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SUMMARY

Extreme environments pose unique challenges to all types of electronics. These

extreme environments can cover a variety of different conditions, including, but not

limited to, low temperatures, high temperatures, radiation, pressure etc. One tech-

nology that has shown promising robustness in extreme environments is SiGe HBTs.

SiGe HBTs have shown superior performance at low temperatures and are multi-

Mrad tolerant to total dose effects. However, a type of extreme environment not

often looked at in the context of SiGe HBTs is high temperature and its intersection

with radiation. Energy and automotive sectors both have a need for high-temperature

electronics while planetary exploration missions to Venus or Jupiter or Saturn require

both high-temperature and radiation-tolerant electronics. The objective of this work

is to investigate the effects of high temperature (up to 300◦C) and radiation on SiGe

HBTs, and to provide a framework for building robust, high-temperature capable

circuits. In particular, this work aims to explore performance and reliability of SiGe

HBTs at elevated temperatures and use this to demonstrate circuit-level operation.

Additionally, the intersection of radiation with high temperature is explored to better

understand actual space environments. To achieve this objective, DC and AC perfor-

mance of SiGe HBTs at high temperatures are explored. A safe-operating-area (SOA)

map across temperature is generated using a mixed-mode stress methodology to illus-

trate the reliability concerns. Using this SOA framework, reliable, high-temperature

circuits are designed with a calibrated, wide-temperature compact model. Radiation

studies were also performed, and their underlying physics is explored with TCAD

models. The following is a summary of the contributions from this work:
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1. An assessment on the potential of using SiGe-on-SOI HBTs to support emerg-

ing applications up to 300◦C. This work was presented at the IEEE Bipo-

lar/BiCMOS Circuits and Technology Meeting (BCTM) 2015, published in

BCTM c© 2015 [1].

2. An investigation of the total ionizing dose effects on a high-voltage complemen-

tary SiGe-on-SOI technology. This work was presented at the IEEE Nuclear
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CHAPTER 1

MOTIVATION AND BACKGROUND

Silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) have found use

in a variety of different applications ranging from mixed-mode analog to radio-frequency

(RF) and mm-wave circuits [6–8]. The addition of germanium in Si BJTs makes SiGe

HBTs competitive with other, more exotic III-V technologies. To date, SiGe HBTs

at room temperatures have achieved speeds up to 720 GHz [9]. At cryogenic tem-

peratures, speeds up to 800 GHz have also been reported, thus potentially paving

the way for 1 THz SiGe HBTs in the near future [10]. Combined with the low-cost,

CMOS integration, and ease of manufacturing, SiGe HBTs are highly desirable for a

plethora of circuit applications.

Another appealing aspect of SiGe HBTs is their ability to operate in a variety of

different extreme environments (temperature extremes to radiation) [11, 12]. Being

able to operate any electronics without additional shielding or temperature control

is extremely appealing from a cost and efficiency perspective. However, in order to

achieve this, a fundamental understanding of the underlying device is required. This

work, in particular, will primarily focus on the operation of SiGe HBTs in high-

temperature, radiation-rich environments, and the intersection of both environments.

To motivate the need for electronics in these extreme environments, an overview

of high-temperature and radiation-rich environments will be discussed. Next, SiGe

HBTs will be introduced and their temperature dependence will be presented along

with the reliability concerns with increasing temperature. Finally, an overview of

radiation effects will be discussed in the context of SiGe HBTs.
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Figure 1.1: The need for high-temperature electronics and the current conven-
tional limits (after [13]).

1.1 Extreme Environments

The field of high-temperature electronics is a rapidly growing market led by vari-

ous sectors such as aerospace, automotive, energy, and planetary exploration mis-

sions [13,14]. An overview of these different sectors is shown in Fig. 1.1. The need for

high-temperature electronics starts as low as 125◦C for military applications. With

increasing temperature, other sectors come into play such as oil-well digging (150-

300◦C), automotive (100-300◦C), and aerospace (220-500◦C).

The energy sector in particular has a clear need for high-temperature electronics

due to the increasing demand for energy with the rapid increase in the global economic

development. Department of Energy (DoE) projections predict that petroleum will

be the major energy source in the next 10-15 years [15]. Petroleum from easily

recoverable sources is already rapidly diminishing, and as such, petroleum needs to

be recovered from deeper within the Earth. This is achieved with deep wells (> 15,000
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feet). Temperatures in these deep wells can reach up to 300◦C, and reliable electronics

are required. Some examples of the required electronics in these applications are

systems needed to control/drive the drill bit along with sensors to monitor external

conditions. Geothermal is another energy sector with similar requirements, where

temperatures up to 600◦C can be encountered [15].

The automotive industry is another major sector driving the need for high-temperature

electronics. Modern cars use a mechatronics (mechanical systems + electronics) sys-

tem design, which requires electronics to operate under-the-hood (150-250◦C) or on-

engine (200-300◦C) [15,16]. Different electronic systems are required in these automo-

tive, high-temperature environments. Power converters (eg: DC-DC converters) and

drivers for motor control are needed for the power electronics section, while analog

circuits are required for the amplification, signal conditioning and processing appli-

cations. While shielding and cooling can be applied to these electronic systems, such

an approach adds to the cost and weight of the entire system. Therefore, integrated

systems that can inherently handle high temperatures will be critical for optimal

design.

Deep-space exploration is another major area where high-temperature electronics

are required. A few missions proposed by NASA such as Venus In Situ Explorer

(VISE), Venus Mobile Explorer (VME), Saturn Flyby with Shallow Probes (SFSP),

and Jupiter Flyby with Deep Entry Probes (JDEP) will require electronics that can

tolerate temperatures from 200-480◦C [17]. These electronics will range from high-

power circuits for power management, driving actuators and motors to high-speed

communication and sensing systems.

Additionally, these extraterrestrial missions will require electronics to operate in

environments where large amounts of radiation will be present [14, 17]. High-energy

particles are routinely encountered in space. These particles typically either originate

from the sun or from galactic cosmic rays (GCR) [18]. These high-energy particles
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Figure 1.2: A simplified doping profile of a SiGe HBT shown along with the
band structure (after [11]).

can be protons, electrons, or heavy ions. Solar events from the sun are of particular

interest for electronics in our solar system. For any planet (including Earth) or moon,

a magnetosphere traps these high-energy particles and can be a serious threat against

planetary exploration. The strength of the magnetosphere has a direct relation to

the intensity of the radiation encountered. Therefore, for planets like Jupiter or

Saturn, radiation is a significant concern [19, 20]. Similar to temperature, shielding

can be used to alleviate the effects of radiation. Typically, aluminum is used to shield

sensitive electronics from high-energy particles, but once again, this can significantly

increase the cost for space missions since any additional weight has a large monetary

cost associated with it. Additionally, significantly high-energy particles (e.g. GCRs)

cannot be stopped with shielding.
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1.2 Introduction to SiGe HBTs

A SiGe HBT is a close relative to the Si BJT device. In order to understand the

differences, it is easier to illustrate it with a simple band diagram as shown in Fig. 1.2.

Conceptually, a SiGe NPN (or PNP) device has a similar doping profile as a typical

Si NPN (or PNP) device. However, the key difference is the addition of germanium

in the base of the device. With clever bandgap engineering, a graded Ge profile can

be incorporated into the base of a Si BJT to enhance carrier transport.

As shown in Fig. 1.2, a graded Ge profile has two key effects on the band structure.

To understand these effects, it is worth noting the difference in bandgap between sil-

icon (Eg = 1.14 eV) and germanium (Eg = 0.67 eV). The first effect is the reduction

in the conduction band barrier (EC) from the emitter to the base. Even a minute

change in the potential barrier has a large effect on the carrier injection as changes in

the potential are magnified exponentially [11]. A direct consequence of this reduction

in potential barrier is a much higher collector current (IC) and current gain (β) com-

pared to a Si BJT. This can be observed in Fig. 1.3, where the SiGe HBT is shown to

have a significantly larger IC and β. Additionally, unlike a Si BJT, this decouples the

effect of base doping on β. Therefore, the base doping can be tuned independently

to decrease base resistance and in turn increase the maximum oscillation frequency

(fmax), which is not possible in a Si BJT.

The second effect is from the graded Ge leading to a built-in drift field in the base

of the SiGe HBT. From an AC perspective, this is highly advantageous as this field

reduces the base transit time, which is strongly inversely related to the unity-gain

frequency (fT ) of the device. This results in SiGe HBTs achieving fT of well over

300 GHz rivaling even other III-V devices [9, 21, 22].

A cross-section of a typical SiGe HBT is shown in Fig. 1.4. The intrinsic region

of the SiGe HBT consists of a poly-silicon, heavily-doped emitter, a SiGe base, a
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Figure 1.3: Comparison of Gummel curves for “matched” Si BJT and SiGe
HBT. Incorporation of Ge is shown to increase IC by more than 2X (after [11]).

selectively-implanted collector (SIC), and a subcollector. Depending on the technol-

ogy, the emitter width, base thickness, base doping, and collector doping can all vary

drastically. For example, the collector doping can be tailored specifically to achieve

different breakdown voltages (BVCEO) or the emitter width can be scaled to reduce

parasitics. The extrinsic region of the SiGe HBT consists of different metal contacts

and oxides. A shallow-trench isolation (STI) is used to isolate the base contact from

the collector contact, while an emitter-base (EB) spacer is used to isolate the emitter

contact from the base contact. An additional deep trench (DT) is used to isolate one

device from another. It should be noted that there are more advanced SiGe HBTs
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Figure 1.4: Cross-section of a first generation SiGe HBT. (after [11]).

that have completely removed the DT to reduce the overall thermal footprint [23].

SiGe HBT technology is prevalent these days and several different manufactur-

ers offer multiple variants. While CMOS technology can be classified by just the

lithography node, the situation is more complex for SiGe HBTs as lithography node

alone does not sufficiently describe a device. For SiGe HBTs, it’s easier to categorize

them by looking at both fT and BVCEO since they give an insight into the device

speed and the maximum voltage swing they can handle. Fig. 1.5 illustrates some

of the different commercial SiGe HBT technologies available today. It becomes very

evident that SiGe HBTs come in a variety of different flavors. With careful bandgap

engineering and doping profile optimization, it is possible to make SiGe HBTs with

an fT of >400 GHz and a BVCEO of 1.7 V or a SiGe HBT with an fT of >5 GHz

and a BVCEO of 48 V. Therefore, this enables SiGe HBTs to tackle a wide variety of

different applications. High-speed, low-breakdown devices are highly appealing from

a RF/mm-wave applications perspective while low-speed, high-breakdown devices are

much more appealing from an analog applications perspective.
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Figure 1.5: fT as a function of BVCEO for a variety of SiGe HBT technologies
from different manufacturers.

A plethora of works in literature has mainly been concerned with the RF/mm-

wave optimized devices while not as much light has been shed on the analog optimized

devices. This is mainly because there has been a push to achieve III-V semiconductor

speeds with silicon (like the DOTFIVE and DOTSEVEN project [9, 24, 25]), which

has naturally resulted in a larger focus on those devices. However, this does not mean

the analog optimized devices are any less important as SiGe HBTs can provide as

much advantage in this particular niche as it can in the RF/mm-wave realm. A part

of this work will be to expand on these analog optimized devices and demonstrate

some of the subtle difference in physics they have compared to the RF/mm-wave

optimized devices.
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1.3 Temperature Dependence of the Operation of SiGe HBTs

To understand the temperature dependence of the operation of SiGe HBTs, the rel-

evant metrics of interest need to be identified. For any bipolar technology, there are

essentially four key metrics that define the total device performance: β, Early voltage

(VA), fT , and fmax. These metrics have a unique temperature dependence relative to

Si BJTs due to the incorporation of germanium in the base of the HBT. Therefore,

it is more convenient to quantify these metrics relative to Si BJTs.

The β of SiGe HBTs can be defined as [11] :

βSiGe
βSi

=

{
γ̃η̃∆Eg,Ge(grade)/kT e

∆Eg,Ge(0)/kT

1− e−∆Eg,Ge(0)/kT

}
(1.1)

where γ̃ is an effective density-of-states ratio between SiGe HBTs and Si BJTs, η̃ is

the minority carrier diffusivity ratio between SiGe HBTs and Si BJTs, ∆Eg,Ge(grade)

is the germanium induced change in bandgap from the base-emitter interface to the

collector-base interface, ∆Eg,Ge(0) is the germanium induced bandgap change at the

base-emitter interface, k is the Boltzmann constant, and T is temperature [11]. From

(1.1), it can be seen that the dominant temperature term is the exponential 1/kT

dependence. Therefore, with increasing temperature, β will decrease.

A similar relationship can be established for VA as [11]

VA,SiGe
VA,Si

= e∆Eg,Ge(grade)/kT

{
1− e∆Eg,Ge(0)/kT

∆Eg,Ge(grade)/kT

}
(1.2)

Like β, the dominant temperature term is the exponential 1/kT dependence. Since

VA is directly proportional to this term, it also has a negative temperature coefficient.

Lastly, fT and fmax can be described by:
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fT =
1

2πτec
(1.3)

τec = τe + τb (1.4)

τb,SiGe
τb,Si

=
2

η̃

kT

∆Eg,Ge(grade)

{
1− kT

∆Eg,Ge(grade)

[
1− e∆Eg,Ge(0)/kT

]}
(1.5)

fmax =

√
fT

8πCbcrb
(1.6)

where τec is the total transit time from the emitter to the collector, τe is the emitter

transit time, τb is the base transit time, Cbc is the base-collector capacitance, and rb

is the base resistance [11]. To the first order, maximum value or peak fT is dom-

inated by τb. The temperature dependence of τb can be understood by looking at

(1.5). There is approximately a direct linear relationship between temperature and

τb, where τb increases with temperature. Therefore, fT will decrease with increas-

ing temperature, and since fmax is directly proportional to fT , fmax has the same

temperature dependence.

Since all the relevant metrics clearly show a negative temperature coefficient, it

might be tempting to say that SiGe HBTs are not suitable for high-temperature op-

eration. However, the operation of SiGe HBTs up to 300◦C has been investigated

before, and it was shown that SiGe HBTs, even with performance degradations,

achieved acceptable performance for certain applications [1,26]. The work in [1] stud-

ied the high-temperature performance of a 150/180 GHz fT/fmax SiGe HBT, where

a current gain > 100 and a fmax > 100 GHz was achieved even at 300◦C. While the

same room-temperature performance cannot be achieved at elevated temperatures, it

is abundantly clear that SiGe HBTs can be used for high-temperature circuits without

severe compromises.
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Another key device aspect to be considered at elevated temperatures is the reverse-

bias p-n junction leakage current (I0). This leakage current is proportional to tem-

perature through the following relation:

I0 ∝ n2
i ∝ T 3eEg0/kT (1.7)

where ni is the intrinsic carrier concentration and Eg0 is the bandgap at T = 0 K [16].

The relation shows that the leakage current has strong dependence on the intrinsic

carrier concentration, which in turn has approximately a cubic dependence on tem-

perature. To first order, this leakage current doubles for every 10◦C increase. This can

be a major issue for any silicon-based electronics for high-temperature operation since

it increases the overall power consumption. There are some means to overcome this

obstacle. One is to use wide-bandgap semiconductors such as gallium-nitride (GaN)

or silicon-carbide (SiC), which can be operated to temperatures as high as 600◦C due

to a larger bandgap resulting in lower leakage current [27–30]. However, using these

III-V semiconductors can be more costly than their Si counterparts, and they are not

as easy to integrate with CMOS. Another way is to use silicon-on-insulator (SOI)

technology. SOI technologies utilize an oxide that isolates the subcollector from the

underlying substrate [31,32]. This insulation significantly reduces the leakage current,

since the majority of the reverse-bias leakage current at elevated temperatures is due

to the collector-substrate junction.

In summary, SiGe HBTs, while performing worse at elevated temperatures, can

be operated with acceptable performance even at temperatures as high as 300◦C. Ad-

ditionally, the leakage current associated with increasing temperature can be greatly

suppressed by using SOI technologies. Thus, SiGe HBTs can potentially be used for

applications requiring operation at high ambient temperatures.
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1.4 Temperature Dependence of the Reliability Degradation
Mechanisms

Any device technology has a safe-operating-area (SOA) that clearly highlights the

safe voltage and current conditions under which the device can be operated without

reliability concerns. To map out the SOA trends across temperature for a device

technology, key reliability failure regions and mechanisms need to be identified. A

sample SOA map is illustrated in Fig. 1.6. There are two main boundaries that

play a key role in the limits of viable operation; namely JC,Kirk and BVCEO. JC,Kirk

establishes the collector current density at which the Kirk effect dominates device

behavior and marks the transition into the high injection regime. BVCEO, on the

other hand, establishes the voltage boundary at which collector-emitter breakdown

is observed, and sets a conservative upper limit for maximum reliable voltage swing

allowed. The other two important regions include the electromigration threshold and

the maximum power output. The maximum power output region is more of a hard

limit arising from device parasitics and power dissipation of the material itself and

thus will not be investigated here.

From a pure electrical perspective, there are two main degradation mechanisms

that can play a vital role in SiGe HBT reliability: avalanche breakdown and Auger

damage. Both of these degradation mechanisms and their respective operative re-

gions are illustrated in Fig. 1.6. Both avalanche breakdown and Auger damage are

initiated by hot carriers (or high-energy carriers) traversing the device and reaching

sensitive oxides to create interface traps, thereby leading to parasitic leakage current

[33]. Avalanche breakdown is triggered by the large electric field in the reverse-biased

collector-base (CB) junction that leads to the creation of hot carriers through the

avalanche multiplication process. This is visually shown in Fig. 1.7. Hot carriers

generated by this field have a position and temperature dependence probability of

reaching either the EB spacer or STI oxide. Additionally, there is also a probability
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Figure 1.6: General SOA map highlighting the JC-VCB plane for SiGe HBTs
along with the different reliability degradation regions and operative damage
mechanisms.

associated with a hot carrier having enough energy at the point of collision. This

is largely determined by the mean free path length, which has a strong temperature

dependence. Avalanche breakdown is directly related to the M-1 (avalanche multi-

plication factor) metric, which is easily measured and can be used to understand the

underlying temperature dependence.

Another key degradation mechanism is Auger damage. Auger recombination is a

similar mechanism as avalanche breakdown, in that it produces hot carriers but in

this case it is driven by high current density rather than large electric fields. Auger

recombination requires three carriers to occur, where an electron and hole recombine

and excite the third electron to a higher energy state. However, a single recombina-

tion event alone will not produce a hot carrier with enough energy to cause damage

at the oxide interfaces. Therefore, this mechanism is only relevant at sufficiently
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Figure 1.7: Device cross-section illustrating the physical location of hot carrier
generation and the sensitive oxides (after [33]).

high current density, such that there are enough recombination events for a car-

rier to gain sufficient energy (2.3 eV) to cause damage to the oxide interfaces [34].

Unlike avalanche breakdown, the generation of hot carriers for the Auger recombina-

tion process does not occur at the CB junction. Since Auger recombination requires

large current densities, the peak Auger recombination rate is expected to be closer

to the EB junction and therefore making the EB spacer more susceptible to damage.

The temperature dependence of Auger damage has been highlighted in [35]. Essen-

tially, the Auger recombination rate and the hot-carrier energy distribution function

(EDF) play a key role in the temperature dependent behavior of Auger damage. As

both the recombination rate and EDF increase with increasing temperature, from a

high-temperature perspective, Auger damage is likely to be a limiting factor at high

currents, since it will act to effectively reduce the maximum allowable current.
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While Auger damage and avalanche breakdown cover the key degradation mech-

anisms for SiGe HBTs, electrothermal constraints are also significant in defining the

resultant SOA. Electrothermal constraints mainly arise from device self-heating due

to large power dissipation [36, 37]. The extent of device self-heating varies between

different device technologies due to differences in device structure and the oxide in-

terface area and location. It can also be a bigger problem for SiGe HBTs due to

the higher current density compared to Si BJTs. A major factor that can severely

influence device self-heating is the presence or absence of buried oxides in SOI tech-

nologies. An underlying oxide beneath the subcollector can restrict heat flow due to

its reduced thermal conductivity, leading to more severe self-heating than for bulk

devices. Previous work has investigated the electrothermal behavior of SiGe HBTs

across temperature [1]; however, the electrothermal behavior was only examined for

a single collector current density and not across the whole SOA region.

Outside of device-level reliability, electromigration is a significant concern when

operating any electronics at high temperatures. Electromigration is the movement

of metal atoms in metal lines that can lead to an electrical open or short [16, 38].

The mean time to failure (MTTF) of any metal line can be described using Black’s

equation

MTTF = AJ−neEa/kT (1.8)

where A and n are constants, J is the current density, k is the Boltzmann constant,

T is temperature, and Ea is the activation energy [16]. With increasing temperature,

there is a clear decrease in MTTF. Thus, electromigration is a big concern for circuits

operating at elevated temperatures (> 200◦C). In order to mitigate electromigration

related issues, large metal widths for current handling are required.

The different reliability degradation mechanisms and their underlying physical

temperature dependences are discussed in the context of SiGe HBTs. However, no
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Figure 1.8: Generation of charge and interface traps in a MOS structure after
TID (after [40,41]).

measured reliability data for SiGe HBTs exists up to 300◦C. In order to build reliable

circuits and systems aimed at high-temperature operation, a comprehensive mapping

of the temperature trends of the SOA is required.

1.5 Radiation Effects in SiGe HBTs

As highlighted previously, for deep-space missions, electronic systems can encounter

both high temperatures and large amounts of radiation. The effects arising from this

radiation can be classified as displacement damage (DDD), total ionizing dose (TID),

single-event effects (SEE). Displacement damage was found to be insignificant in SiGe

HBTs because of the heavy doping in the base and emitter, and therefore will not be

explored further in this work [39].

TID is an effect arising from high-energy particles transferring energy to sensitive

oxides in devices [41]. The unit of measurement for TID is rad, which stands for

16



radiation absorbed dose. Since rad is material dependent, it is important to clarify

which material is being referred to when citing total dose accumulated. For SiGe

HBTs, this is usually referred to in the context of SiO2. The exact TID mechanism

is shown in Fig. 1.8. High-energy particles deposit energy to an oxide, which results

in the generation of electron-hole pairs (EHPs). Electrons diffuse out of the oxide

quickly, while holes tend to stay in the oxides due to their lower mobility. This can

result in both the accumulation of positive charge within the oxides and the formation

of interface traps along the oxide-silicon interface. The interface trap formation occurs

due to trapped holes eventually reaching the oxide-silicon interface and displacing a

hydrogen bonded with oxygen [42,43].

In the context of SiGe HBTs, the accumulation of traps can lead to an increase in

the base leakage current at low base-emitter voltage (VBE). Consequently, an increase

in base current leads to a reduction in β, and thus degrades the device performance.

Positive charge accumulation can also negatively affect device performance since it

can effectively change the emitter area and consequentially, the I-V characteristics

[44]. The effects of TID on SiGe HBTs have been studied across several SiGe HBT

generations using both X-ray and gamma sources [12,45]. All the studies have clearly

shown that SiGe HBTs are tolerant to multi-Mrad doses, which are typically not

encountered in near-Earth missions but are relevant in more harsh radiation envi-

ronments such as Jupiter. From a temperature perspective, the effects of cryogenic

temperatures on the TID response of SiGe HBTs used in a bandgap reference cir-

cuit (BGR) was briefly studied in [46]. The results indicated that the TID-induced

damage was minimal even at cryogenic temperatures.

The second key radiation effect is SEE. SEE is a result of high-energy particles

such as electrons, protons, and heavy ions traversing through the active volumes in

a semiconductor device, which can be either destructive or non-destructive [12, 42,

48, 49]. Some destructive SEE is single-event burnout (SEB), single-event latch-up
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Figure 1.9: Ion-track in a DRAM cell highlighting the formation of a “funnel”
that collapses the depletion layer within the device (after [47]).

(SEL), and single-event gate rupture (SEGR). SEB typically occurs in power devices

while SEL and SEGR are more relevant in CMOS technology. Non-destructive SEE

like single-event upset (SEU), single-event transient (SET), and multiple-bit upset

(MBU). For CMOS, SEU and MBU can cause bit-flips, which can potentially corrupt

data.

SETs, however, are very relevant in SiGe HBTs. As a high-energy particle tra-

verses through the sensitive volume, a track of electron-hole pairs (EHP) is generated

as shown in Fig. 1.9. This momentarily causes all the junction electric fields to col-

lapse and is known as the “ion-shunt effect” [50]. Eventually, the junctions begin

to re-establish themselves and the excess carriers are swept out by diffusion through

the device terminals. This results in transient pulses at the device terminals. These

transient pulses can then propagate through a larger circuit/system and potentially

disrupt performance or even corrupt data [51–53]. Unlike TID tolerance, SiGe HBTs
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are highly susceptible to SETs [54–56]. In fact, due to their vertical structure, it can

even be said that they are more susceptible to SETs than FETs.

In the context of temperature, some prior work has been performed on the ef-

fects of temperature on SEE for diodes and CMOS devices [57–61]. The work in

[57] examined the temperature dependence of transients for p+/n/n+ epilayer diodes,

and found that the transient peak amplitude decreases with increasing temperature,

while the collected charge is fairly temperature independent. Simulation work has

been performed on the cryogenic single-event transient (SET) response of SiGe HBTs

in [62], and the transient peak amplitude was found to increase with decreasing tem-

perature. While SEE in SiGe HBTs has been reported in literature before, there

is a gap in knowledge of the effect elevated temperatures can play a role in SEEs.

Bridging this gap can enable the use of SiGe HBTs for potential deep-space missions,

where high-temperature and radiation effects will be encountered.
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1.6 Thesis Layout

The key objective of this work is to investigate the effects of high-temperature and ra-

diation on SiGe HBTs and provide a framework for building robust, high-temperature

capable circuits. This thesis is structured into 8 chapters: 1) Motivation and Back-

ground, 2) SiGe-on-SOI HBT Operation at High Temperature, 3) Reliability of SiGe

HBTs at High Temperatures, 4) Building High-Temperature Capable Analog Cir-

cuit Building Blocks Using SiGe HBTs, 5) High-Temperature Gate Driver, 6) Total

Ionizing Dose Effects in a High-Voltage SiGe HBT Technology, 7) Temperature De-

pendence of Single-Event Effects, 8) Conclusions and Future Work. Chapter 1 is

meant to give a background on extreme environments and how SiGe HBTs play a

role in it. Chapters 2-5 will primarily cover high-temperature related work. Chapter

2 shows the DC and AC performance of SiGe HBTs up to 300◦C. Chapter 3 covers the

temperature scaling of the reliability degradation mechanisms in SiGe HBTs. Chapter

4 covers the design and operation of high-temperature capable analog circuit build-

ing blocks. Chapter 5 shows the operation of a more sophisticated high-temperature

capable gate driver circuit. Chapters 6-7 will primarily cover radiation related work.

Chapter 6 investigates the TID effects in a high-voltage SiGe technology. Chapter 7

covers the temperature dependence of single-event effects. Chapter 8 concludes this

thesis with the main contributions and potential future work that is possible based

on this work.
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CHAPTER 2

SIGE-ON-SOI HBT OPERATION AT HIGH

TEMPERATURE

Several studies have reported on the operation of high-speed SiGe HBTs in extreme

environments, particularly at cryogenic temperatures and in radiation-rich environ-

ments [63–65]. Due to the nature of the exponential dependence on temperature, SiGe

HBTs enjoy an appreciable increase in most DC and AC key figures-of-merit (FoM)

at reduced temperatures [64]. Record performance of 0.8 THz fmax was demonstrated

at 4.3 K for a high-speed SiGe HBT, thus lending credence to the capabilities of SiGe

HBTs operating at extremely low temperatures [10].

However, the operation of SiGe HBTs on the higher end of the temperature spec-

trum has not been explored as much as cryogenic temperatures. Recent work for a

bulk SiGe HBT with an fT of 120 GHz were published in [26], while SiGe HBTs on

thin-film SOI with a peak fT of 35 GHz were reported in [66]. The work in [26] illus-

trated favorable DC, AC, and low noise performance, even at elevated temperatures,

but the use of bulk devices resulted in high off-state leakage current. A CMOS com-

patible thin-film SOI was used in [66], which was more suitable for high-temperature

operation, but at the cost of significantly lower AC performance.

High-temperature electronics has emerged as a field of recent interest, with appli-

cations in automotive electronics, aviation electronics, oil well digging, and even radar

systems [26,67]. In particular, telemetry applications (e.g., deep oil well digging and

space electronics) require high-speed devices. For bulk devices, wide-bandgap semi-

conductors such as SiC or GaN have been looked at for high-temperature operation

due to lower intrinsic concentration even at elevated temperatures (leading to lower
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Figure 2.1: Cross-section of (a) bulk, (b) SOI SiGe HBT.

leakage current) [68]. As lower temperature favors the SiGe HBT performance, it also

leads to degraded performance with increasing temperature. As such, high-speed SiGe

HBTs have not been considered applicable in the realm of high-temperature electron-

ics. However, with modern SiGe HBTs routinely reaching >120 GHz performance at

room temperature, it is likely that device performance will remain high enough with

temperature. The use of SOI can alleviate the leakage currents at high temperatures

while offering other benefits such as isolation, reduced parasitics, and lower sensitivity

to single event upsets (SEU) [66]. SiGe HBTs on thick-film SOI can provide several

benefits at temperatures up to 300◦C, especially from a speed perspective compared

to bulk BJT silicon devices, and are becoming increasingly common.

Prior studies show that the use of SOI, however, tends to increase the thermal

resistance (Rth) due to the poor thermal conductivity of SiO2 that can lead to strong

self-heating and electrothermal runaway at high DC power [69]. High-performance

SiGe HBTs are already aggressively scaled and this contributes to strong self-heating

resulting from the larger current densities and electric fields [36]. In this chapter, for

the first time, the high-temperature operation of 120/180 GHz fT/fmax SiGe HBTs
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Figure 2.2: Forward-mode Gummel (SOI) for 24◦C, 100◦C, 200◦C, and 300◦C.
Solid lines are IC while dotted lines are IB.

on SOI technology is explored, and the data show that the devices can be reliably

operated up to 300◦C without severe electrical or thermal degradation.

2.1 Technology and Measurement Details

The devices used in this study are a 0.2 x 10.25 µm2 SiGe npn on SOI (and bulk),

with a peak fT/fmax of 120/180 GHz. A simplified cross-section for the bulk and

SOI device is shown in Fig. 2.1 [70]. The devices contain both STI and DT isolation

and were not optimized for high-temperature operation. Aside from the substrate

differences, the SOI and bulk devices are completely identical.

Both DC and AC measurements were made on-wafer on a hot chuck capable of

operating from 24◦C (room temperature) to 300◦C. An Agilent 4155C parameter

analyzer was used to make all DC measurements, while an Agilent E8316C network

analyzer was used to make S-parameter AC measurements.
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Figure 2.3: Off-state leakage current (IC) as a function of temperature for both
bulk and SOI devices.

2.2 Results and Discussion

2.2.1 DC Characteristics

The DC characteristics at high temperature were measured using the forward-mode

Gummel with VCB = 0 V, from 24◦C to 300◦C, as illustrated in Fig. 2.2. The Gummel

characteristics remain nearly ideal over a wide temperature range, indicating normal

operation. No deleterious series resistance effects were seen at high injection, as shown

by the steady increase in collector current up to 300◦C. Due to the SOI substrate, off-

state leakage current is suppressed at high temperatures relative to the bulk device.

This is illustrated in Fig. 2.3 where a three orders of magnitude difference between

the off-state leakage current at 250◦C results from the use of SOI. This low off-state

current is advantageous for many analog applications.

Forward-mode current gain (βF ) data from 24◦C to 300◦C are shown in Fig. 2.4.

The peak βF decreases with temperature, which is consistent with theory [11]. Al-

though the data show approximately a 40% decrease in peak βF at 300◦C relative to
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Figure 2.4: Forward-mode current gain (βF ) from 24◦C to 300◦C for SOI.

24◦C, the device still yields a gain of over 100, demonstrating that these devices have

adequate 300◦C gain for most analog applications. An unexpected trend is observed

at low injection, where the βF increases with temperature up to 250◦C. This disparity

is attributed to the excess base current leakage found at 24◦C in Fig. 2.2. Until 250◦C,

the collector current increases faster than the base current leading to an increasing

βF at low injection.

One area where SiGe HBTs have an advantage with increasing temperature is

in collector-emitter breakdown voltage (BVCEO). BVCEO values were extracted us-

ing the technique in [11]. Fig. 2.5(a) shows that there is close to 25% increase in

BVCEO from 24◦C to 300◦C. This is another positive factor for circuits operating

at high temperature. Since BVCEO is directly related to both βF and the impact

ionization rate (M-1), the behavior of M-1 over temperature was also measured and

analyzed. M-1 as a function of VCB over temperature is plotted in Fig. 2.5(b). With

increasing temperature, the impact ionization rate decreases, as previously reported

in [26, 66]. This is attributed to higher phonon scattering at elevated temperatures
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Figure 2.5: (a) BVCEO as a function of temperature for SOI, (b) M-1 as a
function of VCB from 24◦C to 300◦C for SOI.

that decreases the probability of an electron causing impact ionization, which is highly

advantageous from a reliability perspective. Since both M-1 and βF are decreasing

with temperature, it supports the observed BVCEO trend over temperature.

2.2.2 Thermal Effects

Prior work have been reported on the positive temperature coefficient of Rth in SiGe

HBTs [26,66]. Thus, self-heating effects are expected to worsen with increasing tem-

perature. Rth was extracted using similar technique as described in [71] and is plotted

across temperature in Fig. 2.6 for both bulk and SOI devices. Rth increases for both

devices, however, the bulk device shows a higher rate of increase relative to SOI. We

note that the device measured is a single emitter geometry and the thermal resis-

tance can be significantly reduced by using multi-fingered devices instead [26]. The

self-heating effects leading to thermal runaway at room temperature for these devices

were previously reported in [36].
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Figure 2.6: Thermal Resistance (Rth) as a function of temperature for both
bulk and SOI devices with the ratio between SOI and bulk Rth overlaid.

Using [36] as the reference, the boundary for safe operation without strong elec-

trothermal instability is defined as the point where ∂VBE/∂IC < 0. This electrother-

mal instability point was extracted under a forced-IB Gummel instead of forced-VBE

Gummel in order to accurately measure the negative differential resistance (NDR)

region. VBE,crit and VCB,crit are defined as the voltages where the onset of thermal

runaway is observed. Forced-IB Gummel with various VCE over the temperature

range of interest were measured to capture these critical voltage points. This setup is

highlighted in Fig. 2.7(a), and the NDR region is shown in the Gummel in Fig. 2.7(b).

With increasing temperature, it is expected that VCB,crit should decrease, since

higher thermal resistance can potentially cause more self-heating at same DC power,

leading to electrothermal instabilities. VBE,crit is expected to naturally decrease since

a lower VBE is needed for a fixed IC with increasing temperature. The measured

results plotted in Fig. 2.8, however, indicate a different trend across temperature,

especially for VCB,crit. The results indicate that for a similar IC, a higher VCB is

needed to initiate the onset of thermal runaway. Up to 150◦C, BVCEO > VCB,crit,
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(a)

(b)

Figure 2.7: (a) Test setup for measuring electrothermally unstable operating
conditions. (b) Forced-IB Gummel with different VCE highlighting the negative
differential resistance region.

but past 150◦C, the relationship becomes opposite. One of the major implications

of this result is that at extremely high temperatures (>150◦C), the device is more

constrained by BVCEO rather than electrothermal instabilities, which is clearly good

news for using SOI in high-temperature applications.

The reason for increasing VCB,crit can be explained by looking at the relationship

between VCB,crit and Tcrit as defined in [37]:
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Figure 2.8: VCB,crit and VBE,crit as a function of temperature with the BVCEO

overlaid.

VCB,crit(JC) =
ϕ(JC)∆Tcrit

γ
− 1

γ + 1
VBE|VCB=0 +

1

γ + 1
AJCREC (2.1)

where ϕ(JC) = ∂VBE/∂T, γ = ∂VBE/∂VCB for a fixed IC, A is the emitter area, JC

is the collector current density, REC is the series combination of the external emitter

and collector resistors, and ∆Tcrit is defined as:

∆Tcrit = ∆Tmin + ∆TR,EB + ∆TR,EC (2.2)

where ∆Tmin is the change in temperature needed for thermal runaway to occur,

∆TR,EB is the change in temperature needed to compensate for the decrease in voltage

due to base and emitter series resistances, and ∆TR,EC is the change in temperature

needed to compensate for influence of external emitter and collector resistances. The

last term in both eq. 2.1 and eq. 2.2 can be neglected here, since the measurement
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setup used does not include any ballast resistors. Therefore, eq. 2.1 can be rewritten

as:

VCB,crit(JC) =
ϕ(JC)∆Tcrit

γ
− 1

γ + 1
VBE|VCB=0 (2.3)

While eq. 2.1-2.3 were derived for a SOI Silicon BJT, the underlying concept

should still be applicable to these SiGe HBTs. From measured results, γ was found

to be negative (ranging from −0.044 to −0.056 over temperature) and ∂γ/∂T was

measured as −4.3 × 10−5. VBE for a fixed IC at VCB = 0 is a decreasing function

of temperature, as shown in Fig. 2.2 and the ∂VBE/∂T and ϕ at the current density

where thermal runaway occurs was measured as −7.9 × 10−4. The temperature de-

pendent variables in the first term in eq. 2.3 are ∆Tcrit and γ, while ϕ is temperature

independent [37]. Without any external resistances, ∆Tcrit is dominated by ∆Tmin,

which is a linear increasing function of temperature. However, as temperature in-

creases, series base and emitter resistances can become significant, which causes an

additional increase in ∆Tcrit, according to eq. 2.2. Overall, this results in the first

term of eq. 2.3 increasing with temperature. Both an increasing |γ| and VBE|VCB= 0

should result in the second term of eq. 2.3 to increase. However, it is mostly domi-

nated by VBE|VCB= 0, since ∂VBE/∂T is one order of magnitude larger than ∂γ/∂T.

Therefore, the first term of eq. 2.3 increases with temperature while the second term

decreases with temperature, resulting in an overall increasing function of temperature.

This temperature dependence for VCB,crit is consistent with the measured results in

Fig. 2.8.

2.2.3 AC Characteristics

To accurately measure the peak fT and fmax of the device at high VCE and not run into

thermal runaway issues, the forced-IB method in [36] was used. Both measured h21 and

MUG showed a nearly ideal 20 dB/dec slope and were reliably used to extract up to
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Figure 2.9: fT and fmax as a function of collector current density from 24◦C to
300◦C for SOI.

Figure 2.10: Peak fT and fmax as a function of temperature for both bulk and
SOI devices.

fT and fmax. Proper deembedding and calibration were obtained at each temperature

through the use of calibration substrate standards. VCE of 1.0 V, 1.5 V, 2.0 V were
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used for fT and fmax extraction. Fig. 2.9 shows the extracted fT and fmax at 24◦C,

100◦C, 200◦C, and 300◦C for a VCE of 2 V as a function of JC. The VCE of 2 V

demonstrated the highest peak fT and fmax. To the best of the author’s knowledge,

this is the first reported data of measured fT and fmax at 300◦C for SiGe HBTs.

A clear decrease in both peak fT and fmax for bulk and SOI devices are observed in

Fig. 2.10 with increasing temperature, as expected. For the SOI device, fT decreases

from 125 GHz to 77 GHz (a 38.4% change) while fmax decreases from 172 GHz to 114

GHz (a 33.7% change). A similar trend is seen for the bulk devices; however, fmax

shows a 44% change from 24◦C to 300◦C. An important observation is that even at

300◦C, the device still achieves an fmax > 100 GHz, more than adequate to support

several high-temperature applications. The fT reduction with temperature can be

attributed to the increase in total transit time, which was extracted using [11], and

an increasing trend was observed due to enhanced minority carrier scattering in the

base, and hence a reduction in mobility. Since fmax is directly related to fT, it also

shows a decreasing relationship with temperature. A slight decrease in the JC,Kirk

with increasing temperature is also observed in Fig. 2.9 (past 100◦C). As JC,Kirk is

related to the saturation drift velocity (which decreases with increasing temperature

due to higher carrier scattering), JC,Kirk also decreases with increasing temperature,

thus reducing the peak fT and fmax at high temperatures [36].

2.3 Summary

DC and AC characteristics, along with thermal effects, were examined from 24◦C to

300◦C for SiGe HBTs on SOI, and it is demonstrated that high-speed SiGe HBTs on

SOI can be operated for most applications even at elevated temperatures as high as

300◦C. The next step is to understand how the reliability degradation mechanisms

scale with increasing temperature.
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CHAPTER 3

RELIABILITY OF SIGE HBTS AT HIGH

TEMPERATURES

Extreme environment operation of Silicon-Germanium (SiGe) heterojunction bipolar

transistors (HBTs) have been studied extensively in the past due to several inherent

advantages they possess. For instance, numerous studies have shown that SiGe HBTs

can be operated in both radiation rich environments and at temperature extremes,

both low and high [10, 39] . This potentially enables the use of SiGe HBTs in both

circuits and large-scale systems that find use in extreme environments. Some examples

of SiGe circuits designed and tested for extreme environments can be found in [64,

72–74].

As discussed in the last chapter, SiGe HBTs provide good performance at high

temperatures. Even at temperatures up to 300◦C, SiGe HBTs demonstrate accept-

able performance in key device metrics such as current gain (β), Early voltage (VA),

breakdown voltage (BVCEO), unity gain cutoff frequency (fT), and maximum oscilla-

tion frequency (fmax). The realm of high-temperature applications is a rapidly growing

field, with some key focus areas including both automotive and aviation electronics

[26,67,68].

The works reported in [1, 26, 66] examined high-performance SiGe HBTs (aimed

at RF applications) operated at high temperatures. However, for some key high-

temperature applications, it can be more beneficial to use SiGe HBTs that are op-

timized for high voltage. This enables the use of SiGe HBTs in applications where
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a large voltage drive is required (e.g., drivers) that more frequently encounter high-

temperature environments (e.g., in the automotive and aviation sectors). While wide-

bandgap semiconductors can be more suitable for these environments, it can be highly

cost-effective if silicon-based electronics can be shown to provide sufficient and reliable

performance at these high temperatures without any additional shielding or cooling.

It is also worth noting that silicon-based technology fabricated on SOI (e.g., C-SiGe

on SOI) is also extremely appealing from a high-temperature perspective, since it

reduces the off-state susbtrate leakage current, which is one of the more detrimental

effects associated with operating silicon-based devices at elevated temperatures.

A serious concern when operating any device in extreme environments is the effect

it has on the overall device reliability. Extensive work has been performed on the

reliability of SiGe HBTs in radiation-rich environments, from both a total dose and

transient response perspective. From a temperature point of view, the electrical

reliability of SiGe HBTs at cryogenic temperatures has been reported briefly in [75].

Reliability at high temperatures (>150◦C) has been examined briefly in the literature

but only in the context of mixed-mode stress [26]. When assessing the reliability of

any device, there are several regions of operation that require consideration in order to

fully map out the safe-operating-area (SOA) of a given device technology. Aside from

electrical reliability, it is also vital to address the electrothermal limitations arising

from device self-heating while operating at high powers. The chapter investigates the

role of operating temperature on both SOA limits and reliability degradation, in a

high-voltage C-SiGe on SOI platform.

3.1 SOA Mapping

As mentioned in Chapter 1, mapping out the SOA trends for any device technology

requires precise identification of the key reliability degradation mechanisms and their

corresponding failure regions. A sample SOA map is shown again in Fig. 3.1 for
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Figure 3.1: General SOA map highlighting the JC-VCB plane for SiGe HBTs
along with the different reliability degradation regions and operative damage
mechanisms.

reference. There are two electrical and one electrothermal degradation mechanisms

that will be explored in the following sections.

In order to test the two electrical degradation mechanisms, Auger damage and

avalanche damage, a mixed-mode stressing approach will be used [76]. The test setup

for this measurement is shown in Fig. 3.2. The device is operated in a common-base

configuration while the VCB and JE are independently controlled. This particular

stressing approach is useful as it is ideal for traversing the entire output plane since

the voltage and currents can be set independently. Therefore, different regions (high

voltage and low current or low voltage and high current etc.) can be explored sepa-

rately.

The devices are stressed with a given VCB and JE for a given period of time

(10,000 s for the purposes of this work), and periodically interrupted to check the

“health” of the device. The metric used to check the “health” of the device is the
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Figure 3.2: Common-base setup used for mixed-mode stress measurements.

Table 3.1: Table summarizing the values of key performance metrics for the
NPN and PNP SiGe HBT used in this work [77].

Parameter NPN PNP

β 200 230

BVCEO 48 V -53 V

Peak fT (12VCB) 4.2 GHz 3.0 GHz

base leakage current. This leakage current is extracted through two different measure-

ments: forward Gummel (FG) and inverse Gummel (IG). A sample FG with applied

stress is shown in Fig. 3.3. Base current degradation can be observed in the data

with increasing time, which is a result of interface traps at the EB spacer. However,

this is not the only relevant oxide interface. The STI is also another important oxide

that accumulates damage with stress. In order to sample the base leakage current

at the STI interface, IG is used. In inverse mode, the device is essentially oper-

ated “upside-down”. The physical collector becomes the electrical emitter while the

physical emitter becomes the electrical collector.

Auger damage and avalanche damage are the two most important electrical degra-

dation mechanism but as highlighted in the previous chapter, electrothermal limita-

tions are a also a big concern. This is especially relevant in an SOI technology since
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Figure 3.3: Sample FG data with increasing stress time.

the underlying oxide impedes heat flow down to the substrate. A similar measurement

setup as Fig. 2.7(a) is used to extract the critical electrothermal operating conditions.

The thermal resistance of any device is one way to quantify its intrinsic thermal

properties. Thermal resistance data across temperature was reported in [1, 26, 66].

Some work for the electrothermal behavior of SiGe HBTs across temperature has

been investigated in [1] as shown in the previous chapter; however, that work only

examined the electrothermal behavior for a single collector current density and not

across the whole SOA region.

3.2 Technology and Measurement Details

The devices used in this work are from a 36 V complementary SiGe HBT on SOI

platform [77]. The NPN and PNP SiGe HBTs are built on top of a 0.4 µm SOI

oxide, while being optimized for a high β-VA product. Relevant device metrics for

both the NPN and PNP are listed in Table. 3.1. It should be highlighted that these

devices are not meant for RF applications like for most modern SiGe HBTs, and are

optimized for high-performance and high-voltage analog applications. This obviously
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Figure 3.4: Forward Gummel plots for both NPN and PNP SiGe HBTs across
temperature from 24◦C to 300◦C. Solid lines are IC and dotted lines are IB.

has important implications from both a device performance and reliability perspective

due to the significant doping and structural changes needed to accommodate higher

voltage operation.

All measurements presented were performed on-wafer using a high temperature

hot chuck capable of temperatures up to 300◦C. High temperatures DC probes were

used to make both characterization and stress measurements. An Agilent 4155 was

used as the main measuring and stressing equipment. In order to get the best mea-

surements at each temperature, the die was left undisturbed for 15 minutes once the

set temperature was reached to achieve thermal equilibrium. The probes were also

probed down during this time so that the probes would be at the same temperature

as the die. All devices used in this work have a device geometry of 0.4 x 25.6 x 2

µm2.

Some characterization measurements were performed on devices up to 300◦C to

explore their high-temperature DC performance. Fig. 3.4 shows the forward Gummel
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Figure 3.5: Impact ionization for both NPN and PNP devices across tempera-
ture from 24◦C to 300◦C. Solid lines correspond to the NPN devices and dotted
lines correspond to the PNP devices.

characteristics for both the NPN and PNP SiGe HBTs. Both types of devices illus-

trate classical Gummel characteristics with increasing temperature, and a decrease

in the slope (or transconductance) is observed with rising temperature. While not

shown here, the measured current gain decreases monotonically with increasing tem-

perature, with a maximum reduction of approximately 25%, which is consistent with

measured results in the literature [1,26]. M-1 data across temperature for both NPN

and PNP SiGe HBTs are illustrated in Fig. 3.5. Both NPN and PNP devices exhibit

a decreasing M-1 with increasing temperature, as expected, which acts to increase

BVCEO and thus extend the SOA.

3.3 Stress Measurements

3.3.1 High-Voltage, Low-Current Stress

The first SOA region that was investigated was the high-voltage, low-current region.

To assess the stress degradation, mixed-mode stress, as described in [76], was applied.
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Figure 3.6: Change in inverse Gummel base current in percentage for an NPN
SiGe HBT as a function of stress time up to 10,000 s for a stress condition of
VCB = 55 V and JE = 5 µA/µm2. The different curves correspond to different
temperature points. The change in base current is extracted at a JC of 0.1
µA/µm2.

A large VCB together with a small JE was applied as the stress condition. The applied

VCB was chosen to be between BVCEO and BVCBO, while the JE was chosen to be 2-3

orders of magnitude less than peak JC,Kirk in order to avoid Kirk effect, which would

complicate the results. All stress conditions were applied for a total of 10,000 seconds

to obtain the best long-term trends.

The stress results for one stress condition for both NPN and PNP devices are

highlighted in Fig. 3.6 and Fig. 3.7, respectively. This stress condition was selected

because it best captured the trends observed across temperature. While only one

stress condition is highlighted here, several other stress conditions were also performed

(VCB = 54-60 V). This particular stress condition is shown here as it was a good

statistical representation of the stress trend. Since the BVCEO increases by up to

6 V over the temperature range of interest, the chosen stress voltages needed to be
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Figure 3.7: Change in inverse Gummel base current in percentage for a PNP
SiGe HBT as a function of stress time up to 10,000 s for a stress condition of
VCB = -55 V and JE = -5 µA/µm2. The different curves correspond to different
temperatures. The change in base current is extracted at a JC of -0.1 µA/µm2.

high enough to cause mixed-mode damage at every temperature point. In order to

quantify the damage, the change in base current in both FG and IG were analyzed.

Fig. 3.6 and Fig. 3.7 illustrate change in base current in percentage from IG

with increasing stress time for NPN and PNP, respectively. For both the NPN and

PNP devices, the change in base current from FG across temperature is minimal

and as such it is not shown in these figures. This is an expected result since the

peak electric field is deep within the CB junction and is too far from the EB spacer

interface to cause interface damage. This is especially true in this device technology

due to the lower collector doping to accommodate for a higher breakdown voltage.

Consequentially, this leads to an almost zero temperature dependence from a FG

perspective for mixed-mode reliability.

However, the damage is far more emphasized in the IG response as illustrated in
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Figure 3.8: Thermal resistance for two different NPN and PNP SiGe HBT
geometries across temperature from 24◦C to 300◦C.

both Fig. 3.6 and Fig. 3.7. This is largely driven by the damage along STI oxide

interface. While the peak electric field is too far away from the EB spacer, it is

in closer proximity to the STI. This leads to a higher probability of hot carriers

generated from the CB junction reaching the STI interface. It should be noted that

there is a significant difference in total damage between the NPN and PNP devices.

Fig. 3.5 already illustrated that M-1 should be lower for the PNP device relative

to NPN device so the mixed-mode damage should not be so high for PNP devices.

One possible reason for this discrepancy was explored in [78] where differences in the

activation energy for the damage between oxide interfaces in NPN and PNP devices

leads to PNP devices exhibiting more damage for a similar stress condition than NPN

devices. The temperature dependence, however, shows a clear negative temperature

coefficient. Similar to what was reported in [2], mixed-mode stress illustrated a slight

degradation in the high current behavior due to collector resistance increase for both

NPN and PNP devices. Overall, at temperatures as high as 300◦C, the damage
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reduction is massive relative to the 24◦C results. From an SOA perspective, this is a

desirable trend as the maximum operable voltage increases.

3.3.2 Electrothermal Boundary

The intrinsic thermal behavior of SiGe HBTs can be quantified through thermal re-

sistance measurements which was extracted using the method in [71]. The results

for both NPN and PNP devices of two different geometries are indicated in Fig. 3.8

where the thermal resistance is plotted as a function of temperature from 24◦C to

300◦C. For both NPN and PNP devices, the trend is similar where an almost linear

positive temperature coefficient is observed. Another key observation is the differ-

ence in thermal resistance between single emitter finger devices and multiple emitter

finger devices. Similar to previous work in [26], multiple emitter finger devices show

significantly smaller thermal resistance relative to single emitter finger devices and

this trend is consistent across the entire temperature range.

While thermal resistance measurements are a good quantitative measurement for

compact modeling purposes and to extract internal junction temperature, it does

not translate directly to the SOA from an electrothermal perspective. In order to

quantify the electrothermal boundary of the devices used in this work, a similar

approach to [36] is used. Essentially, a forced-IB Gummel approach was used to

quantify critical voltage and current values. Using a forced-IB Gummel instead of a

forced-VBE Gummel enables measurement of the device characteristics at very high

DC power (>100 mW) without catastrophically burning out the device due to thermal

runaway. In this work, the electro-thermal boundary is defined as the point where

∂IC/∂VBE < 0. For each forced-IB Gummel measurement, a constant VCE is used.

Measurements are then subsequently made across the entire VCE operation region to

obtain the critical voltage and current points across the JC-VCB plane.

VCB,crit and JC,crit are extracted from the forced-IB measurements for both the
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Figure 3.9: Electrothermal boundary for an NPN device that highlights the
critical JC and VCB across temperature from 24◦C to 300◦C.

NPN and PNP devices and the results are illustrated in Fig. 3.9 and Fig. 3.10. The

first VCB,crit point is the VCB value at which the electro-thermal instability point is

observed. The plots do not begin at earlier VCB values because the forced-IB Gummel

do not exhibit any electro-thermal instability through the entire swept IB values (i.e

VBE up to 1 V). Thus, it can be said that the electrothermal constraints are only

evident past a certain VCB threshold.

The NPN electrothermal boundary in Fig. 3.9 illustrates an interesting overall

trend. First, for each temperature, it can be seen that there is an initial region where

there is a relatively steep shrinkage in the maximum allowable JC with increasing

VCB. This is the first limiting region in the electrothermal boundary. The second

region of importance is the relatively flat region at higher VCB. This second region

essentially sets the upper limit on the allowable JC past the initial region. One of

the main implications of the trend in this region is that even with the larger VCB
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Figure 3.10: Electrothermal boundary for a PNP device that highlights the
critical JC and VCB across temperature from 24◦C to 300◦C.

increasing the total power dissipation, it does not necessarily decrease the maximum

allowable current drastically to shrink the SOA. However, it is worth pointing out

that the electrothermal boundary does start approaching the JC,Kirk (≈ 100 µA/µm2

at a VCB of 20 V) value at large VCB. This obviously has implications on device speed

and performance at large VCB values as the AC performance and gain will degrade

sharply.

From an over-temperature perspective, with increasing temperature, the elec-

trothermal boundary starts to extend the SOA. This trend is highlighted in Fig. 3.9

where with each successive temperature curve, the electrothermal boundary shows a

clear shift to the right and thus enabling a higher maximum VCB for a constant JC.

This trend is more clearly visible in the first region discussed previously. While the

SOA does extend outwards, there is some saturation in certain regions of the SOA.

From about 20-30 V, a much more significant extension of the SOA is observed relative
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to the 15-20 V range. The final region at very large VCB shows almost no temperature

dependence which indicates that this region is likely limited by the maximum power

output.

The PNP device electrothermal boundary illustrated in Fig. 3.10 shows a similar

overall trend as the NPN device but with some key differences in the shape of the

curve. Unlike the NPN device, there is no saturation observed at high VCB. The data

indicates an almost linear boundary across the JC-VCB plane. Another key difference

observed between the NPN and PNP device is the drastic change in initial VCB at

which thermal instability is observed. At 24◦C, VCB,crit happens at approximately 22

V while at higher temperatures, it shifts significantly to the right with 300◦C showing

an initial VCB of 30 V. This is obviously an extremely desirable trend since it allows

for a much higher operable voltage for a given current with increasing temperature

relative to the NPN device. However, it is worth noting that unlike the NPN device,

the PNP device sources and sinks much less peak current (approximately one order of

magnitude difference). For certain applications, this could make PNP devices more

desirable than NPN devices.

The presented results show a temperature dependence that is somewhat in conflict

with the temperature trend observed for the thermal resistance. Thermal resistance

measurements across temperature indicate that with increasing temperature, the in-

ternal device temperature should increase significantly for a constant dissipated power

as given by:

∆T = Tj − Tamb = PdissRTH (3.1)

where Tj is the junction temperature, Tamb is the ambient temperature, Pdiss is the

dissipated power, and RTH is the thermal resistance. This was looked at in more

detail in [1] where it was shown that the internal temperature increase needed to

cause thermal runaway increases with increasing temperature which is consistent with
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the results shown here.

3.3.3 High-Current, Low-Voltage Stress

Similar to the mixed-mode stress measurements, a common-base configuration was

used to stress the devices with a fixed JE and VCB. The stress conditions were chosen

to maximize Auger damage and minimize mixed-mode induced damage. JE values

were slowly increased from above JC,Kirk up to a point where damage was observed.

For each JE value, different VCB values were also applied to better understand the

VCB dependence for Auger induced damage.

The high-current stress results for both NPN and PNP devices at a low VCB are

illustrated in Fig. 3.11 across temperature. Fig. 3.11(a) shows the stress results for an

NPN device while Fig. 3.11(b) shows the stress results for a PNP device. The plots

illustrate the change in base current from IG in percentage as a function of stress

time. While only the base current change from IG is shown, the results indicated a

similar trend from FG extraction. The key difference is that the FG extracted base

current change is generally on a smaller magnitude than the IG extraction so the

IG change in base current was plotted to more clearly illustrate the observed trends.

Only two stress conditions are shown for each NPN and PNP devices just to highlight

the primary trends.

It should be noted that the applied JE for the NPN device is 4 mA/µm2 while

for the PNP device it is -2 mA/µm2. This was mainly chosen to better highlight

the trends and differences between the NPN and PNP. For both NPN and PNP

devices at low VCB in Fig. 3.11(a) and Fig. 3.11(b), an expected trend is observed

up to 200◦C, where the the damage increases monotonically which is consistent with

the Auger damage physics [35]. For the NPN device, from 24◦C to 200◦C, there is

approximately a 2x increase in base current after 10,000 s while for the PNP device,

there is approximately a 4x increase in base current after 10,000 s. Interestingly
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(a)

(b)

Figure 3.11: Change in inverse Gummel base current in percentage for (a) an
NPN device as a function of stress time up to 10,000 s for a stress condition
of VCB = 1 V and JE = 4 mA/µm2, (b) a PNP device as a function of stress
time up to 10,000 s for a stress condition of VCB = -1 V and JE = -2 mA/µm2.
The different curves correspond to different temperature points. The change in
base current is extracted at a |JC| of 0.1 µA/µm2 for all plots.
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enough, an unexpected trend is observed at 300◦C for both the NPN and PNP devices.

For the NPN device in Fig. 3.11(a), the damage with stress time for the 300◦C case

is actually lower than the 200◦C case. As the stress time approaches 10,000 s, some

annealing is even observed. This annealing trend is additionally observed in the PNP

device too in Fig. 3.11(b).

This reduction in damage at 300◦C is inconsistent with the temperature depen-

dence of Auger physics. However, it can be explained by understanding the damage

creation process. As damage is created by hot carriers reaching the Si/SiO2 interface,

there is an additional reverse reaction worth considering. The following equation from

the reaction-diffusion model for interface trap density (Nit) is defined as [35]:

∂Nit

∂t
= KF(N0 − Nit)−KRNitH2 (3.2)

where KF and KR are the forward and reverse reaction rate, respectively, and N0

and H2 are the dangling bond density at the interface and the hydrogen density at

the interface, respectively. KF is driven largely by the hot carrier generation rate

which in this case is dictated by the Auger recombination rate. The measured Auger

recombination rate, in particular, is known to increase at least up to 150◦C for n-

type silicon [79]. The measured results up to 200◦C here indicate that this positive

temperature coefficient, at the very least, extends up to this temperature range. It

should additionally be noted that KF is also a function of the Auger recombination

energy distribution function (EDF), which has a clear positive temperature coefficient

due to the thermalized energy tail [35]. The reverse reaction is essentially an annealing

reaction dominated by the diffusion of hydrogen to the dangling silicon bonds at the

interface. This is known to increase with temperature due to an increase in the

hydrogen diffusion rate with increasing temperature [80, 81].

At temperatures as high as 300◦C, it very likely that the reverse reaction (i.e.

49



annealing) dominates the overall reaction leading to a suppression in the total dam-

age as observed in Fig. 3.11(a) and Fig. 3.11(b). A major conclusion that can be

drawn from this behavior is that there exists a range of temperatures within 200◦C-

300◦C where the annealing reaction is comparable or even greater than the forward

reaction (Auger recombination). Identifying such a temperature range has beneficial

implications for the SOA since it means that high-current operation will not be as

detrimental as one might expect for really high temperatures (>200◦C).

The effect of higher VCB on this damage mechanism was also investigated and the

results are indicated in Fig. 3.12(a) and Fig. 3.12(b) for the NPN and PNP devices,

respectively. For both NPN and PNP devices, the ∆IB is more than 20-100x larger

with a higher VCB stress across all temperature points. These results indicate that

with enough self-heating, the damage does increase significantly which leads to the

conclusion that the Auger recombination rate still dominates at very high internal

temperature (TJ > 300◦C). It should be noted, however, that catastrophic failure is

observed in both cases in Fig. 3.12(a) and Fig. 3.12(b). The NPN starts to show

catastrophic failure at temperatures as early as 150◦C while the PNP device shows

catastrophic failure at 300◦C. There is no stress curve shown for the NPN at 300◦C

as it failed instantly with stress. When stressing these devices at the high-current

and high-voltage regime, there is also an interplay of electrothermal effects that have

to be considered which is likely helping cause catastrophic failures. Through all the

stress conditions that we measured (including ones not shown here), the NPN devices

in general showed catastrophic failure at earlier temperature conditions and at lower

VCB values than the PNP devices. This result is consistent with the trend observed in

the previous section where the PNP devices were more robust from an electrothermal

perspective to larger VCB than the NPN devices. The larger RTH observed for the

NPN relative to the PNP as shown in Fig. 3.8 also helps explain the more frequent

catastrophic failures observed for this particular NPN device geometry as it has 25%
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(a)

(b)

Figure 3.12: Change in inverse Gummel base current in percentage for (a) an
NPN device as a function of stress time up to 10,000 s for a stress condition
of VCB = 10 V and JE = 4 mA/µm2, (b) a PNP device as a function of stress
time up to 10,000 s for a stress condition of VCB = -20 V and JE = -2 mA/µm2.
The different curves correspond to different temperature points. The change in
base current is extracted at a |JC| of 0.1 µA/µm2 for all plots.

51



Figure 3.13: Metal test structure for accelerated electromigration testing.

higher RTH across the whole temperature range.

3.4 Electromigration

While not a device-related reliability concern, electromigration is an important degra-

dation mechanism at elevated temperatures [16]. Especially for temperatures>200◦C,

electromigration is a huge concern, and there are almost no reported electromigration

data in literature at these temperatures. In order to perform accelerated electromi-

gration testing, the structure shown in Fig. 3.13 was used. The smallest feature size

of the technology platform was used, which was 0.5 µm in this case, to perform the

most efficient stress testing. The total length of the test line was approximately 1 mm.

Kelvin taps were implemented on the structure so that current is forced through one

path while voltage is measured on the other for accurate resistance measurements. In

order to prevent electromigration failure at or near the pads, the metal line was split

into three branches to reduce the current density. The particular technology platform

used in this work contained three metal layers each using the same metal, therefore

three separate but identical structures were used.

The general testing procedure consisted of forcing a set current density across the

metal line, and measuring the voltage across the line. In doing so, one is able to

constantly measure the resistance based on Ohm’s law. A metal was considered to

fail if the resistance exceeded its nominal value by 50%. The results for temperatures

>200◦C is shown in Fig. 3.14. M1 is the bottom-most metal line (closest to device)

while M3 is the top-most metal line (closest to top of wafer). A stress current density

of 10 mA/µm2 was used for all temperatures. A sample size of three metal lines
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Figure 3.14: Mean time to failure as a function of temperature for three different
metal layers. A stress current density of 10 mA/µm2 was used.

were used and their MTTF was averaged for each data point. As expected based

on Black’s equation, a strong reduction (almost linear on log scale) in the MTTF is

observed. While it is not possible to get a statistical representation of the MTTF

based on the small sample size used here, it still provides insight into the expected

degradation one can expect for metal lines at these high temperatures.

An interesting, non-monotonic trend is also observed across the metal lines, where

M3 shows the worst MTTF and M2 shows the best MTTF. There are two possible

reasons for this. One is the sample size is too small and that the results could

potentially be skewed by outliers. Another possible reason is the heat flow distance.

It is easier for majority of the heat flow to conduct downwards to the substrate since

the bottom of the wafer is directly in contact with the hot chuck. Heat can also flow

upwards but it is much harder for heat to conduct through air at the top. Therefore,

M3 can be said to have the largest thermal resistance since it is farthest from the
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substrate. M2 likely has the lowest thermal resistance since it is close to both the

substrate and the top while M1 has a slightly higher thermal resistance since it is

close to the substrate but much further from the top. A larger sample size is required

to make any conclusive statement on this trend. However, the key conclusion from

the measured results is that metal lines for high-temperature applications should

be significantly wider than required for room temperature applications to mitigate

electromigration.

3.5 Summary

The SOA trends for a complementary SiGe-on-SOI technology was explored up to

300◦C. Device level reliability measurement results were shown for different device

bias regions. The SOA trends across temperature are summarized in Fig. 3.15.

Mixed-mode stress illustrates a negative temperature coefficient that bodes well for

high-temperature applications that require large voltage swing where a larger voltage

swing than conventionally defined BVCEO will be possible. As this is a SiGe-on-

SOI device, self-heating induced electrothermal instability also plays a large role in

the SOA. The critical JC and VCB were mapped out along the JC-VCB plane. The

electrothermal boundary was shown to increase for both the NPN and PNP with

increasing temperature which implies that with increasing temperature, there is a

larger margin of operation for maximum dissipated power before reaching an elec-

trothermally unstable operation point. It should be noted that these measurements

were for a DC condition and there should potentially be a larger extension of the

SOA when looking at more of a pulsed, circuit type operation.

The high-current, low-voltage region was also looked at across temperature and

the Auger damage in this region exhibited a positive temperature coefficient. This

has major implications on the high-current circuit operation of SiGe HBTs at higher
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Figure 3.15: High-level summary of the key SOA shifts with increasing temper-
ature.

temperatures (up to 200◦C). However, it was seen that at 300◦C operation, the high-

current induced damage reduced and illustrated an annealing behavior which implies

that there is a temperature range where annealing dominates over Auger damage

and thus slightly extends the SOA for high temperature operation. Electromigration

was also briefly explored, and a strong reduction in metal reliability was measured.

Therefore, wide metal lines are highly recommended for high-temperature circuit

desing. Overall, SiGe HBTs on SOI illustrate a lot of favorable high-temperature

behavior which can potentially enable the use of SiGe HBTs in high-temperature

applications.
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CHAPTER 4

BUILDING HIGH-TEMPERATURE CAPABLE ANALOG

CIRCUIT BUILDING BLOCKS USING SIGE HBTS

High-temperature electronics have garnered increasing attention in recent years due

to the emerging markets in aviation, automotive, and energy exploration (oil, gas,

etc.) [1, 67]. In principle, wide-bandgap semiconductors such as GaN and SiC are

better-suited for high-temperature environments (> 200◦C), since bulk silicon-based

devices exhibit severe leakage current at these temperatures. However, while these

wide-bandgap semiconductors are more suitable from a performance perspective, it

would still be ideal to be able to use silicon-based designs, due to their inherently

lower cost, higher yield, ease of manufacturing, high reliability, and easier integration

with CMOS control electronics. Key to any Si-based approach is to use silicon-on-SOI

technology to reduce substrate leakage current, which makes it easier to build large

circuits capable of operating at elevated temperatures for long periods of time.

Operation of silicon-germanium heterojunction bipolar transistors (SiGe HBTs)

at high temperatures has been an area of recent interest due to its favorable DC

and AC performance, even at temperatures as high as 300◦C [1, 26, 66]. Current

gains (β) over 100, and fT/fmax over 100 GHz at 300◦C have been demonstrated

in previous work, which position SiGe HBTs as an enabling technology for circuits

operating at these extreme temperatures [1]. However, long-term reliability at high

temperatures is a valid concern. Reliability of SiGe HBTs at temperatures up to

300◦C was reported in [2] and discussed in the previous chapter. The results indicated

that SiGe HBTs can be operated at these extreme temperatures without substantial

degradation. Suppression of classical mixed-mode stress at 300◦C was observed, along
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with favorable electrothermal behavior, which bodes well for long-term operation of

SiGe HBTs at high temperatures.

To date, the bulk of the literature in this field has only examined device-level

operation of SiGe HBTs at high temperatures. The work in [82] showed design and

operation of a SiGe BGR circuit using a bulk SiGe HBT technology. However, there

have been no reported results of high-temperature circuit design using SiGe-on-SOI

HBT technologies. In this chapter, the design and operation of basic analog building

block circuits for high-temperature operation using a complementary SiGe-on-SOI

HBT (C-SiGe-on-SOI HBT) technology is reported. In particular, a current mirror,

a BGR, and a class-AB push-pull output stage were designed and measured up to

300◦C using calibrated compact models. A preliminary assessment of their robustness

for long-term operation in such environments was also made. A simple method for

calibrating compact models for use at high temperatures is also discussed.

4.1 Technology and Measurement Details

This work utilizes a high-voltage (> 30 V) C-SiGe-on-SOI HBT platform [77]. Since

these devices are optimized for high-voltage analog applications, they are not intended

for RF operation. Therefore, simple analog building block circuits were chosen to best

illustrate the viability of using SiGe-on-SOI HBTs at high-temperatures. All circuits

shown in this work only use NPN and PNP devices. Some passives such as resistors

and capacitors were used, but their viability for temperatures higher than 200◦C was

verified before being used in the actual circuit designs. No change was observed in

the values of these passive components.

The current mirror and push-pull output stage were both measured using a hot

chuck, while the BGR was measured using a high-temperature oven. The cur-

rent mirror and push-pull output stage were measured on-wafer using special high-

temperature probes, and care was taken to achieve good probe contact, which can
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Table 4.1: Key temperature-dependent parameters in the Mextram compact
model.

Model Parameter Definition
AQBO Zero bias base charge
AE Temp. coefficient of RE
AB Temp. coefficient for RB
AEPI Temp. coefficient for REPI
AEX Temp. coefficient for extrinsic RB
AC Temp. coefficient for buried layer
DVGBF Bandgap voltage difference of βF

DVGBR Bandgap voltage difference of βR

VGB Bandgap voltage of base
VGC Bandgap voltage of collector
VGJ Bandgap voltage of EB junction recombination
DVGTE Bandgap voltage difference of emitter stored charge

be an issue at high temperatures. Given the sensitive nature of the BGR, however,

it was packaged and wirebonded in a ceramic dual inline package (DIP) in order to

avoid any potential probe contact issues at elevated temperatures.

4.2 Compact Model Calibration

In order to design circuits for high-temperature operation, robust, well-calibrated

compact models are required. However, this is not typically possible since most

calibrated models provided by foundries are usually only valid up to 125◦C–150◦C.

There are two ways to overcome this obstacle. One is to use circuit techniques that

take advantage of the predictable temperature dependence of the underlying devices

to design around inferred changes at higher temperatures. While this is a valid

tactic, it requires different techniques for different circuits and applications, which

can complicate future designs, and is thus not desirable. The second way is to use

calibrated models that are valid at these high-temperature ranges (200◦C–300◦C).

This method is more scalable, and provides a path to more easily design a wide

variety of circuits. The latter path was followed in the present work.
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Figure 4.1: High-level diagram summary of the compact model calibration
method employed in this work.
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Figure 4.2: Gummel plots comparing simulation of both uncalibrated and cali-
brated models with measurements at 250◦C.

The compact model used in this work is Mextram [83]. Temperature-dependent

parameters that had a large effect on both DC and AC behavior were first identified

and are listed in Table. 4.1. DC behavior of SiGe HBTs was characterized with

Gummel and output family curve measurements over temperature. While a large
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sample size is required to truly calibrate a compact model, that was not possible

due to time and equipment constraints. A compromise was made and approximately

10 devices of four different emitter sizes were measured from 24◦C–300◦C, and the

gathered data was then used to calibrate the compact model.

An iterative approach was taken during calibration. A high-level diagram illustrat-

ing the calibration procedure is shown in Fig. 4.1. First, Gummel and output family

curves were compared with simulations, and the appropriate model parameters were

tuned to ensure good calibration across a wide temperature range. A representative

example of this calibration is illustrated in Fig. 4.2. Gummel simulations before and

after calibration are compared with measurements at 250◦C, and good agreement can

be seen after calibration. It should be noted that when changing any model parame-

ters, it is vital to ensure that no unwanted changes are made to the model behavior

at other temperature ranges (i.e., the normal temperature range the compact model

was previously rated for). This was confirmed with detailed simulations over sev-

eral temperature ranges. Subsequently, these calibrated models were used to design

high-temperature capable circuits.

4.3 Results

4.3.1 Cascode Current Mirror

A simple cascode current mirror using only NPN devices was designed (shown in

Fig. 4.3) and measured from 24◦C–300◦C. The results are shown for 250◦C in Fig. 4.4,

where the output current of the mirror is plotted as a function of output voltage

when the input current is varied from 5 µA–105 µA. While the results are not shown

for all temperatures, these results are representative of the results over the entire

temperature range of interest. Measurement results are compared with simulation

results in Fig. 4.4, and there is good agreement between the two.
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Figure 4.3: Schematic of the cascode current mirror.

Two of the key figures-of-merit (FoM) for any current mirror is its output resis-

tance and current mirror mismatch ratio (CMMR). Both the output resistance and

CMMR of the cascode current mirror were measured, and are shown in Fig. 4.5 for

an input current of 105 µA. An output resistance of more than 60 MΩ was measured

from 200◦C–300◦C. This illustrates that even though the Early voltage of SiGe HBTs

decreases with increasing temperature, a cascode current mirror using SiGe HBTs still

exhibits large output resistance up to 300◦C, which bodes well for high-temperature

operation of biasing circuits using SiGe HBTs. Another key FoM is the CMMR, which

measures the percent difference between the input and output currents. A CMMR of

less than 3% was measured up to 300◦C. Interestingly, the CMMR gets better with

61



Figure 4.4: Cascode current mirror output for input current from 5 µA-105 µA
as a function of output voltage at 250◦C. Solid lines are measurement results
and square symbols are simulation results.

Figure 4.5: Output resistance and CMMR of the cascode current mirror from
24◦C–300◦C at an input current of 95 µA.

increasing temperature, which we believe is tied to the lack of temperature scaling of

the current gain.
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Figure 4.6: Schematic of the wide-temperature BGR.

4.3.2 Bandgap Reference Circuit

A voltage reference circuit is a ubiquitous component that provides a stable bias to

other circuits across temperature. An attempt was made here to build a BGR circuit

that could provide an output voltage with as small a temperature coefficient (TC) as

possible from 24◦C–300◦C.

The design of the BGR began with a standard beta multiplier topology, as il-

lustrated in Fig. 4.6. The standard beta multiplier by itself provides a supply-

independent biasing for the core of the BGR. The core of the BGR generates a con-

stant output voltage (Vout) from approximately 24◦C–300◦C. This is achieved by the

first two branches producing a current that is proportional to absolute temperature

(PTAT). This PTAT current is fed into the 25 kΩ resistor and the diode-connected

transistor. The voltage drop across the 25 kΩ resistor increases with temperature,

while the voltage across the diode-connected transistor decreases with increasing tem-

perature due to the temperature dependence of VBE. However, this is only true up to

125◦C. Past this temperature, the complementary to absolute temperature (CTAT)

voltage across the diode-connected transistor decreases faster with respect to the

PTAT voltage of the 25 kΩ resistor, which results in the output voltage decreasing
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Figure 4.7: (a) Output voltage of the wide-temperature BGR from 24◦C–300◦C
for different supply voltages (b) Measured TC of the wide-temperature BGR
for different supply voltages.

after 125◦C. Additional current needs to be injected into the Vout node with increas-

ing temperature so that the PTAT voltage across the resistor increases proportionally

with the CTAT voltage across the diode-connected transistor [84].

In order to inject additional current into Vout with increasing temperature, extra

stages were added to the BGR, as indicated in Fig. 4.6. Each of these additional

compensation stages were designed such that they are active only over their designed

temperature range. Once the BGR enters this particular temperature range, these

branches output extra PTAT current into Vout. The temperature at which these

stages become active is controlled by the resistor in the stage, while the magnitude

of the PTAT current injected is controlled by the current mirror ratio at the output

of each stage. By properly tuning the resistor value and current mirror ratio, one can
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Table 4.2: Benchmarking wide-temperature BGRs.

This work [82] [85] [86] [87] [88] [89]
Technology SiGe-on-

SOI
Bulk
SiGe

SOI
CMOS

4H-
SiC
BJT

Thin-
film
SOI
CMOS

PDSOI
CMOS

GaN

Vref (V) 1.201 1.187 1.18 3.16 1.2 1.167 -2.1
Temperature
Range (◦C)

24-300 25-225 25-250 25-500 25-300 25-300 25-250

TC (ppm/◦C) 88.48 59 112 46 98 138 <238
Supply Volt-
age (V)

5 - 5 7.5 4 2 -9

Area (mm2) 0.089 - - 0.81 0.385 0.083 0.16
Power Con-
sumption
(mW)

1.7 - 1.28 29.25 0.8 0.285 7.2

Figure 4.8: Percent change of BGR Vout at 300◦C with a VCC of 30 V as a
function of time.

achieve a very low TC from 24◦C–300◦C. This approach has many benefits, since it

allows a modular design approach. Assuming the models are well-calibrated over the

temperature range of interest, this design approach enables a designer to individually

control the TC over any arbitrary temperature range with multiple stages.

The measured Vout of this wide-temperature BGR from 24◦C–300◦C is shown in

Fig. 4.7(a). The TC for each VCC is shown in Fig. 4.7(b). A TC of 88.3 ppm/◦C is
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achieved at a VCC of 5 V from 24◦C–300◦C, which to the best of the authors’ knowl-

edge, is the lowest measured TC of any silicon-based BGR over this wide-temperature

range. The performance of this BGR is benchmarked with other wide-temperature

BGRs found in Table.4.2. Not only does this wide-temperature BGR have the lowest

measured TC in this particular temperature range, but it also compares favorably in

terms of area and power consumption.

While a low TC is measured, the BGR output isn’t completely ideal and has a

higher TC than what was observed in simulations. Fig. 4.7 shows that the output

voltage doesn’t increase until past 250◦C (however, the slope starts to decrease past

125◦C). Ideally, the Vout should have several peaks and troughs, which would indicate

that proper temperature compensation is occurring. This was confirmed by monitor-

ing the total current drawn by the BGR, which ranged from 320 µA–360 µA. These

values were similar to what was seen in simulations, which indicates that the different

compensation stages are activating properly over their respective temperature ranges.

The observed discrepancy is likely due to the injected PTAT current not increasing

at a faster rate than the CTAT current. This leads to a decreasing Vout as observed

in Fig. 4.7. This result is not surprising, since a BGR is a precision circuit and

thus, any small discrepancies in the model (specifically the temperature dependence

of VBE) can lead to significant differences in measurements. However, this is clearly

a solvable issue with better compact model calibration using a larger sample size of

devices.

Long-term reliability of circuits operating at elevated temperatures is always a

concern. To make sure there were no long-term reliability issues, the BGR was op-

erated at 300◦C with a VCC of 30 V for approximately 10,000 minutes. The percent

change in Vout as a function of time is shown in Fig. 4.8. Less than 0.1% change in

Vout over 10,000 minutes was observed, and the overall effect on the TC was negligible.
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Figure 4.9: Schematic of the class AB push-pull output stage.

4.3.3 Class AB Push-Pull Output Stage

Push-pull output stages are important building blocks for most operational ampli-

fiers since they enable an amplifier to drive large capacitive loads easily. Thus, a

proper push-pull output stage that can reliably drive a given load across the entire

temperature range of operation is vital for building larger analog circuits aimed at

high-temperature operation. A simple class-AB push-pull output stage utilizing both

NPN and PNP devices was designed for high-temperature testing and the schematic

is shown in Fig. 4.9. The push-pull output stage was designed to handle up to ±20

V supply with a ±2 V input swing.
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Figure 4.10: Rise and fall time of a class AB push-pull output stage driving a
20 pF load as a function of temperature. The quiescent current consumption is
also shown in the right y-axis.

The push-pull output stage was tested using a 20 pF load with ±10 V supplies

and a 10-kHz ±1 V square wave input signal. The rise and fall time from 24◦C–

300◦C is shown in Fig. 4.10. In general, both the rise and fall times increase with

increasing temperature. This is caused by both a reduction in transconductance

(leading to a decrease in the drive current), and due to the increase in the device

parasitics, specifically the junction capacitance, at high temperatures. The increase

in the capacitance is mainly due to the temperature dependence of the built-in voltage

(Vbi) [90]. An increase in the junction capacitance requires longer charging and

discharging times, which contributes to the trend seen in Fig. 4.10. Interestingly,

the fall time becomes slower compared to the rise time past 250◦C indicating that

the parasitics and transconductance associated with the PNP device change faster

relative to the NPN device, since the fall time is controlled by the PNP device sinking

the output current. Therefore, any circuit aimed at switching applications for high

temperatures needs to account for the increase in certain device metrics at higher

temperatures. While this particular design was not intended to output large current,

it was still capable of sinking approximately 1 mA even at 300◦C. The quiescent
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current is also shown in Fig. 4.10. The benefits of using SOI is readily apparent, since

there is only a small increase in the quiescent current from 24◦C–300◦C (18–21 µA).

4.4 Summary

SiGe-on-SOI HBTs are utilized to demonstrate the viability of using SiGe HBTs

for emerging high-temperature analog applications. A method to calibrate compact

models for 24◦C–300◦C was demonstrated. Calibrated compact models were used to

build a cascode current mirror, a BGR, and a class-AB push-pull output stage. The

cascode current mirror demonstrates > 60 MΩ output resistance and a CMMR less

than 3% at 300◦C. A piece-wise linear compensation method was used to design a

wide-temperature BGR and a TC of 88 ppm/◦C is measured at a VCC of 5 V. A

simple push-pull output stage is also operational up to 300◦C with a current drive up

to 1 mA, and with a quiescent current less than 25 µA.
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CHAPTER 5

HIGH-TEMPERATURE GATE DRIVER

High-temperature electronics are becoming more in demand due to the growing need

in the energy, automotive, and aerospace sectors [13, 15, 29]. In particular, there is a

strong need for power converters in all the aforementioned sectors. Power converter

applications typically utilize large, high-breakdown devices like SiC FETs [91]. Their

large breakdown, high switching speeds, and robustness at high temperatures make

them very appealing as power switches. These power converters will typically face

high temperatures with under-the-hood automotive components reaching 150-250◦C,

deep oil-well digging reaching temperatures as high as 300◦C, and geothermal reaching

even higher temperatures [13].

These large SiC FETs in power converter applications require a gate driver and

other control circuitry to effectively switch. The effective capacitance of these SiC

FETs easily exceed 1 nF, and therefore, large source and sink currents are required to

switch these FETs rapidly to minimize switching loss. Additionally, the gate driver

in particular needs to be as close as possible to the SiC FETs in order to reduce

parasitics, which has a large impact on the peak drive current. Consequentially, the

gate driver has to be capable of operating reliably at elevated temperatures.

As shown in the previous chapters, SiGe-on-SOI HBTs have shown adequate per-

formance and reliability even at temperatures as high as 300◦C. High-performing

circuits were also shown to be viable with the analog building blocks that were dis-

cussed in Chapter 4. This chapter aims to take it a step further and explore the

design and performance of a gate driver circuit using SiGe-on-SOI. High-temperature
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gate drivers operational up to 225◦C using SOI CMOS have been demonstrated pre-

viously [91,92]. However, very little work has been reported for gate driver operation

up to 300◦C, which can be encountered in several high-temperature applications.

This work presents a high-temperature (up to 300◦C) capable gate driver built using

SiGe-on-SOI HBTs with multi-amp drive capabilities.

5.1 Technology and Measurement Details

A 48-V C-SiGe-on-SOI HBT platform is used in this work [77]. The devices were

optimized for high-breakdown voltage, and thus have lower unity gain frequency (fT).

Therefore, these devices are better suited for analog applications. Both NPN and PNP

devices were used for the design of the driver and their performance and reliability

were characterized up to 300◦C in previous works [3].

In order to make high-temperature measurements, a 300◦C hot chuck was used

for the purposes of this work. All measurements were made on-wafer using high-

temperature capable probes. GGB probes were used for both AC and DC signals,

while a Cascade Microtech high-current (6-A pulsed current) probe was used for the

supply voltage. A 100 MHz, Tektronix function generator was used as a pulse-width

modulator (PWM) source, and a 100 MHz oscilloscope was used to measure the

output signal. Keithley source-measure units (SMUs) were used for the DC biasing.

5.2 Driver Design

Similar to the work in [4] and the previous chapter, a calibrated compact model for

both NPN and PNP devices across temperature was obtained. Using the calibrated

compact models, a high-temperature capable driver was designed. The core function

of the driver was to take an input 0-5 V square wave and switch a large power

FET (e.g SiC FET) quickly with a rail-to-rail voltage output. To achieve this, a

two-stage, simple driver was implemented. A high-level schematic of the driver is

shown in Fig. 5.1. The input stage of the driver consists of a standard operational
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Figure 5.1: High-level schematic of the high-temperature driver.

Figure 5.2: High-temperature gate driver measurement setup.

transconductance amplifier (OTA), which converts the 0-5 V square-wave signal into

a rail-to-rail signal. The OTA was designed to handle signals with frequency ranging

from 1 kHz - 1 MHz.

The output stage of the driver consists of a cascaded push-pull configuration. The

largest available devices in the technology (> 150 µm LE) were used to achieve the

maximum current drive. A three-stage cascaded push-pull amplifier was implemented
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with each successive stage having larger total effective area. The M:N ratio between

the NPN and PNP devices in the push-pull configuration was carefully optimized

to get similar source and sink current. Gummel measurements along with output

characteristics were performed on these devices across temperature, and the results

indicated that the NPN devices were capable of sourcing up to 2.5X more peak current

than the PNP devices. Additionally, this difference in peak current was found to be

slightly temperature dependent. In order to correct for this discrepancy, the M:N ratio

was appropriately skewed to get a symmetric current drive from 200◦C - 300◦C. This

particular temperature range was more emphasized for the design since the driver

was primarily intended to show operation at high temperatures.

Self-heating is also a concern when operating these devices at high currents. In

order to minimize the impact of self-heating, the number of devices at each stage

was carefully optimized. In doing so, the maximum current each device carries at

any given temperature was properly controlled to ensure thermal runaway does not

occur. This maximum current was found with the measurements detailed in [3], which

found the critical collector current density at which thermal runaway was observed.

Mutual self-heating is another concern with multiple devices in parallel carrying high

currents. This was addressed in layout by performing a careful trade-off between total

chip area and maximum reliability. Device-to-device spacing of 1-2 µm was used to

reduce mutual self-heating as much as possible to prevent any current crowding effects.

Electromigration is another key concern associated with high-temperature operation.

In order to mitigate potential electromigration issues, extremely wide metal lines (>

150 µm) along with several thousands of redundant vias were used to minimize the

current density along the metal lines and vias.

While the driver was meant to switch a large power FET, a large capacitor was

instead used for testing purposes. Since the large power FET is essentially a large

capacitor that is meant to be charged and discharged rapidly, the use of a capacitor
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Figure 5.3: Output voltage of the gate driver measured at 250◦C with a 0-5 V,
1 kHz square wave input. Rise and fall time of 48 ns and 40 ns were measured
with a 9 nF capacitor, respectively.

for simulation and testing was deemed appropriate. The total area of the driver was

measured to be 1.7 x 3 mm2. A large portion of this area was due to the output stage.
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Figure 5.4: Peak source and sink current of the driver across temperature from
24◦C - 300◦C.

5.3 Results and Discussion

In order to perform on-wafer probing, the driver die along with external wirebondable

capacitors were affixed to an underlying plain silicon substrate. Wirebonds were then

made from the output pads to the capacitor. To reduce inductance and resistance at

the driver output, the capacitor was placed as close as possible to the driver die and

up to three parallel wirebonds were made. Both the epoxy used to affix the die and

capacitor along with the wirebonds were all verified operational up to 300◦C. The

capacitors used in this work were special, custom capacitors specifically meant for up

to 300◦C operation. A picture of the setup along with the die and the probes are

shown in Fig. 5.2.

A 0-5 V, 1 kHz square wave was applied to the input of the driver, and the output
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voltage waveform was captured by the oscilloscope. The results at 250◦C are shown

in Fig. 5.3. A VCC of 15 V and a VSS of 0 V was used. The output of the driver is able

to reach both rails within ±100 mV across all the measured temperature conditions.

The peak current drive of the driver was measured by analyzing the rising and

falling edge of the output voltage waveform as shown in Fig. 5.3. At 250◦C, a rise

and fall time of 48 ns and 40 ns were measured, respectively. The peak currents

were then calculated based on these rise and fall times. The source and sink currents

were calculated to be approximately 2.32 A and 2.73 A, respectively. To the best of

the author’s knowledge, these are the highest measured source and sink currents for

a driver at 250◦C using a silicon-based technology. Overshoot and some ringing is

observed in the output waveform. Simulations were performed by adding up to 1-10

nH of inductance to the output path, and a similar type of ringing was reproduced.

It is likely that parasitics both from the wirebond and probes are contributing to this

behavior.

The peak current drive was also measured across temperature and it is shown in

Fig. 5.4. Up to 28% reduction in the sink current and 23% reduction in the source

current is observed as temperature increases from 24◦C - 300◦C. A similar reduction

in peak current drive with increasing temperature for a simple push-pull output stage

was demonstrated in [4]. This is mainly attributed to a reduction in transconductance

with increasing temperature along with higher device parasitics (mainly capacitance)

leading to an overall decrease in the peak current drive. It is also possible that small

increases in the output resistance due to a change in the metal resistance at high

temperature could play a role in decreasing the peak current drive.

While a comprehensive reliability test could not be performed, the driver was left

operating with a VCC of 25 V at 300◦C for up to 6 hours, and no observable change

in the driver performance was seen. Long-term testing (> 10,000 minutes) will need

to be performed to rule out any potential electromigration or high-current induced
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stress failure.

5.4 Summary

This work demonstrates an operational, high-temperature gate driver using a C-SiGe-

on-SOI technology. A calibrated compact model was constructed, and the compact

model was subsequently used to design a driver circuit that could switch a 9 nF load

in under 50 ns. A simple circuit architecture was used with an operational transcon-

ductance amplifier with a cascaded push-pull output stage implemented. Proper ratio

of NPN and PNP devices was used to account for differences in their current drive.

Based on previous reliability studies, appropriate steps were taken to make sure peak

current carried by a single device does not lead to reliability issues. The fabricated

driver was tested on-wafer with an external 9 nF capacitor at temperatures high as

300◦C using a hot chuck. At 250◦C, peak source and sink current of 2.32 A and

2.73 A were measured, respectively. A reduction in current drive is observed with in-

creasing temperature due to a decrease in transconductance and an increase in device

parasitics.
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CHAPTER 6

TOTAL IONIZING DOSE EFFECTS IN A

HIGH-VOLTAGE SIGE HBT TECHNOLOGY

The investigation of total ionizing dose (TID) effects on a high-voltage (36 V) com-

plementary thick-film SOI SiGe technology is investigated for the first time. SiGe

platforms provide high-speed heterojunction bipolar transistors (HBTs) that enable

performance-constrained RF applications such as LNAs, PAs, mixers, oscillators, etc.

However, there is also a large and growing interest in using SiGe HBTs in the analog

domain. While Ge incorporation and grading in the base of a SiGe HBT signifi-

cantly reduces the carrier transit time, it also enhances the current gain (β) and the

Early Voltage (VA), and both device parameters are important metrics for analog

applications.

Many investigations have been performed on the TID tolerance of SiGe HBTs from

1st generation to 4th generation devices [39,56,93,94]. These studies have consistently

shown that SiGe HBTs are multi-Mrad tolerant, primarily due to their structure, not

the Ge, per se. Recent work has also been done on a thick-film complementary SOI 5

V SiGe process that illustrated favorable TID response from both a forward-mode and

inverse-mode operation [95]. However, the TID response of a high-voltage (> 30V)

complementary SOI SiGe HBT has never been investigated. As high-voltage-capable

devices utilize lower doping to reduce peak electric fields at larger voltages, they

also tend to have larger depletion regions near oxide interfaces that could potentially

adversely impact its TID response. The chapter investigates the TID response of a

36 V complementary thick-film SiGe HBT on SOI and its potential for use in high-

voltage radiation applications.
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Figure 6.1: A cross-section of the 3HV NPN [77].

Figure 6.2: A cross-section of the 3HV PNP [77].
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Table 6.1: Table summarizing the values of key performance metrics for the
NPN and PNP used in this work [77].

Parameter NPN PNP
β 200 230
VA <-100 >100
BVCEO 48 -53
BVCBO 53 -53
Peak fT (12VCB) 4.2 GHz 3.0 GHz

6.1 Experimental Details

A device cross section of the 3HV NPN and PNP used in this work is illustrated

in Fig. 6.1 and Fig. 6.2, respectively. The NPN and PNP devices are SOI devices,

built on top of a 0.4 µm thick buried oxide (BOX). The devices were optimized for a

high β-VA product while maintaining a BVCEO up to 48 V [77]. Key device metrics

are summarized in Table 6.1. As these devices are optimized for high-voltage analog

applications, it does utilize a thicker collector epi with lower doping than what is

typically found in modern SiGe HBTs that are aimed more towards high-speed (e.g.,

RF) applications. The TID experiments were performed at Vanderbilt University

and the Naval Research Laboratory (NRL) using a 10-keV X-ray ARACOR test

system. The devices were wirebonded out in a 28-pin dual-in-line package (DIP) and

then irradiated from 50 krad(SiO2) to a cumulative dose up to 5 Mrad(SiO2), at a

dose rate of 32.5 krad(SiO2)/min. All devices used in the present work were 0.4 µm

emitter-width devices.

Pre-irradiation dc characteristics were measured and then after each subsequent

dose, the dc characteristics were once again remeasured to track the change in re-

sponse with increasing total dose exposure. Gummel characteristics were primarily

used to characterize the dc behavior. Three different bias conditions were investi-

gated. The first condition was with all the terminals grounded, as it is considered

the worst-case condition for bipolar devices in general [96]. The second condition was
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Figure 6.3: (a) Forward Gummel of the NPN (grounded condition) for the
following cumulative doses: pre-rad, 50 krad(SiO2), 100 krad(SiO2), 300
krad(SiO2), 500 krad(SiO2), 1 Mrad(SiO2), 2 Mrad(SiO2), and 5 Mrad(SiO2).
(b) Inverse Gummel of the NPN for pre-rad and 5 Mrad(SiO2). Solid lines are
JC and dotted lines are JB.

with a VBE of 0.6 V and a VCB of 10 V (referred to as “Bias 1” in this work). The

third condition is with a VBE of 0.6 V and a VCB of 20 V (referred to as “Bias 2” in

this work). The second and third conditions were chosen to determine whether high-

voltage operation can potentially influence the TID response. It should be emphasized

that the bias conditions used in this work are not high enough to cause mixed-mode

electrical stress damage and thus all results presented here were not influenced by

impact ionization triggered damage. All bias conditions were realized using Keithley

SMUs. The devices were measured in both forward-active and inverse-mode to better

understand their disparities in damage mechanisms at the emitter-base (EB) spacer

oxide, the STI, and the underlying buried oxide (BOX). Forward-active is typical for

SiGe HBT device operation with the base-emitter junction forward-biased and the
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Figure 6.4: Normalized current gain (grounded condition, Bias 1, and Bias 2)
post- and pre-radiation for the NPN as a function of VBE for the following
cumulative doses: 500 krad(SiO2), 2 Mrad(SiO2), and 5 Mrad(SiO2). Solid
lines are grounded condition while dotted lines correspond to Bias 1 and Bias
2.

base-collector junction reverse-biased. Inverse-mode operation swaps the electrical

emitter and collector, with the physical base-collector junction forward-biased and

the base-emitter junction reverse-biased (i.e. device is operated “upside-down”).

6.2 TID Results

The grounded condition for the NPN was initially measured and the Gummel response

is illustrated in Fig. 6.3. Fig. 6.3(a) shows the forward Gummel (FG) response, and it

can be seen that there is an increase in base current density (JB) at low and medium

injection with increasing dose, as expected. The inset plot, Fig. 6.3(b), illustrates the

inverse Gummel (IG) response at pre-rad and 5 Mrad(SiO2), which shows a similar

response as the FG in Fig. 6.3. No major shift (< 5%) in the collector current in
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both forward-mode and inverse-mode is observed, indicating that there is not enough

lateral charge accumulation under the EB spacer oxide to significantly affect the total

emitter area [44].

The normalized change in β as a function of VBE for three different doses is

illustrated in Fig. 6.4, for all three bias conditions. The low to mid VBE shift in β

is expected, while surprisingly, there is a significant shift at high injection (> 0.8V)

which shows a very strong bias dependence. At a dose of 500 krad(SiO2), the grounded

condition shows little degradation; however, both Bias 1 and Bias 2 conditions show

significantly higher degradation up to a 10% reduction in peak current gain in this

VBE region. At the larger doses of 2 Mrad(SiO2) and 5 Mrad(SiO2), the difference

is even more emphasized. It should also be noted that while the difference is small,

there is a clear difference (2-4%) between Bias 1 and Bias 2 at the larger doses, which

illustrates that increasing VCB does in fact worsen this current gain reduction.

To better understand this phenomenon, the excess JC and JB were examined at

different doses. While JC showed minimal change for the grounded condition, this was

not entirely the case for Bias 1 and Bias 2 (>5%). However, this large change was only

observed at very large doses (>2 Mrad(SiO2)). Regardless, JB was the primary cause

in the β reduction, even at high injection, as illustrated in Fig. 6.5. While JC, and

consequently JE, did show some change, it is clear that there is not a significant change

in emitter resistance, since emitter resistance degradation results in a downward shift

of both collector and base current, which is not observed here. Consequently, this

implies that a different mechanism is causing a shift at high injection. JB shift at high

injection has been observed before in [97] with high-current electrical stress, which

can lead to trap states at the interfacial oxide between poly/monosilicon regions.

TCAD simulations investigating this phenomenon are presented in the next section.

The excess normalized difference in IB at a VBE of 0.6 V for the forward- and

inverse-mode is illustrated in Fig. 6.6 for the grounded condition, along with some
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Figure 6.5: Normalized IB (grounded condition, Bias 1, and Bias 2) post- and
pre-radiation for the NPN as a function of VBE for the following doses: 500
krad(SiO2), 1 Mrad(SiO2), and 5 Mrad(SiO2). Solid lines are grounded condi-
tion while dotted lines correspond to Bias 1 and Bias 2. Only the high-injection
bias is shown.

other SiGe technologies for comparison. It can be clearly seen that inverse-mode dis-

plays greater than 2X increase in IB relative to the forward-mode at high doses (> 1

Mrad(SiO2)). This is attributed to the larger surface area of the STI oxide relative to

the EB spacer oxide, which leads to more interface traps and oxide charge concentra-

tion [95]. Additionally, due to the lower collector doping, the larger depletion region

adjacent to the STI oxide also contributes to a large surface area exposed for SRH

recombination. In addition, it is worth noting that for a more aggressively scaled

(130nm) SiGe technology, forward-mode damage is much higher than inverse-mode

damage.
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Figure 6.6: Excess normalized IB for the NPN as a function of dose. The 3X
and 8HP SiGe technology are compared with the results for the 3HV platform
for both forward and inverse-mode.

As the high-injection gain reduction showed a clear bias dependence, the low-

injection change was analyzed as a function of bias in Fig. 6.7. Forward-mode opera-

tion shows minimal bias dependence, which is consistent with previous TID studies;

however, in the inverse-mode operation, there is a significant difference under the

two different bias conditions. Specifically, there is up to a 35X difference between

the grounded and two high-voltage bias conditions, an effect which has not been pre-

viously reported. This difference can be explained by looking at the electric field

differences in the device between the two bias conditions. Calibrated TCAD simula-

tions were performed at the three bias conditions, and it was seen that the electric

field near the STI had far higher peaks (2-3 orders of magnitude) under HV bias.

The larger electric field near and within the STI region under the HV-bias condition

results in more of the electrons being swept away from the STI during irradiation,
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Figure 6.7: Excess normalized IB for the NPN as a function of dose for forward
and inverse-mode grounded and other bias conditions.

leaving more holes in the oxide and resulting in the higher leakage current [95]. This

result is important, as it couples the high-injection effect observed in Fig. 6.4 to the

physical location that helps manifest the reduction in high-injection current gain.

In other words, as there is a clear and significant increase in inverse-mode leakage

current with increasing VCB, it becomes clear that the charge/interface traps at this

interface are potentially driving the observed high-injection effect.

Similar to the NPN, the PNP SiGe HBT was also first irradiated under grounded

conditions. The results are shown in Fig. 6.8. Fig. 6.8(a) shows the forward Gummel

response from 50 krad(SiO2) to 5 Mrad(SiO2) while Fig. 6.8(b) shows the inverse-

mode Gummel response. Both responses are qualitatively similar to the NPN data.

However, at least for the grounded condition, the PNP shows significantly lower JB

leakage current in both forward- and inverse-mode at large doses. This difference is

86



- 1 . 0 - 0 . 8 - 0 . 6 - 0 . 4
1 0 - 1 3

1 0 - 1 1

1 0 - 9

1 0 - 7

1 0 - 5

1 0 - 3

( b )
F G
V B C  =  0 V I G

V B C  =  0 V

I n c r e a s i n g  D o s e
f r o m  1 0 0 k r a d  -  5 M r a d

 

 

J C
, J

B 
(A

/mm
2 )

V B E  ( V )

J B J C

( a )

- 1 . 0 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 21 0 - 1 2

1 0 - 1 0

1 0 - 8

1 0 - 6

1 0 - 4

J C, J
B (A

/mm
2 )

V B E  ( V )
D o s e

Figure 6.8: (a) Forward Gummel of the PNP (grounded condition) for the
following cumulative doses: pre-rad, 100 krad(SiO2), 300 krad(SiO2), 500
krad(SiO2), 1 Mrad(SiO2), 2 Mrad(SiO2), and 5 Mrad(SiO2). (b) Inverse Gum-
mel of the PNP for pre-rad and 5 Mrad(SiO2). Solid lines are JC and dotted
lines are JB.

more clearly illustrated in Fig. 6.9. Only 1-2X increase in forward-mode IB and 1.2-4X

increase in inverse-mode IB is observed in the PNP. This leakage is 5-7X lower than

the leakage current observed in the NPN under the same conditions. We believe that

this is due to the accumulation of positive charge in the PNP oxides near the n-type

base, which helps to increase the electron concentration and reduce the excess IB due

to surface recombination [98]. In Fig. 6.9, the forward and inverse-mode response is

also compared with the complementary 5 V technology presented in [95], and it shows

that the forward-mode response is comparable, while the inverse-mode change is much

higher. This discrepancy is likely due to a larger depletion region at the collector-base

junction resulting from the lower doping, which in turn leads to a larger surface area

available on the STI-silicon interface.

87



1 0 4 1 0 5 1 0 6 1 0 7

0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0

 3 H V  F G
 3 H V  I G
 3 X  F G  [ 7 ]
 3 X  I G  [ 7 ]

I B 0  =  3 n A

D o s e  r a d ( S i O 2 )

 

 

DI B/I B0

Figure 6.9: Excess normalized IB for the PNP as a function of dose. The 3X
technology is compared with the results for the 3HV platform for both forward
and inverse-mode.

To see the impact of TID on β, the normalized β as a function of VBE for three

different doses along with the three different bias conditions is plotted on Fig. 6.10.

A similar behavior as the NPN is observed, with the expected large change at low

and medium injection, and an additional decrease at high injection. However, in

the PNP case, the peak reduction in current gain is 20-40% larger than the NPN

at higher doses, with the PNP showing a maximum reduction of approximately 85%

at 5 Mrad(SiO2). Similar to the NPN, the bias dependence is observable with the

grounded condition showing the lowest reduction and Bias 2 showing the largest

reduction, thus, implying that there is a VCB dependence. However, at 5 Mrad(SiO2),

it is clear the bias dependence is no longer significant which likely indicates that it

does saturate past a certain dose. Once again, JC showed minimal change (< 5%)

at grounded condition but showed a more profound difference at the other two bias
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Figure 6.10: Normalized current gain (grounded condition, Bias 1, and Bias
2) post- and pre-radiation for the PNP as a function of VBE for the following
cumulative doses: 500 krad(SiO2), 1 Mrad(SiO2), and 5 Mrad(SiO2). Solid lines
are grounded condition while dotted lines correspond to Bias 1 and Bias 2.

conditions with accumulated dose, however, JB was still the limiting factor and the

normalized IB is plotted on Fig. 6.11. The same trend as the NPN is observed, but

the raw increase in IB at large VBE is significantly higher (>5X increase compared to

2X increase for NPN), which is consistent with the current gain reduction.

The low injection change in both forward and inverse mode for the PNP is com-

pared for all the the bias conditions in Fig. 6.12. Similar to the NPN, minimal differ-

ences are observed between the grounded and other two bias conditions for forward-

mode operation, which is logical, since the induced electric-field shouldn’t affect the

EB spacer. A more significant difference is observed, however, in the inverse-mode

operation. The trend once again is similar to the NPN, but the raw values are sig-

nificantly higher. The bias dependence is also very clear as a higher VCB shows more

than a 2X increase in base current at larger doses. This implies that with higher bias,
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Figure 6.11: Normalized IB (grounded condition, Bias 1, and Bias 2) post-
and pre-radiation for the PNP as a function of VBE for the following doses:
500 krad(SiO2), 1 Mrad(SiO2), and 5 Mrad(SiO2). Solid lines are grounded
condition while dotted lines correspond to Bias 1 and Bias 2. Only the high-
injection bias is shown.

there is a significantly higher amount of interface traps along the Si-SiO2 interface,

which leads to the higher SRH recombination leakage current. Similar to the NPN

case, the electric-field helps to more efficiently separate the generated electron-hole

pairs (EHP) in the STI and generates more interface traps from the secondary reac-

tion [41]. While the polarity of the field is different compared to the NPN, TCAD

simulations still show that the field near and around the STI are oriented in an ad-

vantageous direction for EHP separation. The primary difference in the electric-fields

between the NPN and PNP is whether they point towards the top or bottom of the

STI. It is also likely that there are some structural differences between the NPN and

PNP contributing to the differences in leakage current.
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Figure 6.12: Excess normalized IB for the PNP as a function of dose for forward
and inverse-mode grounded and other bias conditions.

6.3 TCAD Simulations

In order to better understand both the general TID results and the observed high-

injection phenomenon, calibrated TCAD models were built for the both the NPN and

PNP. Fig. 6.13 illustrates the calibrated 2-D TCAD simulated Gummel compared

with the measured data. Along with the Gummel, the devices were also calibrated

to match fT, fmax, and BVCEO to ensure the best accuracy of the collector doping

profile. The collector doping in particular is extremely important in the following

simulations, since the STI interface traps play a crucial role in the high-injection

response and therefore, accurate collector doping ensures the proper space charge

region in the vicinity of the STI.

TID is responsible for positive fixed charge in the oxides and interface traps along
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Figure 6.13: Measured Gummel for both NPN and PNP illustrated with solid
blue line with simulated TCAD model Gummel overlaid on top with red dia-
mond markers. A 2-D cross-section of the device used in TCAD simulations is
also illustrated at the bottom.

the oxide/Si interface [41]. Therefore, in order to accurately simulate the TID re-

sponse, the following steps were performed: 1) add positive fixed charge inside oxides

and along the oxide/Si interface; 2) add interface traps (mid-band) along oxide/Si

interface (ranging from 1010 cm−2 - 1012 cm−2). The main oxides that were targeted

were EB spacer oxide between the emitter and base contact, STI oxide between the

base and collector contact, and the underlying BOX beneath the subcollector.

From initial TCAD simulations, it was concluded that charge or interface traps

along and inside the BOX had no effect on the electrical response of these devices.

Both NPN and PNP showed a similar response and thus no accumulation or depletion

generated through fixed charge in the thick BOX had any impact on the collector or

base current. This is not a surprising result, since the BOX is too far from the base

to have any impact on the base current and any accumulation or depletion region

will have minimal impact on the collector current due to the very high doping in the
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Figure 6.14: TCAD simulated forward-mode Gummel with increasing EB
spacer interface traps.

Figure 6.15: TCAD simulated forward-mode Gummel with increasing STI in-
terface traps. Only the high-injection region is shown.
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subcollector.

Interface traps and fixed charge were subsequently added to the EB spacer oxide.

Fixed charge alone did not significantly alter the Gummel response of either the NPN

or PNP supporting the assertion from the measured results indicating that charge

accumulation in the EB spacer was not enough to cause a significant change to the

emitter area [44]. Interface traps, however, showed a strong effect on the Gummel

response, especially at low injection. This is more clearly illustrated in Fig. 6.14

which illustrates the effect of increasing interface trap concentration. This is classical

behavior seen in other SiGe HBT platforms [33].

The STI region was examined next via simulations for its effect on the total

TID response. Similar to the EB spacer, fixed charge alone showed no discernible

difference in the Gummel response. Interface traps were then investigated. It is well-

known from literature that STI interface traps are known to cause excess base leakage

current when a SiGe HBT is operated in inverse mode [33]. Similar to Fig. 6.14, the

same trend was observed in the inverse Gummel with increasing concentrations of

STI interface traps.

However, the more interesting aspect of adding STI interface traps was found in

the forward Gummel response. For increased emphasis, only the high-injection Gum-

mel response with the addition of STI interface traps is shown in Fig. 6.15. The arrow

indicates increasing interface trap concentration. Surprisingly, the high-injection re-

sponse simulated is identical to the observed trend seen in Fig. 6.5 and Fig. 6.11.

While only the simulated NPN Gummel is shown in Fig. 6.15, the PNP showed a

similar behavior in simulations. The implication here is that at high injection, inter-

face traps along the STI start to exert a strong impact on the current gain. While STI

interface traps do show the same high-injection behavior, it is important to eliminate

other possible sources. Through simulations, it was also observed that bulk traps

in the thick collector exhibited a similar effect but considering X-rays generally do
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Figure 6.16: TCAD simulated forward-mode ratio of current gain with and
without STI interface traps as a function of VBE for three different SIC profiles
and one control. Only high-injection region is shown.

not produce bulk traps in silicon, it can be ruled out. Interface traps at the Si/SiGe

interface is also known to cause a similar effect, as detailed in [99, 100]; however,

X-ray generated ehp in oxides should not be capable of creating traps at this growth

interface.

Since this effect is observed at high injection, where heterojunction barrier and

resistance effects can dominate in SiGe HBTs, it is important to understand the

underlying mechanism. Barrier effects are unlikely to be the source given the nature

of TID. Therefore, resistance degradation was investigated further. Emitter resistance

perturbation was already ruled out due to the minimal change in collector current.

Base resistance perturbation can also be ruled out given that an increase or decrease

in base resistance will cause a shift in the same direction in both base and collector

current, whereas, measured data indicates an increase in base current with a very

small decrease in collector current. Collector resistance perturbation, on the other
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hand, is consistent with the measured results. TCAD simulations indicate that an

increase in the collector resistance shows a marked increase in the base current while

showing minimal reduction in the collector current.

Given that this has not been observed before in SiGe HBTs, we aimed to inves-

tigate why this was observed in the present platform. Considering that the biggest

difference between the technology used in this work and other SiGe HBTs tested for

TID in literature is the BVCEO, the impact of collector doping was investigated. In

order to test how much the collector doping affects this high-injection phenomenon,

TCAD simulations were performed with different selectively implanted collector (SIC)

profiles. The control SIC profile used for comparison was the profile that was cali-

brated to measured data in Fig. 6.13. Three other extra SIC profiles were created

with essentially increasing overall collector doping. The subcollector doping itself was

left untouched. Basically, with each successive profile, the device becomes closer to a

“typical” high-speed SiGe HBT. The STI interface trap concentration was held the

same for all four profiles.

The high-injection current gain response of these three different SIC profiles along

with the control profile are plotted in Fig. 6.16. Each curve represents a single profile

and it shows the current gain with STI traps normalized to the current gain without

STI traps. The arrow indicates the direction of increasing collector doping. Essen-

tially, with increasing collector doping, the high-injection current gain degradation

weakens significantly. While it is not shown, the collector current does change slightly

with each SIC profile since an increase in collector doping will have a significant ef-

fect on the overall collector resistance resulting in the more apparent increase in the

overall collector current. However, by normalizing the current gain for each profile,

the results in Fig. 6.16 only illustrate the net change due to STI traps rather than

differences rising from doping changes. The result is intuitive, since an increase in

collector doping effectively reduces the base-collector space charge region, and thus
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exposing less surface area of the STI in the depletion region. While it is a fairly

different technology, the work in [101] utilizing a thin-film SOI device, illustrated a

similar high-injection behavior with mixed-mode electrical stress. Similar to what

is observed in the present work, the effect was only observed for the device with a

lightly doped collector.

6.4 TID and Mixed-Mode Stress Comparison

In order to confirm independently whether this high-injection phenomenon is related

to STI interface traps, mixed-mode electrical stress was performed [76]. For the

stress, the devices were biased in a common-base configuration with a constant VCB

and JE. Similar to studies before that have related radiation induced damage to

mixed-mode stress damage, an attempt here was made to replicate the observed

high-injection phenomenon with a separate stress measurement [80, 102]. Using an

identical device with the same geometry, a stress condition with VCB greater than

BVCBO and moderate IE (< JC,Kirk) was used to maximize impact ionization. Ideally,

mixed-mode stress should induce a high concentration of interface traps along STI

and EB spacer and therefore, if a similar high-injection effect is observed then it

supports the notion that STI interface traps are the main driving force.

The results are illustrated in Fig. 6.17. Fig. 6.17(a) illustrates the high-injection

behavior from TID with an all-grounded bias condition while Fig. 6.17(b) illustrates

the high-injection behavior with mixed-mode stress. The arrow in Fig. 6.17(a) indi-

cates increasing dose while the arrow in Fig. 6.17(b) indicates increasing stress time.

It can be seen that the trend is similar between both indicating a strong correlation

between STI interface traps and a high-injection current gain degradation. While

only the NPN results are shown in Fig. 6.17, both NPN and PNP were stressed using

the same methodology and both showed a similar response. Even from a mixed-mode
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(a)

(b)

Figure 6.17: A comparison between (a) forward-mode Gummel with increasing
dose from 100 krad(SiO2) to 5 Mrad(SiO2) and (b) forward-mode Gummel
under mixed-mode stress with increasing time from 100 s to 10,000 s.
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electrical stress perspective, this high-injection current gain degradation was not ob-

served in other platforms with significantly higher collector doping (> 200 GHz fT),

thus lending credence to the collector doping dependence of this observed TID effect.

It is worth noting that the collector resistance for the mixed-mode stressed device

was measured both before and after stress using the method in [103] and it showed

approximately a 7X increase, consistent with the data.

6.5 Summary

This work has investigated the TID response of a high-voltage complementary SiGe

on SOI technology, and illustrates both the forward and inverse mode TID response.

We have looked at the bias (VCB) dependence on the TID response and surprisingly,

bias has a strong impact on the inverse mode leakage current. Additionally, a novel

current gain degradation phenomenon is observed in forward-mode operation at high

injection which is correlated with the creation of interface traps at the STI oxide.

However, like other SiGe HBTs, these high-voltage devices do show similar robustness

to TID at low to moderate doses within the normal operating conditions (peak β or

peak fT).
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CHAPTER 7

TEMPERATURE DEPENDENCE OF SEE

Silicon-germanium heterojunction bipolar transistors (SiGe HBTs) have been shown

to possess very favorable properties in a variety of extreme environments [12]. From

a radiation perspective, both total dose effects and single-event effects (SEE) in SiGe

HBTs have been reported in the literature [39]. However, an aspect of extreme envi-

ronments that has not been explored as thoroughly for SiGe HBTs is the intersection

of radiation and temperature. The general behavior of SEE in SiGe HBTs is reason-

ably well understood, but the exact measured temperature dependence of SEE has

never been reported. From a high-temperature application perspective, an arena of

growing importance to the aerospace community, initial research on both the perfor-

mance and reliability of SiGe HBTs at elevated temperatures clearly indicates that

SiGe HBTs have significant potential for use in such challenging environments [1, 3].

However, at present no data exists on an envisioned application that involves simula-

taneous exposure to both high temperatures and radiation, and which would include,

for instance, planetary exploration missions and particle detector facilities [29].

To investigate the effects of temperature on the SET response of SiGe HBTs,

a complementary high-voltage (>30 V) SiGe-on-SOI technology was utilized [77].

These devices are markedly different from typical SiGe platforms, since they were

optimized for high-breakdown voltage and not necessarily high speed. Thus, they

find a larger role in precision analog and high-voltage applications than do other more

traditional RF-optimized SiGe HBTs. These devices also contain a buried oxide that

isolates the collector from the substrate, which greatly reduces the collector-substrate

junction leakage current at higher temperatures. The purpose of the present work is
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Figure 7.1: Test setup for high-temperature SET testing.

to characterize the transient response of this high-voltage SiGe HBT platform, and

use its favorable high-temperature properties to investigate the combined effects of

temperature and radiation on the transient response. Additionally, this work explores

the role that thermal effects play in the transient response, not only in this particular

SiGe technology, but for other SiGe HBT technologies, even those optimized for low

voltage and high speed.

7.1 Experimental Setup

NPN and PNP SiGe HBT structures with the same emitter geometry were packaged

and wirebonded on a printed circuit board (PCB). To expose devices to laser light

for transient testing, the backside of the PCB under the die was left exposed. The

devices were biased using Keithley 2400 source measure units (SMUs). A Tektronix

DPO71254, 16 GHz, 50 GS/sec, real-time oscilloscope, was used to measure the device

transients. Transients were induced via two-photon absorption (TPA) process using

a 1260 nm wavelength optical pulse, which results in ≈ 1 µm full width at half

maximum (FWHM) spot size [104].
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Three different emitter current density (JE) bias conditions were used to test the

transient response of the NPN and PNP SiGe HBTs, including: a low JE bias condi-

tion (10 µA/µm2), a moderate bias condition (50 µA/µm2), and a high bias condition

(100 µA/µm2). The low JE bias condition was used to ensure low power dissipation,

while the high JE bias condition was used to simulate an actual high-power operating

condition close to peak fT bias. As the NPN and PNP devices have different collector

currents (IC) for the same VBE, a common-base biasing configuration was utilized.

In this case, the base was grounded while the emitter was tied to a constant current

source, and the collector voltage was manually tuned with a voltage source. To max-

imize the peak amplitude of the transients, raster scans in all three spatial directions

were performed across the entire active region of the devices. Using the raster scan

data, the laser was focused on the most sensitive region, which also happens to be

the emitter center. All subsequent transient measurements were made by focusing on

this particular sensitive region.

For high-temperature transient measurements, the setup illustrated in Fig. 7.1 was

used. A Minco heater coil and thermal sensor were used for heating up the board and

measuring the temperature, respectively. The heater coil and thermal sensor were

affixed to the PCB using an acrylic adhesive. A PID controller was implemented

using MATLAB, and a temperature accuracy of ± 0.5◦C was achieved.

7.2 Results

7.2.1 NPN and PNP Comparison

2-D raster scans highlighting positional dependence of the collector transient peak

amplitudes for both the NPN and PNP SiGe HBTs are shown in Fig. 7.2. The raster

scans were performed at a similar bias condition for both devices (JE = 10 µA/µm2

and VCB = |1 V|). This particular bias condition was chosen since it is is near peak

current gain (β) and as such, it is a relevant bias condition for many analog circuit
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(a) NPN Collector Transient Peaks (mA)

(b) PNP Collector Transient Peaks (mA)

Figure 7.2: 2-D raster scans for NPN and PNP devices highlighting the mag-
nitude of the collector transient peak amplitudes with an applied bias of
JE = | 10 µA/µm2| and VCB = |1 V|. Results are for 24◦C.

applications. Additionally, no self-heating should be observed in this bias condition,

and thus the results should not be influenced by any temperature effects.

There are two key observations worth highlighting in the raster scans shown in

Fig. 7.2. First, the overall area for the PNP SiGe HBT is larger than the overall

area for the NPN SiGe HBT. However, while the overall active area for the PNP
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Figure 7.3: (a) Collector transient peak amplitude and (b) Collector collected
charge as a function of VCB for both NPN and PNP. Both results are for an
ambient temperature of 30◦C.

device is larger, both the NPN and PNP devices have similar emitter widths. The

vertical distance from the top of the emitter stack to the bottom of the buried oxide

layer (BOX) is also the same for both devices. The second key observation is the

difference in transient peak magnitude between the NPN and PNP SiGe HBTs. The

peak transient collector current observed in the NPN device is |0.3 mA|, while for the

PNP device it is |0.7 mA|, over 2X larger.

To better understand the differences in transient response between the NPN and

PNP SiGe HBTs, the collector transient peak amplitude and collected charge for a

variety of VCB bias conditions were analyzed. Fig. 7.3(a) shows the collector transient

peak amplitude as a function of VCB while Fig. 7.3(b) shows the collected charge as

a function of VCB at 30◦C. Both the NPN and PNP devices show a similar VCB
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dependence for both the peak amplitude and collected charge, where a sharp increase

is observed after VCB of 0 V, and then a relatively small increase with subsequent

VCB values. From a VCB of 0 - 5 V, close to 300% change in both transient peak

amplitude and collected charge is observed, although only a 50% change is observed

from 5 - 40 V. The increase in peak amplitude with increasing VCB can be explained

by using the simple model for SET current described by

I(t) = −qNµ′
E0(e−αt − e−βt) (7.1)

where µ
′

is the average mobility, N is the total injected charge, E0 is the electric field,

1/α is the collection time constant of the junction, and 1/β is the time constant for

establishing the initial ion track [57, 105]. An increase in VCB results in an increase

in the electric field, which should increase the transient peak amplitude. Mobility,

on the other hand, reduces at large fields. TCAD simulations were performed to

analyze the rate at which the electric field and mobility change with VCB. The

Canali mobility model was used to properly model the high-field behavior [106]. The

simulated ∂E0/∂VCB and ∂µ
′
/∂VCB is plotted as a function of VCB in Fig. 7.4. The

electric field clearly changes at a faster rate than the mobility does for all VCB. In

fact, from around 10 V to 35 V, the rate at which mobility changes approaches zero

(i.e. the mobility starts to saturate). The increasing transient peak amplitude with

increasing VCB in Fig. 7.3 also strongly implies that the electric field dominates over

the mobility dependence. The change in transient duration was negligible at large

VCB.

The overall results clearly indicate that, for a similar bias condition, the PNP

transient peak amplitudes are significantly larger (more than a 2-3X increase). This

result is different from previously reported results for complementary SiGe HBTs

from a low-voltage, high-speed technology platform, which found the PNP device to

be less sensitive to transients than the NPN device [50, 107]. There are two main
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Figure 7.4: TCAD simulated rate change of the electric field (E0) and average
mobility (µ

′
) as a function of VCB.

differences between the present SiGe platform and the platforms used in [50, 107]:

the higher breakdown voltage, and the difference in size between the NPN and PNP

devices (the work in [50] is also non-SOI). To achieve the higher breakdown voltage

for the devices used in this work, a thicker and lightly doped collector is required. The

presence of this lightly doped collector has already been shown to impact the TID

response of the present devices [2]. Additionally, since the PNP device is physically

larger compared to an NPN device at fixed emitter geometry, there could also be a

3-D effect coming into play, which results in differences in the peak transients.

In order to emulate the effects of difference in charge collection volume on the

SET response, a 3-D TCAD NPN model was developed. Three different structures

were built with increasing total volume, and heavy-ion TCAD simulations were per-

formed. The results are shown in Fig. 7.5, where the percent change in collector peak

amplitude is plotted as a function of total volume. A 2X change in volume results

in up to 32% increase in collector peak amplitude, while a 4X change results in a

60% increase in collector peak amplitude. From the 2-D raster in Fig. 7.2, the total

sensitive area for the PNP device is approximately 2.5X larger than the NPN device.

According to simulations, this should result in close to a 45% change in transient peak
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Figure 7.5: A 3-D TCAD simulated collector transient peak amplitude as a
function of total device volume. Results are for 30◦C.

amplitude (everything else being held constant) between the NPN and PNP devices.

However, this does not completely explain the observed differences between the NPN

and PNP devices, since there is up to a 300% observed difference in transient peak

amplitude. Another possible factor influencing the peak amplitude is the difference

in peak germanium. It is well known that a PNP device requires a larger peak ger-

manium content in order to achieve the same performance as a NPN device. A 10%

increase in peak germanium was shown to increase the transient peak amplitude by

more than 200% in [108]. A combination of higher collection volume and a difference

in peak germanium likely results in the PNP device exhibiting a larger transient peak

amplitude compared to the NPN device.

7.2.2 Temperature Results

Transients were measured at four different temperatures: 30◦C, 50◦C, 75◦C, and

100◦C. A pulse laser energy ranging from 100 pJ to 700 pJ was used for the measure-

ments. Representative collector transients at a JE of |10 µA/µm2 | and VCB of 0 V,

for both the NPN and PNP devices, from 30◦C to 100◦C, are shown in Fig. 7.6(a) and

Fig. 7.6(b), respectively. Both the NPN and PNP devices show a similar trend with
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(a) NPN

(b) PNP

Figure 7.6: (a) Measured collector transient peak amplitudes across tempera-
ture for (a) NPN and (b) PNP at VCB of 0 V.

respect to temperature, resulting in a decrease in transient peak amplitude with in-

creasing temperature, and an increase in the overall transient duration. Even though

the transient peak amplitude decreases, the increase in the duration results in a slight
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Figure 7.7: (a) Measured collector transient peak amplitudes across tempera-
ture for (a) NPN and (b) PNP at VCB of |10 V|.

increase in the total collected charge. The observed differences in transient peak am-

plitudes between the NPN and PNP devices remains consistent across temperature

for a VCB of 0 V condition.

A clear temperature trend for the collector peak amplitude was identified for a

VCB of 0 V condition, but this temperature trend was not evident across all bias

conditions. Once VCB was increased from 0 V, the temperature dependence was no
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longer observed. This is illustrated with representative collector transients across

temperature in Fig. 7.7(a) and Fig. 7.7(b) at a VCB of |10 V| for the NPN and

PNP device, respectively. Unlike the VCB of 0 V case, the transient peak amplitude

shows very weak temperature dependence. The overall transient peak amplitude

behavior for the two different VCB is summarized in Fig. 7.8(a) and Fig. 7.8(b). It

should be noted that there is a difference in pulse laser energy between Fig. 7.8(a)

and Fig. 7.8(b). This was intentional, since a larger pulse energy was required to

observe sufficiently large peak amplitudes in order to establish trends for a VCB of 0

V condition. A lower pulse energy was used for a higher VCB, since a higher pulse

energy resulted in catastrophic device failure due to the significantly larger transient

peak amplitudes (> 4 mA).

For a VCB of 0 V condition in Fig. 7.8(a), up to 25% reduction in transient peak

amplitude is observed for the NPN device, while up to 40% reduction in transient peak

amplitude is observed for the PNP device. For a VCB of 10 V condition in Fig. 7.8(b),

the temperature dependence is significantly weaker compared to the VCB of 0 V bias

condition. Unlike the VCB of 0 V bias condition, an increase in transient duration was

not observed. This trend was seen for all VCB conditions ranging from approximately

5 V to 40 V. This observation strongly implies that the internal electric field dominates

the transient response with applied VCB, rather than the ambient temperature.

Higher JE bias conditions were also tested (not shown here), and they showed

similar temperature trends. However, the peak amplitude was lower at a higher JE

condition compared to a JE of 10 µA/µm2. This is primarily due to the reduction in

the peak electric field at the EB junction. Since a larger forward bias is required to

get a larger JE, the peak electric field at the EB junction is reduced.

The collected charge was also analyzed across temperature, and the results are

shown in Fig. 7.9. Unlike for the temperature dependence for the collector transient

peak amplitude, even at a VCB of 0 V, there is no clear temperature trend observed.
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Figure 7.8: Collector peak amplitude as a function of temperature for NPN and
PNP at (a) VCB = 0 V and (b) VCB = 10 V.

This relative lack of temperature dependence over this temperature range is similar

to what was reported in [57] for an epilayer diode. An increase in VCB (measured up

to 40 V) also showed no observable temperature trend.

7.3 Analysis

While some of the measured results display a clear trend, it is important to decouple

any potential optical effects associated with the laser that may influence the high-

temperature results. Mainly, the laser power reaching the device could potentially

change due to the reflections at the silicon-air interface. These reflections are de-

pendent on the index of refraction of silicon, which increases slightly with increasing

temperature [109]. The reflective loss at 24◦C is approximately 30.80% and at 100◦C,
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Figure 7.9: Collected charge as a function of temperature for VCB = 0 V, and
VCB = 10 V for both NPN and PNP devices.

the reflective loss is 31.39%. Since there is less than 1% change in reflective loss, it

can be assumed that there is no significant change in the laser power reaching the

device.

Another potential source for the observed temperature dependence is the TPA

absorption coefficient. To the best of the author’s knowledge, there are no reported

results for the temperature dependence of the TPA absorption coefficient. Data

has been reported on the temperature dependence of the single photon absorption

coefficient, and it was shown to increase with increasing temperature [110].

In order to definitively determine whether the measured transient peak ampli-

tude’s temperature trend at low VCB originates from the intrinsic device, TCAD

simulations were performed over the temperature range of interest. Calibrated 2-D

TCAD models were constructed, and heavy-ion strike simulations were performed. A
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Figure 7.10: TCAD simulated heavy-ion strikes from 30◦C-100◦C.

2-D model was used rather than a 3-D model to reduce computational complexity.

The simulation results for a NPN SiGe HBT at a VCB of 0 V is shown in Fig. 7.10, and

it does exhibit the observed trend of decreasing transient peak amplitude data with

increasing temperature. Although it is not shown here, the PNP device simulation

results all showed the same trend as the NPN results.

Further TCAD simulations were performed to better understand the temperature

dependence of the transient peak amplitudes. The VCB dependence in particular

needed to be explored further. Fig. 7.11 shows the change in collector transient

peak amplitude as a function of temperature for VCB from 0 V to 20 V. Similar to

measurements, VCB of 0 V case shows the strongest temperature dependence, where

approximately 30% reduction in transient peak amplitude is observed. However, with

increasing VCB, the temperature dependence becomes much weaker. At a VCB of 20
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Figure 7.11: TCAD simulated percent change in collector transient peak am-
plitude from 30◦C-100◦C for VCB from 0 V to 20 V.

V, less than 15% change in transient peak amplitude is observed. This weaker tem-

perature dependence with increasing VCB is similar to what was observed in Fig. 7.8.

The reduction in transient peak amplitude with increasing temperature at low

VCB can be explained by understanding the temperature dependence of eq. 7.1.

The two key temperature dependent terms that strongly influence the transient peak

amplitude are E0 and µ
′
. While it is hard to measure the electric field directly,

calibrated simulations can help understand the temperature dependence of the field.

The peak electric field along the emitter center as a function of temperature was

investigated in TCAD. The percent change in the peak electric field as a function

of temperature for VCB from 0 V to 40 V is shown in Fig. 7.12. A VCB of 0 V

condition clearly has a significantly stronger temperature dependence, where a 30%

decrease in peak electric field is observed at 100◦C. As VCB increases, the temperature

dependence of the electric field becomes weaker. For a VCB of 40 V, there is less than
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Figure 7.12: TCAD simulated percent change in peak electric field at the emit-
ter center across temperature for VCB of 0 V - 40 V.

a 0.5% change in the peak electric field. The strong reduction in the temperature

dependence of the electric field partially explains why there is a lack of temperature

scaling for the transient peak amplitude at higher VCB in Fig. 7.8.

The other key temperature dependent parameter to be explored is the mobility.

An average mobility value along the charge track as a function of temperature was

found by integrating both the electron and hole mobility. Fig. 7.13 shows the percent

change in mobility from 30◦C-100◦C as a function of VCB. The reduction in mobility

with increasing temperature is fairly intuitive, since higher temperatures are known

to cause an increase in the resistivity of silicon due to increased carrier scattering.

Similar to the peak electric field, the percent change in mobility with increasing VCB

becomes smaller. Even though the reduction is not as large as what is observed for

the electric field, there is still a little over 10% reduction in the change in mobility at

large VCB values.
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Figure 7.13: TCAD simulated average mobility percent change from 30◦C-100◦C
as a function of VCB.

While the simulation results still show at least a 15% change in transient peak

amplitude at higher VCB as a function of temperature, this was not observed in the

data. The discrepancy likely suggests that the observed transient peak amplitude

temperature dependence in the data is dominated more by the electric field than any

change in the mobility. This could potentially be explored further by increasing the

temperature range of the measurements. At temperatures higher than 100◦C, one

would expect the mobility to drop much further, and if a clear decrease in transient

peak amplitude is observed at higher VCB, it would indicate that a larger reduction

in mobility is required to cause a significant change in the transient peak amplitude

response.

Finally, the temperature dependence of the collected charge needs to be better

understood. The total collected charge can be separated into two distinct components:

drift and diffusion [57, 59]. The charge collected by drift is dominated by the carrier

velocity, which has been shown to decrease with increasing temperature. However, the

charge collected through drift is usually on a significantly smaller time scale compared

to the total duration of the transient [59]. The charge collected through diffusion is
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observed in the longer tail, which contributes to the majority of the duration of the

transient. This diffusion behavior is mainly controlled by the minority carrier diffusion

length. The diffusion length is dependent on both the ambipolar diffusion coefficient,

and the minority carrier lifetime [57]. The diffusion coefficient is known to decrease

with increasing temperature, but there is no general accepted temperature dependence

for the minority carrier lifetime. A typical power law dependence is assumed for the

purposes of this work, which gives the minority carrier lifetime a positive temperature

coefficient [111]. Since the diffusion coefficient decreases with temperature, and the

minority carrier lifetime increases with temperature, the minority carrier diffusion

length has an overall weak temperature dependence, which is consistent with the lack

of temperature dependence that is observed in Fig. 7.9 and in [57].

The temperature dependence can also be understood from eq. 7.1, where the

diffusion tail is modeled by the two exponential terms, α and β. β is not expected to

change significantly with temperature. The α, collection time constant of the junction,

is inversely proportional to mobility and directly proportional to the electric field. As

shown previously, the mobility and field become more temperature independent at

large VCB, which makes α weakly temperature dependent, and thus making the total

collected charge also weakly temperature dependent.

The charge collection process is additionally related to the depletion region in the

device. With increasing VCB, the CB junction depletion region extends deep within

the device. However, this depletion region is largely dominated by the external bias

applied, which is relatively temperature independent. Therefore, the depletion re-

gion’s width should not strongly impact the temperature dependence of the transient

response.

While these results are for an increase in ambient temperature, it is worth explor-

ing whether self-heating has an effect on the overall transient behavior. Self-heating is
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Figure 7.14: TCAD device cross-section indicating lattice temperature at a
bias condition of VBE = 0.8 V and VCB = 25 V with self-heating enabled.
Dimensions are not drawn to scale.

extremely important in low-voltage and high-speed SiGe HBTs, because with technol-

ogy scaling, large current densities are required. It is even more relevant in platforms

where a buried oxide is present, since the buried oxide impedes the heat flow down-

wards to the substrate, thus making it harder to dissipate heat.

To better understand the effects of self-heating on the device transients, a ther-

mally calibrated 2-D TCAD model was used. Fig. 7.14 shows the TCAD cross-section

of a simple device simulation, and the resulting lattice temperature at a bias condition

of VBE = 0.8 V and a VCB = 25 V at an ambient temperature of 24◦C. Self-heating

was enabled for the simulations by adding thermal surface resistance at the contacts,

and the values for the thermal surface resistances were set based on device calibration.

Fig. 7.14 clearly indicates that the internal junction temperature can rise well above

the ambient temperature (∆T ≈ 50◦C).

With self-heating enabled, heavy-ion strike simulations were performed in TCAD.

Simulations were performed with a fixed JE of 1 mA/µm2 and the VCB was swept from

0–25 V. This particular JE is an aggressive bias condition, and was used primarily as a

worst-case condition. The results are illustrated in Fig. 7.15. The transient peak cur-

rent as a function of VCB is shown for both simulations with and without self-heating.
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Figure 7.15: TCAD simulation of NPN HBT collector transient peak amplitudes
with and without self-heating as a function of VCB.

At low VCB, there are negligible differences between both; as VCB increases, however,

the differences become slightly more significant. At a VCB of 25 V, there is less than

10% difference in the peak amplitudes with and without self-heating. Overall, this

result is consistent with the temperature behavior observed previously. A higher VCB

is required to generate large self-heating, but a higher VCB also makes the transient

peak amplitude fairly temperature independent. From a modeling perspective and

from a technology scaling perspective, this indicates that modeling and simulating

self-heating behavior is not overly significant for heavy-ion strike simulations up to

100◦C. Considering only a 10% reduction is observed for a SiGe-on-SOI device, it is

unlikely that a bulk platform, even if it is scaled further than this, will be heavily

affected by self-heating.

7.4 Summary

This work presents the SET response of a high-voltage (> 30 V) complementary

SiGe-on-SOI HBT, and the temperature dependence of this transient response from

30◦C–100◦C. Due to the unique nature of this SiGe HBT platform, NPN devices

show smaller collected charge and transient peak amplitude (2–3X less) than the
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PNP devices, contrary to what previously has been reported in the literature. This

is found likely to be due to the larger volume of the PNP device, and a larger peak

germanium content compared to the NPN device.

Additionally, the temperature dependence of the SET response has been investi-

gated for VCB from 0 V to 40 V. There are two distinct cases: VCB = 0 V and VCB

> 0 V. At a VCB of 0 V, the transient peak amplitude shows a negative temperature

coefficient for both NPN and PNP devices. A slight increase in collected charge is

also observed due to an increase in transient duration. However, at VCB > 0 V, there

is no clear temperature dependence observed in measurements. TCAD simulations

indicate that both the change in peak electric field and carrier mobility saturates

with increasing VCB as a function of temperature. For normal circuit operation,

where some VCB is present, it can be stated that the SET response of SiGe HBTs is

relatively temperature independent up to 100◦C. The findings of the present paper

indicate that high temperatures do not significantly degrade the SET response of the

C-SiGe-on-SOI platform studied. The results shown suggest that this particular SiGe

technology can be used for environments where highly-energetic particles and high

temperatures are encountered simultaneously.

The effects of self-heating on the SET response was explored using TCAD. An

aggressive bias condition was used to maximize self-heating by increasing VCB up to

25 V. Simulations indicated that even at a VCB of 25 V, less than 10% change in

transient peak amplitude is observed. The change is modest even for a SiGe-on-SOI

platform, therefore it is unlikely that self-heating will play a large role in the transient

response for other bulk platforms.
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CHAPTER 8

CONCLUSION

8.1 Contributions

This work has investigated the operation of SiGe HBTs in high-temperature and

radiation-rich environments. While SiGe HBTs have traditionally been known to

work best at cryogenic temperatures, this work has shown that SiGe HBTs can be

used at the other end of the temperature spectrum also. In particular, this work has

primarily looked at a high-voltage SiGe-on-SOI technology that is vastly different than

typical RF-optimized SiGe HBTs. Most importantly, this work provides a framework

on how to go from a device-level analysis to a larger circuit/system for extreme

environment operation. The following is a summary of all the contributions of this

work:

1. First DC (Gummel, current gain, and BVCEO) and AC characterization (fT and

fmax) of a SiGe-on-SOI HBT up to 300◦C. SiGe-on-SOI HBTs were shown to

exhibit adequate performance even at these elevated temperatures.

2. An analysis of the temperature dependence of the reliability degradation mecha-

nisms in SiGe HBTs. Three different device-level reliability degradation mecha-

nisms were identified and their temperature dependence was investigated using

a variety of stress testing methods. While the SOA of SiGe HBTs contracts

at high-current operation with increasing temperature, high-voltage and high-

power regions were shown to expand at higher temperatures.
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3. Development of a wide-temperature calibrated compact model to build high-

temperature capable analog building blocks. A cascode current mirror, wide-

temperature BGR, and a class-AB push-pull circuit were realized. A design of

a BGR with the lowest TC from 24◦C-300◦C for a silicon-based technology was

also shown to be possible with a SiGe technology.

4. A design and demonstration of a high-temperature, high-current gate driver

operating at up to 300◦C. Up to 2.7 A of current were measured for this driver

at high temperature, which is a first for a silicon technology.

5. An analysis of TID effects on a high-voltage SiGe-on-SOI technology. Lower

collecting doping was shown to negatively impact the device performance due

to TID at high injection. Through TCAD simulations, this was shown to be

the effect of STI traps generated through TID.

6. An investigation of the temperature dependence of the SET response in a SiGe-

on-SOI technology. The temperature dependence was shown to be heavily de-

pendent on VCB. A VCB of 0 V condition exhibited a negative temperature

coefficient while a VCB >0 exhibited very weak temperature dependence. Over-

all, room temperature was shown to be the worst-case condition for SETs, and

higher temperatures do not show any degradation from an SET perspective.

8.2 Future Work

Some of the logical extensions from this work are:

1. Investigate how linearity scales with increasing temperature. This could be

particularly important in the context of power amplifiers, which may need to

operate at elevated temperatures due to large self-heating.

2. Look at the how the SOA shifts with increasing temperatures under an AC stress

condition. While DC stress conditions were investigated in this work, it would
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be beneficial from a circuit-level perspective to understand how a dynamic AC

signal will impact the stress response.

3. Investigate the effects of device size on the over-temperature SOA. In particular,

devices with different perimeter to area ratio.

4. Build upon the gate driver design in this work to make a complete driver that

can drive both a high-side and low-side switch along with all the necessary

sub-systems [92].

5. Investigate the temperature dependence of TID as a function of VCB.

6. Analyze the differences in the temperature dependence of SETs between SOI

and bulk devices. Since the collector-substrate junction plays a large role in the

diffusion tail of SETs, it will likely play a large role in the SET temperature

dependence.

7. A more thorough investigation into the differences in the NPN and PNP tran-

sients in different SiGe-on-SOI technologies.

8. Analyze the temperature dependence of SETs under broad-beam heavy ions.

Laser was used in this work, which may potentially impact the temperature de-

pendence of the SETs due to the unknown temperature dependence of the TPA

absorption coefficient. A heavy-ion study will help to decouple this dependence.
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