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Localizing Region-Based Active Contours

Shawn Lankton, Student Member, IEEE, and Allen Tannenbaum, Member, IEEE

Abstract—In this paper, we propose a natural framework that al-
lows any region-based segmentation energy to be re-formulated in
a local way. We consider local rather than global image statistics
and evolve a contour based on local information. Localized con-
tours are capable of segmenting objects with heterogeneous feature
profiles that would be difficult to capture correctly using a standard
global method. The presented technique is versatile enough to be
used with any global region-based active contour energy and instill
in it the benefits of localization. We describe this framework and
demonstrate the localization of three well-known energies in order
to illustrate how our framework can be applied to any energy. We
then compare each localized energy to its global counterpart to
show the improvements that can be achieved. Next, an in-depth
study of the behaviors of these energies in response to the degree
of localization is given. Finally, we show results on challenging im-
ages to illustrate the robust and accurate segmentations that are
possible with this new class of active contour models.

Index Terms—Active contours, level set methods, curve evolu-
tion, image segmentation, partial differential equations, multire-
gion segmentation.

1. INTRODUCTION

CTIVE contour methods have become very popular in re-

cent years, and have found applications in a wide range of
problems including visual tracking and image segmentation; see
[1]-[4] and the references therein. The basic idea is to allow a
contour to deform so as to minimize a given energy functional
in order to produce the desired segmentation; see [5]-[9]. Two
main categories exist for active contours: edge-based and re-
gion-based.

Edge-based active contour models utilize image gradients in
order to identify object boundaries, e.g., [10], [11]. This type
of highly localized image information is adequate in some sit-
uations, but has been found to be very sensitive to image noise
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Fig. 1. Synthetic image of a blob with heterogeneous intensity on a background
of similar heterogeneous intensity. (a) Initial contour. (b) Unsuccessful result
of region-based segmentation. (c) Successful result of edge-based segmentation
technique.

and highly dependent on initial curve placement. One benefit of
this type of flow is the fact that no global constraints are placed
on the image. Thus, the foreground and background can be het-
erogeneous and a correct segmentation can still be achieved in
certain cases.

More recently, work in active contours has been focused on
region-based flows inspired by the region-competition work
of Zhu and Yuille [12]. These approaches model the fore-
ground and background regions statistically and find an energy
optimum where the model best fits the image. Some of the
most well-known and widely used region-based active contour
models assume the various image regions to be of constant in-
tensity [13]-[16]. More advanced techniques attempt to model
regions by known distributions, intensity histograms, texture
maps, or structure tensors [17]-[20].

There are many advantages of region-based approaches when
compared to edge-based methods including robustness against
initial curve placement and insensitivity to image noise. How-
ever, techniques that attempt to model regions using global sta-
tistics are usually not ideal for segmenting heterogeneous ob-
jects. In cases where the object to be segmented cannot be easily
distinguished in terms of global statistics, region-based active
contours may lead to erroneous segmentations. Consider the
synthetic image in Fig. 1. Here, we see a situation where the
foreground and background are heterogeneous and share nearly
the same statistical model. The construction of this image causes
it to be segmented improperly by a standard region-based algo-
rithm [13], but correctly by an edge-based algorithm [11]. Het-
erogeneous objects frequently occur in natural and medical im-
agery. To accurately segment these objects, a new class of ac-
tive contour energies should be considered which utilizes local
information, but also incorporates the benefits of region-based
techniques.

There have been several methods in the literature which are
relevant to the present work. Paragios and Deriche [21] pre-
sented a method in which edge-based energies and region-based
energies were explicitly summed to create a joint energy which
was then minimized. In [22] and [23], Sum and Cheung take a
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similar approach and minimize the sum of a global region-based
energy and a local energy based on image contrast. The idea of
incorporating localized statistics into a variational framework
begins with the work of Brox and Cremers [24] who show that
segmenting with local means is a first order approximation of
the popular piecewise smooth simplification [25] of the Mum-
ford-Shah functional [26]. This focus on the piecewise smooth
model is also presented in several related works as we now de-
scribe.

Li et al. [27] analyze the localized energy of Brox and Cre-
mers and compare it to the piecewise smooth model in much
more detail. However, there is no explicit analysis of the appro-
priate scale on which to localize [27]. Piovano et al. [28] focus
on fast implementations employing convolutions that can be
used to compute localized statistics quickly and, hence, yield re-
sults similar to piecewise-smooth segmentation in a much more
efficient manner. The effect of varying scales is noted, but not
discussed in detail. The work of An ef al. [29] also notes the
efficiency of localized approaches versus full piecewise smooth
estimation. That work goes on to introduce a way in which lo-
calizations at two different scales can be combined to allow sen-
sitivity to both coarse and fine image features. The authors pro-
pose a similar flow in [30] based on computing geodesic curves
in the space of localized means rather than an approximating
a piecewise-smooth model. Lankton et al. also propose the use
of localized energies in 3-D tensor volumes for the purpose of
neural fiber bundle segmentation. All of these works focus on a
localized energy that is based on the piecewise constant model
of Chan and Vese [13].

In the present work, we make three main contributions. First,
we present a novel framework that can be used to localize any
region-based energy. Second, we provide a way for localized
active contours to interact with one another to create n-ary seg-
mentations. Third, we study in depth the effect of the local-
ization radius on segmentation results. The localization frame-
work we present allows any region-based energy to be local-
ized in a fully variational way. The significant improvement of
localization within this framework is that objects which have
heterogeneous statistics can be successfully segmented with lo-
calized energies when corresponding global energies fail. We
go on to use the framework to derive three localized energies.
The first, presented in Section III-A, is similar to those in the
works mentioned above. Two additional region-based segmen-
tation energies and their localized counterparts are formulated
in Sections III-B and III-C. To best of our knowledge localiza-
tion of energies other than the Chan and Vese energy have never
been shown. We provide these as examples to demonstrate how
any energy can be localized in a similar manner. Our key claim
is that localization in our variational framework can improve the
segmentations provided by any globally defined energy in cer-
tain circumstances. We do not suggest that one of the proposed
localized energies is superior to the others, just that in many
cases localizing a global energy in the manner suggested in this
work will improve performance.

Additionally, because binary segmentation is often insuffi-
cient for higher-level vision problems, we also include a novel
method that allows n localized active contours to naturally com-
pete in an image while segmenting different objects that may or
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may not share borders. This new method extends the work of
Brox and Weickert [31], so that it can be successfully utilized
with localized active contours.

We also study the significance of a parameter common to all
localized statistical models, namely, the degree of localization
to use. This scale-type parameter has been mentioned by other
authors, but choosing it correctly is crucial to the success of
localized energy segmentations. We provide experiments that
explain its effect and give guidelines to assist in choosing this
parameter correctly. Additional experiments are also presented
to analyze the strengths and limitations of our technique.

We now briefly summarize the contents of the remainder
of this paper. In the following section, we present our general
framework for localizing region-based flows. In Section III, we
introduce several energies implemented in this framework. In
Section IV, we discuss the extension of the technique to seg-
ment multiple regions simultaneously. In Section V, we discuss
some of the key implementation details. We go on to show
numerous experiments in Section VI. Here, we compare the
proposed flows with their corresponding global flows, analyze
key parameters, discuss limitations of the technique, and show
several examples of accurate segmentations on challenging
images. In Section VII, we make concluding remarks and give
directions for future research.

II. LocAL REGION-BASED FRAMEWORK

In this section, we describe our proposed local region-based
framework for guiding active contours. Within this framework,
segmentations are not based on global region models. Instead,
we allow the foreground and background to be described in
terms of smaller local regions, removing the assumption that
the foreground and background regions can be represented with
global statistics.

We will see that the analysis of local regions leads to the con-
struction of a family of local energies at each point along the
curve. In order to optimize these local energies, each point is
considered separately, and moves to minimize (or maximize)
the energy computed in its own local region. To compute these
local energies, local neighborhoods are split into local interior
and local exterior by the evolving curve. The energy optimiza-
tion is then done by fitting a model to each local region.

We let I denote a given image defined on the domain €2, and
let C be a closed contour represented as the zero level set of a
signed distance function ¢, i.e., C' = {z|¢(x) = 0} [8], [9]. We
specify the interior of C' by the following approximation of the
smoothed Heaviside function:

17 ¢($) < —€
H¢($) - 70, (/)(:E) > €
3 {1 + 2+ Lsin (wﬁ@))} , otherwise.
(H

Similarly, the exterior of C is defined as (1 — H¢(xz)).
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Fig.2. Ballisconsidered at each point along the contour. This ball is split by the
contour into local interior and local exterior regions. In both images, the point
x is represented by the small dot. The B(«x, y) neighborhood is represented by
the larger red circle. In (a), the local interior is the shaded part of the circle and
in (b), the shaded part of the circle indicates the local exterior.

To specify the area just around the curve, we will use the
derivative of H¢(z), a smoothed version of the Dirac delta

[

P(x) =0
[¢(@)l <e (2
{1 + cos (mﬁ(r))} , otherwise.

We now introduce a second spatial variable y. In the re-
mainder of this paper, we will use x and y as independent
spatial variables each representing a single point in 2. Using
this notation, we introduce a characteristic function in terms of
a radius parameter r

By =y Lo v )

() =

= &

[\

€

, otherwise.

We use B(z,y) to mask local regions. This function will be 1
when the point y is within a ball of radius r centered at z, and
0 otherwise. The interaction of B(x,y) with the interior and
exterior regions is illustrated in Fig. 2. Using B(x, y), we now
define an energy functional in terms of a generic force function,
F'. Our energy is given as follows:

E(¢) = / 5(x) / Blz,y) - F(I(),$(y)) dyde. (@)

Y

The function, F' is a generic internal energy measure used to
represent local adherence to a given model at each point along
the contour. In Section III, we examine several possible candi-
dates for F' and show how any region-based energy can be mod-
ified and rewritten as an F' to be included in this framework.

In computing E, we only consider contributions from the
points near the contour. By ignoring inhomogeneity that may
arise far away, we give ourselves the ability to capture a much
broader range of objects. In (4), we accomplish this with multi-
plication by the Dirac function, 6¢(z) in the outer integral over
z. Note that this term ensures that the curve will not change
topology by spontaneously developing new contours, although
it still allows for contours to split and merge. For every point x
selected by d¢(z), we mask with B(x,y) to ensure that F' op-
erates only on local image information about z. Thus, the total
contribution of the first term of the energy is the sum of F’ values
for every B(z,y) neighborhood along the zero level set.
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Finally, in order to keep the curve smooth, we add a regular-
ization term as is commonly done. We penalize the arclength of
the curve and weight this penalty by a parameter A. The final
energy is given as follows:

E(¢) = / 5() / B(r,y) - F(I(y), d(y)) dy de

Yy

A / 56(2) |V ()| dz.  (5)

By taking the first variation of this energy with respect to ¢ we
obtain the following evolution equation (see Appendix):

99 (&) = 64(x) / B(e,y) - Vo F(I(), $(w)) dy

5@ =
FASP(z) div (%). (6)

Notice that the only restriction on the internal energy, F' is
that its first variation with respect to ¢ can be computed. This
ensures that nearly all region-based segmentation energies can
be put into this framework.

III. VARIOUS INTERNAL ENERGY MEASURES

Having formulated our framework in terms of a generic in-
ternal energy measure F', we will introduce three specific en-
ergies that can be inserted: the uniform modeling energy, the
means separation energy, and the histogram separation energy.
We present these energies as examples of how any energy can
be improved by localization, and make no claim that one en-
ergy out performs the others in all cases. In this section, we
briefly describe each global energy, give an intuitive descrip-
tion of its behavior, and then show how it can be incorporated
into the generic framework described above.

Two well known techniques [13], [16] make use of global
mean intensities of the interior and exterior regions which we
as denote u and v, respectively

o, Hé(y) - I(y) dy -
CT T o, Holy) dy
o Jo, (1= HOW)) 1) dy .

Jo, A= T3y d

In Sections III-A and III-B, we will discuss internal energy
functions that rely on local mean intensities to separate regions.
In these sections we make use of localized equivalents of v and v
defined in terms of the B(x, y) function. The localized versions
of the means, u, and v,

 Jo, Blw,y) - He(y) - I(y) dy .
o fQ B(z y) - Holy) dy
Jo, B 1—H¢>< ) () dy
e = fQ oy 7

represent the intensity means in the interior and exterior of the
contour localized by B(z, y) at a point «. These localized statis-
tics are needed to determine local energies at each point along
the curve.
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A. Uniform Modeling (UM) Energy

A well-known example of an energy that uses a constant in-
tensity model is the Chan—Vese energy [13], which we will refer
to as the uniform modeling energy

Eou = /Q Ho(y)(I(y) — u)®

+ (1 =He(y)I(y) —v)*dy. (11)

This energy models the foreground and background as con-
stant intensities represented by their means, u and v. The cor-
responding internal energy function F’ is formed by replacing
global means u and v by their local equivalents from (9) and
(10) as follows:
Font = Ho(y) (L (y) —ua)® + (1=He(y)) (1 (y) —v)?. (12)
This F' can be substituted directly into (5) to form a completely
localized energy. In order to obtain the evolution equation for ¢,
we take the derivative of F' with respect to ¢(y). The derivative
can be written immediately as

Vo Fom = 681)(I(y) — ua)? = (I(y) — v2)?). (13)

By inserting this into (6), we obtain the curvature flow for the
localized version of the uniform modeling energy

%(x) = 6¢() /Q B(z, y)6(y)

(I(y) = ua)? = (I(y) = vs)?) dy

+ A6¢(x) div (;zg;') .

The uniform modeling flow finds its minimum energy when
the interior and exterior are best approximated by means « and
v. In the localized version, the minimum is obtained when each
point on the curve has moved such that the local interior and
exterior about every point along the curve is best approximated
by local means wu, and v,.

(14)

B. Mean Separation (MS) Energy

Another important global region-based energy that uses mean
intensities is the one proposed by Yezzi et al. [16] which we
refer to as means separation energy

EMS:/ (u —v)%, (15)
JQ

Y

This energy relies on the assumption that foreground and
background regions should have maximally separate mean in-
tensities. Optimizing the energy causes the curve to move so that
interior and exterior means have the largest difference possible.
There is no restriction on how well the regions are modeled by
u and v. A corresponding F' is formed by localizing the global
energy with local mean equivalents as shown here

Pus = (uy — g2 (16)
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By substituting the derivative of Fyg into (6), we obtain the
following local region-based flow:

%(m) = 6¢() /Q B(z,y)o(y)
' <(I(y) —ua)® _
A, Ay
V(z) )
V()|

where A,, and A, are the areas of the local interior and local
exterior regions respectively given by

A6 div ( (17)

Au= / B(x.y) - H(y) dy (18)
Q

Y

A, = / B(xy) - (1 Ho(y)) dy. (19)
Q

Y

The optimum of this energy is obtained when u, and v,
are the most different at every x along the contour. In some
cases, this is more desirable than attempting to fit a constant
model. Here, we are encouraging local foreground and back-
ground means to be different rather than constant. This allows
this energy to find image edges very well without being dis-
tracted when interior or exterior regions are not uniform.

C. Histogram Separation (HS) Energy

Next, we consider a more complex energy that looks past
simple means and compares the full histograms of the fore-
ground and background. We show that its incorporation into the
framework is as simple as the previous energies shown. Con-
sider P, (z) and P, (z) to be two smoothed intensity histograms
computed from the global interior and exterior regions of a par-
titioned image I using z intensity bins.

The Bhattacharyya coefficient, 13, [32] is a measure used to
compare probability density functions, and results in a scalar
corresponding to the similarity of the two histograms. Recently,
Michailovich et al. [20] proposed an image segmentation energy

Eys=B= /\/Pu(z)Pu(z)dz

based on minimizing this measure. We will call this the his-
togram separation energy. It works by separating intensity his-
tograms of the regions inside and outside of the curve, and thus
allows interior and exterior regions to be heterogeneous as long
as their intensity profiles are different.

In the localized case, P, ,(#) and P, ,(z) will represent the
intensity histograms in the local image regions B(z, y) - Hp(y)
and B(z,y) - (1 — Heo(y)), respectively. As before, we form the
internal energy measure Fyg by substituting the local equiva-
lents for P,(z) and P,(z) yielding the following expression:

FHS = / \/ Pu,.r(z)RJ,m(Z)dZ~

(20)

1)
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By substituting the first variation of Fyg into (6), we obtain
the evolution equation for the localized version of this flow

. B(z,y)0¢(y)
@) = 66(2) / S

Y

Fis (i - Ai) /K S 1)

1
uz A_’U
+ A¢() div <7

where K is a Gaussian kernel.

By using the Bhattacharyya measure to quantify the separa-
tion of intensity histograms, the global version of this flow is ca-
pable of segmenting objects which have nonuniform intensities.
However, the intensity profile of the entire object and the en-
tire background must still be separable. In the localized version,
we remove this global constraint but remain capable of effec-
tively separating locally nonhomogeneous regions. An example
of when this property is useful is shown in the experiments in
Section VI-A.

IV. SEGMENTING MULTIPLE OBJECTS

In cases where multiple foreground objects exist, simple sep-
aration into foreground and background is not sufficient. In this
section, we show how to extend the proposed localized region
based framework to allow simultaneous segmentation of mul-
tiple objects. We draw inspiration from the work of Brox and
Weickert [31] who proposed a simple but effective algorithm for
multiple region segmentation based on the idea of competing re-
gions.

In a standard single level set evolution scheme, the energy up-
date equation can be though of as having two competing compo-
nents: advance and retreat. The advance component, a is always
positive and tries to move the curve outward along its normal.
Alternatively, the retreat component, r is always negative and
tries to move the curve inward along its normal. The relative
magnitudes of a and r govern curve evolution. Hence, the up-
date equation for ¢ can be expressed as

¢
22 (@) = 66(z)(a + 7).

To give an example, we consider the update equation for the
local means separation energy in (17). This equation may be
re-written in terms of the forces a and r with

a :/Q B(z,y)6¢(y) - Wdy

Y

(23)

A (Vo)

kN (o) o
r= [ Blaps “HO=1E g,

Ay (Vo)

+30 (Tae) >

Note how the length penalty used for curve regularization is
included in both the a and r terms. Inclusion of this term ensures
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that all forces acting on the curve are represented solely by a and
T.

The inherent competition of a and 7 in this formulation of
curve evolution allows multiple signed distance functions to
interact. Consider n signed distance functions, {¢; }*_, repre-
senting n evolving curves. In [31], the goal is to evolve every
¢; such that every point in the domain is eventually in the in-
terior of exactly one curve. To accomplish this, each ¢; moves
according to
%(z) = 6¢i(x) (m - max (rj,ri — 1)) . (26)

JFi

This scheme compares the retreat portion of the typical evolu-
tions and causes all of the curves interacting at a point to move
together according to the strongest retreat force. When only one
curve is present, it advances toward the uninhabited region. The
simplicity of this method is appealing, and it is capable of pro-
ducing complete segmentations of a scene very naturally. This
behavior is well suited for global region-based energies, but a
modification of this scheme is needed when used with the pro-
posed techniques because of their local nature.

The proposed localized techniques are capable of segmenting
heterogeneous objects. Thus, if they are used directly in the
framework of [31] to produce complete segmentations, the pro-
posed localized active contours could easily capture very dif-
ferent objects within the same contour. Specifically, the ten-
dency of curves to advance into uninhabited areas could cause
local-looking contours to move far from the intended object and
fail to capture it correctly. Thus, we modify the method to work
more appropriately with the proposed technique by allowing re-
gions of the domain to remain uncovered, but continuing to pre-
vent overlaps.

Our goal is to allow multiple contours to compete with each
other at an interface, but allow them to compete with themselves
when no other contours are nearby. This allows contours to stop
either as they would in a single-contour framework or by com-
peting with adjacent contours. To do this, we retain the notion
of competition between advance and retreat forces and combine
them in a different way to produce a new set of update equations

0%i () — 50, 4 —
W(m)—&m(x) <613%3X (a;,— )+ _nin (74, aj)).

b;(z)>0 6;(z)>0
JFi 7¢7

27)

In this formulation, the advance force of the current contour
is compared to the corresponding retreat forces of all adjacent
contours. Similarly, the retreat force is compared to adjacent
advance forces. By choosing the strongest candidates in each
case, all contours at an interface will move together in order
to find the best joint solution, and lone contours will continue
to evolve as before. Fig. 3 shows two interacting contours and
illustrates the advance and retreat forces acting on each contour.

V. IMPLEMENTATION DETAILS

We have introduced energies in terms of a signed distance
function, ¢. This makes it very natural to implement flows in
a level set framework as proposed by [6] and [8]. In order to
improve efficiency, we only compute values of ¢ in a narrow
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Fig. 3. Advance, a; and retreat, r,; forces are shown as they affect two inter-
acting contours.

band around the zero level set [8]. Consequently, we re-initialize
¢ every few iterations using a fast marching scheme [6].

In the proposed method, local region statistics must be com-
puted for each of the points along the evolving curve. This in-
creases the complexity of the algorithm, and the computation
time beyond that of standard global methods. Computation of
local statistics is separated into two parts: initialization and up-
dates.

The proposed local region-based method begins by initial-
izing every pixel in the narrow band with the local interior and
exterior statistics. The nature of this operation varies depending
on the energy implemented. Computation of local means, for in-
stance, is simpler than computation of local histograms. An ad-
ditional cost occurs whenever the narrow band moves to include
an uninitialized pixel. In this case, the local statistics of this new
pixel must be initialized as well. The number of initialization op-
erations performed is, therefore, dependent on how far from its
final position the contour is initialized. The initialization opera-
tion is only performed once for each pixel and, therefore, adds a
constant complexity increase. However, depending on the size
of the local radius, these computations can be significant.

The update step occurs when any initialized pixel is crossed
by the contour moving it from the interior to the exterior or vice
versa. In our implementation we keep local statistical models in
memory for every initialized pixel. When the interface crosses
a pixel, the statistical models of all pixels within the B(z,y)
neighborhood are updated. When local means are used, each
pixel must maintain the number of pixels in the local regions
both inside and outside of the curve as well as the sums of pixel
intensities in those two regions. Updating this model consists
of transferring values from the “inside” groups the “outside”
groups or vice versa. For the histogram separation energy, we
keep a full histogram of the local interior and exterior regions
for each initialized pixel. Although this requires significantly
more memory to maintain than the means model, updates are
just as simple: pixel intensities are subtracted from bins of the
interior histogram and added to the same bin of the associated
exterior histogram or vice versa.

Compared to global methods, local methods incur a linear in-
crease in update computation to manage all of the local statis-
tics. This increase is proportional to the area of B(z,y). As-
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sume that at each iteration, m pixels are crossed by the moving
contour, and require an update of their statistics. A global re-
gion-based method would perform m statistical updates (one
for each pixel), whereas the corresponding local region-based
flow would perform m - n updates where n is the number of
pixels that exist within the B(x, y) neighborhood. Our experi-
ments confirm this linear increase.

VI. EXPERIMENTS

In order to demonstrate the strengths and limitations of the
proposed localized active contours, we performed several exper-
iments. First, we compare the three presented localized energies
with their global counterparts to show the improvements offered
by localization. We follow this with a demonstration of the mul-
tiple region segmentation methodology discussed in Section I'V.
Next, we continue with a study of the effects of local radius se-
lection and contour initialization. Finally, we examine the speed
and convergence properties of the proposed method.

A. Comparison With Global Energies

In Section III, we presented three global energies and showed
how they could be localized using the framework described in
this work. Here, we demonstrate the improvements that are of-
fered by such a localization. As with all segmentation tech-
niques, these three global techniques behave somewhat differ-
ently from one another. This is due to differences in the under-
lying assumptions about the given image inherent in each en-
ergy. Likewise, there are differences in the behavior of the cor-
responding localized energies. The purpose of the experiments
given below is to demonstrate that localization can improve the
performance of a given global energy, not to specifically com-
pare the original global energies themselves. In each case, the
global energies find segmentations that are consistent with their
underlying assumptions about image content but are ultimately
incorrect. Only the localized methods are capable of obtaining
a correct segmentation in these cases.

Initially, we consider the uniform modeling energy from Sec-
tion III-A. In Fig. 4, we see the benefit of localization. The lo-
calized active contour is capable of extending further to find
true object boundaries in the MUSHROOM image, and is ca-
pable of stopping earlier on true object boundaries in the X-RAY
image. These examples show how even images which appear
simple can cause significant problems for global techniques.
The slight intensity inhomogeneities present in these images
prevent global region based methods from correctly capturing
the objects.

In Fig. 5, we compare the global means separation energy
from Section III-B and its corresponding localization. Notice
that the global energy finds only the brightest parts of the image
while the localization comes to rest on object boundaries. Both
the HUG image and the MONKEY image show objects and
backgrounds which are multimodal, but that have intensities that
change smoothly and quickly. In the HUG image in Fig. 5, the
proposed method is initialized with two ellipses that correspond
to a single level set. The contour changes topology as the two
ellipses merge to capture both animals. The initial position of the
contour (chosen to be between the two animals) is necessary in
order for it to segment these holes. Because the level set is only

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 16, 2008 at 10:15 from IEEE Xplore. Restrictions apply.



LANKTON AND TANNENBAUM: LOCALIZING REGION-BASED ACTIVE CONTOURS

Fig. 4. Segmentations of the MUSHROOM and X-RAY images. (a) Shows the
initialization; (b) and (c) show segmentation using the global and local versions
of the uniform modeling energy, respectively. The dashed yellow circle in (c)
represents the localization scale. We can see a considerable improvement due
to localization.

®)

Fig. 5. Segmentations of the HUG and MONKEY images. (a) Shows the ini-
tialization; (b) and (c) show segmentation using the global and local versions
of the means separation energy respectively. The dashed yellow circle in (c)
represents the localization scale. We can see a considerable improvement due
to localization.

updated in the regions specified by 6¢(x), it is not possible for
new contours to emerge into this area.

Finally, Fig. 6 compares the global histogram separation en-
ergy from Section III-C to its localization. Again, a clear im-
provement is shown. While the localized contour does not cap-
ture the area between the player’s legs, the segmentation found
over the rest of the player is much more accurate than in the
global case. The PLAYER image shows sharp changes in inten-
sities within the foreground. Strong edges such as the change
between the player’s shirt and pants, and between the player’s
socks and legs, make the localized histogram separation energy
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Fig. 6. Segmentation of the PLAYER image. (a) Shows the initialization; (b)
and (c) show segmentation using the global and local versions of the histogram
separation energy respectively. The dashed yellow circle in (c) represents the
localization scale. We can see a considerable improvement due to localization.

a good choice for this image. Here, the foreground is sometimes
locally multimodal meaning that energies based on local means
would have trouble segmenting the image.

For consistency in these experiments, we chose A = 0.15 in
all trials to weight the influence of contour smoothness. The size
of the local radius is shown by the dashed yellow circle drawn
on the results for the localized methods. For results involving
the global or localized histogram separation energy, 256 bins
were used when computing histograms. All segmentations were
allowed to run until convergence.

B. Multiple Interacting Contours

The ELEPHANTS image in Fig. 7 shows results from the
method for n-ary segmentation described in Section IV. The
segmentation is initialized with two contours, one on the large
elephant and one on the small elephant. Each contour uses the
means separation energy to find the optimal boundary. However,
as the contours move they compete with themselves and with
one another to ensure that they stop at the appropriate boundary
and never overlap. This ensures that both elephants are captured
correctly and uniquely. In the final trinary segmentation, the
curves come to rest alone on certain parts of the boundaries of
the elephants and together on the shared boundaries making for
a reasonable segmentation result.

C. Analyzing the Localization Radius

The radius of the ball selected by the B(z,y) function is an
important parameter to be considered when using localized en-
ergies. Its size determines how local the resulting segmentation
will be. As such, it should be chosen based on the scale of the
object(s) of interest and the presence and proximity of the sur-
rounding clutter. For example, when attempting to capture ob-
jects that are very small with nearby clutter, a small localization
radius should be used. Larger radii are useful when attempting
to segment large objects with less nearby clutter.

The synthetic example in Fig. 8 illustrates the effect of dif-
ferent localization radii. In this example, there is no reason to
prefer one circle over the other as the correct segmentation. With
the same initialization, it is possible to obtain two different re-
sults. By varying the radius r of the localizing ball, we can cap-
ture the local result (the smaller dark disk) or the global result
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Fig. 7. ELEPHANTS image demonstrates how two contours can interact with
each other to find the correct segmentation. (a) Initialization. (b) Final result.

Fig. 8. In both images, the initialization is the same (black dashed line). How-
ever, the ball described by B(x, y) (green dashed line) is optimized for small
structures in (a) and larger structures in (b). Final segmentations with the means
separation energy are shown by a solid yellow line. With a larger radius, a more
global final solution is found than with a smaller radius.

(both disks together). This is a useful property for images where
multiple correct segmentations may exist. Indeed, depending on
the nature of the objects to be segmented the proposed method
can be tuned to capture fine scale or coarse scale results.
Further, the parameter r also enforces the smoothness of sta-
tistics inside and outside the contour. The local statistics along
the curve are forced to change smoothly by the fact that the
B(z,y) neighborhoods overlap. Thus, the larger the radius, the
smoother the change in local statistics must be along the curve.
If we consider the behavior of this formulation when the ra-
dius of B(z,y) is very large or very small, then we see that the
ideas of local and global flows are blended together by this tech-
nique. If the proposed energy is evaluated with a very small ra-
dius, then F' becomes, in essence, an edge detector based on
the statistics of the pixels immediately adjacent to the center of
the ball. On the other hand, if we let the radius grow such that
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(d)

Fig. 9. (a) Shows the initialization on the HEART image; (b)—(f) show the re-
sulting segmentations with means separation energy using localizing radius
3,5,7,9, and 15, respectively. (B (137 y) neighborhood shown as the dashed
yellow circle in each image). Parameter A = 0.05.

1000 1500 2000

Iterations

500 2500

Fig. 10. Energies for the segmentations in Fig. 9. Energies shown (from bottom
up) for radius sizes 3, 5, 7, 9, and 15 pixels. The three energies associated with
intermediate radii converge to the same correct energy. The other two obtain
incorrect results.

B(z,y) includes the entire image, then the local region statis-
tics are exactly the global regions statistics and are shared by all
points in the image. In this case, the behavior will be the same
as the global region-based flow. Hence, by tuning the parameter
r, we can choose the degree to which we blend local and global
behavior.

We performed an additional experiment to show the effect
of the choice of radius size on a real image. Fig. 9 shows the
HEART image segmented using five different local radii. Here
the desired result is to capture the bright ventricle. In the ex-
ample, the smallest radius size results in an incorrect segmen-
tation that is too local. The three intermediate radius sizes all
result in accurate segmentations, and the largest radius size re-
sults in an incorrect segmentation that is too global.

The convergence properties of these five segmentations is
also of interest. The experiment in Fig. 10 reveals that the speed
of convergence is often a function of radius size. The smallest
radius takes the longest to converge, eventually arriving at an in-
correct local optimum. The three intermediate radii converge to
the same final energy, but at different speeds. The convergence
speed is slower when decisions are more localized because the
contour is making decisions based on less information. Finally,
with the largest radius, the segmentation converges quickly to
an incorrect energy value that is too global for the task at hand.
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Fig. 11. Important distances to consider when choosing the localizing radius:
Small, blue arrows are the distance to the ideal result. Large, red arrows are the
distance from the desired result to nearby clutter. An ideal radius size will be
between the small, blue arrows and the large, red arrows.

Thus, this experiment demonstrates the tradeoff between speed
of convergence and local radius size, and shows that radius sizes
that are too big or too small may lead to incorrect segmentations.

Fig. 11 illustrates some key distances that should be analyzed
when choosing the size of the localization radius. In the HEART
image, the desired result is the bright ventricle. Important dis-
tances to consider are those between the initialization and the
desired boundary (small, blue arrows) and those between the
desired boundary and nearby clutter (large, red arrows). The lo-
calization radius should be chosen so that the B(z, y) neighbor-
hood is large enough to detect the desired boundary from the
initialization, but small enough that nearby clutter does not dis-
tract the contour once the desired segmentation is achieved.

In addition to experiments shown, we have investigated the
problem of automatic scale selection. Various methods exist to
detect local scale [33], [34], but we find that these methods are
best suited for analyzing texture scale rather than the scale of
salient objects and proximity of nearby clutter.

D. Sensitivity to Initialization

One limitation of the proposed method is that it has a greater
sensitivity to initialization than global region-based methods.
This is an inherent trade-off of the proposed localization. The
more image data that is analyzed, the more robust the technique
is against poor initialization. In other words, global methods will
indeed typically be more robust to initialization than local ones.
However, analyzing large amounts of image data can lead to
erroneous solutions as seen in the previous experiments. Fig. 12
shows several initializations and the resulting segmentations on
a synthetic image of a bimodal box.

Experiments (a)—(d) in Fig. 12 show a correct segmentation
obtained from various initializations. Experiments (e)—(h) show
incorrect segmentations. These incorrect results are due to two
limitations of the technique. The first is that localized contours
may not use enough information. This is shown in (f), when the
contour, initialized with a small square, does not expand to fully
cover the black side of the box.

The other major limitation is the “flipping” that may occur.
In (h), we see that the contour is initialized with a grid of small
squares. Initially, the contour finds all the borders of the box,
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Fig. 12. Each group shows initialization, and final segmentation with the means
separation energy. Although the method is robust to some variation in initial-
ization, it is not impervious, and should begin relatively close to the desired
object boundary. (a)-(d) Correct segmentation, (c)—(h) incorrect segmentation.
In these experiments, A = 0.05 and r = 10 pixels.

Fig. 13. (a), (b) Corpus callosums from two different brains. Each row shows
the initialization on the left and the final segmentation with the means separation
energy on the right. Multiple initializations are shown to demonstrate robustness
to initial curve placement. Parameters A = 0.05 and r = 6 pixels for all.

but it finds the inside of the white side with the inside of the
contour and the inside of the black side with the outside of the
contour. Eventually, the part of the contour around the outside of
the black side of the box collapses due to a lack of support. We
notice in (g) that a similar effect occurs, but the contour partially
TECOVers.

The increased sensitivity of the proposed method does not,
however, mean that extreme care must be taken when initializing
the active contours. The experiment in Fig. 13 shows magnetic
resonance images (MRI) of two brains in which the corpus cal-
losum has been segmented with several different initializations.
In this experiment, the analysis of local regions allows the seg-
mentation technique to accurately separate this structure from
the rest of the brain despite its thin structure and the presence of
nearby structures of similar intensity.
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Fig. 14. (a), (c) Initialization; (b), (f) final result with global ener-
gies; (c), (g) final result with local energies; (d), (h) convergence and
timing properties of localized method (dashed line) and corresponding global
method (solid line).

E. Convergence Properties and Execution Time

Finally, we examine the convergence and timing properties
of localized energies compared to the corresponding global en-
ergies. As noted in Section V, localized methods have a linear
complexity increase over corresponding global methods. In our
experimentation, we note that this increase is often in the range
of 3 to 5 times longer when the localizing radius is on the order
of 10 to 20 pixels. In Fig. 14, we compare the local and global
variants of the uniform modeling energy from Section III-A and
the means separation energy from Section III-B. Note that in
these figures, the energies have been scaled to show them on the
same graph. The actual energy values converged to are different
for local and global methods. Also, note that the uniform mod-
eling energy is minimized while the means separation energy is
maximized.

We see that in the MUSHROOM experiment, the local and
global methods both converge in ~250 seconds. This is due to
each method slowly expanding to capture the stem of the mush-
room. Meanwhile, in the HUG image the global version con-
verges to an incorrect result in ~60 s while the local method
takes =180 s to correctly segment the image.

In addition to the experiments shown, we implemented the
proposed techniques in a fast approximate level set framework
[35] which eliminates much of the overhead of curve evolu-
tion leaving statistical computations as the major computational
cost. In this framework, we achieved execution times of 4 to 5 s.

VII. CONCLUSION

In this work, we proposed a novel framework based on local-
izing region-based active contours, which in certain cases has
resulted in significant improvement in accuracy for segmenting
heterogeneous images. We introduced several energies of this
localized type and presented the steps required to localize any
global region-based energy. We also demonstrated how these
localized energies can interact to simultaneously segment mul-
tiple objects.

We went on to draw important conclusions from our exper-
iments. First, we showed several illustrative examples where
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global region-based energies failed while the localized versions
gave very reasonable segmentations. Our experiments with
varying the size of the local radius demonstrated how local radii
should be chosen in order to correspond to the size of salient
objects and the proximity of nearby clutter. We also pointed
out how convergence time decreases as radius size increases.

Next, we analyzed the limitations of the technique including
its increased sensitivity to initialization compared to global
methods. Finally, we performed experiments on the execution
time of the proposed techniques and their global counterparts to
show that while the proposed methods are slower in some cases,
the speed difference is not significant for most applications.

Future work includes altering the size of the radius automati-
cally which will remove the added parameter and allow the tech-
nique to be used with less tuning and interaction by the user. We
plan to investigate using particle filtering in conjunction with
variational approaches in order to accomplish this.

Finally, the ability of this type of flow to capture heteroge-
neous objects makes it ideal for use in some tracking applica-
tions. Many objects in realistic tracking scenarios are heteroge-
neous which makes frame to frame segmentation very difficult
with existing methods. This segmentation approach in combina-
tion with existing contour trackers may allow these algorithms
to keep track of an entire object rather than one region of homo-
geneous intensity.

APPENDIX
DERIVATION OF CURVATURE FLOW

Recall the first term from our original definition of E in terms
of a generic internal energy F' in (5)

E(¢) = / 5(x) / B, y)F(I(y), d(y)) dy dz.  (28)

Yy

To compute the first variation of this term, we start by per-
forming a change of parameters to express E(¢) as E(¢ + £v)

E(é+ &v) = / 5(6(x) + &)

Ed

x / Bz, y)F(I(y), d(y) + év) dy dz.  (29)

v

Here, v represents a small perturbation along the normal direc-
tion of ¢ weighted by a scalar &.

Next, we take the partial derivative of this energy with respect
to £ evaluated at & = 0 to represent a tiny differential of move-
ment. By the product rule, we obtain the following:

Vele=oE

- / 5(6(2))
Q.
x / VB, 9)V sy FL(9), d(y)) dy de
Q

Y

v /Q 74(2) /Q B(z,y) - F(1(y), #(y)) dy dz.
(30

Note that y¢ denotes the derivative of ¢. On the zero level set,
~v¢ evaluates to zero. As such, it does not affect the movement
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of the curve, and we ignore this term. Now we notice that we
can move the integral over y outside the integral over z

Vel B= [ [ vo@)se.y)
XV F(I(y), ¢(y)) dw dy. (1)

At this point, we use the Cauchy—Schwartz inequality to show
that the optimal direction to move ¢ is given by

% - /Q 0(p(2))B(z,y) - Vo) F(I(y), p(y)) dx dy. (32)

Re-arranging the integrals once more gives us the same equation
in a form that is easier to understand. This yields the final curve
evolution

% - 6‘?5("’)/Q B(x,y) - V) F(1(y), o(y)) dy dz.  (33)
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