
Intruder Capturing Game on a Topological Map Assisted by

Information Networks

Jonghoek Kim, Sean Maxon, Magnus Egerstedt, and Fumin Zhang

Abstract—Intruder capturing games on a topological
map of a workspace with obstacles are investigated.
Assuming that a searcher can access the position of
any intruder utilizing information networks, we provide
theoretical upper bounds for the minimum number of
searchers required to capture all intruders on a Voronoi
graph. Intruder capturing algorithms are proposed and
demonstrated through an online computer game.

I. INTRODUCTION

Monitoring large complex areas, such as an urban

environment, is an important application of sensor net-

works and multi-robot systems. A networked sensing and

communication infrastructure, denoted as an information

network, can be utilized for such a task. To build an

information network in a workspace with obstacles,

Simultaneous Cooperative Exploration and NeTworking

(SCENT) strategies proposed in our previous work [1]

can be applied.

In this paper, we study intruder capturing game in

a workspace with obstacles, with the free space repre-

sented by a Voronoi diagram that has been widely used

for topological maps in robotics ([2]–[6]). We simplify

the scenario so that a searcher and intruders are restricted

to stay on the Voronoi diagram. Obeying the conventions

established in the literature on graph searching [7]–[14],

an intruder can maneuver at unbounded speed to avoid

searchers. Furthermore, an intruder has full knowledge

of the environment, positions of the searchers, and the

strategies of the searchers. An intruder is captured if it

is forced to share a node with any searcher.

There are many extensions to the results in the seminal

work of Parsons [7]. A closely related work to ours

is the helicopter cops and robbers game [15], [16]. In

this game, it is assumed that the cops have complete

knowledge of any robber’s position as if the cops are

using helicopters. A robber is captured when a cop

lands on the node occupied by the robber and the

robber cannot make any move to escape. A monotone

searching strategy is a search plan which guarantees

Jonghoek Kim, Sean Maxon, Magnus Egerstedt, and Fumin
Zhang are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta,
GA. Email: {jkim37,sean.maxon}@gatech.edu,
{magnus,fumin}@ece.gatech.edu

that if every robber on one edge is captured, then no

robber can enter the edge later. It was found in that if

we only consider monotone searching strategies, then

the minimum number of cops required depends on the

number of robbers.

Similar to a cop using a helicopter in [15], [16], we

assume that a searcher detects intruders using the in-

formation network. However, we require that a searcher

moves along edges of a graph continuously, which is

distinct from [15], [16] and is closer to autonomous

robot applications. In addition, our searching strategy is

not monotone, which implies that even if every intruder

on an edge is captured, another intruder may enter the

edge later. Based on this searching strategy, we derive

theoretical upper bound for the minimum number of

searchers required to capture all intruders on a general

graph, which leads to a result on the Voronoi diagram.

Note that this upper bound does not depend on the

number of intruders. Our searching strategy is further

implemented through an interactive online game [17] to

assist humans to determine how to secure a complex

graph.

The paper is organized as follows: Section II intro-

duces preliminaries and background information. Section

III discusses the intruder capturing problem utilizing an

information network. Section IV presents an interactive

online game to implement our searching strategy. Section

V provides conclusions.

II. PRELIMINARIES AND BACKGROUND

INFORMATION

A. Graph Theory

We review some general notions in graph theory, e.g.,

[18]. An undirected graph G is defined by a set G =
(N(G), E(G)), where N(G) denotes the node set and

E(G) is a set of unordered pairs of nodes where multiple

edges between node pairs are allowed. A graph G is

connected if there is a path between every pair of distinct

nodes. The subgraph of G induced by a set of nodes

S ⊂ N(G) is represented by (S, ES) where Es is the

edge set. A cycle is a closed path, and a walk is a path

with no self-intersection.

A graph embedded in the plane without edge crossings

is called a plane graph. The faces of a plane graph are the

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 6266

maximal regions of the plane that contain no point used

in the embedding. We say graph G∗ is the dual graph

of a plane graph G if the nodes of G∗ corresponds to

the faces of G, and if two faces of G are adjacent, then

the two corresponding nodes of G∗ are connected by an

edge of G∗

An edge cover of G, C(G) ⊂ E(G), is a set of edges

such that every node in G is incident to some edge in

C(G). The notion α(G) denotes an edge cover of G

with the minimum cardinality, i.e., the fewest number of

edges. A matching in G is a set of edges in G with no

shared endpoints. A perfect matching in G is a matching

such that every node in G is incident to some edge in the

matching. Therefore, a perfect matching in G is also an

edge cover of G with the minimum cardinality
|N(G)|

2 .

B. The Workspace and Its Voronoi Diagram

Consider a connected and compact workspace W ⊂
R2 whose boundary, ∂W , is a simple closed curve. In

other words, ∂W is continuous and no self-intersection

occurs. Let O1,O2,...OM−1 be M − 1 disjoint compact

obstacles such that Oi ⊂ W . We introduce OM as

a “virtual” obstacle that bounds the workspace, i.e.,

∂W ⊂ ∂OM . We denote the set of obstacles as SO =
{O1, O2, ...OM}. A Voronoi cell for Oi is V (Oi) with

its boundary ∂V (Oi).
The following assumptions, which were also used

in our previous papers [1], [19], are made about the

workspace:
⋃

Oi∈SO
V (Oi) = W where V (Oi) =

V (Oi)
⋃

∂V (Oi), and ∂V (Oi) is a simple closed curve

for each Oi ∈ SO, i.e., ∂V (Oi) is continuous and no

self-intersection occurs.

The Voronoi diagram V = (N(V), E(V)) is defined

as the union of all cell boundaries. Since ∂V (Oi) is a

simple closed curve, each Voronoi cell is also a face

of V . A Voronoi edge in E(V) is a common boundary

edge shared by two Voronoi cells V (Oi) and V (Oj). A

Voronoi vertex in N(V) is a point where more than two

Voronoi edges meet.

Let C be a cycle. V [C] is the subgraph of V enclosed

by C. Let V ∗[C] denote the dual graph of V [C] with

the node corresponding to the unbounded face removed.

Then ∂(V ∗[C]) is the boundary of V ∗[C]. Let V ∗ be

V ∗[C] when we choose ∂V (OM) as C, i.e., V ∗ is

the dual graph of V with the node representing the

unbounded face removed. Each node n(Oi) of V ∗ corre-

sponds to the Voronoi cell V (Oi). The notion cycle basis

denotes a cycle in V enclosing a single Voronoi cell.

Fig. 1 illustrates V [C], V ∗[C], and ∂(V ∗[C]). Lemma 1

states that V ∗[C] is connected, which is straigthtforward.

Lemma 1: Let C be a cycle in a Voronoi diagram V .

Then, V ∗[C] is connected.

V [C]

V ∗[C] ∂(V ∗[C])

C ⊂ V [C]

Fig. 1. C, V [C], V ∗[C], and ∂(V ∗[C]).

III. CAPTURING INTRUDERS

A. Definitions and Assumptions

We consider a graph G. An intruder is free to move

along the edges. A guard can be deployed at a node

to prevent an intruder to reach that node. A searcher

moves along edges of a graph and can access the guarded

nodes. The searcher obtains the position of any intruder

whenever the searcher visits a node in a graph. An

intruder is captured if (1) it is on an edge whose one

end is guarded while the free searcher moves through

the edge from the opposite end, or (2) it is on an edge

one end of which has degree one while the free searcher

moves through the edge starting from the opposite end.

Following established conventions ([8], [20]–[23]),

we assume that an intruder has full knowledge of the

environment, searching strategies, and positions of both

the searcher and guards. In addition, an intruder can

move along edges of G at unbounded speed to avoid

both the searcher and guards.

B. Capturing Intruders on a General Graph

Suppose an information network is deployed along the

Voronoi edges, and suppose that the searcher can obtain

the location of the intruder through the information

network. We want to find the minimum number of guards

needed to capture all intruders on G with one searcher.

Define this minimum number as gI(G) we derive an

upper bound for gI(G) for a general graph G.

The authors of [16] introduced a searching strategy to

capture one intruder on a tree graph T using one free

searcher. Suppose n is a node of T . Then, we define a

branch of T at n as the maximal subtree of T , denoted

2

6267

by T ′, if n has degree one in T ′. Lemma 2 provides the

searching strategy [16].

Lemma 2: Suppose that one free searcher and one

intruder move along a tree graph T . Then, the searcher

can capture the intruder in finite time using the following

strategy:

Whenever the searcher meets a node, it obtains the

position of the intruder. Then, it chooses the branch

containing the intruder and moves through the edge

contained in the branch until it meets another node.

Iterate this until the intruder is captured.

Since an intruder can move at unbounded speed, it

can escape from the free searcher using a cycle in a

general graph G. To block the escape of an intruder,

guards should be deployed at nodes in G to block all

cycles. We say that a cycle C is blocked if any node in

N(C) is guarded.

We define MinGuard(G) as the minimum number

of guarded nodes to block all cycles contained in G.

Obviously MinGuard(T)=0 for a tree graph T . For a

general graph G, computational method to search for

MinGuard(G) corresponds to a set cover optimization

problem which is known to be NP-hard. However, ap-

proximation algorithms returning near-optimal solutions

exist [24].

Suppose MinGuard(G) nodes of G are guarded to

block all cycles contained in G. Then no cycle is avail-

able to an intruder because the graph is reduced to a tree.

Thus, an intruder cannot escape from the free searcher

according to Lemma 2. Furthermore, the searcher can

capture all intruders by chasing one intruder at a time.

Since we need one searcher and MinGuard(G) guards

to capture all intruders on G, gI(G) ≤MinGuard(G).
Hence, we have the following Lemma:

Lemma 3: gI(G) ≤MinGuard(G).

C. Capturing Intruders on Voronoi Diagrams

In this subsection, we consider the specific structures

of a Voronoi diagram V = (N(V), E(V)) as introduced

in Section II-B to compute gI(V).
Recall that V ∗ is the dual graph of V with the node

representing the unbounded face removed, and V ∗ is a

connected graph. Depending on the structure of V , V ∗

can be one node or a connected graph with more than

one node. In the case where V ∗ is one node, V has only

one cycle. Thus, gI(V) = 1. This case is trivial.

In the case where V ∗ is a connected graph with more

than one node, we first consider the special case where

V ∗ is a tree graph. In this special case, let α(V ∗) denotes

an edge cover of V ∗ with the minimum cardinality,

and let |α(V ∗)| be the number of edges in α(V ∗). We

propose Algorithm 1 to guard |α(V ∗)| nodes in V . In

Theorem 1, we prove that Algorithm 1 blocks all cycles

in V .

Algorithm 1 Guarding |α(V ∗)| nodes in V (In the case

where V ∗ is a connected graph with more than one node,

we replace α(V ∗) in this algorithm by β(V ∗))

the edge set EC ← α(V ∗);
repeat

select one edge from the edge set EC ;

suppose n(Oi)n(Oj)
m is the selected edge (Note:

m is used as an index in order to distinguish among

multiple edges that might exist between the two

nodes on V ∗, which are n(Oi) and n(Oj));
em

i,j ⊂ ∂V (Oi)
⋂

∂V (Oj) ← the edge in V corre-

sponding to n(Oi)n(Oj)
m in V ∗;

if em
i,j meets an unblocked cycle C ⊂ V , which

encloses both Oi and Oj then

guard the point where em
i,j meets C (Note: if both

ends of em
i,j meet C, then guard any one);

else

guard any one of the two end points of em
i,j ;

end if

mark all cycles containing the guarded node as

blocked;

remove the edge n(Oi)n(Oj)
m from the edge set

EC ;

until there is no edge left in EC ;

Theorem 1: If the Voronoi diagram V has its dual

graph V ∗ being a tree graph with more than one node,

then gI(V) ≤ |α(V ∗)|.
Proof: We already know that

gI(V) ≤MinGuard(V) according to Lemma

3. If MinGuard(V) ≤ |α(V ∗)|, then

gI(V) ≤MinGuard(V) ≤ |α(V ∗)|. This further

implies that gI(V) ≤ |α(V ∗)|.
It remains to show that MinGuard(V) ≤ |α(V ∗)|.

We prove by contradiction. Suppose that

|α(V ∗)| <MinGuard(V). Since MinGuard(V) is the

minimum number of guarded nodes to block all cycles

in V , |α(V ∗)| <MinGuard(V) implies that if we guard

|α(V ∗)| nodes in V , then there exists an unblocked

cycle, say C, in V . Since V ∗[C] ⊂ V ∗ is connected

and must be a tree graph, then V ∗[C] = ∂V ∗[C].
We consider two cases depending on the structure

of ∂(V ∗[C]). For these two cases, we will prove that

an unblocked cycle, C, cannot exist after we guard

|α(V ∗)| nodes in V using Algorithm 1. Therefore,

MinGuard(V) ≤ |α(V ∗)|.

1) ∂(V ∗[C]) is a node. In this case, C contains only

one cell.

3

6268

2) ∂(V ∗[C]) is a tree graph containing at least one

edge. In this case, C contains more than one cell.

1. Consider the case where ∂(V ∗[C]) is a node. Then

the node belongs to an edge in the α(V ∗). Once a guard

corresponding to that edge is deployed using Algorithm

1, then C will be blocked.

2. Consider the case where ∂(V ∗[C]) is a tree graph

containing at least one edge. There exists at least one

edge, say n(Q1)n(Q2), in ∂(V ∗[C]), whose one end

point has degree one. Suppose n(Q1) has degree one.

Since ∂(V ∗[C]) is a tree graph, n(Q1)n(Q2) ∈ E(V ∗)
indicates that there is only one common boundary edge

shared by ∂V (Q1) and ∂V (Q2). Let e1,2 denote the

common boundary edge between ∂V (Q1) and ∂V (Q2).

In the proof of step 1, we proved that all cycle bases in

V are blocked by guarding |α(V ∗)| nodes in V . Thus,

there is a guarded node in a cycle basis representing

∂V (Q1). This guarded node can exists on e1,2 or outside

e1,2. If this guarded node is on e1,2, then it is at one end

point of e1,2 using algorithm 1. Otherwise, the guarded

node is on C, since n(Q1) has degree one. In both cases,

C is blocked.

Until now, we proved that C is blocked as we guard

|α(V ∗)| nodes in V using algorithm 1.

We derive an upper bound for gI(V) in the case where

V ∗ is a connected graph with more than one node. We

need to introduce a new concept for this purpose. If an

edge cover of V ∗ further satisfies that every cycle in V ∗

contains at least one edge in this edge cover, then we

say the edge cover is cycle-free. Let β(V ∗) ⊂ E(V ∗)
denote a cycle-free edge cover of V ∗ with the minimum

cardinality, i.e., the fewest number of edges.

In Fig. 4, The edges in an edge cover of V ∗ are

depicted with dotted lines. The left sub-figure depicts

a cycle-free edge cover of V ∗. In the right sub-figure,

a cycle consisting of four nodes (n(O1), n(O4), n(O6),
and n(O2)) does not contain a dotted edge. Thus, the

right sub-figure shows an edge cover of V ∗ that is not

cycle-free.

n(O1)

n(O2)
n(O3)

n(O4)

n(O5)
n(O6)

n(O1)

n(O2) n(O3)

n(O4)

n(O5)
n(O6)

V
∗ V

∗

Fig. 2. Illustration of edge covers. Dotted lines in the left sub-figure
show a cycle-free edge cover of V ∗. Dotted lines in the right sub-figure
show an edge cover of V ∗ that is not cycle-free.

In the case where V ∗ is a connected graph with more

than one node, we replace α(V ∗) in algorithm 1 by

β(V ∗) to guard |β(V ∗)| nodes in V . In the following

theorem, we prove that guarding |β(V ∗)| nodes using

algorithm 1 blocks all cycles in V .

Theorem 2: For the Voronoi diagram V such that V ∗

is a connected graph with more than one node, gI(V) ≤
|β(V ∗)|.

Proof: Since gI(V) ≤MinGuard(V), we will

prove that MinGuard(V) ≤ |β(V ∗)| similar to the

proof of Theorem 1. By contradiction, suppose that

|β(V ∗)| <MinGuard(V). |β(V ∗)| <MinGuard(V) im-

plies that as we guard |β(V ∗)| nodes in V , there is an

unblocked cycle, say C, in V . Since V ∗[C] is connected,

then ∂(V ∗[C]) is connected.

Since ∂(V ∗[C]) is connected, we consider two cases

depending on the structure of ∂(V ∗[C]). For these two

cases, we will prove that an unblocked cycle, C, cannot

exist as we guard |β(V ∗)| nodes in V using Algorithm

1. Hence MinGuard(V) ≤ |β(V ∗)|.

1) ∂(V ∗[C]) is a tree graph.

2) ∂(V ∗[C]) contains a cycle.

1. Since ∂(V ∗[C]) is a tree graph, ∂(V ∗[C]) can be a

node or a tree graph containing at least one edge. Note

that a cycle-free edge cover satisfies the condition for

an edge cover. Hence, we replace α(V ∗) in the proof of

step 1 and 2 in Theorem 1 by β(V ∗) to obtain the result

that C is blocked as we guard |β(V ∗)| nodes in V .

2. Consider the case where ∂(V ∗[C])
contains a cycle, say C′. Suppose N(C′) =
{n(Q1), n(Q2), ..n(Q|N(C′)|)} and E(C′) =⋃

i≤|N(C′)|{n(Qi)n(Qi+1)}. In Fig. 3, C′ ⊂ ∂(V ∗[C])
is depicted with dashed line segments on ∂(V ∗[C]).

V [C]

C
′
⊂ ∂(V ∗[C])

V (Ql)

V (Ql+1)

n(Ql)

n(Ql+1)

Fig. 3. C, V [C], V ∗[C], and ∂(V ∗[C]) are identical to those in
Fig. 1. C′ ⊂ ∂(V ∗[C]) is depicted with dashed line segments on
∂(V ∗[C]).

According to the definition of a cycle-free edge cover,

C′ ⊂ V ∗ must contain an edge, say n(Ql)n(Ql+1)
m

where m is used to distinguish among multiple edges

between n(Ql) and n(Ql+1), in β(V ∗) ⊂ E(V ∗). Sim-

ilar to α(V ∗), there is one common boundary edge, say

4

6269

el,l+1, shared by ∂V (Ql) and ∂V (Ql+1) corresponding

to n(Ql)n(Ql+1)
m. Since both n(Ql) and n(Ql+1) are

on the boundary of the unbounded face of V ∗[C], el,l+1

meets C. Furthermore, C encloses both Ql and Ql+1.

Since n(Ql)n(Ql+1)
m is in β(V ∗), n(Ql)n(Ql+1)

m

will be selected while running algorithm 1. Note that C

is unblocked and encloses both Ql and Ql+1. Therefore,

we guard the node where el,l+1 meets C according to

algorithm 1. In Fig. 3, the circle on C represents the

guarded node where el,l+1 meets C. In this way, C is

blocked as we guard |β(V ∗)| nodes in V .

From now on, we study the relation between gI(V)
and the number of obstacles in the workspace. Consider

the case where there exists a perfect matching in V ∗ that

is also a cycle-free edge cover of V ∗. Fig. 4 illustrates

this case. In the left sub-figure, the Voronoi diagram V

and corresponding V ∗ are depicted with normal lines

and dotted lines respectively. In the right sub-figure, the

edges in a perfect matching in V ∗ are depicted with

dashed lines. See that this perfect matching is also a

cycle-free edge cover of V ∗.

V
V ∗

Fig. 4. A perfect matching in V ∗ that is also a cycle-free edge cover
of V ∗.

Corollary 1: Consider the Voronoi diagram V =
(N(V), E(V)). If there exists a perfect matching in

V ∗ that is also a cycle-free edge cover of V ∗, then

gI(V) ≤ M−1
2 .

Proof:

We will show that V ∗ is a connected graph with

more than one node. In Lemma 1, V ∗ = V ∗[C] if we

choose ∂V (OM) as C. According to Lemma 1, V ∗ is a

connected graph. Moreover, V ∗ has more than one node,

since there exists a perfect matching in V ∗.

Since V ∗ is a connected graph with more than one

node, we have gI(V) ≤ |β(V ∗)| using Theorem 2. To

prove that gI(V) ≤ M−1
2 , we will show that |β(V ∗)| =

M−1
2 . Let p denote a perfect matching in V ∗ that is also a

cycle-free edge cover of V ∗. Note that a cycle-free edge

cover satisfies the condition for an edge cover. Thus,

p is a cycle-free edge cover of V ∗ with the minimum

cardinality
|N(V ∗)|

2 . This further implies that |β(V ∗)| =

|N(V ∗)|
2 = M−1

2 , since there are M − 1 nodes in V ∗.

IV. INTERACTIVE ONLINE GAME

Our intruder capture algorithms are implemented

through an interactive online game [17] to assist humans

in determining how to secure a complex graph. The game

uses a greedy (approximation) algorithm [24] to select

which nodes should be guarded so as to block all cycles

in a given graph.

Fig. 5 shows a screen capture of the game taken

during a running simulation. The user is free to enter

any connected graph in the workspace by laying down

a series of points and edges. After the graph has been

drawn, the user may select edges on the graph where

intruders, indicated by blue squares, should be initial-

ized. The game will then deploy guards at selected nodes

and indicate this by coloring those nodes red. As each

node is chosen by the greedy algorithm, all the associated

cycles that will be blocked by placing a guard on that

node are momentarily highlighted. This is to assist the

user in understanding the algorithm’s selection process.

When no more cycles remain, the user selects an edge

on which the free searcher, depicted as a red square,

should be deployed. The simulation then plays out as the

searcher sequentially captures each intruder, which for

the purposes of the simulation follows a simple evasion

strategy of maximizing its distance from the nearest

guard or free searcher.

Fig. 5. A screen capture of the game taken during a running
simulation.

5

6270

V. CONCLUSIONS

We study intruder capturing game on the topological

map of a workspace with obstacles, represented by the

Voronoi diagram. Assuming that a searcher can access

the position of any intruder utilizing the information net-

work, a graph searching strategy is proposed so that one

free searcher and multiple guards capture all intruders

on a general graph. Based on this searching strategy,

we derive theoretical upper bound for the minimum

number of searchers required to capture all intruders on

a general graph, which leads to a result on the Voronoi

diagram. This strategy is further implemented through

an interactive online game to assist humans to determine

how to secure a complex graph.

ACKNOWLEDGMENT

The research work is supported by ONR grants

N00014-08-1-1007, N00014-09-1-1074, and N00014-

10-10712 (YIP), and NSF grants ECCS-0841195 (CA-

REER), CNS-0931576, and ECCS-1056253.

REFERENCES

[1] J. Kim, F. Zhang, and M. Egerstedt, “Simultaneous cooperative
exploration and networking based on Voronoi diagrams,” in proc.

of IFAC Workshop on Networked Robotics, Colorado, USA, 2009,
pp. 1–6.

[2] H. Choset and K. Nagatani, “Topological simultaneous localiza-
tion and mapping (SLAM): toward exact localization without
explicit localization,” IEEE Transactions on Robotics and Au-

tomation, vol. 17, pp. 125–137, 2001.
[3] K. Nagatani and H. Choset, “Toward robust sensor based explo-

ration by constructing reduced generalized Voronoi graph,” in
proc. of IEEE/RSJ International Conference on Intelligent Robots

and Systems, Kyongju, Korea, 1999, pp. 1687–1692.
[4] N. Rao, N. Stoltzfus, and S. Iyengar, “A retraction method for

learned navigation in unknown terrains for a circular robot,” IEEE

Transactions on Robotics and Automation, vol. 7, pp. 699–707,
1991.

[5] H. Choset, I. Konukseven, and J. Burdick, “Mobile robot naviga-
tion: issues in implementating the generalized Voronoi graph in
the plane,” in proc. of IEEE/SICE/RSJ International Conference

on Multisensor Fusion and Integration for Intelligent Systems,
Washington DC, USA, 1996, pp. 241–248.

[6] S. M. Lavalle, Planning Algorithms. Cambridge University
Press, 2006.

[7] T. D. Parsons, “Pursuit-evasion in a graph,” Theory and Applica-

tions of Graphs, Lecture Notes in Mathematics, Springer-Verlag,
vol. 642, pp. 426–441, 1978.

[8] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.
Papadimitriou, “The complexity of searching a graph,” Journal

of the ACM, vol. 35, pp. 18–44, 1988.
[9] A. Kolling and S. Carpin, “The graph-clear problem: definition,

theoretical properties and its connections to multirobot aided
surveillance,” in proc. of the 2007 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, Sandiego, USA, 2009,
pp. 1003–1008.

[10] A. Lapaugh, “Recontamination does not help to search a graph,”
Journal of the ACM, vol. 40(2), pp. 224–245, 1993.

[11] F. V. Fomin, P. Fraigniaud, and N. Nisse, “Nondeterministic
graph searching: From pathwidth to treewidth,” Algorithmica,
vol. 53(3), pp. 358–373, 2009.

[12] L. Barrire, L. B. Ere, P. Flocchini, P. Fraigniaud, and N. Santoro,
“Capture of an intruder by mobile agents,” in proc. of the

fourteenth annual ACM symposium on Parallel algorithms and

architectures, Canada, 2002, pp. 200–209.
[13] F. V. Fomin and D. M. Thilikos, “An annotated bibliography on

guaranteed graph searching,” Theoretical Computer Science, vol.
399, pp. 236–245, 2008.

[14] F. Makedon and I. H. Sudborough, “On minimizing width in
linear layouts,” Discrete Applied Mathematics, vol. 23(3), pp.
243–265, 1989.

[15] P. D. Seymour and R. Thomas, “Graph searching and a min-max
theorem for tree-width,” J. Combin. Theory Ser. B, vol. 58, pp.
22–33, 1993.

[16] D. Richerby and D. M. Thilikos, “Graph searching in a crime
wave,” SIAM J. discrete mathematics, vol. 23(1), pp. 349–368,
2009.

[17] J. Kim, S. Maxon, F. Zhang, and M. Egerstedt, “Intruder
capture beta 1.2,” Website, 2010, http://lamon.gtsav.gatech.edu/
∼smaxon3/intruder applet.html.

[18] B. W. Douglas, Introduction to Graph Theory, 2nd ed. Illinois,
USA: Prentice Hall, 2001.

[19] J. Kim, F. Zhang, and M. Egerstedt, “A provably complete explo-
ration strategy by constructing Voronoi diagrams,” Autonomous

Robots, vol. 29(3-4), pp. 367–380, 2010.
[20] L. M. Kirousis and C. H. Papadimitriou, “Interval graphs and

searching,” Discrete Mathematics, vol. 55, no. 2, pp. 181–184,
1985.

[21] ——, “Searching and pebbling,” Theoretical Computer Science,
vol. 42, no. 2, pp. 205–218, 1986.

[22] D. Bienstock and P. Seymour, “Monotonicity in graph searching,”
Journal of Algorithms, vol. 12, no. 2, pp. 239–245, 1991.

[23] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos, “Fugutive-
search games on graphs and related parameters,” Theoretical

Computer Science, vol. 172, pp. 233–254, 1997.
[24] H. Dutta, “Survey of approximation algorithms for set cover

problem,” Master’s thesis, University of North Texas, 2009.

6

6271

