
Longitudinal Motion Planning for Slung-Loads Using Simplified Models and
Rapidly-Exploring Random Trees

Eric N. Johnson
eric.johnson@ae.gatech.edu

Lockheed-Martin Associate Professor of Avionics
Georgia Institute of Technology

Atlanta, Georgia, USA

John G. Mooney
john.g.mooney@gatech.edu
Graduate Research Assistant

Georgia Institute of Technology
Atlanta, Georgia, USA

ABSTRACT
A randomized motion-planning approach to providing guidance for helicopters with under-slung loads is presented.
Rapidly-exploring Random Trees are adapted to plan trajectories for simplified helicopter-load models. Four different
planning models are tested against four different representative tasks. The poor performance of the baseline planner,
and subsequent efforts to improve that performance shows the sensitivity of the RRT to proper sizing of the sampling
area and amount of computation available. Further lines of potential research into optimizing planner performance
and reducing computational cost are identified.

INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are rapidly becoming
more important and relevant to military and civil aviation op-
erations. However, there are a number of tasks which, thus far,
still require the skill, adaptability, and experience of a human
pilot. One task in particular that requires an especially skilled
pilot is helicopter slung-load operations.

A helicopter’s capability to carry large and heavy loads ex-
ternally, as well as pick them up and drop them off in unpre-
pared sites, is one of its primary advantages over fixed-wing
aircraft. However, the addition of an external load changes the
stability and handling qualities of the system, typically mak-
ing it more difficult to fly. As a result, most pilots flying with
slung-loads limit their speed and aggressiveness to keep the
load and the aircraft well within the flight envelope. More-
over, pilots need the ability to see the load, meaning flight
in degraded visual environments is very limited. Finally, the
lack of maneuverability means that pilots will tend to fly well
above any obstacles, and the aircraft will be more exposed to
observation and threat (in a military context).

Despite the difficulties of flying with a slung-load, aggres-
sive maneuvers are possible. Because of factors unique to the
local Christmas tree market, Christmas tree farms in the US
Pacific Northwest have used helicopters with slings to load
their trucks for transport for at least 30 years (Figure 1). These
pilots fly hundreds of loads every day, 8-10 hours per day, dur-
ing the harvest. Because of the urgency of the operation, the
pilots have learned how to employ very aggressive maneuvers
to pick up and drop the trees at very precise locations in a min-
imum of time. It appears that part of the reason the pilots have

Presented at the Sixth AHS International Specialists’ Meeting
On Unmanned Rotorcraft Systems, Chandler, Arizona, Jan-
uary 20-22, 2015. Copyright c© 2015 by the authors, pub-
lished with permission. All rights reserved.

developed this capability is that they are able to anticipate the
load’s motion and plan their inputs to drive the load to a pre-
cise position. Likewise, it seems that there is potential for ap-
plying this principle to the way that UAVs handle slung-loads.
Motion planning has long been studied for a wide range of
robotics applications, and could enable unmanned slung-load
operations as well as augment human pilots in this difficult
task.

Fig. 1. Helicopter loading Christmas trees for transport.

This paper reports on the continued investigation of the

1

suitability of RRTs to motion-plan for aggressive slung-load
operations (Ref. 1). In particular, it focuses on longitudinal
motion planning, using four simplified propagation models to
accomplish four tasks of increasing complexity. This work
provides an assessment the ability of the algorithm to com-
pute a feasible solution, as well as assessing the sensitivity of
results to certain parameters of the planner. Since RRTs are
non-deterministic, solutions are sampled in order to find a dis-
tribution of performance results. This work is the only known
application of RRTs to helicopter slung-loads.

Review of Relevant Literature

To date, most stability and controls research for helicopters
with slung-loads has focused on stabilizing the load or limit-
ing load swing (for example, (Refs. 2–6)). Only two sources
were found during review (Refs. 7, 8) where guidance and/or
motion planning methods were applied to this problem. How-
ever, there is no shortage of capable motion-planning method-
ologies.

One method in particular which seems well-suited for
planning for slung-loads is Rapidly-Exploring Random Trees
(RRTs), due to their ability to easily handle nonlinear models
with arbitrary constraints (Refs. 9, 10). Since its introduction
in 1998, the RRT has seen several modifications and improve-
ments. LaValle and Kuffner (Ref. 11) themselves introduced
the ideas of reverse RRTs, which grow from the goal con-
figuration backward, and RRT-Connect, a version that grows
forward and reverse trees simultaneously, attempting to con-
nect the two in the middle. Other researchers have found
ways to improve or speed the solution by caching parts of
previously solved trees (Ref. 12), dynamically adjusting the
sampling domain size (Ref. 13), optimizing nearest-neighbor
searches (Ref. 14), and pruning or re-wiring the tree to seek
the optimal solution (Refs. 15, 16)

PROBLEM FORMULATION

Guidance Algorithm

In the context of this problem, a tree is a set of possible
state trajectories, and associated control inputs, with a com-
mon starting point. Where the trajectories diverge from one
another forms the branches of the tree. Several methods ex-
ist for developing trajectory tree, which primarily differ from
each other in how they determine which element of the tree
to grow from at each iteration, and in how new branches are
grown.

Below is the basic algorithm for constructing a Rapidly-
exploring Random Tree. The algorithm shown here (Algo-
rithm 1) is a slight modification of that published in (Ref. 9).
In essence, the RRT selects the node to grow from the tree by
generating a random state configuration, then searching the
tree for the node which is “closest” in some sense. The algo-
rithm then grows the tree from that node by selecting a control
input through arbitrary means—in this case, at random—and
uses an incremental simulator to find the resultant trajectory

segment. This incremental simulator will be referred to as the
planning model. An example tree where a two dimensional
path is found around an obstacle without dynamic constraints
is shown below in Figure 2.

The computational complexity of the RRT depends upon
the planning model complexity, the method of NEAREST-
NEIGHBOR searches, the distance metric, and the control se-
lection technique used. For this work, brute-force lookups
and randomized control selection is used. The distance metric
and planning models are detailed below. Analysis has shown
computation to be O(c2K2 + c1K), where K is the total num-
ber of iterations (and nodes in the tree) and the coefficents ci
are functions of model, integrator, and distance function com-
plexity.

Algorithm 1 Generate RRT (adapted from (Ref. 9))
1: procedure GENERATERRT(xinit ,xgoal ,K,∆t,bias,δ)
2: v0← new Node(xinit ,0)
3: T.init(v0)
4: for k = 1 to K do
5: xrand ← RANDOMSTATE(xgoal ,bias)
6: vnear← NEARESTNEIGHBOR(T,xrand)
7: u← SELECTINPUT(xrand ,vnear.x)
8: xnew← MODEL.NEWSTATE(vnear.x,u,∆t)
9: if MODEL.COLLISIONFREE(xnew,vlea f .x) then

10: vnew← new Node(xnew,u)
11: T.addNode(vnew)
12: end if
13: end for
14: vnearest ← NEARESTNEIGHBOR(T,xgoal)
15: U ← ASSEMBLECONTROLSEQUENCE(T,vnearest)
16: return U
17: end procedure

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 2. Sample 2-D geometric RRT.

2

Planning Models

The incremental simulator of the helicopter-load system is
modeled as a pendulum attached to, alternatively, a constant-
altitude double integrator (abbreviated “CP”), a two-degree-
of-freedom double integrator (“DI”) (Equations (1) - (10)),
and point mass with first-order pitch and thrust dynamics
(“PP”)(Equations (11) - (12)). A fourth model will repre-
sent the load directly as a point mass with first-order thrust
dynamics and second-order pitch dynamics (“LL”). These dy-
namics are formulated using multibody equations of motion,
with a virtual spring-mass-damper in the linkage to help en-
force the constraint between the pivot and the mass. Again,
these models are drastic simplifications of real aircraft with
slung-loads, but are being examined to determine if they are
“good enough” for planning purposes. Note that these mod-
els are generic enough to be adapted to three dimensions, by
adding a third dimension to ~rP, ~̇rP, ~rM , ~̇rM , and ~u. Figure 3
shows the DI model, with the CP and PP models differing
only in how the pivot acceleration is defined. The LL model
is depicted in Figure 4.

Pendula with differential pivot motion

~x =
{
~rT

P , ~̇r
T
P , ~r

T
M, ~̇rT

M
}T

(1)

~̇x =

~̇rP

~̈rP

~̇rM

~aEXT +~aC +~aAP +
~FCE
m

 (2)

where

l = ‖~rM−~rP‖ (3)

~η =
(~rM−~rP)

l
(4)

~aC =

∥∥~̇rM−
(
~̇rT

M~η
)
~η
∥∥2

l0
~η (5)

~aAP =
(
~̈rT

P~η
)
~η (6)

~D =−ρ f
2

∥∥~̇rM
∥∥~̇rM (7)

~aEXT =

(
~D
m
+~g

)
−

(~D
m
+~g

)T

~η

~η (8)

~FCE =−kCE(l− l0)~η− cCE
[(
~̇rT

M~η
)
−
(
~̇rT

P~η
)]
~η (9)

~̈rP =~u (10)

m g i⃗ 3

i⃗3

i⃗1O

L

¨⃗r P=u1 i⃗ 1+u2 i⃗3

F⃗ C+ F⃗ AP+ F⃗CED⃗

r⃗ M

r⃗ P

Fig. 3. Pendulum with Kinematic Pivot

The coefficients on the constraint enforcement are set so
that the spring-mass-damper frequency is an order of magni-
tude faster the pendulum frequency, but the period is less than
half of the numerical integration time step size.

This same set of equations applies to the pitching particle
model, with T and θ added to the state vector, and the follow-
ing modifications to equation (10):

~̈rP =−T
{

sinθ

cosθ

}
(11)

{
T
θ̇

}
=~u (12)

Load modeled as point mass with double integrator atti-
tude dynamics A slightly different, simpler, approach is to
directly plan the load trajectory by modeling it as a point mass
with a defined attitude and applying slower dynamics. The po-
sition and velocity commands for the aircraft are then solved
kinematically as a function of the attitude and angular velocity
of the load.

~x =
{
~rT

M, θ , ~̇rT
M, θ̇ , T

}T
(13)

~̇x =

~̇rM
θ̇

−T
{

sinθ

cosθ

}
u2
u1

(14)

3

m g i⃗ 3

i⃗3

i⃗1O

L

¨⃗r M=T {sinθcosθ}
D⃗

r⃗ M

T

θ̇
Ṫ=u1
θ̈=u2

Fig. 4. Longitudinal Load-based Model

Prototype Slingload Tasks

A final element of this investigation is to define tasks which
adequately represent the more generic problem of aggressive
precision slung-load delivery. To that end, four prototype
tasks have been developed, partly inspired by the attempt de-
scribed in (Ref. 17) to quantify obstacle avoidance perfor-
mance. Criteria for successful completion of each task are
described below; the numbers are somewhat arbitrary but may
be changed depending upon application.

Task 1: Trim-Hover to Trim-Hover The first scenario is
an “easy” reposition task to help establish a baseline measure
upon which all the other tasks are based. The load and the
aircraft start and end at or near rest, and both aircraft and load
position are included in the goal state. The aircraft begins
from a point 50 ft AGL, with a 40 ft line, and moves a distance
of 300 ft. The goal region is defined as both load and aircraft
being within a 10 ft by 10 ft box centered on the goal position,
and moving less than 3 feet per second.

Task 2: Christmas Tree Drop The second scenario mim-
ics the Christmas tree harvesting operation referenced in the
introduction. This task specifies a final position and velocity
of the load, but not on the aircraft. The remainder of the task
geometry is the same as task 1. The goal region is defined as
load being within a 8 ft of the goal position, and moving less
than 3 feet per second.

Task 3: Linear Wall Obstacle Task 3 is identical to task 1,
except for the inclusion of a 25 foot high wall obstacle placed
at the midpoint between start and goal. This task is the first to
require the load, line, and aircraft to avoid an obstacle other
than the ground.

300 ft

50 ft
40 ft

16 ft

Max at goal:
3 fps lateral
3 ft drop (or equiv.)

Fig. 5. Task 4.

Task 4: Precision Load Placement on Ground This task
is similar to task 2, but is likely the most difficult of the lon-
gitudinal tasks, as it requires precision load placement with
minimal impact velocity and the additional constraint of not
being able to approach the goal from the underside (Figure
5). Success in this task is defined as the load being within
16 ft laterally of the goal, and moving less than 3 feet per
second laterally. Vertically, the combination of vertical speed
and drop height should cause an impact velocity less than the
equivalent of a 3 foot drop from rest.

TEST CONDITIONS

The RRT algorithm was tested by applying it, with each of the
four planning models, to each of the four tasks. The testing
environment consisted of simply executing the planner in a
single query for a single initial condition. The RRT was 75
times with each model performing each task in order to find
the distribution and tendencies of the planner’s performance.
This number was selected based on a trade study showing that
larger sample sizes gave little to no additional refinement to
the sample distributions.

The baseline parameters used to obtain these results are
included in Tables 1 and 2, and the cost/distance function
used is given in Equations 15 and 16. The system parameters
were designed to mimic the scale of a Yamaha R-MAX, the
most likely testbed for a future implementation of this plan-
ner. The simulations were carried out in a C++ implementa-
tion running under Ubuntu 12.04.4 LTS (32-bit) on an 8-core
Intel R©XeonTM3.20 GHz CPU with 4 GB of memory.

α = 2(−‖~rM,goal−~rM‖/l0) (15)

4

Table 1. Dynamic System Parameters.
Parameter Value
Line Length 40 ft
Load Mass 20 lbm
Load Equiv. Flat Plate Area 1 ft2

Air Density 0.002378 slug/ ft3

Table 2. Planner Parameters.
Parameter Value
Number of Nodes 1000
Control Space (linear) [−X ,0,X], X ∼U(0,3) f t/s2

Control Space (angular) [−Y,0,Y], Y ∼U(0,1.4) rad/s
Branch Length 3 s
Integration Time Step 0.05 s
Goal Bias 0.9

Sampling Domain
Load Position ~RM ∼ [U(−150,450),

U(−290,310)]T f t

J = (1−α)
∥∥~rM,goal−~rM

∥∥2
+α

∥∥~̇rM,goal−~̇rM
∥∥2

(16)

Each sample provided the following outputs, with the
scalar outputs aggregated into a distribution: percentage of
plans that successfully find the goal (as defined above); dura-
tion of planned trajectory; computation time; trees and trajec-
tories from the “best” runs—e.g. the shortest trajectory du-
ration or least final error, etc.; and trees and trajectories from
a randomly selected run. Several other quantities were cap-
tured, such as load swing and aggregate control input, but did
not produce results which merit reporting.

RESULTS AND DISCUSSION

A baseline comparison of the four longitudinal planning mod-
els is presented here. Again, each of the four longitudinal
tasks were given to the planner with the four longitudinal
planning models using the parameters listed in Tables 1 and
2, generating an RRT 75 times, using controls selected from
a uniform random distribution, with one exception. Using a
uniform random distribution with the LL model so often re-
sulted in unusable trees that the possible inputs were restricted
to five discrete control vectors from which the actual control
was randomly selected.

All four planning models had difficulty achieving success
at each of the four tasks. The only combination with greater
than 50% success rate was the CP performing Task 2—to be
expected, as the model merely needs to find the right horizon-
tal position with the right amount of swing (Table 3).

Table 3. Longitudinal Model Base Success Rates (%).
CP DI PP LL

Task 1 5.3 0 0 0
Task 2 54.6 1.3 0 0
Task 3 0 0 0 0
Task 4 0 1.3 0 0

0 50 100 150 200 250 300

0

50

100

150

200

Downrange (ft)

A
lt

it
u

d
e

 (
ft

 A
G

L
)

Fig. 6. Trajectory and tree for randomly selected run in
trial, model PP, Task 3.

Baseline Task Performance

This experiment generated a number of general observations,
and the comparative performance of the four planning mod-
els was similar for all four tasks, with a few exceptions to be
described in detail. An important common characteristic each
of the models performing their tasks was the unreliability of
getting a “good” trajectory in any arbitrarily selected run of
the planner, for example the result shown in Figure 6. This
unreliability will be addressed later.

The CP model outperformed the other others in Tasks 1
and 2, presumably due to the fact that the starting altitude of
the load was very close to the target altitude. For Task 1, the
median trajectory duration was about 44 seconds (Figure 7),
an average speed of 6.8 ft/s, which is very docile for this scale
aircraft. This model, however, was the only one that had a
chance to put the load inside the target at low speed—typically
within 10 ft of the target (Figure 8) and less than 10 ft/s (Fig-
ure 9). The fastest trajectory was completed in just under 28
seconds, which is an average of 10.5 ft/s, a bit faster clip. For
Task 2, the CP model was able to result in less than 8 ft of
position error most of the time—expected, since the load will
start and stay at nearly the goal altitude. The performance of
CP at Tasks 3 and 4 was far worse, as the goal state was not
reachable by virtue of the model’s fixed altitude. A sample
trajectory is shown in Figure 10.

The DI model provided the best overall performance in that
it could reach every goal state, but still produced trajectories
which were quite reasonable if not achieving the threshold re-
quired for success. It generated trajectories which were both
more aggressive and less able to precisely place the system in
the target location. Examination of the trees produced by the
planner not coincidentally showed that the DI model’s trees
more thoroughly explored the state space than the more com-
plex PP and LL (examples shown in Figures 11). The median
time of flight for Task 1 was about 44 seconds, identical to the
CP; however it had far more variability. The final position and

5

10

20

30

40

50

60

70

80

CP DI PP LL
Model

T
ra

je
c

to
ry

 D
u

ra
ti

o
n

 (
s

)

Fig. 7. Boxplot comparison of trajectory duration for four
planning models, Task 1

0

50

100

150

200

250

300

350

CP DI PP LL
Model

F
in

a
l

P
o

s
it

io
n

 E
rr

o
r

(f
t)

Fig. 8. Boxplot comparison of final position error for four
planning models, Task 1

velocity errors were about twice as much as for the CP. For all
of the tasks the DI (and PP), showed “zeroing” behavior at
the end of a trajectory (Figures 12 and 13). The DI model,
notably, was the only of the three to generate a successful tra-
jectory for Task 4.

The PP model produced fast trajectories, but resulted in
even less precision hitting the goal state. The median flight
time for Task 1 was just under 35 seconds, a speed of 8.5 ft/s,
but the system missed the target by an median of around 45
feet, and was moving at an average of 20 ft/s at the trajectory
end. Results for the other three tasks were similar. A sample
trajectory for this model is shown in Figure 14.

The LL model produced the fastest trajectories, but this is
at least partly to a large fraction of the trees having failed to
explore enough of the state space. This resulted in terrible
precision in hitting the goal state–a median error of over 50
ft, with some plans showing 200 ft or more of error—barely

0

20

40

60

80

100

120

CP DI PP LL
Model

F
in

a
l

V
e

lo
c

it
y

 E
rr

o
r

(f
t/

s
)

Fig. 9. Boxplot comparison of final velocity error for four
planning models, Task 1

0 50 100 150 200 250 300

−50

0

50

100

Downrange (ft)

A
lt

it
u

d
e

 (
ft

 A
G

L
)

Fig. 10. Trajectory for least final error in trial, model CP,
Task 1.
covering half of the course. The LL model’s trees (for exam-
ple, Figure 15) show very distinct bunching of branches, with
very clear indications that the state space is not being well-
explored (also a problem with the PP model). This suggests
a fundamental problem between this type of model and the
cost function that is used to grow the tree. During the NEAR-
ESTNEIGHBOR phase of the RRT algorithm (see Algorithm 1)
the growth node is selected based on Euclidean distance and
speed, while the model is controlled by (effectively) specify-
ing jerk. One positive note is that the LL model required about
half of the computation needed for the other three, which ex-
plicitly model the pendulum of the load (Figure 16).

Effects of Computation Budget

The lack of success detailed above led to a search for ways to
improve the success rate of the planner. The first attempt was
to examine the effect of increasing or decreasing the computa-

6

−200 0 200 400 600
−100

0

100

200

300

400

500

600

Downrange (ft)

A
lt

it
u

d
e

 (
ft

 A
G

L
)

Fig. 11. Tree for least final error in trial, model DI, Task 3.

0 50 100 150 200 250 300 350

−50

0

50

100

150

Downrange (ft)

A
lt

it
u

d
e

 (
ft

 A
G

L
)

Fig. 12. Trajectory for least final error in trial, model DI,
Task 2.

tional budget. A single task-model combination (DI perform-
ing Task 2 using the standard parameters) was run 75 times
with each of the following set of maximum number of itera-
tions: {50,100,200,400,800,1600,3200,6400}. This exper-
iment was repeated using Task 4, with virtually identical re-
sults.

Figure 17 shows a comparison between the median actual
computation time for each size computational budget, and
the theoretical growth of the compute time based on the or-
der of complexity, using the actual compute time at 50 nodes
to calibrate the estimate. Interestingly, the actual growth is
less than predicted, and appears to be nearly linear—perhaps
O(n logn) rather than quadratic. This is probably a combi-
nation of two effects: first, the comparison operation which
scales with number of nodes squared is probably cheaper than
in the estimate; and second, also because comparison is cheap
compared to numerical integration, the number of nodes needs
to be much larger for the square term to start dominating the

0 50 100 150 200 250 300 350

−50

0

50

100

150

200

Downrange (ft)

A
lt

it
u

d
e

 (
ft

 A
G

L
)

Fig. 13. Trajectory for least final error in trial, model PP,
Task 2.

0 50 100 150 200 250 300

0

50

100

150

200

Downrange (ft)

A
lt

it
u

d
e

 (
ft

 A
G

L
)

Fig. 14. Trajectory for least final error in trial, model PP,
Task 3.

equation.

Figure 18 shows the change in success rate with computa-
tional budget. Though the jagged nature of the graph indicates
this measurement probably variable from trial to trial, the ini-
tial indications is that increased computation after 800 or 1600
nodes provides diminishing returns, and still not quite to the
level required to make the planning method reliable. Addi-
tionally, Figure 19 shows how final cost-to-go drops drasti-
cally each time the number of nodes is doubled until about
800, when nearly all variability is wiped out. The best fi-
nal error solutions for each tree size were compared for qual-
ity. Ironically, the 50 node solution looks superior to the path
planned by either 800 node or 6400 node trees. This is likely
to be a fluke, as the sparsity of the 50 node tree means very lit-
tle of the state space is explored. It does, however, suggest that
repeatedly running the planner with a small number of nodes
may produce as good or better plans than simply scaling up

7

−600 −400 −200 0 200 400 600
−200

0

200

400

600

800

Downrange (ft)

A
lt

it
u

d
e

 (
ft

 A
G

L
)

Fig. 15. Tree for least final error in trial, model LL, Task
2.

6

8

10

12

14

16

CP DI PP LL
Model

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s

)

Fig. 16. Boxplot comparison of computation time for four
planning models, Task 1

the number of nodes in a single run.

Effects of Sampling Area Size

Several additional experiments were conducted to search for
a method by which the success rate could be boosted to rea-
sonable levels with modest computation and approach 100%
with increased computation. The only factor which made a
discernible difference in the success of the basic RRT with
randomly selected inputs and step size was shrinking of the
sampling area.

Two experiments show this result. First, a study was done
using varying manually-selected sampling area sizes ranging
from extra small (the smallest possible box which includes
both the start and goal states, about 300 ft long and 50 ft tall)
to extra large (900 ft x 900 ft). A graphical comparison of
the standard sampling area used in the baseline results to the

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

160

180

Number of Nodes

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s

e
c

)

Actual Median

Theoretical Growth

Fig. 17. Sensitivity of computation time to number of
nodes for RRT.

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10

12

14

Number of Nodes

S
u

c
c

e
s

s
 R

a
te

 (
P

e
rc

e
n

t)

Fig. 18. Sensitivity of plan success rate to number of nodes
for RRT.

optimal sampling area size is shown in Figure 20. The step
size was selected on a uniform distribution U (0,3]. The rest
of the planning system parameters were as shown in Table 2.
The most successful configuration used a sampling area which
was a bit bigger than smallest (340 ft x 100 ft) (Figure 21).
This result makes intuitive sense—in the extreme, if the sam-
pling area is limited only to the states which lie on the optimal
trajectory, then the solution will be optimal as well. It stands
to reason that a larger sampling area with the same number of
nodes, particularly with limited step size and random inputs,
would limit exploration of the space.

A second experiment was conducted to find if the benefits
of smaller sampling spaces would continue to be realized with
increased computing budget. The optimal sampling area size
from above was tested with 800, 1600, 3200, and 6400 nodes,
and the results indeed show an asymptotic approach to 100 %
success rate with increased computation, Figure 22.

8

0

2

4

6

8

x 10
4

 50 100 200 400 800 1600 3200 6400
Number of Nodes

F
in

a
l

C
o

s
t−

to
−

G
o

Fig. 19. Sensitivity of final cost-to-go to number of nodes
for RRT.

450 ft.

450 ft.

100 ft.

340 ft.

Fig. 20. Comparison of the sampling area sizes.

Potential Improvements and Further Targets of Research

The results presented here suggest several further lines of
investigation. LaValle and Kuffner’s follow-up publication
(Ref. 10) to the original introduction of RRTs suggests two
relevant ways to make direct improvements. First, they sug-
gest that changing from a simple goal bias in sampling to a
method that starts as a uniform distribution and begins to fo-
cus on the goal region as the tree grows. The second approach
is designing a better distance metric, one that does not neces-
sarily have relation to Euclidian distance, but is a measure of
the input required to drive from xnear to xrand .

Another approach could be to design a planning model that
combines positive characteristics of the above models. For
example, the LL model has low computational cost, while
DI was best performing. Perhaps using a double integra-
tor to directly model to load’s motion would be a strong
improvement—though would likely need some kind of jerk
and acceleration limits to make the resulting trajectory feasi-

0 2 4 6 8

x 10
5

0

5

10

15

20

25

Planning Area Size (ft
2
)

S
u

c
c

e
s

s
 R

a
te

 (
P

e
rc

e
n

t)

Fig. 21. Success rates of varying sampling area sizes, 1000-
node tree.

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

Number of Nodes

S
u

c
c

e
s

s
 R

a
te

 (
P

e
rc

e
n

t)

Fig. 22. Success rates of varying computation for small
sampling area.

ble for a real aircraft and load. In addition to having better
exploration of the state space, it may also make it possible
to directly connect states (a difficult problem for the planning
models used here), allowing some other variations of RRTs to
be employed.

The availability of a node-connecting control means that
the optimal variation of RRT, RRT* (Ref. 18), is possible.
RRT* grows a tree similarly to RRT, but re-wires the tree for
greatest optimality in the neighborhood of the newly added
node.

Even without the availability of a connecting control,
methods have been recently introduced (Ref. 16) which pro-
duce near-optimal trees and trajectories by pruning clearly
sub-optimal branches to make way for more optimal branch
growth. The method is called Sparse-Stable RRT, or SST for
short.

Ultimately, the heavy computation required to solve for a

9

trajectory may mean that RRTs cannot yet be used in real time
for this application. However, they may still hold potential for
discovering aggressive slung-load maneuvers offline, which
could be kept in a maneuver library for another online motion
planning technique.

CONCLUSIONS

A Rapidly-exploring Random Tree was applied to the mo-
tion planning problem for a helicopter with slung-load and
tested for potential use and further development. Four plan-
ning models were examined for their performance in four rep-
resentative longitudinal tasks. The results show the relative
qualities of each planning model, and its ability to fully ex-
plore the state space. In particular, results were very sensitive
to the size of the sampled area and the amount of computation
available. Further directions of research were suggested to im-
prove the quality of solutions provided by the RRT while lim-
iting the computational complexity of the planner-planning
model combination.

ACKNOWLEDGMENTS

This study is funded by the U. S. Army under the Vertical Lift
Research Center of Excellence (VLRCOE) program managed
by the National Rotorcraft Technology Center, Aviation and
Missile Research, Development and Engineering Center un-
der Cooperative Agreement W911 W61120010 between the
Georgia Institute of Technology and the U. S. Army Avia-
tion Applied Technology Directorate. The authors would like
to acknowledge that this research and development was ac-
complished with the support and guidance of the NRTC. The
views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Aviation
and Missile Research, Development and Engineering Center
or the U.S. Government.

REFERENCES
1Johnson, E. N. and Mooney, J. G., “Preliminary Evaluation

of Rapidly-Exploring Random Trees for Sling-Load Flight
Guidance,” Proceedings of the 2nd Asian/Australian Rotor-
craft Forum and the 4th International Basic Research Confer-
ence on Rotorcraft Technology, 2013.

2Asseo, S. J. and Whitbeck, R. F., “Control Requirements
for Sling-Load Stabilization in Heavy Lift Helicopters,” Jour-
nal of the American Helicopter Society, Vol. 18, (3), 1973,
pp. 23–31.

3Micale, E. C. and Poli, C., “Dynamics of Slung Bodies
Utilizing a Rotating Wheel for Stability,” Journal of Aircraft,
Vol. 10, (12), 1973, pp. 760–763.

4Raz, R., Rosen, A., and Ronen, T., “Active Aerodynamic
Stabilization of a Helicopter/Sling-Load System,” AIAA Jour-
nal of Aircraft, Vol. 26, (9), 1989, pp. 822–828.

5Key, D. L., “Airworthiness Qualification Criteria for Ro-
torcraft With External Sling Loads,” Technical Report Jan-
uary, National Aeronautics and Space Administration, Mof-
fett Field, California, 2002.

6Hoh, R. H., Heffley, R. K., and Mitchell, D. G., “Develop-
ment of Handling Qualities Criteria for Rotorcraft with Exter-
nally Slung Loads,” Technical Report October, National Aero-
nautics and Space Administration, Moffett Field, California,
2006.

7Bisgaard, M., Cour-harbo, A., and Bendtsen, J. D., “Swing
Damping for Helicopter Slung Load Systems using Delayed
Feedback,” Proceedings of AIAA Conference on Guidance,
Navigation, and Control, 2009.

8Faust, A., Cruz, P., Fierro, R., and Tapia, L., “Aerial
Suspended Cargo Delivery through Reinforcement Learning:
Adaptive Motion Planning Research Group Technical Re-
port TR13-001,” Technical report, University of New Mexico,
2013.

9LaValle, S. M., “Rapidly-exploring random trees: A new
tool for path planning,” Technical report, Computer Science
Department, Iowa State University, 1998.

10LaValle, S. M. and Kuffner, J. J. J., “Rapidly-exploring ran-
dom trees: Progress and prospects,” Workshop on the Algo-
rithmic Foundations of Robotics, 2000.

11Kuffner, J. J. J. and LaValle, S. M., “RRT-connect: An effi-
cient approach to single-query path planning,” IEEE Interna-
tional Conference on Robotics and Automation, 2000.

12Bruce, J. R. and Veloso, M., “Real-time randomized path
planning for robot navigation,” Robots and Systems, 2002.
IEEE/RSJ, 2002.

13Lindemann, S. R. and LaValle, S. M., “Incrementally re-
ducing dispersion by increasing Voronoi bias in RRTs,” IEEE
International Conference on Robotics and Automation, 2004.

14Atramentov, A. and LaValle, S. M., “Efficient nearest
neighbor searching for motion planning,” IEEE International
Conference on Robotics and Automation, 2002, pp. 632–637.
doi: 10.1109/ROBOT.2002.1013429

15Karaman, S. and Frazzoli, E., “Sampling-based Algo-
rithms for Optimal Motion Planning,” International Journal
of Robotics Research, Vol. 30, (7), 2011, pp. 846–894.

16Li, Y., Littlefield, Z., and Bekris, K. E., “Asymptotically
Optimal Sampling-based Kinodynamic Planning,” Workshop
on Algorithm Foundations of Robotics, 2014.

17Mettler, B., Kong, Z., Goerzen, C., and Whalley, M.,
“Benchmarking of Obstacle Field Navigation Algorithms for
Autonomous Helicopters,” American Helicopter Society An-
nual Forum, 2010.

10

18Karaman, S. and Frazzoli, E., “Optimal kinodynamic mo-
tion planning using incremental sampling-based methods,”
Proceedings of the IEEE Conference on Decision and Con-
trol, 2010.

11

