
ALGORITHMS AND MECHANISM DESIGN FOR MULTI-AGENT
SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Chinmay Karande

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Algorithms, Combinatorics and Optimization in the
College of Computing

Georgia Institute of Technology
December 2010

ALGORITHMS AND MECHANISM DESIGN FOR MULTI-AGENT

SYSTEMS

Approved by:

Professor Vijay Vazirani, Advisor
College of Computing
Georgia Institute of Technology

Professor William Cook
School of Industrial and Systems Engineering
Georgia Institute of Technology

Professor Maria-Florina Balcan
College of Computing
Georgia Institute of Technology

Professor Robin Thomas
School of Mathematics
Georgia Institute of Technology

Professor Eric Vigoda
College of Computing
Georgia Institute of Technology

Date approved: September 13th 2010

I dedicate this thesis to my paternal Grandfather, Shamrao Karande, for always expecting

the best from me, and to my maternal Grandmother, Nalini Rajadhyaksha, for believing that

everything I did was the best.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Vijay Vazirani, who has been the voice of reason and

wisdom during my graduate studies. As a freshman graduate student, I had a variety of

interests, but he helped me focus on areas of research where I could succeed. I have always

admired the depth of his knowledge and insight, at least some of which, I hope, has rubbed

off on me.

The faculty, staff and colleagues at Georgia Tech created a vibrant atmosphere, in which

as I look back, the years whizzed by rather quickly. Thanks to Dana Randall and Robin

Thomas for helping me join the ACO program, which was the right academic area for

me to be in. I will always cherish the time I spent interacting with my collaborators -

Nikhil Devanur, Deeparnab Chakrabarty, Gagan Goel, Lei Wang and Pushkar Tripathi.

Thanks to encouragement from Vijay, I was able to spend the summers in an industrial

research environment at Microsoft and Google. Thanks to my collaborators over there,

Amit Aggarwal, Kumar Chellapilla, Reid Andersen, Kamal Jain, Aranyak Mehta and Gagan

Aggarwal, for making my time away from school fun and productive.

My parents, Sucheta and Deepak Karande, instilled in me the academic mindset that

got me through twenty years of being a student. Thanks to my brother Advait, for being a

role model that I look up to. Our education was always the topmost priority for my parents,

and I am very grateful for the opportunities they provided us.

Finally, I cannot thank enough, my wife Shefali. She made the decision to throw in her

lot with a graduate student, who was then at least four years away from earning a decent

wage. She has been both a pillar of support and a fountain of cheer. I hope that with the

completion of this thesis, I have repaid her unwavering faith all these years.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . x

I INTRODUCTION . 1

1.1 Multi-Agent Submodular Covering Problems 2

1.2 Combinatorial Auctions with Partially Public Valuations 4

1.3 Online Vertex-weighted Bipartite Matching and Single-Bid Budgeted Allo-
cations . 6

1.4 Contributions, Credits and Organization of the Thesis 8

1.4.1 Multi-Agent Submodular Covering Problems 8

1.4.2 Combinatorial Auctions with Partially Public Valuations 9

1.4.3 Online Vertex-weighted Bipartite Matching and Single-Bid Bud-
geted Allocations . 10

II MULTI-AGENT SUBMODULAR COVERING PROBLEMS 12

2.1 Motivation, Background and Our Results 13

2.1.1 Our Results . 15

2.1.2 Related Work . 16

2.2 Preliminaries: Information Theoretic Lower Bounds 17

2.3 Combinatorial Reverse Auction . 18

2.3.1 Proof of hardness . 19

2.3.2 A min(m, log n) approximation algorithm for combinatorial reverse
auction . 21

2.4 Vertex Cover . 23

2.4.1 Single agent case . 23

2.4.2 Multi-Agent Case . 26

2.5 Shortest Path . 27

2.5.1 Single agent case . 28

v

2.5.2 Multi-Agent case . 32

2.6 Perfect Matching . 33

2.7 Spanning Tree . 36

2.8 Discussion . 37

III COMBINATORIAL AUCTIONS WITH PARTIALLY PUBLIC VALUATIONS . 38

3.1 Motivation, Background and Our Results 39

3.1.1 Our Results and techniques . 40

3.1.2 Related Work . 42

3.2 Preliminaries . 43

3.2.1 Truthfulness and Mechanism Design 43

3.2.2 Vickrey-Clarke-Grove and Maximal-in-range Mechanisms 44

3.3 Notations and Basic Properties . 44

3.4 Vector-Fitting Mechanisms . 46

3.4.1 A Simple α
lnn -factor Mechanism . 47

3.5 The Main Result . 49

3.5.1 Constructing the Range R . 50

3.5.2 Proof of Theorem 14 . 56

3.6 Discussion . 57

IV ONLINE VERTEX-WEIGHTED BIPARTITE MATCHING AND SINGLE-BID
BUDGETED ALLOCATIONS . 58

4.1 Motivation, Background and Overview of Our Result 59

4.1.1 Overview of the Result . 61

4.1.2 Related Work . 64

4.2 Preliminaries . 65

4.2.1 Problem Statement . 65

4.2.2 Warm-up: Analysis of Ranking for Unweighted Online Bipartite
Matching . 65

4.3 Proof Of Theorem 20 . 68

4.3.1 Overview of the proof . 69

4.3.2 Formal proof . 70

4.4 Graphs with Imperfect Matchings . 75

vi

4.5 Implications of the Result . 76

4.5.1 Finding the optimal distribution over permutations of U 76

4.5.2 General capacities / Matching u ∈ U multiple times 77

4.5.3 Online budgeted allocation :- The single bids case vs. the small bids
case . 78

V OPEN AVENUES . 82

APPENDIX A COMBINATORIAL AUCTIONS WITH PARTIALLY PUBLIC VAL-
UATIONS . 84

APPENDIX B ONLINE VERTEX-WEIGHTED BIPARTITE MATCHING AND
SINGLE-BID BUDGETED ALLOCATIONS . 85

REFERENCES . 88

vii

LIST OF TABLES

1 Upper and lower bounds for multi-agent submodular covering problems 15

viii

LIST OF FIGURES

1 Shortening the path in dense regions . 31

2 The staircase representation of v = (v1, ..., vn). 46

3 Expressing f(v,S) as horizontal cuts of the staircase. 48

4 Vertical fitting of v. 51

5 Horizontal fitting of v. 54

6 Hierarchy of related online allocation problems studied in literature. 60

7 Two instances with the same vertex-weights, but widely differing optimal
strategies. 63

8 Marginal Losses . 72

9 Canonical examples for 2×2 graphs. 77

ix

SUMMARY

A scenario where multiple entities interact with a common environment to achieve

individual and common goals either co-operatively or competitively can be classified as a

Multi-Agent System. In this thesis, we concentrate on the situations where the agents exhibit

selfish, competitive and strategic behaviour, giving rise to interesting game theoretic and

optimization problems. From a computational point of view, the presence of multiple agents

introduces strategic and temporal issues, apart from enhancing the difficulty of optimization.

We study natural mathematical models of such multi-agent problems faced in practice.

We provide approximation algorithms, online algorithms and hardness of approximation re-

sults for these problems.

Multi-Agent Submodular Covering Problems. Classical covering problems such as

minimum spanning tree, vertex cover and shortest path have been widely used to model a

variety of practical situations where the goal is to minimize the cost of a project. However,

typically these abstractions do not model two properties commonly observed in the real-

world problems: 1) Cost functions observed in practice often exhibit economies of scale and

2) Presence of multiple providers or agents each of whom may have different cost function

over the same set of objects. The question in general is: How can we incorporate these

layers of complexity into combinatorial covering problems?

Submodular functions is a rich and well-studied class of functions used to model economies

of scale, or the law of diminishing returns. With this background, we introduce the following

class of combinatorial problems with multi-agent submodular cost functions - We are given a

set of elements X and a collection C ⊆ 2X . There are m agents and every agent i specifies

a normalized monotone submodular cost function fi : 2X → R+. The goal is to find a set

S ∈ C and a partition S1, ..., Sm of S such that
∑

i fi(Si) is minimized. The collection C of

subsets of X is defined via a combinatorial structure such as a matroid or a graph property

x

(For example, C can consists of the set of all s-t paths in a graph, yielding a version of the

shortest path problem).

We study the following fundamental problems under this multi-agent submodular cost

setting: Combinatorial reverse auction, vertex cover, shortest path, minimum spanning tree

and minimum perfect matching. We study the approximability of these problems with both

algorithmic and hardness results, i.e., upper and lower bounds on the approximation factors.

Combinatorial Auctions with Partially Public Valuations. A central problem in

computational mechanism design is that of combinatorial auctions, in which an auctioneer

wants to sell a heterogeneous set of items J to interested agents. Each agent i has a valuation

function fi(.) which describes her valuation fi(S) for every set S ⊆ J of items. We consider

the case when some inherent property of the items induces a common and publicly known

partial information about the valuation function of the buyers. In particular, we consider

combinatorial auctions where the valuation of an agent i for a set S of items can be expressed

as vif(S), where vi is a private single parameter of the agent, and the function f is publicly

known. The goal is to design a truthful mechanism which maximizes the social welfare∑
i vif(Si), where S1 · · ·Sn is a partition of J .

Our motivation behind studying this problem is two-fold: (a) Such valuation functions

arise naturally in the case of ad-slots in broadcast media such as Television and Radio. For

an ad shown in a set S of ad-slots, f(S) is, say, the number of unique viewers reached by

the ad, and vi is the valuation per-unique-viewer. (b) From a theoretical point of view,

this factorization of the valuation function simplifies the bidding language, and renders the

combinatorial auction more amenable to better approximation factors.

We present a general technique, based on maximal-in-range mechanisms, that converts

any α-approximation non-truthful algorithm (α ≤ 1) for this problem into Ω(α
logn) and

Ω(α)-approximate truthful mechanisms which run in polynomial time and quasi-polynomial

time, respectively.

xi

Online Vertex-weighted Bipartite Matching and Single-Bid Budgeted Alloca-

tions. Online bipartite matching is a fundamental problem with numerous applications

such as matching candidates to jobs or boys to girls. More recently, this and related prob-

lems have received significant attention, because they model the allocation aspect of spon-

sored search auctions, where multiple agents (advertisers) bid on items (query keywords)

which arrive one by one in an online manner. We study the following vertex-weighted on-

line bipartite matching problem: G(U, V,E) is a bipartite graph. The vertices in U have

weights and are known ahead of time, while the vertices in V arrive online in an arbitrary

order and have to be matched upon arrival. The goal is to maximize the sum of weights

of the matched vertices in U . When all the weights are equal, this reduces to the classic

online bipartite matching problem for which Karp, Vazirani and Vazirani gave an optimal(
1− 1

e

)
-competitive algorithm in their seminal work [38].

Our main result is an optimal
(
1− 1

e

)
-competitive randomized algorithm for general

vertex weights. Our solution constitutes the first known generalization of the algorithm

in [38] in this model and provides new insights into the role of randomization in online

allocation problems. It also effectively solves the problem of online budgeted allocations

[47] in the case when an agent makes the same bid for any desired item, even if the bid is

comparable to his budget - complementing the results of [47, 11] which apply when the bids

are much smaller than the budgets.

xii

CHAPTER I

INTRODUCTION

A scenario where multiple entities interact with a common environment to achieve individual

and common goals either co-operatively or competitively can be classified as a Multi-Agent

System. In this thesis, we will concentrate on the situations where the agents exhibit selfish,

competitive and strategic behaviour, giving rise to interesting game theoretic and optimiza-

tion problems.

As communication between entities becomes easier, the number of interested parties in

any transaction or event is increasing. The rise of the internet, in particular, has catalysed

the study of computational problems in multi-agent systems in recent years. We consider

natural mathematical models of such multi-agent problems faced in practice. These prob-

lems exhibit salient aspects which we outline below, and we study these various aspects in

Chapters 2, 3 and 4.

First and foremost, the presence of multiple agents in a system leads to a larger number

of possible outcomes or solutions to choose from. In a typical optimization scenario, such

as minimizing the cost of a project, this makes it possible to construct a cheaper or better

solution, but the difficulty of finding the best solution obviously increases. We attempt to

characterize this effect in the case of some fundamental optimization problems in Chapter

2.

In large multi-agent systems such as the internet, more often than not it is the case that

the agents act selfishly, i.e. in their own interest. Since the input of the computational prob-

lem consists of values reported by various agents, we have to deal with strategic behaviour of

the agents, who may report untrue values if they have an incentive to do so in terms of the

final outcome. Therefore, even an optimal solution computed using the reported values may

be far from optimal on the true values. This interplay between optimization and strategic

behaviour is studied in the field of mechanism design. In Chapter 3, we study a mechanism

1

design problem motivated by advertising on broadcast media such as television and radio.

Finally, all the agents in a system may not be active at the same time. This temporal

aspect is studied in the field of online algorithms, wherein only a part of the input is available

to the algorithm at any given moment. We study an online allocation problem, motivated

by display advertising on the internet, in Chapter 4.

We provide an introduction to the problems studied in this thesis here followed by a

more detailed exposition in the respective chapters.

1.1 Multi-Agent Submodular Covering Problems

A multitude of fundamental computational problems with real-world applications can be

cast in the following framework: We are given a set X of elements, a collection C of subsets

of X (i.e. C ⊆ 2X) and a cost function f over the subsets of X. The collection C is typically

specified via a combinatorial structure like a matroid or a graph property (for instance, the

set of all spanning trees in a graph). The objective is to select a set S ∈ C that minimizes

f(S).

A major focus in theoretical computer science has been on linear cost functions. However,

linear cost functions do not always model the complex dependencies of the costs in the real-

world, such as the widely observed economies of scale. As a result, even though we might

have a good algorithm for solving some linear optimization problem, the output solution can

still be suboptimal. Therefore, it is important to extend the study of classical optimization

problems to more general cost functions. In this work, we concentrate on submodular cost

functions, as they form a rich class and capture the natural properties of economies of scale

or the law of diminishing returns.

Another feature that arises in practice is the presence of multiple agents, where each

agent has her own cost function. Thus, in the optimal solution, each agent might build

only a part of the required combinatorial structure. For example, the Internet is a complex

multi-agent system where each service provider owns only a part of the network. For linear

cost functions, it is easy to see that having multiple agents does not change the complexity

of the original problem. However, this is not the case for more general cost functions and in

2

particular, for submodular cost functions.

Motivated by these considerations, we define the following class of combinatorial problems

with multi-agent submodular cost functions (MSCP) - We are given a set of elements X and

a collection C ⊆ 2X . There are m agents, and each agent i specifies a normalized monotone

submodular cost function fi : 2X → R+. We assume a value oracle model wherein the oracle

returns the value fi(S) of the set S when queried with S and i. The goal is to find a set

S ∈ C and a partition S1, ..., Sm of S such that
∑

i fi(Si) is minimized.

By fixing the collection C to any particular combinatorial structure, one can define a

subclass of the problems of interest. In this contribution, we study the following fundamental

problems in MSCP :

• Combinatorial Reverse Auction (CRA): We are given a set X of elements and

the collection C consists of only the set X i.e. in the required solution all the elements

must be covered. This models the situation where a set of jobs needs to be assigned

to multiple workers.

• Submodular Vertex Cover (MS-VC): We are given an undirected graph G(V,E).

Element set X is the same as the set of vertices V and the collection C consists of all

the vertex covers of the graph. Recall that a set S ⊆ V is a vertex cover if every e ∈ E

is incident on a vertex in S.

• Submodular Shortest Path (MS-SP): We are given a connected undirected graph

G(V,E), and a pair of vertices s, t ∈ V . Element set X is the same as the set of edges

E and the collection C consists of all the paths from s to t.

• Submodular Minimum Perfect Matchings (MS-MPM): We have a undirected

graph G = (V,E) with cost functions over E. G contains at least one perfect matching.

Element set X is the set of all edges, and the collection C is defined as the set of all

perfect matchings of G. Recall that a set M ⊆ E is a perfect matching of G if exactly

one edge in M is incident on every vertex.

• Submodular Minimum Spanning Tree (MS-MST): We are given a connected

3

undirected graph G = (V,E) with cost functions over E. Element set X is the set of

all edges, and the collection C is the set of spanning trees of G. Recall that a spanning

tree is a minimal connected subgraph of G.

We study the approximability of these problems with both algorithmic and hardness re-

sults, i.e., upper and lower bounds on the approximation factors. These results are tabulated

in Section 1.4.1.

1.2 Combinatorial Auctions with Partially Public Valuations

A central problem in computational mechanism design is that of combinatorial auctions, in

which an auctioneer wants to sell a heterogeneous set of items J to interested agents. Each

agent i has a valuation function fi(.) which describes her valuation fi(S) for every set S ⊆ J

of items. In its most general form, the entire valuation function is assumed to be private

information which may not be revealed truthfully by the agents. Maximizing the social

welfare in a combinatorial auction with an incentive-compatible mechanism is an important

open problem. However, recent results [18, 12] have established polynomial lower bounds

on the approximation ratio of maximal-in-range mechanisms - which account for a majority

of positive results in mechanism design - even when all the valuations are assumed to be

submodular. On the other hand, in the non-game-theoretic case, if all the agents’ valuations

are public knowledge and hence truthfully known, then we can maximize the social welfare

to much better factors [19, 20, 59], under varying degree of restrictions on the valuations.

In this section, we introduce a model that lies in between these two extremes.

We explore the setting when some inherent property of the items induces a common

and publicly known partial information about the valuation function of the agents. For

instance, in position auctions in sponsored search, the agents’ valuation for a position consists

of a private value-per-click as well as a public click-through rate, that is known to the

auctioneer. Another situation where such private/public factorization of valuations arises

is advertisements in broadcast media such as Television and Radio. Suppose we are selling

TV ad-slots on a television network. There are m ad-slots and n advertisers interested in

them. Let us define a function f : 2[m] → Z+, such that for any set S of ad-slots f(S) is the

4

number of unique viewers who will see the ad if the ad is shown on each slot in S1. If an

advertiser i is willing to pay vi dollars per unique viewer reached by her ad, then her total

valuation of the set S is vif(S).

With this background, we define single parameter combinatorial auctions with partially

public valuations: We are given a set J of m items and a global public valuation function

f : 2J → R. The function f can either be specified explicitly or via an oracle which takes

a set S as input and returns f(S). In addition, we have n agents each of whom has a private

multiplier vi such that the item set S provides vif(S) amount of utility to agent i. The goal

is to design a truthful mechanism which maximizes
∑

i vif(Si), where S1 · · ·Sn is a partition

of J .

One can think of this model as combinatorial auctions with simplified bidding language.

The agents only need to specify one parameter vi as their bid. Moreover, our problem has

deeper theoretical connections to the area of single parameter mechanism design in general.

For single parameter domains such as ours, it is known that monotone allocation rules

characterize the set of all truthful mechanisms. An allocation rule or algorithm is said to

be monotone if the allocation parameter of an agent (f(Si) in our case) is non-decreasing in

his reported bid vi. Unfortunately, often it is the case that good approximation algorithms

known for a given class of valuation functions are not monotonic. It is an important and

well-known open question in algorithmic mechanism design to resolve whether the design

of monotone algorithms is fundamentally harder than the non-monotone ones. In other

words, it is not known if, for single parameter problems, we can always convert any α-

approximation algorithm into a truthful mechanism with the same factor. We believe that

our problem is a suitable candidate to attack this question as it gives a lot of flexibility in

defining the complexity of function f . From this discussion, it follows that the only lower

bound known for the approximation factor of a truthful mechanism in our setting is the

hardness of approximation of the underlying optimization problem.

1For a single ad-slot j, the function f({j}) is nothing but the television rating for that slot as computed
by rating agencies such as Nielsen. In fact, their data collection through set-top boxes results in a TV
slot-viewer bipartite graph on the sample population, from which f(S) can be estimated for any set S of ad
slots.

5

We present a general technique, based on maximal-in-range mechanisms, that con-

verts any black-box α-approximation non-truthful algorithm (α ≤ 1) for this problem into

Ω(α
logn) and Ω(α)-approximate truthful mechanisms which run in polynomial time and quasi-

polynomial time, respectively. It is important to note that we do not make any explicit as-

sumptions such as non-negativity or free disposal about the public function f . The black-box

algorithm - which is an input - may make some implicit assumptions about f .

1.3 Online Vertex-weighted Bipartite Matching and Single-Bid Budgeted
Allocations

Online bipartite matching is a fundamental problem with numerous applications such as

matching candidates to jobs or boys to girls. More recently, this and related problems have

received significant attention, because they model the allocation aspect of sponsored search

auctions, where multiple agents (advertisers) bid on items (query keywords) which arrive

one by one in an online manner. A canonical result in online bipartite matching is due to

Karp, Vazirani and Vazirani [38], who gave an optimal online algorithm for the unweighted

case to maximize the size of the matching. In their model, we are given a bipartite graph

G(U, V,E). The vertices in U are known ahead of time, while the vertices in V arrive one

at a time online in an arbitrary order. When a vertex in V arrives, the edges incident to it

are revealed and it can be matched to a neighboring vertex in U that has not already been

matched. A match once made cannot be revoked. The goal is to maximize the number of

matched vertices.

However, in many real world scenarios, the value received from matching a vertex might

be different for different vertices: (1) Advertisers in online display ad-campaigns are willing

to pay a fixed amount every time their graphic ad is shown on a website. By specifying their

targeting criteria, they can choose the set of websites they are interested in. Each impression

of an ad can be thought of as matching the impression to the advertiser, collecting revenue

equal to the advertiser’s bid. (2) Consider the sale of an inventory of items such as cars.

Buyers arrive in an online manner looking to purchase one out of a specified set of items

they are interested in. The sale of an item generates revenue equal to the price of the item.

The goal in both these cases is to maximize the total revenue.

6

With this background, we define Online Vertex-weighted Bipartite Matching : The input

instance is a bipartite graph G(U, V,E, {bu}u∈U), with the vertices in U and their weights

bu known ahead of time. Vertices in V arrive one at a time, online, revealing their incident

edges. An arriving vertex can be matched to an unmatched neighbor upon arrival. Matches

once made cannot be revoked later and a vertex left unmatched upon arrival cannot be

matched later. The goal is to maximize the sum of the weights of the matched vertices in

U .

Our main result is an optimal
(
1− 1

e

)
-competitive randomized algorithm for this prob-

lem. Our solution constitutes the first known generalization of the algorithm in [38] in this

model and provides new insights into the role of randomization in online allocation problems.

This result also constitutes a step towards the solution of the online budgeted allocation

problem. This problem was first considered by Mehta et al [47] to model the sponsored

search auctions: We have n agents and m items. Each agent i specifies a monetary budget

Bi and a bid bij for each item j. Items arrive online, and must be immediately allocated

to an agent. If a set S of items is allocated to agent i, then the agent pays the minimum

of Bi and
∑

j∈S bij . The objective is to maximize the total revenue of the algorithm. An

important and unsolved restricted case of this problem is when all the non-zero bids of an

agent are equal, i.e. bij = bi or 0 for all j. Our result effectively solves this case, since it

reduces to our vertex-weighted matching problem.

For the general online budgeted allocation problem, no factor better than 1
2 (achieved

by a simple deterministic greedy algorithm [45]) is yet known. The best known lower bound

stands at 1− 1
e due to the hardness result in [38] for the case when all bids and budgets are

equal to 1 - which is equivalent to the unweighted online matching problem. The small bids

case - where bij � Bi for all i and j - was solved by [47, 11] achieving the optimal 1 − 1
e

deterministic competitive ratio. It was believed that handling large bids requires the use of

randomization, as in [38], but no generalization of that result was known prior to our work.

Our solution to the vertex-weighted matching problem is a significant step in this di-

rection. Our algorithm generalizes that of [38] and provides new insights into the role of

randomization in these solutions. Finally, our algorithm has interesting connections to the

7

solution of [47] for the small bids case - despite the fact that the vertex-weighted matching

problem is neither harder nor easier than the small bids case. This strongly suggests a

possible unified approach to the unrestricted online budgeted allocation problem.

1.4 Contributions, Credits and Organization of the Thesis

1.4.1 Multi-Agent Submodular Covering Problems

In a joint paper with Gagan Goel, Pushkar Tripathi and Lei Wang [25], we gave an approxi-

mation algorithm and a matching information theoretic lower bound for each of the subclass

of problems2 that we mentioned in section 1.1. In case of shortest path, minimum spanning

tree and minimum perfect matching problems, the bounds established are polynomial and

tight upto poly-logarithmic factors. Ignoring these logarithmic factors, we present these

results in the table below (Refer to Chapter 2 for proofs). For the reverse auction problem,

m is the number of agents and n is the number of items, whereas for all other problems, n

is the number of vertices in the instance graph.

Single-Agent Multi-Agent

Lower bound Upper bound Lower bound Upper bound

Reverse Auction 1 1 Ω(log n) min(m, log n) [30]

Vertex Cover 2− ε 2 Ω(log n) 2 log n

Shortest Path Ω(n2/3) O(n2/3) Ω(n2/3) O(n)

Perfect Matching Ω(n) n Ω(n) n

Spanning Tree Ω(n) n Ω(n) n

Note that the minimum perfect matching and minimum spanning tree problems, which

are polynomial time solvable with linear cost functions, have a large hardness factor with

submodular cost functions. We would like to draw attention to our lower bound result for

the vertex cover problem in the single agent case. In the classical vertex cover problem, the

best known approximation factor is 2, and the best known hardness of approximation is

1.3606 (assuming P 6= NP) [16]. Khot et al. [41] showed that achieving a factor of 2 − ε

2With the exception of the multi-agent submodular shortest path problem. We comment on this aberra-
tion in Section 2.5.2.

8

‘might be’ hard by presenting a hardness result based on UGC conjecture [39]. Our results

for the single agent submodular vertex cover problem implies that, if the cost function over

the set of vertices is submodular, then the optimal approximation factor is indeed 2.

Our hardness results use information theoretic arguments. Our algorithms are based on

LP rounding or greedy methods.

We would like to point out that our results for perfect matchings and spanning trees

extend to the class of subadditive cost functions, and to related combinatorial structures

such as Steiner trees.

Remark: Part of this work also appeared in the PhD thesis of Gagan Goel. Independent

of our work, Iwata and Nagano [35] also gave factor 2 approximation algorithm for the single

agent submodular vertex cover. They also study submodular cost set cover and submodular

edge cover problem.

1.4.2 Combinatorial Auctions with Partially Public Valuations

In a joint paper with Gagan Goel and Lei Wang [26], we presented a general vector fitting

technique for designing truthful mechanisms for single parameter combinatorial auctions

with partially public valuations. Our main result is a black-box reduction, which accepts any

(possibly non-truthful) α-approximation algorithm for our problem as a black-box and uses

it to construct a truthful mechanism with an approximation factor of Ω
(

α
logn

)
. We also give

a truthful mechanism with factor Ω(α) which runs in time O
(
nlog logn

)
. Both these results

are corollaries obtained by setting parameters appropriately in Theorem 14 in Chapter 3

to achieve desired trade-off between the approximation factor and the running time. Our

results can also be interpreted as converting non-monotone algorithms into monotone ones

for the above model.

Our mechanisms are maximal-in-range, i.e., they fix a range R of allocations and com-

pute the allocation S ∈ R that maximizes the social welfare. The technical core of our work

lies in careful construction of this range.

While the black-box algorithm may be randomized, our mechanism does not introduce

9

any further randomization. Depending upon whether the black-box algorithm is deter-

ministic or randomized, our mechanism is deterministically truthful or universally truthful

respectively (See Section 3.2 for definitions). The approximation factor of our mechanism

is deterministic (or with high probability or in expectation) if the black-box algorithm also

provides the approximation guarantees deterministically (or with high probability or in ex-

pectation).

Note that we don’t need to worry about how the public valuation function f is specified.

This is plausible since the function is accessed only from within the black-box algorithm.

Hence, our mechanism can be applied to any model of specification - whether it is specified

explicitly or through a value or demand oracle - using the corresponding approximation

algorithm from that model.

Submodular valuations arise naturally in practice from economies of scale or the law of

diminishing returns. Hence, we make a special note of our results when the public valuation

is submodular. Using the algorithm of [59] as black-box, our results imply a Ω (1/ log n) and

Ω(1) approximation factors in polynomial time and quasi-polynomial time, respectively. In

Appendix A.1, we prove with a simple example that the standard greedy algorithm for

submodular welfare maximization is not monotone and hence, not truthful. Similarly, the

optimal approximation algorithm of [59] is also not known to be non-monotone. For entirely

private submodular valuations, the best known truthful mechanism has factor Ω(1/
√
m)

in the value oracle model [19] and Ω(logm log logm) in the demand oracle model [17].

Note that the former mechanism is deterministically truthful while the latter is universally

truthful.

1.4.3 Online Vertex-weighted Bipartite Matching and Single-Bid Budgeted Al-
locations

In a joint paper with Gagan Aggarwal, Gagan Goel and Aranyak Mehta [1], we presented

an optimal randomized algorithm for the online vertex-weighted bipartite matching problem

that is
(
1− 1

e

)
-competitive in expectation. Our result constitutes the first known general-

ization of the Ranking algorithm for the unweighted case given by Karp, Vazirani and

Vazirani [38] in their seminal work.

10

Our algorithm, which we call Perturbed-Greedy (Refer to Chapter 4), is surprisingly

simple to state. The crux of our work lies in a careful counting argument in the probability

space, where we bound the weight of bad events (occurrence of a matched vertex) by the

weight of the good events (occurrence of an unmatched vertex). Perturbed-Greedy and

its analysis provides new insights into the role of randomization in online allocation problems,

which is important from the point of view of solving more general problems, viz. the online

budgeted allocation problem.

As we prove in Section 4.5.3, the single bids case of the online budgeted allocation

problem reduces to our vertex-weighted matching problem. Therefore our result effectively

solves this case, taking a step towards the solution of the general online budgeted allocation

problem. Our solution to the single bids case - when all the bids of an agent are equal -

has a very interesting ‘interface’ with the algorithm of Mehta et al [47] for the small bids

case - when all the bids of an agent are very small compared to his budget. This strongly

suggests a possible unified approach to the unrestricted online budgeted allocation problem.

We elaborate on these implications of our result in Section 4.5.

11

CHAPTER II

MULTI-AGENT SUBMODULAR COVERING PROBLEMS

In this chapter, we introduce and study combinatorial problems with multi-agent submod-

ular cost functions. We establish upper and lower bound on the approximability of these

problems.

Combinatorial problems with multi-agent submodular costs (MSCP):

We are given a set of elements X and a collection C ⊆ 2X . There are m agents, and each

agent i specifies a normalized monotone submodular cost function fi : 2X → R+. The goal

is to find a set S ∈ C and a partition S1, ..., Sm of S such that
∑

i fi(Si) is minimized.

A function f : 2X → R+ is said to be submodular iff for any two sets S and T ⊆ X,

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). Function f is said to be monotone if f(S) ≤ f(T)

for any S ⊆ T , and normalized if f(∅) = 0. Since a submodular function is defined over

an exponentially large domain, we will work with the value oracle model in which an oracle

will return the value of f(S), when queried with the set S ⊆ X.

Notice that by fixing the collection C to any particular combinatorial structure, one can

define a subclass of the problems of interest. In this contribution, we study the following

fundamental problems in MSCP :

• Combinatorial Reverse Auction (CRA): We are given a set X of elements and

the collection C consists of only the set X i.e. in the required solution all the elements

must be covered. This models the situation where a set of jobs needs to be assigned

to multiple workers.

• Submodular Vertex Cover (MS-VC): We are given an undirected graph G(V,E).

Element set X is the same as the set of vertices V and the collection C consists of all

12

the vertex covers of the graph. Recall that a set S ⊆ V is a vertex cover if every e ∈ E

is incident on a vertex in S.

• Submodular Shortest Path (MS-SP): We are given a connected undirected graph

G(V,E), and a pair of vertices s, t ∈ V . Element set X is the same as the set of edges

E and the collection C consists of all the paths from s to t.

• Submodular Minimum Perfect Matchings (MS-MPM): We have a undirected

graph G = (V,E) with cost functions over E. G contains at least one perfect matching.

Element set X is the set of all edges, and the collection C is defined as the set of all

perfect matchings of G. Recall that a set M ⊆ E is a perfect matching of G if exactly

one edge in M is incident on every vertex.

• Submodular Minimum Spanning Tree (MS-MST): We are given a connected

undirected graph G = (V,E) with cost functions over E. Element set X is the set of

all edges, and the collection C is the set of spanning trees of G. Recall that a spanning

tree is a minimal connected subgraph of G.

For each of the above problems, we establish upper and lower bounds on the approxi-

mation factor in both the single agent and the multi-agent setting.

2.1 Motivation, Background and Our Results

A multitude of fundamental computational problems with real-world applications can be

cast in the following framework: We are given a set X of elements, a collection C of subsets

of X (i.e. C ⊆ 2X) and a cost function f over the subsets of X. The collection C is typically

specified via a combinatorial structure like a matroid or a graph property (for instance, the

set of all spanning trees in a graph). The objective is to select a set S ∈ C that minimizes

f(S).

A major focus in theoretical computer science has been on linear cost functions. The

study of combinatorial problems with linear cost functions has led to great developments in

the theory of exact and approximation algorithms. However, linear cost functions do not

always model the complex dependencies of the costs in a real-world scenario. Submodular

13

functions form a rich class and capture the natural properties of economies of scale or the

law of diminishing returns. As a result, they model cost functions seen in practice more

accurately than linear functions.

Another feature that arises in practice is the presence of multiple agents, where each

agent has her own cost function. Thus, in the optimal solution, each agent might build

only a part of the required combinatorial structure. For example, the Internet is a complex

multi-agent system where each service provider owns only a part of the network. For linear

cost functions, it is easy to see that having multiple agents doesn’t change the complexity

of the original problem. However, this is not the case for more general cost functions, such

as submodular functions.

In the past, there has been some work along these lines (See [13, 21, 57, 59, 28]), but

to the best of our knowledge, none of them has studied multi-agent submodular functions

over a truly combinatorial structure. For instance, the work of [13] studies submodular

function maximization over matroid constraints in presence of a single agent. The work of

[57, 59] considers the multi-agent submodular functions but the combinatorial structure (or

the collection C) used in their problem is either the set of all subsets or the whole set itself.

With this background, we propose to extend the algorithmic study of covering problems

to the more general model of submodularity and multiple agents. From a practical viewpoint,

each of the problem we study is meaningful in its own right. Shortest path and spanning trees

are used in network design problems, and it is natural to assume that different agents could

have different submodular cost functions depending on the set of edges they can construct

cheaply. Similarly, the other problems are used in a variety of situations, especially in

relation to algorithmic game theory.

From a theoretical perspective, one would like to extend the tools and techniques de-

veloped for combinatorial problems with linear cost functions to as general a setting as

possible. Submodular functions are a natural generalization where one would expect to be

able to extend the techniques. Despite the significant recent progress on some of the fun-

damental problems in this area [13, 21, 57, 59, 28], the algorithmic theory for combinatorial

problems with submodular cost functions is not substantially developed yet. Many more

14

basic questions remain to be identified and solved, which could form the basis of tools and

techniques for solving more complex problems.

2.1.1 Our Results

We give an approximation algorithm and a matching information theoretic lower bound

for each of the subclass of problems that we mentioned earlier1. In case of shortest path,

minimum spanning tree and minimum perfect matching problems, the bounds established

are polynomial and tight upto poly-logarithmic factors. Ignoring these logarithmic factors,

we present these results in the table below. For the reverse auction problem, m is the number

of agents and n is the number of items, whereas for all other problems, n is the number of

vertices in the instance graph.

Table 1: Upper and lower bounds for multi-agent submodular covering problems

Single-Agent Multi-Agent
Lower bound Upper bound Lower bound Upper bound

Reverse Auction 1 1 Ω(log n) min(m, log n) [30]
Vertex Cover 2− ε 2 Ω(log n) 2 log n
Shortest Path Ω(n2/3) O(n2/3) Ω(n2/3) O(n)

Perfect Matching Ω(n) n Ω(n) n

Spanning Tree Ω(n) n Ω(n) n

Note that the minimum perfect matching and minimum spanning tree problems, which

are polynomial time solvable with linear cost functions, have a large hardness factor with

submodular cost functions. We would like to draw attention to our lower bound result for

the vertex cover problem in the single agent case. In the classical vertex cover problem, the

best known approximation factor is 2, and the best known hardness of approximation is

1.3606 (assuming P 6= NP) [16]. Khot et al [41] showed that achieving a factor of 2 − ε

‘might be’ hard by presenting a hardness result based on UGC conjecture [39]. Our results

for the single agent submodular vertex cover problem implies that, if the cost function over

the set of vertices is submodular, then the optimal approximation factor is indeed 2.

1With the exception of the multi-agent submodular shortest path problem, where a gap remains. We
comment on this aberration in Section 2.5.2.

15

Our hardness results use information theoretic arguments and follow the framework

explained in Section 2.2, with some modifications specific to each problem. Our algorithms

are based on LP rounding or greedy methods.

We would like to point out that our results for perfect matchings and spanning trees

extend to the class of subadditive cost functions, and to related combinatorial structures

such as Steiner trees.

Remark: Independent of our work, recently, Iwata and Nagano [35] also gave factor

2 approximation algorithm for the single agent submodular vertex cover. They also study

submodular cost set cover and submodular edge cover problem.

2.1.2 Related Work

Submodular functions have been of great interest in optimization in the past. The most

fundamental optimization problem concerning submodular functions is, perhaps, the non-

monotone submodular function minimization problem. A sequence of papers in this di-

rection [53, 34, 32, 51, 33, 36] has resulted in fast strongly polynomial time combinatorial

algorithms. Another related work is that of non-monotone submodular function maximiza-

tion [21]. Both these algorithms are often used as a subroutine in solving the configuration

LPs corresponding to some other submodular combinatorial optimization problem.

Another body of work in optimization over submodular functions deals with welfare

maximization [13, 59, 22, 40]. In this context, the reverse auction problem (CRA) that

we study, can be thought of as submodular welfare minimization. Calinescu et al [13]

studied submodular function maximization subject to matroid constraints. They showed

that their problem contains as subcases, many other allocation problems, thus giving a

unified framework for studying such problems. Matching information theoretic lower bounds

were established in [48].

Svitkina and Fleischer [57] studied submodular objective function for problems like spars-

est cut, load balancing, and knapsack. They gave O
(√

n
logn

)
upper and lower bounds for

all these problems, showing that all these problems become much harder under submodular

costs. For the submodular reverse auctions, where a set of n goods has to be allocated to m

16

agents (i.e. collection set C = {X}) with submodular cost functions to minimize the overall

cost, a simple greedy algorithm is known to have a factor log(n) [30]. Goemans et al [28]

gave an algorithm for constructing explicit approximate submodular functions by querying

polynomial number of times to the original submodular function. Some other related work

in optimization that uses submodular functions includes [55, 30, 58, 56, 60]. Recently, ques-

tions regarding the testability [54] and learnability [6] of submodular functions have been

the matter of study.

Recall that the problems we consider in this contribution are very well studied under

linear cost functions. Shortest path, perfect matching and spanning tree can be solved

exactly in polynomial time. An algorithm for the vertex cover problem with factor 2 for

weighted graphs was first given by [7]. The best known hardness of approximation for Vertex

Cover is 1.3606 (assuming P 6= NP) [16]. Using UGC conjecture [39], Khot and Regev [41]

showed that achieving a factor of 2− ε is hard.

2.2 Preliminaries: Information Theoretic Lower Bounds

A problem in our model is said to have information theoretic lower bound of α if any

randomized algorithm that approximates the optimum to a factor α with high probability

requires super-polynomial number of queries to the value oracle.

By Yao’s principle, it suffices to establish the lower bounds for deterministic algorithms

acting on an input which is picked randomly from some fixed distribution. To show these

approximation gaps, we follow the general framework which was also used in [57, 28, 21].

We will outline this framework in the single agent setting.

The idea is to first choose a problem instance which has a suitably large collection set

C ⊆ 2X of interest. For example, for the minimum spanning tree problem, we choose a graph

that has exponentially many spanning trees. Then we design two submodular cost functions

f and g. Typically, g is deterministically picked, whereas f is chosen from a distribution.

The choice of f and g relies on the following two properties: a) f and g must be ‘hard to

distinguish’ in the sense that they return the same value on almost all queries and b) The

optimum values of f and g over C must differ by a large factor. Intuitively this amounts to

17

‘hiding’ a particular set Q ∈ C in f by setting f(Q) to a low value. We employ the following

useful construct to achieve this:

Definition 1 (Two-partition function). A function f : 2X → R+ is said to be a two-

partition function if

f(S) = |Q ∩ S| + min {|Q ∩ S|, r}

where Q ⊆ X, Q is the complement of Q and r is any constant.

It is easy to verify that a two-partition function is submodular. Such a function hides

the set Q in the following sense: f(S) differs from |S| only for those sets which have a large

enough intersection with Q. On the other hand, by choosing a suitably small value of r,

we can ensure large difference between the values of the set Q under f and g. The set Q is

chosen from a distribution over C. Since C is designed to be extremely large, this leaves a

very small probability of an arbitrary query S made by an algorithm differentiating f from

g. By the union bound and a computation path argument [57, 21], an algorithm making

polynomially many number of queries cannot distinguish between f and g. Combining this

with the gap in the optima of f and g, one proves the lower bound.

We note an important observation from the above discussion, which we will use in our

proofs of lower bounds:

Observation 1. To prove an information theoretic lower bound using two submodular func-

tions f and g with a gap in their optimum values, it suffices to prove that Pr[f(Q) 6= g(Q)]

is super-polynomially small over the random choice of Q ⊆ X.

2.3 Combinatorial Reverse Auction

In this problem we are given a set J , of n elements and m agents. For each agent i we

have a normalized monotone submodular cost function fi : 2J → R+. We wish to partition

the elements among the agents to minimize the total cost. We prove a Ω(log n) information

theoretic hardness result and provide an algorithm that matches this bound. We also prove

the same algorithm to be m-approximate. Another log n-approximate algorithm for this

problem had previously appeared in [30].

18

2.3.1 Proof of hardness

As discussed in Section 2.2, the idea is to construct a deterministic instance and a random

instance of the CRA so that the optimal solutions of these two instances differ by a factor

of Ω(log n), and then show that with high probability, a deterministic algorithm which uses

only polynomially many value queries can not distinguish between these two instances.

Consider the following deterministic instance of CRA: There are m agents and a set J of

n = m(m+1)2/4 elements. The elements are equally partitioned into m blocks J1, J2, ..., Jm.

We will choose m such that m = 2d − 1, for some d. Now each number i between 1 and

m can be represented as a vector ai in GF [2]d. Let Gi =
⋃

1≤k≤m, ai·ak=1 Jk. For each i,

1 ≤ i ≤ m, agent i is only interested in elements in Gi. It is easy to see, that Gi consists of

those blocks Jk such that ak differs from ai in an odd number of bits. Therefore,

|Gi| =
∑

r is odd

dCr =
m+ 1

2

Thus each agent is interested in only (m+ 1)/2 blocks of elements and for each block there

are (m+1)/2 agents who are interested in it. Now, we define the cost function fi : 2J −→ R+

as follows:

fi(S) =

 min{|S|, (m+ 1)2/4} If S ⊆ Gi

∞ Otherwise

Let us analyze the optimal cost of this instance. We say that an agent is marked if the

total size of elements assigned to him is at least (m+1)2/4. Among all the optimal solutions,

let OPT be the one that maximizes the number of marked agents. We claim that at least

d agents are marked in OPT. Suppose not, then without loss of generality, we may assume

M = {1, 2, ..., t} to be the set of marked agents and t < d. The system of linear equations

ai ·x = 0,∀1 ≤ i ≤ t has at least one solution x∗ ∈ GF [2]d, since number of equations is less

than the number of variables. Let k be the number between 1 and m corresponding to the

vector x∗. This implies that no agent in M is interested in block Jk. Let Ak = {i1, i2, ..., iw}

be the set of agents who are assigned some elements in Jk. Then Ak ∩M = ∅. Therefore,

we can mark one more agent by transferring the elements in Jk from agents i2, i2, ..., iw to

19

agent i1 without changing the cost of the new solution. This is a contradiction because of

the choice of OPT. Hence, the optimal cost of this instance is at least (m+ 1)2d/4.

For the random instance, we have the same sets of agents and elements. Also, each agent

is interested in the same set of elements. However, the cost function for each agent is defined

by a probability distribution on the set assigned to her. Next we describe our construction

of the random cost functions explicitly.

For each element, assign it uniformly at random to one of the agents who is interested in

it. Let Si be the set of elements which agent i gets. Clearly (S1, S2, ..., Sm) forms a partition

of the element set J . We define the cost function gi : 2J −→ R+, for agent i as follows:

gi(S) =

 min
(
|S ∩ Si|+ min

{
|S ∩ Si|, (1 + δ) (m+1)

2

}
, (m+1)2

4

)
If S ⊆ Gi

∞ Otherwise

where δ > 0 is a fixed constant. Notice that we have replaced the |S| from the definition

of fi(S) by a two-partition function (Recall Definition 1).

Now we show that with high probability, a deterministic algorithm using only poly-

nomially many value queries can not distinguish between f = (f1, f2, ..., fm) and g =

(g1, g2, ..., gm). We prove the following lemma.

Lemma 1. For any subset S of elements and any i, 1 ≤ i ≤ m, Pr[fi(S) 6= gi(S)] = e−Ω(m).

Proof. Suppose S is a subset of elements and 1 ≤ i ≤ m. By our construction, gi(S) ≤ fi(S).

Therefore Pr[fi(S) 6= gi(S)] = Pr[gi(S) < fi(S)].

First of all, we claim that the above probability is maximized when S ⊆ Gi and |S| =

(m+ 1)2/4. For this, if S 6⊆ Gi, then fi(S) = gi(S) =∞ hence Pr[fi(S) < gi(S)] = 0. Now

suppose S ⊆ Gi and |S| ≥ (m+ 1)2/4. Then fi(S) = (m+ 1)2/4. Therefore

Pr [gi(S) < fi(S)] = Pr

[
|S ∩ Si|+ min

{
|S ∩ Si|, (1 + δ)

(m+ 1)
2

}
<

(m+ 1)2

4

]
This probability can only increase when we remove elements from S. For the case when

20

|S| ≤ (m+ 1)2/4, we get:

Pr [gi(S) < fi(S)] = Pr

[
|S ∩ Si|+ min

{
|S ∩ Si|, (1 + δ)

(m+ 1)
2

}
< |S|

]
= Pr

[
min

{
|S ∩ Si|, (1 + δ)

(m+ 1)
2

}
< |S ∩ Si|

]
= Pr

[
|S ∩ Si| > (1 + δ)

(m+ 1)
2

]
Thus, this probability can only increase when more elements are added to S. Hence

under the condition S ⊆ Gi, |S| ≤ (m + 1)2/4, the probability is also maximized when

|S| = (m+ 1)2/4.

Now we assume S ⊆ Gi and |S| = (m + 1)2/4. In this case, Pr[gi(S) < fi(S)] =

Pr[|S ∩ Si| > (1 + δ)(m + 1)/2], which by a standard Chernoff bound arguments, can be

shown to be bounded by e−Ω(m).

If we define f(S) = (f1(S), ..., fm(S)) and g(S) = (g1(S), ..., gm(S)), then by a simple

union bound, as a corollary of the lemma, we have Pr[f(S) 6= g(S)] = poly(m)e−Ω(m).

Now suppose A is a deterministic algorithm which makes polynomially many queries to the

value oracle. Then by the union bound, with probability at most poly(m) · e−Ω(m), A can

distinguish between f and g. Notice that for the cost function g = (g1, ..., gm), the optimal

solution is at most (1 + δ)m(m + 1)/2 achieved by assigning Si to agent i. However, as

we showed, the optimal solution for the cost function f = (f1, f2, ..., fm) has cost at least

d(m + 1)2/4, thus with high probability, A can not approximate a CRA instance within

factor (m+1)2d/4
(1+δ)m(m+1)/2 ' d = c log n for some c < 1.

At last, by Yao’s principle, we have the following:

Theorem 2. A randomized approximation algorithm for the CRA problem within factor

c log n for some c < 1 needs to make exponentially many value queries.

2.3.2 A min(m, log n) approximation algorithm for combinatorial reverse auction

A log n-approximate algorithm for this problem appeared in [30]. In what follows we provide

a min(m, log n) approximation algorithm. Consider the following LP relaxation (LP1) and

its dual (LP2).

21

min
∑
S⊆V

∑
i

xi,Sfi(S) (LP1)

∑
S:u∈S

∑
i

xi,S ≥ 1 ∀u ∈ X

xi,S ≥ 0 ∀S ⊆ V, ∀i

max
∑
u∈X

yu (LP2)∑
u∈S

yu ≤ fi(S) ∀S ⊆ V, ∀i

yu ≥ 0 ∀u ∈ X

In LP1, xi,S is used to represent the fraction of set S that is allocated to agent i. Since

fi(S)−
∑

u∈S yu is a submodular function, we can construct a separation oracle for the dual

program using the submodular minimization algorithm as a subroutine. Thus we can solve

LP1 and LP2 optimally. The following lemma describes the structure of an optimal solution

to LP1.

Lemma 3. There exists an optimal fractional solution to LP1 such that for every agent i

the set Ti = { S : xi,S > 0 } forms a nested family.

Proof. Let x be any feasible solution to LP1. If Ti is not nested, then there exist A,B ∈ Ti

such that neither A nor B is contained in the other. We may assume xi,A ≥ xi,B. We will

construct another feasible solution x′ to LP1 as follows:

• x′i,A∪B = xi,B

• x′i,B = 0

• x′i,S = xi,S for all S ∈ X other than the
above.

• x′i,A = xi,A − xi,B

• x′i,A∩B = xi,B if A ∩B 6= ∅

• x′j,S = xj,S ∀j 6= i and ∀S ∈ X

By submodularity, one can verify that the cost of the solution x′ is at most the cost of x.

If the set T ′i corresponding to x′ is nested, we are done. Otherwise, we repeat the procedure

for x′. The termination of the above procedure can be guaranteed by observing that the

potential function
∑
S∈Ti

|S|2 strictly increases and is polynomially bounded.

Let x be an optimal solution of LP1 with cost W , satisfying the conditions in lemma 3

and Ti be the corresponding nested families of sets. Let T =
⋃
i Ti. Let Y denote the set of

uncovered elements in X. In each iteration pick the set (i, S) ∈ T minimizing fi(S)/|S∩Y |.

Add S to the cover and assign it to agent i. Remove all the newly covered elements from Y .

Repeat until all elements are covered. Since each Ti is a nested family, an agent can drop

22

all but the largest set assigned to her. Let (i, S) be the set covering an element u in the

integral cover. Then we define α(u) = fi(S)/|S ∩ Y | to be the cost ‘borne’ by u. Note that∑
u α(u) is exactly the cost of the integral cover.

Let u ∈ X be the j’th element to be covered by this algorithm and let (i, S) be the set

chosen to cover it. Suppose u was picked during the algorithm. Then since x is a fractional

cover of Y , fi(S)/|S ∩ Y | ≤ W/|Y |.

α(u) ≤ fi(S)
|S ∩ Y |

≤ W

|Y |
=

W

(|X| − j + 1)

On the other hand, if u was not picked by the algorithm, then α(u) ≤ W/(|X| − j′ + 1) ≤

W/(|X| − j + 1) for some j′ < j.

Summing over all u, we conclude that the integral cover has cost at most W log n. To

prove that this algorithm is also m-approximate, observe that each set selected has cost at

most W . Moreover, each agent is assigned at most one set in the final solution. This proves

the claim.

2.4 Vertex Cover

In this section, we consider the submodular vertex cover problem. We first prove an informa-

tion theoretic lower bound of 2− ε (for any fixed ε) for the single agent case and provide an

algorithm with approximation ratio of 2. We then present a 2 log n approximation algorithm

for the multi-agent case and an information theoretic lower bound of Ω(log n).

2.4.1 Single agent case

We are given an undirected graph G(V,E) and a normalized monotone submodular function

f : 2V −→ R. We wish to find a vertex cover U ⊆ V of graph G such that f(U) is minimized.

Theorem 4. For every fixed ε > 0, any randomized algorithm for the submodular vertex

cover problem with an approximation ratio of 2− ε needs exponentially many queries to the

value oracle.

Proof. Consider a bipartite graph G(A ∪ B,E) such that |A| = |B| = n. The edge set

consists of n edges which forms a matching between A and B. Let R be a random minimum

23

cardinality vertex cover of this graph, which can be picked by choosing one endpoint of every

edge uniformly at random.

Define the following two submodular cost functions.

fR(S) = min
{
|S ∩R| + min

{
|S ∩R|, (1 + δ)n

2

}
, n

}
g(S) = min { |S|, n }

Here δ is chosen such that 2/(1 + δ) = 2 − ε. Notice that the optimum value of the

vertex cover for the function fR is (1+δ)n
2 , and for g it is n. Thus if we can show that any

randomized algorithm, cannot distinguish between fR and g with high probability, then it

will imply an inapproximability ratio of 2/(1 + δ) or 2− ε for the submodular vertex cover

problem.

From Observation 1 it suffices to show that for a deterministic query Q, Pr[fR(Q) 6=

g(Q)] is exponentially small, where the probability space is defined over the random choice

of set R. Since fR(S) ≤ g(S) for all S ⊆ V , fR(Q) 6= g(Q) implies fR(Q) < g(Q).

Let Q∗ be the optimal query for which Pr[fR(Q) < g(Q)] is maximized. We will show

that |Q∗| = n. First, suppose that |Q| ≥ n, then

Pr[fR(Q) < g(Q)] = Pr[fR(Q) < n]

= Pr
[
|Q ∩R| + min

{
|Q ∩R|, (1 + δ)

n

2

}
< n

]
which increases as the size of Q is reduced. Thus the size of the optimal query in this case

is n.

Now suppose |Q| ≤ n. In this case,

Pr[fR(Q) < g(Q)] = Pr[fR(Q) < |Q|]

= Pr
[
|Q ∩R| + min

{
|Q ∩R|, (1 + δ)

n

2

}
< |Q|

]
= Pr

[
min

{
|Q ∩R|, (1 + δ)

n

2

}
< |Q ∩R|

]
= Pr[|Q ∩R| > (1 + δ)

n

2
]

which increases as |Q| is raised. Therefore, the optimal query size in this case is also n.

24

Hence |Q∗| = n. Let k be the number of edges for which both the end points are

contained in Q∗ and Q1 be the set of these endpoints (|Q1| = 2k). Let Q2 = Q∗ −Q1. We

have:

Pr[fR(Q∗) < g(Q∗)] = Pr
[
|Q∗ ∩R| > (1 + δ)

n

2

]
= Pr

[
|Q2 ∩R| > (1 + δ)

n

2
− k

]
= Pr

[
|Q2 ∩R| > (1 + δ)

|Q2|
2

+ δk

]
(1)

If δk ≥ (1−δ) |Q2|
2 , then the expression in equation (1) reduces to Pr[|Q2∩R| > |Q2|] =

0. On the other hand if δk < (1− δ) |Q2|
2 , then

|Q2| = n− 2k > n− 1− δ
δ
|Q2|

which implies |Q2| > δn. Every vertex in Q2 belongs to R with probability 1
2 with indepen-

dence, and E[|Q2 ∩R|] = |Q2|/2 = δn/2. Therefore, applying Chernoff bounds:

Pr[fR(Q∗) < g(Q∗)] = Pr

[
|Q2 ∩R| > (1 + δ)

|Q2|
2

+ δk

]
≤ Pr

[
|Q2 ∩R| > (1 + δ)

|Q2|
2

]
≤ e−

δ3n
2

Hence, the probability that an arbitrary query Q can distinguish between f and g is

exponentially small.

Theorem 5. There exists an algorithm which finds a 2-approximate solution to the single

agent vertex cover problem with submodular costs.

Proof. We formulate the problem as a configurational LP and round the fractional solution.

Let variable xS be an indicator variable for the set S of vertices being the vertex cover.

Then the following LP is a lower bound on the value of the optimal integral solution.

It is not difficult to see that the function
∑

v∈S
∑

e∈δ(v) ye is a modular function. Thus

f(S) −
∑

v∈S
∑

e∈δ(v) ye is a submodular function, and we can use the submodular min-

imization algorithm as a subroutine to construct a separation oracle for the dual. This

25

min
∑
S⊆V

xSf(S) (LP3)

∑
S:u∈S

xS +
∑
S:v∈S

xS ≥ 1 ∀(u, v) ∈ E

xS ≥ 0 ∀S ⊆ V

max
∑
e∈E

ye (LP4)∑
v∈S

∑
e∈δ(v)

ye ≤ f(S) ∀S ⊆ V

ye ≥ 0 ∀e ∈ E

allows us to find an optimal fractional solution to the LP3 with value at most OPT. Let x∗

be this solution. Output Q =
{
u ∈ V :

∑
S:u∈S x

∗
S ≥ 1/2

}
as the vertex cover. Clearly,

for any (u, v) ∈ E, either
∑

S:u∈S x
∗
S ≥ 1/2 or

∑
S:v∈S x

∗
S ≥ 1/2 must hold, thus Q is a

valid vertex cover of G. Since 2x∗ is a fractional cover of Q, submodularity implies that

f(Q) ≤ 2
∑

S⊆V x
∗
Sf(S) = 2 ·OPT.

2.4.2 Multi-Agent Case

We are given an undirected graph G(V,E) and a normalized monotone submodular function

fi : 2V −→ R for each agent i. We wish to find a vertex cover U ⊆ V , and a partition

U1, U2, · · · , Uk of U such that
∑

i f(Ui) is minimized.

Now we will sketch the proof of the lower bound for the multi-agent case. Consider a

suitable instance graph such as the one used in the proof of Theorem 4, and fix a vertex

cover Q. For any set S with vertices in V − Q, we will set the cost of S very high for

every agent. Hence, it will be easy for any algorithm to zero in onto Q as a ‘good’ vertex

cover. However, we can build the same multi-agent cost structure on top of Q, as used the

proof of hardness result of reverse auctions (See Section 2.3). Essentially, the problem of

finding minimum cost vertex cover then reduces to that of assigning vertices in Q to the

various agents so as to minimize the total cost - which is constrained by Theorem 1 to an

information theoretic lower bound of Ω(log n). Thus we get the following theorem.

Theorem 6. Any randomized algorithm for the multi-agent submodular vertex cover problem

with an approximation ratio c log n for some constant c < 1 needs exponentially many queries

to the value oracle.

2 log n-approximate algorithm: We begin by finding an optimal fraction solution x

using the LP relaxation LP5, which gives a lower bound on the optimal integral solution.

26

The given LP can be solved by constructing a separation oracle of the dual program as shown

earlier in the single agent case. Consider the set Q =

{
u ∈ V :

∑
S:u∈S

∑
i

xi,S ≥ 1/2

}
,

which forms a valid vertex cover. We will now round 2x to find an allocation of vertices in

Q to the various agents. Let W denote the total cost of the solution 2x.

min
∑
S⊆V

∑
i

xi,Sfi(S) (LP5)

∑
S:u∈S

∑
i

xi,S +
∑
S:v∈S

∑
i

xi,S ≥ 1 ∀(u, v) ∈ E

xi,S ≥ 0 ∀S ⊆ V, ∀i

At any step of the algorithm let Z contain the uncovered elements inQ. For any fractional

cover x of Z, define αx(u) =
∑
S:u∈S

∑
i

xi,Sfi(S)
|S ∩ Z|

. Note that
∑

u αx(u) =
∑

i,S xi,sfi(S). Pick

u ∈ Z that minimizes α2x(u). Among the sets containing u, choose a set (i, S) randomly

with probability proportional to xi,S . Remove all the newly covered elements from Z and

iterate until all the elements in Q are covered. Let y denote this integral cover.

Analysis: Let u1, u2, ... be the order in which the vertices in Q get covered. We claim

that E[αy(uj)] ≤ W/(|Q| − j + 1). Suppose uj was picked during the algorithm. Then,

E[αy(uj)] ≤ α2x(uj). Since 2x covers the remaining |Q| − j + 1 elements in Q, α2x(uj) ≤

W/(|Q| − j + 1). On the other hand, if uj was not picked during the algorithm, then

E[αy(uj)] = α2x(u′j) ≤
W

(|Q| − j′ + 1)
≤ W

(|Q| − j + 1)

for some j′ < j. Summing over j, we have

∑
i,S

yi,Sfi(S) =
∑
u∈Q

αy(u) ≤
∑
u∈Q

α2x(u) ≤ W log n ≤ 2OPT · log n

This algorithm can be derandomized using standard techniques.

2.5 Shortest Path

In this problem we are given an undirected graph G = (V,E) and a monotone submodular

cost function fi : 2E :−→ R for each agent i. The goal is to find a path P between two

given vertices, and partition of P into P1, P2, · · · , Pk such that
∑

i fi(Pi) is minimized. We

first consider the single agent case and provide an information-theoretic lower bound of

27

Ω(n2/3) for all fixed ε > 0, ignoring poly-logarithmic factors. We also present an O(n2/3)-

approximation algorithm for this problem. Lastly, we comment on the gap that exists

between the upper and lower bounds for the multi-agent case, in context of our results for

the single agent case.

2.5.1 Single agent case

As in previous sections, we proceed by designing two submodular functions that are hard to

distinguish in polynomially many queries but have different optimal values. In the general

framework outlined in section 2.2, this is accomplished by ‘hiding’ a random element of lower

cost from the target collection C in one of the functions. In this case, C is the set of all s− t

paths. However an identical analysis does not work in this case. This is because for a pair

of adjacent edges, the events that these edges belong to the random shortest s− t path are

are not independent precluding the use of Chernoff bounds which makes the analysis a lot

more involved. In this section we use a simple pigeon hole principle argument to solve this

problem.

Theorem 7. Any randomized approximation algorithm for the submodular shortest path

problem with factor O
(
n2/3

logn

)
needs super-polynomially many queries.

Proof. Consider the graph G which is a level graph having n2/3 + 2 levels of vertices. First

level contains only vertex s and the last level contains only t. Each other level has n1/3

vertices and there exists a complete bipartite graph between successive levels. Let R be a

randomly chosen s− t path of length n2/3 + 1.

Define the following two submodular cost functions f, g : 2E −→ R+:

f(Q) = min
{
|Q ∩R| + min { |Q ∩R|, log n } , n2/3 + 1

}
g(Q) = min

{
|Q|, n2/3 + 1

}
Clearly, the ratio of optima in g and f is Ω

(
n2/3

logn

)
.

By Observation 1, to prove the lower bound it suffices to prove that Pr[f(Q) 6= g(Q)] is

super-polynomially small for an arbitrary query Q. This happens if and only if f(Q) < g(Q).

28

Making arguments analogous to the proof of theorem 4, Pr[f(Q) < g(Q)] is maximized

when |Q| = 1 + n2/3. Therefore,

Pr[f(Q) < g(Q)] = Pr[|Q ∩R| > log2 n]

Let Eeven and Eodd be the set of edges which are at distance even and odd respectively

from the vertex s. Define Qeven = Q ∩ Eeven and Qodd = Q ∩ Eodd. Similarly define Reven

and Rodd. Without loss of generality, let |Qodd| ≥ |Qeven|. Thus,

Pr[|Q ∩R| > log2 n] = Pr[|Qeven ∩Reven|+ |Qodd ∩Rodd| > log n]

≤ 2 · Pr[|Qodd ∩Rodd| >
log n

2
]

Note that the edges in Rodd were chosen independently at random since R was chosen

uniformly at random. Also E [|Qodd ∩Rodd|] = O(1). Thus by Chernoff bounds we conclude

that is Pr [|Q ∩R| > log n] ≤ O
(
e−Ω(log2 n)

)
, which is super-polynomially small. This

proves the theorem.

Theorem 8. There exists an algorithm which finds an O(n2/3) approximate solution to the

single agent shortest path problem with submodular costs.

Proof. We begin with two simple approaches to get an O(n)-approximate algorithm. Inter-

estingly, we can combine the two ideas to obtain an O(n2/3)-approximate algorithm for the

problem.

Goemans et al [28] address the problem of finding approximate explicit representations

for submodular functions. They use an ellipsoidal approximation of the polymatroid of the

submodular function f : 2X → R+ to assign a weight we to every element e ∈ X. The

approximated cost of a set is then defined as f̂(S) =
√∑

e∈S we. They prove that for all S,

f̂(S) ≤ f(S) ≤
√
|X|f̂(S)

and therefore, f̂ can be though of as an explicit approximate representation of f . To solve

our submodular shortest path problem, a possible approach would be to find the weights

we for all the edges of the graph and then find the path P minimizing f̂(P). This can be

done in polynomial time, since minimizing f̂(P) is the same as minimizing
(
f̂(P)

)2
, which

29

just reduces to the shortest path problem with linear costs. This approach yields a O(
√
E)

approximation algorithm. For dense graphs this factor can be as bad as Ω(n). This method

can be useful if the given graph has few edges.

Another simple algorithm to get an O(n) approximation for this problem is to ‘guess’

the cost of the heaviest edge e in the path, use that as a lower bound on OPT. Define cost

of an edge e as f({e}). The algorithm runs in multiple phases. In each phase choose a new

edge and drop all edges that weigh more than the given edge and return any s− t path(if it

exists) in the pruned graph. We finally select the smallest s− t paths among those returned

during the phases. It is easy to see that this is an O(l) approximate algorithm where l is

the number of edges in the optimal path. Once again this can be as bad as O(n) for some

graphs. This approach can be useful if the given graph is dense, since sufficiently dense

graphs are known to have small diameter.

The central idea of our algorithm is to decompose the graph in to sparse and dense

clusters. Then we use the first approach to account for sparse regions of the graph and deal

with the dense regions using ideas from the second approach.

The algorithm runs in multiple phases, where after each phase we output a path. Final

solution is the minimum cost path among these paths. Each phase is identified by a unique

edge in the edge set, thus there are |E| phases. Following are the steps, in order, which

constitutes a single phase.

Pruning Step: Let e be the edge corresponding to the current phase. Delete all edges that

weigh more than e. Let Ge denote the pruned graph. The phase terminates prematurely if

the s and the t are disconnected in Ge.

Separation Step: In this step we partition the edge set into those that are in dense regions

of the graph and those which belong to sparse regions. Successively remove vertices from

Ge whose degree in the remaining graph is at most n1/3. Also remove the edges incident on

these vertices and add them to the set Se. Continue removing vertices until all the remaining

vertices have degree more than n1/3. Let Re be the remaining edges in Ge. Edges in Se

belong to the sparse part of the graph while those in Re constitute the dense part of the

graph.

30

Search Step: Using the algorithm in [28], we find an explicit representation for the function

f restricted to the Se. Redefine the costs for edges in Se to be the weights returned by the

ellipsoidal approximation subroutine and set the cost of each edge in Re to be a zero.

Treating these edge costs as additive quantities, find the shortest s− t path passing through

e. Let Pe be this path.

Compression Step: The path returned by the search step might contain too many edges,

which could be bad for the algorithm. In this step, we compress the path Pe by replacing

some of its subpaths by smaller paths(in terms of number of edges). For this we analyze

the intersection of Pe with every connected component of G (V,Re). Let H be an arbitrary

connected component of G (V,Re) and let a be the first vertex where Pe enters H and b

be the final vertex that it passes through before leaving H for the last time. Replace the

subpath of Pe between a and b with the shortest path in H(in terms of the number of

edges) connecting them(refer to the figure below). Do this for every connected component

of G (V,Re). Report this modified path as the solution for this phase.

Components in G(V, Re)

Original path Path after replacing segments in G(V, Re)

Figure 1: Shortening the path in dense regions

Analysis: To prove that the above algorithm achieves an approximation ratio of O(n2/3)

we will use the following observation.

Observation 2. Since all the vertices remaining after the first step have degree greater than

n1/3, any connected component C of G (V,Re) has diameter at most |V (C)|
n1/3 .

Let POPT be an optimal path for the problem under the submodular cost function f .

Let α be the heaviest edge in this path. Consider the phase corresponding to α. During

the separation step of every phase we remove at most n4/3 edges since each of the chosen

vertices have a degree less than n1/3. Thus the subroutine gives an explicit cost function

31

that is a O(n2/3) approximation for all subsets of Sα. Let f̂(A) denote the cost of any

A ⊆ Sα returned by the subroutine. Thus for all A ⊆ Sα, we have:

f̂(A) ≤ f(A) ≤ n2/3f̂(A) (2)

Let Pα be the solution returned by this phase. Define Xα = POPT ∩ Sα, Yα = Pα ∩ Sα

and Zα = Pα ∩Rα. It follows that,

2n2/3f(POPT) ≥ n2/3f(POPT) + n2/3f({α}) (3)

≥ n2/3f(Xα) + n2/3f({α}) (4)

≥ n2/3f̂(Xα) + n2/3f({α}) (5)

≥ n2/3f̂(Yα) + n2/3f({α}) (6)

≥ n2/3f̂(Yα) + f(Zα) (7)

≥ f(Yα) + f(Zα) (8)

≥ f(Yα ∪ Zα) (9)

= f(Pα) (10)

Equations (3) and (4) follow from monotonicity. Equation (5) uses equation (2). Equation

(6) then follows from equation (5) since Pα is the shortest path under the function f̂ . Also,

using the observation above and summing over all components of G (V,Rα) we conclude

that |Zα| can not be more than n2/3. Thus equation (7) follows from equation (6) since each

edge in |Zα| costs at most f({α}) and f is submodular. We arrive at equations (8), (9),

(10) using equation (2) and the submodularity of function f .

2.5.2 Multi-Agent case

One glance at Table 1 reveals the fact that the multi-agent submodular shortest path problem

is the only problem left ‘open’ in the sense that we do not have an algorithm that matches

the Ω(n2/3) information theoretic lower bound. We will first explain why this gap exists,

and then elaborate on some of the interesting issues it emphasizes.

Obviously, the Ω(n2/3) lower bound from Theorem 7 also applies in presence of mul-

tiple agents. However, our algorithm from the previous section cannot be ported to the

32

multi-agent case. Recall the two basic approaches we outlined that yield O(n) approxima-

tions to the single agent submodular shortest path problem: 1) Pruning the graph of edges

heavier than the heaviest edge in the optimal solution and 2) Ellipsoidal approximation of

the submodular function as provided in [28]. While we can still use the former to obtain

an O(n)-approximation in the multi-agent case, the latter fails due to inherent computa-

tional hardness. Finding a path P that minimizes the ellipsoidal approximation function

f̂(P) was computationally feasible, because minimizing f̂(P) is equivalent to minimizing(
f̂(P)

)2
, which reduces to finding the shortest path under linear costs. For this approach

to work in the multi-agent case however, we need to find an s − t path P , and partition it

into the m agents as P1, ..., Pm such that
∑

i f̂i(Pi) is minimized. This function is not lin-

ear in terms of the ellipsoidal weights, and in particular is known to be NP-hard to minimize.

The need for a combined computational and communicational lower bound: It

is important to note however, that the lower bound established by Theorem 7 is the best

possible information theoretic hardness result. Recall that such lower bounds only limit the

number of calls made to the value oracle, and no restriction is placed on the computational

complexity of the algorithm outside of the oracle calls. Indeed, it is easy to generalize the

algorithm in the previous section to the multi-agent case, if we have the computational ca-

pacity to minimize the non-linear objective function discussed above. Therefore, there does

exist an algorithm that makes polynomially many calls to the value oracle, performs expo-

nentially many other computational operations and guarantees an approximation factor of

O(n2/3). This indicates that a stronger hardness result needs to combine the computational

and information theoretic complexity of the problem into one argument. To our knowledge,

such a combined hardness result is not known for any problem.

2.6 Perfect Matching

In this section, we consider the multi-agent submodular minimum perfect matching problem.

In this problem we are given a bipartite graph G(V,E) where |V | = n, containing at least one

perfect matching and a normalized monotone submodular function fi : 2E −→ R+ for each

33

agent i. We wish to find a perfect matching M , and a partition of M into M1,M2, · · · ,Mm

such that
∑

i fi(Mi) is minimized. We first prove an information theoretic lower bound of

Ω(n) on the approximability of the single agent case, which also implies the same bound for

the multi-agent case. Then, we give an n-approximate algorithm for the multi-agent case.

As in previous sections, we proceed by designing two submodular functions that are hard

to distinguish in polynomially many queries but have widely differing optimal values. In the

general framework outlined in section 2.2, this is accomplished by ‘hiding’ a random element

of lower cost from the target collection C in one of the functions. In this case, C is the set

of all perfect matchings. Once again choosing a random matching from C however does not

serve our purpose because for a fixed pair of edges, the events that these edges belong to

the random matching are not independent, thus precluding the use of Chernoff bounds. We

circumvent this problem by using the following result from the theory of random graphs

[10]:

Lemma 9. Let G(n, n, p) be a random bipartite graph on 2n vertices such that each edge is

present independently with probability p. Then

Pr[G(n, n, p) contains no perfect matching] = O(ne−np)

Now instead of hiding a randomly chosen perfect matching, we hide a collection of

randomly and independently chosen edges that contains a perfect matching with high prob-

ability. We prove the following theorem.

Theorem 10. Any randomized approximation algorithm for the submodular minimum cost

perfect matching problem with factor O
(

n
log2 n

)
needs super-polynomially many queries.

There exists an algorithm that approximately finds an n-approximate minimum cost matching

in polynomial time.

Proof. Consider the complete bipartite graph Kn,n. We choose a random subset R of edges

by picking each edge independently with probability p = log2 n/n. By applying lemma

9, the probability that R does not contain a perfect matching is O
(
ne− log2 n

)
, which is

super-polynomially small.

34

Define the following two submodular cost functions fR, g : 2E −→ R+:

fR(Q) = min
{
|Q ∩R| + min{ |Q ∩R|, (1 + δ) log2 n }, n

}
g(Q) = min { |Q|, n }

With probability 1−O(ne− log2 n), R contains a perfect matching and hence the minimum

cost of a perfect matching in f is at most (1 + δ) log2 n. Therefore the ratio of optima in g

and f is Ω
(

n
log2 n

)
with high probability.

Now we look at the probability that the algorithm can not distinguish f and g. By

Observation 1 it suffices to prove that Pr[fR(Q) 6= g(Q)] is super-polynomially small for an

arbitrary query Q. It’s easy to see that fR(S) ≤ g(S), thus these two functions differ on Q

if and only if fR(Q) < g(Q).

Making arguments analogous to the proof of theorem 4, Pr[fR(Q) < g(Q)] is maximized

when |Q| = n. Therefore,

Pr[fR(Q) < g(Q)] = Pr
[
|Q ∩R| > (1 + δ) log2 n

]
Since E[|Q∩R|] = log2 n and edges were picked uniformly at random, we can apply Chernoff

bounds to conclude that this probability is O(e−δ
2 log2 n). This proves the theorem.

Factor n approximation algorithm for MS-MPM: We are given a graph G(V,E)

and submodular cost functions fi for each agent. Define a new cost function w over E

as we = mini fi({e}) and define w(Z) =
∑

e∈Z we for all Z ⊆ E. Since w is an additive

valuation function we can find a minimum value perfect matching in polynomial time. Let

M be such a matching. Assign each edge e ∈M to the agent having the minimum valuation

for that edge. Let the cost of this solution under the original valuation functions be W .

Analysis: We now prove that this is an n-approximate algorithm. By submodularity

we have W ≤ w(M). Let M0 be an optimal solution of MS-MPM having value OPT. Since

M is a minimum weight matching under w, w(M) ≤ w(M0).

Let wmax = maxe∈M0{fi(e) | e assigned to agent i in M0}. By submodularity of the

cost functions, w(M0) ≤ n · wmax. By monotonicity we have wmax ≤ OPT . Therefore,

W ≤ w(M) ≤ w(M0) ≤ n · wmax ≤ n ·OPT

35

This completes the analysis.

2.7 Spanning Tree

In this section, we consider the multi-agent submodular minimum spanning tree problem.

We are given a connected graph G(V,E) where |V | = n and a normalized monotone sub-

modular function fi : 2E −→ R+ for each agent i. We want to find a spanning tree T of G,

and a partition of T into T1, T2, · · · , Tm such that
∑

i fi(Ti) is minimized. We first prove an

information theoretic lower bound of Ω(n) on the approximability of the single agent case,

which also implies the same bound for the multi-agent case. Then, we give an n-approximate

algorithm for the multi-agent case.

To prove the lower bound we will provide two submodular functions that can not be

distinguished in polynomially many queries and have widely differing optimal values. As in

Section 2.6, we will use the following lemma [10] in the proof.

Lemma 11. Let G(n, p) be a random graph on n vertices such that each edge is present

independently with probability p. Then

Pr[G(n, p) is disconnected] ≤ n(1− p)n.

Theorem 12. Any randomized approximation algorithm for the submodular minimum span-

ning problem on a with factor O
(

n
log2 n

)
needs super-polynomially many queries. There exists

an algorithm that approximately finds an n-approximate spanning tree in polynomial time.

Proof. Consider Kn, the clique graph on n vertices. We choose a random subset of edges R,

by picking each edge independently with probability p = log2 n/n. By applying Lemma 11,

the probability that R is not connected is O
(
ne− log2 n

)
, which is super-polynomially small.

Define the following two submodular cost functions fR, g : 2E −→ R+:

fR(Q) = min
{
|Q ∩R| + min

{
|Q ∩R|, (1 + δ) log2 n

}
, n

}
g(Q) = min { |Q|, n }

With probability 1−O(ne−n
ε
), R is connected and hence, the cost of the optimal span-

ning tree in f is at most (1 + δ) log2 n. Therefore, the ratio of optimal solution values in g

and f is Ω
(

n
log2 n

)
with high probability.

36

Making arguments similar to the proof of Theorem 10, we conclude that Pr[fR(Q) <

g(Q)] = O(ne−δ
2 log2 n) for any queryQ. By observation 1, this suffices to prove the theorem.

Factor n approximation algorithm for MS-MST: We are given a graph G(V,E)

and submodular cost functions fi for each agent. Define a new cost function w over E as

we = mini fi({e}). Run Kruskal’s algorithm on G treating we as the cost of the edge e to

get a minimum spanning tree T . Assign each edge e ∈ T to the agent i minimizing fi({e}).

The proof that this constitutes an n-approximate solution follows similar arguments as the

analysis of the n-approximate algorithm for perfect matching.

2.8 Discussion

The setting that we have considered in this work is quite general, and is a very exciting

avenue of research. There are many other interesting problems in this class such as minimum

graph cut, edge cover which could be studied in the future work. We have considered the

covering problems in this work, one can ask the same questions for packing problems like

maximum matching. Extension to multi-agent makes a natural connection to Game Theory.

Mechanism design of these combinatorial problems also has interesting applications.

37

CHAPTER III

COMBINATORIAL AUCTIONS WITH PARTIALLY PUBLIC

VALUATIONS

A central problem in computational mechanism design is that of combinatorial auctions, in

which an auctioneer wants to sell a heterogeneous set of items J to interested agents. Each

agent i has a valuation function fi(.) which describes her valuation fi(S) for every set S ⊆ J

of items. In this chapter, we consider combinatorial auctions where fi(.) can be expressed

as fi(S) = vif(S), where vi is a private single parameter of the agent, and the function f is

publicly known.

Single parameter combinatorial auctions with partially public val-

uations: We are given a set J of m items and a global public valuation function1

f : 2J → R. The function f can either be specified explicitly or via an oracle which

takes a set S as input and returns f(S). In addition, we have n agents each of whom has a

private multiplier vi such that the item set S provides vif(S) amount of utility to agent i.

The goal is to design a truthful mechanism which maximizes
∑

i vif(Si), where S1 · · ·Sn is

a partition of J .

Our motivation behind studying this problem is two-fold: (a) Such valuation functions

arise naturally in the case of ad-slots in broadcast media such as Television and Radio.

(b) From a theoretical point of view, this factorization of the valuation function simpli-

fies the bidding language, and renders the combinatorial auction more amenable to better

approximation factors.

We present a general technique, based on maximal-in-range mechanisms, that converts

1We do not make any explicit assumptions such as non-negativity or free disposal about the function
f . We provide a method to convert any non-truthful black-box algorithm into a truthful mechanism. This
black-box algorithm may make some implicit assumptions about f .

38

any α-approximation non-truthful algorithm (α ≤ 1) for this problem into Ω(α
logn) and

Ω(α)-approximate truthful mechanisms which run in polynomial time and quasi-polynomial

time, respectively.

3.1 Motivation, Background and Our Results

Combinatorial auction is a central problem in computational mechanism design an auctioneer

wants to sell a set J of items to interested agents. Each agent i has a valuation function fi(.)

which describes her valuation fi(S) for every set S ⊆ J of items. In its most general form,

the entire valuation function is assumed to be private information which may not be revealed

truthfully by the agents. Maximizing the social welfare in a combinatorial auction with an

incentive-compatible mechanism is an important open problem. However, recent results

[18, 12] have established polynomial lower bounds on the approximation ratio of maximal-

in-range mechanisms - which account for a majority of positive results in mechanism design -

even when all the valuations are assumed to be submodular. On the other hand, in the non-

game-theoretic case, if all the agents’ valuations are public knowledge and hence truthfully

known, then we can maximize the social welfare to much better factors [19, 20, 59], under

varying degree of restrictions on the valuations. Our model studied in this chapter lies in

between these two extremes.

We explore the situation when some inherent property of the items induces a common

and publicly known partial information about the valuation function of the agents. For

instance, in position auctions in sponsored search, the agents’ valuation for a position consists

of a private value-per-click as well as a public click-through rate, that is known to the

auctioneer. Another situation where such private/public factorization of valuations arises

is advertisements in broadcast media such as Television and Radio. Suppose we are selling

TV ad-slots on a television network. There are m ad-slots and n advertisers interested in

them. Let us define a function f : 2[m] → Z+, such that for any set S of ad-slots f(S) is the

number of unique viewers who will see the ad if the ad is shown on each slot in S2. If an

2For a single ad-slot j, the function f({j}) is nothing but the television rating for that slot as computed
by rating agencies such as Nielsen. In fact, their data collection through set-top boxes results in a TV
slot-viewer bipartite graph on the sample population, from which f(S) can be estimated for any set S of ad
slots.

39

advertiser i is willing to pay vi dollars per unique viewer reached by her ad, then her total

valuation of the set S is vif(S).

One can think of this model as combinatorial auctions with simplified bidding language.

The agents only need to specify one parameter vi as their bid. Moreover, our problem has

deeper theoretical connections to the area of single parameter mechanism design in general.

For single parameter domains such as ours, it is known that monotone allocation rules

characterize the set of all truthful mechanisms. An allocation rule or algorithm is said to

be monotone if the allocation parameter of an agent (f(Si) in our case) is non-decreasing in

his reported bid vi. Unfortunately, often it is the case that good approximation algorithms

known for a given class of valuation functions are not monotonic. It is an important and

well-known open question in algorithmic mechanism design to resolve whether the design

of monotone algorithms is fundamentally harder than the non-monotone ones. In other

words, it is not known if, for single parameter problems, we can always convert any α-

approximation algorithm into a truthful mechanism with the same factor. We believe that

our problem is a suitable candidate to attack this question as it gives a lot of flexibility in

defining the complexity of function f . From this discussion, it follows that the only lower

bound known for the approximation factor of a truthful mechanism in our setting is the

hardness of approximation of the underlying optimization problem.

3.1.1 Our Results and techniques

We give a general technique which accepts any (possibly non-truthful) α-approximation

algorithm for our problem as a black-box and uses it to construct a truthful mechanism

with an approximation factor of Ω
(

α
logn

)
. We also give a truthful mechanism with factor

Ω(α) which runs in time O
(
nlog logn

)
. Both these results are corollaries obtained by setting

parameters appropriately in Theorem 14 to achieve desired trade-off between the approx-

imation factor and the running time. Our results can also be interpreted as converting

non-monotone algorithms into monotone ones for the above model.

Our mechanisms are maximal-in-range, i.e., they fix a range R of allocations and com-

pute the allocation S ∈ R that maximizes the social welfare. The technical core of our work

40

lies in careful construction of this range.

While the black-box algorithm may be randomized, our mechanism does not introduce

any further randomization. Depending upon whether the black-box algorithm is deter-

ministic or randomized, our mechanism is deterministically truthful or universally truthful

respectively (See Section 3.2 for definitions). The approximation factor of our mechanism

is deterministic (or with high probability or in expectation) if the black-box algorithm also

provides the approximation guarantees deterministically (or with high probability or in ex-

pectation).

Note that we don’t need to worry about how the public valuation function f is specified.

This is plausible since the function is accessed only from within the black-box algorithm.

Hence, our mechanism can be applied to any model of specification - whether it is specified

explicitly or through a value or demand oracle - using the corresponding approximation

algorithm from that model.

Submodular valuations arise naturally in practice from economies of scale or the law

of diminishing returns. Hence, we make a special note of our results when the public

valuation is submodular. Using the algorithm of [59] as black-box, our results imply a

Ω (1/ log n) and Ω(1) approximation factors in polynomial time and quasi-polynomial time,

respectively. We would like to note that the standard greedy algorithm for submodular

welfare maximization is not monotone (See Appendix A.1 for a simple example) and hence,

not truthful. Similarly, the optimal approximation algorithm of [59] is also not known to

be non-monotone. For entirely private submodular valuations, the best known truthful

mechanism has factor Ω(1/
√
m) in the value oracle3 model [19] and Ω(logm log logm) in

the demand oracle4 model [17]. Note that the former mechanism is deterministically truthful

while the latter is universally truthful.

3In the value oracle model, a polytime algorithm must make at most polynomially many queries to the
function oracle, which returns f(S) when queried with the set S.

4When provided a pricing function p : [m] → R, the demand oracle returns the set S that maximizes
f(S) −

∑
j∈S p(j). A polytime algorithm in the demand oracle model is constrained to make at most

polynomially many such queries.

41

3.1.2 Related Work

When agents have a general multi-parameter valuation function, the best known truthful

approximation of social welfare in the value oracle model is Ω(
√

logm/m) [31]. Under

subadditive valuation functions, [19] gave Ω(1/
√
m)-approximate deterministically truthful

mechanism in the value oracle model. It is known that no maximal-in-range mechanism

making polynomially many calls to the value oracle can have an approximation factor better

than Ω(1/m1/6)[18] even for the case of submodular valuation functions. A similar Ω(1/
√
m)

hardness result for maximal-in-range algorithms based on NP * P/poly appears in [12].

See [9] for a comprehensive survey of the results, and [52, 12] for other more recent work.

Previous work on the single parameter case of combinatorial auctions have primarily focused

on the single-minded bidders. In this setting, any bidder i is only interested in single set Si

and has a valuation vi for it. Lehmann et al. [46] gave a truthful mechanism which achieves

an essentially best-possible approximation factor of Ω(1/
√
m). For other results in single-

minded combinatorial auction, see [49, 2]. When the desired set is publicly known and only

the valuation is private, [4] gave a general technique which converts any α-approximation

algorithm into a truthful mechanism with factor α/ log(vmax). This result is very much in

spirit to our work, however the model and the techniques used are very different. Similarly,

[44] present a general framework which uses a gap-verifying linear program as black-box to

construct mechanisms that are truthful in expectation. Another example of such a black-

box construction is the work of Balcan et al [5] who construct universally truthful random

sampling auctions when the objective is revenue maximization.

For the non-truthful optimization, we note that our problem is hard up to a constant

factor (see [48]) even when all the agents have private value equal to 1 and with common val-

uation function being submodular. For designing monotone algorithms from non-monotone

algorithms in the Bayesian setting, see [29]. We also note that TV ad auctions are in use

by Google Inc. (see [50]), although currently they treat the valuations for a set of ad-slots

as additive with budget constraints, which yields a multi-parameter auction.

Organization: Section 3.2 provides a brief introduction to mechanism design with a few

42

concepts relevant to our work. Readers familiar with design of truthful mechanisms can

skip to Section 3.3 in which we state some basic properties and assumptions about single

parameter combinatorial auctions with partially public valuations. Section 3.4 introduces

our vector-fitting technique and in Section 3.4.1, we conduct a warm-up exercise by analyz-

ing a simple mechanism. Section 3.5 presents our main result, a vector-fitting mechanism

formalized by Theorem 14.

3.2 Preliminaries

In this section, we will outline the basic concepts in mechanism design relevant to our work.

3.2.1 Truthfulness and Mechanism Design

Mechanism design attempts to address the game-theoretic aspect of optimization problems.

Let A be the set of alternatives, and ui(a) be the valuation of agent i if alternative a ∈ A

is picked. In a pure optimization setting, all the functions ui’s are assumed to be known to

the auctioneer, and a typical goal is to pick an alternative a ∈ A that maximizes
∑

i ui(a).

But from a game-theoretic perspective, the agents may have an incentive to lie about their

valuation function ui, if it leads to a better alternative for them. This kind of strategizing

often results in arbitrary behaviour from the agents, leading to a loss in the social welfare.

Mechanism design tackles this issue by designing algorithms such that truthfully reporting

their true valuation function is the dominant strategy for each agent, i.e. given any strategies

by all the other agents, reporting one’s true function maximizes the utility gained by this

agent.

There are three notions of truthfulness that may be applicable:

1. Deterministic truthfulness: The mechanism must be deterministic and an agent

maximizes her utility by reporting her true valuation, for any valuations of all other

agents.

2. Universal truthfulness: A universally truthful mechanism is a probability distribu-

tion over deterministically truthful mechanisms.

43

3. Truthfulness in expectation: A mechanism is truthful in expectation if an agent

maximizes her expected utility by being truthful.

Every deterministically truthful mechanism is universally truthful and every universally

truthful mechanism is truthful in expectation. Hence, deterministic truthfulness is the

strictest notion of truthfulness. As noted earlier, our mechanism may be deterministically

or universally truthful depending upon whether the black-box α-approximation algorithm

is deterministic or randomized.

3.2.2 Vickrey-Clarke-Grove and Maximal-in-range Mechanisms

The Vickrey-Clarke-Grove (VCG) mechanism is a pivotal result in the field of mechanism

design to maximize social welfare. It works as follows: let a∗ and a∗−i be the alternatives

which maximizes
∑

j vj(a) and
∑

j 6=i vj(a) respectively. Now define payment pi of agent

i to be
∑

j 6=i vj(a
∗
−i) −

∑
j 6=i vj(a

∗). It is now not difficult to see that with this payment

function, it is in best interest of every agent to report their true valuations, irrespective of

what others report.

As useful as the VCG mechanism is, it cannot be applied in many scenarios where the un-

derlying problem is hard. Solving the optimization problem approximately doesn’t preserve

the truthfulness always. To overcome this, maximal-in-range variant of the VCG mechanism

is a useful technique which optimizes over a smaller range of allocations. That is, the set of

allocations that the mechanism may ever produce - the range - is chosen to be a small subset

of the space of all allocations. The range is chosen to balance the following trade-off: A

larger range can yield better approximation but require greater computational complexity.

Note that such a range needs to be defined combinatorially without any knowledge of the

agents’ valuations.

For example, the Ω(1/
√
m)-approximate truthful mechanism from [19] is a maximal-in-

range mechanism.

3.3 Notations and Basic Properties

By boldface v, we will denote a vector of private multipliers of the agents, where vi is the

multiplier of agent i. For a constant β ≥ 0, let βv = (βv1, βv2, ..., βvn). By boldface S, we

44

will denote the vector of allocations, where Si is the set of items allocated to agent i. We

will overload the function symbol f to express the social welfare as: f(v,S) =
∑

i vif(Si).

An allocation S is optimal for a multiplier vector v if it maximizes f(v,S).

We begin by observing two simple properties of our problem and its solutions: symmetry

and scale-freeness. Our problem and its solutions are symmetric, i.e., invariant under rela-

beling of agents in the following sense: Let v be any multiplier vector, S be any allocation

and π be any permutation of [n]. Let u and T be such that ui = vπ(i) and Ti = Sπ(i). Then

clearly, f(v,S) = f(u,T). The problem and its solutions are also invariant under scaling,

since we have f(βv,S) = β · f(v,S).

The above properties lead us to:

Observation 3. Without loss of generality, every multiplier vector v has non-increasing

entries v1 ≥ v2 ≥ ... ≥ vn such that
∑

i vi = 1.

Given a multiplier vector v, let A(v) be the optimal allocation for v and OPT(v) =

f(v,A(v)). Moreover, if f(v,S) ≥ α ·OPT(v) for some α ≤ 1 then the allocation S is said

to be α-optimal or α-approximate for v.

We note a simple property of A(v): Let v be a multiplier vector with v1 ≥ v2 ≥ ... ≥ vn.

Let S be any allocation. If T is a permutation of S such that f(T1) ≥ f(T2) ≥ ... ≥ f(Tn),

then f(v,T) ≥ f(v,S). In particular, if S = A(v) then f(S1) ≥ f(S2) ≥ ... ≥ f(Sn).

Finally, we assume the existence of a poly-time black-box algorithm that computes an

α-approximate allocation B(v) for the multiplier vector v. We express the performance

guarantees of our truthful mechanisms in terms of α and other parameters of the problem.

Although the output allocation S of such an algorithm may not obey f(S1) ≥ f(S2) ≥ ... ≥

f(Sn), it is easy to construct a non-decreasing permutation of S which only improves the

objective function value, as discussed above.

Observation 4. Without loss of generality, any allocation S output by the black-box algo-

rithm obeys f(S1) ≥ f(S2) ≥ ... ≥ f(Sn).

Henceforth, we enforce assumptions from Observation 3 and 4.

45

Definition 2 (u dominates w). We say that a multiplier vector u dominates w if there

exists an index i such that for k < i, uk ≥ wk and for k ≥ i, uk ≤ wk.

Lemma 13. If u dominates w, then f(u,S) ≥ f(w,S) for any allocation S satisfying

f(S1) ≥ f(S2) ≥ ... ≥ f(Sn).

Proof. For k < i, let xk = uk − wk. Similarly for k ≥ i, yk = wk − uk. Then

i−1∑
k=1

xk −
n∑
k=i

yk =
n∑
k=1

uk −
n∑
k=1

wk = 0

which means
∑i−1

k=1 xk =
∑n

k=i yk. Since f(Sk1) ≥ f(Sk2) whenever k1 < i ≤ k2,

f(u,S)− f(w,S) =
i−1∑
k=1

xkf(Sk)−
n∑
k=i

ykf(Sk) ≥ 0

Staircase Representation: Suppose we represent a multiplier vector v as a histogram,

which consists of n vertical bars corresponding to v1, ..., vn, in that order from left to right.

Since multiplier vectors have non-increasing components, such a histogram looks like a

staircase descending from left to right (Refer to Figure 2 for an example). We will refer to

it as the staircase representation of v and use it mainly as a visual tool.

v1 v2

vn
vj

v3

Figure 2: The staircase representation of v = (v1, ..., vn).

3.4 Vector-Fitting Mechanisms

Consider the following candidate approach to single parameter combinatorial auctions with

partially public valuations: Fix a set U of some multiplier vectors. Using the black-box

algorithm, compute an α-approximate allocation B(v) for each vector v ∈ U and populate

46

the range R = { B(v) : v ∈ U }. Run the maximal-in-range mechanism which given a

multiplier vector v, chooses the allocation S ∈ R that maximizes f(v,S).

Let’s consider the merits and demerits of this mechanism. If the input multiplier vector

happens to be in U , then the mechanism will indeed return an output allocation that is at

least α-approximate. But we have no guarantees otherwise. If U consisted of all possible

vectors, we would have an α-approximate truthful mechanism that could be computationally

infeasible due to the size of U . We handle this trade-off with vector-fitting. The intuition

behind vector-fitting is as follows: If two multiplier vectors u and v are ‘very similar’ to

each other, then B(u) and B(v) should be ‘similar’ as well. In particular, B(u) should be a

reasonably good allocation for v and vice versa.

Our mechanism will be the same as the candidate mechanism outlined above, except

that we will construct the set of vectors U very carefully. For any input vector of multipliers

v, we will guarantee that a reasonably similar vector v′ can be found in U , and hence and

allocation S′ is in the range R with provably large objective value f(v,S′).

3.4.1 A Simple α
lnn-factor Mechanism

In this section, we will conduct a warm-up exercise by applying the vector-fitting method

to construct a simple α
lnn -factor truthful mechanism. Recall that the vector-fitting method

as outlined in Section 3.4 starts with a set U of multiplier vectors. Our set U is defined as

U = { uj : 1 ≤ j ≤ n } where uj is defined as follows:

uji =
1
j

for 1 ≤ i ≤ j, zero elsewhere

As before, for each v ∈ U , we compute an α-approximate allocation B(v) and populate

the range R with it.

Let v be the input multiplier vector. Let rj =
∑j

k=1 vj for 1 ≤ j ≤ n be the prefix sums

of v. We define prefix vectors dj of v as:

dji =
vi
rj

for 1 ≤ i ≤ j, zero elsewhere

It is easy to verify that dj is a valid multiplier vector i.e., it has non-increasing components

and unit l1 norm.

47

v1 v2 vn

vn

n∑
i=1

f(Si)

(vj − vj+1)
j∑

i=1
f(Si)

(v3 − v4)
3∑

i=1

f(Si)

vjv3

Figure 3: Expressing f(v,S) as horizontal cuts of the staircase.

Let S = A(v) be the optimal allocation for v and T be the allocation returned by our

mechanism. For notational convenience, define vn+1 = 0. We start with OPT(v) = f(v,S)

and look at how horizontal sections under the staircase of v contribute to it. See figure 3.

OPT(v) =
n∑
i

vif(Si)

= vn

n∑
i=1

f(Si) + (vn−1 − vn)
n−1∑
i=1

f(Si) + ... + (v1 − v2)f(S1) (11)

=
n∑
j=1

[
j(vj − vj+1)

j∑
i=1

f(Si)
j

]

=
n∑
j=1

[
j(vj − vj+1) · f(uj ,S)

]
≤

n∑
j=1

[
j(vj − vj+1) ·OPT(uj)

]
≤

n∑
j=1

[
α−1j(vj − vj+1) · f(uj ,B(uj))

]
≤

n∑
j=1

[
α−1j(vj − vj+1) · f(dj ,B(uj))

]
(12)

≤
n∑
j=1

[
j(vj − vj+1)

αrj
· f(v,B(uj))

]
(13)

≤
n∑
j=1

[
j(vj − vj+1)

αrj
· f(v,T)

]
(14)

=
f(v,T)
α

1 +
n∑
j=2

vj(rj − jvj)
rjrj−1

 (15)

Equation (11) decomposes f(v,S) as the horizontal cuts of the staircase of v (See Figure

3). (12) follows from the previous step by applying Lemma 13 to dj and uj . Equation (13)

48

follows from (16) below, which is a simple restatement.

j∑
i=1

vi
rj
· f(Si) ≤

1
rj

n∑
i=1

vif(Si) =
f(v,S)
rj

(16)

Equation (15) is derived from the previous expression by simply rearranging the terms.

Since vj ≤ rj/j and rj − jvj ≤ rj−1, we conclude that

1 +
n∑
j=2

vj(rj − jvj)
rjrj−1

≤
n∑
j=1

1
j
≤ lnn

and

f(v,T) ≥ α ·OPT(v)/ lnn

An example that achieves the bound: We can differentiate each term of the sum-

mation in equation (15) to compute the values of vj for which the term is maximized, so as

to make the bound as loose as possible. Surprisingly, a single multiplier vector maximizes

all the terms simultaneously! This vector is defined as vj = (
√
j −
√
j − 1)/

√
n. Some

calculations prove that for this multiplier vector, the summation is indeed Ω(lnn).

3.5 The Main Result

In this section, we will use vector-fitting to obtain a general technique to convert a non-

truthful approximation algorithm for single parameter combinatorial auctions into a truthful

mechanism. This technique yields a range of trade-offs between the approximation factor

and the running time of the algorithm. We will prove the following theorem:

Theorem 14. There exists a truthful mechanism for maximizing welfare in a single param-

eter combinatorial auction with partially public valuations that runs in time

O((loga n)logb n·poly(m,n)) and produces an allocation with total welfare at least 3α
4ab ·OPT(v)

- where α is the approximation factor of the black-box optimization algorithm and a, b > 1

are parameters of the mechanism.

Setting a = b = 2 we get: (Henceforth, all logarithms are to base 2)

Corollary 15. There exists a 3α
16 -factor truthful mechanism running in time

O(nlog logn · poly(m,n)), i.e. quasi-polynomial time.

49

Similarly, setting a = 2 and b = log n we get:

Corollary 16. There exists a truthful mechanism with factor Ω
(

α
logn

)
and polynomial

running time.

When the public valuation f is submodular, we have α =
(
1− 1

e

)
and the above corol-

laries yield factors Ω(1) and Ω
(

1
logn

)
respectively.

3.5.1 Constructing the Range R

Overview: Recall the staircase representation of a multiplier vector v, such as in Figure 2.

Depending upon the entries of v, the steps of the staircase may have varying heights. We

can construct a discretization of the space of all multiplier vectors by restricting the values

the height of any step can take. That is, we populate the initial set U with all vectors whose

components take values of the form b−k for some constant b > 1 and for all k ≥ 0. Now

given any input vector v, we can find a vector u ∈ U such that ui is at most a multiplicative

factor b away from vi. Thus, u can serve as a vector ‘similar’ to v. We need more complex

machinery to ensure that the size of U does not blow up, and that the vectors in U still have

unit norm.

Let a, b > 1 be suitably chosen parameters of the mechanism. Let Q = { b−k : 0 ≤ k <

logb n } be a set of values discretizing the interval (1
n , 1] and q be the minimum element of

Q. For a multiplier vi ≥ q, we define bvic to be the largest element of Q that is no greater

than vi. For a multiplier vector v we define the floor of v, bvc as follows:

Definition 3 (Floor bvc). The floor bvc of a multiplier vector v is the vector u constructed

by Algorithm 1.

In short, to find the ‘floor’ of a multiplier vector, we successively round down the ‘large’

components into elements of Q, until we need to set all the remaining components equal

due the monotonicity and unit norm requirement or only ‘small’ components are remaining.

When represented as a staircase (Refer Figure 4), all the steps of bvc except the last one

must have height that belongs to Q.

50

1

b−1

b−2

q

1/n

v1 v2 vn

v
bvc

Rounded down

Equalized

Figure 4: Vertical fitting of v.

Algorithm 1: ConstructFloor

for i = 1 to n do

r ←

(
1−

∑i−1
k=1 uk

)
(n− i+ 1)

;

/* r is the minimum permissible value of ui due to monotonicity. */

if vi ≥ q and bvic > r then
ui ← bvic;

else

for j = i to n do
uj ← r;

break

Observation 5. The floor of a vector v is a valid multiplier vector itself, i.e. it has non-

increasing components and unit l1 norm. Moreover, v dominates bvc.

Proof. The procedure to compute u = bvc easily ensures the unit l1 norm. Now to prove

monotonicity by contradiction, assume that there exists i such that ui < ui+1. Since v

satisfies monotonicity, this can only happen if vi was strictly rounded down to ui and vi+1

was not. Therefore

1−
i−1∑
k=1

uk =
n∑
k=i

uk = ui +
n∑
k=i

uk = ui + (n− i)ui+1 > (n− i+ 1) · ui

This implies

bvic = ui <
1−

∑i−1
k=1 uk

n− i+ 1

51

which is impossible since the right-hand side of the above inequality is the minimum value

ui could have been assigned.

To see that v dominates u = bvc, observe that if the index i does not belong to the

last step of u, then vi must have been rounded down to ui, and therefore, ui ≤ vi. Now

consider the smallest i such that ui > vi. Then i must belong to the last step of u, and

hence uj = ui > vi ≥ vj for any j ≥ i.

Intuitively, the floor of a vector is (in a sense formalized by Lemma 17) ‘similar’ to the

vector, and the similarity is parametrized by b.

Lemma 17. For any multiplier vector v and allocation S, f(bvc,S) ≥ 3
4b · f(v,S).

Proof. Define u = bvc. Let p be the highest index such that vp is rounded down by the

procedure that constructs u, i.e. up = bvpc and up > r = up+1. Since,
∑p

i=1 ui ≤
∑p

i=1 vi,

it is clear that p < n. Now for i ≤ p, we have ui = bvic ≥ vi/b. Consider two cases about

vp+1:

Case 1 - vp+1 ≥ q: In this case, up+1 = r ≥ bvp+1c ≥ vp+1/b. For i ≥ p + 1, we

have vi ≤ vp+1 and ui = up+1 implying ui ≥ vi/b. Therefore,

f(u,S) =
n∑
i=1

uif(Si) ≥
1
b

n∑
i=1

vif(Si) =
1
b
· f(v,S)

Case 2 - vp+1 < q: Let h =
p∑
i=1

vi and H =

(
p∑
i=1

vif(Si)

)
/f(v,S). From the mono-

tonicity of S, we conclude that

H · f(v,S) =
p∑
i=1

vif(Si) ≥ h · f(v,S)

and hence H ≥ h.

Since ui ≤ vi for all i ≤ p, and both u and v must have unit l1 norm, we have
∑

i>p ui ≥∑
i>p vi = (1−h). Hence, ui ≥ 1−h

n for i > p. By definition, vi < q ≤ b
n for i > p. Together,

these imply ui ≥ (1− h)vi/b. Finally, using H ≥ h, we conclude

∑
i>p

uif(Si) ≥
1− h
b

∑
i>p

vif(Si)

 ≥ 1−H
b

[(1−H)f(v,S)]

52

Combining these pieces together, we get:

f(bvc, S) =
p∑
i=1

uif(Si) +
∑
i>p

uif(Si)

≥ 1
b

p∑
i=1

vif(Si) +
(1−H)2

b
· f(v,S)

=
H + (1−H)2

b
· f(v,S) ≥ 3

4b
· f(v,S)

We will construct our preliminary set of vectors U ′ as

U ′ = { u : u = bvc for some multiplier vector v }

It turns out that U ′ is too large for our purposes. Hence we construct a subset U ⊆ U ′,

which is small enough. Referring back to the staircase representation of a multiplier vector

(Figure 4), we constructed U ′ by discretizing the ‘height’ of each step - by fitting the vectors

vertically. Since rounding down the components of v might lead to many components of

u = bvc having the same value, u also looks like a staircase, perhaps with ‘wider’ steps.

Each step of u may have any integral width - at most n.

We construct U from U ′ by further restricting how wide a step can be - by horizontal

fitting (See Figure 5). We allow each step (except the last) to be of width dake for some

integer k ≥ 0 - where a > 1 is a suitably chosen parameter of the mechanism. To this end,

we need to slightly formalize the staircase representation of a multiplier vector, which till

now we only used as a visual aid. By a step of the staircase of v, we will mean a maximal

interval [i1, ..., i2] ⊆ [1, ..., n] such that vi1 = vi2 . All the indices i1 ≤ i ≤ i2 will be said to

belong to the step, whereas i1 and i2 and the first and last indices of the step. The height

of the step is given by vi1 and the width by i2 − i1 + 1.

Remark: Notice that just as a multiplier vector can be specified by the n-tuple (v1, ..., vn),

it can also be identified by specifying the height and width of each step of its staircase rep-

resentation. In fact, specifying all but the last step of a staircase fixes the last step due to

the unit norm requirement.

For a multiplier vector v, we define the core ←−v of v as:

53

1

b−1

b−2

q

1/n

v1 v2 vn

Last step

←−v
v

Figure 5: Horizontal fitting of v.

Definition 4 (Core ←−v). The core ←−v of a multiplier vector v is the vector u constructed

by Algorithm 2.

Algorithm 2: ConstructCore
i1 ← 1; j1 ← 1;

while i1 ≤ n do

r ←
(
1−

∑j1−1
i=1 ui

)
/(n− j1 + 1);

if vi1 > r then
Find the largest index i2 such that vi1 = vi2 ;

Find largest integer k such that dake ≤ (i2 − j1 + 1);

for i = j1 to j1 + dake − 1 do
ui ← vi1 ;

i1 ← i2 + 1;

j1 ← j1 + dake;

else

for i = j1 to n do
ui ← r;

break

Operation of Algorithm 2: Each iteration of the while loop processes one step of v and

u. i1 and j1 hold the first index of the current step of v and u respectively. r is the minimum

height of the current step of u by monotonicity. If r ≥ vi1 , then the requirement for unit l1

norm forces us to introduce the last step of the staircase of u. Otherwise, [i1, ..., i2] is the

current step of v and we set the width of the current step of u to be dake.

Observation 6. The core of a vector v is a multiplier vector itself, i.e. it has non-increasing

54

components and unit l1 norm. Moreover, v dominates ←−v .

Proof. The algorithm to construct u = ←−v itself easily ensures the unit norm. To prove

monotonicity by contradiction, assume that there exists i such that ui < ui+1. This can

only happen is i + 1 is the first index of the last step of u and i is the last index of the

penultimate step. Let j be the first index of the penultimate step. Then

1−
j−1∑
k=1

uk =
n∑
k=j

uk = (i− j + 1)ui + (n− i)ui+1 > (n− j + 1) · ui

This means

uj = ui <

(
1−

j−1∑
k=1

uk

)
/(n− j + 1)

which is impossible since the right-hand side of the above inequality is the minimum value

uj could have been assigned.

To see that v dominates u =←−v , observe that if the index i does not belong to the last

step of u, then ui = vj for some j ≥ i, and hence ui = vj ≤ vi. Now consider the smallest i

such that ui > vi. Then i must belong to the last step of u. Therefore, uj = ui > vi ≥ vj

for all j ≥ i.

Lemma 18. For any multiplier vector v and allocation S, f(←−v ,S) ≥ f(v,S)/a.

Proof. Suppose the staircase of v has s1 steps and that of u = ←−v has s2 steps. Then the

following four properties follow directly from the algorithm:

1. s2 ≤ s1

2. For 1 ≤ i < s2, the i’th step of v is at most a times as wide as the i’th step of u and

both have the same height.

3. For 1 ≤ i ≤ s2, let i1 and j1 be the first indices of the i’th steps of v and u respectively.

Then i1 ≥ j1.

4. If [j, ..., n] is the last step of u then ui ≥ vi for i ≥ j.

To prove the lemma, we will compare the the contributions of corresponding steps of the

staircases of v and u to the objective functions.

55

For i < s2, let [i1, ..., i2] be the i’th step of v, [j1, ..., j2] be the i’th step of u and

h = vi1 = uj1 be their common height. We have

j2∑
k=j1

ukf(Sk) = h

j2∑
k=j1

f(Sk) ≥ h

ii+j2−j1∑
k=i1

f(Sk)

by the third property. The monotonicity of S and the second property then imply

j2∑
k=j1

ukf(Sk) ≥
1
a

i2∑
k=i1

vkf(Sk)

So the i’th step of v contributes at most a times value to f(v,S) as the i’th step of u

contributes to f(u,S), where i < s2.

Finally by the fourth property, the step s2 of u contributes more to f(u,S) than the

corresponding contribution of steps s2, ..., s1 of v to f(v,S) combined. The result therefore

follows.

We now define our set of vectors U as follows: U = { ←−v : v ∈ U ′ }. We populate

the range R of allocations as R = { B(v) : v ∈ U } where B(v) is the α-approximate

allocation returned by the black box algorithm.

3.5.2 Proof of Theorem 14

We run the following maximal-in-range mechanism: Given an input multiplier vector v we

return the allocation T ∈ R that maximizes f(v,T). We need to prove that f(v,T) ≥
3α
4ab ·OPT(v)

Let S = A(v) be the optimal allocation for v and
←−
bvc be the core of the floor of v.

Combining Lemmas 17 and 18, we conclude that f(
←−
bvc,S) ≥ 3

4ab ·OPT(v). Since
←−
bvc ∈ U ,

there exists an allocation X ∈ R such that

f(
←−
bvc,X) ≥ α ·OPT(

←−
bvc) ≥ α · f(

←−
bvc,S) ≥ 3α

4ab
·OPT(v) (17)

Since v dominates bvc which in turn dominates
←−
bvc (Refer to Observation 5 and 6),

application of Lemma 13 yields:

f(v,X) ≥ f(bvc,X) ≥ f(
←−
bvc,X) (18)

56

Using equations (17) and (18),

f(v,T) ≥ f(v,X) ≥ f(
←−
bvc,X) ≥ 3α

4ab
·OPT(v)

The running time of the mechanism is established by Lemma 19, which finishes the proof of

Theorem 14.

Lemma 19. |R| = O
(
(loga n)logb n

)
Proof. |R| is bounded by |U|. U consists of only those vectors which are cores of floors of

some multiplier vectors. We have seen that each step of the staircase of v ∈ U except the last

must be of width w = dake for some integer k. Moreover, there can be only |Q| = O(logb n)

such steps and at most one of each height. We have also remarked that specifying all but

the last step of a staircase fixes it. Therefore there can be at most O
(
(loga n)logb n

)
distinct

staircases in U .

3.6 Discussion

As shown in [18, 12], it seems that designing a truthful mechanism with good approximation

factor for maximizing social welfare is a difficult problem. In light of this, our work suggests

an important research direction to pursue in combinatorial auctions- to divide the valuation

function into a part which is common among all the agents and can be estimated by the

auctioneer and a part which is unique and private to individual agents.

Also, it would be interesting to see if for submodular public functions (or even more

specifically, for coverage functions), which have concrete motivation in TV ad auctions, one

can design a constant factor polynomial time truthful mechanism.

57

CHAPTER IV

ONLINE VERTEX-WEIGHTED BIPARTITE MATCHING AND

SINGLE-BID BUDGETED ALLOCATIONS

Online bipartite matching is a fundamental problem with numerous applications such as

matching candidates to jobs or boys to girls. More recently, this and related problems have

received significant attention, because they model the allocation aspect of sponsored search

auctions, where multiple agents (advertisers) bid on items (query keywords) which arrive

one by one in an online manner. In this chapter, we look at the following vertex-weighted

version of this problem:

Online vertex-weighted bipartite matching: The input instance is a bipartite

graph G(U, V,E, {bu}u∈U), with the vertices in U and their weights bu known ahead of time.

Vertices in V arrive one at a time, online, revealing their incident edges. An arriving vertex

can be matched to an unmatched neighbor upon arrival. Matches once made cannot be

revoked later and a vertex left unmatched upon arrival cannot be matched later. The goal

is to maximize the sum of the weights of the matched vertices in U .

When all the weights are equal, this reduces to the classic online bipartite matching prob-

lem for which Karp, Vazirani and Vazirani gave an optimal
(
1− 1

e

)
-competitive algorithm

in their seminal work [38].

Our main result is an optimal
(
1− 1

e

)
-competitive randomized algorithm for general

vertex weights. Our solution constitutes the first known generalization of the algorithm

in [38] in this model and provides new insights into the role of randomization in online

allocation problems. It also effectively solves the problem of online budgeted allocations

[47] in the case when an agent makes the same bid for any desired item, even if the bid is

comparable to his budget - complementing the results of [47, 11] which apply when the bids

58

are much smaller than the budgets.

4.1 Motivation, Background and Overview of Our Result

Online bipartite matching is a fundamental problem with numerous applications such as

matching candidates to jobs, ads to advertisers, or boys to girls. A canonical result in online

bipartite matching is due to Karp, Vazirani and Vazirani [38], who gave an optimal online

algorithm for the unweighted case to maximize the size of the matching. In their model, we

are given a bipartite graph G(U, V,E). The vertices in U are known ahead of time, while

the vertices in V arrive one at a time online in an arbitrary order. When a vertex in V

arrives, the edges incident to it are revealed and it can be matched to a neighboring vertex

in U that has not already been matched. A match once made cannot be revoked. The goal

is to maximize the number of matched vertices.

However, in many real world scenarios, the value received from matching a vertex might

be different for different vertices: (1) Advertisers in online display ad-campaigns are willing

to pay a fixed amount every time their graphic ad is shown on a website. By specifying their

targeting criteria, they can choose the set of websites they are interested in. Each impression

of an ad can be thought of as matching the impression to the advertiser, collecting revenue

equal to the advertiser’s bid. (2) Consider the sale of an inventory of items such as cars.

Buyers arrive in an online manner looking to purchase one out of a specified set of items

they are interested in. The sale of an item generates revenue equal to the price of the item.

The goal in both these cases is to maximize the total revenue.

Connection to the online budgeted allocation problem: Apart from being a natu-

ral generalization of the online bipartite matching problem, our vertex-weighted matching

problem is closely related to an important class of online problems. Mehta et al [47] con-

sidered the following online version of maximum budgeted allocation problem [24, 45] to

model sponsored search auctions: We have n agents and m items. Each agent i specifies

a monetary budget Bi and a bid bij for each item j. Items arrive online, and must be

immediately allocated to an agent. If a set S of items is allocated to agent i, then the agent

59

pays the minimum of Bi and
∑

j∈S bij . The objective is to maximize the total revenue of

the algorithm. An important and unsolved restricted case of this problem is when all the

non-zero bids of an agent are equal, i.e. bij = bi or 0 for all j. This case reduces to our

vertex-weighted matching problem (For a proof, refer to Section 4.5.3).

For the general online budgeted allocation problem, no factor better than 1
2 is yet known.

This factor is achieved by a simple deterministic greedy algorithm given by Lehmann et al

[45]. The same algorithm also provides factor 1
2 for online submodular allocation, where

the agents have a general submodular valuation function over the set of items. For visual

representation of the hierarchy of these online allocation problems, refer to Figure 6. The

best known lower bound stands at 1 − 1
e due to the hardness result in [38] for the case

when all bids and budgets are equal to 1 - which is equivalent to the unweighted online

matching problem. The small bids case - where bij � Bi for all i and j - was solved

by [47, 11] achieving the optimal 1 − 1
e deterministic competitive ratio. It was believed

that handling large bids requires the use of randomization, as in [38]. In particular, many

attempts [43, 8, 27] had been made to simplify the analysis of the randomized algorithm in

[38], but no generalization had been achieved.

Single bids

Online submodular allocation [45]

Unweighted

matching

[38]

Small bids

[45, 11]

Online budgeted allocation

(Our work)

Figure 6: Hierarchy of related online allocation problems studied in literature.

Our solution to the vertex-weighted matching problem is a significant step in this di-

rection. Our algorithm generalizes that of [38] and provides new insights into the role of

60

randomization in these solutions, as outlined in Section 4.1.1. Finally, our algorithm has in-

teresting connections to the solution of [47] for the small bids case - despite the fact that the

vertex-weighted matching problem is neither harder nor easier than the small bids case. This

strongly suggests a possible unified approach to the unrestricted online budgeted allocation

problem. See Section 4.5 for details.

4.1.1 Overview of the Result

Solution to the unweighted case: To describe our result, it is instructive to start at

the unweighted case (bu = 1 for all u ∈ U) and study its solution by [38]. Two natural

approaches that match each arriving v ∈ V to the an unmatched neighbor in U chosen (a)

arbitrarily and (b) randomly, both fail to achieve competitive ratio better than 1
2 . Their

solution is an elegant randomized algorithm called Ranking that works as follows: it begins

by picking a uniformly random permutation of the vertices in U (called the “ranking” of the

vertices). Then, as a vertex in V arrives, it is matched to the highest-ranked unmatched

neighbor. Surprisingly, this idea of using correlated randomness for all the arriving vertices

achieves the optimal competitive ratio of 1− 1
e .

How do we generalize Ranking in presence of unrestricted weights bu? The natural

Greedy algorithm which matches an arriving vertex to the highest-weighted unmatched

neighbor, achieves a competitive ratio of 1
2 (see Appendix B.1 for a proof). No deterministic

algorithm can do better. While the optimality of Ranking for unweighted matching suggests

choosing random ranking permutations of U , Ranking itself can do as badly as factor 1
n

for some weighted instances.

The main challenge in solving this problem is that a good algorithm must follow very

different strategies depending on the weights in the input instance. Greedy and Rank-

ing are both suboptimal for this problem, but both have ideas which are essential to its

solution. In particular, they perform well on distinct classes of inputs, namely, Greedy on

highly skewed weights and Ranking on equal weights. The following observation about

Ranking helps us bridge the gap between these two approaches: Suppose we perturb each

61

weight bu identically and independently and then sort the vertices in the order of decreasing

perturbed weights. When all the weights are equal, the resulting order happens to be a

uniformly random permutation of U and thus, Ranking on unweighted instances can be

thought of as Greedy on perturbed weights! We use this insight to construct our solution

to the vertex-weighted matching problem. While the nature of perturbation used did not

matter in the above discussion, we need a very specific perturbation procedure for general

vertex-weights.

Our algorithm is defined below:

Algorithm 3: Perturbed-Greedy
For each u ∈ U , pick a number xu uniformly at random from [0, 1].

Define the function ψ(x) := 1− e−(1−x).

foreach arriving v ∈ V do
Match v to the unmatched neighbor u ∈ U with the highest value of buψ(xu).

Break ties consistently, say by vertex id.

Remarks:

• It is not obvious, and indeed is remarkable in our opinion, that it suffices to perturb

each weight bu completely independently of other weights. The fact that Perturbed-

Greedy achieves the best possible competitive ratio is a post-facto proof that such

independence in perturbations is sufficient. Without the knowledge of our algorithm,

one could reasonably believe that the vector of vertex-weights {bu}u∈U - which is

known offline - contains valuable information which can be exploited. In what follows

we provide intuition as to why this is not the case.

Consider the two input instances in Figure 7. Both the connected components in

G1 have equal weights, and hence we know that Ranking achieves the best possible

competitive ratio on G1. Similarly, both connected components in G2 have highly

skewed weights, suggesting Greedy as the optimal algorithm. On the other hand,

Ranking and Greedy are far from optimal on G2 and G1 respectively. Since two

instances with identical values of vertex-weights require widely differing strategies, this

exercise suggests that we may not be losing must information by perturbing weights

62

independently. The optimality of our algorithm proves this suggestion.

1

1

100

100

1

1

100

100

U1 V1 U2 V2

Graph G1 Graph G2

Equal weights ⇒ Ranking Skewed weights ⇒ Greedy

Order of arrival Order of arrival

Figure 7: Two instances with the same vertex-weights, but widely differing optimal strate-
gies.

• The particular form of the function ψ is not a pre-conceived choice, but rather an

artifact of our analysis. This combined with the discussion in Section 4.5 seems to

suggest that ψ is the ‘right’ perturbation function.

• We note that we can also choose the function ψ(x) to be 1 − e−x, which keeps the

algorithm and results unchanged.

• Finally, we note that the multipliers yu = ψ(xu) are distributed according to the

density function f(y) = 1
1−y for y ∈

[
0, 1− 1

e

]
. Therefore, we could have equivalently

stated our algorithm as: For each u ∈ U , choose a random multiplier yu ∈
[
0, 1− 1

e

]
from the above distribution, and use buyu as the perturbed weight.

Our main result is the following theorem. The second part of the theorem follows from

the optimality of Ranking for unweighted matching [38].

Theorem 20. Perturbed-Greedy achieves a competitive ratio of 1− 1/e for the vertex-

weighted online bipartite matching problem. No (randomized) algorithm has a better com-

petitive ratio.

In addition to the basic idea (from the proof of Ranking) of charging unmatched vertices

in some probabilistic events to matched vertices in other events, our analysis needs to handle

63

the new complexity introduced due to the weights on vertices. At a very high level, just like

the algorithm, our analysis also manages to pull together the essence of the analyses of both

Greedy and Ranking.

4.1.2 Related Work

Our problem is a special case of online bipartite matching with edge weights, which has

been studied extensively in the literature. With general edge weights and vertices arriving

in adversarial order, every algorithm can be arbitrarily bad (see Appendix B.2). There are

two ways to get around this hardness: (a) assume that vertices arrive in a random order,

and/or (b) assume some restriction on the edge weights.

When the vertices arrive in random order, it corresponds to a generalization of the

secretary problem to transversal matroids [3]. Dimitrov and Plaxton [15] study a special

case where the weight of an edge (u, v) depends only on the vertex v – this is similar to

the problem we study, except that it assumes a random arrival model (and assumes vertex

weights on the online side). Korula and Pal [42] give an 1
8 -competitive algorithm for the

problem with general edge weights and for the general secretary problem on transversal

matroids.

If one does not assume random arrival order, every algorithm can be arbitrarily bad

with general edge weights or even with weights on arriving vertices. [37] introduce the

assumption of edge weights coming from a metric space and give an optimal deterministic

algorithm with a competitive factor of 1
3 . As far as we know, no better randomized algorithm

is known for this problem.

Finally, there has been other recent work [14, 27, 23], although not directly related to

our results, which study online bipartite matching and budgeted allocations in stochastic

arrival settings.

Roadmap: The rest of this section is structured as follows: In Section 4.2 we set up the

preliminaries and provide a warm up analysis of a proof of Ranking in the unweighted

special case. Section 4.3 contains the proof of Theorem 20.

64

4.2 Preliminaries

4.2.1 Problem Statement

Consider an undirected bipartite graph G(U, V,E). The vertices of U , which we will refer

to as the offline side, are known from the start. We are also given a weight bu for each

vertex u ∈ U . The vertices of V , referred to as the online side, arrive one at a time (in an

arbitrary order). When a vertex v arrives, all the edges incident to it are revealed, and at

this point, the vertex v can be matched to one of its unmatched neighbors (irrevocably) or

left permanently unmatched. The goal is to maximize the sum of the weights of matched

vertices in U .

Let permutation π represent the arrival order of vertices in V and let M be the subset

of matched vertices of U at the end. Then for the input (G, π), the gain of the algorithm,

denoted by ALG(G, π), is
∑

u∈M bu.

We use competitive analysis to analyze the performance of an algorithm. Let M∗(G) be

an optimal (offline) matching, i.e. one that maximizes the total gain for G (note that the

optimal matching depends only on G, and is independent of π), and let OPT(G) be the total

gain achieved by M∗(G). Then the competitive ratio of an algorithm is minG,π
ALG(G,π)
OPT(G) .

Our goal is to devise an online algorithm with a high competitive ratio.

Definition 5 (M∗(G)). For a given G, we will fix a particular optimal matching, and refer

to it as the optimal offline matching M∗(G).

Definition 6 (u∗). Given a G, its optimal offline matching M∗(G) and a u ∈ U that is

matched in M∗(G), we define u∗ ∈ V as its partner in M∗(G).

4.2.2 Warm-up: Analysis of Ranking for Unweighted Online Bipartite Match-
ing

Recall that online bipartite matching is a special case of our problem in which the weight

of each vertex is 1, i.e. bu = 1 for all u ∈ U . [38] gave an elegant randomized algorithm for

this problem and showed that it achieves a competitive ratio of (1 − 1/e) in expectation.

In this section, we will re-prove this classical result as a warm-up for the proof of the main

result. The following proof is based on those presented by [8, 27] previously.

65

Algorithm 4: Ranking
Choose a random permutation σ of U uniformly from the space of all permutations.

foreach arriving v ∈ V do
Match v to the unmatched neighbor in u which appears earliest in σ.

Theorem 21 ([38]). In expectation, the competitive ratio of Ranking is at least 1− 1
e .

In this warm-up exercise, we will simplify the analysis by making the following assump-

tions: |U | = |V | = n and G has a perfect matching. These two assumptions imply that

OPT = n and that the optimal matching M∗(G) is a perfect matching.

For any permutation σ, let Ranking(σ) denote the matching produced by Rank-

ing when the randomly chosen permutation happens to be σ. For a permutation σ =

(u1, u2, ..., un) of U , we say that a vertex u = ut has rank σ(u) = t. Consider the random

variable

yσ,i =

 1 If the vertex at rank i in σ is matched by Ranking(σ).

0 Otherwise

Definition 7 (Qt, Rt). Qt is defined as the set of all occurrences of matched vertices in the

probability space.

Qt = { (σ, t) : yσ,t = 1 }

Similarly, Rt is defined as the set of all occurrences of unmatched vertices in the probability

space.

Rt = { (σ, t) : yσ,t = 0 }

Let xt be the probability that the vertex at rank t in σ is matched in Ranking(σ), over

the random choice of permutation σ. Then, xt = |Qt|
n! and 1 − xt = |Rt|

n! . The expected

gain of the algorithm is ALGG,π =
∑

t xt.

Definition 8 (σiu). For any σ, let σiu be the permutation obtained by removing u from σ

and inserting it back into σ at position i.

Lemma 22. If the vertex u at rank t in σ is unmatched by Ranking(σ), then for every

1 ≤ i ≤ n, u∗ is matched in Ranking(σiu) to a vertex u′ such that σiu(u′) ≤ t.

66

Proof. Refer to Lemma 24 in the analysis of Perturbed-Greedy for the proof of a more

general version of this statement.

In other words, for every vertex that remains unmatched in some event in the prob-

ability space, there are many matched vertices in many different events in the space. In

the remaining part of this section, we quantify this effect by bounding 1− xt, which is the

probability that the vertex at rank t in σ (chosen randomly by Ranking) is unmatched, in

terms of some of the xts.

Definition 9 (Charging map f(σ, t)). f is a map from bad events (where vertices remain

unmatched) to good events (where vertices get matched). For each (σ, t) ∈ Rt,

f(σ, t) = {(σiu, s) : 1 ≤ i ≤ n, σ(u) = t and Ranking(σiu) matches u∗ to u′ where σiu(u′) = s}

In other words, let u be the vertex at rank t in σ. Then f(σ, t) contains all (σ′, s), such

that σ′ can be obtained from σ by moving u to some position and s is the rank of the vertex

to which u∗, the optimal partner of u, is matched in σ′.

For every (σ, t) ∈ Rt, (π, s) ∈ f(σ, t) implies yπ,s = 1 for some s ≤ t. Therefore,⋃
(σ,t)∈Rt

f(σ, t) ⊆
⋃
s≤t

Qs

Claim 23. If (ρ, s) ∈ f(σ, t) and (ρ, s) ∈ f(σ, t), then σ = σ.

Proof. Let u′ be the vertex in ρ at rank s. Let u∗ be the vertex to which u′ is matched by

Ranking. Then it is clear from the definition of the map f that ρ = σ
ρ(u)
u = σ

ρ(u)
u , implying

σ = σ.

The claim proves that for a fixed t, the set-values f(σ, t) are disjoint for different σ.

Therefore,

1− xt =
|Rt|
n!

=
1
n
·

∣∣∣⋃(σ,t)∈Rt
f(σ, t)

∣∣∣
n!

≤ 1
n
·

∣∣∣⋃s≤tQs

∣∣∣
n!

=
1
n

∑
s≤t

|Qs|
n!

=

∑
s≤t xs

n

Therefore, the probabilities xt’s obey the equation 1− xt ≤ 1
n

∑
s≤t xs for all t. Since

any vertex with rank 1 in any of the random permutations will be matched, x1 = 1. One can

make simple arguments [38, 8, 27] to prove that under these conditions, ALGG,π =
∑

t xt ≥(
1− 1

e

)
n =

(
1− 1

e

)
OPT , thereby proving Theorem 21.

67

4.3 Proof Of Theorem 20

In this section, we will assume that |U | = |V | = n and that G has a perfect matching. In

Appendix 4.4 we will show how this assumption can be removed.

Recall that our algorithm works as follows: For each u ∈ U , let σ(u) be a number picked

uniformly at random from [0, 1] (and independent of other vertices) Now, when the next

vertex v ∈ V arrives, match it to the available neighbor u with the maximum value of

buψ(σ(u)), where ψ(x) := 1− e−(1−x).

For ease of exposition, we will prove our result for a discrete version of this algorithm.

For every u ∈ U we will choose a random integer σ(u) uniformly from {1, ..., k} where k

is the parameter of discretization. We will also replace the function ψ(x) by its discrete

version ψ(i) = 1−
(
1− 1

k

)−(k−i+1). The discrete version of our algorithm also matches each

incoming vertex v ∈ V to the available neighbor u with the maximum value of buψ(σ(u)).

Notice that ψ is a decreasing function, so ψ(s) ≥ ψ(t) if s ≤ t. As k → ∞, the discrete

version tends to our original algorithm.

We begin with some definitions, followed by an overview of the proof.

We will denote by σ ∈ [k]n, the set of these random choices. We will say that u is at

position t in σ if σ(u) = t. As a matter of notation, we will say that position s is lower

(resp. higher) than t if s ≤ t (resp. s ≥ t).

Definition 10 (u is matched in σ). We say that u is matched in σ if our algorithm

matches it when the overall choice of random positions happens to be σ.

Definition 11 (Qt, Rt). Qt is defined as the set of all occurrences of matched vertices in

the probability space.

Qt = {(σ, t, u) : σ(u) = t and u is matched in σ}

Similarly, Rt is defined as the set of all occurrences of unmatched vertices in the probability

space.

Rt = {(σ, t, u) : σ(u) = t and u is not matched in σ}

68

Let xt be the expected gain at t, over the random choice of σ. Then,

xt =

∑
(σ,t,u)∈Qt

bu

kn
(19)

The expected gain of the algorithm is ALGG,π =
∑

t xt. Also note that the optimal gain

at any position t is B = OPT(G)
k since each vertex in U appears at position t with probability

1/k and is matched in the optimal matching. Therefore,

B − xt =

∑
(σ,t,u)∈Rt

bu

kn
(20)

Definition 12 (σiu). For any σ, σiu ∈ [k]n is obtained from σ by changing the position of u

to i, i.e. σiu(u) = i and σiu(u′) = σ(u′) for all u′ 6= u.

Observation 7. For all (σ, t, u) ∈ Rt and 1 ≤ i ≤ k, our algorithm matches u∗ to some

u′ ∈ U in σiu.

The above observation follows from Lemma 24. We’ll use it to define a map from bad

events to good events as follows.

Definition 13 (Charging Map f(σ, t, u)). For every (σ, t, u) ∈ Rt, define the set-valued

map

f(σ, t, u) = {(σiu, s, u′) : 1 ≤ i ≤ k, and the algorithm matches u∗ to u′ in σiu where σiu(u′) = s}

Observation 8. If (ρ, s, u′) ∈ f(σ, t, u), then (ρ, s, u′) ∈ Qs.

Now we are ready to give an overview of the proof.

4.3.1 Overview of the proof

The key idea in the analysis of Ranking in Section 4.2.2 was that we can bound the number

of occurrences of unmatched vertices - the bad events - in the entire probability space by a

careful count of the matched vertices - the good events. The charging map f defined above

is an attempt to do this. We’ll show in Lemma 24 that if (σiu, s, u
′) ∈ f(σ, t, u), then the

scaled (by ψ) gain due to u′ in σiu is no less than the scaled loss due to u in σ. However, s

may be higher or lower than t, unlike Ranking where s ≤ t. This implies that the bound

69

is in terms of events in
⋃
sQs, 1 ≤ s ≤ k, which is very weak (as many of the events in the

union are not used).

One idea is to bound the sum of losses incurred at all positions, thereby using almost all

the events in
⋃
sQs. However, if we do this, then the charging map loses the disjointness

property, i.e. if (σ, t, u) ∈ Rt and (σiu, i, u) ∈ Ri then f value of both these occurrences is the

same. Thus, each event in
⋃
sQs gets charged several times (in fact a non-uniform number

of times), again making the bound weak. To this end, we introduce the idea of marginal

loss (Definition 14), which helps us define a disjoint map and get a tight bound.

Next, we formalize the above.

4.3.2 Formal proof

We begin by proving an analogue of Lemma 22.

Lemma 24. If the vertex u at position t in σ is unmatched by our algorithm, then for every

1 ≤ i ≤ k, the algorithm matches u∗ in σiu to a vertex u′ such that ψ(t)bu ≤ ψ
(
σiu(u

′)
)
bu′.

Proof. Case 1 (i ≥ t): Let v1, ..., vn be the order of arrival of vertices in V . Clearly, v1

will see the same choice of neighbors in σiu as in σ, except the fact that the position of u is

higher in σiu than in σ. Since we did not match v1 to u in σ, v1 will retain its match from σ

even in σiu. Now assuming that v1, ..., vl all match the same vertex in σiu as they did in σ,

vl+1 will see the same choice of neighbors in σiu as in σ with the exception of u. Since vl+1

did not match u in σ either, it will retain the same neighbor in σiu and by induction every

vertex from V , specifically u∗ keeps the same match in σiu as in σ. Since σ(u′) = σiu(u
′), we

conclude ψ(t)bu ≤ ψ
(
σiu(u

′)
)
bu′ .

Case 2 (i < t): For a vertex v ∈ V , let mσ(v) and mσi
u
(v) be the vertices to which v is

matched in σ and σiu respectively, if such a match exists and null otherwise. Intuitively,

since ψ(i) ≥ ψ(t), the scaling factor of bu only improves in this case, while that of any

other vertex in U remains the same. Therefore, we can expect u to be more likely to be

matched in σiu and the ψ
(
σiu
(
mσi

u
(v)
))
bm

σi
u
(v) ≥ ψ (σ (mσ(v))) bmσ(v) to hold for all v ∈ V .

In fact, something more specific is true. The symmetric difference of the two matchings

70

produced by the algorithm for σ and σiu is exactly one path starting at u that looks like

(u, v1, mσ(v1), v2, mσ(v2), ...), where (v1, v2, ...) appear in their order of arrival. In what

follows we prove this formally.

Let V ′ = {v ∈ V : mσ(v) 6= mσi
u
(v)} be the set of vertices in V with different matches

in σ and σiu. Index the members of V ′ as v1, ..., vl in the same order as their arrival, i.e. v1

arrives the earliest. For simplicity, let uj = mσ(vj) and wj = mσi
u
(vj).

We assert that the following invariant holds for 2 ≤ j ≤ l: Both uj and uj−1 are

unmatched in σiu when vj arrives and vj matches uj−1, i.e. wj = uj−1.

For base case, observe that the choice of neighbors for v1 in σiu is the same as in σ,

except u, which has moved to a lower position. Since by definition v1 does not match u1 in

σiu, w1 = u. Now consider the situation when v2 arrives. All the vertices arriving before v2

- with the exception of v1 - have been matched to the same vertex in σiu as in σ, and v1 has

matched to u, leaving u1 yet unmatched. Let Uσ(v2) and Uσi
u
(v2) be the sets of unmatched

neighbors of v2 in σ and σiu respectively at the moment when v2 arrives. Then from above

arguments, Uσi
u
(v2) = (Uσ(v2) ∪ {u1}) − {u}. Since u was unmatched in σ, u2 6= u. Since

v2 ∈ V ′, w2 6= u2. This is only possible if w2 = u1. And hence the base case is true.

Now assume that the statement holds for j−1 and consider the arrival of vj . By induction

hypothesis, v1 has been matched to u and v2, .., vj−1 have been matched to u1, ..., uj−2

respectively. All the other vertices arriving before vj that are not in V ′ have been matched

to the same vertex in σiu as in σ. Therefore, uj−1 is yet unmatched. Let Uσ(vj) and Uσi
u
(vj)

be the sets of unmatched neighbors of vj in σ and σiu respectively at the moment when

vj arrives. Then from above arguments, Uσi
u
(vj) = (Uσ(vj) ∪ {uj−1}) − {u}. Since u was

unmatched in σ, uj 6= u. Given that wj 6= uj , the only possibility is wj = uj−1. Hence the

proof of the inductive statement is complete.

If u∗ /∈ V ′ then u′ = mσi
u
(u∗) = mσ(u∗) and the statement of the lemma clearly holds

since σ(u′) = σiu(u
′). If u∗ = v1, then u′ = u and ψ

(
σiu(u

′)
)
bu′ = ψ(i)bu ≥ ψ(t)bu since

71

i < t. Now suppose u∗ = vj for some j ≥ 2. Then u′ = uj−1 and by the invariant above,

ψ
(
σiu(u

′)
)
bu′ = ψ

(
σiu(uj−1)

)
buj−1 ≥ ψ

(
σiu(uj)

)
buj (21)

= ψ (σ(uj)) buj (22)

≥ ψ(t)bu (23)

Equation (21) follows from the fact that u∗ = vj was matched in σiu to uj−1 when uj

was also unmatched. The fact that only u changes its position between σ and σiu leads us

to (22). Finally, equation (23) follows from the fact that u∗ was matched to uj in σ when u

was also unmatched.

Using the above lemma, we get the following easy observation.

Observation 9. For all (σ, t, u) ∈ Rt, 1 ≤ t ≤ k, f(σ, t, u) contains k values.

Remark: As noted in the overview, although Lemma 24 looks very similar to Lemma

22, it is not sufficient to get the result, since the good events pointed to by Lemma 24 are

scattered among all positions 1 ≤ s ≤ k – in contrast to Lemma 22, which pointed to only

lower positions s ≤ t, giving too weak a bound. We try to fix this by combining the losses

from all Rt. However we run into another difficulty in doing so. While for any fixed t, the

maps f(σ, t, u) are disjoint for all (σ, t, u) ∈ Rt, but the maps for two occurrences in different

Rts may not be disjoint. In fact, whenever some u is unmatched in σ at position t, it will

also remain unmatched in σju for j > t, and the sets f(σ, t, u) and f(σju, j, u) will be exactly

the same! This situation is depicted in Figure 8.

Lower
Positions

Positions of u in σ

Marginal
Loss

Positions of u in σi
u

f (σ, t, u)

f (σ, t′, u)

(σ, t, u) ∈ St
u matched
u unmatched

Figure 8: Marginal Losses

72

This absence of disjointness again renders the bound too weak. To fix this, we carefully

select a subset of bad events from
⋃
tRt such that their set-functions are indeed disjoint,

while at the same time, the total gain/loss can be easily expressed in terms of the bad events

in this subset.

Definition 14 (Marginal loss events St). For t > 1, St = {(σ, t, u) ∈ Rt : (σt−1
u , t −

1, u) /∈ Rt−1}.

Informally, St consists of marginal losses. If u is unmatched at position t in σ, but

matched at position t− 1 in σt−1
u , then (σ, t, u) ∈ St (See Figure 8). The following property

can be proved using the same arguments as in Case 1 in the proof of Lemma 24.

Observation 10. For (σ, t, u) ∈ St, u is matched at i in σiu if and only if i < t.

Definition 15 (Expected Marginal Loss αt).

Expected marginal loss at position t = αt =

∑
(σ,t,u)∈St

bu

kn
(24)

Claim 25.

∀ t: xt = B −
∑
s≤t

αs (25)

Total loss =
∑
t

(B − xt) =
∑
t

(k − t+ 1)αt (26)

Proof. To prove equation (25), we will fix a t and construct a one-to-one map g : Rt →⋃
s≤t St. Given (σ, t, u) ∈ Rt, let i be the lowest position of u such that u remains unmatched

in σiu. By observation 10, i is unique for (σ, t, u). We let g(σ, t, u) = (σiu, i, u). Clearly,

(σiu, i, u) ∈ Si. To prove that the map is one-to-one, suppose (ρ, s, u) = g(σ, t, u) = g(σ, t, u).

Then by definition of g, ρ = σsu = σsu which is only possible if σ = σ. Therefore, |Rt| =⋃
s≤t St.

Lastly, observe that g maps an element of Rt corresponding to the vertex u being un-

matched, to an element of Si corresponding to the same vertex u being unmatched. From

equation (20),

B − xt =

∑
(σ,t,u)∈Rt

bu

kn
=
∑
i≤t

∑
(σi

u,i,u)∈Si
bu

kn
=
∑
i≤t

αi

This proves equation (25). Summing (25) for all t, we get (26).

73

Now consider the same set-valued map f from Definition 13, but restricted only to the

members of
⋃
t St. We have:

Claim 26. For (σ, t, u) ∈ St and (σ, t, u) ∈ St, if (ρ, s, u′) ∈ f(σ, t, u) and (ρ, s, u′) ∈

f(σ, t, u) then σ = σ, t = t and u = u.

Proof. If u′ is matched to v in ρ then by definition of f , v = u∗ = u∗, implying u = u.

Therefore, ρ = σiu = σiu for some i. But this implies that σ = σju for some j. This is only

possible for j = t since by definition, if u is unmatched in σ at t, then there exists a unique

i for which (σiu, i, u) ∈
⋃
t St. If j = t, then σ = σ and t = t.

Armed with this disjointness property, we can now prove our main theorem.

Theorem 27. As k →∞,

∑
t

xt ≥
(

1− 1
e

)
OPT(G) (27)

Proof. Using Lemma 24 and Observation 9, we have for every (σ, t, u) ∈ St,

ψ(t)bu ≤
1
k

∑
(σi

u,s,u
′)∈f(σ,t,u)

ψ(s)bu′ (28)

If we add the equation (28) for all (σ, t, u) ∈ St and for all 1 ≤ t ≤ n, then using Claim

26 and Observation 8, we arrive at

∑
t

ψ(t)

∑
(σ,t,u)∈St

bu

kn
≤ 1

k

∑
t

ψ(t)

∑
(σ,t,u)∈Qt

bu

kn∑
t

ψ(t)αt ≤
1
k

∑
t

ψ(t)xt (29)

=
1
k

∑
t

ψ(t)

B −∑
s≤t

αs

 (30)

Equation (29) follows from (24) and (19). Equation (30) uses Claim 25.

We now rearrange terms to get

∑
t

αt

(
ψ(t) +

∑
s≥t ψ(s)
k

)
≤ B

k

∑
t

ψ(t) (31)

74

When ψ(t) = 1−
(
1− 1

k

)k−t+1, observe that ψ(t)+
∑

s≥t ψ(s)

k ≥ (k−t+1)
k and

∑
t ψ(t) = k

e

as k →∞. Using Claim 25,

Total loss =
∑
t

(B − xt) =
∑
t

(k − t+ 1)αt

= k
∑
t

αt

(
ψ(t) +

∑
s≥t ψ(s)
k

)
≤ B

∑
t

ψ(t)

=
kB

e
as k →∞

=
OPT(G)

e

Hence, as k →∞,

Total gain ≥
(

1− 1
e

)
OPT(G)

Remark: Observe that we substituted for ψ(t) only after equation (31) - up until that

point, any choice of a non-increasing function ψ would have carried the analysis through. In

fact, the chosen form of ψ is a result of trying to reduce the left hand side of equation (31)

to the expected total loss. To conclude, the ‘right’ perturbation function is dictated by the

analysis and not vice versa.

4.4 Graphs with Imperfect Matchings

In Section 4.3, we proved Theorem 20 for graphs G(U, V,E) such that |U | = |V | and G has

a perfect matching. We can remove these assumptions with just a few modifications to the

definitions and equations involved in the proof. The algorithm remains unchanged, i.e. we

just use Perturbed-Greedy. We will only outline these modifications and the rest of the

proof follows easily. Let M∗(G) be a maximum weight matching in G(U, V,E) and U be

the set of vertices in U matched by M∗(G). Thus we know that OPT(G) =
∑

u∈U bu.

Keeping the definition of Qt the same, we change the definition of Rt to:

Rt = {(σ, t, u) : u ∈ U and σ(u) = t and u is not matched in σ}

75

The above redefinition conveys the fact that if a vertex u is not matched by M∗(G),

then we no longer consider u being unmatched a bad event. Consequently, equation (20)

changes to:

B − xt ≤
∑

(σ,t,u)∈Rt
bu

kn

which in turn yields following counterpart of equation (25):

∀t, xt ≥ B −
∑
s≤t

αs (32)

Let Eq(t) be the version of (32) for t. We then multiply Eq(t) by ψ(t) − ψ(t + 1) and

sum over 1 ≤ t ≤ n to obtain a combined inequality (with ψ(k + 1) = 0):

∑
t

(ψ(t) − ψ(t+ 1))xt ≥ ψ(1)B −
∑
t

ψ(t)αt

∑
t

ψ(t)αt ≥ ψ(1)
OPT(G)

k
−
∑
t

(1− ψ(t+ 1))
k

xt (33)

Equation (33) used the definition of ψ(t) = 1−
(
1− 1

k

)(k−t+1). Combining equation (33)

with (29), we get:

1
k

∑
t

ψ(t)xt ≥ ψ(1)
OPT(G)

k
−
∑
t

(1− ψ(t+ 1))
k

xt∑
t

xt ≥ ψ(1)OPT(G)−
∑
t

(ψ(t)− ψ(t+ 1))xt

≥
(

1− 1
e

)
OPT(G)

as k →∞, since ψ(1)→
(
1− 1

e

)
and ψ(t)− ψ(t+ 1) = (1−ψ(t+1)

k → 0 as k →∞.

4.5 Implications of the Result

4.5.1 Finding the optimal distribution over permutations of U

Since Perturbed-Greedy also chooses ranking orders over U through randomization,

we can interpret it as a non-uniform Ranking, where it chooses permutations of U from

the ‘optimal’ distribution. But we could have posed the following question, without the

76

knowledge of our algorithm: How do we find an optimal non-uniform distribution over

permutations of U? As a start, let us consider the case of 2 × 2 graphs. By exhaustive

search over all 2 × 2 graphs, we can figure out the best Ranking like algorithm for 2 × 2

graphs (Figure 9 shows the only two potentially ‘hard’ instances in 2 × 2 graphs). This

algorithm picks the permutation (u1, u2) with probability α
1+α and the permutation (u2, u1)

with probability 1
1+α (where α = bu1/bu2), and then proceeds to match to the highest

neighbor. This algorithm gives a factor of α2+α+1
(α+1)2

, which is minimized at α = 1, giving a

factor of 3/4 (in which case the algorithm is simply the same as Ranking).

bu1
= α

bu2
= 1

u1

u2

v1

v2

bu1
= α

bu2
= 1

u1

u2

v1

v2

Figure 9: Canonical examples for 2×2 graphs.

An attempt to generalize this idea to larger graphs fails due to a blow-up in complexity.

In general, we need a probability variable pσ for every permutation σ of U . The expected

weight of the matching produced by the algorithm on a graph G, is a linear expression

ALGG(pσ1 , pσ2 , ...). Thus, the optimal distribution over permutations is given by the optimal

solution of a linear program in the pσ variables. But this LP has exponentially many variables

(one per permutation) and constraints (one per “canonical graph instance”). Therefore, our

algorithm can be thought of as solving this extremely large LP through a very simple process.

4.5.2 General capacities / Matching u ∈ U multiple times

Consider the following generalization of the online vertex-weighted bipartite matching prob-

lem: Apart from a weight bu, each vertex u ∈ U has a capacity cu such that u can be

matched to at most cu vertices in V . The capacities allow us to better model ‘budgets’ in

many practical situations, e.g., in online advertising. Our algorithm easily handles general

capacities: For each u ∈ U , make cu copies of u and solve the resulting instance with unit

capacities: It is easy to verify that the solution is
(
1− 1

e

)
-approximate in expectation for

the original problem with capacities.

77

4.5.3 Online budgeted allocation :- The single bids case vs. the small bids case

As noted earlier, the single bids case of the online budgeted allocation problem reduces to

online vertex-weighted bipartite matching. Let us first define these problems.

Online budgeted allocation: We have n agents and m items. Each agent i speci-

fies a monetary budget Bi and a bid bij for each item j. Items arrive online, and must be

immediately allocated to an agent. If a set S of items is allocated to agent i, then the agent

pays the minimum of Bi and
∑

j∈S bij . The objective is to maximize the total revenue of

the algorithm.

Single bids case: Any bid made by agent i can take only two values: bi or 0. In other

words, all the non-zero bids of an agent are equal.

Corollary 28. Online budgeted allocation with single bids reduces to online vertex-weighted

bipartite matching, and hence Perturbed-Greedy achieves a competitive ratio of 1− 1/e

for this problem.

Proof. Given an instance of online budgeted allocation where agent i has budget Bi and

single bid value bi, we will construct an input instance G(U, V,E, {bu}u∈U) of online vertex-

weighted bipartite matching. The set V consists of one vertex corresponding to every item.

The set U will contain one or more vertices for every agent.

For every agent i, let ni be the largest integer such that nibi ≤ Bi and let ri = Bi−nibi.

Clearly, ri < bi. We will construct a set Ui of ni vertices, each with weight bi. In addition, if

ri > 0, then we will construct a vertex ūi with weight ri and add it to Ui. For all u ∈ Ui and

v ∈ V , the edge uv ∈ E if and only if agent i makes a non-zero bid on the item corresponding

to v.

78

(1) Given a solution to the budgeted allocation problem where a set Si of items is allocated

to agent i, let us see how to construct a solution to the vertex-weighted matching problem

with the same total value.

• If agent i pays a total of |Si| · bi, then we know that |Si| ≤ ni. Hence, for every item

in Si, we will match the corresponding vertex in V to a vertex in Ui − {ūi}. Let Ri

be the set of vertices in Ui thus matched. We have:∑
u∈Ri

bu = |Ri| · bi = |Si| · bi

• If agent i pays a total amount strictly less than |Si| · bi, then we know that: (a)

|Si| ≥ ni + 1, (b) ri > 0 and (3) agent i pays the budget Bi. We can now choose any

ni + 1 items in Si and match the corresponding vertices in V to the ni + 1 vertices in

Ui. The sum of the weights of matched vertices in Ui,
∑

u∈Ui
bu = Bi.

Summing over all i, the weight of the matching formed is equal to the total revenue of the

budgeted allocation. Let OPTA and OPTM denote the values of the optimal solutions of

the budgeted allocation and the vertex-weighted matching problems respectively. Then we

conclude from the above discussion that:

OPTM ≥ OPTA (34)

(2) Given a solution to the vertex-weighted matching problem where a set R ⊆ U of vertices

is matched, let us see how to construct a solution to the budgeted allocation problem with

at least the same total value. Let Ri = R∩Ui. For every v ∈ V that is matched to a vertex

in Ri, we will allocate the corresponding item to agent i. Let Si be the set of items allocated

to agent i.

• If |Ri| = |Si| ≤ ni, then agent i pays a total of |Si| · bi and we have:∑
u∈Ri

bu ≤ |Ri| · bi = |Si| · bi

• If on the other hand, |Ri| = |Si| = ni + 1 then agent i pays a total of Bi and we have:∑
u∈Ri

bu =
∑
u∈Ui

bu = Bi

79

Summing over all i, the total revenue of the budgeted allocation is at least the weight of the

matching. Let ALGM be the expected weight of the vertex-weighted matching constructed

by Perturbed-Greedy and ALGA be the expected value of the budgeted allocation con-

structed using the above scheme. From the above discussion, we conclude: Therefore,

ALGA ≥ ALGM

≥
(

1− 1
e

)
OPTM (35)

≥
(

1− 1
e

)
OPTA

Here, equation (35) follows from the main result - Theorem 20 - and the last step uses

equation (34). This completes our proof.

Connection to the small bids case: Note that the small bids case (bij � Bi) studied in

[47, 11] does not reduce to or from the single bids case. Yet, as it turns out, Perturbed-

Greedy is equivalent to the algorithm of [47] - let us call it MSVV - on instances that

belong to the intersection of the two cases. When every agent has a single small bid value,

the problem corresponds to vertex-weighted matching with large capacities cu for every

vertex u. Recall that we handle capacities on u ∈ U by making cu copies u1, u2, ..., ucu of

u. For each of these copies, we choose a random xui ∈ [0, 1] uniformly and independently.

In expectation, the xui ’s are uniformly distributed in the interval [0, 1]. Also observe that

Perturbed-Greedy will match u1, u2, ..., ucu in the increasing order of xui ’s, if at all.

Therefore, at any point in the algorithm, if ui is the unmatched copy of u with smallest xui

(and consequently highest multiplier ψ(xui)) then xui is in expectation equal to the fraction

of the capacity cu used up at that point. But MSVV uses exactly the scaling factor ψ(T)

where T is the fraction of spent budget at any point. We conclude that in expectation,

Perturbed-Greedy tends to MSVV as the capacities grow large, in the single small bids

case.

It is important to see that this phenomenon is not merely a consequence of the common

choice of function ψ. In fact, the function ψ is not a matter of choice at all - it is a by-product

of both analyses (Refer to the remark at the end of Section 4.3). The fact that it happens

80

to be the exact same function seems to suggest that ψ is the ‘right’ function. Moreover, the

analyses of the two algorithms do not imply one-another. Our variables are about expected

gains and losses over a probability space, while the algorithm in [47] is purely deterministic.

This smooth ‘interface’ between the seemingly unrelated single bids and small bids cases

hints towards the existence of a unified solution to the general online budgeted allocation

problem.

81

CHAPTER V

OPEN AVENUES

Unifying computational and information theoretic hardness: A very interesting av-

enue of future work in light of our comments in Section 2.5.2 is the possibility of a hardness

proof that makes both computational (i.e., based on P 6= NP) and information theoretic

arguments. To our knowledge, no such proof is yet known for any problem. The need

for such a technique is shown by our results for the multi-agent submodular shortest path

problem. Our algorithm for this problem makes only polynomially many oracle calls, but

needs to solve an NP-hard problem in order to match the lower bound! Ostensibly, a stricter

hardness may apply if we also restrict the computational power of our algorithm.

Separation between truthful and non-truthful mechanisms in single parameter

domains: As we mentioned in Chapter 3, for single parameter domains, it is known that

monotone allocation rules characterize the set of all truthful mechanisms. An allocation rule

or algorithm is said to be monotone if the allocation parameter of an agent (f(Si) in our

case) is non-decreasing in his reported bid vi. Unfortunately, often it is the case that good

approximation algorithms known for a given class of valuation functions are not monotonic.

It is an important and well-known open question in algorithmic mechanism design to resolve

whether the design of monotone algorithms is fundamentally harder than the non-monotone

ones. In other words, it is not known if, for single parameter problems, we can always con-

vert any α-approximation algorithm into a truthful mechanism with the same factor. We

believe that our problem is a suitable candidate to attack this question as it gives a lot of

flexibility in defining the complexity of function f .

Towards resolution of the online budgeted allocation problem: In Chapter 4, we

discussed connections between our vertex-weighted matching problem and online budgeted

82

allocation. Two pieces of this puzzle are known: The solution to the small bids case by [47]

and our solution to the single bids case. The fact that these pieces fit together, as explained

in Section 4.5.3, is encouraging as it strongly suggests the possibility of a unified solution.

As the authors of [47] explain, the role of the function ψ in their algorithm is to trade-off

the effect of a higher bid with that of a larger remaining budget. On the other hand, we use

the function ψ to choose the appropriate perturbation of bids. It is necessary to reconcile

these two ideas in the unrestricted online budgeted allocation setting.

83

APPENDIX A

COMBINATORIAL AUCTIONS WITH PARTIALLY PUBLIC

VALUATIONS

A.1 Greedy Allocation is Not Truthful

The greedy algorithm in our model works as follows: In each step it assigns one unallocated

item j to a buyer i, where the pair (i, j) is chosen so as maximize the marginal gain in

the objective function. That is, if buyer i had been allocated the set S of items before the

current step, then vi (f(S ∪ {j})− f(S)) is maximized.

We will construct an example that adheres to our formulation of the TV Ad auctions

problem. Consider an instance with two advertisers i1 and i2 and three ad-slots j1, j2, j3.

Suppose there are 10 viewers k1, ..., k10. Viewers k1 to k5 watch slot j1, k6 to k10 watch slot

j2 and k3 to k8 watch slot j3. The public function f in this case is the coverage function:

for a set S of slots f(S) is the number of unique viewers who watch any slot in S. To prove

that the greedy algorithm does not make monotonic allocations in this example, consider

two cases:

1. vi1 = 1 and vi2 = 1 + ε: In the first step, the greedy algorithm assigns the largest

slot j3 (with six viewers) to i2. In the next two steps, it assigns both j1 and j2 to

i1. Therefore, the i1 receives the set {j3} of total allocation value (not counting the

private multiplier) 6.

2. vi1 = 1 and vi2 = 1 − ε: In the first step, the greedy algorithm assigns the largest

slot j3 (with six viewers) to i1. In the next two steps, it assigns both j1 and j2 to i2.

Therefore, the i1 receives the set {j1, j2} of total allocation value (not counting the

private multiplier) 10.

Clearly, i2 receives a larger allocation at a lower private valuation. Therefore, the greedy

algorithm is not monotone.

84

APPENDIX B

ONLINE VERTEX-WEIGHTED BIPARTITE MATCHING AND

SINGLE-BID BUDGETED ALLOCATIONS

B.1 Performance of Greedy and Ranking

With non-equal weights, it is clearly preferable to match vertices with larger weight. This

leads to the following natural algorithm.

Algorithm 5: Greedy

foreach arriving v ∈ V do
Match v to the unmatched neighbor in u which maximizes bu (breaking ties

arbitrarily);

It is not hard to show that Greedy achieves a competitive ratio of at least 1
2 .

Lemma 29. Greedy achieves a competitive ratio of 1/2 in vertex-weighted online bipartite

matching.

Proof. Consider an optimal offline matching, and a vertex u ∈ U that is matched in the

optimal offline matching but not in the greedy algorithm. Now look at a vertex u∗ ∈ V that

is matched to the vertex u in the optimal matching. In Greedy, u∗ must have been matched

to a vertex u′ ∈ U , s.t. bu ≤ bu′ , since u was unmatched when u∗ was being matched. So

we’ll charge the loss of bu to u′ . Note that each u′ does not get charged more than once – it

is charged only by the optimal partner of its partner in the algorithm’s matching. Thus the

loss of the algorithm is no more than the value of the matching output by the algorithm.

Hence the claim.

In fact, this factor 1/2 is tight for Greedy as shown by an instance consisting of many

copies of the following gadget on four vertices, with u1, u2 ∈ U and v1, v2 ∈ V . As ε → 0,

the competitive ratio of Greedy tends to 1
2 .

85

bu1
= 1 + ε

bu2
= 1

u1

u2

v1

v2

u1

u2

v1

v2

u1

u2

v1

v2

GREEDY

matching

Optimal
Graph edge
Matching edge

matching

Notice that this counter-example relies on weights being roughly equal. We, however,

know that Ranking has an expected competitive ratio of (1 − 1/e) when the weights are

equal. On the other hand, if the weights are very different, i.e. ε is large, in the above

example, then Greedy provides a good competitive ratio. At the same time, if we exchanged

the weights on the two vertices in the example to be bu1 = 1 and bu2 = 1 + ε, then as ε

grows large, the expected competitive ratio of Ranking drops to 1
2 and on larger examples,

it can be as low as 1
n . To summarize, Greedy tends to perform well when the weights are

highly skewed and Ranking performs well when the weights are roughly equal.

B.2 A Lower Bound for Randomized Algorithms with Edge Weights

In this section, we will sketch the proof of a lower bound for the competitive ratio of a

randomized algorithm, when the graph G(U, V,E) has edge weights and our objective is to

find a matching in G with maximum total weight of edges. Previous studies of this problem

have only mentioned that no constant factor can be achieved when the vertices in V arrive

in an online manner. However, we have not been able to find a proof of this lower bound

for randomized algorithms in any literature. We prove the result when the algorithm is

restricted to be scale-free. A scale-free algorithm in this context produces the exact same

matching when all the edge weights are multiplied by the same factor.

Consider a graph G(U, V,E) such that U contains just one vertex u and each vertex in

v ∈ V has an edge to u of weight bv. Fix v1, v2, ... to be the order in which the vertices of V

arrive online. By Yao’s principle, it suffices for us to produce a probability distribution over

bv1 , bv2 , ... such that no deterministic algorithm can perform well in expectation. We will

denote the vector of edge weights in the same order in which the corresponding vertices in

V arrive, i.e. (bv1 , bv2 , ...) and so on. Consider the following n vectors of edge weights: For

every 1 ≤ i ≤ n, bi = (Di, Di+1, ..., Dn, 0, 0, ...) and so on, where D is a sufficiently large

86

number. Suppose our input distribution chooses each one of these n vectors of edge weights

with equal probability.

Clearly, regardless of the vector which is chosen, OPT(G) = Dn. Since an algorithm

is assumed to be scale-free and online, it makes the exact same decisions after the arrival

of first k vertices for each of the edge weight vectors bj , 1 ≤ j ≤ k. Therefore, it cannot

distinguish between b1, ...,bk after just k steps. Hence, we can characterize any algorithm

by the unique k such that it matches the k’th vertex in V with a positive weight edge.

Let ALG be any deterministic algorithm that matches the k’th incoming vertex with

a positive weight edge to u. Then the expected weight of the edge chosen by ALG is
1
n

∑
i>k

Di. Since D is large, this is at most c
nOPT(G), where c is some constant. Applying

Yao’s principle, we conclude that the competitive ratio of the best scale-free randomized

algorithm for online bipartite matching with edge weights is O
(

1
n

)
.

87

REFERENCES

[1] Aggarwal, G., Goel, G., Karande, C., and Mehta, A., “Online vertex-weighted
bipartite matching and single-bid budgeted allocations,” CoRR, 2010.

[2] Archer, A., Papadimitriou, C., Talwar, K., and Tardos, E., “An approximate
truthful mechanism for combinatorial auctions with single parameter agents,” in SODA
’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 205–214, 2003.

[3] Babaioff, M., Immorlica, N., and Kleinberg, R., “Matroids, secretary problems,
and online mechanisms,” in SODA ’07: Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 434–443, 2007.

[4] Babaioff, M., Lavi, R., and Pavlov, E., “Single-value combinatorial auctions and
algorithmic implementation in undominated strategies,” J. ACM, vol. 56, no. 1, pp. 1–
32, 2009.

[5] Balcan, M.-F., Blum, A., Hartline, J. D., and Mansour, Y., “Reducing mecha-
nism design to algorithm design via machine learning,” J. Comput. Syst. Sci., vol. 74,
no. 8, pp. 1245–1270, 2008.

[6] Balcan, M.-F. and Harvey, N., “Learning submodular functions,” CoRR, 2010.

[7] Bar-Yehuda, R. and Even, S., “A linear time approximation algorithm for the
weighted vertex cover problem,” Journal of Algorithms, vol. 2, pp. 198–203, 1981.

[8] Birnbaum, B. and Mathieu, C., “On-line bipartite matching made simple,” SIGACT
News, vol. 39, no. 1, pp. 80–87, 2008.

[9] Blumrosen, L. and Nisan, N., Algorithmic Game Theory, ch. 11. Cambridge Uni-
versity Press, 2007.

[10] Bollobas, B., Random Graphs. Cambridge University Press, 2001.

[11] Buchbinder, N., Jain, K., and Naor, J. S., “Online primal-dual algorithms for
maximizing ad-auctions revenue,” in ESA’07: Proceedings of the 15th annual European
conference on Algorithms, pp. 253–264, 2007.

[12] Buchfuhrer, D., Dughmi, S., Fu, H., Kleinberg, R., Mossel, E., Papadim-
itriou, C., Schapira, M., Singer, Y., and Umans, C., “Inapproximability for vcg-
based combinatorial auctions,” in SODA ’10: Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete algorithms, pp. 518–536, 2010.

[13] Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J., “Maximizing a submod-
ular set function subject to a matroid constraint (extended abstract),” in IPCO ’07:
Proceedings of the 12th international conference on Integer Programming and Combi-
natorial Optimization, pp. 182–196, 2007.

88

[14] Devenur, N. R. and Hayes, T. P., “The adwords problem: online keyword matching
with budgeted bidders under random permutations,” in EC ’09: Proceedings of the
tenth ACM conference on Electronic commerce, pp. 71–78, 2009.

[15] Dimitrov, N. B. and Plaxton, C. G., “Competitive weighted matching in transver-
sal matroids,” in ICALP ’08: Proceedings of the 35th international colloquium on Au-
tomata, Languages and Programming, Part I, pp. 397–408, 2008.

[16] Dinur, I. and Safra, S., “On the hardness of approximating minimum vertex cover,”
Annals of Mathematics, vol. 162, no. 1, pp. 439–486, 2005.

[17] Dobzinski, S., “Two randomized mechanisms for combinatorial auctions,” in APPROX
’07: Proceedings of the 10th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, pp. 89–103, 2007.

[18] Dobzinski, S. and Nisan, N., “Limitations of vcg-based mechanisms,” in STOC
’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pp. 338–344, 2007.

[19] Dobzinski, S., Nisan, N., and Schapira, M., “Approximation algorithms for com-
binatorial auctions with complement-free bidders,” in STOC ’05: Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing, pp. 610–618, 2005.

[20] Dobzinski, S. and Schapira, M., “An improved approximation algorithm for com-
binatorial auctions with submodular bidders,” in SODA ’06: Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm, pp. 1064–1073, 2006.

[21] Feige, U., Mirrokni, V. S., and Vondrak, J., “Maximizing non-monotone sub-
modular functions,” in FOCS ’07: Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science, pp. 461–471, 2007.

[22] Feige, U. and Vondrak, J., “Approximation algorithms for allocation problems:
Improving the factor of 1 - 1/e,” in FOCS ’06: Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, pp. 667–676, 2006.

[23] Feldman, J., Mehta, A., Mirrokni, V., and Muthukrishnan, S., “Online stochas-
tic matching: Beating 1-1/e,” in FOCS ’09: Proceedings of the 2009 50th Annual IEEE
Symposium on Foundations of Computer Science, pp. 117–126, 2009.

[24] Garg, R., Kumar, V., and Pandit, V., “Approximation algorithms for budget-
constrained auctions,” in APPROX ’01/RANDOM ’01: Proceedings of the 4th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems and 5th International Workshop on Randomization and Approximation Techniques
in Computer Science, pp. 102–113, 2001.

[25] Goel, G., Karande, C., Tripathi, P., and Wang, L., “Approximability of combi-
natorial problems with multi-agent submodular cost functions,” in FOCS ’09: Proceed-
ings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science,
pp. 755–764, 2009.

[26] Goel, G., Karande, C., and Wang, L., “Single parameter combinatorial auctions
with partially public valuations,” in SAGT ’10: Proceedings of the Third Annual Inter-
national Symposium on Algorithmic Game Theory, 2010.

89

[27] Goel, G. and Mehta, A., “Online budgeted matching in random input models with
applications to adwords,” in SODA ’08: Proceedings of the nineteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 982–991, 2008.

[28] Goemans, M. X., Harvey, N. J. A., Iwata, S., and Mirrokni, V., “Approximating
submodular functions everywhere,” in SODA ’09: Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 535–544, 2009.

[29] Hartline, J. D. and Lucier, B., “Bayesian algorithmic mechanism design,” in STOC
’10: Proceedings of the 42nd ACM symposium on Theory of computing, pp. 301–310,
2010.

[30] Hayrapetyan, A., Swamy, C., and Tardos, E., “Network design for information
networks,” in SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pp. 933–942, 2005.

[31] Holzman, R., Kfir-dahav, N., Monderer, D., and Tennenholtz, M., “Bundling
equilibrium in combinatorial auctions,” Games and Economic Behavior, vol. 47,
pp. 104–123, April 2001.

[32] Iwata, S., “A faster scaling algorithm for minimizing submodular functions,” SIAM
Journal of Computing, vol. 32, no. 4, pp. 833–840, 2003.

[33] Iwata, S., “Submodular function minimization,” Mathematical Programming, vol. 112,
no. 1, pp. 45–64, 2008.

[34] Iwata, S., Fleischer, L., and Fujishige, S., “A combinatorial strongly polynomial
algorithm for minimizing submodular functions,” J. ACM, vol. 48, no. 4, pp. 761–777,
2001.

[35] Iwata, S. and Nagano, K., “Submodular function minimization under covering con-
straints,” in FOCS ’09: Proceedings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, pp. 671–680, 2009.

[36] Iwata, S. and Orlin, J. B., “A simple combinatorial algorithm for submodular func-
tion minimization,” in SODA ’09: Proceedings of the Nineteenth Annual ACM -SIAM
Symposium on Discrete Algorithms, pp. 1230–1237, 2009.

[37] Kalyanasundaram, B. and Pruhs, K., “Online weighted matching,” J. Algorithms,
vol. 14, no. 3, pp. 478–488, 1993.

[38] Karp, R., Vazirani, U., and Vazirani, V., “An optimal algorithm for online bi-
partite matching,” in Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, pp. 352–358, 1990.

[39] Khot, S., “On the power of unique 2-prover 1-round games,” in STOC ’02: Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pp. 767–775, 2002.

[40] Khot, S., Lipton, R. J., Markakis, E., and Mehta, A., “Inapproximability results
for combinatorial auctions with submodular utility functions,” Algorithmica, vol. 52,
no. 1, pp. 3–18, 2008.

90

[41] Khot, S. and Regev, O., “Vertex cover might be hard to approximate to within
2-epsilon,” J. Comput. Syst. Sci., vol. 74, no. 3, pp. 335–349, 2008.

[42] Korula, N. and Pál, M., “Algorithms for secretary problems on graphs and hyper-
graphs,” in ICALP ’09: Proceedings of the 36th International Colloquium on Automata,
Languages and Programming, pp. 508–520, 2009.

[43] Krohn, E. and Varadarajan, K., “Private communication.” 2007.

[44] Lavi, R. and Swamy, C., “Truthful and near-optimal mechanism design via linear
programming,” in FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pp. 595–604, 2005.

[45] Lehmann, B., Lehmann, D., and Nisan, N., “Combinatorial auctions with decreasing
marginal utilities,” in Proceedings of the 3rd ACM conference on Electronic Commerce,
pp. 18 –28, 2001.

[46] Lehmann, D., Oćallaghan, L. I., and Shoham, Y., “Truth revelation in approxi-
mately efficient combinatorial auctions,” J. ACM, vol. 49, no. 5, pp. 577–602, 2002.

[47] Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V., “Adwords and generalized
online matching,” J. ACM, vol. 54, no. 5, p. 22, 2007.

[48] Mirrokni, V. S., Schapira, M., and Vondrák, J., “Tight information-theoretic
lower bounds for welfare maximization in combinatorial auctions,” in ACM Conference
on Electronic Commerce, pp. 70–77, 2008.

[49] Mu’alem, A. and Nisan, N., “Truthful approximation mechanisms for restricted com-
binatorial auctions: extended abstract,” Games and Economic Behavior, vol. 64, no. 2,
pp. 612–631, 2008.

[50] Nisan, N., Bayer, J., Chandra, D., Franji, T., Gardner, R., Matias, Y.,
Rhodes, N., Seltzer, M., Tom, D., Varian, H., and Zigmond, D., “Google’s
auction for tv ads,” in ICALP ’09: Proceedings of the 36th Internatilonal Collogquium
on Automata, Languages and Programming, pp. 309–327, 2009.

[51] Orlin, J. B., “A faster strongly polynomial time algorithm for submodular function
minimization,” in IPCO ’07: Proceedings of the 12th international conference on Integer
Programming and Combinatorial Optimization, pp. 240–251, 2007.

[52] Papadimitriou, C., Schapira, M., and Singer, Y., “On the hardness of being
truthful,” in FOCS ’08: Proceedings of the 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pp. 250–259, 2008.

[53] Schrijver, A., “A combinatorial algorithm minimizing submodular functions in
strongly polynomial time,” J. Comb. Theory, Ser. B, vol. 80, no. 2, pp. 346–355, 2000.

[54] Seshadhri, C. and Vondrak, J., “Is submodularity testable?,” CoRR, 2010.

[55] Sharma, Y., Swamy, C., and Williamson, D. P., “Approximation algorithms for
prize collecting forest problems with submodular penalty functions,” in SODA ’07:
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pp. 1275–1284, 2007.

91

[56] Sviridenko, M., “A note on maximizing a submodular set function subject to a knap-
sack constraint,” Oper. Res. Lett., vol. 32, no. 1, pp. 41–43, 2004.

[57] Svitkina, Z. and Fleischer, L., “Submodular approximation: Sampling-based algo-
rithms and lower bounds,” in FOCS ’08: Proceedings of the 2008 49th Annual IEEE
Symposium on Foundations of Computer Science, pp. 697–706, 2008.

[58] Svitkina, Z. and Tardos, E., “Facility location with hierarchical facility costs,” in
SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pp. 153–161, 2006.

[59] Vondrak, J., “Optimal approximation for the submodular welfare problem in the
value oracle model,” in STOC ’08: Proceedings of the 40th annual ACM symposium on
Theory of computing, pp. 67–74, 2008.

[60] Wolsey, L. A., “An analysis of the greedy algorithm for the submodular set covering
problem,” Combinatorica, vol. 2, no. 4, pp. 385–393, 1982.

92

