
Performance of algorithms starting at uniform random paths . . . o 92

Iterations for convergence when starting with minimum cardinality paths . 96

Iterations for convergence when starting with uniform random paths . . . . 96
Hard ISPL performance of algorithms . . . . . P e e e e e . 101
Iterations for convergence intheworstcase . ................. 103
Tyconetwork . . . . . . . . . i e e e e e e e e 104
Level 3metwork . . . . . . . . i e e e e e e 105
Global Crossing network . . . . ... ........ P 105

xii



SUMMARY

The Inverse Shortest Path Length Problem (ISPL) is to find the vector of cost coefficients
to satisfy given shortest path length constraints in a network. Given a graph and target
shortest path lengths for some origin and destination pairs, we want a cost vector such that
the shortest path length for each given pair will be equal to its target.

The objective of this dissertation is to explore the complexity, algorithms and applica-
tions of the Invefse Shortest Path Length Problem (ISPL). Prior researchers showed that
ISPL is NP-complete. We explore the complexity of ISPL for special cases. We also in-
troduce some heuristic algorithms and analyze their worst case performance. We test the
algorithms on a set of randomly-generated instances, and observe that the results are usually
within 3% of optimality. Finally, we present an application of ISPL to telecommunications

bandwidth pricing, and test our heuristics on real-world data.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of Inverse Problems

When solving an optimization problem, we usually assume that all parameters are known
exactly and we try to find an optimal solution. In practice, this assumption is often not
correct. Sometimes, we are unsure about the parameters of the system but we have the
optimization solutions. For example, assume there is an outcome of the system that we
want, or that we know is optimal. We need to find a cost vector for the given system so
that the desired outcome will be the system’s optimal solution. Sometimes, the parameters
(cost, capacity, travel time, etc.) are difficult to calculate exactly. The best thing we can
do is to estimate them as closely as possible.. The goal of inverse optimization is to find
values for the parameters in order to make the desired solutions optimal. Often, we have
an initial set of parameter values and our goal is to perturb them as little as possible when
making our desired solutions optimal.

Inverse optimization problems can be divided into two categories: inverse solution opti-

mization and inverse objective value optimization. The inverse solution optimization prob-

lem is to perturb the cost vector to make the given sqlutions optimal. There are numerous
inverse combinatorial optimizatioh pr(i)bl?er‘ns‘ that haVé Been studied in this category, e.g.,
inverse shortest path prob]ém (ISPP), il?werse minimum spanning tree, inverse min cost
flow, etc. The second categéry, invéfse objective value optimization, has drawn less atten-
tion than the first one. In an invers;a objective value optimization problem, we do not have
the desired solution in advance, but we do have desired values for the objective functions.
The problem is to find a cost vector which makes each piece of the optimal objective value
equal to its desired value. The inverse shortest path length problem (ISPL) addressed in
this thesis belongs to this category. In general, the problems in the first category are com-

paratively easier than the problems in the second. Ahuja and Orlin [3] proved that many



inverse solution optimization problems share the following property: if the original prob-
lem is polynomially solvable, then the corresponding inverse problem is also polynomially
solvable. In Chapter 3, we show that ISPL is polynomially solvable if theré is only one
desired part of the objective function or two desired parts of the objective function. When
the number of the désired parts of the objective function is greater than two, then ISPL

becomes hard.

1.2 Motivation of Inverse Shortest Path Problem

One example of an inverse problem of the first type is the traffic assignment problem.
Given an O-D (origin-destination) trip matrix, the traffic assignment problem is to assign
traffic onto a network so that each driver uses his shortest path. In a user equilibrium, if
two paths are used by the same O-D drivers, then the travel times of these two paths are
equal. Moreover, nobody can decrease his travel time by changing his path independently.
However, calculating the real travel times is difficult since the delay due to congestion is
hard to estimate and is not linear in the traffic on the road. A reasonable and easy way to
obtain estimates for travel time in the uncongested state is the arc length. Moreover, we
can identify the shortest paths of some specific O-D pairs by investigating real driver roufes.
| Hence, the actual travel time on each arc can be recovered by perturbing the estimated time
as little as possible and making sure that these specific paths are shortest for the given O-D
pairs. This is an Inverse Shortest Path Problem (ISPP). Another important application of
ISPP from the geophysical sciences concerns predicting the movement of an earthquake.
The ISPP problem can be formulated as follows. Let T denote the vector of estimated
costs on the arcs, and let P; be the desired shortest path for origin/destination pair (o;, d;).
The objective is to perturb the cost vector minimally while making sure that the identified
paths P; are the shortest ones with respect to the perturbed cost vector. In other words, if
Q; is the set of all paths from o; and d;, then every path ¢ € Q; must be at least as long

as PJ'.



min [|¢c —¢| (1.1)
s.t. Z cr > Z e, (=1,...,.K,q€Q;) - (1.2)
klax€q klageP;

c. >0 (1.3)

The number of constraints is equal to the total number of paths for each (o0;,d;). There
could be a huge number of constraints. However, we do not have to deal with all the
constraints at the same time. Since we can find the shortest path in polynomial time, we
can identify a violated constraint in polynomial time also. This allows us to handle many

fewer constraints at each iteration and solve the problem in polynomial time.

1.3 Motivation and Problem Statement of Inverse Shortest
Path Length Problem

In some situations, we do not have the desired shortest paths in advance, but we have
the desired shortest path lengths. The objective is to recover the network costs to satisfy
specific O-D shortest path length constraints. This is called the Inverse Shortest Path
Length Problem (ISPL).

1.3.1 ISPL in Telecommunication Pricing

ISPL has an important appiication in telecommunication pricing. There has been unprece-
dented growth in the demand of bandwidth capacity over the past few years. Chiu and
Crametz [11] point out that the deregu_:l_ation: of the telecommunication industry and the
explosive growth of the internet have chaﬁée& the supply-demand landscape for telecom
capacity. Both supply and demand of bandwidth have increased dramatically.

RateXlab [25], which monitors the bandwiidfc_h market, has observed pricing inconsistency
in the market. Pricing inconsistency meafns'éthe pricing violates the triangular inequality.

RateXlab examines pricing inconsistenciés['reisy lting in two types of apparent arbitrage op-

A
o

portunities: geographical and time. For example, RateXlab reports the price between New

York and certain European cities can be higher than buying two segments connecting New



York and the destination city via London. This is an example of geographical arbitrage.
The second type of arbitrage opportunity results from the total price of a long term contract
costing less than that of a contract with shorter length. RateXlab found that one can pur-
chase a 60-month contract and pay less than the total cost of 36-month contract. RateXlab
point out these two kinds of arbitrage opportunities are not instant risk-free profit because
most of the prices used in the analysis are not the actual trading price, but posted offers.
Nevertheless, the pricing inconsistency draws our attention and suggests the need more
careful pricing scheme. In this thesis, we focus on eliminating the more complex arbitrage
opportunity, geographic arbitrage.

Chiu and Crametz [12] show that when two no-arbitrage relationships in bandwidth
pricing are combined, opportunifies for arbitrage may still exist. Therefore, instead of de-
composing into small networks, we have to deal with the whole telecommunication network
when trying to find consistent pricing. Since the product (bandwidth) is not storable and
the m;eret is extremely competitive, pricing of the bandwidth becomes an important issue
for a company to survive and generate revenue([24].

We define a pricing strategy as the desired cost of bandwidth on a set of O-D pairs. A
company may decide its pricing strategy for some specific O-D pairs after considering its
competitor’s 'price. To achieve the pricing strategy, the company must select a price for each
segment so that the shortest path cost of each specific O-D pair will equal to the desired

price.
1.8.2 Statement of ISPL

Formally, given an undirected network G := (N, E), and desired shortest path length set
(pricing strategy) Z = {((or,dr),2r) : 7 = 1,2,..., K}, ISPL requires us to find costs c;; for
each (i,7) in F to satisfy the foll@wing condi@ién: If P, is the shortest path between o, and
d- under cost coefficients c;;, then | Z qj;zr forr=1,..,k.
Before we introduce the formplgéééipgf IS?L, we first define Q,(c) as the shortest path
b o

value function of commodity r with respect to cost c. Let G := (N, E) be a directed

network, ¢ = (c1, ¢2, .-, ¢jg|) be the cost (length) of each arc, and 6 (n) denote the set of



incoming arcs and 6~ (n) denote outgoing arcs at vertex n. Then Q,(c) : R!f(l) — Ry is

a function defined as follows:

Qr(c) = min anya (1.4)
v a€E
s.t. Z Ya — Z Ya=—-1 if n=o, (1.5)
a€ét(n) a€d—(n) .
Z Yo — Z Ya=0 if neV\{osdr} (1.6)
a€st(n)  a€s~(n)
Y va— D va=1 ifn=d, (1.7)
~ aedt(n) a€éd—(n)
v >0 | (1.8)

Constraints (1.5,1.6,1.7) define a path for commodity r, and the formulation above
defines an arc-based shortest path formulation for commodity 7.

The formulation of ISPL is the following. Let z; be the desired shortest path length,
and Qr(c) be the shortest path value function of commodity r with respect to cost c¢. Then,
(1.9)-(1.11) is an implicit formulation for ISPL. The major difference between ISPL and

ISPP is that here we do not have each desired shortest path as in (1.2). The ISPL is then

min £(c) (1.9)
st. Qr(c) =2, (r=1,..,K), (1.10)

e Z 0, (1-11)

where f is an arbitrary objective function.

Actually, ISPL is really a feasibility problem. No matter what kind of objective function
we have, what we want isto find a feasible solution to satisfy (1.10) and (1.11). One possible
way to pick between multiple feasible solutions is to minimize f(c) = qu- over all (i, 7).
We now introduce another two possible objective functions. Let I.(2, c) be an indicator of

a violated constraint of (o, d,) under some cost vector ¢ by setting



1, if Z(i,j)EPr Cij # Z«,-,

0, otherwise.

I(z,¢) =

Because there is no specific objective function in ISPL, we can either minimize the sum
of violations over all the given O-D pairs or minimize the number of violated paths. The
different objectives lead to different schemes to approach the solution. The two possible

objectives are

K

K
Min Z Z cij — zr|[ | or Min ZIr(zr,c).

r=1||(i,j)eP- r=1
1.4 Thests Objective

The objective of this work is to explore the Inverse Shortest Path Length Problem (ISPL),
including complexity, algorithms, and applications.

| Some prior research has discussed the complexity of Inverse Shortest Path Length Prob-
lem (ISPL) and identified some special cases for which ISPL can be solved to optimality
in polynomial time. The general ISPL is NP-hard and cannot be solved optimally in poly-
nomial time. We will discuss the complexity of more complex special cases in an effort to
identify when the problem becomes intractable. We also develop a family of new heuristics

" for ISPL and evaluate their performance on random problems and on data sets based on

real world telecommunications data.

The remainder of this dissertation is organized as follows. Chapter 2 contains a literature
review of inverse solution optimizatioﬁ problems, methods for solving inverse solution opti-
mization proBlems, and inverse objective value optimization problems. It also summarizes
previous research on the complexity of ISPL. Chapter 3 discusses our complexity results
for some special cases of ISPL. In Chapter 4, we introduce different solution approaches for
ISPL and propose some solution algorithms. Chapter 5 presents the telecommunications
application in detail and reports the performance of the proposed algorithms of Chapter 4.

Chapter 6 contains conclusions and proposes future research directions.



CHAPTER II

LITERATURE REVIEW

We give a literature review in this chapter. The content is organized as follows. In Section
2.1, we discuss the inverse solution optimization problem. Methods used for solving inverse
solution optimization problems are introduced in Section 2.2. Section 2.3 covers inverse
objective value optimization problems. We will focus on the inverse shortest path length

problem and the corresponding complexity results in this section.

2.1 Inverse Solution Optimization Problem

- Inverse optimization problems were first investigated by Burton and Toint [6]. They studied
the inverse shortest path problem in 1992. After that, many inverse optimization problems
were considered by different research groups. Cai and Li [8] considered inverse minimum
spanning tree, inverse weighted matching, and inverse weighted matroid intersection. They
showed that these problems are equivalent to the min-cost flow problem and hence can
be solved in polynomial time. Liu and Zhang [23] considered other inverse combinatoriai
optimization problems. They showed that the inverse maximum matching perfect matching
problem can be solved in polynomial time under an I3 norm.

Heuberger [20] showed that most polynomially solvable problems will have polynomially
solvable inverse solution optimization problems. This is true for a large class of problems
where the objective function of the original problem is linear, e.g. f(c,z) = cx. However,
this is not true for all inverse problems. Cai, Yang, and Zhang [10] showed that the minmax
inverse center location problem is NP-hard even though the original problem is polynomially
solvable.

The inverse shortest path problem (ISPP) is polynomially solvable. Given a graph
G(N, E), costs ¢;; for each (i,7) € E, and a set of paths P, (one for each O-D pair), we

can perturb the costs on the edges such that the given paths P, are the shortest paths for



their corresponding origins and destinations. Burton and Toint ([6],[7],[4]) formulate this
as a quadratic programming problem where the objective is to minimize the perturbations
with respect to an I norm. They solve it by using Goldfarb and Idnani’s algorithm [18].
Ahuja and Orlin [3] use linear programming duality to solve the problem. Zhang, Ma, and
Yang [41] use a column generation method to solve the unconstrained case under a unit
weight l; norm. Cai and Yang [9] propose a combinatorial algorithm to solve the constrained
multiple objective inverse optimization problem under an /; norm with asymmetric weights.
Hochbaum [21] proposes a more efficient algorithm for the inverse spanning tree problem
by formulating the problem as the dual of an assignment problem.

Day [13] and Day, Nemhauser, and Sokol [14] apply the inverse shortest path problem
to the management of railroad impedances for shortest path-based routing.

Heuberger [20] gives a detailed survey of inverse optimization problems (both inverse
solution optimization and inverse objective value optimization problems), which includes

descriptions, methods and state of the art results for different problems.

2.2 Methods for Solving Inverse Solution Optimization Prob-
lems

In this section, we introduce some general methods used for solving inverse solution opti-

mization problems. We take the classification of the methods from Heuberger [20].. The

methods can be divided into the following categories:

1. Inverse linear programming method

Zhang and Liu [39] first introduced linear programming methods to solve inverse
problems. Ahuja and Orlin [3] considered the dual of the inverse problem. They
showed that the solution of the inverse problem is very similar to the original one
and can be solved by using the associated dual solution. For example, the dual of the
inverse shortest path problem is itself a shortest path problem. Their approach is the

following:

Let A€ R™*"*, ce R*, be R™, I := {1,...,m}, J := {1,...,n}. Consider the linear



program
s.t. Az > b, ' (2.1)

The dual problem will be

mazx wb+ pl — ou
st.mTA+p—o0o=c, (2.2)

p=0,020,7m>0.

The inverse optimization problem will be equivalent to solving the following system

(2.3).

min |lc—¢]|

sit. ¢ = min{cz : Az > bl < z < u} (2.3)

Define corresponding constraints to ( 2.1 ) by setting B:= (i€ I: Za,-j?c‘j =b;p,
jeJ

jeJ : ' jeJ

R = {z‘eI:Zaiﬁj<b,~ ,S:= iEI:Zaijffj>bi ,LZ={j€J:Ej=lj},
Uw={jeJ:Z=uyladT:=N\LUV)={j€J:l; <F<w}

e ] ‘
By the complementary slackness conditions, Z is optimal for ( 2.1 ).if and only if the

corresponding dual variables 7_r,5p,jand o satisfy

. L
Zaij?ri'*'pj =é}’j € R:

. 1€B
Zaiﬂri —0;= a},i € S, (24)
ieB |

EJ’ ajjT; = ’C\j,’i €T,
i€B

m2>0,p20,02>0.



Therefore, the inverse linear programming problem can be reformulated as

min{||c — ¢|| : 3, p, o such that the system (2.4) holds}. (2.5)

Defining a and B to be the vectors of decreases and increases in ¢, and w to be a

vector of objective value weights on each change, we can write (2.5) as

mar —wa —wl

s.t. Zai_.,-m +pj—aj=cj,j € R,r

i€EB

Z a;jm; — 05 + B =cj,i € S, : (2.6)
i€B '
Za,-jvr,- —aj+ﬂj =cj,1 € T,

i€B

1>0,p>0,0>0a>0,8>0.

Then we consider the dual of (2.6) with associated dual variables Uj and take a linear

transformation by setting ¥; = y; — T;, to get

min cy
st. Agy > bp
oy Ly £ 4wy, for j such that l;=Z;
w—wj<y;<w,  forjsuchthatB=w;  (27)
T —wj < Yj TS z; + wj, for_y such that lJS':EJ gu]
e -

In addition to a strajglltfdrward simplex solution of (2.7), other methods have been
used. The idea of using column generation methods to solve inverse shortest path
problems was proposed by Zhang, Ma, and Yang [41]. Yang ana Zhang [35] use
this method to solve an inverse combinatorial optimization problemi(according to the
input parameters, the problem could either be an inverse shortest path problem or an

inverse minimum spanning tree problem).
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Because we can formulate these inverse optimization problems as linear programs, the

ellipsoid method can be used to prove polynomial solvability.

. Duality for inverse problems

Sokkalingam [27] produces a duality theory of inverse linear programming under gen-
eral norms using duality results from convex analysis. Sokkalingam, Ahuja, and Orlin
[28] consider the duality of the inverse problem under an !; norm and show that the
inverse spanning tree problem can be formulated as the dual of an assignment prob-
lem on a bipartite network and can be solved in O(n3) time. They also show that
the weighted inverse spanning tree problem can be formulated as the dual of a trans-
portation problem and can be solved in O(n?m log(nC)) time, where C is the largest

arc cost in the network.

. Newton type methods

Zhang and Liu [40] propose a general optimization model which includes most inverse
optimization problems as its special cases (e.g., inverse minimum spanning tree prob-
lem, inverse minimum cost flow problem, inverse maximum perfect matching problem,
etc). They also propose a Newton type method to solve these inverse combinatorial

optimization problems in a uniform way under an l,, norm.

. Direct combinatorial methods

Ahuja and Orlin [2] and Sokkalingam, Ahuja, and Orlin [28] both propose combina-
torial algorithms to solve the in‘ve1:'se spanning tree problérﬁ. iH.c:)c?hba_iuum [21) proposes
a more efficient algorithm _}Ifox" the inverse spanning tree pjroblef:m by formulating the

problem as the dual of an assignment problem.

. Others

Tong and Lam [29] use an embedded connection list approach to solve inverse shortest
path problems. Zhang and Ishikawa [37] uses a neural network approach to solve
inverse optimization problems. Amico, Maffiloi and Malucelli [15] propose a base-

matroid idea to solve inverse combinatorial optimization problems.

11



2.3 Inverse Objective Value Optimization Problems and Their
Complexity |

Burton and Toint [5] were the first to discuss a problem similar to inverse objective value
optimization. They examine the complexity of the inverse shortest path problem with upper
bounds on shortest path costs and prove that obtaining a globally optimal solution to this
problem is NP-complete. They show that ISPL is also NP-complete by reducing the 3-
satisfiability problem to it. They show that the feasible set is not convex and propose a
local search algorithm. The algorithm is based on quadratic programming and uses the
algorithm of Burton and Toint [6] as a subroutine.

Heuberger [20] defined “reverse optimization problems” to be those problems with given
desired objective values, but not desired solutions (e.g., ISPL). We will adopt Burton’s
terminology and use “inverse optimization” to “reverse optimization”.

Ahmed and Guan [1] show that the inverse optimal value problem of linear programming
is NP-complete. They provide sufficient conditions under whi(':h the problem can be solved
in polynomial time.- Ahmed and Guan also give an algorithm to solve the general case
problem based on solving linear and bi-linear programming problems. Yang and Zhang
[36] study the inverse optimal value problem for minimum spanning tree, show the problem
can be formulated as a combinatorial linear program, and present a combinatorial strongly

polynomial algorithm for it.

Zhang and Lin [38] consider an inverse shortest path problem of trying to shorten the
edge lengths as little as possible such that the distance between specific origins and des-
tination is inside some desired bounds. Burton and Toint [5] already showed the general
case of this problem is NP-complete. Zhang and Lin show that the problem is polynomially
solvable when restricted to the cases Ewhére the demand graph is a forest or a single terminal.
Polynomial-time algorithms are also p‘résented. |

Faragd, Szentesi and Szviatovszki [16] study the inverse shortest path problem and apply
it to an ATM (asynchronous transférén.ilode) telecommunications network. Their problem
is a form of the inverse optimal value vpvroblem. There is no initial cost or length on edges;

hence, the objective is not to minimize the perturbation of the cost vector. However, they

12



still have desired shortest paths between some specific nodes. They define three types of
tasks applied in the ATM network and use linear programming to solve these three tasks in
polynomial time. They also indicate the application to the high-speed telecommunication .
network.

Fekete, Hochstéttler, Kromberg, and Moll [17] investigate the complexity of ISPL based
on characteristics of the distance graph. Let G = (IV, E) be an undirected graph. The
distance graph Gg4 = (N, Ey, z4) is defined by a weighted function z4 : E4 — RIE::I describing
the shortest distances between specific ﬂode pairs E4. A cost function ¢ : E — RI‘E.I for
G is called a G4 — satisfying function if the shortest path length for each edge of E4 in
G(N, E,c) is equal to the corresponding value of z5. ISPL is identical to the question:
“given G and Gy, is there a G4 — satisfying function ¢ on G?”

Fekete, Hochstéttler, Kromberg, and Moll [17] show ISPL is NP-complete by reducing
the vertex-disjoint paths problem to ISPL. They indicate that ISPL is polynomially solvable
under very restricted cases. They also show that ISPL becomes intractable even when the
distance éra.ph is only a little more complex than a polynomially solvable instance. Their

major complexity results are the following:

1. ISPL is NP-complete.

2. ISPL is NP-complete, even if restricted to instances G, G4 for which G+ G4, (N, EU

E4), is planar.

3. ISPL is polynomially solvable if the distance graph is the union of complete stars. (A
set of edges S is called a star if all edges are incident to one vertex s, i.e.,, S C s X N.

If S covers all vertices of the graph, S is a complete star).

4. ISPL is NP-complete, even when restricted to instances where the edges of the distance

graph can be covered by two stars.

5. ISPL for digraphs is NP-complete, even restricted to instances where the distance

graph has only 3 edges.
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For the telecommunications application, complexity with respect to the structure of
the underlying physical network G = (N, E) is more relevant, so those are the complexity

results we focus on.
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CHAPTER III

COMPLEXITY OF ISPL

Prior researchers have already shown that ISPL is NP-complete. We show that some special
cases of ISPL are polynomially solvable, and discuss the complexity of ISPL under different
scenarios to identify the ranges dividing ISPL instances into polynomially solvable and
NP-complete. | |

This chapter is organized as follows: In Section 3.1, we give a formal statement of ISPL.
A summary of previous research on ISPL’s complexity is included in Section 3.2. Section
3.3 contains our complexity results for ISPL. We propose some research directions for ISPL

complexity in Section 3.4.

3.1 Formal Statement

The Inverse Shortest Path Length problem (ISPL) can be solved on undirected or directed
networks. We define ISPL on an undirected network. The only difference between the undi-
rected version and the directed version ié in the path formulation. To avoid ambiguity, the
netwprk that we consider in the following content is undirected unless otherwise specified.

In ISPL, we are given an undirected network G := (N, E) and desired shortest path
length set Z = {((or,d;),2r): 7 =‘1,2>,...,K }. Each origin and destination (o,,d,) can
be treated as a commodity traveling; on a shortest path from o, to d. where we want the
shortest path distance to be equal to z-. Define Q, (c) to be the shortest path value function
of commodity r with respect to cost c Let ¢ = (c1, ¢, ..., ¢|g))" be the cost (length) of each

edge. Let Qr(c) : le (N R4 by setting it as the folloWing:
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Qr(c) =min } cava (3..1)

acE
s.t. Z Ya — Z Ya=-1 if n=o, (3.2)
acét(n) acé—(n)
> Y= > %=0 if neV\{o,d} (3.3)
aeét(n) aeé~(n) '
Yo v Y va=1 ifn=4d, (3.4)
aeét(n) a€d—(n)
Yo =0 (3.5)

where d%(n) denotes the set of incoming edges to node n and §~(n) denotes the set of
outgoing edges from n. The formulation above identifies a shortest path for commodity r.
Let 2, be fhe desired shortest path length, and @, (c) be the shortest path value function,
of commodity = with respect to cost c. We want to find nonnegative costs c;; for each
(3,7) € E to satisfy Qr(c) = 2 for r = 1,..., K under some objective function. The

formulation of ISPL is fbllowing.

mcin f(o) (3.6)
Qr(c) =z, (r=1,..,K) (3.7)
c>0 ' (3.8)

Notice that ISPL is actually a feasibility problem. The objective function f could be
arbitrary. Given an ISPL instance, we;a_rehbt trying to find the optimal solution. We just

want to find a feasible solution to sati_;sfyr (3.7) and (3.8).

Definition 3.1. Given an ISPL instqhée, iiue say that the instance is feasible if and only if
|

there erists a cost vector € € R!f:o sucﬁ that the following conditions are satisfied:
Qr@) =z forr=1,. K. (3.9)
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Checking whether the given ISPL instance is feasible or not is a NP-complete problem in
general. Moreover, the implicit equation (3.7) makes ISPL difficult to solve directly. Hence,
we try to solve this feasibility problem, ISPL, by solving a different optimization probiem.

For example, we can solve the optimization problem formulated as (3.10)-(3.12). The
objective function is to minimize the sum of shortest path length violation of all commodities
when restricted such that the shortest path length of each commodity must be greater than

or equal to the desired value.

K :
min f(c) = Z(Qr(c) - 2) (3.10)
r=1 .
Qr(¢) 2z, (r=1,..,K) (3.11)
c>0 ' (3.12)

Alternatively, we can remove (3.11) and choose an objective function like the following.

K
7@ =3 _110n(c) = =l| (3.13)
r=1

. Then the problem becomes to minimize the norm between Q,(c) and 2. Any norm can be

used. In Chapter 4, we discuss a family of heuristics for ISPL based on these ideas.

3.2 Summary of Previous ISPL Complezxity Results

To our knowledge, there are only two previous studies that discuss the complexity of the
inverse shortest path length probléirn.' Burton and Toint [5] first investigated the complexity
of ISPL and proved ISPL is NP-cA(:)mplete by reducing the 3-satisfiability problem to it.
Fekete, Hochstéttler, Kromberg, ahd Moll [17] used the concept of the distance graph
(demand graph) to discuss the complexity of ISPL. They sho'wed that ISPL is NP-complete
by reducing the vertex-disjoint-path problem to it. Fekete, Hochstéttler, Kromberg, and
Moll also indicated that ISPL is poljnomially solvable in very restricted cases, and that ISPL
instances of these polynomially soivable classes become intractable when the underlying

O — D structure varies slightly.
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Unlike Fekete, Hochstéttler, Kromberg, and Moi] who discuss complexity in terms of
the demand graph, we identify additional classes of ISPL that are polynomially solvable by
considering thé physical network. If the underlying physical network is a tree, a forest, or a
coxhplete graph, then ISPL is polynomially solvable (see Section 3.3). Since both the most
simple and the most complicated structures are polynomially solvable, and ISPL in general
is not, we also identify ranges dividihg the ISPL instances into polynomially solvable and

intractable.

3.3 Complexity Results

In this section, we discuss the complexity of ISPL on special graphs (for example, different
underlying network structures and numbers of commodities). In the first subsection, we
show complexity results for ISPL when the underlying network is a tree, complete graph,
and some modifications of the complete graph. The complexity of 2-commodity ISPL is
also discussed in Section 3.3.1. The ISPL complexity result when the underlying network

is a cycle is discussed in Section 3.3.2.
3.3.1 Tree and Complete Graph ISPL

First, we consider two special cases of underlying networks: trees and complete graphs. We
will not discuss the case of forests separately since the proof is the same as for multiple

trees.

Theorem 3.1. ISPL is polynomially solvable when the underlying network is a tree.

‘Proof. Supiiose‘ that the underlying network is a tree. Then there exists a unique path
pr for each commodity 7. Hence, the shortest paths used to calculate Q. (c) in (1.10) are
defined uhiquely for each commo:dity. ‘Therefore, the problem becomes the following linear

system of equalities:

Z cj=z2,r=1,.,K (3.14)

_ (i.5)€pr
Both solving and checking feasibility can be done in polynomial time. O
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zl (o1,d1)=(1,2)
22 (02,d2)=(2,3)
(03.d3)=(1.3)

z3

Figure 1: Distance graph must be a Euclidean graph

Before we prove that ISPL is polynomially sblvable when the underlying network is a

complete graph, we need the following lemma.

Lemma 3.1. Given an instance of ISPL, an undirected network G := (N, E), and desired

shortest path length set Z = {((or,d;),2r):7=1,2,..., K}, let Gg = (N, Ey,2,) be the

distance graph defined as folldws: . |
Ey={(or,d;) : 7=1,2,...,K} and z is the desired shortest path length from o, to d;.
If the ISPL instance is feasible, then G4 must be a Euclidean graph (i.e., G4 satisfies

the triangular inequality).

Proof. We prove this lemma by contradiction.
Suppose that G is not a Euclidean graph, i.e., it violates triangular inequality. Without
loss of generality, we may assume there exists a triangle with z; + 29 < 23 (see Figure 1).

Since Gy is a graph that defines the shortest path lengths, the shortest path length between

nodes 1 and 3 must be equal to z3. Since 1 — 2 — 3 is a path between node 1 and node
3, we require zj + 29 > 23, which is a contradiction. Thus, the ISPL instance is infeasible.

Therefore, if the ISPL instance is feasible, then G4 must be a Euclidean graph. O

Theorem 3.2. ISPL is polynomially solvable when the underlying ﬁetwork is a complete

graph.

Proof. Suppose that the underlyingiundirected network is a complete graph. We can obtain
a set of vertex disjoint paths for the O — D pairs by using the edges between the origin and
destination of each commodity (since G is complete). Let cij = zr if o, =% and d, = j for

some commodity 7, and c;; = M otherwise (M is a big number larger than any 2,). Thus
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we have oﬁe path length (namely, the length of the direct edge) equal to the desired length
for each commodity. We now show that either this sblution is feasible, or else G4 is not
Euclidean.

If ¢ is feasible, Lemma 3.1 guarantees that G4 is Euclidean.

Suppose the solution c is not feasible. Then there must be some commodity r for which
Qr(c) < zr = ¢,, 4, Since M > 2z, the shortest path for commodity » must not include
any edges (,7) that are not in the set of O — D pairs. Therefore, the shortest path from
or to d, consists of nodes o, = 1,19, ..., i, = d; such that each (;,—1,%m,) is an O — D pair,
for m = 2,3,...,k. By definition, the length of this path is equal to the length of these
commodities’ desired shortest paths. Since Q,(c) < z, these O — D pairs form a shortcut
of commodity r, and thus G4 is not Euclidean.

Checking feasibility can be done by solving the some-to-some shortest path problem.
- It is O(n®) when using the Floyd-Warshall algorithm, and thus can be done in polynomial

time. O

We now have shown that ISPL is polynomially solvable both when the underlying net-
work is a tree and when it is a complete graph. Since two extreme cases are polynomially
solvable and the general ISPL is NP-complete, the remaining question is when ISPL be-
comes hard. We first discuss modifications of the complete graph here.

Before we prove the theorem, we need the following lemmas:

Lemma 3.2. Given an instance of ISPL, if

(1) there is a vertez disjoint path set for commodities (or,d,) (r =1,...,K), or

(2) there is an internally vertez disjoint path set for commodities (or,dr) (r = 1,..,K)
and the distance graph G4 is an Eﬁclidean Graph (Lemma 8.1),

then the instance must be feasible.

Proof. Case (1) is trivial. Let P = {p, : pr is an o, — d, path, r= 1,..., K} be the vertex
disjoint path set and let. |p,| denote the number of edges of p,.. Assign ¢;; = ﬁrﬂ[ for
(4,4) € pr, 7 =1,..., K and ¢;; = M, where M is a large number, for all other edges. Then

we have a feasible solution of the ISPL instance. Hence, the instance is feasible.
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When case (2) holds, assign edge costs ¢;; as in case (1). We have a path for each
commodity r with length equal to z,. We must show that there is no shorter path for any
commodity under the cost vector c;; we just assigned. Every path for commodity r using
edges other than those in P will have longer length than z. because it contains an edge
of length M > 2. Thus, any possible path of shorter length must use only edges in P.
However, by the fact that each p, is internally vertex disjoint from the others and because
the distance graph satisfies the triangular inequality (by Lemma 3.1), we can guarantee
that there is no shorter path for each commodity. Hence, we have a feasible solution of the
ISPL instance.

Thus, if either case (1) or case (2) is true, then the ISPL instance must be feasible. [

We now return to studying the complexity of ISPL in the case of dense graphs.

Suppose that we remove one edge from the complete graph. We now show that ISPL is
still polynomially solvable. Consider an ISPL instance (G = (N, E), Z). Let (u,v) be the
edge removed from the complete graph. Consider the graph G’ = G\{(u,v)}. Then the

node set in G’ can be partitioned into A, B, and C as follows (see Figure 2):

A:{w € N\ {u,v} such that both (u,w),(v,w) € Z}
B :{w € N\ {u,v} such that either (u,w) or (v,w) € Z but not both}
C: {w € N\ {u,v} such that neither (u,w) nor (v,w) € Z} (3.15)

Note that ANB=BNC=ANC = ¢ and AUBUC = E\ {u,v} .

To show that ISPL_'is polynomially solvable when the underlying network is a complete

graph with exactly one edge rembved, we first prove the following lemma.

Lemma 3.3. Let ((u,v), zuv) € Z be a commodity in an ISPL instance on a graph Ko \{(u,v)}.
If the instance is feasible, then there ezists a feasible solution in which the shortest path Py,

from u to v contains ezactly 2 edges.

Proof. Since G = Kn\{uv}, we have |Py,| > 2.
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Figure 2: Partition of vertices in a complete graph without edge (u, v)

wi
u i \ : v
w2

Figure 3: If K,,\{(u,v)} is feasible, then 3P,, such that |Py,,| =2

Suppose |Pyy| > 2 for all shortest paths from u to v in some feasible solution. Without
loss of generality, we may assume |P,,| = 3. Let P,, = u — w; — ws — v be the shortest

path, and |P,,| = 3 (see Figure 3). By Lemma 3.1, we have
Cwywz + Cwgu = Cwyv AN Cuw; + Cwgwy = Cuwg-

Therefore, paths u — w; — v and u — wg — v are at least as short as u — w; — wy — v.

This is a contradiction.

Theorem 3.3. K,\{(u,v)} is polynomially solvable.

Proof. Let K, be an undirected complete graph and (u,v) be the only missing edge from
K,,. We may assume there is a commodity between (u,v). Otherwise, the problem can be
solved as a complete graph (see '_Th@aorem 3.2) since we allocate cost M on all edges without

a commodity on them.
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Consider the vertex sets A, B, C as defined in (3.15).

(1) If C # ¢, then we can pick any w € C and set the u,v path to be u —» w — v
and the rest of commodities’ paths to be their direct edges. All other edges get a large
cost. Obviously, the paths set are internally vertex-disjoint since both (u,w), (v,w) ¢ Z.
By Lemma 3.2, this is a feasible solution (obviously obtained in polynomial time).

(2) If C = ¢ and B # ¢, then there exists a node w € B such that w is adjacent to
exactly one vertex of u and v. When we assign the shortest paths, if any w € B such that
Zuv > Zuw, and (u,w) € Z is feasible when cyy = 2yy — 2uw and py, = {(y, w), (w,v)}, then
it is a feasible solution. We can check the feasibility by solving the some-to-some shortest
path problem. The maximum number of choices of w is n — 2, which is O(n). Therefore, it
is polynomially solvable. |

(3) If C = ¢, and case (2) contains no feasible solution, then

(1) if 3 w € A such that zyy, + 2wy = 2y, then u — w — v is the desired path;

(ii) if not, then the problem instance is infeasible by Lemma 3.3. a

Since ISPL on a complete graph with one edge removed is polynomially solvable, we
now consider modifying the complete graph further. Specially, we consider the case when

there are k edges omitted from the complete graph IS,,.

Theorem 3.4. Suppose k edges are missing from the complete graph K, (k < n—2) in an
instance of ISPL. Let P,, be the shortest path between u and v with the smallest number
of edges and |Py,| be the number of edges used by P,,. If the instance is feasible, then
|Puw| <k + 1. Moreover, if |Pyy| = k 4 1, then both endpoints of each of the missing edges

are in Py,.

Proof. We prove this theorem by induction.

Let ¢co denote the cost vector that solves the complete graph ISPL instance as desired
in Theorem 3.2. By the theorem, it must be feasible.

If £k = 1, Lemma 3.3 requires that the shortest path is direct for all commodities that
correspond to edges in G, and |Py,| = 2 for the missing edge (u,v). Because there is no

(u,v) edge, both endpoints u and v of the missing edge must belong to Py,. We can get a
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feasible cost vector ¢; from ¢y by keeping all edge costs unchanged except for (u,v) and the
two edges used by Py,.

Suppose the claim is true for £k = m. Let ¢, bé a feasible solution where P,, is a
minimal edge path for each commodity (u,v) and |Pyy| < m + 1.

Remove one more edge e = (r,s) from the graph.

If the missing edge e is not part of any shortest path P,,, then P,, is still a feasible
shortest path for new graph; thus |Py,,| < m+1. In this case, cmy1 = ¢ (for all edges other
than (r, s)) must be a feasible solution.

If e = (r,s) € Py, then P,, is no longer feasible. Consider the induced subgraph

= (N', E’) such that

=N\{ne N:nePy,n#rs}

E ={(Gj)eE:ie N,jeN'}

Then G’ is a complete graph missing one edge (r, s). Then the shortest path between r, s
is a path with 2 edges without using any vertices in P,, other than 7, s. Thus the shortest
length path P, with |P,,| = (m+ 1) — 1+ 2 = m + 2 are available. To show the path
is feasible, let 21, 29, 23 be the cost for P, Prs, Psy respectively. Since the path is feasible
when k = m, we have z,, = 21 + 22 + z3. Since (r,s) € K, have 22 = 2,5. Hence the new
path is feasible. Then we can get ¢;n41 by changing ¢, on (r, s) and two edges used by Ps.

O

Theorem 3.5. An z’nstancelgf ISPL on K,, with some constant k edges removed is polyno-

mially solvable.

Proof. By Theorem 3.4, the numbefr of edges in the shortest path for commodity r should be

less than or equal to k+1. An upper bound on the number of possible paths of commodity

_ k
r when k edges are missing (0 <k <n—2) is Z(";f) -ml.
m=0
u ‘ (TL—Q)' u m < u k ka1 k Okk
2 (70) i Sl s e o= Gt ot

Hence, there are O(kn*) possible paths for each commodity r such that (o, d,) ¢ E.
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Since there are at most k£ commodities for which we have to enumerate possible paths, the
maximum number of combinations is O(knk)* = O(kknkz).
Since k is a constant, we can enumerate all possible combinations of paths in polynomial

time. Therefore, an instance of ISPL on K, with k edges removed is polynomially solvable.

O
3.3.2 Cycle ISPL

In the previous section, we studied the complexity of ISPL when the physical network is
dense. Now we study ISPL on sparse graphs. Theorem 3.1 shows that ISPL on a tree is
polynomially solvable. We now discuss the complexity of ISPL when the'underlying network
is a simple cycle.

Given an ISPL instance on a cycle, there are exactly two possible paths for each com-
modity. Since we consider an undirected cycle, we can reverse the commodity origin and
destination without affecting the feasibility. We can also ignore those nodes in the cycle
which are neither origin nor destination for any commodity (see Figure 4). It is trivial that
the cycle ISPL is feasible if and only if the ISPL on such an induced cycle is feasible. Each
path using an ignored node in the original cycle must also use the two adjacent nodes since
the ignored node is neither origin nor destination for any commodity. Therefore, only the
sum of the two adjacent edges is important. Without loss of generality, the cycle ISPL
that we discuss in the following sections is assumed to be an ISPL instance such that the
underlyir.lgi hetwbrk is the! iﬁduéed cycle. '

For each commodity of cycle ISPL, we can count how many edges are contained in each
of its two paths. Let PC; denote the path which contains smaller number of edges for
commodity i.

Before we discuss the complexity of cycle ISPL, we introduce some definitions.
3.3.2.1 Res‘t'r‘icted Cycle ISPL

We define a cycle ISPL in which all the commodities have the same desired shortest path
length z to be a restricted cycle ISPL. Let SP denote the chosen shortest path set of all

commodities, pr; denote the chosen shortest path of commodity k, and pio be the other
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original cycle induced cycle

O origin or destination node

{"* node which is neither origin nor destination

Figure 4: Original Cycle ISPL to Induced Cycle ISPL

path for commodity k. Consider the linear programming formulation of restricted cycle

ISPL with the objective function set to minimize the total cost on the cycle.

Min Zce | (3.16)
ecC
s.t. Zce=z fork=1,2,--- ,K (3.17)
€€pk1 _
ez fork=1,2,K (3.18)
€€pk2 )
ce>0 (3.19)

The dual of the restricted::iéyc’f,k?a ISPL formulation will be the following:

Maz Z Yppi 2 (3.20)
o kyi=1,2 ' '
> Y <1 forVeeC (3.21)
e€Epk1 Or eEpi2
Yppy 20 fork=1,2,--- | K (3.22)
Ypea unrestricted for k = 1,2,.--- K (3.23)

- The dual problem is feasible since there is a trivial solution (yp,, = 9, = 0 for all
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k). Hence, the restricted cycle ISPL formulation is infeasible if and only if the dual is
unbounded. Hence, if we can find an optimal y that guarantees the dual problém is not
unbounded, then the restricted cycle ISPL must be feasible. |

Define three sets S*, S~ and S° as following:

St = {¥piilYprs — o0}
S” = {ypkilypki — —oo}

80 = {ypkilypki ¢Stu S_}
Let wp,;, vp,; and u,,, be 0 — 1 variables representing the following relations.

Wp; =1 & yp, € s*

Upy =1 & yp,; €57

Consider the following induced linear programming problem.

Maz prki - vaki (3.24)
ki -

ki
Z Upy; = Z wp,; forVeeC (3.25)
kpri, e€pri kpii, €€pki
Upy; + Wp,; <1 foreach k, 4 (3.26)
Vpis» Wpie € {0,1} (3.27)
Vpy, =0 for all k - (3.28)

Then answering the question of whether the restricted cycle ISPL is feasible is equivalent
to answering the following question: Is there a path set SP, one path p; for each commodity ‘
k, such that the induced linear programming problem ( 3.24-3.28) is feasible and the optimal
objective value is equal to 0?7 If we can answer this question in polynomial time, then the
restricted cycle ISPL can be solved in polynomial time also. ‘

Since the complexity of ISPL has strong relationship with finding disjoint paths, we
discuss how disjoint paths impact the cycle ISPL. Suppose there are two commodities that

have disjoint paths for general cycle ISPL as in Figure 5, with 29 > 2;. Then the only
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Figure 5: Two commodities have disjoint paths on the general cycle ISPL instance

possible path that commodity 1 can choose is P; because the other path must contain P,
and the length of P; is at least zo which is strictly greater than z;. Hence, detecting disjoint
paths on a cycle can reduce the size of the possible shortest path set SP.

Let Gp, = (VL, EL) be a logical graph such that each vertex v represents a path of a
commodity. Two vertices are adjacent if choosing these two paths to be the shortest for
their commodities will not directly result in infeasibility. The logical graph for a cycle is
shown in Figure 6. It is trivial that there are two paths for each commodity. In the example
Figure 6, we can find that there is only one possible path for commodities 1 and 3. Suppose
we just consider the first 3 commodities. The number of possible path sets we have to
enumerate reduces from 8 to 2. More specifically, the only possible path set for ISPL is a
simple path on the logic graph passing through each commodity exactly once. Hence, the
number of path sets we have to enumerate is the same as the number of paths which pass
through each commodity with length equal to K — 1. If there is no such path, then the
instance of ISPL must be infeasible.

The benefits to solving the restricted cycle ISPL resulting from disjoint paths are differ-
ent from the general cycle case. Since all the z are equal, we cannot erase any possibility by
considering two disjoint paths as we did in the general cycle ISPL. Instead of two disjoint

paths, we consider the relation between three disjoint paths.

Lemma 3.4. If there are 3 commodities which have disjoint paths in a restricted cycle
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Commodity 1 2 3 K

Figure 6: Logic graph of general cycle ISPL

ISPL, then every feasible solution must make these disjoint paths shortest for the three

commodities.

Proof. Suppose there are 3 commodities which have disjoint paths P;, P», and P; as in
Figure 7. Let P; be the other path of commodity i (so P; = C\P;) and let [(P;) denote the
length of P;. Consider all the possible choices of shortest path sets.

(1) (Py, P2, P3) : It is trivial that this is feasible.

(2) (P, Py, P3) : Since P» and P are disjoint and both are contained in Py, I(P}) >
I(Py) + I(Ps) = 22. Therefore, it is infeasible.

(3) (P, Py, P;) : Since l(P3) = z and P; contains P, and P3, [(P}) = z implies [(P;) = 0.
Therefore, it is infeasible. '

(4) (P1, P2, P;) : We know that I(Py),1(P),1(Ps) > z. Since P| contains P, and P3 which
are disjoint, we have I(P}) > [(P2) + [(P3) > 2z. Therefore, it is infeasible.

Therefore, if there are 3 disjoint paths on the restricted cycle ISPL, the only possible

shortest path set for these 3 commodities are the disjoint paths.

a

Based on Lemma; 3.4, we can construét'z; )ogic graph for the restricted cycle ISPL as in.
Figure 8. The vertex set is the same as in t;h‘;e general case logic graph, but the edge set is
different. Two vertices are adjacent if tfle ﬁv&o paths are disjoint. Hence, for each triangle
on the logic graph of the restricted cycle ISPL all these paths must be included in the
shortest path set. We can construct the loglc graph and identify all triangles in polynomial

time.
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Figure 7: Restricted cycle has 3 disjoint paths

Commodity 4 2 3 4 .5 K

Figure 8: Logic graph of restricted cycle ISPL
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Figure 9: Logical graph with clique of size 5 has unique shortest path set

Lemma 3.5. Suppose a restricted cycle ISPL is feasible and its logical graph has a clique

of size 5. Then there is a unique shortest path for each commodity.

Proof. Suppose a restricted cycle ISPL is feasible and its logical graph (G) has a clique
of size 5. Since there is a clique of size 5 in G, we know there are 5 commodities whose
paths are disjoint from each other. By Lemma 3.4, we know the only feasible shortest paths
for these commodities are these disjoint paths. Without loss of generality, we may assume
these 5 commodities and their shortest paths as shown in Figure 9.

Suppose there is commodity ¢ such that o; € P;.

(1) If d; € P,UP,UPsUAUBUDUE, then there are 3 disjoint paths for commodities
i, 8, and 4. By Lemma 3.4, if ISPL is feasible, then there is unique choice of path for
commodity 1. |

(2) If d; € Ps, then there are disjoint paths for commodities 7, 4, and 5. By Lemma 3.4,
there is unique path for commodity 7 if the ISPL instance is feasible. The same aLrgument
can be applied when d; € Py. .

(3) If d; € C. Since there are two commodities whose paths are disjoint and totally
contained in either path of commodity 7, the ISPL instance must be infeasible.

Similar arguments can be applied when o; € A.

Since we picked 5 commodities which have disjoint paths arbitrarily, we know if the

restricted cycle ISPL is feasible, there is a unique shortest path set for each commodity. [
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Figure 10: A has no two disjoint paths

In order to discuss the relationship between disjoint paths and cycle size, we need the

following definition.
Definition 3.2. A cycle ISPL is t-max if
t =max{|PC;|,i=1,2,..., K}

Lemma 3.6. If a restricted cycle ISPL is t-max with cycle size |C| > 4t + 1, then there
must exist 3 disjoint paths on the cycle. It is equivalent to say that there is at least one
triangle in the logic graph.
Proof. Consider a ¢-max restricted cycle ISPL instance on C = (N, E). Define a node set
A as following:

A ={(a1,a2,...,am)|a; € N,(a;,ai+1) € Efori=1,..,m—1}

Choose A such that no two commodities that belong to A have disjoint paths. Then
the intersection of paths of all commodities in A, say I, must be a path which is nonempty
(see Figure 10). Let |A] and |I| denote the number of edges in A and I. Then we have

14 < 2t-11].

Since || > 1, |A| < 2t — 1. -

t

Hence, the largest t-max restricted :cyc]e ISPL instance which has no 3 disjoint paths

must include A; and Aj such that A; N Ay = ¢ (see Figure 11).

IC|<22t—-1)+2=4t
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|A2]<=21-1 [A1]<=2t-1

Figure 11: Largest restricted cycle ISPL with no 3 disjoint paths

Therefore, there must exist 3 disjoint paths when |C| > 4t + 1. O

Lemma 3.7. Suppose a restricted cycle ISPL is t-max with cycle size |C|. If |C| 2 5t +1,
then the only feasible solution of ISPL is to use the minimum cardinality paths for all

commodities.

t

Proof. Consider a restricted cycle ISPL which is t-max with cycle size |C| > 5t + 1. If we
can show that for every commodity i, there are two commodities § and k¥ whose minimum
cardinality paths are disjoint and are both contained in the longer edge path of commodity
1, then by Lemma 3.4, the lemma is proved.

Consider any commodity . PC; and PC; denote the minimum cardinality path and the

other (longer edge) path for commodity 7. Since the problem is t-max and |C| > 5t + 1, we

have

|PC;] <t and |—}TC'—:| > 4t 4 1.

Let A be a set which contains all the nodes in PC; except for 0; and d;. A satisfies
the node set definition in the proof in Lemma 3.6 (see Figure 12). Since |PC,-| >4t +1,

|A| > 4t — 1. Then A must include three subsets A, Az and A3 as in Figure , such that

|A1] = |A2| =2t -1

|As| = |A] - |A1] - |A2] 2 1
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Figure 12: All commodities have 3 disjoint paths

By the same argument in the proof of Lemma 3.6, there must exist two commodities j
and k such that PC; and PCj, are contained in A; and Ao, respectively.

Since we pick commodity ¢ arbitrarily, every commodity must use its shortest edge path
by Lemma 3.4. Therefore, the only feasible solution of a t-max restricted cycle ISPL with

|C| = 5t + 1 is to use the minimum cardinality paths for all commodities. (]

Now, we consider a special class of the cycle ISPL which has a restriction on the com-

modity distance. We refer to this concept as regularity.

Definition 3.3. A ISPL instance is regular if the number of edges in the minimum cardi-

nality path for all commodities are equal.

Definition 3.4. A ISPL instance is t-regular if ISPL is regular and the number of edges

in each minimum cardinality: path is equal to t.

The definitions above are deﬁpeﬁd on the general ISPL without considering the underlying
network. For example, ISPL oﬁ :i;he complete graph is 1-regular because the minimum
cardinality paths for each comchiity hrave exactly one edge.

For each commodity of cycle ISPL, let |PC;| denote the number of edges contained in

the smaller path for commodity z

Definition 3.5. A cycle ISPL is iregular if the number of edges used in the smaller edge

ﬁath for each commodity are all eq@al, i.e.,

|PCy| = |PCy| = -+ = |PCk|.
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We now discuss the complexity of the restricted regular cycle ISPL.
Lemma 3.8. If a restricted cycle ISPL is regular, then this ISPL instance must be feasible.

Proof. We may assume that the restricted cycle ISPL is t-regular. Set the cost vector of
the cycle equal to (%, %,...,%). Then we have a feasible solution since the shortest path

length for all commodities is equal to z. O

Lemma 3.9. If no two commodities in a cycle ISPL have disjoint paths, then the cycle

ISPL must be regular.

Proof. We will prove the lemma by contradiction.

Suppose the cycle ISPL is not regular. There must exist one commodity 7 such that
|PC;| > |PCyk| for all k = 1,2,...,K and k # i. Moreover, there must exist at least one
commodity j such that |PCj| > |PC;|. Without loss of generality, we may assume that
|PCy| 2 |PCy| for all k=2, ..., K.

Recall that all the nodes in the cycle must be an origin or destination for at least one
commodity. Let R denote all the nodes in PC}; except for O; and D;. Let L denote the
node set on PCj. Then all the nodes in the cycle can be divided into two disjéint sets, R ,
L by O; and D; (see Figure 13). Siﬁce R is the node set that is used by the smaller edge
path for commodity 1, we have |R| = |PC;| -1 and |R| < |L].

If there is another commodity, say j, that shares either O; or D; as its origin or des-
tination, then we can create a disjoint path set for cpmmodities 1 and j. We may assumé
that the commodities share Ol. | |

(1) if D; = Dy, it is trivial that R and L are two disjoint path sets.

(2) if D;j € R, by choosing commodity 1 along L z;nd commodity j along R, disjoint
path sets are created.

(8) if D; € L, by choosing commodity 1 along R and commodity j along L, disjoint
path sets exist also.

Hence, no commodity can share either origin or destination with commodity 1. More-
over, the more general result that no two commodities can share either origin or destination

can be reached by the same arguments.

35



01

R2
R3

PC1 PC1

D1

‘Figure 13: Decompose cycle nodes into two sets

Since all the nodes in the cycle are an origin or destination for some commodity, if there
exists a commodity whose origin and destination both belong to R, then a disjoint path set
exists by argument (2). If they both belong to L, same result is reached by argument (3).
Hence, origin and destination of any commodity other than 1 must be split: one in R and
the other in L.

Since no two commodities can share an origin or destination, all the nodes in the cycle
should be an endpoint for exactly one commodity. Also, the endpoints must lie in the
different node sets R and L. Hence, |R| = |L|. Consider commodities 2, ..., K. Their origins

and destinations must form a perfect matching as Figure 14.

Suppose the matching edges cross as in Figurg 14, then we can construct a disjoint
shortest path set for these two comniod{ties. Since the matching cannot cross, the only
possible matching should be like Figuie 15. Then all |PC;] should be eqﬁal, i.e., the cycle
ISPL is regular. This is a contradictioh.

Therefore, if no two commodities have disjoint paths, then the cycle ISPL must be

regular. - O

In this section, we use the concepts of disjoint path and logical graph to explore the
complexity of cycle ISPL. We showed that restricted cycle ISPL is polynomially solvable

when it satisfies one of the following conditions:
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Figure 14: Matching origins and destinations for commodities
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Figure 15: Perfect matching of origins and destinations with no cross edges

1. |C| 2 5t + 1 where t is the maximum number of edges of the minimum cardinality

path for all commodities, or
2. the instance is t-regular.

3.3.3 ISPL Complexity and the Number of Commodities

We also study the complexity of a special case of the number of commodities. If there is
only one commodity, ISPL can be trivially solved. The ISPL instance becomes a problem
checking whether the given origin and destination are (strongly) connected on the (directed)
graph, since we can put appropriate costs on the path if there is one (and infinite costs on
all other edges). The following theorem shows that ISPL is also polynomially solvable when

there are only two commodities.
Theorem 3.6. The two-commodity ISPL is polynomially solvable.

Proof. Suppose that there exist two commodities ; and r9 with desired shortest path

lengths 2, and z,,. Without loss of generality, we may assume that z,, < z,,. We may also
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Figure 16: The union of two commodities path exists cycle

assume that there exists a subgraph G’ C G such that o,, and d,, are connected on G’ for
i=1,2 (where o,, and d,,.are the origin and destination of commodity r;). Otherwise, the
instance is infeasible. We can check this using breadth-first search (BFS) originated at each
or; separately, to find a path P; from o, and d,,. The running time of BFS is O(|N|+ |E|).
If there is no such a path, then the instance is infeasible.

If PN Py = ¢ (so P; and P, are internally disjoint), then Lemma 3.2 shows how to find
a solution in polynomial time.

Suppose that P, NP, # ¢. Without loss of generality, we may assume that PN Py = Ps
where P; is a simple path. If P; is not a simple path, then there exists at least one cycle in‘
P, UP,; as in Figure 16. Since both P; and P, are shortest paths, the distance between 7 and
j along P; and P, must be the same. Hence, we can set all the edge costs on this cycle equal
to 0 without affecting the feasibility of ISPL. Thus, we can remove the cycles so P; becomes
some simple paths. Let c(P;) denote the length of path P;. Since P;s C P;, 0 < ¢(P3) <
Zr,, and c(Py — P3) = 2z, — ¢(P3) > 0. Similarly, ¢(P> — P3) = 2, — ¢(P3) > 0. Moreover,
P, — P3, P, — P3, P3 are internally vertex disjoint (P, — Ps , P, — P, and P3 may not be a
single path; each mfght be the union of several internally vertex disjoint paths). The only
infeasibility can happen when 2;; < z., and all P; path contains a path for commodity 2.
We can check the feasibility by doing BFS for commodity 1 on the induced subgraph with

N —o,, and N —d,,. Hence, the two-commodity ISPL is polynomially solvable.
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Table 1: Summary of the complexity result

Type of network
Tree K,, with k edges removed K,
undirected | polynomial polynomial polynomial
directed | polynomial polynomial polynomial

We now discuss the situation where the number of commodities is very large. The
extreme case is that there is a commodity for each node pair (u,v), i.e., the distance graph

is a complete graph.
Lemma 3.10. ISPL is polynomially solvable when the distance graph is complete.

Proof. Suppose we are given an ISPL for which the distance graph is complete. Consider
any edge e = (u,v) € E. Suppose commodity ¢ has origin/destination pair (u,v). By
Lemma 3.1, we have

Ce = Zj.

Since there is a commodity for each edge in the underlying graph, there is a unique cost
vector c for this ISPL. The instance is feasible if and only if the shortest path length for all
commodities is equal to the desired 2. It cah be checked in polynbmial time. Therefore,

ISPL is polynomially solvable when the distance graph is complete. a

3.4 Summary

Table 1 summarizes the results on the complexity of ISPL. We prove that ISPL is polyno-
mially solvable whenever the underlying network is a tree, complete graph, or a complete
graph with any constant & edges removed. These arguments are true for both directed and

undirected graphs.

We also show that some the following classes of cycle ISPL are polynomially solvable.

1. Regular restricted cycle ISPL is polynomially solvable.

2. Restricted cycle ISPL with |C| > 5¢+1 is polynomially solvable when ¢ is the maximum

number of edges in any shortest edge path for any commodity on the induced cycle.
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By Lemma 3.7 and Lemma 3.9, we know some restricted cycle ISPL are polynomially
solvable. However, the complexity of some restricted ISPL and general cycle ISPL are still
unknown. We discuss some disjoint path related properties that we can use to detect an
infeasible shortest path set or decrease the number of choices of shortest path sets when we

search for feasible solutions.
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CHAPTER IV

ALGORITHMS

In this chapter, we propose some algorithms to solve the Inverse Shortest Path Length
probleh approximately. Since ISPL is NP-complete, we cannot find a polynomial algorithm
for the exact solution except in some special cases (see Chapter 3, for example). The
algorithms are mainly based on a path iteration scheme using constraint generation to deal
with the problem of having exponentially many constraints. Three core subproblems of
the ISPL algorithms are minimization of infeasibility, shortest path, and cost perturbation.
The properties of these algorithms are discussed in this chapter. We also provide worst case

analyses of these algorithms.

4.1 Heuristic Ideas

Two types of ideas will be covered in this section. The first one is a spanning tree enumer-
ation scheme and the second is a path iteration algorithm. The spanning tree enumeration
scheme tries to solve ISPL by taking advantage of the complexity of ISPL on trees (see
Chapter 3). The path iteration scheme uses constraint generation to deal with the problem

of having exponentially many constraints.

4.1.1 Spanning Tree Enumeration Scheme

We have proved that ISPL is polynomially solvable if the underlying network is a tree or
a forest (Theorem 3.1). The direct way to apply this idea is to pick a spanning tree (T),
set it to be the solution, and check its feasibility. We can solve this restricted ISPL in
polynomial time, and obtain costs ¢. If G' := (N, T,¢) is feasible, then G := (N,E,¢) is
feasible for ISPL (because we can set the cost of all edges in E\T to some large value M).
IfG = (N,T,o) 'is not feasible, we have to choose another spanning tree to be a solution.

The problem with this heuristic method is that the performance mainly depends on

the number of spanning trees in the network. The number of spanning trees may grow
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Figure 17: Only one spanning tree is feasible

exponentially and we cannot identify an infeasible instance without enumerating all possible
spanning trees. For example, in Figure 17 there are 4 spanning trees on graph G, and only
one of them is feasible.

The other problem is that a feasible ISPL instance may have a non-tree-type solution.
For example, suppose z( 3) = 2(24) = %@3,5) = 2(4,1) = 2(5,2) = 2 as in Figure 18. In this
case, the only feasible solution is a cycle and total enumeration of spanning trees cannot

solve ISPL. Hence, we consider path iteration algorithms to solve ISPL.

Figure 18: Example of the unique feasible solution is a cycle

4.1.2 Path Iteration Algorithm

The main difficulties of ISPL are the non-convex feasible region and the exponential number

of constraints. Even a simple graph could have an exponential number of constraints (see
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Figure 19: Example with exponentially many constraints

Figure 19, where the number of paths from node 0 to node N is 2V ). As we mentioned in
Chapter 1, (1.10) is an implicit form. We do not only need one path for each commodity
to satisfy the equality constraint (1.10), but also we must make sure no other path for the
same O-D pair has shorter length. The number of constraints here depends on how many
paths there are for each commodity. Moreover, since each path of each commodity could be
the shortest one, the possible combinations of equality constraints could be |p1|-|p2|-...:|pk|
(where |p,| denotes the number of paths for commodity 7). A reasonable idea is to handle
some specific constrainfs but not all at each iteration. Suppose we select a path for each
commodity and set it to be the shortest path. The problem becomes identical to the original
Inverse Shortest Path problem, and it can be solved in polynomial time.

First, we choose oné path for each commodity and set it to be the shortest. Then
we have an ISPP constraint set and solve the problem by solving a linear system. After
eQery iteration, we solve the shortest path problem under the current costs, and identify
violated constraints (the shortest path length for some commodity may be less than whaf

" we want). We add these constraints to the constfaint set. Since the number of constraints is
finite, this constraint generating scheme will terminate. Also, because violated constraints
can be found in polynomial time, Khachiyan’s theorem guarantees that we can optimize in
polynomial time in spite of having exponentially many constraints. Figure 20 shows the

flow chart for this algorithm.

Theorem 4.1. (Khachiyan’s theorem) Systems of rational linear inequalities, and linear
programming problems with rational data, can be solved in polynomial time if a violated

inequality can be found in polynomial time [26].
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Figure 20: Constraint generating scheme flow chart
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Constraint Generating Scheme Algorithm

Step 0: Choose an initial shortest path for each commodity.

Step 1: Solve edge cost € by solving the system of linear equalities (equation 3.14) or simple
linear programming.

Step 2: Solve for the shortest path for each commodity under the network G = (N,E,q°).
Find the violated constraints (paths), which have path length less than z,.

Step 3:. If there are no violated constraints, stop.

Step 4: Modify the constraint set by adding the violated constraints. Go to Step 1.

4.2 ISPL Algorithms

We now propose several heuristic algorithms to exploit the advantages of the constraint
generating algorithm. Our algorithms contain three core subproblems: minimization of
infeasibility, shortest path calculation, and cost perturbation. The main idea is that we
add one slack variable for each commodity to represent the positive difference between the
~ current and desired shortest path length.

Z c—0;=2z, fori=1,---,K (4.1)

€SP, q,

As before, we choose the shortest path set for each commodity in each iteration. Moreover,
we check the shortest path set and make modiﬁt:ations at the end of each iteration, then re-
optimize the linear program based on the previous iteration’s result. Solving a some-to-some
shortest path problem, minimizing the slack by linear programming, and perturbing the cost

vector by linear programming are the core subproblems for our iterative re-optimization

algorithms. We first discuss these three core subproblems.
4.2.1 Shortest Path Subpi‘hbham- o

As we mentioned in Section 4.1.:2, there mayex1st exponentially many paths for each com-
modity. Finding all these pathsfahd putt:ihé them into the constraint set of ISPL is time
consuming and many of them may be re‘;dhhfdan;t. Hence, we try to begin with only a few
constraints, and add violated cohstraints by 5thel constraint generating scheme. To do this,
we have to solve the shortest path problem for each commodity and check whether the short-

est path is better than the path in the shortest path set or is a violated constraint. Suppose

each commodity 7 has O-D pair (o, d;). The shortest path subproblem for commodity r
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can be formulated as (4.2)-(4.4).

-Min Z CijTij | : (4.2)

e=(i,j)€E

1 for i=o,

Y. @mi— Y, wi={ -1 for i=d 43)
{5:(i,5)€E} {5:(5,i))€E} _
0 otherwise

zi; >0 forall (i,5) € E (4.4)

Many researchers have worked on the shortest path problem. Our version is the some-to-
some problem in which we simultaneously find shortest path for several origin/destination
pairs. Wang [30] provides a new polynomial algorithm to solve the some-to-some shortest
path problem, and gives a detailed survey of previous work in multiple pairs shortest paths.
The most well known algorithms, like Dijkstra’s algorithm for one-to-all shortest path and
the Floyd-Warshall algorithm for all-to-all shortest paths, can be used to solve our some-to-
some shortest path subproblems in polynomial time. We use the Floyd-Warshall algorithm

in our implementation.
4.2.2 Minimization of Infeasibility

In Chapter 1, we noted that the objective function (1.9) could take any form since the goal

of ISPL is to achieve feasibility. The main difficulty is to handle the implicit constraint set .
in (1.10), i.e., choosing a shortest path set to satisfy the desired shortest paﬁh lengths simul-
taneously. Hence, we choose the objective function to minimize the difference between the
current and desired shortest path length of all commodities. Lét é; denote the positive slack
difference for commodity i. The objective we address here is to minimize the infeasibility
of the chosen shortest path set. The reason why we do not take the absolute value of slack
is that we would like the solution to have shortest path lengths for each commodity that
are at least 2. Because our telecommunication application treats these z; as prices, we
assume the price must be set to allow some minimum profit level. The objective function

is the following:
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|K] ‘ :
Min ) 6; (4.5)
i=1
Let P4, be the path set of commodity ¢ and SP,,q4; denote the shortest path of com-
modity ¢ in this iteration. As we mentioned in Section 4.1.2, there might exist exponentially
many possible paths for each commodity. So, we use constraint generation to increase the
path set for each commodity in iterations when a violated path is found. This is the same

as our constraint generation scheme. Hence, the constraint set will be the following:

Y Ce—bi=z, fori=1,---,K (4.6)
eESPo‘.di :
ch >z, fori=1,---,K, P€P,q (4.7) .
eeP
20,620 (4.8)

It is trivial that the objective is always greater than or equal to zero. The optimal
solution for re-optimization is zero. If we cannot find any path which length is smaller than
the desired shortest path length for some commodity under the current cost vector, then

the algorithm terminates.
4.2.3 Cost Perturbation Subproblem

The third core subproblem in our algorithm is to perturb the cost vector without increasing
the infeasibility. This can help us to generate more possible path sets to get a better
solution. Moreover, the perturbation of the cost vector is a scheme to escape from a local
optimal solution. Since the feasible region of ISPL is not convex, we need some heuristic
scheme to escape from local optima. We use the cost perturbation scheme to do this.

The main idea of the perturbation scheme is to modify the costs by solving a linear

programming problem when no further improvement is possible with constraint generation.
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Min ) rece (4.9)

Y ce=z+d, fori=1---,K (4.10)
eESPoidi
Y ce>z, fori=1,--+,K, PE€ Py (4.11)
eeP
c>0 (4.12)

We first randomly generate a perturbing coefficient, 7., between 0 and 1 for each edge.
The objective function is to minimize the summation of inner product the perturbation
vector and cost vector (4.9). We also have to make sure that we will not increase the
infeasibility after we perturb the cost vector. We use the slack solution d from (4.5)-(4.8)

-to change the right hand side of the first constraint sets (4.10). The second part of the
constraint set guarantees that the perturbed cost vector will maintain feasibility for all the
possible paths in hand (4.11). We know the constraint set (4.10)-(4.12) is consistent because
the initial cost vector without any perturbation is a feasible solution. Since the objective
value of (4.5) remains the same and we randomly generate the perturbing coefficient in
each iteration, it is reasonable to say that randomly perturbing the costs can generate more

possible paths without increasing the infeasibility.

4.3 Description of Algorithms

After finishing the discussion of the three core subproblems, we now introduce the detail of
how the pieces of our iterative ISPL algorithms work together.

The basic idea is to begin with a set of paths, one for each commodity, and find the
nearest-to-feasible solution using those‘paths. Then, we perturb the costs to create new
shortest paths and iterate.

There are several variations we can use on this algorithm.

First, we can modify the shortest path set (SP set) for each commodity either whenever
there is violated constraint found or at the end of each iteration. Second, we can use one

of three cost perturbation schemes:
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1. Do not perturb at all.
2. Perturb when there is no violated constraint found.

3. Perturb only when we reach a local optimum. |
Based on the choices of changing the shortest path set and perturbing the cost, we
propose 6 polynomial-time approximation algorithms to solve ISPL.

4.3.1 Algorithm 0

In Algorithm 0, we modify the shortest path set only when there is no violated constraint
found by solving shortest path subproblem, and do not perturb the cost vector. The detailed

steps are shown in Algorithm 0 and Figure 21.

Algorithm 0
Step 0: Initialization. Choose one path for each commodity to be shortest.
Step 1: Solve infeasibility minimization subproblem.

(1) Modify the constraint sets in (4.6) and (4.7) accordmg to the shortest path
set.

(2) Optimize the linear programming problem (4.5)-(4.8) to get cost vector c and -
infeasibility variable 4.

(3) If the optimal value =0., i.e., sum of the infeasibilities are 0, stop: solution is
optimal. ,

Step 2: Solve shortest path subproblem for each commodity 1.
(1) If there exist shortest path length of commodity ¢ which is less than the desired
length z;, violated constraint found. Go to Step 1.
Step 3: Termination criteria test.
(1) If any termination criteria is satisfied, stop.
Step 4: Modify shortest path set.

(1) For every commodity 1. If the shortest path length calculated in Step 2 is
strictly less than the length of path in the shortest path set, put the shortest
path for commodity ¢ found in Step 2 into the shortest path set. Remove the
old path constraint from (4.6) to (4.7). ‘

(2) If any shortest path was changed, go to Step 1.

4.3.2 Algorithm 1

In Algorithm 1, we also do not perturb the cost vector. The difference between Algorithms
1 and 0 is that we modify the shortest path set at the end of each iteration. At the end of

each iteration, we set the shortest paths of all commodities to be the shortest path set. The
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key idea to modify the shortest path at the end of each iteration is to save the iterations of
running inner loop (find violated constraint and solve minimization of infeasibility). If we
do not modify the shortest path set at each iteration, algorithm exits for the inner loop first
time when all paths for each commodity are greater than desired length z;. Alternative way
to avoid too many running iterations of the inner loop is just to remove it by modifying the
shortest path set at the end of each iteration. The detailed steps are shown in Algorithm 1

and Figure 22.

Algorithm 1
Step 0: Initialization. Choose one path for each commodity to be shortest.
Step 1: Solve infeasibility minimization subproblem.

(1) Modify the constraint sets in (4.6) and (4.7) according to the shortest path
set.

(2) Optimize the linear programming problem (4.5)-(4.8) to get cost vector ¢ and
infeasibility variable 4.

(3) If the optimal value =0., i.e., sum of the infeasibilities are 0, stop: solution is
optimal.

Step 2: Solve shortest path subproblem for each commodity .
Step 3: Termination criteria test.

(1) If any termination criteria is satisfied, stop.
Step 4: Modify shortest path set.

(1) For every commodity 3. If the shortest path length calculated in Step 2 is
strictly less than the length of path in the shortest path set, put the shortest
path for commodity ¢ found in Step 2 into the shortest path set. Remove the
old path constraint from (4.6) to (4.7).

(2) If any shortest path was changed, go to Step 1.

4.3.3 Algorithms 2 & 3

We do not use cost perturbation subproblem in both Algorithms 0 and 1. Algorithm 2 and
Algorithm 3 are the modifications of Algorithms 0 and 1 respectively by adding the cost
perturbation subproblem. The benefit of apéliing perturbing cost vector will be discussed
in Section 4.4.3. The detailed statements of Kigorithm 2 are as shown in Algorithm 2 and

Figure 22. Algorithm 3 is shown in Algorithm: :3 and Figure 24.
4.3.4 Algorithms 4 & 5

Algorithms 4 and 5 are another modifications of Algorithms 0 and 1. In Algorithms 4 and

5, we still adopt the cost perturbation subproblem. But instead of perturbing the cost
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Algorithm 2
Step 0: Initialization. Choose one path for each commodity to be shortest.
Step 1: Solve infeasibility minimization subproblem.

(1) Modify the constraint sets in (4.6) and (4.7) according to the shortest path
set.

(2) Optimize the linear programming problem (4.5)-(4.8) to get cost vector ¢ and
infeasibility variable 4. ' '

(3) If the optimal value =0., i.e., sum of the infeasibilities are 0, stop: solution is
‘optimal.

Step 2: Solve shortest path subproblem for each commodity 7.
(1) If there exist shortest path length of commodity 7 which is less than the desired
length z;, violated constraint found. Go to Step 1.
Step 3: Termination criteria test.
(1) If any termination criteria is satisfied, stop.
Step 4: Modify shortest path set.

(1) For every commodity 7. If the shortest path length calculated in Step 2 is
strictly less than the length of path in the shortest path set, put the shortest
path for commodity 4 found in Step 2 into the shortest path set. Remove the
old path constraint from (4.6) to (4.7).

Step 5: Solve cost perturbation subproblem.

(1) Generate random perturbing coefficients r.

(2) Optimize the linear programming problem (4.9)-(4.12) to get cost vector .

(3) Update cost vector to be ¢'.

(4) Go to Step 1.

Algorithm 3
Step 0: Initialization. Choose one path for each commodity to be shortest.
Step 1: Solve infeasibility minimization subproblem.
(1) Modify the constraint sets in (4.6) and (4.7) according to the shortest path
set.
(2) Optimize the linear programming problem (4.5)-(4.8) to get cost vector ¢ and

infeasibility variable 6.

(3) If the optimal value =0., i.e., sum of the infeasibilities are 0, stop: solution is
optimal.

Step 2: Solve shortest path subproblem for each commodity <.
Step 3: Termination criteria test.

(1) If any termination criteria is satisfied, stop.
Step 4: Modify shortest path set.

(1) For every commodity 7. If the shortest path length calculated in Step 2 is
strictly less than the length of path in the shortest path set, put the shortest
path for commodity ¢ found in Step 2 into the shortest path set. Remove the
old path constraint from (4.6) to (4.7).

Step 5: Solve perturbation subproblem.

(1) Generate random perturbing coefficients .

(2) Optimize the linear programming problem (4.9)-(4.12) to get cost vector c.

(3) Update cost vector to be c'.

(4) Go to Step 1.
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vector at the end of each outer iteration, Algorithms 4 and 5 perturb the cost only when
Algorithms 0 and 1 cannot find better path to modify the shortest path set, i.e., Algorithms
0 and 1 reach a local optimal solution.

We perturb the cost until one of the following conditions is reached:

1. Find better path to modify the shortest path set.
2. Find violated constraint.

3.. Reach the perturbation iteration limit or time limit.

Algorithms 4 and 5 are shown in Algorithm 4, Algorithm 5, Figure 25, and Figure 26.

Algorithm 4
Step 0: Initialization. Choose one path for each commodity to be shortest.
Step 1: Solve infeasibility minimization subproblem.
(1) Modify the constraint sets in (4.6) and (4.7) according to the shortest path
set.
(2) Optimize the linear programming problem (4.5)-(4.8) to get cost vector ¢ and
infeasibility variable 4. ,
(3) If the optimal value =0., i.e., sum of the infeasibilities are 0, stop: solution is
optimal.
Step 2: Solve shortest path subproblem for each commodity 1. .
(1) If there exist shortest path length of commodity ¢ which is less than the desired
length z;, violated constraint found. Go to Step 1.
Step 3: Termination criteria test.
(1) If any termination criteria is satisfied, stop.

Step 4: Modify shortest path set.
(1) For every commodity 7. If the shortest path length calculated in Step 2 is

strictly less than the length of path in the shortest path set, put the shortest
path for commodity ¢ found in Step 2 into the shortest path set. Remove the
old path constraint from (4.6) to (4.7).

(2) If any shortest path was changed, go to Step 1.

Step 5: Solve cost perturbation subproblem.

(1) Generate random perturbing coefficients 7.

(2) Optimize the linear programming problem (4.9)-(4.12) to get cost vector .

(3) Update cost vector to be ¢

(4) Go to Step 2.
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Algorithm 5
Step 0: Initialization. Choose one path for each commodity to be shortest.
Step 1: Solve infeasibility minimization subproblem.

(1) Modify the constraint sets in (4.6) and (4.7) according to the shortest path
set.

(2) Optimize the linear programming problem (4.5)-(4.8) to get cost vector ¢ and
infeasibility variable 4.

(3) If the optimal value =0., i.e., sum of the infeasibilities are 0, stop: solution is
optimal. :

Step 2: Solve shortest path subproblem for each commodity 1.
Step 3: Termination criteria test.

(1) If any termination criteria is satisfied, stop.
Step 4: Modify shortest path set.

(1) For every commodity 7. If the shortest path length calculated in Step 2 is
strictly less than the length of path in the shortest path set, put the shortest
path for commodity 7 found in Step 2 into the shortest path set. Remove the
old path constraint from (4.6) to (4.7).

(2) If any shortest path was changed, go to Step 1.

Step 5: Solve cost perturbation subproblem.

(1) Generate random perturbing coefficients r.

(2) Optimize the linear programming problem (4.9)-(4.12) to get cost vector ¢’

(3) Update cost vector to be c'.

(4) Go to Step 2. '

4.4 Properties of Algorithms
4.4.1 Initialization of the Algorithm

To initialize the algorithm, we select one path for each commodity to be the initial shortest

path. We consider two possible ways to do this job. One is to choose initial shortest path

set randomly and the other is to choose the minimum cardinality path for each commeodity.

We adopt both schemes to initialize the .algorithms and test their performance in Section
5.3. The reason we use the minimum cardinality path is the following. Since the complexity
of finding a feasible solution of ISPL is the same as finding disjoint path for each commodity,
it seems a reasonable direction to reach this goal by choosing the minimum cardinality path
for each commodity. Moreover, we can think of our path iteration algorithms for ISPL as
starting with all edge costs equal to a very émall number €. Hence, the first shortest path for
each commodity should be the first violated constraint, the path using the smallest number
of edges.

After initialization, the algorithm’s performance depends on finding good paths. In
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order to get better performance, the key is to increase the size of path sets to enlarge the

feasible region. At the same time, we must avoid including redundant paths to increase

complexity and computation time.

4.4.2 Termination of the Algorithm

We will discuss some termination criteria in this section. Since our path iteration algorithm

is a heuristic algorithm, it cannot be guaranteed to reach the optimal solution of ISPL. We

set termination criteria to guarantee that the algorithm will terminate.

1. If the minimum infeasibility is equal to 0 when solving (4.5)-(4.8), the ISPL feasible

solution is reached. The algorithm reports a feasible cost vector for the ISPL instance.

2. If the minimum infeasibility is less than some €, the solution is very close to optimal.

The algorithm reports the cost vector and the tolerance level.

3. We also set the following termination criteria.

(2)

(b)

Time. Some ISPL instances might be too large to solve in a reasonable amount
of time. Hence, we set a time limit for the algorithm. If the algorithm reaches
the time limit T, it terminates and reports the solution with termination status.
Based on the size of ISPL and the heuristic ISPL solution, we can adjust the
parameter T'.

Iteration count. For those algorithms that contain the cost perturbation scheme,
we need an iteration limit to avoid falling into an infinite loop. Also, for Al-
gorithms 4 and 5, we keep perturbing the cost vector to improve the current
solution when Algorithms O; and 1 terminate. Hence, we need two iteration lim-
its. The first limit I is the Iﬁ;ximum consecutive unchanged iteration. When
the cost vector has not chaxilgecii for I iterations of perturbation, the algorithms
terminate. The second is tile Iﬁerturbation iteration limit M. If the minimum
infeasibility is unchanged fi)r M consecutive cost pertﬁrbations, we terminate
the algorithm. Since we randomly perturb the cost vector in each sub-iteration,

the cost vector itself might not be the same. M must be large enough that the
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algorithm can improve the current solution. On the other hand, M should not
be too big since we might have no chance to improve current solution. Hence,
~ the parameter M can effect the algorithm performance in terms of both solution
and computation time. We will explain the detail in Section 4.4.3 and Section

4.4.4.

Usirig the above termination criteria, the algorithm is guaranteed to terminate.
4.4.3 Perturbation Benefit

We will discuss bwhy we need the perturbation subproblem in this section. We can see
the benefit clearly in Figure 27. There are three commodities in the ISPL instance in
stage (0). Suppose we initialize the algorithm by choosing each minimum cardinality path
as the shortest path. .Then the shortest path for each commodity is shown in stage (1).
We minimize the summation of positive slack and obtain the solution shown in stage (2)
Suppose we did not perturb the cost vector. Then the algorithm would terminate because
there are no violated path constraints. However, if we perturb the cost from stage (2) to (4),
then a violated conétraint for commodity 2 will be found and the shortest path set will be
recalculated as in stage (3). So, we can reach the optimal solution of (5) by re-optimization
of the sum of positive slacks in this instance.

Some questions need to be answered since perturbing the cost vector properly can pro-

vide a better ISPL solution. Does there exist a consistent way to perturb the cost vector to
guarantee reaching a better solution? Unfortunately, we cannot find a perturbation scheme
that can guarantee reaching a better solution for every ISPL instance because the complexity
of ISPL depends on the structure of the :lin;derlying network and the corresponding desired
shortest path lengths. Moreover, theﬁoiﬁpl?exity of general ISPL is NP-complete. Based on
the fact that all the subproblems in our ;ﬂ?gorithms can be solved in polynomial time and
the inner step of the algorithm termin;ités i:n a polynomial number of re-optimization itera-
tions, if there exists a consistent scherhe to improve the solution using a polynomial number
of perturbation iterations, the general ISPL can be solved in polynomial time. Hence, it

seems impossible to find a consistent perturbing scheme for all ISPL instances. Therefore,
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Figure 28: Linear function of length of a path

we choose a random perturbing scheme to perturb the cost vector in each sub-iteration.

Let ¢ and ¢’ be the two cost vectors found from solving the minimization of the sum of
positive slacks and from perturbing, réspectively. Notice that tc+ (1 — t) is still feasible
for both linear programming problems when 0 <t < 1. We now consider whether there is
a line search method to find a good ¢ to generate better paths.

Let P denote a path and let I;(P) be the length of P under tc+ (1 —t)c.

L(P)=) (tee+(1—t)ct) =) ch+t) (ce— ) (4.13)
eeP- eeP eeP
The path length is linear function of ¢ as in Figure 28. Consider any commodity. The

shortest path length function under cost vector tc + (1 — t)¢’ is a piecewise linear concave
function (Figure 29). In order to generate a path for this commodity, the length of the new
path should be strictly less than the desired 2. In Figure 30, we can see clearly that the
range of ¢t for which a new path constraint> is ge;rflérated is not convex, and the indicator
function for the new path generation is neither cofn;/ex nor concave. Consequently, the sum
of these functions for all commodities is neither cioinvex nor concave. Hence, the only way
to find the ¢ that generates the most new paths is ’icotal enumeration. Therefore, we instead
use the random perturbing scheme to get ¢’ as the:cost vector for next iteration and do not

adopt a line search scheme in the algorithm.
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Figure 32: Feasible cost of ISPL

Cost perturbation allows the algorithms to escape from a local optimal solution (see
Figure'27). The other important property of the cost perturbation is that it may not
‘guarantee to escape from a local optimal solution. In some instances, our algorithms cannot
escape from a local optimal solution no matter how many cost perturbation iterations we
use. For example, there is a 4-commodity ISPL in Figure 31 with desired shortest path
length z = (19, 10,11, 32,2). The ISPL instance is feasible because we can set the cost as

in Figure 32.
4.4.4 Monotonicity Properties

We discuss some properties of our ISPL algorithms in this section.

Consider Algorithms 0, 2, and 4 in which we have an inner dpop and an outer loop as
identified in Figure 33.

First, the objective value in (4.5) is non-decreasing in the inner loop. The reason is
th@t the inner loop is finding violated constraints in (4.7). Hence, the feasible region of
next iteration in the inner loop (4.6)-(4.8) is strictly smaller than the one for the previous

iteration. Since the shortest path set remains the same ((4.6) does not change) and the
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feasible region becomes smaller, the objective value must be at least as big as the one in
the previous iteration. Therefore, the objective value is non-decreasing in the inner loop.

For the outer loop, consider two consecutive infeasibility minimization problems (P1)
and (P2). Let S’Poli 4; and SPO%, 4, be the specified shortest paths for commodity ¢ in problems
(P1) and (P2). Let J be the set of commodities that switch specified shortest paths from
(P1) to (P2).

(P1)
IK|
w1 = minz&-
i=1
Y ce—bi=z,fori=1,.,|K|
eESP(}._d‘
Zce >z ,fori=1,..,|K|, P€ Py,
ecP
Cey 61' Z 0
(P2)
IK|
wy = minZ(S,-
i=1
Y ce—Si=z,fori=1,.,|K|, i¢J
eGSPgidi
Z Ce—0;=2z; ,forjeJ
cESPozidi

> ce>z,fori=1,.,|K|, P€ Poy .
ecP

Cey 61' >0
Let (c!,6') and (c?, 62) be the optimal solutions for (P1) and (P2)

Lemma 4.1. If J # ¢, then we < wj.

Proof. Let 6t = Y. ¢! — 2 for every commodity . If i ¢ J, phen lSPolid', = SPE; ;s SO

eeSPZ . [
£ Bt 3 ‘l B ‘;%
6t =6}.If i € J, then it must be that 3, ce< > c.. Therefore,
e€SP2 e€SP . Pt
o = Z c—z< Z o — 2.
e€SP? . €SP, 4.
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Since J # ¢, - -

door<) o=

i=1 i=1
Also, since (c!, 6*) is feasible for (P2),
K| |K|

Y62 6 =w,

i=1 i=1

Thus,
|K]|

Wo SZ(S: < wi.

i=1

Lemma 4.2. The objective of the outer loop is strictly decreasing.

Proof. This follows directly from Lemma 4.1. O

Lemma 4.2 provides us with an important piece of information: these algorithms will
not cycle. Since the objective value of the outer loop is strictly decreasing, there is no way
for Algorithms 2 and 3 to fall into a cycle. Hence, we do not need any cycle prevention
scheme.

However, some of the algorithms do have a portion that can cycle in some specific
circumstances. When we try to escape from a local optimal solution by cost perturbation
in Algorithms 4 and 5, the solution might remain the same or jump back and forth from
iteration to iteration. To guarantee the algorithms’ termination; we have already set several

criteria in Section 4.4.2.

4.5 Worst-Case Bound‘&

We propose several heuristic algorithms to solve ISPL. In this section, we give bounds on
the worst case performance of the'algorithms. Since Algorithms 2, 3, 4 and 5 contain
random perturbation subproblems, it is difficult to evaluate the bounds of these algorithms
precisely. Howeirer, becaﬁse thesé 4 élgorithms are based on Algorithms 0 and 1, we can
evaluate the worst case bounds for Aigoritllms 0 and 1 as the base case.

There are two subproblems in Algorithms 0 and 1, minimization of infeasibility and

shortest path. The shortest path problem is used for finding violated constraints or changing
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the shortest path set. It-will not affect the worst case bound. Hence, we will focus on the
worst case analysis of the minimization of infeasibility problem.

Consider the minimization of infeasibility subproblem (4.5)-(4.8). Let mi,...,m| be
the dual variables for (4.6) and py; denote dual variable for the j-th path constraint of

. commodity k in (4.7). Then, the dual formulation of minimization of infeasibility is the

following:
|K] |K| [Py

Maz Z?l‘kzk -+ ZZpkak (4.14)

k=1 k=1j=1 '
-m. <1, k=1,2..,|K| : (4.15)

IK]
Z e + Z Z pr; <0, foreveryee B (4.16)
k:e€SP; k=1j: e€P;

1, e, ... |k | unrestricted, all pr; > 0 (4.17)

Finding an upper bound on the minimization of infeasibility (4.5)-(4.8) is equivalent to
finding a lower bound for its dual problem (4.14)-(4.17). Since for any feasible solution
(m, p) to (4.14)-(4.17), the solution (7,0) is also feasible and has an objective function no
greater. Any lower bound on (4.14)-(4.17) is also a lower bound on an unrestricted form of

the dual with no py,. Therefore, the bounding problem can be reduced to the following:

K]
Maz T2k ' (4.18)
k=1
—-m <1, k=1,2.,K]| (4.19)
Z T < 10,‘ for every e € E (4.20)
{k: eeSP} | -
7r1,7r2,;..1.7r|K| unrestricted (4.21)

Since the objective value of the primja; is non-negative, the dual objective value must be
non-negative as well. If the initial shortelsij;_?paths are totally disjoint, then we have an optimal
solution where all 7;, = 0 by (4.19) and (420) Hence, the optimal value when minimizing
infeasibility should be zero, and ISPL is solved. Therefore, if the optimal objective value is

strictly greater than zero, then the paths in the shortest path set must be not disjoint.
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We first discuss absolute performance bounds, and then discuss relative bounds. Before
finding a general worst-case bound, we first consider two special cases.
Lemma 4.3 and Lemma 4.4 are the worst case absolute bounds when solving the mini-

mization of infeasibility problem for an instance with two and three commodities.

Lemma 4.3. Given an instance of ISPL with 2 commodities (z; < z3), the worst case
~ performance bound of our algorithms when minimizing infeasibility is the following:
(1) 0, when z; = z3,

(2) 22— z1, when zg > z.

Proof. Suppose we are given an instance of ISPL with 2 commodities and the desired
lengths, 21 < z2. Let SP; and SP, denote the chosen shortest paths for commodityvl and
2." Let P=SP N SPg. There ére 3_ possible situations:

(1) P = ¢.

(2) P# ¢. P# SP; and P # SP,.

(3) P+ ¢. P=SP, or P =SP,.

In case (1) and (2), there are edges that belong only to SP; and edges that belong only
to SP,. By (4.20), we have

71 <0 and 79 < 0 for these edges.

Hence, the optimal objective value (4.18) must be equal to 0. In other words, solving
the minimization of infeasibility problem will get a feasible solution for ISPL.

Suppose case (3) happens. If SP; C SP,, then our algorithm will find a feasible solution
to ISPL: put a total of z; on the arcs of SPi, z2 — z; on the arcs of SP,\SP;, and large
costs on all other arcs. Therefore, .to consf'truct the worst case, we assume SP; C SP;. By

(4.20), we have

m+m<0foree P

m <0 for e € SP\P.
(1) Suppose z1 = zo. Since m + Mg < 0, the objective function (4.18) will be following:

mM21 + Mozo = (7r1 + 71'2)21 <0.
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Figure 34: Feasible ISPL instance with 2 commodities

SP1
0
SP1
o1 ° 02’[‘ spzT D1=D2
z2z1 i

Figure 35: Feasible ISPL solution and shortest paths

Hence, the optimal objective value of (4.18) is 0. Therefore, the worst caée for z1.= 29
is 0.
(2) Suppose 21 < z9. By (4.19), we have —1 < m; < 0. Then the objective function

(4.18) is following:

T121 + Mozo < M2 — M22

= m(21 — 22)

< 29— 2.
Hence, the worst case performance bound for 2-commodity ISPL is z3 — 2. 0

Consider a 2-commodity ISPL as in Fi_gure 34. This ISPL is feasible since we can choose
the shortest paths and set costs as in Figqre 35. Silppose we choose the shortest path for
each cbr’nmodity by using the shortest n:ufmber of edges. Then solving the minimization of
infeasibility problem might give costs as in Figure 36. We cannot improve the solution since
there is no shorter path for each commo%iity (if we do not perturb the cost). Hence, the

bound of Lemma 4.3 is tight.
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O1 02 sp2 D1=D2
Figure 36: Worst solution for 2-commodity ISPL

Lemma 4.4. Suppose we are given an instance of ISPL with 8 commodities (z; < z3 < 23).
Then the worst case performance bound of our algorithm for minimizing infeasibility is the
following:

Max {z3+ 20— 21,223 — 22 — 21} .

Proof. Let (1, m9, w3) be the variables for commodities 1, 2, and 3 in (4.18)-(4.21). For each
edge in the graph, there are 4 possibilities of how many commodities’ shortest paths are on
it: no commodity, only one commodity, exactly two commodities or all three commodities.
We only have to consider the edges which are used by some commodities.

(1) One commodity, say i: Then we have
-1 S 5 S 0. (4.22)

(2) Exactly two commodities, say ¢ and j: We have

—1<m (4.23)
 -lgm | (4.24)
i Q-w,- <0. (4.25)
(4.23)-(4.25) imply
"'rri,'/rj <L (4.26)

i

(3) All 3 commodities: Then we hiave all m; > —1 and

1+ m + 3 < 0. (4.27)
1

Then we also have

m <2fori=1,2,3. (4.28)
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Figure 37: The performance bound on this ISPL with 3 commodities is tight at Z3+7Z2-Z1

Since 23 < 23 < z3, the worst case can happen only at one of the following two combina-

tions of m: (-1, -1, 2) or (—1,1,1). therefore, the worst case for 3-commodity ISPL must

max {223 — 29 — 21,23 + 20 — 21} ‘ a

Bpth bounds in Lemma 4.4 are tight.

The first bound is tight as illustrated in Figure 37. In Figure 37, the shortest path
length for commodities 1, 2, and 3 are zy + 23, 29, and z3. All four paths of commodity 1
have the same length', 29 + z3. The algorithms will terminate because there is no violated
constraint or shorter path for commodity 1 to modify the shortest path set. The difference

between optimal and our solution is
(22 + 23 — 21) + (22 — 22) + (23 — 23) = 29 + 23 — 21.

ISPL in Figure 37 can be solved optimally if we can generate the path constraint for com-

modity 1 which uses both upper curves.

The second bound is shown to be tight in Figure 38. In Figure 38, the shortest path

lengths for all commodities are equal to z3. Hence, the difference will be
(23 — 21) + (23 — 22) + (23 — 23) = 223 — 22 — 1.

Since all paths for commodities 1 and 2 have the same length, 23, no path constraint can
be generated. Algorithms terminate at this local optimal solution. The ISPL in Figure 38
can be solved optimally when we choose paths using the upper curve to be the shortest for
commodities 1 and 2.

Because of the way the performance bounds for two and three commodities relies on

the desired shortest path lengths z;, our algorithm’s performance can be arbitrarily bad as
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Figure 38: The performance bound on this ISPL with 3 commodities is tight at 2Z3-Z2-Z1

some z; gets arbitrarily large.

Lemma 4.5. Given an instance of ISPL with | K| commodities (1, ..., 2|Kk]), the worst case
: K|

performance bound of our algorithms for minimizing infeasibility is Z(|K | — 1)2.
k=1

Proof. Suppose we are given an ISPL instance with || commodities. Let m = (71, ..., m|k])
be the corresponding dual variables defined in (4.18)-(4.21).
" By (4.20), we have '

. Z m, <0, foreveryee€ F.
{k: e€SP:}

Hence,
m < Z (-=mk), for every commodity ¢ and e such that e € SP,.
{k: e€SPy ks#i} '

Let |we| denote the number of commodities such that e € SP. Since
-m <1, k=12,.,]|K|,

we have

m< Y (—m) < fwe| - L.

{k: e€SPy kski}
Because |we| < |K]|, L
m; < |K|—1.
The dual objective value (4.18) provides a bound on the minimum infeasibility. Therefore,

the bound for minimizing infeasibility can be no worse than

Kl K]

Y ma < Y (K- 1)z
k=1 k=1
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Figure 39: A feasible solution for 2-commodity ISPL worst case

The bound in Lemma 4.5 is not tight. Since all 7, cannot be equal to |K| — 1 simulta-
neously, it violates the constraint (4.20). But this bound could be arbitrarily close to the
minimum infeasibility. We will introduce such an example later (see Figure 42) when we
discuss the relative performance of algorithms. By Lemma 4.5, we know the worst case for
solving the minimization of infeasibility could be arbitrarily bad when z; — oo for some
commodity <.

We note that these performance bounds assume that the perturbation step is not used;
in fact, we use the perturbation specifically to allow our algorithm to escape from bad local
optima.

Suppose we adopt cost perturbation when we reach the bad local optimal solutions as in
Figure 36, Figure 37, and Figure 38. The 2-commodity ISPL worst case in Figure 36 can be
solved to optimality when the cost is perturbed as in Figure 39. Cost perturbation might

shift the costs in Figure 37 to Figure 40. Then the desired shortest path for commodity 1

can be generated (see Figure 40) and our algorithms will solve this ISPL to optimality. For
the ISPL in Figure 38, the desifed paths fqr cof;nmodities 1 and 2 will be generated when
costs after perturbation are as in Figure 4ii. Th;erefore, algorithms with perturbation have
chances to solve the previous three worst cése ISPLs to optimality.

We now discuss the worst case relative performance of our algorithms. We evaluate the
performance of the algorithms by the ratio d between a current solution and the optimal

solution. It is equal to sum of all current shortest path lengths divided by the sum of all
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Figure 40: A feasible solution for 3-commodity ISPL worst case 1
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Figure 41: A feasible solution for 3-commodity ISPL worst case 2

desired shortest path lengths (4.29).

K| K|
> USP)—z) D
d= =L ] = |;1| (4.29)
221' ;zi

Lemma 4.6. d < |K|-1.
Proof. Suppose a feasible ISPL has |K| commodities with desired shortest path lengths

21, %2, ...,lel.
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By Lemma 4.5, we have

|K|
>a
=&
>
i=1
|K|
> (K| -1z
< k=1
-, IK|
> -
i=1
IK|
(IK|-1) (> =
1=1
B K]
>
=1
= |K|-1.

a

This performance ratio demonstrates that even as the problem data z; get large, our

algorithms will achieve a O (|K|) = O(|N|?) approximation ratio. We now show that the

bound on this ratio is tight.

Consider the ISPL in Figure 42. Let (z1,29,..., 2jk|-1,2k]) = (€1,€2, -, €K|-1, M)
satisfy '
1< e < - L gk|-1 << M,

% ~0foralli=1,.. |K| -1
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Figure 42: The worst performance of the algorithms is d=|K|-1

Then the worst performance of algorithms will be

IK|~1
|K|M—= ) ei—M

=1
d = 7
|K|-1

St i
=1
|K|-1

K- Y & -1

i=1
|K|-1

> f+1
i=1

~ K| - 1.

Rk

Hence, the bound in Lemma 4.6 is tight.

We know it is possible to escape from a bad local optimal solution by cost perturbation.
We discuss the probability of escaping from a local optimal solution in the worst case.
Consider commodity 2 of the ISPL instance in Figure 40. After cost perturbation, there
is exactly one edge, with the smallest perturbing coefficient, whose :c:ostis equal to 2z and
costs on all the other edges of the shortest path for commodity 2 are equal to 0. Let |N; N}
denote the number of edges between N; and N;. Then the probability of the positive cost
edge being (O3, N2) should be g;gz . It means we have {%%Z—} probability of finding a better
path for commodity 1. There are two possiblé paths for commodity 1 that could be that
found in this situation: one will improve the minimum ihfeasibility solution from 2o+ 23 — 21
to z3— 21, and the other will get a feasible ISPL solution directly. By the same argument, we
know that there is %Z—gﬂ probability for cémmodity 3 to shift z3 to some edge on (N3, D3).

The minimum infeasibility could be improved from 29 + 23 — 2; either to 29 — 2; or to 0.
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Hence, the probability of escaping from this local optimum is

\ _ |02, | (1 _ |N3D3|) + | N3Ds| (1 _ |02N2|) + |O2N,| % | N3Ds|

escape |02Dgl I03D3| |03D3| |02D2| IO2D2I |03D3I
_ [0:No| _ |NsDs| _ |0;Ny| . |NsDs|
|02D3] * |0sDs| ~ |02D3| ~ |OsDs]’

Moreover, the probability to escape from this local optimum directly to global optimum is

p _ 102Na| | |NsDs|
escape |02D2| |03D3| .

Since we can reach the optimal solution after perturb the costs as in Figure 40, we can

calculate the expected value of the solution after one perturbation as the following;:

K|

|O2N| ( |N3D3|) | N3Ds| ( |02N2|) '
E 6 | =222 [ IS8 oy 88y DAl
; |02D5| |03Ds| (s =) |03 Ds| |02D5| (=2~ =)
|O2 N, | INaDsl)
+{1- X X + 23 — .
( |O2D2| ~ |O3Ds| (2225 = 21)

Notice that the escape probability could be very small when igi—gﬁ-} — 0 and g:g;‘ — 0.
We can do the same analysis for the ISPL instance in Figure 41. The escaping probability

and expectation after one perturbation will be the following;:

_ |0sNs|
DPescape |O3D3| y
|K]
N |O3N3|
E ;51 = (1 I03D3| X (223 — 29 21).

The probability to escape from a local optimal solution »(pesmpe) can be used to determine
a limit on the number of cost ﬁerthfbation iterations. lLet PesééﬁéQ p, and I denote two
probabilities and the iteration limitz of cost perturbatioﬁl ;: Usingi(?4.30), we can calculate
the number of iterations I we need Tsuch that there is pfoBabilitYfﬁ to escape from a local

optimum that has escaping probabifitj/ Pescape *

I-1 |
Z(l - pescape)lpescape 2D (4.30)
i=0

4.6 Summary

We summarize some properties of the ISPL algorithms in this section.
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. All the subproblems (minimization of infeasibility, some-to-some shortest path, and

cost perturbation) take polynomial time.

. The solution for the inner loop of algorithms is non-decreasing, and the solution for

the outer loop is strictly decreasing (see Lemma 4.2).

. The worst case absolute bound for 2-commodity ISPL is (22 — z1), and the bound
for 3-commodity ISPL is Maxz {23 + z2 — 21,223 — z2 — z1}. The expected values for
the worst case absolute bounds while algorithms applying cost perturbation are also

calculated.

. The worst case absolute bounds could be arbitrarily bad, but the worst case relative

bound is |[K| — 1.

. All 6 ISPL algorithms are guaranteed to terminate in polynomial time.
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CHAPTER V

COMPUTATIONAL RESULTS

In this chapter, we introduce three schemes to generate random ISPL instances to test
the performance of our ISPL algorithms. We also provide some examples to illustrate the
progress of our algorithms, in Section 5.2. Section 5.3 contains the computational results
and analysis for random ISPL instances, including both intermediate-difficulty and hard
ISPL instances. In Sectibn 5.4, we test our algorithms on three real telecommunicatibn
instances, using networks from Tyco, Level 3, and Global Crossing. We summarize the

results of the performance of the algorithms in Section 5.5.

5.1 Random ISPL Instance Generation

In order to test the perfbrmance of ISPL algorithms, we first need a set of ISPL instances.
A feasible ISPL instancé is hard to generate randomly. Given an instance, to check whether
it is a feasible is as hard as solving ISPL. Thus, we choose to construct an instance by
putting costs on edges and finding their shortest path lengths. We rahdomly determine the
network topology, and then assign random costs to each edge. Using these costs, we find
the shortest path length for each commodity k, and use these lengths as the desired =z.
Because our random costs are a feasible solution, we can guarantee this instance is feasible
no matter how many origin/ destinati;on pairs we choose to be commodities.

In Chapter 4, we discussed wayé of selecting an initial shortest path set for our al-
gorithms. When testing the perforn;ahce of our algorithms, we want to avoid too much
similarity between the shortest paths;used to detefmine zx and the initial shortest paths for
each commodity. In the worst case, 1f th‘e'initial shortest path set is totally the same as the
zr. shortest paths, then the ISPL alg?orithms have a feasible solution immediately. Hence,
the performance of algorithms will bé biased.

In order to estimate the performance of our algorithms more accurately, we need more
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work to make the initial shortest path set sufficiently different from the shortest paths used
to calculate each z.

We now introduce three methods to generate random ISPL instances.
5.1.1 General Framework

Our random ISPL instances are all génerated by the following steps: (1) generate a random

network topology, (2) generate random costs, (3) generate the commodity origins and desti-
nations, and (4) calculate the shortest path lengths for each commodity uﬁder the random
costs. This method allow us to guarantee that we have a feasible instance of ISPL. The
input parameters are number of nodes, edges, commodities, and maximum cost on edge.

Let |N|,|E|,|K], and C denote these parameters.

1. First construct a network with N nodes. Randomly generate each edge by choosing
two endpoints from a uniform distribution. If the edge already exists, then choose
endpoints again. Otherwise, add the edge to the network and repeat until there are

E edges.
2. For each edge e in F, randomly generate the edge cost c.

3. Randomly genefate the origin and destination of each commodity using the same pro-
cedure as for generating the endpoints of each edge. We can think of it as generating

edges in the distance graph.

4. Calculate shortest path lengths for each commodity using a some-to-some (or all-to-

all) shortest path algorithm.

5. Set the desired commodity shortest path lengths equal to the distances we found in

step 4.

The generated network is not guarant:éed to be connected. If there is more than one .
component in the network, then the effecltive size of the ISPL instance will be decreased.

It may lead to bias in estimating the perfo.rmance of algorithm. We avoid this problem by
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first constructing a spanning tree when we generate the edges. After the spanning tree is
constructed, we create the rest of the edges.

Each of our instance generation methods differs in step 2, the edge cost generation. In
thé following subsections, we suggest several ways of generating edge costs, and measure

the ability of each to provide challenging test problems.
5.1.2 Random ISPL 1

The simplest method of choosing edge cost is to pick each independently using a uniform
distribution in the interval [0, C].

Since we use independent uniform distributions to generate the edge costs, the minimum
cardinality path will have the smallest expected length for each commodity. Consider the

expectation of the cost on edge e :

E(c.) = O—-;g = —C;— for each edge e.

Since the edge costs are independent, the expectation of length for path P; is
. o C
BQ(P) = B(Y e = Y Ee)= Y5 =IP|5,
2 2
e€P; e€P; eER;
so the minimum cardinality path has the smallest expected length. This may lead to another
bias in the algorithm performance since one of our initial shortest path selection methods is

to start with the minimum cardinality path. In fact, as long as edge costs are independent

of each other, the minimum cardinality path will always have the shortest expected length:

E((FR)) = |R| E(ce).
5.1.3 Random ISPL 2
The objective of this second random ISPL generating scheme is to reduce the probability
that the minimum cardinality path has the smallest path lengfh.
First, we note that it can be impossible to generate an instance where the shortest path

of each commodity is different from its minimum cardinality path when the demand graph

is a complete graph, i.e., there is commodity for every node pair.
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Lemma 5.1. If the demand graph is a complete graph, there is at least one commodity

whose minimum cardinality path is also its shortest path.

Proof. Consider an ISPL on a network G = (V, E) and a cost vector ¢ > 0. Suppose the
demand graph is a complete graph. Let c;; be the smallest edge cost in ¢ and let 7 and j
be the two endpoints of this edge. Since the demand graph is a complete graph, there is
a commodity between i and j. The minimum cardinality path for this commodity is just
using this edge. Any other path for this commodity has to use more than one edge. Hence,

the length of these paths other than (%, j) must be strictly greater than c;;. O

Instead of using one uniform distribution [0, C] for each edge, we create three types of
edges: short, median, and long. Let p; and p; represent the probabilities of an edge being
a long edge or short edge (p; + p2 < 1). Let M be a large number. After generating a
uniform random number ¢ from an interval [0, C], we generate another random number p‘

in [0,1] and set the edge costs to be the following:

cij =Mc, f0<p<p,
c .
¢ij =75 HpPLSp<pi+p (5.1)
cij = ¢, otherwise.
Because the probability of each path being shortest is different under this scheme and

using the minimum cardinality path, this method generates instances of ISPL that are more

difficult for our algorithm to solve.
5.1.4 Random ISPL 3

In this section, we pfopose a two-step generating scheme. Instead of using the minimum
cardinality path to start our algorithm, we choose a different path based on the method we
use to calculate the z.

In the stage of generating instance, we first generate the type of edges, short or long,

and then generate the costs. We set the probability of long edge, p;, (the probability of
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short edge is 1 —p;) for the stage of generating instance. Generate two independent random

variable p in [0,1] and c in [0, C]. Set the cost of this edge as following:

cij = Me, if0<p<py, (5.2)
c .
Cij = 7 otherwise.

In the stage of generating initial random paths, we only generate one random variable ¢
in [0,C]. Whenever an edge is long when we generate the instance, we set it to be a short
edge in the stage of choosing the initial shortest path set. If an edge is short, then we set
it to be long in the later stage. Set the cost of edge according to (5.2). The type of edges
between generating instance and initial paths is not independent anymore. Hence, we can

guaréntee the extreme edge types are different in the two stages. The results in Section

5.1.5 show that this generating scheme provides the most different shortest path sets.
5.1.5 'Random Instance Generation Results

In order to measure the performance of our algorithms, we have to generate random in-
stances such that the initial shortest path sets we pick will be as different as possible from
the shortest path set used for the z;. We set the following parameters: C = 100, M = 10
and vary the random network structure by choosing different |N| and |E|

’ We_/test 3 typ_eé of random networks which have 10 nodes and 10, 30, and 45 edges,
respectively. There is a commodity on each node pair. For Random ISPL 1 and 2, we use pa-
rameters (C, M) = (100, 10) with different combinations of (p1,p2) € {0.05,0.10,0.15, ...,0.95}>
and p; + p2 < 1. We generate 100 fahddni netivbrk topologies and assign the edge costs 50
times for each topology. Let I, II, III, and IV denote the following four types of generating

methods:

I: same cost on all edges,
II: uniform random cost,
III: random with probability(pi, p2),

IV: random with probability(ps, p1).
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Table 2: Percentage of similarity in shortest path set when (p1,p2)=(0.15,0.7)
I II I11 v

I |100.00 | 36.04 | 23.86 | 43.97
IT | 36.24 | 14.87 | 10.04 | 17.88
ITT | 23.44 | 10.02 | 6.75 | 11.76
IV | 44.67 | 18.20 | 12.23 | 21.72

Table 3: Percentage of similarity in the shortest path set for switching edge type by pl

P1

(INT,JE[,JKD) |0.05 |01 ]015 |02 ]025 |03 |035 |04 ]0.45 |05

(30,50,435) 38.19 | 30.44 | 25.44 | 19.59 | 14.55 | 10.81 [ 9.16 | 7.20 | 5.74 | 5.96

(30,100,435) 17.90 | 11.50 | 7.44 | 4.35 | 233 |[1.37 |0.88 | 046 | 0.34 | 040

(30,200,435) 730 [3.09 |092 [0.35 |0.19 |0.07 |0.03 {0.03 |0.007 |0.006

(30,300,435) 432 |0.87 |0.20 | 0.05 |0.013|0.006 | 0.004 [ 0.002 | 0.000 | 0.000

(30,435,435) 2.08 {0.18 |0.04 | 0.01 |0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

After testing the different values of p1 and pa, we found that the lowest percentage of sim-
ilarity in shortest path set occurs when (pi1,p2) = (0.15,0.7) (See Table 2). The sirhilarity
matrix is approximately symmetric and the lowest value usually falls into (IILIII). Surpris-
ihgly, it did not fall into location (IILIV) or (IV,III) even though we switch the short and
long edge probabilities.

We use a network with 30 nodes and different numbers of edges and commodities to test

Random ISPL 3. The probability combinations (p;, p2) are set to be the following:

p1 € {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45, 0.5} ,

p2=1-p1.

We generate 100 network topologies and 50 instances for each topology, and compute the
number of commodities which have same shortest path in the two cost cases. The average
percent of commodities having the same shortest path in the two stages is shown in Table
3.

We find that switching types of edges provides us much more different shortest path
sets. When the probability of p; is 0.5, almost no commodities have the same shortest
paths. Hence, we will choose Random ISPL 3 with probability (0.5,0.5) as hard ISPL

instances to test the performance of our algorithms (see Section 5.3).
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Table 4: Similarity in SP path sets when (|N|,|E|,|K|,p1,p2)=(30,50,435,0.5,0.4)
I II III v

I | 100.00 | 52.05 | 29.13 | 27.98
II | 51.89 | 39.20 | 23.44 | 22.73
IIT | 29.74 | 23.53 | 15.25 | 14.77
IV | 28.37 | 22.82 | 14.85 | 14.38

Table 5: Similarity in SP path sets when (|N|,|E|,|K|,p1,p2)=(30,100,435,0.5,0.4)
I II IIT v

I | 100.00 | 29.34 | 23.54 | 19.27
II | 29.74 | 15.78 | 12.72 | 10.67
ITT | 23.49 | 12.59 | 10.32 | 8.64
IV | 19.17 | 10.56 | 8.72 | 7.32

Since we test hard instances using Random ISPL 3, it is not necessary to use Random
ISPL 2 with probability (0.15,0.7). For comparison, we try another probability which
does not.provide such a different shortest path set. To test the relationship between the
performance of our algorithms and the initial shortest path set, we choose Random ISPL 2
with probability (0.5,0.4).

The random networks we test have 30 nodes and 50, 100, 200, 300 and 435 edges. When
testing similarity, we assume all node pairs are éommodities. We generate 100 network
topologies and assign edge costs 50 times as before. Table 4 through Table 8 show that the
lowest similarity does not always fall into (III,III). When the graphs become dense, we have
much lower similarity in the shortest paths. Notice that, when the underlying network is
a complete graph, the uniform random 1nstance also provides very different shortest path
sets.

From Table 3, we know we can test our algorithms on problems where we purposely

begin with an initial shortest path set that has 0% similarity compared to a feasible shortest

Table 6: Similarity in SP path sets when (|N|,|E|,|K|,p1,p2)=(30,200,435,0.5,0. 4)
I 11 Imr | 1v

I | 100.00 | 18.11 | 21.47 | 18.97
IT | 18.08 | 6.39 | 7.46 | 6.67
IIT | 21.51 | 7.59 | 878 | 7.91
IV | 19.06 | 6.70 | 7.78 | 7.01

87



Table 7: Similarity in SP path sets when (|N|,|E|,|K],p1,p2)=(30,300,435,0.5,0.4)
I II I11 v

1 | 100.00 | 16.27 | 21.58 | 19.92
II | 16.32 | 4.14 | 546 | 5.01
IIT | 2162 | 542 | 7.12 | 6.63
IV | 19.66 | 492 | 6.53 | 6.05

Table 8: Similarity in SP path sets when (|N|,|E|,| K|,p1,p2)=(30,435,435,0.5,0.4)
’ I II 111 v
I |100.00 | 16.01 | 23.07 | 21.37
II | 1583 | 2.85 | 4.06 | 3.77
IIT | 23.02 | 4.10 | 5.92 | 5.49
IV | 2149 | 384 | 554 | 5.09

path set. However, we also would like to test the algorithms using an intermediate quality
starting point. Hence, we will also use this random generating scheme ( (p1,p2) = (0.5,0.4))

to test the performance of our algorithms.

5.2 Sample Algorithm Performance

We show some examples to illustrate the progress of our ISPL algorithms. We generate
100 random ISPL instances and solve them by 6 algorithms. Each instance has 100 nodes,
3000 edges, and 4500 commodities and generated by using the Random ISPL 2 scheme with
probability (0.5, 0.4).

We plot three examples of the solutions of minimizing infeasibility at each iteration (see
Figure 43, Figure 44, and Figure. 45) We see that all 6 algorithms terminate within 30
iterations. Those algorlthms (1, 3, and 5) that change the shortest path set at the end of
each iteration terminate in 15 1terat10ns It seems that changing the shortest path set at
each 1teratlon,can decrease the numpﬁr ;o_f iterations required for algorithms to converge.
.We will discuss more detailed resultg ‘m Séction 5.3.

In these 100 instances, the avera‘g‘e. dlﬁ'erence between ISPL solutions and optimal so-

lutions is approximately 3%. More detalled computational results are discussed in the

following section.

88



Infeasibility _
3000;:ﬁ*ﬂ“

250001
2oooj5
1500¢7|
100007

50007

Halg
Balgl
Oalgl
Oalgh
Halgs
Elalgf

Iy

0 —

lterations

Figure 43: ISPL example 1

Infeasibility
30009 T

250021'1].

2000 ’,’»f;:‘t*

15007 il
50007/ N

0

‘__' Y .- =S H ._ _~:7 CEEE ‘-’ fnc algE
0 — -
T

lterations (ag]

Figure 44: ISPL example 2

89



Infeasibility
350007 —
300001H
25000 —
2000671\ Halgl
150007\ Oalgl
100097 WJAA\ — Oalg]
50007 |\ — Halgl
0 — Balgh
- —
L S o e algl
lterations ™

Figure 45: ISPL example 3

5.8 Performance of Algorithms on Random Instances

5.3.1 Intermediate-difficulty Instances

For tests on intermediate-difficulty instances, we use a 100-node network. In order to test
algorithms on both sparse v‘and dense networks, we choose the number of edges to be equal
| ( to'150, 200,»300,1650,‘ and 3300. We do not choose the complete graph since we can get a
feasible solufion in pblynorhial ‘_time by Theorem 3.2. The number of commodities is equal
to 1650, 3300, and 4950.. Thus, there are 15 combinations of parameters. We generate 30
ISPL instances for each combination by using (p;,p2) = (0.5,0.4) and solved them by each
algorithm. There are two kinds of initial shortest path sets for starting our algorithms: the
minimum cardinality paths and random paths using (p1,p2) = (0.5,0.4). All the tests are
run on a UNIX platform and all subproblems which solve linear programs are solved by the

LP subroutine of CPLEX 8.0[22].
5.8.1.1 Performance of Algorithms

As we mentioned in Section 4.5, we measure the performance by calculating the percentage
difference from the optimal solution (4.29). We evaluate the average performance of algo-

rithms on the instances that are generated by Random ISPL 1 and Random ISPL 2 with
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Table 9: Average performance for intermediate-difficulty ISPL instances (%)

Initial path type Alg. 0| Alg. 1} Alg.2 | Alg. 3| Alg. 4 | Alg5
minimum cardinality path | 2.26 2.09 2.26 | 2.10 2.17 2.00
Random path 4.43 3.06 4.34 | 3.02 4.41 2.97

Table 10: Standard deviation of the performance for intermediate-difficulty ISPL (%)

Initial path type Alg. 0| Alg. 1| Alg.2 | Alg. 3 | Alg. 4 | Alg.5
minimum cardinality path | 4.55 4.56 4.52 | 4.54 4.45 4.46

Random path 10.64 | 10.29 | 10.64 | 10.25 | 10.66 | 10.11

probability (0.5,0.4), and solvéd by choosing the minimum cardinality paths and uniform
random paths as initial shortest path set, respectively. Table 9 shows the mean of percent-
age of difference and Table 10 shows the corresponding standard deviation for 6 algorithms
and two types of initial shortest path sets.

We can calculate the one-side t-interval [19] as following:

ta,n—ls

Jn

Thus, we know that the performance of 6 algorithms by two types of initial shortest path

p<TH+

set will be as shown in Table 11, Figure 46, and Figure 47.

From Table 11, we have the following observations:

1. On average, 99% of instances can be solved to within 2.7% of optimality using intel-

ligent starting paths, and to within 5.5% of optimality using random paths.

2. Changing the shortest path set at each iteration does help the performance of the
algorithms because Algorithms 1, 3, and 5 are better than Algorithms 0, 2, and 4,

especially when starting with random paths.

We compute the success probability p such that ISPL can be solved within 3% and 5%

Table 11: Average performance for algorithms under 95 and 99 percent certainly (%)

Initial path type Alg. 0| Alg. 1 | Alg. 2 | Alg. 3| Alg. 4| Alg. 5
95% | minimum cardinality path | 2.53 2.36 2.53 2.37 2.44 2.26

Random path 5.06 3.68 4.98 3.63 5.04 3.58
99% | minimum cardinality path | 2.65 2.48 2.64 2.48 2.55 2.37

Random path- 5.33 3.93 5.24 3.88 5.30 3.83
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Table 12: Lower bound of probability of solving intermediate-difficult ISPL within 3 and

5 percent
Initial path type Alg. 0 [ Alg. 1 | Alg. 2| Alg. 3| Alg. 4 | Alg. 5
3% | minimum cardinality path | 0.75 0.77 0.75 0.77 0.75 0.78
Random path 0.63 0.79 0.64 0.80 0.63 0.79
5% | minimum cardinality path | 0.82 0.82 0.82 0.82 0.82 0.83
Random path 0.69 0.86 0.71 0.87 0.69 0.87

difference. According to the binomial distribution, we know that

pE (ﬁ—za\/mT—@-J).

Table 12 shows the lower bound of the 99% confidence interval of the success probability of
all six algorithms. There is at least 0.75 probability that the intermediate-difficulty ISPL
- can be solved within 3% of optimality, and 0.82 probability to be solved within 5% of
optimality when starting with the minimum cardinality paths. For Algorithms 1, 3, and 5,
starting with random paths has higher probability to solve ISPL within 3% and 5% than
starting with the minimum cardinality path. For Algorithms 0, 2, and 4, starting with the
minimum cardinality péth has higher probability than starting with random paths.

We. perform another statistical test to answer the question: “Is there any algorithm
dominated by any o-ther?” Let u = z; — x; where z; and «; are means of algorithm ¢ and j.
The hypothesis is

"Ho:p>0 versus Hy : p < 0.
If we can reject the hypdthesis Hp, we know that Algorithm i is bettef than Algorithm j.
Table 13 is the corresponding t-value for testing the average performance of algorithm ¢ and
7 using the minimum cardinality path as the initial shortest path. The p-value is calculated
by
P(X L1t).

If the p-value is less than 0.01, then we have enough evidence to reject the null hypothesis
with 99% confidence. We find that Algorithms 1, 3, 4, 5 do get better.solution than Algo-
rithms 0, 2, and Algorithm 5 is better than Algorithms 1, 4 when the initial shortest path
set chosen by minimum cardinality paths. Algorithms 3 and 5 have the best performance

when starting with the minimum cardinality paths.
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Table 13: t-value comparing the performance starting with the minimum cardinality path
Alg. 0| Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4| Alg. 5

Alg. 0| - 2.98 | -0.11 | 2.33 | 825 | 3.95
Ag 1| - = [ 315 | -0.22 | -1.01 | 3.01
Alg. 2| - - - 254 | 2.46 | 4.17
Alg. 3| - - - — | -1.44 | 146
Ag 4| - - - - - 2.93
Alg. 5| - - - = - -

Table 14: t-value comparing the performance starting with random paths
Alg. 0| Alg. 1 | Alg. 2 | Alg. 3| Alg. 4 | Alg. 5

Alg. 0| - 7.66 | 1.01 | 7.17 | 1.04 | 7.80
Alg. 1| - — [ 688 | 062 | -7.50 | 1.63
Alg. 2| - = - 6.75 | -0.83 | 7.01
Alg. 3| - - - = | 711 | -0.32
Alg. 4| - - - - - 773
Alg. 5| - - - - - -

We do the same statistical hypothesis testing between algorithms when the initial short-
est path set is chosen by uniform random shortest paths. Table 14 shows that corresponding
t-values. We find that Algorithms 1, 3, 5 do get better solution than Algorithms 0, 2, 4
when we choose initial shortest path uniform randomly.

We also test which method of choosing the initial shortest path provides better perfor-
mance. Table 15 shows that corresponding ¢-value. There is enbugh evidence to say that

the minimum cardinality path will lead to a better solution than uniform random paths.
5.3.1.2 Speed of Convergence of Algorithms

We now discuss the computation time of all algorithms. We used several UNIX machines
simultaneously: two are Sun 280Rs, each with 2 900MHz UltraSparc-III CPUs and 2GB
RAM, and the other is a Sun 220R, with 2 360MHz UltraSparc-II CPUs and 2GB RAM.
Because these machines form a computational cluster and many people’s jobs share the

resources, it is difficult to compare the actual computation time of each algorithm on the

Table 15: t-value comparing two initial paths for all algorithms
Alg. 0| Alg. 1 | Alg. 2 | Alg. 3| Alg. 4| Alg. 5
t-value | -5.18 | -2.39 | -4.98 | -2.26 | -5.35 | -2.44
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Table 16: Average number of iterations for intermediate-difficulty ISPL

Initial path type Alg. 0 | Alg. 1 | Alg. 2 | Alg. 3| Alg. 4 | Alg. 5
minimum cardinality path | 20.53 | 9.26 21.09 {9.20 29.46 | 12.49
Random path 27.92 | 10.96 | 30.78 | 10.57 | 30.40 | 12.67

Table 17: Standard deviation of the number of iterations for intermediate-difficulty ISPL
Alg. 0| Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5
minimum cardinality path | 23.91 | 8.88 28.14 | 11.75 | 41.06 | 11.91
Random path 29.60 | 8.81 38.70 | 11.47 | 32.90 | 9.55

same machine. Hence, we compare the average iterations of each algorithm, instead of the
computation time.

Table 16 and Table 17 are the mean and standard deviation of total iterations of the 6
algorithms. We find that 95% and 99% of instances will reach local optimal solutions in less
than 35 iterations (see Table 18). Moreover, the speed of convergence of Algorithms 1, 3,
and 5 are much better than Algorithms 0, 2, and 4 no matter what initializing method we
use. We know that changing the shortest path set at each iteration does improve the speed
of convergence of algorithms. For Algorithms 1, 2, 3, and 4, using minimum cardinality

paths yields better speed than using uniform random paths (see Table 19).
5.8.1.3 Performance Summary of Combinations of Generating Schemes

In this section, we summarize the results to show how our algorithms work in different
scenarios: generating scheme, initializing scheme, number of edges, and number of com-
modities. For each scenario, we generate 30 ISPL instances to test the performance of our
algorithms. |

First, consider ISPL instances that are generated by putting same cost on each edge and

Table 18: Average number of iterations to converge for intermediate-difficulty ISPL
Alg. 0 [ Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4| Alg. 5
95% | minimum cardinality path | 21.95 | 9.79 22.76 | 9.90 31.90 | 13.20

Random path 20.68 | 11.49 | 33.08 | 11.25 | 32.36 | 13.24
99% | minimum cardinality path | 22.54 | 10.01 | 23.45 | 10.19 | 32.92 | 13.50
Random path 30.41 | 11.71 | 34.04 | 11.54 | 33.18 | 13.48
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Table 19: t-value comparing the speed of convergence between different initial paths
Alg. 0| Alg. 1 | Alg. 2 | Alg. 3| Alg. 4 | Alg. 5
t-value | -5.37 | -3.77 | -5.60 | -2.30 | -0.49 | -0.33
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Table 20: Algorithm performance: (ISPL instance I, the minimum cardinality paths)
Edge | Commodity | Alg. 0 [ Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5
1650 0 0 0 0 0 0
150 3300
4950
1650
200 3300
4950
1650
300 3300
4950
1650
1650 3300
4950
1650
3300 3300
4950

OO OO OO O|O|O|O| O]l O ©
(=] f o] Hen) o] Hon] § o] N o] Hon] Hon] Nao) Nan] Neon) Han) Nan]
O|Q| OO OO OO O| OO OOl ©
(=] feo] Joo] o) J o] Jeo) Hon] F o] Joo) Han] N Nan] an] Naw)
O|O|O|O|O|o|Oo|o|o|o|o|o|olo

solved by initializing with minimum cardinality paths and uniform random paths, respec-
tively.. Table 20 and Table 21 are the summaries of the results. Obviously, all algorithms
will be terminated at an optimal solution in Table 20 since the minimum cardinality path is
the real shortest path for each commodity. In Table 21, we find the average performance of
algorithms is ﬁnder 10% when starting with uniform random paths. Moreover, Algorithms
1, 3, and 5 perform better than Algorithms 0, 2, and 4 except for one instance.

Next we consider ISPL instances that are generated by Random ISPL 1 (uniform random
cost distribution on each edge). We summarize the results of initializing by miniﬁum
cardinality paths and uniform random pats in Table 22 and Table 23. Comparing these
two tables, we find that starting with minimum cardinality paths performs better than
random paths when the network is sparse (number of edges equal to 150, 200, and 300).
The difference between of our solution and ;che optimal solution is within 1.5% of optimality.
We also see that ISPL is polynomially solvable when the distance graph is complete in Table
22. |

Table 24 and Table 25 are the results when ISPL instances are generated by Random
ISPL 2 with probability (0.5,0.4). Other than the case when the distance graph is complete,

it seems that starting with minimum cardinality paths cannot guarantee to reach a better
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Table 21: Algorithm performance: (ISPL instance I, uniform random paths)

Edge | Commodity | Alg. 0 [ Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5
1650 0.25 0.02 0.34 0.21 0.25 0.02
150 3300 0.26 0.19 0.44 0.32 0.26 0.16
4950 045 | 045 0.45 0.45 0.45 0.45
1650 1.05 0.05 0.96 0.45 1.05 0.05
200 3300 1.31 0.10 1.35 1.16 1.31 0.10
4950 2.93 2.93 2.92 2.73 2.93 2.93
1650 8.46 3.35 8.18 3.98 8.46 2.37
300 3300 7.46 6.30 7.16 6.68 7.46 6.30
4950 8.59 8.59 8.59 8.46 8.59 8.59
1650 3.69 1.45 3.82 1.41 3.69 1.40
1650 3300 2.29 0.79 2.38 0.64 2.29 0.73
4950 6.75 7.76 6.35 7.33 6.35 7.33
1650 8.82 0.03 | 11.33 | 0.59 9.32 0.03
3300 3300 2.01 0.51 4.70 0.65 2.00 0.47
4950 0.19 0.18 0.18 0.18 0.18 0.18

Table 22: Algorithm performance: (ISPL instance II, the minimum cardinality paths)

Edge | Commodity | Alg. 0 | Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5
1650 0.06 0.08 0.10 0.10 0.06 0.08
150 3300 . 0.00 0.00 0.00 0.00 0.00 0.00
4950 - 0.00 0.00 0.00 0.00 0.00 0.00
: 1650 0.21 0.18 0.36 0.31 0.21 0.17
200 3300 0.01 0.01 0.02 0.02 0.01 0.01
4950 0.00 0.00 0.00 0.00 0.00 0.00
1650 0.81 1.36 1.14 | 1.23 0.80 1.05
300 3300 0.23 0.23 0.29 0.27 0.23 0.23
4950 0.00 0.00 0.00 0.00 0.00 0.00
1650 6.43 5.75 5.89 5.25 6.26 5.78
1650 3300 7.12 8.09 7.33 8.76 6.48 7.48
4950 0.00 0.00 0.00 0.00 0.00 0.00
1650 2.30 1.22 2.34 0.55 2.00 1.27
3300 3300 3.89 4.19 3.63 4.28 3.84 4.14
4950 0.00 0.00 0.00 0.00 0.00 0.00
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Table 23: Algorithm performance: (ISPL instance II, uniform random paths)

Edge | Commodity | Alg. 0 | Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5
1650 0.65 0.59 1.06 0.60 0.65 0.28
150 3300 0.99 0.88 1.13 1.04 0.99 0.85
4950 | 1.45 1.45 1.45 1.43 1.45 1.45
1650 2.58 2.83 2.32 2.89 2.58 2.81
200 3300 3.16 3.40 2.97 4.94 2.86 3.22
4950 2.98 2.98 2.98 2.96 2.82 2.82
1650 8.19 5.80 9.32 3.09 8.19 5.78
300 3300 7.94 5.07 7.99 5.95 7.94 5.07
4950 8.79 8.79 8.79 8.79 8.79 8.79
1650 7.68 2.99 5.20 1.90 7.50 3.01
1650 3300 2.57 2.13 2.60 2.18 2.45 2.12
4950 0.00 0.00 0.00 0.00 0.00 0.00
1650 5.56 0.44 5.24 0.14 5.66 0.46
3300 3300 0.50 0.19 0.43 0.18 0.64 0.17
4950 0.00 0.00 0.00 0.00 0.00 0.00

solution than starting with random paths, and vice versa.
In general, the algorithms perform well when the physical network is sparse, as most
real-life networks are. We also note that we get better solutions when there are many or

few commodities than for intermediate sizes of |K]|.

5.8.2 Hard Instances
5.8.2.1 Solution Performance of Algorithms

We now discuss the performance of our algorithms when solving hard ISPL instances. For
the hard ISPL instances, we choose the initial shortest path set by the method introduced in
Section 5.1.4. Hence, we have the most different initial shortest path set from the shortest
paths used to decide 2. For each number of edges and commodities (15 combinations), we
generate 60 ISPL instances. The mean and Stgndard deviation of the hard ISPL performance
are as shown in Table 26. We find thagt ‘o‘u.r algorithms can provide us a solution whose
difference from the optimal solution is appréximately 6% in average. Assume that the
performance is normally distributed, theﬁ We know that 99% of ISPL instances can be
solved under 7% difference (see Table 27 arjld:Figure 50).

- Table 28 is the lower bound on the success probability for algorithms to solve hard ISPL

instances within 3% and 5%. Algorithms 1, 3, and 5 perform much better than Algorithms
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Table 24: Algorithm performance: (ISPL instance III, the minimum cardinality paths)
Edge | Commodity | Alg. 0 | Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5

1650 1.28 1.25 1.29 1.31 1.27 1.19

150 3300 0.19 0.17 0.23 0.23 0.19 0.16
4950 0.00 0.00 0.00 0.00 0.00 0.00

1650 1.82 1.55 1.89 1.84 1.78 1.55

200 3300 0.76 0.69 0.73 0.72 0.73 0.68
4950 0.00 0.00 0.00 0.00 0.00 0.00

1650 3.12 2.49 3.39 2.84 3.10 1.91

300 3300 0.26 0.19 0.26 0.28 0.26 0.19
4950 0.00 0.00 0.00 0.00 0.00 0.00

1650 9.16 7.04 8.76 7.03 8.82 6.61
1650 3300 10.71 | 11.27 | 10.96 | 11.46 | 10.66 | 11.26
4950 0.00 0.00 0.00 0.00 0.00 0.00

1650 3.93 2.26 3.81 1.82 3.54 2.20

3300 3300 8.04 8.45 7.90 8.52 7.92 8.35
4950 0.00 0.00 0.00 0.00 0.00 0.00

Table 25: Algorithm performance: (ISPL instance III, uniform random paths)
Edge | Commodity | Alg. 0 | Alg. 1 | Alg. 2 | Alg. 3| Alg. 4 | Alg. 5

1650 1.40 1.94 1.53 1.87 1.40 1.91
150 3300 1.25 1.09 1.28 1.16 1.25 1.09
4950 0.70 0.70 0.70 0.70 0.70 0.70
1650 3.91 3.11 4.02 3.07 3.91 3.10
200 3300 2.96 3.09 3.08 3.22 2.96 | 3.07
4950 040 | 0.40 0.40 0.40 0.43 0.40
1650 3.69 6.02 3.86 6.33 3.69 6.01
300 3300 1.68 1.10 1.90 1.22 1.68 1.10
4950 14.47 | 1447 | 15.20 | 16.00 | 16.00 | 13.79
1650 10.12 | 4.84 9.51 4.98 | 10.02 | 4.88
1650 3300 12.60 3.30 12.06 6.49 12.78 6.27 .
4950 9.18 9.18 9.18 9.18 9.18 9.18
1650 5.70 0.73 5.83 0.71 5.62 0.77
3300 3300 7.39 2.03 7.05 1.79 7.31 1.95
4950 0.00 0.00 0.00 0.00 0.00 0.00

Table 26: Mean and standard deviation of the performance for hard ISPL (%)
Alg. 0| Alg. 1| Alg. 2 | Alg. 3| Alg. 4| Alg. 5
Mean | 6.05 2.24 5.95 2.25 6.00 2.22
Std. 9.25 8.05 9.18 8.06 9.24 8.05

Table 27: The performance of algorithms for hard ISPL (%)
Alg. 0| Alg. 1 | Alg. 2 | Alg. 3| Alg. 4 | Alg. 5
95% | 6.57 2.70 6.46 2.71 6.52 2.68
99% | 6.79 2.88 6.68 2.90 6.74 2.87
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Figure 50: Hard ISPL performance of algorithms

Table 28: Lower bound of probability of solving hard ISPL within 3 and 5 percent
Alg. 0| Alg. 1| Alg. 2 | Alg. 3| Alg. 4| Alg. 5
3% | 0.46 0.82 0.46 0.82 0.46 0.82
5% | 0.53 0.88 0.55 0.89 0.54 0.88

0, 2, and 4. There are at least 82% and 88% probability for Algorithms 1, 3, and 5 to solve
hard ISPL instances within 3% and 5%.

We also perform the statistical test for the comparisons between algorithms. Table 29
shows the corresponding ¢-value. We can conclude that Algorithms 0 and 2 have the worst
performance of the six algorithms. Algorithm 1 is better than Algorithm 4. Algorithms 3
and 5 have the best performance on the hard ISPL instances. This conclusion is similar to
the intermediaté-diﬁiculty ISPL instance analysis. Changing the shortest path set in each
iteration does help the performance of algorithms.

We also want to kﬁdw the worst performance in each edge and commodity combination
(see Téble 30). We find that the algorithms sometimes can perform poorly when both
the number of edges and the number of commodities are large (especially when distance
graph is complete). We know that ISPL is polynomially solvable when the distance graph
is complete (by Lemma 3.10). For these instances, we can solve them using the method in

Lemma 3.10. Another interestin.g finding is that Algorithms 1, 3, and 5 work much worse °
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Table 29: t-value comparing the performance of algorithms for hard ISPL

Alg. 0| Alg. 1| Alg. 2 | Alg. 3| Alg. 4 | Alg. 5
Alg. 0 - 20.58 | 1.61 | 20.44 | 5.93 | 20.63
Alg. 1 - - -20.37 | -0.43 | -20.38 | 2.70
Alg. 2 - - - 20.23 | -0.91 | 20.43
Alg. 3 - - - - -20.24 | 1.02
Alg. 4 - - - 1 - - 20.43
Alg. 5 - - | - - - -

Table 30: Algorithm performance for hard ISPL in different scenario |

Edge | Commodity | Alg. 0 | Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5
1650 17.45 | 44.27 | 24.67 | 44.27 | 24.67 | 44.27
150 3300 17.08 | 13.00 | 17.08 | 12.93 | 17.08 | 13.00
4950 0.60 0.60 0.60 0.60 0.60 0.60
1650 3724 | 648 | 2597 | 6.52 | 37.24 | 6.48
200 3300 21.06 | 7.75 | 21.12 | 7.75 | 21.06 | 7.75
4950 8.73 7.64 8.73 8.73 8.73 7.64
1650 37.25 | 19.11 | 39.88 | 13.91 | 37.25 | 19.11
300 3300 19.20 | 7.14 | 19.20 | 4.74 | 19.20 | 7.14
4950 18.23 | 18.23 | 18.23 | 18.23 | 18.23 | 18..23
1650 14.13 | 11.68 | 14.03 | 10.63 | 13.89 | 11.20
1650 3300 30.61 | 32.14 | 30.42 | 32.70 | 30.60 | 32.12
4950 92.59 | 92.59 | 92.59 | 92.59 | 92.59 | 92.59
1650 7.41 3.92 6.82 4.02 7.40 3.92
3300 3300 12.61 | 10.79 | 12.37 | 10.61 | 12.56 | 10.77
4950 38.06 | 38.06 | 38.06 | 38.06 | 38.06 | 38.06

than Algorithms 0, 2, and 4 in the smallest instance.
5.8.2.2 Speed of Convergence of Algorithms

We disCﬁés the speed of _c_onvergehce of the élgorithms. Table 31 shows the mean and
standard deviation of iterations used to get a local optimal solution. Assuming a normal
- distribution, we know 95% and 99% of ISPL instances will reach a local optimal solution
under 34 iterations (see Table 32 and Figure 51). We find that Algorithms 1, 3, and 5
have better speeds of convergence than Algorithms 0, 2, and 4. Comparing to the results in
Table 18, we find that nivshere is not much difference between starting with a uniform random
path and starting with the most different shortest path for each commodity. The speed of
convergence of algorithms that starting with these two different initial shortest path set are

almost the same.
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Table 31: Mean and standard deviation of iterations to converge for hard ISPL
Alg. 0| Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5
Mean | 27.41 | 10.72 | 27.36 | 11.11 | 3149 | 12.24
Std. 23.74 | 8.56 25.23 | 11.49 | 30.81 | 11.26

.Table 32: Average iterations for convergence for hard ISPL under 95 and 99 percent
Alg. 0 | Alg. 1 | Alg. 2| Alg. 3| Alg. 4| Alg. 5
95% | 28.75 | 11.21 | 28.78 | 11.76 | 33.23 | 12.88
99% | 29.31 | 11.41 |29.37 | 12.03 | 33.95 | 13.14

E95%
B oo%
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Figure 51: Iterations for convergence in the worst case
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Figure 52: Tyco network

5.4 Telecommunication Example

In this section, we test our algorithms on telecommunication ISPL instances from the real
world. We use the networks of three major bandwidth providers, Tyco [34], Level 3 [33],
and Global Crossing [32]. These companies’ exact prices for bandwidth were unavailable, so
we used the prices posted on bandwidthmarket.com [31], an on-line bandwidth exchange.
For each network, we create three instances, corresponding to the first, second, and third
lowest advertised prices on September 17, 2003. We solve these nine ISPL instances with
all of our algorithms.

The underlying networks of Tyco, Level 3, and Global Crossing are shown in Figures
52, 53, and 54. The Tyco ISPL instances have parameters (|N|, |E|, |K]) équai to (8,9,12),
(8,9,9) and (8,9,9). The parameters of the Level 3 instances are (66,77,716),: (66,77,577), and
(66,77,543). Global Crossing has instances with parameters (103,117,1264), (103,117,820),
and (103,'117,739). Notice that Tyco ihas the smallest number of nodes and edges and
commodities, and Global Crossing has the largest. Hence, we can test the performance of
our algorithmé on different sizes of telecom ISPL instances.

We also choose two starting points: minimum cardinality paths and random paths.

Table 33, Table 34, and Table 35 are the summaries of the results. The performance of all
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Figure 54: Global Crossing network
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Table 33: Algorithm performance for Tyco (%)

Tyco
Algorithm | Path type | Instance 1 | Instance 2 | Instance 3
Alg. 0 0 48.27 62.39 66.85
1 48.27 62.39 66.85
Alg. 1 0 48.27 62.39 66.85
1 48.27 62.39 66.85
Alg. 2 0 48.27 62.39 66.85
1 48.27 62.39 66.85
Alg. 3 0 48.27 62.39 66.85
1 48.27 62.39 66.85
Alg. 4 0 48.27 62.39 66.85
1 48.27 62.39 66.85
Alg. 5 0 48.27 62.39 66.85
1 48.27 62.39 66.85

Table 34: Algorithm performance for Level 3 (%)

Level 3

Algorithm | Path type | Instance 1 | Instance 2 | Instance 3
Alg. 0 0 208.92 277.44 268.75
1 207.14 277.42 268.75
Alg. 1 0 208.92 277.44 268.75
, 1 207.14 277.42 268.75
Alg. 2 0 208.92 277.44 268.75
. 1 207.14 277.42 268.75
Alg. 3 0 208.92 274.87 270.73
1 207.14 277.13 272.01
Alg. 4 0 20892 | 277.44 268.75
1 207.14 277.42 268.75
Alg. 5 0 208.92 | 27744 268.75
; : 1 207.14 277.42 268.75

algorithms are much worse than the results when we test on the random ISPL instances in
Section 5.3. The reason is that these telecom ISPL instances are infeasible.

There are two types of infeasibility in these telecom ISPL instances. The first is that
. the length of the shortest path for some commodity might have to be greater than the
desired length. The second is that distance graph might violate the triangular inequality,
i.e., arbitrage exists. |

We can cdmpute the lower bound of the infeasibility of Type 1 in the following way:

Set the costs of each edge (i,7) of the underlying network either equal to zj if there is a
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Table 35: Algorithm performance for Global Crossing (%)

Global Crossing
Algorithm | Path type | Instance 1 | Instance 2 | Instance 3
Alg. 0 0 259.30 266.67 254.76
1 259.44 270.28 254.28
Alg. 1 0 259.30 266.67 254.72
1 259.44 270.32 253.65
Alg. 2 0 259.30 266.67 253.11
1 259.45 270.22 254.28
Alg. 3 0 259.30 268.47 253.66
1 259.45 270.00 253.46
Alg. 4 0 259.30 266.67 253.11
1 259.44 270.22 254.28
Alg. 5 0 259.30 266.67 253.07
1 259.44 270.00 253.43

commodity k& between node 7 and j, or equal to O if not, and then solve the shortest path
problem for all commodities. If the length of the shortest path for commodity k, say z;,
is greater than zy, then we know the ISPL must be infeasible for this commodity and the
infeasibility is at least as large as 2}, — z. »

To check the infeasibility of Type 2, we set the cost of edges in the distance graph equal
to 23 and solve the shortest path problem for all commodities on the distance graph. If the
shortest path length for some commodity k, say Zf, is less than 2, then the instance must
be infeasible and there is arbitrage in this instance. The infeasibility for this commodity
must be at least zp— Zz.

Table 36 shows the lower bound of these two types of infeasibility in all telecom ISPL
instances. We find that Type 1 infeasibility exists for all telecom ISPL instances. Infeasi-
bility of Type 2 is much less common. This makes sense, since Type 2 infeasibility results
in opportunities for arbitrage.

In order to evaluate the performance more accurately, we solve the Tyco ISPL instances
to optimality by solving mixed-integer programming problems (5.3)-(5.7). The instances for
Level 3 and Global Crossing are too large for this IP to be solved. The objective function
in (5.3) is to minimize the total infeasibility o"f‘ all commodities. Let d} denote the optimal

solution of (5.3)-(5.7). Each yy, is an indicator variable to show whether path P is the
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Table 36: Two infeasibilities of Telecom ISPL instances
Company Instance | Infeasibility 1 (%) | Infeasibility 2 (%)

: 1 8.43 0.00

Tyco 2 13.93 0.00

3 15.67 0.00

1 102.66 12.65

Level 3 2 89.86 2.44

3 46.93 0.00

1 201.28 23.30

Global Crossing 2 46.05 4.54

3 21.97 2.36

shortest path for commodity k. Each sj, represents the difference between.the length of
path P for commodity ¥ and the length of the shortest path for commodity k. Constraint
(5.4) guarantees that the length of any path P for commodity & must be greater than or
equal to z; 4 0f. Constraints (5.5) and (5.6) guarantee that there is at least one path whose
length is exactly equal to z; + d;. If the objective value is equal to 0, then we solve ISPL

to optimality.

|K|
Min Y & 4 (5.3)

k=1
> Ce—bk—sip=z  VPfork=1,.,|K| (5.4)

ecePeP;
skp < M(1 — yip) (5.5)
Zykp =1 for all k& (5.6)
p

c, 6) s2 0) Ykp € {07 1} (5'7)

Since there is not much difference between the performance of our six algorithms, we
only'compare‘ the solutions of Algorithm 0 (starting with the minimum cardinality paths)
to test the performance. We summarize the result in Table 37.

Considering the effect of our bounds on infeasibilities of Type 1 and Type 2, the perfor-
mance estimate for Global Crossing instance 1 changes from almost 260% to 11%. It tells
us that the perforinance of our algorithms is much better than shown in Table 33, Table 34,

and Table 35. Since the actual infeasibility must be at least as much as the summation of
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Table 37: Adjusted performance by infeasibility bounds

Infeasibility Performance (%)
Instance sz Type 1 | Type2 | MIP | Alg. 0 |l vs. bounds | vs. optimal

a b c d e Z—fﬁ% %

1 7687 648 0 1970 | 3741 0 37.11 18.34

Tyco 2 7015 977 0 1827 4377 42.54 24.84

3 8551 1340 0 2442 5716 44.24 29.78
1| 538854 | 553178 | 68171 - 1125794 43.48
Level 3 2 || 474123 | 426070 | 11553 - | 1301166 94.71
3 || 527705 || 405972 0 - 1418193 108.41
1| 1168093 || 2351156 | 272109 | - | 3028911 10.70
Global Crossing | 2 || 690112 | 317784 | 31363 - 1840331 143.49
3 || 741722 | 162979 | 17500 - | 1889628 185.33

the infeasibilities of Type 1 and Type 2, we know that our algorithm should solve the Global
Crossing ISPL instance 1 to within 11% of optimality. We also notice that our algorithms
do not work as well for Tyco ISPL instances, even though Tyco has the simplest network
structure. It coincides with the observation in Section 5.3.1.3: we get better solutions when
there are many or few commodities than for intermediate sizes of |K|. Even though the
~ Global Crossing network is more complicated, the number of commodities is large enough

to get a better solution.

5.5 Summary

We propose 3 random schemes to generate feasible ISPL instances in this chapter. By using

Random ISPL 3, we can generate a feasible ISPL instance and start our algorithms with
the most different shortest path set.

We summarize some results of the pérfo:mance of our algorithms as following:

1. For the intermediate-difficulty ISPL, 99% of instances can be solved to within 2.7%
of optimality using intelligent starting paths, and to within 5.5% of optirhality using

random paths.

2. For hard ISPL, 95% of instances can be solved to within 6.6%, and 99% of instances
can be solved to v'vithin 6.8%. These numbers can be decreased to 2.7% and 2.9% if

we use Algorithms 1, 3, and 5.
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. Whether for intermediate-difficulty ISPL or hard ISPL, our algorithms will terminate
in fewer than 35 iterations in 99% of instances. There is not much difference in the
speed of convergence of algorithms when starting with minimum cardinality paths,

random paths, or the more different paths (Random ISPL 3).
. Algorithm 3 and Algorithm 5 are better than the other four algorithms.

. Changing the shortest path set at each iteration does help the speed of convergence

of our algorithms.

. Algorithms did not work well for the telecommunication ISPL instances. The reason

is that these instances are infeasible.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

This thesis deals with the Inverse Shortest Path Length Problem (ISPL). ISPL draws our
attention because it has many applications in the real world, like transportation network
improvement and bandwidth pricing.

Chapter 2 contains a literature review that includes previous research on inverse solution
optimization problems, methods for solving inverse solution optimization problems, and the
inverse objective value optimization problem. Previous work on the complexity of inverse
objective value optimization problems is summarized in this chapter.

Chapter 3 discusses the complexity of ISPL. Previous work has already proved that
ISPL is NP-complete in general. We show that ISPL can be solved in polynomial time
for two extreme cases of physical networks, a tree and a complete graph. We find that
ISPL is also polynomially solvable when the underlying network is a complete graph with
a constant number of edges removed. We introduce some ideas such as a logical graph to
discuss ISPL complexity when the network is a cycle. Some special classes of cycle ISPL,
regular restricted cycle ISPL, and ¢ — max restricted cycle ISPL with |C| > 5t 4 1, can
also be solved in polynomial time. We also discuss the relationship between the number of
commodities and the complexity of ISPL. When there are two commodities or the distance
graph is complete, ISPL can be solved in polynomial time.

We prdpose six algorithms to solve ISPL in Chapter 4. The algorithms contain three
subproblems: solving for shortest paths, minimizing infeasibility, and perturbing costs.
Some properties of tﬁe algorithms, perturbation benefits and monotonicity, are discussed.
We show that our six algorithms will be terminated in polynomial time and their tight worst
case performance bound is |K| — 1.

In Chapter 5, we test the performance of our algorithms both on random ISPL instances
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and ISPL instances from real world telecommunication problems. In order to generate
feasible ISPL instances for testing, we propose three random generating schemes. For the
intermediate-difficulty ISPL, 99% of instances can be solved to within 2.7% of optimality
using intelligently-chosen starting paths. For hard ISPL, 99% of instances can be solved
to within 2.9% of optimality if we use Algorithms 1, 3, and 5. Algorithms are terminated
under 35 iterations for 99% instances of these two types of random ISPL. Algorithm 3 and
Algorithm 5 perform better than the other four algorithms in generai. The performance
of the heuristics on telecommunication ISPL in the real world is worse than on random
instances. Part of the infeasibility comes from the fact that the telecom instance of ISPL
themselves are infeasible. We compute lower bounds on infeasibility by solving a mixed-

integer program.

6.2 Future Research

Based on the conclusions we draw in Section 6.1, future research could cover both theoretical

topics and practical applications.

1. The complexity of cycle ISPL.

We already identify some classes of cycle ISPL that can be solved in polynomial time.

However, the compiexity of general cycle ISPL is still unknown.

2. Improved perturbation algorithms.
We introduce an idea to improve our algorithms by adopting a different cost pertur-
bation scheme. To see the benefit of combining the new cost perturbation scheme

with our other algorithms could be intefresting.

Cost perturbation cannot escape from'the local optimum in Figure 31 because we
maintain the monotonicity of infeasibility of each commodity. We do not allow the
infeasibility of some commodity to increase when we perturb the cost vector, even if

the total infeasibility‘ remains the same.

To avoid the situation in Figure 31, we need some modification of the cost perturbation

subproblem. Instead of putting an infeasibility restriction on every commodity, we
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will restrict on the total infeasibility of commodities to remain constant. This can

allow greater flexibility.

3. Telecommunication pricing.

According the data we got for telecommunication pricing, there is arbitrage and in-
consistency. We could apply our ISPL algorithms to develop a more consistent pricing
scheme for telecommunication companies. Another issue of interest in telecommuni-
cation pricing is finding a systematic way to fix the inconsistent pricing to remove

arbitrary opportunities.

4. Transportation network improvement.

Inverse optimization can be applied in the improvement of transportation networks.
Consider a transportation network with capacity on each edge, and the edge cost
function depending on the flow through it. We are given a desired cost vector for
some specific origins and destinations. We also have the construction cost function
representing the cost to improve the edge. Under the budget, time and feasibility
constraints, we must decide which edges should be improved to reach the desired

service level.

According user equilibrium theory, drivers tend to choose their shortest path. Once

we improve some edges, the flow on each edges will be changed again.

Inverse objective value optimization problem is a research frontier. Inverse shortest path
length problem is just one topic in this field. We hope this thesis could be a starting point

and numerous extensions or applications of ISPL will appear in future research.
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