
EFFICIENT IMAGE COMPRESSION SYSTEM

WITH A CMOS TRANSFORM IMAGER

A Dissertation
Presented to

The Academic Faculty

By

Jungwon Lee

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

December 2009

Copyright c© 2009 by Jungwon Lee

EFFICIENT IMAGE COMPRESSION SYSTEM

WITH A CMOS TRANSFORM IMAGER

Approved by:

Dr. David V. Anderson, Advisor
Professor, School of ECE

Georgia Institute of Technology

Dr. Paul E. Hasler
Professor, School of ECE

Georgia Institute of Technology

Dr. Justin Keith Romberg
Professor, School of ECE

Georgia Institute of Technology

Dr. John F. Dorsey
Professor, School of ECE

Georgia Institute of Technology

Dr. Sung Ha Kang
Professor, School of Mathematics

Georgia Institute of Technology

Date Approved: 31 August 2009

To my late father, my mother, and my wife Geunjung

ACKNOWLEDGMENT

I would like to thank, first and foremost, my thesis advisor Dr. David Anderson.

I would not be able to finish my thesis without his constant support and guidance. I

would also like to thank my thesis committee members, Dr. Paul Hasler, Dr. Justin

Romberg, Dr. John Dorsey, Dr. Sung Ha Kang, and Dr. Joel Jackson, for their valu-

able advices and comments.

I would like to thank my colleagues, Abhishek Bandyopadhyay, Teahyung Lee, and

Ryan Robucci, for their feedbacks and fruitful discussions that helped me improve my

work. Likewise, I would also like to thank all the members of ESP Group, specially

Faik Baskaya, Walter Huang, Michael Lo, and Sourabh Ravindran, for letting me

have a lot of wonderful and unforgettable memories during my graduate studies at

Georgia Tech.

Last, but not least, I would like to express my deep gratitude to my mother and

my wife. Their constant and selfless love has always guided me like a lighthouse in

my long voyage.

iv

SUMMARY

This research focuses on the implementation of the efficient image compression

system among the many potential applications of a transform imager system. The

study includes implementing the image compression system using a transform imager,

developing a novel image compression algorithm for the system, and improving the

performance of the image compression system through efficient encoding and decoding

algorithms for vector quantization.

A transform imaging system is implemented using a transform imager, and the

baseline JPEG compression algorithm is implemented and tested to verify the func-

tionality and performance of the transform imager system. The computational re-

duction in digital processing is investigated from two perspectives, algorithmic and

implementation. Algorithmically, a novel wavelet-based embedded image compression

algorithm using dynamic index reordering vector quantization (DIRVQ) is proposed

for the system. DIRVQ makes it possible for the proposed algorithm to achieve su-

perior performance over the embedded zero-tree wavelet (EZW) algorithm and the

successive approximation vector quantization (SAVQ) algorithm. However, because

DIRVQ requires intensive computational complexity, additional focus is placed on the

efficient implementation of DIRVQ, and highly efficient implementation is achieved

without a compromise in performance.

v

TABLE OF CONTENTS

ACKNOWLEDGMENT . iv

SUMMARY . v

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTER 1 INTRODUCTION . 1
1.1 Overview . 1
1.2 Contributions of the Research . 3

CHAPTER 2 CMOS TRANSFORM IMAGER SYSTEM 5
2.1 Pixel Structure and Imager Architecture 6
2.2 System Implementation . 11
2.3 Measured Noise Characteristics . 14
2.4 Transform Imager Simulator . 16

CHAPTER 3 JPEG COMPRESSION SYSTEM USING A TRANS-
FORM IMAGER . 19

3.1 JPEG Compression System using a Transform Imager 20
3.1.1 System Implementation . 22
3.1.2 Measured Images and Analysis 24

3.2 Noise in the Transform Imager-Based JPEG Compression System . . 25
3.3 Zonal Mask Implementation in a Transform Imager System 28

CHAPTER 4 WAVELET-BASED EMBEDDED IMAGE COMPRES-
SION USING DYNAMIC INDEX REORDERING VEC-
TOR QUANTIZATION 31

4.1 Wavelet Transforms and Wavelet-Based Image Coding 32
4.1.1 Wavelet Transforms . 33
4.1.2 Wavelet-Based Image Coding 35
4.1.3 Successive Approximation Vector Quantization (SAVQ) . . . 36

4.2 Dynamic Index Reordering Vector Quantization (DIRVQ) 37
4.3 Temporal Dynamic Index Reordering Vector Quantization 38

4.3.1 Temporal Domain in Embedded Image Coding 40
4.3.2 Temporal Dynamic Index Reordering Vector Quantization . . 41
4.3.3 Implementation of a TDIRVQ-Based Image Coder 42
4.3.4 Experimental Results of TDIRVQ 48

CHAPTER 5 EFFICIENT IMPLEMENTATION OF LATTICE SHELL-
BASED DIRVQ . 55

5.1 Efficient Implementation of Lattice Shell-Based DIRVQ 56

vi

5.1.1 Optimal Lattices . 56
5.1.2 Cyclic codes . 57

5.2 Efficient Implementation of 4-Dimensional L-DIRVQ 58
5.2.1 Inner Product-Based Grouping 59
5.2.2 Masking Technique . 60
5.2.3 Example . 63
5.2.4 Computational Reduction . 65

5.3 Efficient Implementation of 16-Dimensional L-DIRVQ 66
5.3.1 Cyclic Reed-Muller Codes . 67
5.3.2 Constructing a Modified Λ16 (M−Λ16) Lattice-Based Codebook 68
5.3.3 Finding an M − Λ16 Lattice-Based Codevector 72
5.3.4 Inner Product-Based Grouping in M − Λ16 L-DIRVQ 75
5.3.5 Encoding and Decoding procedure in M − Λ16 L-DIRVQ . . . 77
5.3.6 Example . 89
5.3.7 Computational Reduction . 90

CHAPTER 6 CONCLUSIONS AND DISCUSSIONS 93
6.1 Conclusions . 93
6.2 Discussions - DIRVQ for Videos . 95

REFERENCES . 98

vii

LIST OF TABLES

Table 2.1 Summary of the transform imager pixel. 15

Table 3.1 Reduced digital computation of 8×8 2D DCT by using a transform
imager . 24

Table 4.1 The algorithmic flow of temporal dynamic index reordering vector
quantization (TDIRVQ) . 43

Table 4.2 Entropy reduction of test images by using TDIRVQ 51

Table 4.3 Performance comparison for Lena image (512 × 512) 54

Table 5.1 Optimum lattices . 57

Table 5.2 The codebook generated from the first shell of the D4 sphere . . 61

Table 5.3 Computational reduction of the proposed D4 lattice-based code-
book encoding and decoding algorithm 66

Table 5.4 Fifteen codes based on the first-order Reed-Muller code (weight 8) 68

Table 5.5 Fifteen codes are generated from the generator matrix P 70

Table 5.6 Sixteen codevectors based on a pseudo-cyclic Reed-Muller code
(weight 8) . 71

Table 5.7 Organization of the codebook reordered based on the previous
best-matched codevector in the class-1 and SEED subclass code-
book (SEED codebook). 78

Table 5.8 Organization of the codebook reordered based on the previous
best-matched codevector in the class-2 (C2 codebook). 79

Table 5.9 All possible combinations of overlaps of codevectors in a SEED
codebook . 80

Table 5.10 All possible combinations of overlaps of codevectors in a COMP
codebook . 81

Table 5.11 All possible inner product values for the number of non-zero over-
laps when the current best-matched codevector is either in a SEED
codebook or a COMP codebook. 82

Table 5.12 Template for the encoding and decoding procedure for a C2 code-
book when the distance of the non-zero elements in the previous
best-matched codevector is either 1, 2, 3, 5, 6, 8. 86

viii

Table 5.13 Template for the encoding and decoding procedure for a C2 code-
book when the distance of the non-zero elements in the previous
best-matched codevector is either 4 or 7 87

Table 5.14 Computational reduction of the proposed M − Λ16 lattice-based
codebook encoding and decoding algorithm. 91

Table 5.15 Run-time reduction of the proposed M − Λ16 lattice-based code-
book encoding and decoding algorithm 92

Table 6.1 Entropy reduction of the test video samples after applying DIRVQ 97

ix

LIST OF FIGURES

Figure 1.1 CADSP concept . 2

Figure 2.1 Pixel structure of a transform imager 6

Figure 2.2 2D separable transform computation in a transform imager . . . 8

Figure 2.3 Transform imager architecture 9

Figure 2.4 Programmed DCT values . 10

Figure 2.5 Schematic of the PCB . 11

Figure 2.6 Imager system overview. 12

Figure 2.7 Timing sequence for image readout 13

Figure 2.8 DCT results . 14

Figure 2.9 Haar transform results . 14

Figure 2.10 Dark current distribution . 15

Figure 2.11 Pixel characterization measurements for uniform illumination . . 16

Figure 2.12 Imager simulator . 17

Figure 3.1 General strategy of image transform coding 19

Figure 3.2 Top level view of the proposed JPEG compression system 21

Figure 3.3 Implemented JPEG compression system 22

Figure 3.4 JPEG compression results . 25

Figure 3.5 Image sequences (20 fps) . 26

Figure 3.6 PSNR performance of DCT-based compression using a transform
imager system . 27

Figure 3.7 PSNR of DCT-based compression using the simplified noise model 28

Figure 3.8 PSNR improvement of an averaged image 29

Figure 3.9 Zonal masks . 30

Figure 4.1 Time-frequency tiles . 33

Figure 4.2 Two-channel filter bank . 34

x

Figure 4.3 The one-level 2D filter bank results of a Lena image. 34

Figure 4.4 The three-level wavelet result of a Lena image. 35

Figure 4.5 Successive approximation in a vector space. 36

Figure 4.6 Dynamic index reordering . 39

Figure 4.7 Temporal domain in embedded image coding 41

Figure 4.8 Vector successive approximation 42

Figure 4.9 Diagram of TDIRVQ . 44

Figure 4.10 TDIRVQ implementation using a transform imager system . . . 45

Figure 4.11 Three-level wavelet transform implementation using tree-structured
filter banks. 45

Figure 4.12 Half-shifting scheme to overcome block boundary 47

Figure 4.13 Denoising in TDIRVQ implementation 48

Figure 4.14 Index probability distribution for the case of 0.1 bit per pixel and
2 × 2 case . 50

Figure 4.15 PSNR performance improvement of D4-based TDIRVQ 52

Figure 4.16 PSNR performance improvement of λ16-based TDIRVQ 53

Figure 5.1 Cyclic codes . 58

Figure 5.2 Masking the position of zero elements 62

Figure 5.3 Omitting and recovering the signs of the previous best-matched
codevector . 63

Figure 5.4 Template matching in nz-zone and z-zone 64

Figure 5.5 The diagram of the full encoding procedure 65

Figure 5.6 4-bit linear shift feedback registers 69

Figure 5.7 Efficient algorithm for finding a codevector in the class-1 74

Figure 5.8 Distribution of inner product values in a M − Λ16 lattice 76

Figure 5.9 Detailed organization of a subclass in the class1 82

Figure 5.10 Templates for a SEED codebook and a COMP codebook 84

Figure 5.11 Detailed organization of a subclass in the class2 88

xi

Figure 5.12 The detailed organization of the codebook when the inner product
value is 0 . 90

Figure 6.1 DIRVQ for video processing . 95

Figure 6.2 Sample figures used for codebook training 95

Figure 6.3 Index changes of one sampled block in the missa sequence 96

Figure 6.4 Total index count for the full video of the missa sequence 96

xii

CHAPTER 1

INTRODUCTION

1.1 Overview

Two trends are leading information technology in the 21st century, ubiquitous com-

puting and technology convergence. There are many definitions and explanations

of these terms, but in short, people want to make their devices more mobile and

put more functionalities in one device. We can easily look at these trends in mobile

phones, PDAs, MP3 players, and portable multimedia players (PMP). Digital camera

or voice recording functions in mobile phones and PDAs are not optional anymore

and considered standard features.

The prevalence of the ubiquitous and multi-functional systems in daily life creates

a higher demand for more efficient signal processing systems in power consumption.

Conventional digital-only signal processing has limitations in meeting this demand.

On the other hand, analog computational circuits have various advantages, namely,

power consumption and real-time signal processing. There is great potential for in-

tegrating both types of circuits into a cooperative analog-digital signal processing

(CADSP) system [1].

CADSP is a new concept that explores advantages and potentials, which were

impossible with digital-only systems, of combining analog processing and digital pro-

cessing. This concept becomes feasible because of the new advances in analog VLSI

circuits that have been improved for more accurate computations comparable to dig-

ital processing. In addition, the programmability, which is one of the biggest merits

of digital processing, of the analog circuits is possible using floating-gate circuit tech-

nology. This programmability plays a key role in CADSP.

Conventional signal processing systems have to convert the all real-world analog

1

signals to digital signals using analog-to-digital converters as shown in Figure 1.1(a)

because signal processing is performed only in the digital domain. These systems

need to allocate significant amounts of processing power and memory for the analog-

to-digital conversion and digital-only processing. On the other hand, CADSP systems

partition a signal processing algorithm and perform it both in the analog domain and

in the digital domain as shown in Figure 1.1(b). In doing so, the processing power

and memory can be efficiently reduced, and processing speed can be also improved.

������ �����	�	���
����
��
 ���
� �	�	��� �	�����
������

�	�	��� �	�����
������

������ �	�����������
��� �	�	��� �	�����
������
�
������ �	�����������
��� �	�	��� �	�����
������
���
������ !����"#�$%&&�# '()

'*)
Figure 1.1. CADSP concept.

A transform imager has been designed and developed at Georgia Institute of Tech-

nology for CADSP image processing applications. The transform imager blends the

advantage of focal-plane imagers and the advantage of CMOS pixel sensors, so it can

do significant amounts of signal processing with large imaging arrays [2]. The pro-

grammability of the transform imager coefficients enables implementation of various

signal processing in the transform imager. However, the transform imager must be

complemented with digital processing to implement the full image processing algo-

rithms in one system. Therefore, both analog and digital aspects of the design should

be considered together in efficient signal processing system implementation.

2

This research focuses on the implementation of the efficient image compression

system among the many potential applications of the transform imager system. The

study includes implementing the image compression system using a CMOS transform

imager, developing a novel image compression algorithm for the system, and improv-

ing the performance of the image compression system through efficient encoding and

decoding algorithms for vector quantization.

A transform imaging system is implemented using a CMOS transform imager, and

the baseline JPEG compression algorithm is implemented and tested to verify the

functionality and performance of the transform imager system. The computational

reduction in digital processing is investigated from two perspectives, algorithmic and

implementation. Algorithmically, a novel wavelet-based embedded image compression

algorithm using dynamic index reordering vector quantization (DIRVQ) is proposed

for the system. Wavelets are widely used for image processing because of their great

localization performance. In addition, wavelet-based embedded compression reduces

the noise of images in some degree, and more denoising can be achieved using the

thresholding technique [3],[4],[5]; therefore, transform imager noise can be effectively

suppressed. DIRVQ makes it possible for the proposed algorithm to achieve superior

performance over the embedded zero-tree wavelet (EZW) algorithm [6] and the suc-

cessive approximation vector quantization (SAVQ) algorithm [7]. However, because

DIRVQ requires intensive computational complexity, additional focus is placed on the

efficient implementation of DIRVQ, and highly efficient implementation is achieved

without a compromise in performance.

1.2 Contributions of the Research

The contributions of this research contains the followings:

• Implemented an imaging system using a CMOS transform imager. A full imaging

system is implemented using a CMOS transform imager and a FPGA. Performance

3

of the imager and the imaging system is evaluated by implementing a real-time hard-

ware JPEG compression system in collaboration with my lab partners, Abhishek

Bandyopadhyay, Ryan Robucci, and Jordan Gray.

• Characterized the noise of a CMOS transform imager, and denoising effects from

various transform-based compression algorithms are shown.

• Developed a high performance wavelet-based image coding scheme. This scheme

applies dynamic index reordering vector quantization (DIRVQ) to the newly defined

temporal domain of embedded image coding. The compression performance improve-

ment is evaluated by comparing the results to successive approximation vector quan-

tization (SAVQ).

• Developed efficient encoding and decoding methods for D4 and Λ16 lattice shell-

based DIRVQ (L-DIRVQ). The proposed L-DIRVQ framework can be applicable to

most gain-shape type vector quantization with significantly reduced computational

complexity of DIRVQ.

4

CHAPTER 2

CMOS TRANSFORM IMAGER SYSTEM

Camera-on-a-chip systems have tried to include carefully chosen signal processing

units for better functionality and performance, and also to broaden the range of

applications they can be used for [8],[9],[10],[11]. These systems have been possible

because of advances in CMOS active pixel sensor (APS) and neuromorphic focal-plane

imagers [12],[13]. Some of the advantages of these systems are compact size, high

speed, parallelism, low power dissipation, and dense system integration [14],[15],[16].

Neuromorphic focal-plane imagers have the capability of analog focal-level signal

processing with high speed computation and low power dissipation. However, it re-

quires a large amount of additional circuitry around pixels, and leads to very low

pixel fill-factor. The fill-factor is defined as the percentage of photosensitive area

in a pixel. A low pixel fill-factor makes it difficult to manufacture high-resolution

and dense imagers. Implementing an analog-to-digital converter (ADC), digital com-

putational units, and memory on a pixel is another approach for focal-plane image

processing [17],[18]. One of the strength of this approach, when compared to the

neuromorphic approach, is that the pixel can be programmable for different image

processing algorithms. However, this method also suffers from low pixel fill-factor like

the neuromorphic focal-plane imagers and consumes a considerable amount of power.

The solution is a transform imager architecture. The transform imager architec-

ture is both modular and programmable, making it ideal for image dataflow compu-

tation. This approach allows for retina and high-level bio-inspired computation in a

programmable architecture that still possesses the high fill-factor pixel characteristics

of APS imagers. The system architecture for the transform imager is described in

this chapter.

5

2.1 Pixel Structure and Imager Architecture

Each pixel is composed of a photodiode sensor element and an analog multiplier [19].

Figure 2.1 shows that an nFET differential pair performs this multiplication. For the

differential pair operating with subthreshold bias currents, which should always be

the case because of the low-level image sensor current, the differential output current

can be expressed as

I+
1 − I−1 = Isensor1

tanh

(

κ(V +
1 − V −

1)

2UT

)

, (2.1)

where κ is the gate-coupling efficiency into the transistor surface potential (typically

0.6-0.8), and UT is the thermal voltage, κT/q. T is an analysis temperature (Kelvin)

and q is an electron charge. If the difference V +
1 − V −

1 is small, then equation 2.1

becomes

I+
1 − I−1 = Isensor1

(

κ(V +
1 − V −

1)

2UT

)

. (2.2)

Figure 2.1. Pixel structure: The chip performs arbitrary separable block transforms.
The basis functions are programmed on-chip using floating-gate circuits.

Therefore, the difference of the output current, Idiff , is the product of the sensor

output current, Isensor, and the differential input voltage, Vdiff :

Idiff = C · Isensor · Vdiff , (2.3)

where C is κ/2UT , which is a constant.

6

Matrix multiplication has two parts: element-by-element multiplication and sub-

sequent addition. In this pixel, the former is performed at the pixel level, while the

latter is performed by Kirchoff’s law, since the outputs are currents. A vector of input

voltages comes from the circuitry to the image array and is shared by each column of

the image array. Along each column, outputs are tied together to obtain a summation

of currents as shown in Figure 2.1. This means that the output of each column is a

sum of products; in particular, it is the inner product of the voltage vector with the

light intensities along the column.

This imager architecture can compute arbitrary separable 2D linear operations.

These operations are expressed as two matrix multiplications on the image:

Y = ATPB, (2.4)

where P is the image matrix of pixels, Y is the computed output matrix, and A

and B are the transform kernels [20]. The values of A and B are stored in analog

floating-gate arrays for on-chip processing.

The transform kernel has the following structure:

A =

























a[0, 0] a[0, 1] · · · a[0, N − 1]

a[1, 0] a[1, 1] · · · a[1, N − 1]

. .

a[N − 1, 0] a[N − 1, 1] · · · a[N − 1, N − 1]

























, (2.5)

where a[n, k] = Ckcos[(2n + 1)kn/2N] for discrete cosine transform (DCT) type-II,

and a[n, k] =
√

2/(N + 1)sin[π(k + 1)(n + 1)/(N + 1)] for discrete sine transform

(DST). The Hadamard transform can be written in the matrix form as

A2n = A2n−1

⊗

A2 = A2

⊗

A2n−1 , (2.6)

7

where

A2 =









1 1

1 −1









. (2.7)

Similarly, a Haar transform can also be written in the matrix format for different

sizes. The matrix coefficients are stored on-chip using floating gates. A floating gate

is a polysilicon gate surrounded by silicon dioxide. The charge on the floating gate is

stored permanently as it is surrounded by high-quality insulator.

The first matrix multiplication, Y = ATP , takes place at the pixel array itself

in a parallel manner, and the output currents from the pixel array are supplied to

the multiplier array, which contains the back-end transform kernel, for the second

multiplication (with B) as shown in Figure 2.2.

Pixel (P)Front-end transform kernel (A
T
)

Back-end transform kernel (B)

a13

a11

a12

a14

a15

a16

a17

a18

a23

a21

a22

a24

a25

a26

a27

a28

b31

b11

b21

b41

b51

b61

b71

b81

b32

b12

b22

b42

b52

b62

b72

b82

p11 p12 p13 p14 p15 p16 p17 p18

p21 p22 p23 p24 p25 p26 p27 p28

(a

1
i
*

p
i1
)

(a

1
i
*

p
i2
)

(a

1
i
*

p
i3
)

(a

1
i
*

p
i4
)

(a

1
i
*

p
i5
)

(a

1
i
*

p
i6
)

(a

1
i
*

p
i7
)

(a

1
i
*

p
i8
)

Figure 2.2. How to compute 2D separable transform in a transform imager.

8

The block diagram of the single-chip CMOS imager is shown in Figure 2.3. This

imaging architecture is made possible largely by advancements in analog floating-gate

circuit technology. These circuits have the added advantage that they can be built in

standard CMOS or double-poly CMOS processes. In this approach, the floating-gate

circuits store and reproduce arbitrary analog waveforms for image transforms, allow

for correction factors to account for device mismatch, and perform matrix-vector

computations.

Image Elements

Im
ag

e
S

en
so

r
Iout

Vin

Time basis 1
Time basis 2

Time basis m

B
as

is
 F

un
ct

io
ns

 (
A

rr
ay

of
 F

lo
at

in
g

ga
te

s)

Digital
Control and
Gate Selection
Circuitry Floating-Gate

Element

Analog Computing Array

T
ra

ns
fo

rm
ed

 O
ut

pu
t I

m
ag

e

Decoder and Read-Out Control circuitry

D
ig

it
al

 C
on

tr
ol

 a
nd

 D
ra

in
 S

el
ec

ti
on

C
ir

cu
it

ry

Figure 2.3. Transform imager architecture: The chip performs arbitrary separable block
transforms. The basis functions are programmed on-chip using floating-gate circuits.

For an indication of multiplication accuracy, a gain error measurement of the

imager array was performed by illuminating the chip with nearly uniform light. The

mean gain was 2.12nA/V , which should be constant across the imager for constant

illumination. The average error was 1.58%. This measurement is a conservative

measure of expected performance since currents were measured off-chip in a noisy

environment. On-chip processing will have the benefit of even better signal-to-noise

9

ratio.

The DCT coefficients that were programmed on-chip are shown in Figure 2.4 (a),

while Figure 2.4 (b) shows the percentage error associated with each coefficient. The

coefficients can be programmed in both subthreshold and above-threshold regions.

The programming algorithm used allows for programming accuracies up to 99.8% for

3.5 decades of currents. The retention loss is less than 1V at 27◦C over 10 years, and

less than 1mV at 90◦C over 10 years for floating gates fabricated in 0.5-µm N-well

CMOS process [21].

Figure 2.4. Programmed DCT values: an 8 × 8 DCT kernel was programmed onto an
8×8 array. The values were programmed around a DC of 10nA. The DC was subtracted
for clarity of display. The maximum percentage deviation for the array was 0.7%.

A traditional system would have to read out each pixel value, perform an analog-

to-digital conversion, and store the image. The data would then be processed by

digital circuitry to perform the matrix multiplication. This implementation of the

matrix multiplication is much more efficient. The CMOS imager is based on the

earlier work that demonstrated the viability of the pixel element, which computed

simple single-block transforms on a fabricated IC, and that a single-block DCT could

be computed [2].

10

2.2 System Implementation

The floating-gate elements are programmed to arbitrary values using an external pro-

gramming board that only requires an external power supply and field programmable

gate array (FPGA) interface. The schematic of the printed circuit board (PCB) used

to control the imager is shown in Figure 2.5. The analog biases (drain voltage, gate

voltages, tunneling voltages, and power supply) required by the imager chip are pro-

vided by DACs, which are controlled by the FPGA. There is additional circuitry for

generating the tunnel voltage, and all the analog voltages are buffered before they

are presented to the imager chip. Since a high power supply is required for program-

ming, the digital signals to be used during that phase go through level shifters. The

board has 14-bit 10-MS/s ADCs for image capture. For testing, an optical test bench

was built, which projects an LCD image using a directed light source for illumina-

tion. During experiments, there was little noticeable movement of the floating-gate

elements from their respective programmed values.

Figure 2.5. Schematic of the PCB: A PCB was designed for providing the analog biases
and the digital control required for the chip. All the digital control is provided by
an FPGA. The digital outputs are acquired and stored using the FPGA for further
processing.

11

Tunnel, Gate, Vdd…

Analog bias circuits

and buffers

Multi-channel

DAC

Floating-gate

Programming

Board

Transform

Imager chip

Chip addressing / Digital control

DAC control

Analog

voltage

Output Images

FPGA programming

Ethernet / USB

for data transfer

FPGA tools

MATLAB

F
P
G
A

B
O
A
R
D

Analog voltage

Voltmeter

Ammeter

Testing Equipment

Testing signals

Testing equipment control

Testing values

Figure 2.6. Imager system overview.

The timing sequence for image readout is shown in Figure 2.7. The different

rows of the basis function are presented to the chosen block using kernel column

selection. The outputs are read out using column parallel I-to-V converters and

open-loop sample-and-hold circuits. After all the rows of the basis function have

been presented for in-pixel multiplication and the output have been read out, the

block selection is changed and the above process is repeated for reading that block.

The measured DCT transformed images and Haar transformed images are shown

in Figure 2.8 and Figure 2.9, respectively. Figure 2.8 shows the original image as

acquired by the transform imager, the 8 × 8 block DCT output of the imager, and

the corresponding reconstructed image without compression. As expected, energy

compaction is observed in each block. For the top image the DC components of the

blocks have similar values since it has uniform contrast variation, whereas, for the

bottom image the DC components near the face are higher than the ones correspond-

ing to the background. The image was reconstructed without compression to verify

the operation of the chip. The reconstructed images from the DCT coefficients show

12

Figure 2.7. Timing sequence for image readout. The images are read out in a column
parallel fashion. Random access is possible for reading parts of the image. The timing
sequence is provided using an FPGA.

that the computation process has introduced minimal sources of error. The difference

between reconstruction from the compressed image and reconstruction starting from

the original image is negligible. Figure 2.9 shows the Haar transform results. The

transform imager is programmed with an 8×8 Haar transform. Figure 2.9(b) shows a

Haar transformed image before reordering, and Figure 2.9(c) is a reconstructed image

to verify the operation of the chip.

MATLAB is used to communicate with a computer for more convenient develop-

ment and verification of algorithms. Since controlling the transform imager and other

hardware such as DACs and ADCs requires indepth knowledge of the entire imager

system, several different levels of MATLAB application programming interface (API)

are designed so that high-level algorithm developers do not necessarily need to know

hardware details. For example, algorithm developers can read an image just by typ-

ing a ReadImage command in MATLAB without knowing how to control DACs and

13

(a)
 (b)

Figure 2.8. DCT results: (a) Original images (b) 8 × 8 block 2D DCT and DCT coeffi-
cients for one block.

Figure 2.9. Haar transform results: (a) Original image (b) Haar transform (before
reordering) (c) Reconstructed image.

ADCs on the imager PCB board.

2.3 Measured Noise Characteristics

The potential sources of error in the pixel are offset mismatches, gain mismatches,

and mismatches across the pixel array. The transform imager pixel was characterized

for dark current by measuring the current under reset conditions with no chip illu-

mination. The distribution of dark currents from a 16 × 16 block of a larger imager

is shown in Figure 2.10. The average dark current was measured to be 14.9 nA/cm.

Edge effects are not observed in this case as this block was from the middle of the

imager. The variations have been observed to follow no trends and are random in

nature. These measurements were taken under no illumination conditions with the

transform imager configured to read an image. Conventional dark current methods

would give a lower value than measured here, as extra parasitics exist in the signal

14

path when using the known method for measuring dark currents. A characteriza-

tion chip was fabricated for testing the variations of the above. The voltage offset

variations are plotted in Figure 2.11(a).

The voltage offset can be accounted for by programming the incoming bias volt-

ages accordingly. The gain and mismatches are plotted in Figure 2.11(b) and (c).

The gain is the slope of the tanh curve in the linear region. Since the first multipli-

cation is performed at the pixel, the linearity of the in-pixel multiplier is important.

The variation of linearity across a 40 × 48 array is plotted in Figure 2.11(d). The

performance of the pixel is summarized in Table 2.1. The used photodiode has square

edges, and reducing the edges might reduce mismatch.

0
5

10
15

20

0

5

10

15

20
13.5

14

14.5

15

15.5

16

rows
columns

D
ar

k
cu

rr
en

t (
nA

/c
m

2)

Figure 2.10. Dark current distribution: this figure shows the dark current distribution
in a 16 × 16 block taken from the middle of the imager. The average dark current was
measured to be 14.9 nA/cm2.

Table 2.1. Summary of the transform imager pixel.

Parameter Mean Std. dev.

Gain 2.12 nA/V 0.34 nA/V
Linear range 54.4 mV 4.3 mV
Voltage offset 8.9 mV 6.7 mV

Kappa 0.7149 0.0072

15

5 10 15 20 25 30 35 40

10
20

30
40

0

20

40

Column
Row

V
ol

ta
ge

 O
ff

se
t (

m
V

)

10
20

30
40

10
20

30
40

1

1.5

2

Column
Row

G
ai

n
(n

A
/V

)

10
20

30

10
20

30
40

0.68

0.7

0.72

0.74

ColumnRow

K
ap

pa

5
10

15
20

25
30

35
40

10

20

30

40

20

40

60

Column

Row

L
in

ea
r

R
an

ge
 (

m
V

)

(a) (b)

(c) (d)

Figure 2.11. Pixel characterization measurements for uniform illumination: (a) the
variation of voltage offsets for a 48 × 40 array is shown above. The mean and the
standard deviation are 8.9 mV and 6.7 mV , respectively. (b) The variation of gain for a
48× 40 array is shown above. The mean and the standard deviation are 2.12 nA/V and
0.0336 nA/V , respectively. This mismatch is primarily because of the mismatch of κ.
(c) The variation of κ for a 48 × 40 array is shown above. The mean and the standard
deviation are 0.7149 and 0.0072, respectively. This mismatch is primarily because of
the mismatch of the gate coupling efficiency into the transistor surface potential. (d)
The variation of linearity for a 48×40 array is shown above. The mean and the standard
deviation are 54.4 mV and 4.3 mV , respectively.

2.4 Transform Imager Simulator

For algorithm developers, setting up the imager system, reprogramming the imager,

and adjusting the imager biases could be onerous tasks, especially at the initial de-

velopment stage when more frequent imager programming is required. A transform

imager simulator is designed to make the development process more efficient [22]. The

simulator is designed to share the same high-level MATLAB API as in Figure 2.12.

Therefore, the developed MATLAB code using the simulator can be directly used

with the actual imager system without any major change. There are many other

advantages of the imager simulator. One advantage of using the simulator is that

16

it makes the algorithm verification simpler and faster. Another advantage is that it

also allows developers to develop algorithms remotely from the imager system, which

is not always portable with the optical test bench. Another advantage of using the

simulator is that it does not interrupt algorithm development when the imager system

needs frequent hardware revision or maintenance.

Figure 2.12. Imager simulator is designed to share the same MATLAB API as what
the transform imager system uses.

The pixel structure and the architecture of the imager are simplified in the simula-

tor with the implementation of basic noise characteristics. The simulator can be used

in two different ways. When the feasibility of algorithms in the transform imager

needs to be checked quickly, the behavioral simulation is suitable. The behavioral

model, which sets the internal physical model as ideal without any noise, can be used

for the behavioral simulation. When the analysis of noise characteristics is required

in the simulation, the internal physical model can be set to the desired noise level.

The physical model, which represents the physical behavior of the pixels, is mostly

17

about the noise characteristics such as the fixed pattern noise (FPN) and the noise

from the device mismatches.

18

CHAPTER 3

JPEG COMPRESSION SYSTEM USING A TRANSFORM

IMAGER

For decades, transform image coding techniques have gotten the most attention

in the field of image compression because of their simplicity and efficiency. They

especially became more popular after the Joint Photographic Experts Group (JPEG)

selected the DCT-based transform coding technique as a standard in 1988. The

general strategy of transform image coding is shown in Figure 3.1 and can be described

as follows:

Figure 3.1. General strategy of image transform coding

1. Partitioning the images into n × n subimages. The size of image blocks is a

significant factor affecting the performance of transform image coding. Different block

sizes have been tested for popular transforms such as a discrete Fourier transform

(DFT), DCT, Haar, Walsh-Hadamard; the results show that the root-mean-square

error does not reduce much for sizes larger than 8 × 8 [20],[23]. Considering the

computational complexity and performance increase, the JPEG standard uses the

8 × 8 block size [24].

2. Performing a forward transform for each image block. The main purpose of

performing a forward transform is to de-correlate the pixels of the block. There are

19

many unitary block transforms that are capable of compacting the signal energy into

a few transform coefficients such as DFT, DCT, Walsh-Hadamard, and so on. Among

them, DCT is the most popular transform because of its superior compacting ability

and periodic property. The periodic property is particularly important for reducing

the block artifact [20].

3. Quantizing the transform coefficients. Major compression of DCT-based image

coding is performed in the quantization stage. The significant coefficients are quan-

tized finely, and the least significant coefficients are quantized coarsely. In the JPEG

standard, transform coefficient matrices are divided by quantization matrices, and

the divided values are rounded to the nearest integer values [24].

4. Entropy coding the quantized symbols. Quantized coefficients are converted to

symbols, and the symbols are entropy coded. Huffman coding and arithmetic coding

are widely used for entropy coding, and the JPEG standard specifies both.

Since the JPEG standard is the most successful and widely used among the trans-

form image coding algorithms, extensive research has been done not only for the

algorithm itself but also for the hardware/software implementation [25] [26]. DCT

computation is considered the most intensive in the JPEG system [27]. Therefore,

the implementation of dedicated DCT computational hardware also has been actively

studied to achieve faster and more power efficient performance [28],[29],[30].

3.1 JPEG Compression System using a Transform Imager

Baseline JPEG compression requires computation of a 2D DCT, quantization, and

run-length followed by Huffman coding [20]. A conventional JPEG implementation is

shown in Figure 3.2 (a), in which most of the computations are processed in the digital

chip except the imager and the analog-to-digital converter (ADC). The proposed

system is shown in Figure 3.2 (b). A DCT block is one of the most computationally

intensive blocks in the JPEG system [27]. This block is moved to the programmable

20

transform imager to reduce the digital computations and power consumption. The

tested system to prove the CADSP approach and concept is shown in Figure 3.2 (c).

The analog computing array is modeled in MATLAB. An FPGA is used to interface

between the transform imager and MATLAB, and also provides control signals to

the imager. Figure 3.2 (d) is an ideal low-power system. The ADC is merged into

the transform imager, so that all analog computations are implemented in a single

chip. This solution is currently under development and will be presented in a future

publication.

Conventional

Imager

text

text

DCT
 Quantizer

Huffman

coder

Quantizer

Huffman

Coder

Analog to

Digital

Converter

JPEG

Image

JPEG

Image

Digital

Digital

DCT

Analog to

Digital

Converter

Imager

Transform Imager

Programmable

(a)

(b)

Analog to

Digital

Converter

Transform

Imager

text

Matlab

Analog

Computing

Array

Quantizer

Huffman

coder

JPEG

Image

FPGA

(c)

text
Quantizer

Huffman

Coder

JPEG

Image

Digital

DCT

Analog to

Digital

Converter

Imager

Programmable
 (d)

Transform Imager

Figure 3.2. Top level view of the proposed JPEG compression system used as an appli-
cation for signal processing. (a) Conventional approach (b) proposed system (c) Tested
system (d) Ideal single chip system.

21

3.1.1 System Implementation

A printed circuit board (PCB) is designed for programming the imager and capturing

images. This board is controlled by a Xilinx Virtex FPGA with a 32.768Mhz clock.

Because the computation in the analog transform imager is very fast compared to the

digital system, the readout speed is constrained by the test setup, such as the speed

of interface and FPGA clock rate. The test images are focused onto the pixel array

using a multiple lens system, an LCD (1024 × 768 resolution), and a DC regulated

light source. Other imagers have been built that range from 14 × 14 resolution to

512 × 480 resolution and use an imager with 48 × 40 resolution and an imager with

72×64 resolution to easily analyze the transform results. The implemented hardware

on the optical test bench is shown in Figure 3.3.

Figure 3.3. Implemented JPEG compression system using a transform imager on the
optical bench.

The implementation of an 8 × 8 2D DCT based on the fast symmetry-based 1D

DCT needs 208 multiplications and 464 additions, and even the fast FFT-based 1D

DCT-based method requires 80 multiplications and 464 additions [31]. By using the

transform imagers, the number of digital functional units is significantly reduced. The

key concern here is the amount of power that could be saved by this reduction. It

22

is not easy to estimate the total power of 2D DCT digital implementations directly

from the number of reduced operations because there are several ways to implement

it with various architectures.

The fully digital JPEG compression system was implemented in an FPGA using

VHDL for power consumption comparison with the transform-imager-based system.

Total power consumption of the fully digital implementation was estimated at 183mW

by the Altera FPGA power estimate worksheet [32]. Total 146mW using the same

estimation method by removing the DCT computation part, which is processed in

the transform imager, was saved. Note that a generic DCT module, which is not

designed for a low power solution, is used. However, even DCT chips optimized

for low power consume a considerable amount of power, which ranges from about

10mW to 140mW [28],[29]. Usually, fixed implementations consume less power, and

reconfigurable implementations consume more. A transform imager consumes less

than 5mW . Considering that the transform imager includes pixel elements, the power

consumption reduction is significant.

Three-dimensional DCT implementation can be a good candidate for utilizing the

system. A video compression based on the 3D DCT is not widely used since the 3D

DCT is highly computationally intensive. Direct implementation of the 8× 8× 8 3D

DCT requires 12,288 multiplications and 12,096 additions, and 960 multiplications

and 5,568 additions are required if the Fourier-based 1D DCT is used [31]. The

transform imager can reduce two-thirds of the total operations because the 2D DCT

is already computed. Another problem of the 3D DCT-based compression algorithm

is the memory requirement. To compute one block of an 8 × 8 × 8 3D DCT, eight

frames of data should be stored in a buffer, which requires a large amount of memory.

After DCT, most energy is concentrated on low frequencies, which have few DCT

coefficients, depending on the compression ratio. Therefore, if only the low-frequency

coefficients of the 8× 8 block are read and transferred to the digital processing chip,

23

Table 3.1. Reduced digital computation of 8× 8 2D DCT by using a transform imager.
Note that the fast FFT-based 1D DCT is considered for both 2D and 3D DCT imple-
mentation in this table. 208 multiplications and 464 additions are required when the
fast symmetry-based 1D DCT is used.

operations 2D DCT 3D DCT

additions 80 3712
multiplications 464 640

the buffer memory and the bandwidth between the imager and the digital chip can

be significantly reduced. Because reading images is simply sending address signals to

the imager, this selective reading is straightforward to implement.

The transform imager can be used for various image processing applications be-

cause it is reconfigurable. In addition to this flexibility, this reconfigurability makes

it easy for the analog chip to calibrate its parameters. Since the transform imager

performs multiplication of its inputs, calibrating the parameters, which is used for

the multiplication coefficients, is important to avoid calculation errors.

3.1.2 Measured Images and Analysis

The PSNR of the images with different compression ratios is given in Figure 3.4.

The following PSNR formula was used: PSNR = 20log(1/
√
MSE), where images

are normalized to [0,1], and MSE is the mean squared error between them. The

16 × 16 Walsh-Hadamard transform output sequence of the imager with 20 frames

per second (fps) and the corresponding reconstructed sequence are shown in Figure 3.5

(a), and the 16×16 DCT output sequence and the reconstructed sequence are shown

in Figure 3.5 (b). Still images are used to make input sequences to the imager.

Therefore, all movement is global translation.

Based on the bandwidth of a pixel, the peak computing power can be calculated

[33]. To calculate one 8 × 8 DCT coefficient, 16 multiplications and 16 additions are

required. Therefore, a total of 48×40× (16+16) operations is needed for one 48×40

24

bpp = 5.9740
psnr = 47.12

bpp = 1.3646
psnr = 32.12

bpp = 0.8819
psnr = 30.48

bpp = 0.5833
psnr = 25.73

Figure 3.4. JPEG compression results: JPEG compression using a transform imager.
The PSNR of the images with different compression ratio are given below each frame.

image. Considering the maximum bandwidth of a pixel to be 100Khz, 10µsec is

needed to process one column, and 400µsec is needed for processing the full image.

This results in 153 MOPS/s, which means 153 million analog operations per second.

Using this calculation, the peak computing power of the 128× 128 transform imager

can be easily computed. The required total operations for the 128 × 128 transform

imager is 128×128×(16+16), and it takes 1.28msec to finish the DCT calculation for

one image. Therefore, the peak computing power is 204MOPS/s. The fill factor of

the imager is 46%, which is much higher than that of other focal-plane imagers such

as a neuromorphic imager [34] and a SIMD-based digital focal-plane imager [17],[18].

3.2 Noise in the Transform Imager-Based JPEG Compres-
sion System

A transform imager is different from other CMOS imagers in the sense that the trans-

form imager is designed for both capturing images and performing block transforms on

the focal plane. For the focal-plane reprogrammable computation, the pixel structure

of the transform imager is designed differently from that of other conventional CMOS

imagers. This design difference makes a different image data flow. Compared to the

conventional CMOS imagers, most noticeable different part of the transform imager

is multiplying kernel coefficients to a pixel data. Because this operation is performed

in the differential mode, the accuracy of the kernel values is important. However,

thanks to the floating-gate technology, the kernel values can be reprogrammed, which

25

Figure 3.5. Image sequences (20 fps): (a) A 16×16 Walsh-Hadamard transformed image
sequence and a reconstructed image sequence (b) A 16 × 16 DCT transformed image
sequence and a reconstructed image sequence.

means the values can be precisely adjustable.

The noise model of a transform imager can be simplified as follows:

y(i1, i2) = (1 +m(i1, i2))x(i1, i2) + n(i1, i2) (3.1)

where x(i1, i2) is an input image, y(i1, i2) is an output image, m(i1, i2) is multiplicative

noise, and n(i1, i2) is additive noise. Fixed pattern noise (FPN) caused by device

mismatches is one of the main sources of the multiplicative noise m(i1, i2). Pixel

noise and column amplifier noise also contribute to the multiplicative noise. The

additive noise n(i1, i2) is usually modeled as additive Gaussian noise, and the main

sources of additive noise are dark current, shot noise, thermal noise, and quantization

noise of ADCs.

The Result from one of the most recent transform imagers represent the effect

of noise in DCT-based compression [35], and it is shown in Figure 3.6. It is shown

that PSNR drops when more high-frequency coefficients are used for reconstruction

26

in Figure 3.6. This is because the image contains a quite amount of noise, so the noise

power in the high-frequency domain dominates the signal power. Therefore, the more

noise is injected when more high-frequency DCT coefficients are used for reconstruc-

tion. It is also considered that throwing out more high-frequency coefficients works

to filter out noise so that PSNR is improved.

10 20 30 40 50 60 70 80
20

22

24

26

28

30

32

34

36

Percentage of Coefficients Retained

P
S

N
R

PSNR vs. Number of Coefficients

Noiselet
DCT

Figure 3.6. PSNR performance of DCT-based compression using a transform imager
system [35]. PSNR drops when more coefficients are used for reconstruction.

The additive white Gaussian noise is a good candidate to model this case. The

simplified noise model with an additive white Gaussian noise is used, and PSNRs

corresponding to different compression ratios are shown in Figure 3.7. The mean

and the standard deviation of the used additive white Gaussian noise are 0 and 0.9,

respectively, and multiplicative noise is not applied in this case.

The additive Gaussian noise in the transform imager system can be removable

by averaging multiple consecutive reconstructed images in the digital domain. This

temporal averaging effectively suppresses time-varying additive noise, and the exper-

imental results are depicted in Figure 3.8. The same 256 × 256 Lena image is used,

and three images are averaged. PSNR performance is noticeably improved compared

27

10 20 30 40 50 60 70 80 90 100
20

21

22

23

24

25

26

Used coefficients (%)

P
S

N
R

 (
dB

)

Figure 3.7. PSNR of DCT-based compression using the simplified noise model with
additive white Gaussian noise. A 256 × 256 Lena image is used in this experiment.

to the results in Figure 3.7. PSNR still drops in Figure 3.7 when more than 80% of

DCT coefficients are used. PSNR performance can be improved by averaging more

images at the expense of increased computation and lower frame rates.

Time-invariant temporal FPN cannot be removed by averaging multiple images

because time-invariant temporal FPN does not change over time. However, temporal

FPN is computed before the imaging system is used, so removing temporal FPN is

simply subtracting the pre-computed DC values from each pixel.

3.3 Zonal Mask Implementation in a Transform Imager Sys-

tem

In JPEG coding, a quantization weighting matrix, which is generally called a Q-

matrix or Q-table, is applied to the DCT-transformed image blocks. The DCT-

transformed block is divided by the predefined Q-matrix, and the elements of the

divided matrix are rounded to the nearest integer values. This process makes most

high frequency elements zeros, the number of which depends on the compression ratio.

Therefore, a JPEG coder allocates more bits for the low frequency elements with

higher magnitudes, and the low frequency elements are located around the left top

28

10 20 30 40 50 60 70 80 90 100
20

21

22

23

24

25

26

27

28

29

Used Coefficients (%)

P
S

N
R

 (
dB

)

PSNR of a single noisy image
PSNR of an averaged image

Figure 3.8. PSNR improvement of an averaged image of multiple reconstructed images.
256 × 256 Lena image is used, and three noisy images are averaged.

corner. A zonal mask is introduced based on this property of DCT-based image coding

[36], [37]. Instead of applying a Q-matrix to the all elements in a DCT-transformed

block, a mask is applied to the DCT-transform block, and only the filtered elements in

the predefined zone are selected for encoding. Therefore, by using the zonal masking

makes, applying a Q-matrix and rounding process are not required, and the number of

elements that are coded is significantly reduced. This implementation is a compromise

between the efficient implementation and the optimal bit allocation.

The examples of zonal masks are shown in Figure 3.9. The typical zonal mask,

which is shown in Figure 3.9 (a), masks the low frequency elements on the left top cor-

ner, which is shown as a grey zone. The zonal mask is static, so the same zonal mask

is applied to the all DCT-transformed blocks in an image [36]. Since the transform

imager can perform a DCT in the imager, this zonal masking is simply a selective

reading of the imager data. This selective image reading is straightforward to imple-

ment by adjusting the chip addressing scheme. The chip addressing scheme can be

changed on the fly if it is necessary, so different zonal masks can be applied in the

middle of reading the DCT-transformed image. Figure 3.9 (b) shows an example of

29

different zonal masks, which can be designed for the specific target applications.

The other benefit of implementing this zonal mask in the transform imager com-

pression system is that the amount of data reading from the imager is reduced based

on the zonal mask. For example, if the zonal mask shown in Figure 3.9 (b) is used,

only 25 elements out of 64 is required to be read from the imager. That is more

than 60% reduction of data. Therefore, this makes the transform imager compression

system suitable for the applications that require high frame rates or very low power

consumption.

` `

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

Figure 3.9. Zonal masks: (a) typical zonal mask (b) application-specific zonal mask.

30

CHAPTER 4

WAVELET-BASED EMBEDDED IMAGE COMPRESSION

USING DYNAMIC INDEX REORDERING VECTOR
QUANTIZATION

There have been several attempts to dynamically change the order of codebook

indices or map onto the different index set to reduce entropy in image and video coding

[38],[39],[40],[41]. Most of the algorithms are usually applied to the non-transform-

based coding schemes for exploiting spatial redundancy among blocks. However, the

majority of state-of-the art image coders are transform-based embedded coders such

as EZW [6], SPIHT [42], and JPEG2000; and vector-quantization-based algorithms

are no exception [7],[43].

In [7], da Silva et al. introduced a vector quantization (VQ) concept that is

similar to EZW called a successive approximation vector quantizer (SAVQ) based on

wavelet transforms. In SAVQ, codevectors represent the angles or patterns of wavelet

coefficient vectors, and the wavelet coefficient vector is successively approximated.

This VQ method achieved good performance compared to EZW and SPIHT, however,

poses problems for index reordering or remapping algorithms to wavelet-based vector

quantizers because of a lack of spatial redundancy. After an image is transformed and

partitioned to vectors, the spatial correlation is significantly weakened. Furthermore,

the irregular scanning order of embedded coding makes it more difficult to exploit

the remaining spatial redundancy.

This chapter introduces a new concept of the temporal domain in embedded image

coding to overcome the lack of spatial redundancy of SAVQ. After carefully analyz-

ing the angle transitions of SAVQ, dynamic index reordering vector quantization

31

(DIRVQ) can be successfully applied in this temporal domain and improve the cod-

ing performance. Dynamic index reordering vector quantization (DIRVQ) [44] is one

method of signal compression that provides excellent coding performance. However,

it also requires significant computation and memory. This shortcoming will be ad-

dressed in Chapter 5.

4.1 Wavelet Transforms and Wavelet-Based Image Coding

A Fourier transform has been one of the most valuable tools in signal analysis,

but it gives only frequency information. This means that the locations of the an-

alyzed frequency components cannot be tracked in the time domain. A short-time

Fourier transform (STFT)[45], also known as a time-dependent Fourier transform, is

a Fourier-transform-based tool that overcomes this problem, and it is defined as [46]:

X[n, λ) =
∞
∑

m=−∞

x[n +m]w[m]e−jλm, (4.1)

where w[n] is a window sequence. The STFT becomes very popular for time-frequency

analysis in speech and audio processing. The visual representation of the magnitude

of STFT |X[n, λ)|2 is called a spectrogram, and it is now a indispensable tool in

speech processing. However, the STFT uses the same-sized filters through all fre-

quencies, so it has a fixed resolution. This fixed resolution is not desired in many

applications especially in image processing since most information is concentrated

in low frequencies. Therefore, more resolutions are demanded in the low frequency

analysis.

Fourier-transform-based approaches for time-frequency analysis have been changed

toward wavelet-based approaches since wavelets are introduced as an efficient tool for

signal processing in 1987 by Mallat [47]. Unlike the STFT, wavelets use narrow filters

in high frequencies and wide filters in low frequencies. Therefore, this new approach

of wavelets makes it possible to analyze signals with various resolutions as shown in

Figure 4.1.

32

Figure 4.1. Time-frequency tiles of (a) short-time Fourier transform (STFT) (b) wavelet.

4.1.1 Wavelet Transforms

A continuous wavelet transform (CWT) Wf can be considered as mapping a function

f(x) onto time-scale space using the following wavelet ψab(t), which is dilations and

translations of a mother function ψ(t) [48],

ψab(t) =
1√
a
ψ(
t− b

a
) (4.2)

Wf(a, b) =
∫ ∞

−∞
ψab(t)f(t)dt =< ψab(t), f(t) > . (4.3)

A discrete wavelet transform (DWT) is the sampled version of the continuous

wavelet transform with the sampling lattice, a = am
0 , b = nb0a

m
0 , where m,n ∈ Z [48].

Then the wavelet and the function f(x) can be expressed as follows:

ψmn(t) = a
−m/2
0 ψ(a−m

0 t− nb0) (4.4)

f(t) =
∑

m

∑

n

dm,nψmn(t), (4.5)

where dm,n =< f(t), ψmn(t) >= 1

a
m/2

0

∫

f(t)ψ(a−m
0 t− nb0)dt.

Filter banks, which were developed in the early 1980’s, are closely related to

wavelets, and the major difference is the iteration process of wavelets [49]. Wavelets

can be implemented using the filter banks for multi-resolution signal analysis. The

scale function φ(t), which is defined as φmn(t) = 2−m/2φ(2−mt − n), of wavelets and

33

the band-pass wavelet function ψ(t) can be expressed as follows: [48]

φ(t) = 2
∑

n

h0(n)φ(2t− n) (4.6)

ψ(t) = 2
∑

n

h1(n)φ(2t− n), (4.7)

The coefficients h0(n) and h1(n) can be considered as the low-pass filter and the

high-pass filter, respectively in the two-channel filter bank implementation as shown

in Figure 4.2. In 2D discrete wavelet transforms that are used in image processing,

these filter bank operations are performed along the rows and columns and shown in

Figure 4.3. The three-level 2D discrete wavelet transform (DWT) result of a Lena

image is shown in Figure 4.4.

input

H0

H1

2

2

Figure 4.2. Two-channel filter bank.

HH

HL

LH

LL

Figure 4.3. The one-level 2D filter bank results of a Lena image.

34

Figure 4.4. The three-level wavelet result of a Lena image.

4.1.2 Wavelet-Based Image Coding

In image coding, a discrete cosine transform (DCT) has played the key role in

transform-based coding because of its simplicity and good performance. Nevertheless,

the DCT suffers from a block artifact in low bit-rate coding. This block artifact is

not a serious issue when the amount of data in image and video processing is small

because the bit-rate can be maintained relatively high enough to avoid the artifact.

However, modern image and video processing requires handling a vast amount of

data to keep pace with the demand of higher resolution images and videos from con-

sumers. This trend increases the necessity of very low bit-rate coding because of the

limited storage space and transmission bandwidth especially in a mobile multimedia

environment. Wavelets meet this expectation without the block artifact.

Like other transforms such as a DCT and a discrete Fourier transform (DFT),

wavelets decorrelate the image data and concentrate the energy of image data into a

few low-frequency coefficients. The distinct property to make wavelets different from

other transforms is the capability to rearrange the image data structure efficiently.

This rearranged data structure of wavelets gives more redundancy among different

frequency subbands. Most wavelet-based image coding algorithms such as EZW,

35

SPIHT, and JPEG2000 exploit this inter-subband redundancy.

4.1.3 Successive Approximation Vector Quantization (SAVQ)

Successive approximation vector quantization [7] can be considered as the vector

version of EZW, which is briefly described in Section 4.1.2. Instead of successively

approximating a target scalar value in EZW, SAVQ approximates a target vector

using a VQ codebook as shown in Figure 4.5.

Tar
ge

t v
ec

to
r

…
n0

n1

n2

n3

Figure 4.5. Successive approximation in a vector space.

The wavelet transformed image is divided with M ×N blocks or vectors, and the

magnitude of the each vector is calculated. The maximum magnitude T is used for

the first approximation magnitude αT , where α is a constant scaling factor that has

been determined based on the codebook. The symbols in SAVQ includes a zero (Z),

a zero tree(ZT), and a coded value (C). They are similar to those of EZW except

that differentiating the signs of the significant nodes are not necessary. Only positive

significant symbol is used because the magnitude of a vector is always not negative.

One of the most difficult tasks associated with using SAVQ is to determine the

approximation scaling factor, α. The performance is highly sensitive to the choice of

α, but there is no analytic method to find the optimum. The experimental finding of

the optimal α is well explained in [7], but it also slightly varies based on the target

36

images. Improved SAVQ introduces a zero-vector and an escape code to alleviate the

sensitivity issue by satisfying the following condition [50]:

αn+1Xmax ≤ ‖~rn‖ ≤ αnXmax (4.8)

where Xmax is the maximum magnitude of all the wavelet coefficient vectors, and

‖~rn‖ is the norm of the residual vector at pass n.

The basic idea of the improved SAVQ is sending zero-vector when the residual

vector is smaller than the current threshold. Therefore, refinement process is omitted

in the pass, and the estimated vector never goes beyond the target vector. When the

residual vector is larger than the previous threshold, an escape code is sent instead.

Once the decoder finds the escape code,the current threshold value is updated to the

previous larger threshold value, and the next coded value, which contains the actual

codebook value, is read and processed. This escape code makes it possible to track

the target point more quickly.

Originally this improved SAVQ is introduced to overcome the sensitivity of choos-

ing the α value and to give more robustness in the algorithm. In addition, it is

found that the improved SAVQ gives more predictability of angle transition. Since

the predictability gives more redundancy, wavelet-based embedded coding is applied

to explore this redundancy. The details will be discussed in Section 4.3.

4.2 Dynamic Index Reordering Vector Quantization (DIRVQ)

Vector quantization is a compression scheme that encodes a set of data, which forms

a vector, into a scalar index in the predefined codebook. Depending on the way of

determining the indices, VQ can be categorized as either memoryless or memory-

based. If the indices are determined only by the current input data set, the VQ is

memoryless. On the other hand, if the indices are determined not only by the current

input data set but also by the previous encoded indices, the scheme is considered VQ

with memory. Since the VQ with memory exploits the redundancy between or among

37

the pre-encoded indices, the coding performance is better than the memoryless VQ

at the expense of increased computational complexity. VQ with memory has been

intensively studied in many applications that the block data are highly correlated as

in image processing such as address VQ, predictive VQ, finite-state VQ, and so on

[39], [39], [41], [51].

The concept of dynamic index reordering vector quantization [44] is shown in Fig-

ure 4.6. After choosing the best-matched codevector, the entire codebook is reordered

based on the predefined reordering criterion as depicted in Figure 4.6 (a). For ex-

ample, if the L2 norm (Euclidean distance) is chosen for the criterion, every distance

between the best-matched codevector and the other codevectors is calculated, and the

codebook is reordered based on the distance. The chosen best-matched codevector

is re-indexed to the index ‘0’, and the remaining codevectors are re-indexed by their

distance from the best-matched codevector, with closer codevectors having lower in-

dices. The reordering process can be performed for the all codevectors in a codebook

for the best performance or for only portion of the codevectors for compromise be-

tween the performance and the computational complexity. If the consecutive samples

of the source have high correlation, the lower index has a higher probability of be-

ing chosen. Therefore, the indices are highly concentrated near index ‘0’, as shown

in Figure 4.6 (c). Since the probability of choosing the lower indices increases, the

entropy is reduced, which means there is more room for increasing coding efficiency.

The degree of concentration depends on how closely the samples are correlated.

4.3 Temporal Dynamic Index Reordering Vector Quantiza-
tion

A temporal dynamic index reordering vector quantization (TDIRVQ) is proposed

for wavelet-based embedded coding. Note that the successive refinement process is

defined as a temporal process here. The temporal updates are performed in every

38

(a)

(b) (c)

Figure 4.6. Dynamic index reordering: (a) concept; (b) the index probability distribu-
tion of 12-bit vector quantization with a computer generated Gaussian Markov source;
(c) the index probability distribution after reordering with the L2 norm criterion

39

refinement pass, and the updates of codevectors reflect the updates of angles for

vector approximation. Because the approximation trajectory of SAVQ [7] is similar

to that of the least-mean-square algorithm, temporal redundancy does not seem to

be obvious. However, the redundancy becomes more clear in the improved SAVQ

[50]. By carefully analyzing the angle transitions, dynamic index reordering vector

quantization (DIRVQ) is successfully applied to the temporal domain, and the coding

performance is improved.

4.3.1 Temporal Domain in Embedded Image Coding

In embedded image coding algorithms such as EZW, SPIHT, SAVQ, and vector

SPIHT [43], the image data are usually called nodes because the data form a tree

structure based on the relationship among subbands. The nodes, pixels in scalar

quantization or vectors in vector quantization, are scanned to find which nodes have

higher values than a predefined threshold. The found nodes are considered to be sig-

nificant. Once one node is marked significant, the value of the node is continuously

updated or approximated in every refinement pass. The values are binary numbers

in scalar quantization and indices in vector quantization. Figure 4.7 shows the refine-

ment process. Since the value corresponding to one node changes in each pass instead

of location of the image, the passes are defined as a temporal domain in embedded

image coding.

As shown in in Figure 4.7, the significant nodes A, B, C, D, E, and F are differently

located in the spacial domain. However, one significant node is updated in every pass

at the same spacial location as A0, A1, A2, and so on. If this process is compared

to a video playback, a vector in a significant node can be considered as a pattern

in a video frame, and the vector updates in each pass can be considered as pattern

changes in time.

40

Figure 4.7. Temporal domain in embedded image coding: A, B, C, D, E, and F corre-
spond to the significant nodes. The values of the nodes are successively approximated
with refinement passes such as A0, A1, A2, and so on.

4.3.2 Temporal Dynamic Index Reordering Vector Quantization

Improved SAVQ was designed to alleviate the sensitivity of the update coefficient

α in SAVQ [50] as briefly mentioned in Section 4.1.3. However, improved SAVQ

not only resolves the problem of SAVQ but also makes the successive approximation

trajectory simpler. By introducing the zero-vector concept, the approximated vector

never passes the final target vector, which is a wavelet coefficient vector, because the

refinement procedure stops when the case happens. This prevents the algorithm from

oscillating around the target point. Therefore, the angle transition becomes more

predictable, that is to say, the angle transition has redundancy to exploit.

The following equation, which is simply the delayed version of Equation 4.8, can

help one understand the simplified angle transition with Figure 4.8.

αnXmax ≤ ‖~rn−1‖ ≤ αn−1Xmax (4.9)

If the current threshold, αnXmax, is greater than the magnitude of the current

target vector, ‖~rn−1‖, a zero-vector index is coded. Therefore, no refinement update

occurs at the pass. If ‖~rn−1‖ is greater than the previous threshold, αn−1Xmax, an

escape code is coded, and the previous larger threshold is used for the refinement

update at the pass

The current threshold, αnXmax, is always smaller than the magnitude of the target

41

Figure 4.8. Vector successive approximation: The best-matched codevector with unit
length is chosen based on the angle difference from the target vector ~rn−1, the pre-
vious residue, in pass n. The current threshold αnXmax is multiplied to the chosen
best-matched codevector. Then the residual vector ~rn is calculated, and it becomes the
target vector in the next pass

vector when the next residual vector, ~rn, is calculated. Therefore, the possible angles

of the next residual vector are either a or b in Figure 4.8. The reason why the possible

vectors are categorized as a and b is that a has a high probability of making an acute

angle with the current codevector, and b has a high possibility of making an obtuse

angle with the current codevector in the next pass. Through the experiments, the

frequency of case a is generally much higher than the frequency of case b.

Even though the angle transition is not fully predictable, the trend of the angle

transition can be estimated since the probability of acute angles is much higher.

Therefore, the redundancy can be exploited by applying DIRVQ in the temporal

domain. In this case, the reordering criterion is the angle difference, θ = cos−1 ~x·~yi

‖~x‖‖~yi‖
,

where ~x is the best-matched codevector and ~yis are other codevectors in the codebook.

The algorithmic flow of TDIRVQ is described in Table 4.1.

4.3.3 Implementation of a TDIRVQ-Based Image Coder

TDIRVQ-based embedded image coding follows the conventional transform-based im-

age compression procedure as described in Chapter 3 since it is also a transform-based

42

Table 4.1. The algorithmic flow of temporal dynamic index reordering vector quantiza-
tion (TDIRVQ)

Encoder

Step 1: find the best-matched codevector
from the initial codebook (absolute in-
dex)

Step 2: update the residual vector using
the absolute index

Step 3: reorder the codebook based on the
stored previous absolute index

Step 4: find the best-matched codevector
from the reordered codebook and code
the index (relative index)

Step 5: store the current absolute index

Decoder

Step 1: reorder the codebook based on the
stored previous absolute index

Step 2: find the best-matched codevector
using the decoded relative index

Step 3: update the wavelet coefficient vec-
tor using the best-matched codevector
(vector addition)

Step 4: find the absolute index from the
initial codebook

Step 5: store the current absolute index

algorithm. The diagram of TDIRVQ-based embedded image coding is shown in Fig-

ure 4.9. After the input image is transformed with a wavelet, the transformed co-

efficients are vectorized to the predefined block size such as 2 × 2 or 4 × 4. The

converted vectors are preconditioned for the next TDIRVQ process; the magnitude

of each vector is calculated, and the mean of each vector is subtracted. TDIRVQ

is applied to the preconditioned vectors, which is normalized in the previous stage,

43

and the chosen codevectors from the TDIRVQ process are entropy coded for the fi-

nal output. The TDIRVQ process consists of multiple functional blocks; searching

significants and running refined passes, encoding input vectors to generate the corre-

sponding codevectors, and reordering the codebook based on the predefined criteria.

Since the TDIRVQ-based image coding is an embedded image coding, the TDIRVQ

process is recursive until reaching the target bit rates.

Wavelet
Vectorization &

Preconditioning

Entropy

codingTDIRVQ

Vector

quantization

Codebook

reordering

Raw

Image
Encoded

Image

Searching &

refining

Figure 4.9. Diagram of TDIRVQ. The full procedure consists of wavelet-based embed-
ded image coding and VQ with dynamic reordering.

4.3.3.1 Implementation of a TDIRVQ-Based Image Coder on a Transform Imager
System

The efficient implementation of DWT coefficient computation is one of the most im-

portant topics in real-time wavelet-based image processing systems, so it has been

intensively researched, especially on efficient VLSI implementations [52], [53] [54].

Even though some implementations are highly optimized for a specific wavelet, they

require a considerable amount of either computational units or registers. They also

show lack of flexibility because they are optimized only for one specific wavelet compu-

tation. Since the transform imager is capable of computing transforms, the block for

computing the discrete wavelet transform (DWT) coefficients of input images, which

is shown in Figure 4.9, is moved into the transform imager. Therefore, the digital

computational unit for computing DWT coefficients is completely unnecessary. In

addition, various wavelets can be applied in the system because the programmability

44

of the transform imager. Other function blocks in Figure 4.9 are performed digitally.

Since wavelets are not block-based transforms, rearrangement of the wavelet coeffi-

cients is required for programming the transform imager. More details about this

programming will be discussed in Section 4.3.3.2.

CMOS transform imager

WaveletImager TDIRVQ
Entropy

coding

Vectorization &

preconditioning

Figure 4.10. TDIRVQ implementation using a transform imager system. Full wavelet
computation is performed in the transform imager, therefore, the outputs of the trans-
form imager are wavelet coefficients. The other procedures are performed in the digital
part of the system.

4.3.3.2 Wavelet Implementation using a Transform Imager

It is well known that wavelets can be implemented by filter banks, so the multi-level

wavelets can be also implementable with tree-structured filter banks as shown in

Figure 4.11 [55], [49]. Implementing filter banks can be divided into two sequential

operations; finite impulse response (FIR) filtering for signal separation in the fre-

quency domain and down-sampling to avoid increasing the size of signals. Since both

FIR filtering and down-sampling are linear operations, the two cascaded operations

can be combined to one operation.

Figure 4.11. Three-level wavelet transform implementation using tree-structured filter
banks.

45

If input signal x with length N , a low-pass FIR filter L = [a1, a2], and a high-

pass FIR filter H = [b1, b2] are assumed, the following filters represent the combined

low-pass and high-pass filters with the down-sampling operation, respectively [49]:

V =

















a1 a2 0 0 0 · · ·

0 0 a1 a2 0 · · ·
...

...
...

...
...

. . .

















(
N

2
×N), (4.10)

W =

















b1 b2 0 0 0 · · ·

0 0 b1 b2 0 · · ·
...

...
...

...
...

. . .

















(
N

2
×N). (4.11)

The above two filters can be represented in one square matrix, and the filter bank is

fully described with the following matrix:

W =









































a1 a2 0 0 0 · · ·

0 0 a1 a2 0 · · ·
...

...
...

...
...

. . .

b1 b2 0 0 0 · · ·

0 0 b1 b2 0 · · ·
...

...
...

...
...

. . .









































(N ×N). (4.12)

Normalization is omitted in the above matrix representations for convenient under-

standing, but proper normalization is required to compensating the loss by down-

sampling.

Multi-level wavelet can be considered as applying different FIR-filtering kernels

to the image. Figure 4.11 shows that a three-level wavelet can be implemented by

applying four FIR filtering kernels, Y1, Y2, Y3, and Y4, to the image. FIR filtering is

basically a convolution operation with a finite-length kernel. Since the basic operation

of the transform imager is the inner product of the programmed kernel coefficients

with the pixel intensity values, performing FIR filtering using the transform imager

46

is straightforward. But the size of the kernel is limited by the size of the kernel block

implemented in the transform imager, and the output could suffer from the blocking

effect. To overcome this blocking effect, a half-shifting scheme is implemented in

the transform imager as in Figure 4.12. By overlapping half of the kernel block and

arranging the kernel coefficients carefully using the modified multiplexer, the blocking

effect is effectively removed.

0 1 2 3

0 1 2 3 4

shift by n

shift by

n/2

4

4

8

8

8

Figure 4.12. Half-shifting scheme to overcome block boundary

4.3.3.3 Wavelet-Based Denoising of TDIRVQ in a Transform Imager System

EZW is an embedded image coder, so only the wavelet coefficients above predefined

thresholds, which is determined based on the desired bit rate, are coded. This is

much like the wavelet-based thresholding technique, which is proposed by Donoho

and Johnstone [56]. Once the wavelet coefficients above a threshold are chosen, those

coefficients are successively refined in each pass. Therefore, applying EZW to an

47

image can be considered as wavelet-based denoising with a soft thresholding.

On the other hand, the denoising property of TDIRVQ is different from that of

EZW even though the basic idea of TDIRVQ comes from EZW. TDIRVQ is based on

vector quantization, so the threshold of TDIRVQ means the magnitude of a wavelet

coefficient block, not the magnitude of a wavelet coefficient. Therefore, the soft

thresholding is performed on a block. TDIRVQ can still remove some noise in an im-

age, but the block-based soft thresholding is not as effective as the coefficient-based

soft thresholding in EZW. To overcome this limitation, threshoding can be performed

after the transform imager as shown in Figure 4.13. The various thresholding tech-

niques can be implemented in the thresholding unit such as a SureShrink [3] and a

BayesShrink [57], but more complicated techniques add more complexity in the digital

domain.

CMOS transform imager

WaveletImager TDIRVQ
Entropy

coding

Vectorization &

preconditioning
Thresholding

Figure 4.13. Denoising in TDIRVQ implementation: Adding a threshold unit after the
transform imager can effectively remove the pixel-level noise.

4.3.4 Experimental Results of TDIRVQ

The five-stage Antonini wavelet transform is used for compressing an 8-bit gray scaled

512 × 512 images. The reason why the Antonini wavelet transform is used is for

easy comparison with SAVQ [7], which also uses the same wavelet transform. The

approximation scaling factor, α, is chosen as 0.547 for 2×2 successive approximation

and 0.641 for 4 × 4 successive approximation. Experiments are performed with both

the 2 × 2 vector size and the 4 × 4 vector size. For the four-dimensional case, the

codebook is generated based on the D4 lattice-shell, which makes 24 codevectors,

to compare the results with improved SAVQ. For the sixteen-dimensional case, a

48

modified Λ16 lattice-shell is used for the codebook. This modified Λ16 lattice-shell

is designed for reducing the computational complexity of DIRVQ, and it will be

explained thoroughly in Chapter 5. Extending the size to other dimensions like 4× 2

is straightforward.

4.3.4.1 Index Probability Distribution and Entropy Reduction

The probability distribution of indices for SAVQ is close to the uniform distribution

as shown in Figure 4.14 (a). Figure 4.14 is for the case of 0.1 bit per pixel (bpp)

of the Lena image, but the probability distribution of indices is almost constant for

other compression ratios. Figure 4.14 (b) shows the probability distribution change of

indices after applying TDIRVQ. The shape of the distribution is determined by two

factors: The first is the relationship between the reordering reference vector, which is

the previous best-matched codevector, and the approximated vector. The direction

of the approximated vector is not usually the same as that of the reference vector, but

they are related with angle offsets. The second is the maximum angle error caused

by the vector quantizer. The maximum angle error of D4 lattice-shell 1 is 45◦.

Because entropy is maximized when the distribution is uniform, it is obvious that

the entropy of indices is reduced. Therefore, performance improvement is expected.

The probability of two extra indices, a zero-vector and an escape code, is omitted in

the figures because they are the same in both cases. Entropy comparison for several

tested images with a 2 × 2 block size is shown in Table 4.2. The first-order entropy

is used and can be expressed as follows [58]:

H(X) = −
∑

x∈χ

p(x) log p(x), (4.13)

where X is a discrete random variable with alphabet χ and p(x) is a probability mass

function.

The probability of two extra symbols, a zero-vector and an escape code, are outliers

in the index distribution, so entropy comparison for the 24 symbols excluding the extra

49

(a)

(b)

Figure 4.14. Index probability distribution for the case of 0.1 bit per pixel and 2×2 case:
(a) Index probability distribution without TDIRVQ; (b) Index probability distribution
with TDIRVQ.

50

symbols is shown in Table 4.2 as well to see the difference from the 26-symbol case.

Note that TDIRVQ can be applied only to the vectors that are already chosen as

significant. Newly chosen significant vectors are not approximated through TDIRVQ,

which limits the amount of performance gain.

Table 4.2. Entropy reduction of test images by using TDIRVQ: Total number of used
symbols for a 2 × 2 block is 26 including a zero-vector and an escape symbol. Entropy
excluding the special symbols is also calculated and compared.

images 26 symbols 24 symbols
(0.4 bpp, 512×512) conventional VQ TDIRVQ conventional VQ TDIRVQ

Lena 4.5988 4.5404 4.5619 4.4891
Baboon 4.6308 4.6167 4.5806 4.5635
Barbara 4.5327 4.4655 4.5705 4.4880

Peppers(256×256) 4.4964 4.4627 4.5390 4.4968
Boats 4.5881 4.5510 4.5668 4.5191

Fingerprint 4.4659 4.4326 4.5707 4.5285

4.3.4.2 Compression Results

The PSNR performance improvement of the proposed algorithm is shown in Table 4.3,

Figure 4.15, and Figure 4.16. PSNR improvement of D4-based TDIRVQ, compared

to the improved SAVQ with the Antonini wavelet transform, for the Lena image can

be seen in Table 4.3, and the improvement ranges from about 0.05 dB to 0.18 dB.

Here, PSNR follows the following definition:

PSNR = 10log10

∑

n1

∑

n2
2552

∑

n1

∑

n2
(x(n1, n2) − x̂(n1, n2))2

, (4.14)

where x(n1, n2) is the original image and x̂(n1, n2) is the coded image. Improvement

for the highly detailed baboon image of D4-based TDIRVQ and λ16-based TDIRVQ

are shown in Figure 4.15 (b) and Figure 4.16 (b), respectively. For all the tested

bpps, the PSNR performance of the proposed algorithm outperforms that of SAVQ.

51

(a)

(b)

Figure 4.15. PSNR performance improvement of D4-based TDIRVQ: (a) PSNR com-
parison for the Lena image; (b) PSNR comparison for the baboon image.

52

0.1 0.2 0.3 0.4 0.5 0.6 0.7
21

22

23

24

25

26

27

bit per pixel (bpp)

P
S

N
R

 (
dB

)

PSNR with TDIRVQ
PSNR without TDIDRVQ

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
28

29

30

31

32

33

34

35

36

37

38

bit per pixel (bpp)

P
S

N
R

 (
dB

)

PSNR with TDIRVQ
PSNR without TDIRVQ

(b)

Figure 4.16. PSNR performance improvement of λ16-based TDIRVQ: (a) PSNR com-
parison for the Lena image; (b) PSNR comparison for the baboon image.

53

Table 4.3. Performance comparison for Lena image (512 × 512)

PSNR without TDIRVQ PSNR with TDIRVQ
(bit/pixel) (dB) (dB)

0.1 29.0479 29.1528
0.2 31.9041 32.0852
0.3 33.3643 33.4195
0.4 35.3056 35.4788
0.5 35.6433 35.6929
0.6 36.4366 36.5200
0.7 37.3965 37.5491

54

CHAPTER 5

EFFICIENT IMPLEMENTATION OF LATTICE

SHELL-BASED DIRVQ

In Chapter 4, dynamic index reordering vector quantization (DIRVQ) is applied to

the temporal domain of wavelet-based embedded image coding. The performance im-

provement over the static vector quantization is noticeable and promising. However,

as briefly mentioned in Chapter 4, DIRVQ requires a vast amount of computation to

reorder the entire codebook.

One of the biggest merits of lattice VQ is that fast encoding and decoding is

possible without searching a codebook [59],[60],[61],[62]. It is highly desirable in

the case that the codebook size is very large. Storing the codebook in the memory

and accessing it during each encoding or decoding step is not only computationally

intensive but also power consuming and even more power consuming when the code-

book is stored in the off-chip memory because the on-chip memory capacity of the

processor is rarely sufficient. The off-chip memory is noticeably slower and more

power-consuming than the on-chip memory. However, the fast encoding and decod-

ing algorithms of lattice VQ become unfeasible when the dynamic index reordering

scheme is applied, since indices should be encoded or decoded based on the reordered

codebook whose order keeps being changed. Therefore, the fast encoding and decod-

ing schemes in [59],[60],[61],[62] cannot be directly applicable to DIRVQ. However,

abandoning the efficient schemes and performing encoding and decoding in the tradi-

tional fashion with the entire codebook cause too much additional cost both in more

frequent memory accesses and in excessive computation because of reordering. This

chapter is about how to overcome this computational overhead by efficient encoding

and decoding algorithms.

55

5.1 Efficient Implementation of Lattice Shell-Based DIRVQ

The main reason for the high complexity of DIRVQ is the reordering of the entire

codebook, which dynamically changes the order of the codebook in the middle of

the encoding or decoding process. Since the existing efficient encoding and decod-

ing schemes [59],[60] for lattice VQ are for static codebooks, DIRVQ cannot take

advantage of them.

When the reordering criterion is angular distance as in TDIRVQ, reordering a

codebook can be considered as rotating the coordinates of the lattice points. In

addition, lattice-based codebooks are highly structured. For example, the D4 lattice-

based codebook has only three kinds of elements, -1, 0, and -1, and each codevector

has two non-zero elements and two zero elements. The concept of coordinate rotation

of angular-distance-based DIRVQ and the highly-structured codevectors in lattice

shells play key roles in the proposed efficient implementation of lattice shell-based

dynamic index reordering vector quantization (L-DIRVQ).

5.1.1 Optimal Lattices

When VQ is used in the gain-shape fashion as in SAVQ and TDIRVQ, the codevectors

only represent the pattern or direction of the block without considering the magnitude

that has already been extracted, so using the codevectors with iso-norm is a natural

choice. The iso-norm forms a shell in the lattice, and the problem of finding the

optimal lattice becomes the well-known kissing number problem. The kissing number

problem can be defined as how many spheres can be arranged so that they all just

touch another sphere of the same size [63]. There has been in-depth research on the

optimal lattice, which make the maximum kissing number, in many dimensions, and

the found lattices are listed in Table 5.1[63]. For the dimension n ≤ 4, n = 8, and

n = 24, optimum lattices are found with proofs. No proof is found for the other

dimensions. However, the found lattices are widely accepted as optimal lattices. In

the image processing, the popular block sizes of VQ are 2 × 2 and 4 × 4, which

56

correspond to the dimension 4 and 16, respectively. The optimal lattices for those

dimensions are D4 and Λ16. Therefore, efficient encoding and decoding algorithms

and implementation for D4 and Λ16 lattice VQ are presented.

Table 5.1. Optimum lattices

n Lattice Kissing number

1 A1 2
2 A2 6
3 D3 12
4 D4 24
5 D5 40
6 E6 72
7 E7 126
8 E8 240
...

...
...

16 Λ16 4320
...

...
...

24 Λ24 196560

5.1.2 Cyclic codes

Cyclic linear codes C can be defined as follows: [64]

∀(c0,c1,...,cn−1)∈C [(cn−1, c0, c1, · · · , cn−2) ∈ C]. (5.1)

C is cyclic if C contains all right-shifted codewords of its codewords. For example,

a code C1 = {(000), (110), (011), (101)} is cyclic. Any shifted codeword exists in the

code C1. On the other hand, a code C2 = {(000), (100), (010), (001), (101)} is not

cyclic since the shifted codewords of (101) such as (110) and (011) are not included

in the code C2.

The cyclic property of lattice-based codebooks is the main idea of the proposed

efficient encoding and decoding algorithms for DIRVQ. As mentioned earlier, the

reordering process of DIRVQ can be considered as the coordinate rotation. Therefore,

if a set of codevectors forms a cyclic code and has the same weight or magnitude, which

57

is always true since the codevectors have an iso-norm in L-DIRVQ, the coordinates

of the rotated codevectors are re-aligned exactly with the non-rotated coordinates

they were located before. One example of this is depicted in Figure 5.1. Since the

codebook is cyclic, the structure of all the codevectors from the view of the top-

indexed codevector (#1) remains the same even after reordering.

���������

����������

�����������

�	��������

�
���������

����������

������������

�
���������

���������

����������

�	���������

����������

�����������

�
��������

�
����������

�����������

Figure 5.1. Cyclic codes: If the codevectors have an iso-norm and cyclic property, the
reordered codevectors are re-aligned like the way they were located before reodering.
#1, #2, ..., and #8 indicate index numbers.

5.2 Efficient Implementation of 4-Dimensional L-DIRVQ

A novel encoding and decoding algorithms for L-DIRVQ based on D4 sphere pack-

ing intensively use the property of cyclic codes. The algorithm includes the masking

technique and inner product-based grouping. Note that this algorithm can be us-

able for gain-shape type VQ such as L-DIRVQ, whose reordering criterion is angular

distance. Since the algorithm significantly reduces the necessity of storing the entire

codebook, they can be considered as either a codebookless approach or a reduced

codebook approach.

58

A 4-dimensional lattice D4 can be defined by the following generator matrix [63]:

M =

























1 0 0 0

0 1 0 0

0 0 1 0

1/2 1/2 1/2 1/2

























, (5.2)

The combination of the rows of M generates all possible codewords. Minimal vectors

are all permutations of (±1,±1, 0, 0). The D4 lattice-based codebook with minimal

vectors is shown in Table 5.2, and this codebook is used for the TDIRVQ experiments.

Finding the best-matched codevector from the input vector is straightforward in

the D4 case. For example, since only two elements in the codevector are non-zero in

the codevectors, two elements with the largest absolute values in the input vector are

picked, and then change them to 1 or -1 depending on their original signs. The other

elements are changed to 0 like the following:

[3826, − 34, − 565, 89] =⇒ [1, 0, − 1, 0] (5.3)

This simple process generates the codevector that is best matched to the input

vector. However, finding the index corresponding to the found codevector from the

reordered codebook is not straightforward at all, since the codebook order does not re-

main the same. Therefore, the procedure on how to find the index from the reordered

codebook is the most difficult obstacle to overcome. Decoding from the received in-

dex is exactly the opposite of the encoding process, so the explanation of the detailed

decoding procedure will be omitted.

5.2.1 Inner Product-Based Grouping

When the angular distance is used for the reordering criterion in L-DIRVQ, the dis-

tance between two codevectors can be characterized by the inner product. The angle

59

between two vectors, ~x and ~y, can be expressed as follows:

θ = cos−1 ~x · ~y
‖~x‖‖~y‖ . (5.4)

Assuming the magnitude of the vectors is normalized, the angle θ fully depends

on the inner product of the vectors. The farther the distance is, the larger the theta

is. The codevectors of D4 L-DIRVQ have an iso-norm, which means the magnitudes

of the codevectors are normalized. The codevectors that are composed from a shell

of D4 sphere are symmetrically structured, so the inner product value between the

codevectors forms only a limited number of cases. For example, only four inner

product values, which are 3, 1, -1, and -3, can be found in the codevectors shown in

Figure 5.1.

The 24 codevectors that are generated from a shell of D4 sphere are shown in

Table 5.2. The previous best-matched vector is set to [0 0 1 1], which is indexed as 0,

and the other codevectors are ordered based on the inner product values. As seen in

Table 5.2, all the codevectors are categorized in group 0, 1, 2, or 3. Therefore, once

the inner product value is calculated and the corresponding group is found, the index

search region is significantly reduced. After the search region is found, the masking

technique is applied to the region.

5.2.2 Masking Technique

As discussed, the main difficulty of applying the codebookless encoding algorithm to

DIRVQ is that the codebook order keeps being changed. However, if only the values

in the position of the non-zero elements of the previous best-matched vector are

considered, and the other elements are processed separately, the coordinate changes

caused by reordering are nullified. The previous best-matched codevector without

considering the signs of its elements is defined as a mask. The masking procedure

is shown in Figure 5.4. This procedure is possible because the codebook generated

from the D4 lattice shell forms hyperspheres with equally distanced points and the

60

Table 5.2. The codebook generated from the first shell of the D4 sphere

inner product with
index codevector the best-matched codevector group

(currently index 0)

0 [0, 0, 1, 1] 2
1 [1, 0, 1, 0] 1
2 [0, 1, 1, 0] 1
3 [0, -1, 1, 0] 1
4 [-1, 0, 1, 0] 1 0
5 [1, 0, 0, 1] 1
6 [0, 1, 0, 1] 1
7 [0, -1, 0, 1] 1
8 [-1, 0, 0, 1] 1
9 [0, 0, 1, -1] 0
10 [1, 1, 0, 0] 0
11 [1, -1, 0, 0] 0 1
12 [-1, 1, 0, 0] 0
13 [-1, -1, 0, 0] 0
14 [0, 0, -1, 1] 0
15 [1, 0, 0, -1] -1
16 [0, 1, 0, -1] -1
17 [0, -1, 0, -1] -1
18 [-1, 0, 0, -1] -1 2
19 [1, 0, -1, 0] -1
20 [0, 1, -1, 0] -1
21 [0, -1, -1, 0] -1
22 [-1, 0, -1, 0] -1
23 [0, 0, -1, -1] -2 3

codebook is cyclic. The masking technique is performed with predefined comparison

templates. These templates can be considered as another form of a codebook even

though the size is a lot smaller than that of the original codebook. Therefore, the

proposed encoding algorithm can be also considered as a reduced codebook algorithm

instead of a codebookless algorithm.

After finding the group of the input vector based on inner product computation,

the mask is applied to the input vector, and successive comparisons are performed

61

Figure 5.2. Masking the position of zero elements - mask the position of zero elements of
the previous best-matched vector and calculate the inner product to decide the group,
and then refine the decision based on the elements at the previously masked position

with predefined templates. For example, assume the previous best-matched codevec-

tor is [0, 0, 1, 1] as in Figure 5.4. If the group is determined as 0, which means the

inner product value is 1, the possible cases of the masked bits are {[1, 0],[0, 1]}. The

set {[1, 0],[0, 1]} is a template for this case. However, if the previous best-matched

codevector is [0, 0, -1, 1], the possible cases of the masked bits for the group 1 are

changed to {[-1, 0],[0, 1]}. This change means that multiple templates are necessary

for the different sign combinations of the previous best-matched codevector. Using

multiple templates for each possible combination is not desirable because it signif-

icantly increases memory consumption. The solution is ignoring the signs in the

masked bits if the corresponding bits of the best-matched codevector are negative.

Then only the templates for positive sign combination are necessary. In a decoding

process, these ignored sign bits need to be added to the found vector based on the

previous best-matched codevector. This additional step does not add much compu-

tational complexity. Figure 5.3 explains this procedure with an example.

62

[0 0 1 -1]

Previous best-matched codevector

[0 0 -1 -1] Input vector

[-1 -1]

Ignore the sign of this bit

Group 1

(inner product value is 0)

Index 14

[0 0 1 -1]

Previous best-matched codevector

[0 0 -1 1]

0

1

0

-1

1 -1

[0 0 -1 -1]

Template for the case when the all elements of the

previous best-matched codevector are positive

Add a negative sign to this bit

Encoder Decoder

decoded vector

Figure 5.3. Omitting and recovering the signs of the previous best-matched codevector:
Input vector [0 0 -1 -1] is categorized as the group 1 if the previous best-matched
codevector is [0 0 1 -1]. The masked bits are [-1 -1], and the sign of the last bit is
ignored because the corresponding bit of the previous best-matched vector is negative.
Therefore, the masked bits become [-1 1]. Using this modified bits and the template,
which is for the case when all elements of the previous best-matched codevector are
positive, the input vector is encoded as a index 14. The decoder will generate a vector
[0 0 -1 1] using the same template. Reverse process of ignoring the sign of the last
bit can recover the minus sign of the last bit, and the final decoded vector is [0 0 -1
-1]. The location of the ignored sign bit can be found from the location of the negative
number in the previous best-matched codevector.

5.2.3 Example

The following example will help understanding the full encoding algorithm. Assume

the input vector is [3826, -34, -565, 89] as in Equation 5.3, and the current codebook

status is shown in Table 5.2, which means the previous best-matched codevector is

[0, 0, 1 1] and indexed as 0. Since the two elements with the largest absolute values

in the input vector is 3826 and -565, the corresponding codevector is [1, 0, -1, 0] as

in Equation 5.3,

[3826, − 34, − 565, 89] =⇒ [1, 0, − 1, 0]. (5.5)

Two non-zero elements become either 1 or -1 based on the original signs of the chosen

elements with the largest absolute values. The other elements become 0. The next

step is finding the codebook index corresponding to the found codevector. The inner

product of the found codevector [1, 0, -1, 0] and the previous best-matched codevector

63

[0, 0, 1 1] results in -1. The inner product result determines the group of the target

index, and the group corresponding to -1 is the group 2 in Table 5.2. Since the

codevector is located in the group 2, the possible indices should be located between

15 and 22. After finding this region, the masking technique is applied. The non-zero

elements of the previous best-matched codevector [0, 0, 1 1] are the third and the

forth elements. The location of the non-zero elements is defined as a nz-zone. The

third and the fourth elements of the found codevector [1, 0, -1, 0] is processed as a

two-bit vector [-1, 0] after masking out the first and the second elements.

[1, 0, − 1, 0] =⇒ [−1, 0] (5.6)

[−1, 0] makes the search region reduced more to between 19 and 22 as shown in

Figure 5.4. The unmasked two-bit vector [1, 0] is used for the final search. The

location of the zero elements is defined as a z-zone. The vector [1, 0] is compared

with the two-bit vectors in the z-zone and determines the final index. In this example,

the target index is 19 as shown in Figure 5.4. The full encoding procedure is shown

in Figure 5.5.

Figure 5.4. Template matching in nz-zone and z-zone: The locations of the non-zero
elements in the previous best-matched codevector are used for masking the codevectors,
and the masked zone is defined as a nz-zone. Following the same method, the zone
from the locations of the zero elements is defined as a z-zone.

64

Figure 5.5. The diagram of the full encoding procedure

5.2.4 Computational Reduction

Instead of the brute-force search, the proposed algorithm, which finds the two ele-

ments with the largest absolute values and substitutes the values with 1 or -1 based

on the original sign, significantly reduces the amount of computation. The brute-force

search requires 24 inner products in the worst case. In fact, even in the best case,

the 24 inner products are required to performed for reordering. The entire codebook

is reordered based on the 24 inner product values. Considering one inner product

operation requires 4 multiplications and 3 addition, 24 inner products need 96 mul-

tiplications and 72 additions. In addition, all inner product values should be stored

in memory because the reordering process is based on them. On the other hand, the

proposed encoding algorithm needs one inner product between the found codevector

and the previous best-matched codevector, one masking operation, and two two-bit

comparisons. This computational reduction is summarized in Table 5.3.

65

Table 5.3. Computational reduction of the proposed D4 lattice-based codebook encoding
and decoding algorithm. Note that one inner product requires 4 multiplications and 3
additions.

Brute-force method Proposed algorithm

Codebook search 24 inner products, 23 comparisons 2 max functions
(96 multiplications and 72 additions)

Reordering sorting two-bit masking
2 two-bit comparisons

5.3 Efficient Implementation of 16-Dimensional L-DIRVQ

The Barnes-Wall lattice Λ16 can be constructed based on the first-order Reed-Muller

code of length 16 with the following generator matrix [63]:

M =
1√
2

























































































































4

2 2

2 0 2

2 0 0 2

2 0 0 0 2

2 0 0 0 0 2

2 0 0 0 0 0 2 0

2 0 0 0 0 0 0 2

2 0 0 0 0 0 0 0 2

2 0 0 0 0 0 0 0 0 2

2 0 0 0 0 0 0 0 0 0 2

1 1 1 1 0 1 0 1 1 0 0 1

0 1 1 1 1 0 1 0 1 1 0 0 1

0 0 1 1 1 1 0 1 0 1 1 0 0 1

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

























































































































. (5.7)

66

The kissing number is 4320. The minimal codevectors are 480 vectors of all permuta-

tions of 2−1/2(±22, 014) and 3840 vectors of the form 2−1/2(±18, 08), in which the ±1s

are located in the 1’s positions of the first-order Reed-Muller code with weight 8, and

the total number of minus signs in a codevector should be even. For example, one of

the first-order Reed-Muller codewords with weight 8 is [1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

0]. The following two example vectors meet the requirements of the Λ16 lattice-based

codevector:

[1, 1, − 1, − 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0]

[1, 1, − 1, − 1, 0, − 1, 0, 1, − 1, 0, 0, 1, 0, 0, 0, 0].
(5.8)

Note that the number of negative elements in the codevectors should be even.

Unlike the D4 lattice-based codevectors, the Λ16 lattice-based codevectors are not

cyclic because the 3840 vectors of the form 2−1/2(±18, 08) are based on the Reed-

Muller code, which is not a cyclic code. The remaining 480 vectors of 2−1/2(±22, 014)

are cyclic. Therefore, it is not straightforward to apply the masking technique, which

is used for the 4-dimensional case, to this 16-dimensional case because the mask-

ing technique takes advantage of the cyclic property. Even the inner product-based

grouping is not as simple as the case of the D4 lattice because 480 vectors of the form

2−1/2(±22, 014) have different structure from 3840 vectors of the form 2−1/2(±18, 08).

5.3.1 Cyclic Reed-Muller Codes

Even though Reed-Muller codes are not cyclic, it is well known that the punctured

general Reed-Muller codes are cyclic [65],[66],[67]. For this reason, Reed-Muller codes

are here defined as pseudo-cyclic codes. The first-order Reed-Muller code of length

16, which is used to generate the Λ16 lattice-based codebook, is not cyclic as in the

example codes shown in Table 5.4 [68]. However, if one bit of the code is dropped,

the remaining 15-bit codes become cyclic codes. By properly adding zeros to this

15-bit cyclic codes, 16-bit modified Λ16 (M − Λ16) lattice-based codevectors can be

obtained. These M − Λ16 lattice-based codevectors are used for the 16-dimensional

67

TDIRVQ experiments.

Table 5.4. Fifteen codes based on the first-order Reed-Muller code (weight 8). To
generate the Λ16 lattice-based codebook, 30 codes are required, and the other 15 codes
can be obtained by complimenting the following codes.

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1
0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0
0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 1
0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0
1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0
1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1
1 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0
1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1
1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0
1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1
1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0
1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0
1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0

5.3.2 Constructing a Modified Λ16 (M− Λ16) Lattice-Based Codebook

The pseudo-cyclic property of Reed-Muller codes and the procedure to make a pseudo-

cyclic Reed-Muller code are introduced in [65], [67], and the same method is followed

to construct pseudo-cyclic Reed-Muller codes for an M−Λ16 lattice-based codebook.

The maximum-length sequence is the first period of the output of a length m linear

shift feedback register (LSFR) and the length of the maximum-length sequence is

2m − 1. For example, a length 4 or 4-stage LSFR is shown in Figure 5.6 with the

following feedback polynomial:

F (X) = X4 +X3 + 1. (5.9)

If the initial state is set to 1111, the first period of the output is as follows:

m = [1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0]. (5.10)

68

Figure 5.6. 4-bit linear shift feedback registers (LSFR) for generating maximal length
sequences. The initial state is set to 1111 as shown.

This output is the maximum-length sequence of the 4-stage LSFR, and it is here

defined as a seed vector. Using this seed vector m, the following generator matrix

can be obtained:

P =

























m

Rm

R2m

R3m

























=

























1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

























, (5.11)

where R is a right cyclic shift operator.

The generator matrix P generates 15-bit binary cyclic codes, and the generated

cyclic codes are obviously different from the Reed-Muller codes. However, if the

generator matrix P is compared with the 12th, 13th, 14th, and 15th rows of the

generator matrix M in Equation 5.7, the generator matrix P is the same as the 12th,

13th, 14th, and 15th rows of the generator matrix M without the last bits. The four

rows of the generator matrix M are based on Reed-Muller codes. The 15-bit binary

codes that are generated from the generator matrix P are shown in Table 5.5, and

the generated codes are cyclic. The generated codes are simply shifted versions of the

maximum-length sequence or seed vector of the 4-stage LSFR shown in Figure 5.6

with the feedback polynomial in Equation 5.10.

M − Λ16 lattice-based codevectors are based on the 15 codes in Table 5.5. By

adding a zero in the end of the first seed vector and shifting the modified seed vector,

16 codes can be obtained as shown in Table 5.6. These 16 codes are here names as

seed codes. Since the length of the codes increases to 16 from 15, the total number of

69

Table 5.5. Fifteen codes are generated from the generator matrix P , which is based
on the 4-stage LSFR. The generated codes are simply shifted versions of the maxi-
mum-length sequence or seed vector of the LSFR.

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
1 0 0 0 1 1 1 1 0 1 0 1 1 0 0
0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
0 1 0 0 0 0 1 1 1 1 0 1 0 1 1
1 0 1 0 0 0 0 1 1 1 1 0 1 0 1
1 1 0 1 0 0 0 0 1 1 1 1 0 1 0
0 1 1 0 1 0 0 0 0 1 1 1 1 0 1
1 0 1 1 0 1 0 0 0 0 1 1 1 1 0
0 1 0 1 1 0 1 0 0 0 0 1 1 1 1
1 0 1 0 1 1 0 1 0 0 0 0 1 1 1
1 1 0 1 0 1 1 0 1 0 0 0 0 1 1
1 1 1 0 1 0 1 1 0 1 0 0 0 0 1

codes also should be increased to 16 to make the entire codebook cyclic. Therefore,

an M − Λ16 lattice-based codebook requires 32 codes, which include the 16 codes in

Table 5.6 and their complements. A M− Λ16 lattice is not optimal because all codes

are not uniformly distributed. The nearest neighbor angle, which is defined as the

angle between the two nearest codes [7], is not always 60◦ as in a Λ16 lattice. The

nearest neighbor angle of a M−Λ16 lattice varies from 51.3178◦ to 67.9757◦. However,

no performance degradation is observed in the experiments.

The 32 codes provide the locations of ±1s in an M − Λ16 lattice-based codebook

as in a Λ16 lattice-based codebook. The ±1s are located in the 1’s positions of the 32

codes, and the number of −1s should be even. This combination makes 4096 code-

vectors, in which there are 128 codevectors per one code. Therefore, the M − Λ16

lattice-based codebook has total 4576 codevectors including the 480 vectors of all

permutations of 2−1/2(±22, 014). The number of total codevectors in the M − Λ16

lattice-based codebook increases by 256, when compared to the Λ16 lattice-based

70

codebook, but the complexity of encoding and decoding is significantly reduced be-

cause of the cyclic property of the M − Λ16 lattice-based codebook. This reduced

complexity will be discussed in the end of this chapter.

The two sets of codevectors, 480 vectors of all permutations of 2−1/2(±22, 014) and

4096 vectors of the form 2−1/2(±18, 08), should be treated differently in the encoding

and decoding process because their structures are different. Therefore, the 4096

vectors of the form 2−1/2(±18, 08) and the 480 vectors of the form 2−1/2(±22, 014) are

grouped and named as class-1 codevectors and a class-2 codevectors, respectively.

In addition, the class-1 codevectors are subdivided into two subclass, codevectors

from the seed codes in Table 5.6 and codevectors from their complements. The

combinations of these two classes and two subclasses generate different distributions

of inner product values. The subclass of the codevectors from the seed codes and

the subclass of the complement codes are names as a SEED subclass and a COMP

subclass, respectively.

Table 5.6. Sixteen codevectors based on a pseudo-cyclic Reed-Muller code (weight 8).
M−Λ16 lattice-based codebook requires 32 codevectors, and the other codevectors can
be obtained by complimenting the shown 16 codevectors.

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0
0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0
0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1
1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1
1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0
0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1
1 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 1 1 1
1 0 1 0 1 1 0 0 1 0 0 0 0 1 1 1
1 1 0 1 0 1 1 0 0 1 0 0 0 0 1 1
1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 1

71

5.3.3 Finding an M − Λ16 Lattice-Based Codevector

Finding codevectors corresponding to input vectors in an M−Λ16 lattice-based code-

book is more complicated than finding codevectors in a D4 lattice-based codebook

because the structure of the M − Λ16 lattice-based codebook is more complex. A

D4 lattice-based codebook is all permutations of (±1,±1, 0, 0). Therefore, finding

the best-matched codevector corresponding to an input vector is simply finding the

two elements with the largest absolute values in an input vector and assigning 1 or

−1 to the location of the found elements based on their original signs. However,

class-1 codevectors in the M − Λ16 lattice-based codebook have a limited number of

permutations of (±18, 08). The locations of ±1s are determined by the 32 codes that

are generated from a seed vector. Therefore, finding eight elements with the largest

absolute values in an input vector for the location of ±1 assignment does not work

because the locations of the eight elements should match to those of the 32 code.

M − Λ16 lattice-based codevectors have two different classes as mentioned in the

previous section, and these two different classes have different structures. For that

reason, two different methods are required to be performed for each class, and the

results need to be compared to find the best-matched codevector. The inner product

value of an input vector and each codevector is maximized when the codevector is

best matched. Therefore, finding a codevector maximizing the inner product with

the input vector is the goal. Since the codevectors contains only ±1, this goal can

be rephrased as how to find the maximal sum of the masked elements under the

condition that an even number of signs is allowed to be changed.

Only limited combinations of non-zero elements are acceptable for a valid code-

vector in an M − Λ16 lattice-based codebook, and the total number of minus signs

should be considered as well. The first 16 codes of the 32 codes are generated from a

seed vector and its shifted vectors. Since only the locations of 1s of a seed vector and

its shifted vectors should be evaluated when finding the best-matched codevector, a

72

seed vector and its shifted vectors are used as a mask to find the locations of 1s. This

mask is applied to an input vector, and only masked elements are evaluated. After

the evaluation, this mask is right-shifted and applied to the input vector again. It

is noted that the complements of the first 16 codes are also parts of the 32 codes.

Therefore, when the mask is applied to an input vector, the unmasked elements form

another code. Unnecessary masking processes can be omitted so that the 32 masking

processes reduce to 16 masking processes by evaluating these unmasked elements at

the same time when the masked elements are evaluated. Once the masked elements

or unmasked elements are obtained, the elements are searched to find the element

with the smallest absolute value, and the number of negative elements is counted.

The sign of the element with the smallest absolute value is determined by the count

of negative numbers when the total sum is calculated. This is because only an even

number of minus signs is allowed for a valid codevector. If the count is even, the

absolute values of all masked elements are summed up. All negative elements in the

masked elements can be changed to positive because an even number of sign changes

is allowed. The sum is the maximum inner product value of the masked elements and

all possible codevectors using the code that used for the mask. If the count is odd,

not all negative elements can be changed to positive. One of the negative elements

should stay negative, and choosing the element with the smallest absolute value as

the negative number maximizes the sum. These processes are repeated for the 32

codes. The best-matched codevector in the class-1 can be found by comparing the

32 sums and finding the maximum out of them. The full procedure is depicted in

Figure 5.7.

The best-matched codevector in the class-1 should be compared with the one in the

class-2. Since the class-2 codevectors are all possible permutations of 2−1/2(±22, 014),

the maximal sum can be obtained by finding the two elements with the largest ab-

solute values as in the D4 case. The found two elements are multiplied by ±2 based

73

on their original signs. The best-matched codevector in the class-2 is again compared

with the best-matched codevector in the class-1, and the bigger one becomes the final

best-matched codevector in an M − Λ16 lattice-based codebook.

Find the

element

with the

smallest

absolute

value.

Count

the total

negative

numbers.

3
2

4 Add the absolute values of seven numbers except the one found in 3 .

5 5

If the count in 2 is even, If the count in 2 is odd,

Add the absolute value

of the number found in

3 to the sum in 4 .

Subtract the absolute value

of the number found in 3

from the sum in 4 .

Apply the mask of the seed

vector to the input.
1

a b c d e f g h i j k l m n o p

a

b

c

f

g

j

Input vector

m

o

d

e

h

i

k

l

n

p

Figure 5.7. Efficient algorithm for finding a codevector in the class-1: The seed vector
that are found from the LSFR is used to generate a mask. The locations of non-zero
elements are set to 1 (colored as red) in the mask, and other locations are set to 0
as shown in 1©. After the masking operation, the resultant 8 numbers are processed
following 2©, 3©, 4©, and 5©. Since only even number of negative numbers is allowed as
a codevector, counting the total negative numbers is necessary. The sign of the element
with the smallest absolute value is determined based on this count. Both the shifted 15
vectors of the seed vector and their complements are used to generate the codebook,
so the unmasked elements are processed exactly the same way as the masked elements.
The unmask elements are colored as blue in the figure. This entire procedure need
to be performed 32 times for a seed vector, the 15 shifted versions of the seed vector,
and their complements. After the best-matched codevector is found in the class-1, it
is compared with the best-matched codevector in the class-2. The two best-matched
codevector in each class are the candidates for the best-matched codevector in the full
codebook. An inner product is calculated between each candidate and the input vector,
and the one with the bigger inner product value becomes the final answer.

74

5.3.4 Inner Product-Based Grouping in M− Λ16 L-DIRVQ

The inner product-based grouping method in Section 5.2.1 is similarly applicable to

a M − Λ16 lattice-based codebook with some modifications. The major difference

between the M − Λ16 lattice-based codebook and the D4 lattice-based codebook is

that the M−Λ16 lattice-based codebook contains two different classes, which result in

different structures. The inner product-based grouping method is based on the inner

product of the previous best-matched codevector and all codevectors, and the different

structures of the previous best-matched codevector affect the organization of the

grouping in the reordered codebook. In addition, a limited number of permutations

of (±18, 08) of class-1 codevectors also influences the distributions of the inner product

values.

Distributions of the inner product values are shown in Figure 5.8. Figure 5.8 (a)

shows the distribution when the previous best-matched codevector is in the class-1.

Figure 5.8 (b) shows the distribution when the previous best-matched codevector is

in the class-2 and the distance of non-zero elements of the previous best-matched

codevector is either 1, 2, 3, 5, 6, 8. These class-2 codevectors form a subclass, which

is named as a Dist1. Figure 5.8 (c) shows the distribution when the previous best-

matched codevector is in the class-2 and the distance of non-zero elements of the

previous best-matched codevector is either 4, 7. These class-2 codevectors form a

subclass, which is named as a Dist2. Here the distance is defined as the number

of zeros between non-zero elements plus one. Since codevectors in the class-2 have

a cyclic property, distance can be measured circularly, and the shorter distance is

chosen. For example, the distance of non-zero elements of the previous best-matched

vector [0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0] is 6 instead of 10. Codevectors in the

class-2 contain only ±2, so the inner product values are always even numbers. There

are two distributions when the previous best-matched codevector is in the class-2, and

the selection of distributions is determined by the distance of non-zero elements of the

75

previous best-matched codevector. More details will be explained in Section 5.3.5.3.

−10 −5 0 5 10
0

500

1000

1500

inner product value

fr
e
q
u
e
n
c
y

(a)

−10 −5 0 5 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

inner product value

fr
eq

ue
nc

y

(b)

−10 −5 0 5 10
0

200

400

600

800

1000

1200

1400

1600

inner product value

fr
eq

ue
nc

y

(c)

Figure 5.8. Distribution of inner product values in a M−Λ16 lattice: (a) when the pre-
vious best-matched codevector was in the class-1; (b) when the previous best-matched
codevector was in the class-2 and the distance of non-zero elements of the previous
best-matched codevector is either 1, 2, 3, 5, 6, 8.; (c) when the previous best-matched
codevector was in the class-2 and the distance of non-zero elements of the previous
best-matched codevector is either 4, 7.

The detailed organizations of each group are shown in Table 5.7 and in Table 5.8.

Table 5.7 shows the organization of the codebook when the previous best-matched

codevector is in the class-1 and SEED subclass. When the previous best-matched

codevector is in a class-1 and COMP subclass, this organization remains same except

that the order of subclasses is reversed. For example, the subclasses of the group

3 in Table 5.7 are reversed so that 116 codevectors and 88 codevectors belong to a

76

COMP subclass and a SEED subclass, respectively. Table 5.7 shows the organization

of the codebook when the previous best-matched codevector is in the class-2. After

all, there are three inner product-based groupings, and they are as follows:

• Codebook that is reordered based on the previous best-matched codevector in

the class-1 and SEED subclass (SEED codebook).

• Codebook that is reordered based on the previous best-matched codevector in

the class-1 and COMP subclass (COMP codebook).

• Codebook that is reordered based on the previous best-matched codevector in

the class-2 and Dist1 subclass (C2D1 codebook).

• Codebook that is reordered based on the previous best-matched codevector in

the class-2 and Dist2 subclass (C2D2 codebook).

The selection of the codebook depends only on the previous best-matched code-

vector, and the encoder and the decoder already know this information. Therefore,

uniqueness of encoding and decoding is guaranteed in spite of multiple complicated

codebook organizations.

5.3.5 Encoding and Decoding procedure in M− Λ16 L-DIRVQ

Four sub-codebooks, a SEED codebook, a COMP codebook, a C2D1 codebook, and a

C2D2 codebook, are differently ordered and structured in M−Λ16 L-DIRVQ. Because

of this difference among codebooks, different encoding and decoding methods should

be applied to each codebook separately.

5.3.5.1 Encoding and Decoding procedure for a SEED codebook

The best-matched codevector of the input vector is obtained based on the method

described in Section 5.3.3. After that, the inner product value is computed, and

the number of index candidates is considerably reduced. For example, assume the

found best-matched codevector is in the COMP codebook. If the inner product

value of the found codevector and the previous best-matched codevector is 3, the

77

Table 5.7. Organization of the codebook reordered based on the previous best-matched
codevector in the class-1 and SEED subclass codebook (SEED codebook).

`

8

5

4

3

2

1

0

-1

-2

-3

-4

-5

-8

Inner

Product
Class

1

1

1

2

2

1

1

1

1

1

2

1

2

1

1

2

1

1

Sub-class Number of codevectors

168

SEED

SEED

SEED

SEED

SEED

SEED

SEED

SEED

SEED

COMP

COMP

COMP

COMP

COMP

COMP

COMP

COMP

COMP

116

116

1

1

16

16

88

88

28

28

64

64

80

80

352

352

352

352

128

128

192

192

160

160

598

656

Group

1

2

3

4

5

6

7

8

9

10

11

12

13

SEED

COMP

COMP

SEED

78

Table 5.8. Organization of the codebook reordered based on the previous best-matched
codevector in the class-2 (C2 codebook). Two distributions exist as in Figure 5.8 (b)
and (c).

Inner

Product

Class Number of codevectors Group

Subclass Dist_1 Dist_2

8 2 1 1 1

4 1

SEED 128 96

2COMP 128 96

2 56 56

2 1

SEED 512 640

3COMP 512 640

0 1

SEED 768 576

4COMP 768 576

2 366 366

!2 1

SEED 512 640

5COMP 512 640

!4 1

SEED 128 96

6COMP 128 96

2 56 56

08 2 1 1 7

index candidates should be located between index number 314 and index number

393 as shown in Table 5.7. The classification of the class and the subclass of the

codevector corresponding to the input vector efficiently narrows down the number

of index candidates. However, finding the correct index among these reduced index

candidates is real challenging.

The templates for the masked bits in D4 L-DIRVQ are all possible combinations

of bits to make the desired inner product value for the group. However, class-1

codevectors have only a limited number of vectors of the form 2−1/2(±18, 08), so not

all possible combinations of bits to make the desired inner product value for the group

can be valid templates. Therefore, additional information is necessary for reducing

index candidates.

Table 5.9 shows all possible combinations of overlaps when both the previous best-

matched codevector, which is located in the first row, and the current best-matched

79

codevector are in a SEED codebook. There are four consecutive non-zero elements

in the codevectors in a SEED codebook. The four bits that are masked by these four

consecutive non-zero elements are interpreted as a binary number, and it is unique

for each possible combination. This binary number is named as an identifier, and

the first column in Table 5.9 shows the identifiers. Since these identifiers are unique

for each possible combination, they can provide an additional information, which

was provided from the templates in D4 L-DIRVQ, for reducing index candidates in a

group. The last column shows the number of non-zero overlaps between the previous

best-matched codevector and the possible current best-matched codevectors.

Table 5.9. All possible combinations of overlaps when both the previous best-matched
codevector, which is located in the first row, and the current best-matched codevector
are in a SEED codebook. The first column shows unique identifiers for each codevector,
and the last column shows the number of non-zero overlaps between the previous
best-matched codevector and the possible current best-matched codevectors. Circled
identifiers indicates that the number of non-zero overlaps is 3.

Number of

overlaps
Identifier

15

7

3

1

0

8

4

2

9

12

6

11

5

10

13

14

8

4

4

4

3

4

4

3

4

3

4

4

3

4

4

4

80

Table 5.10 shows all possible combinations of overlaps when the previous best-

matched codevector and the current best-matched codevector are in a COMP code-

book. As seen in Table 5.10, the number of non-zero overlaps and the corresponding

identifiers are different from those of the SEED codebook. Therefore, encoder and

decoder should have information for both cases. Switching between these two set of

information is trivial because it is automatically determined once the best-matched

codevector corresponding to the input vector is found in the beginning of the encoding

process.

Table 5.10. All possible combinations of overlaps when the previous best-matched code-
vector, which is located in the first row, and the current best-matched codevector are in
a COMP codebook. Circled identifiers indicates that the number of non-zero overlaps
is 5.

Number of

overlaps
Identifier

0

8

12

14

15

7

11

13

6

3

9

4

10

5

2

1

0

4

4

4

5

4

4

5

4

5

4

4

5

4

4

4

Identifiers and the number of overlaps are used to narrow down the search region in

a codebook. Table 5.11 shows all possible inner product values for different numbers

of non-zero overlaps when the current best-matched codevector is either in a SEED

codebook or a COMP codebook. The number of non-zero overlaps determines possible

81

Table 5.11. All possible inner product values for the number of non-zero overlaps when
the current best-matched codevector is either in a SEED codebook or a COMP code-
book.

Number of Possible inner product values
overlaps

8 8, 4, 0, -4, -8
4 4, 2, 0, -2, -4
5 5, 3, 1 ,-1, -3, -5
3 3, 1, -1, -3
0 0

inner product values, and the inner product value also determines possible numbers

of non-zero overlaps. For example, if the inner product value is 4, possible numbers of

non-zero overlaps are [8, 4], and the corresponding identifiers help to narrow down the

index candidates. The corresponding identifiers are [1 3 4 6 7 8 9 10 11 13 14]

if the number of non-zero overlaps is 4. Figure 5.9 shows this detailed organization.

SEED

COMP

116

88

28

Overlaps Identifier

Figure 5.9. Detailed organization in a subclass. A number of non-zero overlaps and the
corresponding identifer determine the narrowed region of index candidates.

82

After reducing the number of index candidates using the identifiers, the template-

based searching is applied as in D4 L-DIRVQ. For example, assume the followings;

the previous best-matched codevector is [1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0],

and the inner product value of the previous best-matched codevector and the current

best-matched codevector is 2, and the number of non-zero overlaps is 4. Then the

possible combinations of the non-zero overlaps are {[1, 1, 1, -1],[1, 1, -1, 1],[1, -1, 1, 1],[-

1, 1, 1, 1]}. This set is the template for the non-zero overlaps. As in D4 L-DIRVQ,

dropping signs of the previous best-matched vector makes it possible to have only one

set of template instead of multiple templates for all sign combinations.

The final step to find the index corresponding to the input vector is applying

another template to the unmasked non-zero elements. Table 5.10 shows the templates

for a SEED codebook and a COMP codebook. This set of templates is designed to be

used for the both codebooks rather than different sets of templates for each codebook.

This approach reduces the memory consumption for storing templates. The number of

unmasked non-zero elements and the number of minus signs in the non-zero overlaps

determine which template should be used. The number of minus signs in the non-zero

overlaps is considered here because M−Λ16 lattice-based codevectors are required to

have only even number of negative elements.

When the current best-matched codevector is in the class-2, the template-based

search can be directly followed without finding identifiers. Therefore, the template

size is considerably larger than that of class-1 cases because there is no identifier to

reduce the template size. If the amount of memory is very limited, instead of storing

all templates, a tree search algorithm can be applied to this case with the possible

combinations, [-2, 0, 2].

5.3.5.2 Encoding and Decoding procedure for a COMP codebook

The encoding and decoding procedures for a COMP codebook are not much different

from the procedures for a SEED codebook. They share the exactly same methods such

83

5-element-odd-minus template 5-element-even-minus template 4-element-odd-minus template

4-element-even-minus template

3-element-odd-minus template

3-element-even-minus template

-1

-1

-1

-1

-1

-1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1-1

-1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1 -1 -1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1

-1

-1

-1

-1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1 -1 -1

-1

-1

-1

-1 -1 -1

-1 -1

-1 -1

-1 -1

* Blanks are filled with 1's.

Figure 5.10. Templates for a SEED codebook and a COMP codebook: The number of
unmasked non-zero elements and the number of minus signs in the non-zero overlaps
determine which template is used.

84

as the identifiers and the template-based search except that the codebook organization

is slightly different as mentioned in Section 5.3.4. Therefore, the explanation of the

detailed procedure is omitted.

5.3.5.3 Encoding and Decoding procedure for a C2D1 codebook and a C2D2 codebook

When the previous best-matched codevector is in class-2, two inner product distribu-

tions exist as mentioned in Section 5.3.4. The selection of these distributions is fully

determined by the distance of the non-zero elements in the previous best-matched

codevector. Table 5.13 and Table 5.12 shows the templates for the encoding and

decoding procedure for a C2 codebook. These templates are only for the reference

to locations of the non-zero elements in the best-matched codevector, so the signs of

the codevector are ignored.

The distance of the non-zero elements in the previous best-matched codevector in

Table 5.13 is 2. If the distance is either 1, 2, 3, 5, 6, or 8, the frequency of overlapping

two non-zero elements is 3, and the frequency of no overlap is also 3. For the other

10 cases, the number of overlaps is 1. This case generates the distribution shown in

Figure 5.8 (c).

The distance of the non-zero elements in the previous best-matched codevector

in Table 5.12 is 3. If the distance is either 4 or 7, the frequency of overlapping two

non-zero elements is 4, and the frequency of no overlap is also 4. For the other 8 cases,

the number of overlaps is 1. This case generates the distribution shown in Figure 5.8

(b).

Once the codebook corresponding to the distance of the non-zero elements in the

previous best-matched codevector is determined, the number of index candidates can

be considerably narrowed down. For example, assume the previous best-matched

codevector is [0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] and the current best-matched

codevector is [1, -1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0], which is in the SEED codebook.

Since the distance of non-zero elements in [0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] is 4,

85

Table 5.12. Template for the encoding and decoding procedure for a C2 codebook when
the distance of the non-zero elements in the previous best-matched codevector, which
is at the top row, is either 1, 2, 3, 5, 6, 8.

Number of

overlaps

2

1

1

1

0

1

0

0

2

1

0

2

1

1

2

1

Identifier

15

7

3

1

0

8

4

2

9

12

6

11

5

10

13

14

86

Table 5.13. Template for the encoding and decoding procedure for a C2 codebook when
the distance of the non-zero elements in the previous best-matched codevector, which
is at the top row, is either 4 or 7.

Number of

overlaps

1

1

1

1

1

1

0

0

1

2

0

1

1

2

1

2

Identifier

15

7

3

1

0

8

4

2

9

12

6

11

5

10

13

14

87

the codebook organization follows the Dist2 column in Table 5.8. The inner product

of [0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] and [1, -1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0] is

0. The subclass of the current best-matched codevector and the overlapped elements

[-1, 1] efficiently narrowed down the index candidates as shown in Figure 5.11. The

identifier of [1, -1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0] is determined by the four

consecutive elements from the location of the first non-zero element in the previous

best-matched codevector. In this example, the four consecutive number is [-1, 1, 1, 0],

and it is interpreted as binary number 1110, which is 14 in decimal representation.

The number of index candidates is now reduced to 32. The templates for the final

step are similar to those in a SEED codebook or a COMP codebook. Difference is

that the total number of elements is 6, 7, and 8 instead of 3, 4, and 5 in the class-1

case shown in Figure 5.10.

Figure 5.11. Detailed organization of a subclass in the class2: Information about sub-
class, templates for overlaps, and the corresponding identifer determine the narrowed
region of index candidates.

88

5.3.6 Example

Assume the previous best-matched codevector is [1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0],

and the input vector is [22, -3, 33, 34, -56, 4, 2, -9, 25, -320, 57, 8, 1, 220, -77, 16].

The first mask [1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0] is applied to the input vector,

and the result is as follows:

Masked output = [22, − 3, 33, 34, 4, − 9, 25, 8]. (5.12)

The number with the smallest absolute value is -3, and the number of negative num-

bers is 2. Since the number of negative numbers is even, all the negative numbers can

be converted to positive. Therefore, the maximum inner product value for this input

vector with the applied mask is the sum of the absolute values of all masked output

elements, which is 138. The same procedure is performed for the other masks, and

the results are compared each other to find the best-matched codevector in a class-1

codebook. The resultant codevector and the inner product value corresponding to

the found codevector is as follows:

B1 = [0, 0, 0, 0, − 1, 0, 1, 0, 0, − 1, 1, 0, − 1, 1, − 1, 1] (747). (5.13)

The next step is to find the best-matched codevector in a class-2 codebook. The two

elements with the largest absolute value is -320 and 220 in the input vector, so the

best-matched codevector and the maximum inner product value of the input vector

and all codevectors in a class-2 codebook are as follows:

B2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, − 1, 0, 0, 0, 1, 0, 0] (540). (5.14)

B1 and B2 are compared to find the final best-matched codevector. Since the inner

product value of B1 is bigger than that of B2, B1 is chosen as the final best-matched

codevector. The inner product value of the found codevector and the previous best-

matched codevector is 0. The found best-matched codevector B1 gives additional

information for encoding. B1 is in a COMP codebook, and the overlaps with the

89

previous best-matched codevector is [0, 0, 0, 0]. Considering the inner product value

and the information about the previous best-matched codevector and B1, the index

should be located between 2176 and 2831, and it is shown in Figure 5.12.

SEED

COMP

598

656

168

Overlaps Identifier

Figure 5.12. The detailed organization of the codebook is shown when the inner product
value is 0. Index starts from 2173 in this case.

Since the overlap is [0, 0, 0, 0], the search region is again reduced to between 2176

and 2303. The next step is to find the final index using the template that have 8

elements and an even number of negative numbers. Non-overlaps are [-1, 1, -1, 1,

-1, 1, -1, 1], and it is the 50th vector in the template. Therefore, the final index is

2225.

5.3.7 Computational Reduction

The brute-force search for the best-matched codevector requires 4576 inner products

and 4575 comparisons in the worst case. For the 16-dimensional case, one inner

product computation contains 16 multiplications and 15 additions. Therefore, total

73216 multiplications and 68640 additions have to be performed in the worst case.

This number of multiplications and additions is enormous for encoding one block of an

image. To make this worse, to reorder the entire codebook, the 4576 inner products

90

and 4575 comparisons are always required to be performed regardless of whether it is

the worst case or not. In addition, if the elements of the input vector are transformed

coefficients, floating-point multipliers and adders are required.

On the other hand, the proposed algorithm for finding the best-matched code-

vector corresponding to the input vector needs 32 16-bit masking processes, finding

the minimum in a vector with length 8 (min function, 32 times), counting the to-

tal negative numbers for a vector with length 8 (count function, 32 times), finding

absolute value (abs funtion, 256 times), 96 comparisons, and finding the maximum

(max function, twice). This computational reduction for finding the best-matched

codevoctor is summarized in Table 5.14.

Table 5.14. Computational reduction of the proposed M − Λ16 lattice-based codebook
encoding and decoding algorithm.

Brute-force method Proposed algorithm

Codebook search 4576 inner products, 2 max functions,
4575 comparisons 32 16-bit maskings,

(73216 multiplications 256 abs functions,
and 68640 additions) 32 min functions,

32 count functions,
96 comparisons

The required number of computations for finding the corresponding index from

the best-matched codevector varies based on the class and subclass combinations.

Therefore, it is difficult to count the total number of operations precisely. Instead,

the total run-time of coding a 64×64 Lena image is compared as shown in Table 5.15.

Shown run-times include the run-time of both codebook searching and dynamic index

reordering. The run-time is measured 10 times and averaged. The experiments are

performed with the following environment:

Hardware: Pentium Core2duo CPU (T9600), 4 Gigabytes RAM.

91

Software: MATLAB R2008b on Windows XP (32-bit)

Table 5.15. Run-time reduction of the proposed M−Λ16 lattice-based codebook encoding
and decoding algorithm. A 64 × 64 Lena image is coded with MATLAB on Windows
XP.

Brute-force method Proposed algorithm

total run-time (second) 38.4983 1.0212

92

CHAPTER 6

CONCLUSIONS AND DISCUSSIONS

6.1 Conclusions

This research focuses on the implementation of efficient image compression systems.

To achieve this system-wise goal, three domains of research are performed; in imag-

ing system implementation with an analog CMOS transform imager, in image com-

pression algorithm development for the imaging system ,and in the efficient digital

implementation of the compression system.

First, an imaging system using a CMOS transform imager is proposed based on the

CADSP concept, and the system has been implemented with a FPGA board. Printed

circuit boards (PCB) are designed for operating the transform imager and interfacing

with the FPGA board. Since both the transform imager and the FPGA board are

highly programmable, the implemented imaging system can perform various image

processing algorithms. In addition, the transform imager is capable of computing

block-based transforms in the analog domain. This can reduce the computational

loads of the digital implementation, so more efficient algorithm implementation is

possible. To verify the functionality of the system, the JPEG image compression

algorithm is realized in the system, and the performance is analyzed. 2D DCT op-

erations are moved from the digital implementation into the transform imager. This

JPEG implementation shows higher power efficiency compared to the digital-only

implementation.

Second, the state-of-the-art image compression algorithm based on wavelets and

dynamic index reordering vector quantization (DIRVQ) is proposed. Transform-based

embedded coders highly decorrelate the correlation among the image pixels or blocks

in the spatial domain, so it is hard to achieve the better performance by applying

93

VQ with memory such as DIRVQ. To overcome this difficulty, the refinement pass of

the embedded coders is defined as the temporal domain, and the DIRVQ is applied

to this newly-defined temporal domain. The experimental results show the PSNR

performance improvement at almost all compression ratios, and it proves that the

proposed algorithm successfully exploits the redundancy in the temporal domain.

The discrete wavelet transform (DWT) computation is partitioned and moved to the

transform imager.

Third, for the efficient implementation of DIRVQ, novel encoding and decoding

scheme is proposed. The improvement of the proposed wavelet-based image compres-

sion algorithm comes from DIRVQ. However, DIRVQ is computationally intensive

because of the full codebook reordering. To alleviate this high computational load in

digital implementation, the property of lattice-based codebooks of 2 × 2 and 4 × 4

are thoroughly investigated. It is found that the lattice-based codebook is highly

structured and cyclic or pseudo-cyclic. Using these properties, the proposed encod-

ing and decoding algorithm significantly reduces the computation and the memory

requirement.

Modern image compression algorithms become more and more complicated not

only to implement but also to analyze. The validity of algorithms can be easily

assessed by computer simulations, but the implementation in real world as a system

can pose a lot of difficulties when trying to achieve the target performance such as

high speed operations and low power consumption. The CADSP approach can give

more degrees of freedom in designing systems and achieving the target performance.

In this research, a wavelet-based embedded image coding algorithm is proposed, and

the algorithm is studied in different aspects to implement on a transform imager-

based compression system. The system has more degrees of freedom for finding the

desired solution compared to the conventional digital-only system with a conventional

CMOS or CCD imager.

94

6.2 Discussions - DIRVQ for Videos

Videos have a considerable amount of redundancy between frames. The temporal re-

dundancy can be exploited by applying DIRVQ as shown in Figure 6.1. Several video

sequences are coded using DIRVQ to verify how much efficiency DIRVQ can achieve,

and index changes and the entropy reduction are examined. In the experiments, the

Lloyd algorithm is used for generating codebook. The codebook size is 1024, and the

dimension of the vector is 16 (4× 4 block). Three 512× 512 images in Figure 6.2 are

spatially applied for codebook training.

DIRVQ

Figure 6.1. DIRVQ for video processing

Figure 6.2. Sample figures used for codebook training

Index changes of one sampled block in a Missa sequence are shown in Figure 6.3

(a). As expected, a strong resemblance is seen between frames. The constant region

of index changes in normal VQ reflects this fact. Index changes after applying DIRVQ

are shown in Figure 6.3 (b). Considering the concept of DIRVQ, Figure 6.3 (b) is

simply the derivative form of Figure 6.3 (a). Total index count for the full video

95

coding is shown in Figure 6.4. The distribution is concentrated in lower indices, and

the entropy reduces from 8.2483 bits to 5.316 bits.

Figure 6.3. Index changes of one sampled block in the missa sequence

Figure 6.4. Total index count for the full video of the missa sequence

The test is performed for more sequences such as tennis, Susie, and Foreman. The

entropy reduction results are shown in Table 6.1. The amount of entropy reduction

varies with sample sequences and codebook sizes, but overall about a 40% entropy

reduction is achieved. The following works will be interesting to study further:

• Developing more refined video coding algorithms using L-DIRVQ instead of

96

using training-based codebooks.

• Comparing the output performance and computational complexity of L-DIRVQ-

based video coding with conventional motion estimation-based video coding algo-

rithms.

Table 6.1. Entropy reduction of the test video samples after applying DIRVQ

Sample Codebook Standard VQ DIRVQ
movies size PSNR Entropy Entropy

Tennis(SIF,150frame) 1024 7.67 4.18
Susie 1024 34.92 6.83 3.70

(720×480,150frame) 2048 35.36 7.53 4.32
Foreman 1024 29.30 7.95 4.73

(CIF,300frame) 2048 29.82 8.74 5.42
4096 30.30 9.49 6.12

Block size: 4×4
Average improvement: around 40% of entropy reduction

97

REFERENCES

[1] P. Hasler and D. V. Anderson, “Cooperative analog-digital signal processing,” in
2002 IEEE International Conference on Acoustic, Speech, and Signal Processing,
2002, vol. 4, pp. 3972–3975.

[2] Paul Hasler, Abhishek Bandyopadhyay, and D. V. Anderson, “High-fill factor
imagers for neuromorphic processing enabled by floating-gate circuits,” Interna-
tional Journal of Signal Processing, vol. 103, pp. 2273–2281, 2003.

[3] Iain M. Johnston and David L. Donoho, “Adapting to smoothness via wavelet
shrinkage,” Journal of the Statistical Association, vol. 90, pp. 1200–1224, Dec.
1995.

[4] David L. Donoho, “De-noising by soft thresholding,” IEEE Transactions on
Information Theory, vol. 41, pp. 613–627, May 1995.

[5] Maarten Jansen, Noise Reduction by Wavelet Thresholding, vol. 161, Springer,
2001.

[6] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”
IEEE Transaction on Signal Processing, vol. 41, pp. 3445–3462, Dec. 1993.

[7] Eduardo A. B. da Silva, Demetrios G. Sampson, and Mohammad Ghanbari,
“A successive approximation vector quantization for wavelet transform image
coding,” IEEE Transaction on Image Processing, vol. 5, pp. 299–310, Feb. 1996.

[8] O. Yadid-Pecht and E. R. Fossum, “Wide intrascene dynamic range cmos aps
using dual sampling,” IEEE Transactions on Electron Devices, vol. 44, pp. 1721–
1723, Oct. 1997.

[9] E. R. Fossum, “Cmos image sensors: electronic camera-on-a-chip,” IEEE Trans-
actions on Electron Devices, vol. 44, pp. 1689–1698, Oct. 1997.

[10] M. Cohen, G. Cauwenberghs, M. Vorontsov, and G. Carhart, “Focal-plane image
and beam quality sensors for adaptive optics,” in 2001 Conference on Advanced
Research in VLSI, 2001, pp. 224–237.

[11] A. Aslam-Siddiqi, W. Brockherde, and B. Hosticka, “A 128-pixel cmos image
sensor with integrated analog nonvolatile memory,” IEEE Journal of Solid-State
Circuits, vol. 33, pp. 1497–1501, Oct. 1998.

[12] C. Kwang-Bo, A. Krymski, and E. R. Fossum, “A 1.2v micropower cmos active
pixel image sensor for portable applications,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, 2000, pp. 114–115.

98

[13] D. X. D. Yang, A. E. Gamal, B. Fowler, and H. Tian, “A 640 x 512 cmos
image sensor with ultrawide dynamic range floating-point pixel level adc,” IEEE
Journal of Solid-State Circuits, vol. 34, pp. 1821–1832, Dec. 1999.

[14] J. C. Gealow and C. G. Sodini, “A pixel-parallel image processor using logic
pitch-matched to dynamic memory,” IEEE Journal of Solid-State Circuits, vol.
34, pp. 65–73, June 1999.

[15] M. Schwarz, R. Hauschild, B. Hosticka, J. Huppertz, T. Kneip, S. Kolnsberg,
L. Ewe, and H. Trieu, “Single-chip cmos image sensors for a retina implant sys-
tem,” IEEE Transaction on Circuits System II, Analog Digital Signal Processing,
vol. 46, pp. 870–977, July 1999.

[16] J. C. Gealow, F. P. Herrmann, L. T. Hsu, and C. G. Sodini, “System design for
pixel-parallel image processing,” IEEE Transaction on VLSI System, vol. 4, pp.
32–41, Mar. 1996.

[17] R. H. Robinson and D. S. Wills, “Design of an integrated focal plane architecture
for efficient image processing,” in 15th International Conference on Parallel and
Distributed Computing Systems, 2002, vol. 171, pp. 128–135.

[18] William H. Robinson and D. Scott Wills, “Efficiency analysis for a mixed-signal
focal plane processing architecture,” Journal of VLSI Signal Processing, vol. 41,
pp. 65–80, 2005.

[19] Abhishek Bandyopadhyay, Jungwon Lee, Ryan W. Robucci, and Paul Hasler,
“Matia: A programmable 80uw/frame cmos block matrix transform imager ar-
chitecture,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 663–672, Mar.
2006.

[20] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Prentice
Hall, 2002.

[21] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A precision cmos amplifier
using floating-gates for offset cancellation,” in Proc. IEEE Custom Integrated
Circuit Conference (CICC), 2005, pp. 734–737.

[22] Teahyung Lee, Leung Kin Chiu, David V. Anderson, Ryan Robucci, and Paul
Hasler, “Rapid algorithm verification for cooperative analog-digital imaging sys-
tems,” in IEEE International Midwest Symposium on Circuits and Systems,
2007 to be published.

[23] A. N. Netravali and J. O. Limb, “Picture coding: A review,” in Proc. IEEE,
1980, vol. 68, pp. 366–406.

[24] Gregory K. Wallace, “The jpeg still picture compression standard,” Communi-
cation of the ACM, vol. 34, no. 4, pp. 30–44, April 1991.

99

[25] K. Ogawa, T. Urano, N. Mori, S. Moriai, H. Yamamoto, and S. Kato, “A
single chip compression/decompression lsi based on jpeg,” IEEE Transaction on
Comsumer Electronics, vol. 38, pp. 703–710, Aug. 1992.

[26] M. Kovac and P. Ranganathan, “Jaguar: a high speed vlsi chip for jpeg image
compression standard,” in Processings of the 8th international conference on
VLSI design, Jan. 1995, pp. 220–224.

[27] N. Narasimhan, V. Srinivasan, M. Vootukuru, J. Walrath, S. Govindarajan, and
R. Vemuri, “Rapid prototyping of reconfigurabe coprocessors,” in Acoustics,
Speech, and Signal Processing, 2002 IEEE International Conference on, 1996,
pp. 303–312.

[28] J. Park, S. Kwon, and K. Roy, “Low power reconfigurable dct design based on
sharing multiplication,” in Acoustics, Speech, and Signal Processing, 2002 IEEE
International Conference on, 2002, vol. 3, pp. 3116–3119.

[29] M. Martina, A. Molino, and F. Vacca, “Reconfigurable and low power 2d-dct ip
for ubiquitous multimedia streaming,” in Multimedia and Expo, 2002. ICME ’02.
Proceedings. 2002 IEEE International Conference on, 2002, vol. 2, pp. 26–29.

[30] Liang-Gee Chen, Juing-Ying Jiu, Hao-Chieh Chang, Yung-Pin Lee, and Chung-
Wei Ku, “Low power 2d dct chip design for wireless multimedia terminals,”
in Proceedings of the IEEE International Symposium on Circuits and Systems,
1998, vol. 4, pp. 41–44.

[31] R. Westwater and B. Furht, Real-time Video Compression: Techniques and
Algorithms, Kluwer Academic Publishers, 1997.

[32] http://www.xilinx.com/cgi-bin/powerweb.pl.

[33] Ri. Carmona-Galan, F. Jimenez-Garrido, C. M. Dominguez-Mata,
R. Domingguez-Castro, S. E. Meana, I. Petras, and A. Rodriguez-Vazquez,
“Second-order neural core for bioinspired focal-plane dynamic image processing
in cmos,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 5, pp.
913–925, May 2004.

[34] A. A. Stocker, “Analog vlsi focal-plane array with dynamic connections for the
estimation of piecewise-smooth optical flow,” IEEE Transactions on Circuits
and Systems I, vol. 51, no. 5, pp. 963–973, May 2004.

[35] R. Robucci, Leung Kin Chiu, J. Gray, J. Romberg, P. Hasler, and D. An-
derson, “Compressive sensing on a cmos separable transform image sensor,”
in IEEE International Conference on Acoustics, Speech and Signal Processing,
2008. ICASSP 2008, 2008, pp. 5125–5128.

[36] Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1988.

100

[37] Cheng-Hsiung Hsieh, “A jonal jpeg,” in International Conference on Coding and
Computing, ITCC 2005, 2005, vol. 2, pp. 756–757.

[38] Chia-Lung Yeh, “Color image-sequence compression using adaptive binary-tree
vector quantization with codebook replenishment,” in IEEE International Con-
ference on Acoustic, Speech, and Signal Processing, 1987, vol. 12, pp. 1059–1062.

[39] Nasser M. Nasrabadi and Yushu Feng, “Image compression using address-vector
quantization,” IEEE Transactions on Communications, vol. 12, pp. 2166–2173,
Dec. 1990.

[40] Nasser M. Nasrabadi, Chang Y. Choo, and Yushu Feng, “Dynamic finite-state
vector quantization of digital images,” IEEE Transactions on Communications,
vol. 42, pp. 2145–2154, May 1994.

[41] Seung Jun Lee, Kyeong Ho Yang, Chul Woo Kim, and Choong Woong Lee,
“Efficient lossless coding scheme for vector quantization using dynamic index
mapping,” Electronics Letters, vol. 31, pp. 1426–1427, Aug. 1995.

[42] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Transaction on Circuits and
Systems for Video Technology, vol. 6, pp. 243–250, June 1996.

[43] Debargha Mukherjee and Sanjit K. Mitra, “Vector SPIHT for embedded wavelet
video and image coding,” IEEE Transaction on Circuits and Systems for Video
Technology, vol. 13, pp. 231–246, Mar. 2003.

[44] V. Krishnan, A framework for low bit-rate speech coding in noisy environments,
Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, 2005.

[45] S. H. Nawab and T. F. Quatieri, “Short-time fourier transform,” in Advanced
Topics in Signal Processing. 1988, Prentice Hall.

[46] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck, Discrete-time Signal
Processing, Prentice Hall, 1999.

[47] S. Mallat, “A compact multiresolution representation: The wavelet model,” in
Proc. IEEE Computer Society Workshop on Computer Vision. 1987, pp. 2–7,
IEEE Computer Society Press.

[48] Ali N. Akansu and Richard A. Haddad, Multiresolution Signal Decomposition,
Academic Press, 2001.

[49] Gilbert Strang and Truong Nguyen, Wavelets and Filter Banks, Wellesley-
Cambridge Press, 1996.

[50] M. Craizer, E. A. B. da Silva, and E. G. Ramos, “Convergent algorithms for
successive approximation vector quantisation with applications to wavelet image
compression,” in IEE Proceedings - Vision, Image, and Signal Processing, 1999,
vol. 146, pp. 159–164.

101

[51] T. Lookabaugh, E. A. Riskin, P. A. Chou, and R. M. Gray, “Variable rate vector
quantization for speech, image, and video compression,” IEEE Transaction on
Communications, vol. 41, pp. 186–199, Jan. 1993.

[52] K. Andra, C. Chakrabati, and T. Acharya, “A vlsi architecture for lifting-
based forward and inverse wavelet transform,” IEEE Transactions on Signal
Processing, vol. 50, pp. 966–977, April 2002.

[53] Khan Wahid, Vassil Dimitrov, and Graham Jullien, “Multiplication-free archi-
tecture for daubechies wavelet transforms using algebraic integers,” in Advanced
Signal Processing Algorithms, Architectures, and Implementations XIII. 2003,
pp. 597–606, SPIE- International Society for Optical Engineering.

[54] Chin-Fa Hsieh, Tsung-Han Tsai, Chih-Hung Lai, Shu-Chung Yi, and Mao-Hsu
Yen, “Implementation of an efficient dwt using a fpga on a real-time platform,”
in Second International Conference on Innovative Computing, Information and
Control, 2007. ICICIC, 2007, pp. 235–235.

[55] Stephane Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.

[56] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “wavelet
shrinkage: Asymptopia?,” Journal of the Royal Statistics Society, vol. 57, pp.
301–369, 1995.

[57] Martin Vetterli, S Grace Chang, and Bin Yu, “Adaptive wavelet thresholding
for image denoising and compression,” IEEE Transactions on Image Processing,
vol. 9, pp. 1532–1546, Sep. 2000.

[58] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory, Wiley-
Interscience Publication, 1991.

[59] J. Conway and N. Sloan, “Fast quantizing and decoding and algorithms for
lattice quantizers and codes,” IEEE Transactions on Information Theory, vol.
28, pp. 227–232, Mar. 1982.

[60] J. Conway and N. Sloan, “A fast encoding method for lattice codes and quan-
tizers,” IEEE Transactions on Information Theory, vol. 29, pp. 820–824, Nov.
1983.

[61] C. Lamblin, J. P. Adoul, D. Massaloux, and S. Morissette, “A compact multires-
olution representation: The wavelet model,” in IEEE International Conference
on Acoustic, Speech, and Signal Processing, 1989, vol. 1, pp. 61–64.

[62] P. Rault and C. Guillemot, “Indexing algorithms for zn, an, dn, and dn++ lattice
vector quantizers,” IEEE Transactions on Multimedia, vol. 3, pp. 395–404, Dec.
2001.

[63] J. Conway and N. Sloan, Sphere Packings, Lattices, and Groups, Springer, 1998.

102

[64] J. H. van Lint, Introduction to Coding Theory, Springer-Verlag, 1982.

[65] T. Kasami, S. Lin, and W. W. Peterson, “New generalizations of the reed-muller
codes - part i: Primitive codes,” IEEE Transaction on Information Theory, vol.
IT-14, Mar. 1968.

[66] E. J. Weldon, “New generalizations of the reed-muller codes - part ii: Non-
primitive codes,” IEEE Transaction on Information Theory, vol. IT-14, Mar.
1968.

[67] James L. Massey, “The ubiquity of reed-muller codes,” in Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, 2001, pp. 1–12.

[68] William Cook, Laszlo Lavasz, and Paul D. Seymour, Combinatorial optimization:
papers from the DIMACS Special Year, AMS Bookstore, 1995.

103

	Titlepage
	Signatures
	Dedication
	Acknowledgment
	Summary
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 — Introduction
	Overview
	Contributions of the Research

	Chapter 2 — CMOS Transform Imager System
	Pixel Structure and Imager Architecture
	System Implementation
	Measured Noise Characteristics
	Transform Imager Simulator

	Chapter 3 — JPEG Compression System using a Transform Imager
	JPEG Compression System using a Transform Imager
	System Implementation
	Measured Images and Analysis

	Noise in the Transform Imager-Based JPEG Compression System
	Zonal Mask Implementation in a Transform Imager System

	Chapter 4 — Wavelet-Based Embedded Image Compression using Dynamic Index Reordering Vector Quantization
	Wavelet Transforms and Wavelet-Based Image Coding
	Wavelet Transforms
	Wavelet-Based Image Coding
	Successive Approximation Vector Quantization (SAVQ)

	Dynamic Index Reordering Vector Quantization (DIRVQ)
	Temporal Dynamic Index Reordering Vector Quantization
	Temporal Domain in Embedded Image Coding
	Temporal Dynamic Index Reordering Vector Quantization
	Implementation of a TDIRVQ-Based Image Coder
	Implementation of a TDIRVQ-Based Image Coder on a Transform Imager System
	Wavelet Implementation using a Transform Imager
	Wavelet-Based Denoising of TDIRVQ in a Transform Imager System

	Experimental Results of TDIRVQ
	Index Probability Distribution and Entropy Reduction
	Compression Results

	Chapter 5 — Efficient Implementation of Lattice Shell-Based DIRVQ
	Efficient Implementation of Lattice Shell-Based DIRVQ
	Optimal Lattices
	Cyclic codes

	Efficient Implementation of 4-Dimensional L-DIRVQ
	Inner Product-Based Grouping
	Masking Technique
	Example
	Computational Reduction

	Efficient Implementation of 16-Dimensional L-DIRVQ
	Cyclic Reed-Muller Codes
	Constructing a Modified 16 (M-16) Lattice-Based Codebook
	Finding an M-16 Lattice-Based Codevector
	Inner Product-Based Grouping in M-16 L-DIRVQ
	Encoding and Decoding procedure in M-16 L-DIRVQ
	Encoding and Decoding procedure for a SEED codebook
	Encoding and Decoding procedure for a COMP codebook
	Encoding and Decoding procedure for a C2D1 codebook and a C2D2 codebook

	Example
	Computational Reduction

	Chapter 6 — Conclusions and Discussions
	Conclusions
	Discussions - DIRVQ for Videos

	References

