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SUMMARY 
 

Skin disorders are among the most prevalent medical indications in the world and are 

estimated to impact 30-70% of the global population. It is therefore no surprise that the 

dermatologic and cosmeceutic industries represents a fast growing multi-billion-dollar 

market segment. Despite the medical need and market opportunity for efficacious skin 

products, only a small subset of therapies possesses suitable physicochemical properties 

that allow passive skin absorption: namely, low molecular weight and lipophilic 

molecules. As a result, there is significant unmet need for innovative solutions to enhance 

delivery of bioactive agents for treatment of skin conditions. 

 

To that end, STAR particles were developed in this study as a novel technology platform 

designed to capture the simplicity of formulation-based delivery methods (i.e., skin 

creams, lotions, gels) and the efficacy of physical permeation enhancers (e.g., 

microneedles). STAR particles are millimeter-scale particles with micron-scale 

projections. The projections found on STAR particles are similar in size to those found 

on conventional microneedle patches (approximately 50-1000 µm). As STAR particles 

are rubbed onto skin, the microscopic projections painlessly penetrate skin’s stratum 

corneum to thereby enhance skin permeability. STAR particles differentiate themselves 

from conventional microneedle-based technologies in that they are not bound by a macro-

scale substrate (e.g., a patch or roller-style device). Rather, STAR particles can be 

directly incorporated into topical products and applied to skin in a manner that is similar 

to conventional skin products (e.g., sunscreen). In this way, STAR particles can be spread 

across skin surface areas typically inaccessible to microneedle patches. The overall 
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objectives of this study were to design, fabricate, characterize and assess STAR particles 

to increase skin permeability in a minimally invasive, user-friendly and flexible manner. 

 

The first objective of this study focused on the design and development of STAR 

particles made from stainless steel and ceramic materials. Stainless steel and ceramics 

were chosen for STAR particles due to their historical precedence for safe use in clinical 

settings (e.g., hypodermic needle injections for metal and orthopedic/dental implants for 

ceramics), robust mechanical integrity and capacity for high-throughput prototyping 

using conventional micro-fabrication techniques, such as laser ablation. Additionally, 

ceramic STAR particles satisfy criteria related to low-environmental burden, low-cost of 

materials, and cosmetically favorable for use in topical creams (i.e., ceramics can blend 

in with white skin creams). 

 

STAR particle parameters were characterized for their effects to increase skin 

permeability by measuring gentian violet staining area, skin electrical resistance and skin 

delivery of fluorescent model compounds after pre-treatment with STAR particle 

formulations. Results from these studies demonstrated that STAR particles created 

microscopic punctures in skin and thereby increased skin permeability. 

 

Next, metal STAR particles were studied on hairless rats (in vivo) to determine if STAR 

particles are well tolerated and efficacious when applied to the skin of live animals. 

Assessment of skin following application of STAR particles showed very slight erythema 

at the site of application with no adverse effects such as bleeding, swelling or bruising. It 
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was also demonstrated through gentian violet staining, skin electrical resistance and 

delivery of fluorescent dye that STAR particle application significantly increased skin 

permeability in hairless rats in vivo. Moreover, an increase in skin delivery of fluorescent 

dye was observed after 15 minutes of topical application relative to 3 hours of fluorescent 

dye application to intact skin controls. We conclude from these results that STAR 

particles enabled an increase in topical delivery into live animals with less than one-tenth 

the topical wear time relative to untreated skin. Additionally, STAR particle delivery 

enhancement of 6- to 14-fold was demonstrated with biomolecules of clinical 

significance for treatment of skin disease: 5-fluorouracil, methotrexate and bleomycin. 

 

The next objective of this study focused on characterization of metal and ceramic STAR 

particles. In these studies, STAR particle parameters (e.g., size, concentration, thickness 

and geometry) were investigated to determine their effects on skin permeability ex vivo. 

We found that STAR particles could be engineered to increase skin permeability to 

varying degrees (e.g., by varying the concentration of STAR particles applied to skin). A 

wide range of delivery enhancement was demonstrated, between 14- to 90-fold increase, 

after 10 seconds of STAR particle skin application (i.e., by adjusting STAR particle 

concentration). Greater delivery enhancement was also demonstrated if STAR particles 

were applied to skin for longer times (i.e., 2 minutes). Additionally, ceramic STAR 

particles with varying geometries were fabricated to investigate design limitations with 

current fabrication methods. Ceramic STAR particles were assessed for tip sharpness and 

applied to excised porcine skin to determine their effects on skin permeability. 

Additionally, fabrication parameters like sintering temperature were determined to have 
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significant impact on STAR particle mechanical integrity and subsequent performance to 

increase skin permeability. 

 

In the final objective, STAR particles were assessed in human volunteers for safety, 

tolerability, acceptability and efficacy. To accomplish this, stainless steel STAR particles 

were incorporated into commercial aloe vera gel and applied to the forearms of eleven 

human volunteers. Human subjects were asked to provide qualitative and quantitative 

assessment of their experience during the study and skin application sites were scored for 

adverse events (e.g., erythema, tenderness, swelling). Following STAR particle 

application, most subjects experienced mild, transient erythema for several hours which 

completely resolved within a day. Additionally, most study participants described STAR 

particle applications to be comfortable, similar to conventional skin products and 

concluded they would feel comfortable in self-applying STAR particles. Gentian violet 

staining of skin application areas revealed that STAR particles were effective to create 

microscopic punctures in skin. We conclude from these studies that STAR particles were 

very well tolerated and well accepted when applied to skin of humans, produced very 

mild, transient erythema and were efficacious to increase skin permeability. 
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ABSTRACT 

 

Cutaneous delivery of bioactive agents is important for treatment of many medical 

indications, especially in dermatology. In this work a novel skin penetration enhancement 

technology, called STAR particles, was designed, fabricated, developed and 

characterized ex vivo and in vivo. STAR particles are millimeter-scale particles with 

micro-scale projections that painlessly pierce skin to thereby enhance topical drug 

delivery. STAR particles were fabricated from biocompatible materials (stainless steel 

and alumina) and applied to skin similarly to conventional formulation-based skin 

products. STAR particle functionality was demonstrated and characterized through 

quantification of gentian violet skin staining; skin electrical resistance; and delivery of 

topically applied compounds (sulforhodamine B, 4 kDa FITC-Dextran, 5-fluorouracil, 

methotrexate and bleomycin). 

 

After STAR particle pre-treatment, skin electrical resistance decreased by an order of 

magnitude or greater. Additionally, gentian violet skin staining enabled visualization of 

the many dozen microscopic skin puncture sites created by STAR particles. STAR 

particles skin treatment also enhanced cutaneous delivery of molecules by up to 90-fold. 

The results from these studies demonstrate that STAR particles functioned to increase 

skin permeability through the formation of microscopic skin punctures. STAR particles 

were also demonstrated to be safe, tolerable, efficacious and acceptable when applied to 

skin of healthy human participants. In conclusion, STAR particles can be used as a 

formulation-based additive in topical therapies to enhance delivery of topically applied 
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therapies. In this way, STAR particles may potentially improve the clinical potential of 

topically applied drugs and expand the number of biomolecules that can be administered 

into skin. 
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Chapter 1 : Introduction 

 
 
Dermatologic (e.g., psoriasis, eczema, acne, skin cancers) and cosmeceutic (e.g., skin 

aging, blemishes, scarring) indications, collectively, comprise the most prevalent medical 

conditions in the world and cause considerable physical, economic and psychosocial 

distress to those who are affected [1-3]. Despite the great need for effective therapies, 

delivery of bioactive agents into skin is severely constrained. This is due to the skin’s 

inherent barrier functionality that is derived primarily from the outermost layer – the 

stratum corneum (SC). As a result, only small, lipophilic molecules are capable of 

sufficient skin absorption [4]. To overcome this limitation, several delivery strategies 

have been developed to increase cutaneous delivery. 

 

Formulation-based strategies (e.g., chemical penetration enhancers, CPE, like dimethyl 

sulfoxide) to increase skin permeability solubilize the lipid-rich SC barrier and thereby 

marginally increase skin delivery. However, CPE often result in skin irritation and are 

generally not broadly useful for delivery of macromolecules. In contrast to CPE, 

physical-based methods to increase skin permeability (e.g., ultrasound, iontophoresis, 

electroporation, microneedles) are effective at delivering a broader range of molecules 

including hydrophilic, small molecule drugs, biologics, vaccines, and nucleic acids. 

However, many physical-based delivery methods suffer from limitations related to device 

cost, ease of use, procedural invasiveness and ability to target large skin surface areas 

(e.g., > 10 cm2). However, because many skin conditions can manifest across large, 
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disseminated body surface areas, formulation-based methods (i.e., not physical-based 

methods) have made the most impact for treatment of cutaneous disorders. 

 

To overcome the limitations associated with currently available skin delivery methods, 

we developed a novel technology called STAR particles. STAR particles are millimeter-

scale particles with radially emanating, micro-scale projections that can be incorporated 

into topical formulations to increase skin permeability in a simple to use and minimally 

invasive manner.  

 

Because STAR particles are not restricted to an underlying macro-scale substrate (e.g., 

microneedle patch) they can be applied to skin as a formulation (e.g., cream, ointment, 

gel) which facilitates their application to large skin surface areas. Moreover, since STAR 

particles are envisioned to be a formulation-based ingredient (i.e., not a separate medical 

device), their application can be a single-step process which improves patient usability 

and reduces potential for mishandling. In summary, STAR particles combine the 

usability, acceptability and flexibility of conventional formulation-based treatments while 

also leveraging the skin permeability enhancement capabilities of physical-based delivery 

using microneedle-like projections.  

 

The main objective of this project was to fabricate, characterize and develop STAR 

particles for improved delivery of topical therapies to skin. This objective can be 

segmented as follows: 



 3 

1) Design, fabrication and development of metal and ceramic STAR particles to 

increase skin permeability in excised skin. Assess STAR particle safety, 

tolerability, acceptability and efficacy in live animals and in humans 

2) Characterization of metal and ceramic STAR particle parameters and 

fabrication methods to increase skin permeability  
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Chapter 2 : Background 

 
 
2.1 SKIN ANATOMY, PHYSIOLOGY AND FUNCTIONALITY 

Human skin is a multi-functional organ system that provides essential roles such as 

thermoregulation, immunological protection, sensory perception and production of 

vitamin D3 [5]. The skin is composed of stratified squamous epithelia and is divided into 

two main layers: the outermost layer (epidermis, 100-150 µm thick) that is cell-rich, and 

the underlying layer (dermis, 1-2 mm thick) that is largely acellular. The dermis, 

primarily composed of collagen and elastin fibers in an aqueous extracellular matrix, 

provides mechanical support for the overlaying epidermis. Given its highly porous, 

sponge-like structure, dermal tissue houses blood capillaries which form plexus sheets 

near the epidermal basement membrane in the papillary dermis as well as in the deeper 

reticular dermis. The epidermis can be divided into five distinct sub-layers: (i) stratum 

corneum (SC), (ii) stratum lucidum, (iii) stratum granulosum, (iv) stratum spinosum and 

(v) stratum basale, from most superficial to deepest layers, respectively.  Skin epidermis 

is renewed as stem cells in the basal layer continually divide and migrate outwards. In 

contrast to the dermis, the epidermis is avascular. Therefore, all components necessary 

for cellular function (e.g., transport of oxygen to and removal of waste products from 

cells) must diffuse between the epidermal keratinocytes located above the basement 

membrane and the nearby capillary bed below in the papillary dermis.  In addition to skin 

keratinocytes, other important cell types reside in the skin’s epidermis, such as: 

melanocytes (pigment producing cells), Merkel cells (mechanosensory cells) and 

Langerhan cells (immune cells) [6]. 
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Unlike the deeper viable epidermis (VE), the SC is composed of terminally differentiated 

and denucleated skin keratinocytes (i.e., corneocytes) that are continually shed as skin 

regenerates. Corneocytes are intracellularly filled with crosslinked keratin, high-

molecular-weight lipids, fatty acids and ceramides, and are tightly bound together in a 

densely packed matrix of intercellular lipids – forming what is commonly described a 

“brick-and-mortar” structure where the coenocytes are bricks and intercellular fatty acids, 

ceramides and cholesterol forming the mortar [7]. Although only spanning 15-20 cell 

layers (10-25 µm thick), the SC forms a highly lipophilic membrane that effectively 

precludes essentially all hydrophilic (logP < 1) and macromolecular species (Mw > 500 

Da) from entering the body. This SC function is vastly important to prevent harmful 

chemical compounds and pathogens from entering the body. However, the SC also 

severely limits delivery of topically applied therapies into skin [8, 9]. 

 
Fig. 2.1: Histological cross section of porcine skin stained with hematoxylin and eosin 
(H&E) to show skin layers (i.e., stratum corneum, viable epidermis and dermis).  
Image credit: Juan L. Mena Lapaix 
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2.2 CUTANEOUS DISORDERS 

Cutaneous disorders are, collectively, the most prevalent group of diseases, estimated to 

impact 30-70% of all people on the planet [2]. There are approximately 10,000 cutaneous 

disorders ranging from the relatively benign to highly lethal. What all these skin 

conditions share is the formidable challenge to develop effective therapies that are simple 

to use, safe, non-invasive, low-cost and provide rapid restoration of healthy skin 

physiology. In the following sections, we will outline several skin conditions, their 

prevalence, pathophysiology and currently available treatments for patients with these 

disorders. 

 

2.2.1 - Psoriasis 

Psoriasis vulgaris is a chronic autoimmune skin disease, affecting 2-3% of the 

world’s population. Psoriasis manifests as hyperkeratotic, scaly skin plaques that can 

significantly reduce the quality of life for patients with the disease. Pathogenic features of 

psoriasis include dermal infiltration of T lymphocytes and other leucocytes, and over 

expression of cutaneous cytokines such as tumor necrosis factor (TNF). Psoriasis can 

impact patients of all ages; however, it is common for psoriasis to manifest in early 

adulthood – likely due to genetic factors [10]. Psoriasis vulgaris also has comorbidities 

for diseases such as psoriatic arthritis. The extent of cutaneous manifestations can either 

be localized and small, or disseminated across a patient’s entire body (Table 1). 
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Table 1: Prevalence of psoriasis severity and body surface area involvement. 

Severity Body surface area 
affected (%) 

Prevalence in patients 
with psoriasis (%) 

Mild < 3 65-80 

Moderate 3-10 20-25 

Severe > 10 5-10 
Source: National Psoriasis Foundation. 

 

The extent of disease severity is commonly described through a generalized Psoriasis 

Area and Severity Index (PASI) score and other clinical assessment tools [11]. 

Unfortunately, there are limited animal models for psoriasis which makes translational 

research efforts more difficult. 

 

Due to its high prevalence and chronic, life-long nature, the psoriasis treatment market is 

estimated to reach $9B by 2019 and has received a great deal of attention by the 

pharmacologic and medical research communities [12]. Treatments include small 

molecule topical agents (e.g., calcitriol, tazarotene), oral systemic drugs (e.g., 

methotrexate, apremilast) and injectable biologics (e.g., etanercept, adalimumab). 

Topicals are the most widely used therapies accounting for approximately 80% of 

treatments for mild, 70% of treatments for moderate and 50% of treatments for severe 

psoriasis patients. Biologics are used most commonly in patients with severe forms of the 

disease, or who are unresponsive to other treatments, due to the high cost of biological 

therapies [13]. 
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2.2.2 - Atopic Dermatitis 

Atopic dermatitis, more commonly referred to as atopic eczema (or more simply 

eczema), is a chronic pruritic skin disease with prevalence of up to 20%. Eczema 

pathophysiology is not completely understood but is attributable to a heightened immune 

response to various stimuli (e.g., stress, environmental, diet) that results in excessive skin 

inflammation, rash and pruritus (itchiness). As a result, patients with eczema experience 

significant decreases in quality of life, social stigmatization due to visible skin disease, 

excessive itching, sleep loss and financial burdens [14, 15]. 

 

There is currently no known cure for atopic dermatitis. Treatments mainly focus on 

symptom amelioration such as itch relief, skin repair and reduction of inflammation. 

Topical emollients are commonly used as a first-line therapy for patients. Topical 

corticosteroids have also been a mainstay therapy to limit skin inflammation, although 

corticosteroids can only safely be used for limited periods. Topical calcineurin inhibitors 

(e.g., cyclosporine, tacrolimus) were more recently introduced and act to limit skin 

inflammation without many of the side effects experienced with potent steroids (e.g., skin 

atrophy) [16]. 

 

2.2.3 - Acne Vulgaris 

Acne vulgaris (i.e., acne) is a common skin disease, estimated to affect nearly 80% of 

adolescent youth and can extend into adulthood [17]. Acne is the result of hormonal 

activation of the pilosebaceous unit (i.e., sebaceous gland) and manifests as oily/greasy 

skin, both non-inflammatory and inflammatory skin lesions, bacterial colonization of hair 
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follicles, as well as increased risk for skin infections and scar-tissue formation [18]. 

Unfortunately, acne is most common on visible body regions (e.g., face, neck, upper 

chest, back) where there is a high density of pilosebaceous units [19]. The prominence of 

acne on highly visible body regions makes social stigmatization and reduced 

psychological wellbeing common among individuals with acne [20]. 

 

Acne treatments are generally either topical or systemic medications. Topical acne 

medicines, although sometimes causing minor skin irritation, are well accepted by 

patients as a first-line therapy for mild acne. Non-prescription topical medications may 

include active ingredients such as benzoyl peroxide, retinoids (e.g., tretinoin, adapalene, 

and isotretinoin), antibiotics, salicylic acid and many others. Because many topical agents 

used have different mechanisms of action, combination therapies are considered more 

efficacious compared to monotherapy [21]. 

 

When topical therapies are insufficiently effective or impractical due to large body 

surface area involvement, systemic (oral) therapies can be prescribed to patients. Oral 

therapies such as antibiotics, contraceptives (for women) or isotretinoin are the most 

common acne medications. Antibiotics (e.g., tetracycline, oxytetracycline, doxycycline, 

lymecycline) are typically only used for severe cases of acne that are disseminated across 

large body regions and where topical antibiotics have been ineffective. Contraceptives 

(e.g., ethinylestradiol, progestogen, levonorgestrel, norethisterone) are commonly 

prescribed for women with acne as these hormones reduce sebaceous gland activity and 

reduce adrenal androgens [22]. Finally, isotretinoin has been demonstrated to be highly 
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efficacious for treatment of moderate to severe acne. Oral isotretinoin is associated with 

several side effects, most significant of which is teratogenicity. Therefore, isotretinoin is 

always prescribed along with contraceptives, as well as significant medical guidance and 

regulation, to women of childbearing age [23]. 

 

2.2.4 - Non-Melanoma Skin Cancer 

Non-melanoma skin cancer (NMSC) is the most prevalent of all cancers types – 

constituting more than a third of all new cancer diagnoses in the U.S. [24]. While only a 

small number of NMSC diagnoses are fatal, patients with NMSC experience significant 

decreases in their quality of life, disfigurement and high-economic burden [25-27]. 

NMSC can be subdivided into two primary types which differ in potential for 

malignancy, clinical manifestation, histological appearance and incidence rate. Basal cell 

carcinoma (BCC) is the most prevalent form of NMSC and constitutes approximately 

80% of NMSC diagnoses. Squamous cell carcinoma (SCC) is less prevalent but has a 

higher risk of metastasis (between 2-6% [28]) and therefore treated more aggressively. 

There is increased risk of developing NMSC in fair-skinned populations (i.e., skin types I 

and II) who sunburn easily and experience frequent sun exposure. In addition to UV 

exposure, chemical carcinogens (e.g., arsenic, tobacco, coal-tar products) have been 

shown to increase risk of developing NMSC. Both BCC and SCC are the result of 

mutated keratinocytes that arise from epidermal basal or squamous cells, respectively 

[29]. Depending on disease severity (e.g., size, borders, growth rate, depth, histologic 

features) and anatomical location of NMSC lesions, several treatment options are 
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available including lesion ablation or excision, photodynamic therapy (PDT) [30] and 

topical therapies. 

 

The current gold standard for treatment for NMSC is ablative or excisional techniques in 

which the entire lesion is destroyed or surgically removed, typically in an outpatient 

setting, by a primary care physician or dermatologist. Superficial NMSC lesions are 

typically removed via ablative techniques (e.g., electro-desiccation and curettage, 

cryotherapy) while high-risk NMSC lesions are typically surgically removed (e.g., Mohs 

micrographic surgery [31], excisional surgery, radiotherapy [32]). In both ablative and 

excisional techniques, complete removal of all cancerous cells along with a safety margin 

is critical to minimize potential for future recurrence [33]. Although effective, destructive 

treatment methods should not be used on immunocompromised or elderly patients as 

there is increased risk for excessive bleeding and infection. In addition, invasive methods 

to remove NMSC lesions often produce negative cosmetic outcomes for patients which 

can reduce quality of life. 

 

In circumstances where excisional techniques are difficult or undesired (e.g., on the face, 

nose or eyes where cosmetic outcomes have high impact on patient quality of life), non-

destructive treatment methods may be utilized. PDT is a form of therapy which involves 

local delivery of a photosensitizing agent (e.g., 5-aminolaevulinic acid) used in 

conjunction with an activating light source [34]. In response to photo-activation, the 

photosensitizer generates reactive oxygen species (ROS) that preferentially accumulate in 

and locally destroy cancerous causing skin cells. Alternatively, topical agents can be used 
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to treat NMSC lesions that are superficial and low-risk. Some common drugs that are 

used for topical therapies are 5-fluorouracil (5-FU) and imiquimod (IMQ) [35]. In recent 

clinical trials patients with superficial basal cell carcinoma treated with either 5-FU or 

IMQ experienced reduced recurrence compared to patients treated with PDT. However, 

in both PDT and topical therapies a significant limitation is poor skin penetration of the 

topical agents. Therefore, non-destructive treatment methods are only useful for treatment 

of superficial lesions, which represent approximately 15% of all BCC diagnoses [36]. 

 

2.2.5 - Melanoma 

Cutaneous melanoma (CM) develops due to an accumulation of DNA damage in the 

skin’s pigment producing cells – melanocytes. Mortality rates for CM have been 

relatively constant since the 1980s (approximately 2 per 100,000 cases per year) while 

the incidence of CM diagnoses has increased almost 3-fold from the 1980s to early 2000s 

(3 cases per 100,000 to 15 cases per 100,000) [37]. There are several genetic mutations 

that are widely prevalent in CM cells including NRAS and BRAF mutations [38]. Early 

diagnosis of CM is crucial to prevent disease progression. Diagnoses are typically 

performed by dermatologists through clinical examination. CM lesions can be identified 

by clinical features such as lesion asymmetry, border irregularity, color variation, 

morphogenesis (i.e., rapidly changing size, color or shape) and a diameter greater than 6 

mm [39]. 

 

Due to its high potential for malignancy, CM are preferentially excised within 4-6 weeks 

of diagnosis. When lesions are excised early (i.e., tumor depth < 1.5 mm), 10-year 
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survival rate is greater than 85% [40]. To provide adequate histological analysis and 

safety margins surrounding the lesion, excisional biopsies are the preferred method to 

remove cutaneous melanomas. Recommended excision margins are between 1-2 cm and 

are dependent on the stage of tumor growth, size, thickness and anatomical locations that 

require favorable cosmetic outcomes (e.g., on the face). In patients where melanoma cells 

have metastasized, sentinel lymph node biopsies (or excision) may be recommended to 

assess degree of disease progression. Other types of therapy can be employed alone, or in 

conjunction with surgical excision, to suppress tumor growth systemically, these include 

radiotherapy, adjuvant chemotherapy, adjuvant immunotherapy, chemotherapy, 

chemoimmunotherapy, polychemotherapy, chemoimmunotherapy [41]. In addition to 

systemic therapies, localized tumor regression can be achieved via intralesional injections 

of IL-12 [42], DNA vectors [43] as well as others [44, 45]. 

 

2.5.6 - Vitiligo 

Vitiligo affects 1-4% of the global population and manifests as depigmented macules that 

range in size from millimeters to centimeters across a patient’s body [46]. The 

pathophysiology of vitiligo is not fully understood but is believed to be an autoimmune 

response in which melanocyte specific antibodies induce melanocyte death and the 

elimination of melanin production in skin [47]. Other hypotheses for vitiligo pathogenesis 

include dysregulation of the melanin production pathway and/or susceptibility of 

melanocytes to the accumulation of neurochemicals, both of which will result in 

melanocyte death and loss of skin pigmentation [48]. Histologic features of vitiligo 

include a lack of both melanin and melanocytes in the epidermis [49]. Most vitiligo 
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patients are diagnosed before 25 years of age. Previous studies have reported a 

distribution of 70:15:5 for vitiligo vulgaris, focal vitiligo and segmented vitiligo, 

respectively [50]. 

 

Several methods have been shown to be efficacious in treatment of vitiligo. 

Phototherapies are the gold standard of treatment for vitiligo and involve the use of 

ultraviolet radiation to re-pigment affected skin areas [51]. Phototherapies can be used 

alone or in conjunction topical formulations (e.g., tacrolimus, tacalcitol) to further 

enhance re-pigmentation efficacy [52]. Alternatively, topical formulations (e.g., 

calcipotriol, dihydroxyacetone, corticosteroids, tacrolimus) can be used as a monotherapy 

treatment of vitiligo [53-56]. Despite the availability of treatment methods for vitiligo 

patients, there are several limitations associated with ease of phototherapies (which 

require expensive phototherapy units) and limited bioavailability of topically applied 

bioactive agents (which limit efficacy). 

 

2.2.7 - Epidermolysis Bullosa 

Epidermolysis bullosa (EB) is a group of rare genetic skin disorders that results in 

chronic formation of skin blisters due to minor trauma (e.g., scratching, abrasion, heat). 

The most severe form of EB is recessive dystrophic epidermolysis bullosa (RDEB) that 

results in a mutated type-VII collagen (C7) fibril and total loss of C7 functionality. C7 is 

a key protein located at the dermal-epidermal junction and acts as an anchor between the 

basal layer of the epidermis and the papillary dermis. The loss in C7 functionality thereby 

results in a significantly increased propensity for skin blister formation, complications 
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from infection (e.g., sepsis), pain, increased likelihood to develop skin cancers, physical 

deformities like pseudosyndactyly (i.e., fusion of the digits) and an overall reduction in 

quality and duration of life [57-60]. 

 

Treatment options are incredibly limited for RDEB patients and are geared towards 

palliative care. Although there are no presently efficacious therapies for RDEB, there are 

several reports of investigative treatments including: allogeneic fibroblast cell 

implantation [61], induced pluripotent stem cell therapy [62],  bone marrow transplants 

[63], retroviral vectors [64] and injection of recombinant C7 protein [65]. 

 

2.2.8 - Skin Aesthetics 

Skin appearance has a profound impact on the physical, psychosocial and economic 

wellbeing of all people [66-68]. Due to strong social pressures for healthy and 

aesthetically pleasing skin, many people seek cosmetic therapies to improve skin 

appearance for a wide range of reasons. Some types of aesthetic procedures are 

accomplished through delivery of bioactive agents (i.e., drugs and/or cosmeceuticals). 

 

Arguably, the most widely used therapies for improvement of skin appearance are topical 

products that can be purchased without prescription and self-applied by users. The strong 

preference for topical cosmeceuticals is clearly demonstrated by the growing sales of 

multi-national corporations that develop products for this market segment (e.g., L’Oréal, 

Johnson and Johnson, Estee Lauder, Proctor and Gamble) [69]. For example, skin 

lightening agents (e.g., hydroquinone, azelaic acid, glycolic acid) have found great 
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popularity for treatment of skin hyperpigmentation from sun damage, trauma, aging, acne 

and other causes [70]. Certain demographic populations also show preference for light 

skin tone and therefore utilize skin lightening products [71]. Additional types of topical 

agents have wide appeal which act to improve skin appearance by reducing wrinkles and 

stretch marks, improving skin tone and others (e.g., a-, b- and poly-hydroxy acids, 

salicylic acid, ceramide, vitamin C and E) [72].  

 

In addition to topicals, injectable agents are widely used in cosmetic dermatology. Fillers 

such as collagen and hyaluronic acid are intradermally injected to reduce wrinkles [73] as 

well as botulinum toxin can be intramuscularly injected for treatment of glabellar and 

other facial lines [74]. 

 

2.3 DELIVERY OF BIOACTIVE AGENTS INTO SKIN 

Given the wide prevalence and negative impact of skin conditions, delivery of bioactive 

agents into skin is vastly important for efficacious therapies. Several methods to 

administer bioactive agents into skin exist, each with advantages and limitations. 

 

2.3.1 - Topical Drug Delivery 

Topical therapies are highly useful for treatment of skin due to their ease of use, non-

invasive nature, capacity to treat flexible size skin surface areas (both large and small), 

relatively low-cost and direct spatial targeting of skin itself. As a result, topical therapies 

are widely used within dermatologic and cosmeceutic treatments. 
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Despite these advantages, topical skin therapies have poor cutaneous bioavailability due 

to limited skin permeability past the SC barrier layer. Moreover, only a limited number of 

bioactive compounds, mainly small, lipophilic molecules, are capable of passive-topical 

absorption into skin. Because of limited skin permeability, as well as other factors, only a 

limited number of topicals have been approved by the US FDA [75]. Additionally, 

topical therapies that are currently used to treat skin conditions are restricted to medical 

indications with only superficial manifestations (e.g., superficial basal cell carcinoma 

[76]). Topicals therefore have limited efficacy to target deeper lesions (e.g., > 1 mm 

deep) or in hyperkeratotic skin lesions (e.g., psoriasis, warts). Therefore, although simple 

and non-invasive, topical therapies are only of limited value in treatment of skin due to 

poor cutaneous penetration. 

 

2.3.2 - Transdermal Patches 

The first transdermal patch was approved by the US FDA for clinical use in 1979 

(scopolamine). Since then, a number of drugs have been introduced for delivery through 

the skin via transdermal patches (e.g., clonidine, fentanyl, lidocaine, nicotine, 

nitroglycerin, oestradiol, oxybutinin, scopolamine and testosterone) [77]. Like topical 

formulations, transdermal patches can deliver small (< 500 Da) and lipophilic (i.e., oil 

soluble) drugs into skin for several days and up to multiple milligrams. The two general 

types of transdermal patches are reservoir and matrix. Reservoir-style patches incorporate 

a bioactive agent that is separated from the skin by a semi-permeable membrane. The 

membrane may act to control the rate of drug diffusion into skin. In contrast, matrix-style 

patches directly incorporate the bioactive agent along with the supporting structure (e.g., 
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polymer) and often the adhesive of the patch. Reservoir-style patches can have greater 

delivery control relative to matrix-style patches. However, reservoir patches are more 

complex to design and fabricate which increases cost. Transdermal patches provide an 

added benefit of more controlled drug delivery into skin when compared to topical 

formulations. However, because drugs must still cross the SC barrier, transdermal patches 

are limited to a small number of medical applications in which drugs have sufficient 

cutaneous bioavailability. 

 

2.3.3 - Intracutaneous Injection of Bioactive Agents 

In contrast to the delivery limitations associated with topical creams and transdermal 

patches, is delivery by intracutaneous injection (i.e., intradermal or intralesional injection 

via needle and syringe). Intracutaneous injections are performed by superficially inserting 

a hypodermic needle into skin and depositing essentially any dose or therapeutic 

molecule directly to the target skin area. Within clinical medicine, intralesional injections 

have been used to deliver bioactives for treatment of NMSC [78], CM [79], vitiligo [80], 

warts [81], psoriasis [82], scar tissue [83], skin aging [84] and other indications. 

Although intracutaneous injections are highly effective for delivery purposes, injections 

are not feasible in many circumstances due to factors related to patient usability and 

acceptability. Firstly, intracutaneous injections cannot be performed without a trained 

healthcare professional and therefore there is little opportunity for patient self-

administration. This also makes challenging any treatment schedules that require frequent 

dosing. Hypodermic needles also produce biohazardous sharps waste and introduce 

potential for needle-stick injuries or needle reuse. Finally, treatment of large, 
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disseminated body surfaces is not practical for intracutaneous injections because that 

would require multiple painful injections to effectively distribute drug across a treatment 

area. Therefore, although effective at delivering bioactives into the skin, intracutaneous 

injections do not meet important criteria related to patient usability. 

 

2.3.4 - Systemic Drug Delivery 

In contrast to spatially localized delivery methods in skin (i.e., topical, intracutaneous 

injections), systemic administration can be used to deliver a wide array of bioactive 

agents with no limitations of skin permeability and favorable patient usability and 

acceptability. Additionally, systemically administered therapies can easily treat large 

areas of skin since the bioactive agent is distributed throughout the whole body 

(including skin). Depending on the bioactive agent, its stability and physiochemical 

properties, systemic administration can be accomplished through either oral or injectable 

drug forms. 

 

2.3.4.1 Orally Administered Bioactives 

Oral medications are widely used in medicine due to their simplicity in administration 

relative to other drug administration forms (e.g., injection by needle and syringe). Within 

treatment of skin, oral medications are used to treat patients with psoriasis [85], atopic 

dermatitis [14], acne [23], vitiligo [86] and most others indications. Oral therapies are 

also ideal for treatment of chronic skin conditions because of their simple administration, 

high efficacy, capacity to deliver a wide array of molecules and ability to distribute 

bioactive compounds across large skin surface areas. Oral therapies, however, distribute 
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drug across a patient’s whole body which often produces unwanted side effects (e.g., 

nausea) and thereby reduce patient compliance. Additionally, because oral drugs are non-

targeted, most of the bioactive agent is effectively wasted since only a small fraction will 

reach the site of action in skin. 

 

2.3.4.2 Injectable Agents 

Injection-based systemic administration methods (i.e., IV, IM, SC), like oral medications, 

distribute drug throughout the body. However, unlike oral medications, systemic 

injections bypass the harsh gastrointestinal tract where many sensitive bioactive agents 

(e.g., biologics) are degraded. Therefore, injections are necessary for delivery of 

biomolecules (e.g., proteins, DNA/RNA). Biologics have shown great efficacy over 

conventional small molecule drugs given their ability to target specific disease markers. 

The market for biologics to treat psoriasis represent a $7.5 billion market (2014) [12]. 

However, like oral therapies, because injected drug forms are usually not spatially 

targeted to the skin a majority of the (usually very expensive) therapeutic agent is wasted. 

 

2.4 METHODS TO ENHANCE SKIN PERMEABILITY 

To overcome delivery limitations associated with the skin, several techniques have been 

utilized with varying advantages and limitations which are discussed further. 

 

2.4.1 - Chemical Penetration Enhancers 

The use of CPE has been widely reported in literature for capability of CPE to increase 

skin permeability via a formulation-based application method (i.e., non-device based). It 
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is understood that CPE function to increase skin permeability through several 

mechanisms including: (i) solubilization of lipophilic components in SC, (ii) denaturing 

intracellular keratin to increase skin hydration, (iii) reducing adhesion of intercellular 

desmosomes (iv) increasing drug solubility and (v) improving drug partitioning into skin 

[87]. CPE have been classified and into numerous categories (e.g., water, urea, 

sulfoxides, alcohols, pyrrolidones, fatty acids, surfactants, terpenes). In general, CPE are 

effective at increasing delivery of small molecular entities (e.g., 5-fluorouracil [88]). 

However, CPE are limited in delivery enhancement potential for larger molecular 

compounds, especially macromolecules like peptides and proteins. Additionally, many 

effective CPE (e.g., DMSO) tend to have negative side effects, such as erythema and 

irritation, when applied to skin [89]. 

 

2.4.2 - Skin Abrasion Methods 

Dermabrasion involves the removal of the SC barrier layer through forceful application 

of microscopic, irregularly shaped particles which can be composed of many different 

biocompatible materials (e.g., polymers, metal oxides, sodium tetraborate decahydrate 

granules, natural materials like ground fruit pits and ground nut shells) [90]. The 

microscopic-abrasive particles can be rubbed onto skin via conventional hand application 

(i.e., like application of other topical agents) or with the assistance of a hand-held 

microdermabrasion device that projects abrasive particles at the skin’s surface. In this 

way, particles physically abrade/remove skin layers to increase skin permeability. 

Microdermabrasion methods have been used to treat skin for purposes of increasing skin 

permeability to topically applied molecules such as 5-FU, clobetasol 17-propionate, and 
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5-aminolevulinic acid (ALA) [91]. Microdermabrasion methods have also been 

extensively studied on both animal and human skin to demonstrate safety, tolerability, 

acceptability and efficacy [92-94].  

 

Microdermabrasion methods have been reported to increase delivery by up to 25-fold 

when used as a device (i.e., not hand application) [91]. However, microdermabrasion 

devices are restricted to use only in clinical settings due to device cost and complexity, 

which limits use. Additionally, if not properly controlled, microdermabrasion devices 

may remove large amounts of skin tissue and increase risks for infection and scarring. 

 

Exfoliates in topical formulations, which do not involve the use of separate devices, have 

found broader appeal by consumers in cosmeceutical applications due to the ease of 

application and ability for patients to self-apply topical formulations in a non-invasive 

and cost-effective manner [95]. However, application of abrasive agents by hand 

generally do not function well to significantly increase skin permeability. 

 

2.4.3 - Medical Devices 

Several types of medical devices have been employed to overcome skin barrier properties 

and increase delivery into and through the skin. Medical devices function to impart 

electrical, sonic, mechanical, thermal or other energy forms onto skin to enable increased 

penetration of exogenous compounds. 
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2.4.3.1 Iontophoresis 

Transdermal iontophoresis involves the application of a low-voltage, low-current external 

electric potential to increase delivery of bioactive agents into skin. The increase in skin 

transport can result from electro-repulsion between current flow and charged drug 

molecules, electroosmotic flow as solvent convectively draws the bioactive agent into 

skin along with the solvent’s movement  [96] or (less commonly) through temporary 

disruption of skin barrier function [97]. Because transport increase can occur via multiple 

mechanisms, iontophoretic delivery is not limited to just charged drug compounds.  

 

Several medical applications have found significant value in iontophoretic mediated 

delivery including: analgesics such as lidocaine [98], steroids and retinoids for acne scar 

resurfacing [99], tap water for palmar hyperhidrosis [100], pilocarpine for diagnosing 

cystic fibrosis [101] and others. Iontophoretic mediated skin delivery has been 

demonstrated to increase delivery by up to several orders of magnitude relative to passive 

diffusion across the intact skin [102]. Drug delivery can also be modulated (i.e., increased 

or decreased) by modifying current strengths below 1 mA/cm2 to minimize procedural 

discomfort. There are also accounts of delivering macromolecules such as peptides into 

skin via iontophoresis [103]. Because of these factors, iontophoresis has received 

significant attention by clinicians, patients and research communities for its ease of use 

and potential to increase delivery of small, hydrophilic and charged bioactive agents into 

skin. 
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2.4.3.2 Electroporation 

 Electroporation, like iontophoresis, involves the application of an external electric 

potential. However, unlike iontophoresis, electroporation in skin utilizes short-duration 

(up to milliseconds) and high-voltage pulse (up to hundreds of volts) to temporarily 

perturb the intercellular lipid bilayers of SC. The result of this electrical breakdown is 

believed to cause an increase (in number and or size) of aqueous pathways in the SC 

which can enable delivery into skin primarily through diffusion and electrophoretic 

movement [104]. It should be noted, while iontophoresis acts primarily to increase skin 

delivery by acting on the drug molecule, electroporation induces a physiological change 

in skin structure to increase skin delivery. Skin electrical resistance has been measured to 

dramatically decrease by up to three orders of magnitude and transdermal flux can 

increase by up to four orders of magnitude immediately after application of 

electroporation pulses.  

 

Moreover, electroporation has been shown to increase delivery of a wide range of 

bioactive agents such as application to skin tumors for delivery of chemotherapeutic 

agents [105].  Effects induced by electroporation on skin are transient, with reports 

showing up to 90% skin barrier recovery after 30 minutes and greater than 99% recovery 

after 1-2 hours [106]. Electroporation methods have also been studied in conjunction with 

other skin penetration enhancement methods to further increase delivery potential [107]. 

Although effective to increase skin permeability, electroporation has been shown in some 

settings to cause painful sensations if electrical pulses, duration or voltage are increased 

beyond certain limits [108].  
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2.4.3.3 Acoustic Methods 

Acoustic methods to increase cutaneous drug delivery have been extensively 

investigated for several decades. In such methods, ultrasonic waves are directed onto the 

skin to thereby temporarily permeabilize the SC barrier layer. Both low-frequency (f < 

100 kHz) and high-frequency (f > 1 MHz, therapeutic ultrasound) sound waves have been 

studied for their skin-penetration enhancement effects. Ultrasound-induced cavitation, 

where gas bubbles quickly grow and collapse to release shockwaves, is believed to be the 

primary driver behind low-frequency sonophoresis (LFS). In one study, 20 kHz sonic 

waves (i.e., low frequency) were applied to excised skin to demonstrate that the 

mechanism of LFS results in external bubble cavitation on the skin’s surface (i.e., not 

inside the skin) results in a temporarily disrupted skin barrier functionality [109]. High-

frequency sonophoresis (HFS) has also been demonstrated to increase skin permeability 

by focusing energy on the uppermost skin layers. HFS uses high intensity sound waves 

that are applied to skin for short durations of time (< 20 min). The increase in skin 

permeability is significantly (up to 1000 times) greater for LFS compared to HFS [110]. 

Additionally, advancements have enabled shorter application times for LFS skin pre-

treatment (between 5-30 minutes) which improves patient usability. The decreased 

application time has resulted in the use of LFS for applications such as cutaneous 

delivery analgesics, delivery of insulin for diabetes mellitus, extract interstitial fluid for 

glucose monitoring as well as others [111]. 
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2.4.4 - Microneedles 

Microneedles (MN) were first described in the 1970s but, given limitations associated 

with micro-fabrication at the time, it wasn’t until the turn of the century that MN were 

reintroduced and became available for investigation. Through the adaptation of 

microelectronic fabrication methods (e.g., photolithography), MN were developed and 

utilized to increase skin permeability, as first described by Henry et. al. [112]. MN are 

needle-like projections, typically 50-1000 µm in length, that are attached to a substrate 

such as a flat coin-sized patch that is pressed onto skin (i.e., MN Patch). As MN devices 

are applied to skin they pierce past SC and create transient-aqueous micro-punctures 

which are large enough to allow delivery of essentially any molecule regardless of 

molecular size or lipophilicity. Because of their microscopic size, MN penetrate only 

deep enough to cross the skin barrier but not deeply enough to significantly stimulate 

nerve endings and cause uncomfortable pain sensations.  

 

In addition, MN are capable of precise spatial drug delivery to the skin itself (e.g., to treat 

dermatologic conditions [113]) or near dermal capillaries for systemic delivery (e.g., for 

delivery of vaccines [114] or insulin [115]). MN-based technologies have received 

significant attention by the business, medical and research communities and multiple 

ventures have launched to commercialize the technology (e.g., Clearside Biomedical, 

Micron Biomedical, Corium International, Zosano Pharma). Several generations of MN 

have been developed for different purposes some of which are discussed further. 
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2.4.4.1 Silicon and Metal Microneedles 

The first MN that were introduced were developed with materials commonly found in the 

semiconductor industry, such as silicon, and by adapting fabrication techniques such as 

photolithography and deep reactive chemical etching. Although a strong material that is 

capable of penetrating into skin, silicon is not widely used in medicine and therefore was 

not ideal from a regulatory perspective. Moreover, silicon is a relatively expensive 

material that requires fabrication in a cleanroom environment. As a result of these factors, 

solid metal MN were developed given the established safety profile for metals in medical 

practice (e.g., stainless steel hypodermic needles), low commercial cost and relatively 

simple fabrication. 

 

Solid-metal MN have been fabricated for pre-treatment of skin followed by application of 

a topical agent. Alternatively, solid-metal MN can be coated with a bioactive molecule in 

which the coating dissolves once in the skin. In the former, solid-metal MN are pressed 

onto the skin as a pre-treatment method and a subsequent application of a substance of 

interest is applied topically to the pre-treated area. This two-step process is often referred 

to as a “poke-and-patch” method. The advantages of poke-and-patch techniques is the 

relative simplicity and adaptability to currently used topical therapies. Additionally this 

method lends well to use of MN in conjunction with other penetration enhancement 

techniques such as iontophoresis [116], sonophoresis [117] and electroporation [118]. 

 

Alternatively, solid-metal microneedles can be coated with a formulation containing a 

bioactive agent. Coated-metal MN require formulating the drug, vaccine or other 
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bioactive agent into a viscous solution which can then be dip-coated onto the surface of 

each MN structure [119]. An important characteristic of coated MN is strong adhesion of 

the coating formulation to the metal MN and maintaining a sharp tip radius that is 

capable of skin penetration. Coated MN have been used to deliver a number of bioactive 

agents into skin for applications such as influenza vaccination via delivery of virus-like 

particles [120], local anesthesia via delivery of lidocaine [121], treatment of enuresis via 

delivery of desmopressin [122]. Coated metal MN were also recently demonstrated to be 

safe and effective in a phase II clinical trial to deliver teriparatide [human PTH 1-34 

(TPTD)] for osteoporosis treatment in postmenopausal women [123].  

 

2.4.4.2 Hollow Microneedles 

Hollow MN have also been extensively studied in the context of infusing a substance of 

interest into the skin. Hollow MN have been typically fabricated out of metal or glass to 

provide mechanical strength during skin penetration and to enable relatively simple 

fabrication methods such as metal deposition [124] and glass micropipette pulling [125]. 

Tip geometries have also been extensively studied for their effects on skin insertion and 

fracture force [126]. A significant benefit of hollow MN is their capacity to quickly 

deliver relatively large payloads of any bioactive agent directly into the skin at controlled 

depths [127]. The ability to deliver formulations quickly and without significant 

reformulation (from the original liquid stock) has enabled hollow MN to be used in 

multiple applications such as insulin delivery [128], vaccination [129], anesthetics [130] 

as well as ocular drug delivery to the posterior segment of the eye [131].  
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2.4.4.3 Polymeric Microneedle Patches 

Polymeric MN offer numerous advantageous compared to their metal and glass 

counterparts. Because the MN itself is composed of a biodegradable or water-soluble 

polymer, the entire MN structure can degrade or dissolve once it penetrates the skin. 

Moreover, once the MN degrades or dissolves, there is no biohazardous sharps waste and 

the used MN patch can be disposed of without risk for accidental needle stick injury or 

needle reuse. Despite these safety and usability benefits, polymeric MN must be properly 

designed and formulated to achieve a MN tip diameter and compressive strength 

sufficient to allow for penetration into skin. Additionally, the polymeric material 

composition should degrade or dissolve quickly once it enters the skin to allow for simple 

end use. Any polymers used should also be cleared from the skin within a relatively short 

time frame and not accumulate especially if multiple polymer MN patches are 

administered to the same skin area (e.g., to treat a chronic skin condition). 

 

The wide diversity of polymeric materials which have been studied for use in drug 

delivery applications have broadened polymeric MN both in terms of manufacturing 

methods and functionality. Polymeric MN have been fabricated through techniques such 

as: solution casting [132], in situ photopolymerization [133], ultrasonic welding of micro-

particles [134] and controlled polymer drawing/evaporation [135]. All of these methods 

lend themselves well to mass production and scalability for mass manufacturing purposes 

such as in an emergency situation (e.g., pandemic) [136]. In addition, the functionality of 

polymeric MN can be tuned so delivery rate is controlled based on factors such as 

polymer degradation time or based on physiochemical triggers (e.g., pH change, glucose 
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concentration) [137-139]. Therefore, drugs or vaccines can be delivered in a spatially and 

temporarily controlled manner through proper selection of polymeric materials.  

 

In most circumstances, polymeric MN must be formulated to incorporate various 

compounds which are necessary to provide functionalities such as increased mechanical 

strength [140]. The addition of excipients like sugars, carbohydrates and amino acids is 

essential to limit activity loss of some biomolecules (e.g., vaccines, biologics, 

polypeptides) during manufacturing and storage of patches [141]. Like with other MN 

devices, polymeric MN are limited by their small size and can typically only be used to 

deliver drugs or vaccines which have small dose requirements (i.e., less than a few 

milligrams). 

 

2.4.4.4 Microneedle Roller Devices 

In addition to the MN devices already discussed, MN rollers (e.g., Dermaroller) 

have also been developed. Rather than a flat patch, which is limited in surface area (e.g., 

< 10 cm2), MN rollers incorporate MN structures onto a cylindrical body that can be 

rolled onto the skin’s surface. In this way, MN rollers can increase skin permeability 

across large surface areas which are inaccessible to traditional MN patches [142]. The 

MN roller functions as pre-treatment device where the MN roller is followed by a 

second-step topical treatment such as a transdermal patch or skin cream. Although the 

MN roller is useful to target larger skin surface areas, the two-step process is burdensome 

and may negatively impact patient compliance. There are also safety considerations 
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associated with device sterility if the MN roller is to be used multiple times (i.e., not a 

single use, disposable device). 

2.4.4.5 Ceramic Microneedles 

Due to their high compressive strength, harness and bioinert (or bioactive surface) 

properties, ceramics have become widely used within orthopedic and dental applications 

[143]. Numerous materials have been studied including alumina, titanium dioxide, 

calcium phosphate, zirconium, hydroxyapatite and others. Likewise, ceramics have been 

applied to the fabrication of MN devices [144]. In contrast to polymeric materials which 

typically have a Young’s Moduli of less than 10 GPa, ceramics have very large Young’s 

Moduli which are generally greater than 100 GPa [145, 146]. The high strength of 

ceramic materials make them an ideal choice for applications that require robust 

mechanical properties. Because ceramics are porous materials they can be used to slowly 

deliver a substance of interest which has been incorporated into the microporous network. 

Despite these advantages, ceramics are significantly more difficult to process relative to 

metal, glass and polymer MN due to the need for high-temperature sintering processes 

which can reach 1600°C for full densification. There are, limited reports of self-setting 

ceramics, which do not require high temperature sintering cycles to achieve desired 

strengths but further investigation is required [147]. 
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Chapter 3 : STAR particles for delivery enhancement of topical 

compounds to skin 

 
 
 
3.1 ABSTRACT 
 
Delivery of bioactive compounds to skin is severely limited by the stratum corneum 

barrier layer. Towards the goal of increasing skin permeability, we developed a novel 

technology called Skin Treatment and Rejuvenation (STAR) particles. STAR particles 

incorporate micro-scale projections, similar in size to those found on conventional 

microneedle patches, onto millimeter-scale particles which painlessly pierce superficial 

skin layers during their application. As such, STAR particles can be added directly into 

topical formulations, as an inert mechanical-penetration enhancer, and applied similarly 

to conventional topical skin products. In this work, STAR particles were designed, 

fabricated and developed to increase delivery of topically applied compounds. STAR 

particles fabricated from stainless steel (mSTAR) were demonstrated to increase delivery 

of sulforhodamine B up to 90-fold. mSTAR particles were demonstrated to be safe and 

efficacious when applied to skin of hairless rats in vivo. Next, STAR particles were 

fabricated from alumina (cSTAR), a common material found in conventional topical 

products, and demonstrated to increase skin delivery for bioactive compounds of clinical 

significance (e.g., 5-fluorouracil, methotrexate, bleomycin) by up to 6-fold. Finally, 

mSTAR particles were applied to a small cohort of human participants and demonstrated 

to be safe, tolerable, acceptable and efficacious. These results demonstrate for the first 

time that STAR particles significantly increase delivery of topically applied therapeutics 

into skin. 
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3.2 INTRODUCTION 

Cutaneous disorders are among the most prevalent medical indications in the world, 

estimated to affect 30 to 70% of the global population, and cause considerable physical, 

economic and psychosocial distress to those affected [15, 148-152]. Despite the 

significant clinical need for efficacious skin therapies, only a small subset of bioactive 

compounds possess the necessary physicochemical properties that allow for passive 

absorption past the skin’s stratum corneum (SC) barrier layer [4, 153]. As a result of the 

SC barrier layer, most topical therapies have limited bioavailability and therefore poor 

therapeutic efficacy for treatment of cutaneous disorders [154-156]. In addition, although 

some dermatoses result in a compromised SC barrier functionality (e.g., psoriasis, warts), 

skin permeability in diseased skin is still limited due to a variety of factors (e.g., 

hyperkeratosis) [157]. 

 

Due to limited skin permeability, a large number of dermatologic compounds are 

delivered systemically, either by injection or (more commonly) via oral formulations. 

Injections are commonly used for systemic delivery of macromolecules which would 

otherwise degrade or not be sufficiently absorbed in the gastrointestinal tract (e.g., 

Etanercept, Adalimumab) [158, 159]. Alternatively, oral formulations can be used as a 

simple, non-invasive method to systemically deliver bioactive compounds (e.g., 

isotretinoin, methotrexate, cyclosporine) [23, 160]. Although effective for delivery of 

many dermatologic compounds, systemic administration methods, in general, distribute 

drugs throughout the body in a non-targeted manner. As a result of poor drug localization 

to the skin, systemically administered drugs often require large-initial doses, which 
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increases the overall cost of therapy and potential risk for adverse, off-target side effects 

(e.g., nausea, hepatic toxicity, teratogenicity) [161-163]. 

 

To overcome limitations associated with conventional skin delivery methods, intensive 

efforts by the pharmaceutical and medical research communities have gone towards 

increasing skin permeability. Formulation-based approaches (i.e., chemical penetration 

enhancers, CPE) fluidize the lipid-rich SC to enhance delivery of small, lipophilic 

molecules by a few fold, thereby marginally increasing the number of drugs that can be 

administered to skin [164]. Despite their enhancement effects, CPE are associated with 

adverse side effects (e.g., skin irritation) and are generally not useful for delivery of 

macromolecules like biologics [165]. Alternatively, intralesional injections have been 

explored for delivery of dermatologic agents to treat localized, relatively small skin 

surface areas (e.g., warts, non-melanoma skin cancer) [81, 166].  

 

Additionally, physical-based approaches (e.g., iontophoresis [167], electroporation [104], 

ultrasound [168]) enable delivery of hydrophilic drugs and macromolecules, such as 

peptides/proteins and DNA/RNA, but typically involve devices used to treat small areas 

of skin. Also, many of these devices require complex, costly equipment (e.g., requiring 

electric power, batteries, etc.) that limits their usability, especially for indications 

requiring patient self-administration. Transdermal and microneedle (MN) patches [114, 

169-171] provide a simple and low-cost means for patients to self-administer therapies. 

However, patch-like technologies are predominantly used for delivery of systemic drugs 

and vaccines, and not useful for treatment of large, disseminated body surface areas. 
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In summary, current skin delivery technologies, although useful for certain medical 

indications, have not overcome several limitations that would enable their use in 

treatment of dermatologic disorders as a whole. In envisioning an ideal skin delivery 

technology, several key criteria must be realized. First, the technology should locally 

(i.e., non-systemic) increase skin delivery to spatially target the skin and reduce potential 

adverse, off-target side effects. Second, the technology should increase skin permeability 

to a wide variety of drug molecules – ranging from small molecules to protein 

therapeutics. Third, the technology should be safe, tolerable and not cause procedural 

discomfort for patients. Fourth, because skin diseases can manifest in various ways, the 

technology should be capable of treating both small and large skin surfaces. Finally, the 

technology should be simple to use, enable patient self-administration and low-cost so as 

to not be economically burdensome for those who require chronic treatment. 

 

Herein, we report for the first time the development and characterization of a novel Skin 

Treatment and Rejuvenation (STAR) particle for increased delivery of bioactive 

molecules into skin. STAR particles are millimeter-scale particles with micron-scale 

projections that minimally invasively pierce the skin during their topical application (Fig. 

2.1). Because of their relatively small size, STAR particles can be directly incorporated, 

as an inert formulation additive, into topicals and thereby applied to skin in a manner that 

is indistinguishable from conventional skin products (e.g., sunscreen). As STAR particles 

are applied to the skin’s surface, the microscopic needle-like projections (i.e., “arms”) 

penetrate the uppermost skin layers and thereby act to increase skin permeability to 
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topical compounds. In this way, STAR particles take advantage of formulation based 

delivery methods which can be applied across any size skin surface area – large or small. 

Additionally, STAR particles can be fabricated from commercially available, low cost, 

biocompatible and environmentally benign friendly materials. In the following sections, 

we will explore the use of STAR particles for delivery enhancement of topical therapies 

to skin. 

 

Fig. 3.1: STAR particles are millimeter-scale particles with micro-scale projections. 
Metal STAR particle(s) containing six arms on a fingertip (A); lying on a flat substrate 
(B); and applied to skin ex vivo (C). 
 

3.3 MATERIALS AND METHODS 

3.3.1 - Fabrication of metal STAR particles. mSTAR particles were fabricated via 

infrared laser ablation (Resonetics Maestro, Nashua, NH) of stainless steel sheets (Trinity 

Brand Industries, SS 304, 12.5 µm thick; McMaster-Carr, Atlanta, GA). Stainless steel 

sheets were mounted to a glass substrate using double sided adhesive tape (3M, 

C 

5 mm 

B 

1 mm 

A 
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Minneapolis, MN). The infrared laser was operated at 1000 Hz, 20 J/cm2 energy density, 

10 mm/s cutting velocity, 10 mm/s stage velocity and 80% attenuation of laser energy. A 

single pass was sufficient to cut each STAR particle. STAR particles were fabricated to 

have two, four or six arms and had a total tip-to-tip length of 1 mm. Desired STAR 

particle geometries were designed in AutoCAD (Autodesk, Cupertino, CA) and the laser 

cutting process was automated using the laser programming software. mSTAR particles 

and adhesive tape were then placed in acetone (Sigma, St. Louis, MO) and vortexed for 1 

minute to dissolve away adhesive tape. The acetone wash was repeated until all tape had 

been removed. mSTAR particles were then mixed aloe vera gel (Fruit of the Earth, Fort 

Worth, TX) and stored in a closed container at room temperature until subsequent use. 

 

3.3.2 - Fabrication of ceramic STAR particles. cSTAR particles were fabricated via 

CO2 laser ablation (VLS3.50, Universal Laser Systems, Scottsdale, AZ) of 150 µm thick 

alumina-green-ceramic tapes (Maryland Tape Casting, Bel Air, MD). Briefly, green tapes 

were laser cut with laser settings of 0.1% power, 2% speed, 1000 points-per-inch (PPI) 

for a total of three passes per STAR particle. Unsintered (green) cSTAR particles were 

then placed on magnesium oxide trays (Alfa Aesar, Haverhill, MA) and sintered in high-

temperature box furnace (Carbolite Gero, RHF 16/3, Hope, UK). The temperature cycle 

used was as follows: ramp from room temperature to 600°C at 2°C/min, hold at 600°C for 

1 hour, ramp to 1600°C at 5°C/min, hold at 1600°C for two hours and finally cool to 30°C 

at 10°C/min. Following sintering, cSTAR particles were inspected using scanning 

electron microscopy (Hitachi TM3000, Tokyo, Japan) to measure cSTAR geometrical 
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features such as tip radius. cSTAR particles were stored at room temperature in a sealed 

glass container until subsequent use. 

 

3.3.3 - Preparation of excised porcine ear skin. Freshly excised porcine ears (Holifield 

Farms, Covington, GA) were washed in room-temperature water and frontal ear skin was 

carefully dissected from underlying cartilage. Subcutaneous fat was removed and excess 

hair shaved using a disposable razor (Dynarex, Orangeburg, NY). Prepared ear skin was 

gently cleansed with alcohol wipes (BD, Franklin Lakes, NJ), wrapped in aluminum foil 

pouches, and frozen at -80°C until ready for use. Prepared ears were stored in deep freeze 

for a maximum of four months before use in skin permeability studies. Skin samples that 

showed visible defects (e.g., tears in skin) or had skin-electrical resistance below 15 kW 

were discarded and not used for skin permeability studies. 

 

3.3.4 - Application of STAR particles to porcine skin ex vivo. Porcine ears were 

thawed in room-temperature water before further preparation. For skin pre-treatment 

studies, either aloe vera gel, abrasive gel (NuPrep, Weaver, Aurora, CO) or formulations 

of STAR particles suspended in aloe vera gel were applied to the surface of porcine ear 

skin. Each application consisted of placing skin on a flat surface under slight tension. For 

topical pre-treatment methods, each of the formulations were gently rubbed onto the 

skin’s surface using light pressure with the index and middle fingers in a preferentially 

curricular motion for 10 seconds. After application, the topical formulations were wiped 

away using alcohol wipes. 
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3.3.5 - Skin thickness measurements. After application of each pretreatment method, 

skin was cut into circular punches (diameter = 24 mm) to fit in a vertical Franz diffusion 

cell. The mass of each skin sample was measured and recorded. Skin density was 

approximated using previously reported literature values (ρskin=1.075 g/cm3; [172]) and 

used in conjunction with measured sample surface area (SA) and mass (m) to determine 

skin thickness (t). 

 𝑡 = #
$%×'

        (1) 

 

3.3.6 - Gentian violet staining of penetration sites. Gentian violet (GV) (Humco, 

Texarkana, TX) was applied to skin samples to determine penetration area for each skin 

pre-treatment method. GV was topically applied to pretreated skin for 15 minutes to 

allow sufficient time for staining of existing skin-penetration sites (i.e., non-intact SC). 

Excess GV stain was removed from skin by cleaning with alcohol wipes until non-

adherent residual surface staining was removed. 

 

3.3.7 - Assessment of skin penetration ex vivo. Stereoscopic images were taken 

(Olympus SZX16, Tokyo, Japan) of each pre-treated and stained skin sample. Images 

were digitally processed in ImageJ (U.S. National Institutes of Health, Bethesda, 

Maryland) to analyze skin gentian violet staining (i.e., skin penetration sites). Briefly, 

images were first converted to 8-bit greyscale. Then images were manually set to 

threshold values that would delineate skin penetration sites. Next, total gentian violet area 

was determined for each skin sample using the ImageJ analysis software. 
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3.3.8 - Evaluation of skin permeability ex vivo. Skin specimens were first mounted in 

vertical Franz diffusion cells with skin epidermis facing the donor chamber and dermis 

facing the receiving chamber. Donor and receiving chambers were then filled with 

phosphate buffered saline (PBS, Sigma Aldrich, St. Louis, MO) and 10 mM sodium azide 

(Sigma Aldrich) as a preservative agent. Diffusion cells loaded with skin were stored at 

4°C for approximately eight hours to allow for skin hydration prior to placement in a 

heating block (PermeGear HS-2, Hellertown, PA) set to 37°C. Following skin hydration, 

skin-electrical resistance was measured while skin was mounted in the diffusion cell 

using a multimeter (Fluke Model 73-III, Everett, WA) and Ag-AgCl sintered electrodes 

(E205, In Vivo Metric, Healdsburg, CA).  

 

Following electrical-resistance measurements, the donor chamber was emptied and 

replaced with 0.5 ml of 10 µM sulforhodamine B (SRB, Sigma Aldrich) or 0.5 ml of 10 

µM 4 kDa FITC-dextran (Sigma Aldrich) in PBS solution. The donor chamber was 

wrapped tightly with parafilm (Bemis, Neenah, WI) and the receiving chamber port 

capped with a rubber stopper to limit evaporation from the diffusion cell throughout the 

experiment. Aliquots of 150 µl were collected from, and fresh PBS solution was added 

to, the receiving chamber periodically throughout the experiment to measure transdermal 

transport of SRB. Solutions were measured for fluorescence intensity in a Synergy H4 

Multi-Mode Plate Reader (Biotek, Winooski, VT) with an excitation/emission of 565 

nm/585 nm. Cumulative transport was calculated and plotted as a function of time to 

determine steady state flux values for each pre-treatment method. 

 



 41 

3.3.9 - Delivery of bioactive drugs ex vivo. For delivery of bioactive agents (5-

fluorouracil (5-FU), methotrexate (MTX) and bleomycin (BLEO) excised skin was 

prepared as was done with previously described. In these studies, ceramic STAR 

particles, at a concentration of 10wt% in aloe vera gel, were applied to skin as a pre-

treatment. At the start of the study, the donor chamber PBS was emptied and replaced 

with 150 µl of 5 mg/ml 5-FU (Sigma Aldrich), 1 mg/ml MTX (TCI, Tokyo, Japan) or 1.5 

mg/ml BLEO (TCI, Tokyo, Japan). 5-FU and MTX topicals were prepared as 10 mM 

aqueous sodium hydroxide (Sigma Aldrich) solutions and BLEO was prepared in 

deionized water. At one, three and six hours of exposure to bioactive agents, the topical 

solution was carefully pipetted away and skin’s surface was washed three to five times 

with PBS solution. An 8 mm punch biopsy was then taken from the exposed skin area. 

The skin biopsy was then placed in a 1 ml of equal parts methanol (Sigma Aldrich, St. 

Louis, MO) and 10 mM sodium hydroxide in D.I. water and sonicated (Fisher Scientific, 

FS30H, Hampton, NH) for 30 minutes to extract drug from skin samples. Solutions were 

then analyzed via high pressure liquid chromatography (HPLC 1200 series, Agilent 

Technologies, Alpharetta, GA). 

 

HPLC analysis of bioactive agents. HPLC was used to quantify delivery each bioactive 

agent to skin ex vivo. All bioactive compounds were analyzed in a C18 column (Eclipse 

XDB-C18, 3.5 µm particle size, 4.6 diameter x 150 mm length). The following operating 

parameters were used for delivery quantification (Table 2). All mobile phase solvents 

used were HPLC grade (VWR, Radnor, PA). 
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Table 2: Summary of HPLC operating parameters for quantification of skin delivery ex 
vivo. 

Drug Mobile Phase l 
(nm) T (°C ) Retention 

Time (min) 
LOD 

(ng/ml) 

5-FU Constant 
(5 min) 

1 ml/min 
(70:30) 

0.1% TFA 
in water | 
MeOH 

260 40 1.5 - 98 

MTX Constant 
(10 min) 

1 ml/min 
(85:15) 

0.1% TFA 
in water | 

ACN 
303 30 1.7 4.8 39 

BLEO Gradient 
(60 min) 

1 ml/min 
(9:1) to 

(6:4) 

0.1% TFA 
in water | 
MeOH 

254 30 24.5 34.5 390 

 
5-fluorouracil (5-FU), methotrexate (MTX), bleomycin (BLEO), trifluoroacetic acid 
(TFA), methanol (MeOH), acetonitrile (ACN), UV detection wavelength (l), column 
temperature (T), drug limit of detection (LOD). 
 
3.3.11 - Cryosectioning and fluorescence imaging. Skin was removed from diffusion 

cells at 1, 6 and 24 hours to perform histological sectioning to visually assess diffusion of 

SRB or 4 kDa FITC-dextran dyes in skin samples pre-treated with six-armed mSTAR 

particles (1000 STAR/cm2, 10 seconds application, 12.5µm thickness). At each indicated 

time point, fluorescent solutions were removed from the donor chamber and skin surface 

was washed with PBS solution between 3 - 5 times. Skin samples were then removed 

from vertical diffusion cells and an 8 mm punch biopsy was taken from the center of the 

exposed tissue sample. Biopsies were embedded in optimal cutting temperature 

compound (OCT, Tissue-Tek, Torrance, CA) and frozen in liquid nitrogen. Frozen skin 

samples were stored at -80°C until cryosectioning was performed. 

 

Cryosectioning was performed by dissecting frozen skin specimens into 12 µm thick 

vertical sections with a Leica 3050S cryostat (Leica Microsystems, Wetzlar, Germany). 
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Cryostat temperature was held at -20°C during cryosectioning. Sectioned samples were 

mounted onto glass slides (VWR, Radnor, PA) and stored at -80°C until fluorescence 

imaging was performed. Fluorescence imaging of sectioned samples was conducted using 

a stereoscope with a 100W mercury burner (Olympus) to illuminate sectioned tissue 

specimens. Photographs were taken at a constant exposure of 0.1 s. 

 

3.3.12 - Assessment of metal STAR particles in vivo. Metal STAR particles were 

applied to dorsal skin of female CD hairless rats (6-8 weeks old, Charles River Labs, 

Wilmington, MA), as approved by the Georgia Tech Institutional Animal Care and Use 

Committee (IACUC). Hairless rats were anesthetized via inhalation of 1-2% isoflurane 

delivered in 100% medical grade oxygen. Before pre-treatment, pictures were taken 

(Canon 60d dSLR digital camera, Canon, Melville, NY) and skin impedance was 

measured (Prep Check EIM105, General Devices, Ridgefield, NJ) with Ag/AgCl 

electrodes on each application site. Skin sites were then pre-treated with aloe vera gel or 

mSTAR particles in gel (6 microneedle arms, 12 µm thickness, 1000 particles/cm2, 10 

second application). After removal of each pre-treatment method, non-woven cotton 

gauze pads (Crosstex, Hauppauge NY) were saturated with a 10 mM aqueous solution of 

SRB and applied to pre-treatment sites. In sites pre-treated with gel the application time 

of SRB solution was 3 h. mSTAR particle treatment sites were exposed to SRB solution 

for either 3 h or 15 min. SRB solution was reapplied every 20 min to ensure SRB 

saturation of gauze pads. 
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At the completion of the study, animals were euthanized via carbon dioxide inhalation. 

Skin was then immediately excised, cleansed with DI water and gauze pads to remove 

residual surface dye and imaged for fluorescence intensity to assess transport of SRB dye. 

Skin was also assessed for microscopic puncture sites via GV staining. 

 

3.3.13 - mSTAR particle assessment in human participants. mSTAR particles were 

applied to human subjects with informed consent to assess preliminary end points of 

safety, tolerability and efficacy as approved by the Georgia Tech Institutional Review 

Board (IRB). Study participants were screened prior to enrollment and excluded if they 

had, as assessed by the study investigator, abnormal skin within or near application areas, 

known health conditions which interfere with pain perception or allergies to materials 

used in this study. A list of demographic information and inclusion/exclusion criteria can 

be found in supplemental materials. 

 

Four skin treatments were applied to eleven study volunteers: (1) a 26 gauge hypodermic 

needle inserted to a depth of 5 mm; (2) aloe vera gel alone; (3) aloe vera gel with 0.5 mm 

diameter circular micro-disks incorporated (12.5 µm thick, 500 disks per gram of aloe 

vera gel); or (4) aloe vera gel with mSTAR particles incorporated (12.5 µm thick, 6 arms, 

500 STARs per gram of aloe vera gel). All applications were performed blinded to study 

participants but not blinded to the investigator. All skin treatments were applied by the 

study investigator. Following applications, skin was assessed and scored for erythema 

size, erythema intensity, swelling, and tenderness. Skin tolerability was determined 

through a scoring scale which can be found in supplemental materials (Table 4). 
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Participants were also asked to fill out a short questionnaire to describe their sensations 

and describe their experiences associated with the skin applications. Study participants 

returned 24 h after applications for evaluation and to complete a follow-up questionnaire. 

 

3.4 RESULTS 

3.4.1 - Design of STAR particles. Design of STAR particles was motivated by design 

elements from conventional MN patches that penetrate skin in a minimally invasive 

manner [173, 174]. Although MN with much shorter lengths have been demonstrated for 

skin penetration (e.g., < 100 µm length), such devices typically involve use of a high-

velocity applicator [175]. To satisfy the criteria of minimally invasive skin puncture and 

simple application, the arms on STAR particles were designed to be of sufficient length 

to overcome skin deformation but not so long as to induce uncomfortable sensations 

during their application. Therefore, STAR particles were designed to be 1 mm in total 

length (tip-to-tip) with an arm length of approximately 300 µm. Additionally, in some 

forms, STAR particles were designed with multiple arms (e.g., six arms, Fig. 3.1) to 

mitigate safety risks associated with embedding of STAR particles in skin. 

 

Conventional MN patches are aligned and applied to skin with a uniaxial load that aligns 

MN structures perpendicularly to the skin’s surface (i.e., MNs and application force are 

in plane). In contrast, STAR particles are rubbed onto skin to facilitate their penetration 

(i.e., STAR particles and application force are potentially out of plane). Due to their 

mechanically demanding application method, STAR particles require greater mechanical 

strength relative to conventional MN patches. Therefore, STAR particles were fabricated 
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out of stainless steel due to their high material strength (bulk modulus = 134-152 GPa), 

biocompatibility, prior use to fabricate MN patches and precedence for safe use in 

clinical medicine.  

 

It has also been determined that MN tip interfacial surface area (i.e., contact area between 

MN tip and skin) influences skin penetration force [126]. Therefore, to produce STAR 

particles with sharp tips that are capable of skin penetration we utilized laser-

microfabrication techniques previously demonstrated to fabricate MN capable of skin 

puncture [119]. We also selected material thicknesses (12.5 µm) to provide tip sharpness 

in the z-plane. 

 

3.4.2 - Skin permeabilization by metal STAR particles ex vivo. mSTAR particles were 

fabricated and topically applied to excised porcine ear skin to determine their effects on 

skin barrier function. Skin permeability was characterized by: (1) staining skin with GV 

to visualize non-intact SC (i.e., puncture sites); (2) measuring transdermal delivery of the 

fluorescent model compound SRB; and (3) quantifying skin-electrical resistance to 

determine skin barrier integrity. 

 

Following application of gel, abrasive particles or mSTAR particles, skin permeability 

was visually assessed through GV staining. GV is a topical antiseptic that preferentially 

stains regions of non-intact SC and has previously been used to visualize micron-scale 

skin puncture sites [176]. Skin pre-treated with aloe vera gel or abrasive particles did not 

produce significant GV staining (Fig. 3.2A-B). In contrast, mSTAR particle pre-
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treatment of skin was observed to show a multitude of disseminated GV staining sites 

distributed across the STAR application area (Fig. 3.2C). These observations 

demonstrate that STAR particles can act to create micro-scale puncture sites in skin 

which can be visualized by GV staining. Moreover, these results demonstrate that STAR 

particles are not functionally similar to skin abrasives, but rather STAR particles act to 

puncture skin at discrete microscopic sites. The distinction in functionality, from 

conventional abrasives, may reduce the amount of tissue damage required to increase 

skin permeability. 

 

Next, skin permeability was assessed by measuring transcutaneous delivery of SRB. 

Following application of each pre-treatment method, skin-electrical resistance and steady 

state flux values (J) were measured (Fig. 3.2D-E). 

 

To begin, intact skin (i.e., untreated skin) was used as a negative control. As expected, 

intact skin had high skin-electrical resistance and low steady state flux. Next, gel pre-

treatment was investigated to determine measurable effects on skin permeability. Gel pre-

treated skin showed non-significant differences in skin-electrical resistance and steady 

state flux relative to intact skin. Next, abrasive particle pre-treatment acted as another 

control to determine if skin abrasion increases skin permeability. Abrasive particle pre-

treatment resulted in a small but statistically significant decrease in electrical resistance 

relative to intact skin but negligible effect on steady state flux as assessed by Student’s t-

test. The result for abrasive gel was not unexpected, as abrasive gels are commonly used 
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to decrease skin resistance (e.g., prior to application skin electrodes for 

electrocardiograms) but not generally used for skin delivery enhancement. 

 

Steady state flux values of mSTAR particle pre-treated skin significantly increased 

delivery enhancement relative to intact skin as supported by Student’s t-test. Enhanced 

skin permeability generally increased along with to the number of arms per mSTAR 

particle and concentration of mSTAR particles applied as supported by two-way 

ANOVA. The results for skin-electrical resistance and steady state flux are corroborated 

by our visual observations of GV surface staining following each pre-treatment methods 

(Fig. 3.2A-C). These results provide evidence that STAR particles can be used to 

increase skin permeability more significantly than other skin treatment methods (e.g., 

skin abrasion) and thereby enhance delivery of topical compounds. These results also 

demonstrate that STAR particle geometry and concentration can be used as adjustable 

parameters to control skin delivery enhancement. 

 

It is envisioned that STAR particles may potentially be used as an additive to topical 

formulations (i.e., left on the skin after their application). Therefore, we sought to 

determine if STAR particle application without removal would impact skin permeability.  

To accomplish this, we applied mSTAR particles to skin but did not wipe them away 

after application. No significant difference in skin-electrical resistance or steady state flux 

was measured for skin where mSTAR particles were left on or wiped away (Fig. S 1). 

We conclude that leaving mSTAR particles on skin (i.e., without removal after 

application) did not significantly impact skin permeability or delivery enhancement. 
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Fig. 3.2: Determination of mSTAR particle effects on skin permeability ex vivo. 
Representative en face images of GV-stained skin following pre-treatment with aloe gel 
(A); abrasive gel (B); or mSTAR particles containing four arms (C). Steady-state flux (J) 
of SRB across full-thickness skin ex vivo for varying STAR particle geometries and 
topical concentrations (D). Respective skin-electrical resistance measurements for pre-
treated porcine cadaver skin (E). Statistical significance is shown for all pre-treatment 
groups in comparison to aloe gel pre-treatment. Data show averages ± s.e.m. (n = 4). 
Symbol key: (*p £ 0.05); (** p £ 0.01); (*** p £ 0.001); (****p £ 0.0001). 
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3.4.3 - Imaging of transdermal delivery across skin ex vivo. Skin delivery 

enhancement was visualized in aloe gel and mSTAR pre-treated skin via histological 

assessment. Skin pre-treated with gel showed negligible fluorescence across 1, 6 and 24 h 

of exposure to both SRB and FITC-dextran (Fig. 3.3A,C). In contrast, mSTAR particle 

pre-treated skin was observed to show greater delivery of both SRB and FITC-dextran 

(Fig. 3.3B,D) with the most evidence for delivery enhancement apparent after 6 and 24 h 

topical exposure. These results visually confirm that mSTAR particles significantly 

increase skin permeability and enable enhanced delivery of topically applied compounds. 

 
 
Fig. 3.3: Visualization of enhanced skin delivery with mSTAR particles. Representative 
images of cryosectioned porcine skin exposed to SRB or 4 kDa FITC-dextran fluorescent 
model drugs for 1 (A1, B1, C1,D1), 6 (A2, B2, C2, D2) or 24 (A3, B3, C3, D3) h 
following pre-treatment with gel (A,C) or mSTAR particles ex vivo (B,D).  
 
3.4.4 - Skin permeabilization by mSTAR particles in hairless rats in vivo. Gel or 

mSTAR particles were applied to hairless rat skin to assess skin tolerability and STAR 

particle efficacy to increase skin permeability in vivo. Skin application sites treated with 

either gel or mSTAR particles showed no significant erythema, irritation, swelling or 
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bleeding following skin pre-treatments (Fig. 3.4A). In addition, skin treated with gel was 

observed to have minimal GV staining while skin pre-treated with mSTAR particles was 

observed to have disseminated GV staining in the form of discrete microscopic spots 

thereby indicating the STAR particles had performed their function to puncture into skin 

(Fig. 3.4B,C). Skin-electrical resistance was also measured and showed significant 

decrease for skin pre-treated with mSTAR particles relative to gel treated skin (Fig. S 2). 

Collectively these results demonstrate that (1) STAR particles were well tolerated in skin 

on live animals with no adverse effects observed; and (2) function to increase skin 

permeability, as was observed in excised tissue, through the creation of microscopic 

puncture sites in skin. 

 
 
Fig. 3.4: Tolerability of mSTAR particles in vivo. Representative image of hairless rat 
skin in vivo following treatment with gel (A1) or mSTAR particles (A2 and A3). 
Representative en face images of GV stained hairless rat skin treated with gel (B) or 
mSTAR particles (C). 
 

3.4.5 - Enhanced skin delivery using STAR particles in vivo. To assess skin delivery in 

vivo we examined and quantified skin fluorescence en face. Skin unexposed to SRB 

showed negligible fluorescence (Fig. 3.5A). It was observed that skin treated with gel 

showed only slight fluorescence (Fig. 3.5B). In contrast, mSTAR particle pre-treated skin 
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was observed to show bright fluorescence intensity after exposure to topical SRB for 

either 15 min (Fig. 3.5C) or 3 h (Fig. 3.5D). Surface-fluorescence intensity was 

quantified for each pre-treatment method and showed a 1.9-fold increase in fluorescence 

intensity for mSTAR pre-treatment compared to gel treatment alone (Fig. 3.5E). These 

results support previous conclusions that STAR particles increase skin permeability and 

increase delivery of topical compounds. 
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Fig. 3.5: Representative en face fluorescence images of hairless rat skin in vivo 
unexposed to SRB (A), pre-treated with gel (B) or mSTAR particles (C, D) and exposed 
to SRB. Mean fluorescence intensity in arbitrary units per square centimeter (A.U./cm2) 
of SRB delivered into hairless rat skin for three hours or 15 min in vivo following pre-
treatment with aloe vera gel or mSTAR particles (E). Data show average ± s.e.m. (n = 4). 
 
3.4.6 - Drug delivery to skin using ceramic STAR particles ex vivo. cSTAR particles 

were fabricated out of alumina (Al2O3) as a means to produce STAR particles out of a 

biocompatible, low-cost and environmentally friendly material. Moreover, metal oxides 

2 mm 

B 

C 

A 

D 

E 



 54 

are extensively used in topical formulations within several applications (e.g., titanium 

dioxide in sunscreen or iron oxides in topical skin abrasives). cSTAR particles were 

fabricated via laser ablation and high temperature sintering of alumina green tape. 

Fabricated cSTAR particles with three-arms were measured to have an average tip radius 

of curvature of approximately 14 µm. Other cSTAR geometries were also fabricated. 

However, three-armed cSTAR particles were chosen for further investigation due to their 

relative tip sharpness and shorter manufacturing time (Fig. 3.6A). 

 

As was previously demonstrated with metal, cSTAR particles were applied to porcine 

cadaver skin to demonstrate their effects to increase skin permeability via a simple 

topical application method. Three drugs, used clinically for dermatologic indications, 

with diverse physicochemical properties, were selected to demonstrate increased drug 

delivery into cSTAR particle pre-treated skin: 5-florouracil (5-FU; Mw = 130 Da; logP = 

-0.9), methotrexate (MTX; Mw = 454 Da; logP = -1.8) and bleomycin (BLEO; Mw = 

1415 Da; logP = -7.5). cSTAR particle treated skin was then GV stained and skin-

electrical resistance measured for assessment of skin barrier integrity. We observed that 

skin treated with cSTAR particles showed similar disseminated GV staining pattern 

across the treated skin area (Fig. 3.6B). Additionally, skin-electrical resistance after 

cSTAR application was reduced to approximately 1 kW, which is an order of magnitude 

in reduction compared to gel treated skin. Also, in all cSTAR particle applications, no 

mechanical failure was observed (i.e., cSTAR particles looked essentially unchanged 

before and after topical application). These results demonstrate that cSTAR particles 

functioned, similarly to mSTAR particles, to increase skin permeability by puncturing 
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into skin at discrete locations. These observations also provided qualitative evidence that 

cSTAR particles are have sufficient mechanical strength and low probability of breaking 

during their application to skin. 

 

The total quantity of drug delivered to pre-treated skin was quantified as a function of 

drug application time (Fig. 3.6C). After 6 h of topical application for each drug, delivery 

enhancement in cSTAR pre-treated skin relative to gel pre-treatment was 5.7-, 4.7 and 

(approximately) 2-fold increase for 5-FU, MTX and BLEO, respectively. Delivery of 

BLEO was below the limit of HPLC detection for gel treated skin. Therefore, the fold-

delivery enhancement is reported in relation to the limit of detection. These results 

demonstrate that cSTAR particles enhance delivery of clinically relevant drugs with 

diverse physiochemical properties. Standard curves for each bioactive molecule are 

provided in supplementary materials (Fig. S 6). 
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Fig. 3.6: Demonstration of cSTAR particles to deliver clinically relevant drugs ex vivo. 
Representative image showing several hundred cSTAR particles (A) and scanning 
electron microscopy image showing a single cSTAR particle (A). En face image of GV 
stained porcine cadaver skin following pre-treatment with cSTAR particles (B). Drug 
delivered into skin pre-treated with gel or three-armed cSTAR particles ex vivo (C, n = 
3). Data show average ± s.e.m. Symbol key: (*p £ 0.05); (** p £ 0.01); (*** p £ 0.001); 
(****p £ 0.0001). Note: Delivery of BLEO into gel treated skin was below the limit of 
detection for HPLC. 
 
 
3.4.7 - Assessment of STAR particle safety, tolerability, efficacy and acceptability in 

human participants. To assess their safety, tolerability, efficacy and acceptability, 

mSTAR particles were applied to the forearms of 11 human participants. Following pre-

treatment methods, we examined GV stained skin areas under magnification to determine 

if there existed skin puncture sites. Skin pre-treated with aloe gel showed no GV staining 

(Fig. 3.7A). In contrast, we observed characteristic, microscopic GV-stained sites 

indicating skin puncture in mSTAR particle pre-treated skin (Fig. 3.7B). We conclude 
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from these observations that mSTAR particles were efficacious to puncture into skin of 

human subjects. 

 

Next, skin application sites were imaged after (Fig. 3.7C) treatments and again after 24 

hours (Fig. 3.7D) to assess for adverse skin reactions such as erythema, bleeding or 

swelling. mSTAR particles were very well tolerated by study participants. The only 

notable effect was very slight redness that was barely perceptible at the application site 

for mSTAR particles. As reported by study participants, any redness present at the 

application site immediately after application was transient and disappeared within 

several hours. Moreover, after 24 h, there were no redness or other observations at the 

mSTAR particle application site. 

 

Tolerability scores to assess erythema size, erythema intensity, tenderness and swelling 

were quantified on a four-point scale (grade 0 = no observable effect, grade 4 = strongest 

observable effect) (Fig. S 3). Almost all study participants showed at grade 1 erythema 

size and erythema intensity score for hypodermic needle application. A small number of 

participants also reported tenderness for hypodermic needle application. Both gel and 

micro-disk application sites did not induce any erythema, tenderness or swelling. Most 

mSTAR particle application sites showed grade 0.5 to 1 scores for erythema size and 

erythema intensity but no other observed effects. In summary, mSTAR particle 

application was very well tolerated by study participants and only produced very slight 

transient erythema that was contained to the application area and disappeared shortly 

after application. 
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Fig. 3.7: Assessment of mSTAR particles in human subjects. Representative images of 
GV stained human skin on the forearm pre-treated with aloe gel (A) or mSTAR particles 
(B). Representative images of skin site immediately (C) and 24 h after (D) application of 
mSTAR particles. Black arrows indicate STAR particle application area. 
 
Additionally, study participants were asked to fill out a brief questionnaire following skin 

applications to provide feedback on experienced sensations (Fig. S 4). Application of 26-

gauge needle was most commonly described with pain (91% of participants) and stinging 

(73% of participants) sensations. These sensations were also more likely to be described 

with strong perceptions (i.e., moderate and strong). Gel and micro-disk applications had 

minimal sensations as reported by study participants. mSTAR particles were most 

commonly described with tingling (82% of participants) and stinging (64% of 
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participants) sensations. In addition, the majority (73%) of participants reported only 

comfortable sensations for mSTAR particle applications. We conclude from these 

findings that mSTAR particles were well accepted and not associated with significant 

procedural discomfort when applied to skin of human subjects. 

 

Finally, all study participants noted that they would feel (very) comfortable applying 

STAR particles alone and the vast majority (91%) described their experience as (very) 

similar to other skin products (Fig. S 5). This feedback suggests that STAR particles are 

considered to be highly user friendly and similar to conventional topical skin products 

which are commonly self-applied with no prior training. 

 
3.5 DISCUSSION 

This study examined the design, fabrication and development of a novel skin delivery 

enhancement technology called STAR particles. We designed STAR particles to meet a 

set of criteria that were motivated by the medical need for safe, tolerable, minimally 

invasive, simple, low-cost and efficacious skin therapies. 

 

First, STAR particles were designed to increase skin permeability and enhance delivery 

of topically applied compounds. To accomplish this goal, STAR particles were fabricated 

to have sharp protrusions (i.e., arms) that, when applied to skin, created microscopic 

puncture sites and facilitated skin delivery. We were able to visualize a multitude of 

disseminated microscopic puncture sites across STAR particle treated skin through GV 

staining. We also demonstrated STAR particle delivery enhancement, with SRB and 4 

kDa FITC-dextran, ex vivo through measurement of steady state flux and visualization of 
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frozen skin in cross section. STAR particle parameters (e.g., geometry, concentration) 

were also modified to alter delivery enhancement up to 90-fold ex vivo. Finally, STAR 

particles created microscopic skin punctures and increased topical delivery in hairless rat 

skin in vivo. 

 

Next, STAR particles were designed to be minimally invasive, safe and tolerable. To 

satisfy these objectives, STAR particles were fabricated to have arms measuring just 

several hundred microns in length (approximately 300 µm). This length was chosen 

based on prior learnings from MN patches which have been designed to overcome skin 

deformation but not penetrate deeply into skin and cause uncomfortable sensations. In 

addition, STAR particles were designed to have multiple arms that radially emanate from 

a central core structure. Their stellate shape prevents the entire STAR particle from fully 

embedding in skin to minimize potential safety risks (e.g., foreign body reaction). In 

these studies, STAR particles were demonstrated to be minimally invasive, safe and 

tolerable in application to animal skin in vivo and to skin of human participants. STAR 

particle skin applications generally produced a very slight, transient erythema that was 

barely noticeable but no other adverse reactions were observed. Moreover, in human 

studies, the majority of STAR particle skin applications were described as comfortable 

and most commonly associated with (very) slight tingling and/or stinging sensations. 

 

A final criterion that we sought to achieve for STAR particles relates to their ease of use 

and treatment flexibility. Delivery technologies that can easily treat flexible surface areas 

is crucial for skin disorders which can manifest across large or small, localized or 
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disseminated surface areas (e.g., psoriasis, vitiligo, warts). Formulation-based strategies 

are ideal for simple and flexible skin applications. Therefore, to accomplish this goal, we 

designed STAR particles to be used as an additive ingredient to topical formulations (i.e., 

incorporated into viscous topical products). The main challenge was to fabricate STAR 

particles from strong materials to enable their functioning during skin application without 

breakage. Towards that end, STAR particles were fabricated from biocompatible, low-

cost and high-modulus materials such as stainless steel (mSTAR) and alumina (cSTAR). 

In this way, STAR particles were efficacious to increase skin permeability over flexible 

size skin surface areas through a simple and intuitive application method. 

 

In comparison to other formulation-based technologies (i.e., CPE and abrasives), STAR 

particles similarly enable simple and flexible skin application. However, CPE can cause 

skin irritation and abrasive particles reduce barrier properties (i.e., skin-electrical 

resistance) without significantly increasing delivery. In contrast, STAR particles were 

observed to be very well tolerated when applied to animal skin in vivo and to skin of 

human participants. STAR particles were also able to significantly increase skin delivery 

many fold over skin abrasive agents. There are also a class of physical-based delivery 

technologies (e.g., iontophoresis, ultrasound, electroporation) which are effective to 

increase skin delivery without significant adverse skin effects. However, such 

technologies are not generally useful for application across large skin areas and typically 

require use of complex, costly and/or bulky equipment. Alternatively, STAR particles can 

increase skin permeability similarly to physical-based delivery technologies but in a 

flexible and low-cost platform. 
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Additionally, STAR particles increased delivery of several clinically relevant bioactive 

compounds. Although further investigation is required, these results motivate the 

usefulness of STAR particles to enhance cutaneous delivery and enable more efficacious 

skin treatment. For example, superficial non-melanoma skin cancers can be treated with 

topicals such as 5-FU. However, due to limited bioavailability, topicals therapies have 

low efficacy for non-superficial malignancies [78, 177]. Increased delivery and 

penetration depth of 5-FU may potentially enable its use to treat thicker, more invasive 

skin cancers types. Next, MTX is a common oral medication used for treatment of 

psoriasis. Although efficacious, MTX can be associated with adverse side effects such as 

hepatic toxicity and nausea. Systemic toxicity may potentially be reduced, and 

therapeutic efficacy increased, if MTX delivery is increased locally to psoriasis plaques 

[178, 179]. Finally, BLEO is delivered via injection for several dermatologic indications 

(e.g., treatment of warts, basal cell carcinoma) [166, 180]. Providing a simple and 

effective topical application method to deliver BLEO may potentially expand its 

usefulness and usability for treatment of skin disease. In summary, STAR particles can 

increase cutaneous bioavailability of bioactive compounds and potentially enable more 

efficacious, tolerable and user-friendly treatment of skin disease. 

 

Although skin delivery enhancement was reported in this work, the usefulness of STAR 

particles may potentially be useful in other medical applications. For example, delivery of 

therapeutic biomolecules to other relatively large, difficult to reach and/or 

topographically complex biological barriers (e.g., oral cavity [181], nasal cavity [182], 
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eye [183], GI tract [184] and vasculature [185]) may be investigated in future studies 

with STAR particle formulations that have been designed for each specific application. 

 

In conclusion, cutaneous drug delivery is limited due to the skin’s relatively large surface 

area and formidable barrier functionality. To overcome these limitations, we designed, 

fabricated and developed a novel skin delivery platform technology called STAR 

particles. STAR particles were incorporated, as an inert additive ingredient, into topical 

formulations and increased skin permeability in a user-friendly, flexible, minimally 

invasive and low-cost manner. Collectively, these results demonstrate, for the first time, 

that STAR particles dramatically enhance skin delivery and provide a means to broaden 

the range of molecules capable of being delivered to the skin. 

 

3.6 ACKNOWLEDGEMENTS 

The authors would like to thank D. McAllister, S. Henry and W. Pewin for helpful 

technical and regulatory discussions; R. Schafer for his expertise and maintenance of 

laser equipment; A. Santiago for her assistance with conducing transport studies; and D. 

Bondy for her administrative support. 

 

3.7 CONFLICT OF INTEREST 

A. Tadros and M.R. Prausnitz are inventors on a patent and have a financial interest in a 

company developing STAR particle-based products for cutaneous delivery of bioactive 

agents (i.e., Microstar Biotech). The potential conflict of interest has been disclosed and 

is overseen by Georgia Institute of Technology. 



 64 

Chapter 4 : Fabrication and characterization of metal and 

ceramic STAR particles 

4.1 ABSTRACT 

Cutaneous delivery of therapeutic compounds is limited by skin’s stratum corneum 

barrier. Microneedle patches have been shown to increase skin permeability but are 

limited to small treatment areas. To enable application of microneedles to large areas of 

skin, we developed particles containing microneedles (aka STAR particles) to 

microscopically puncture skin while rubbing on topical formulations as a simple-to-use, 

painless, low-cost and effective means to increase skin permeability. STAR particles 

were fabricated from biocompatible stainless steel or alumina, and found to increase skin 

permeability with increased application time, concentration of STAR particles and 

increased number of their microneedles. Rubbing STAR particles on porcine skin ex vivo 

increased transdermal delivery of sulforhodamine B and 4 kDa FITC-dextran by up to 

98-fold and 15-fold, respectively, and reduced skin electrical resistance by at least an 

order of magnitude. Transport across skin treated with STAR particles was modeled as 

simple diffusion through micro-pores in skin, and was in general agreement with 

experimental results. Sintering temperature above 1200°C was needed to produce 

mechanically robust cSTAR particles capable of skin puncture. We conclude that STAR 

particles provide a simple, formulation-based method to increase skin permeability to 

topically applied compounds. 
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4.2 INTRODUCTION 

Delivery of bioactive agents into and through the skin is important for treatment of 

cutaneous disorders (e.g., psoriasis, eczema, acne) and other medical indications (e.g., 

birth control, vaccination) [2, 77]. Although the skin is easily accessible relative to other 

organ systems, delivery is severely limited by the skin’s formidable barrier properties [9]. 

The skin derives its barrier functionality from the outermost stratum corneum (SC) layer 

[4]. The SC is approximately 10 – 25 µm thick and composed of densely packed, 

terminally differentiated keratinocytes (i.e., corneocytes) which form a lipophilic 

membrane, primarily composed of free fatty acids, ceramides and cholesterol, that 

preclude water-soluble and macromolecular compounds from entering the body [186, 

187]. In addition to limited skin permeability, effective delivery of bioactive compounds 

across large body surface areas can be difficult, which is of particular importance for 

treatment of dermatologic and cosmeceutic indications that can often manifest across 

large portions of a patient’s body (e.g., > 10% body surface area involvement) [188, 189]. 

 

Many drugs are delivered to skin topically [190]. Topicals are simple to apply, non-

invasive and generally well accepted by most patient populations. However, as discussed, 

because of the SC barrier only a small subset of bioactive agents can passively diffuse 

into skin. This SC barrier also hinders the clinical efficacy of already used topical drugs 

(e.g., 5-fluorouracil, imiquimod, methyl 5-aminolaevulinate) which have limited 

therapeutic value for skin indications with non-superficial involvement  [177, 191].  
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When topical agents are ineffective due to limited skin permeability, systemic 

administration methods can be used. Systemic agents are usually administered orally 

(e.g., tablet, capsule) or via injection (i.e., by needle and syringe). Systemic agents are 

highly effective at delivering large doses across large body surface areas without being 

limited by poor skin penetration. However, systemic agents distribute drugs across the 

body in a non-spatially-targeted manner which can, in many cases, result in adverse off-

target effects that lower patient quality of life (e.g., nausea, hepatic toxicity, birth defects) 

[161, 192]. Additionally, to achieve therapeutic concentrations within the skin, high 

initial drug dosing should be administered because only a small fraction of the initial dose 

reaches the skin. Finally, bioactives which are degraded in the GI tract (e.g., biologics) 

cannot be orally administered and are therefore injected by needle and syringe (e.g., 

subcutaneous, intramuscular, intralesional) which causes procedural discomfort for 

patients which may thereby lead to reduced therapy compliance [193, 194]. Although 

systemic delivery methods overcome skin permeability limitations, they introduce other 

limitations associated with adverse side effects, poor-spatial targeting and ease of 

administration. 

 

To overcome the limitations associated with conventional skin delivery methods, several 

methods have been developed to increase skin permeability [195]. Chemical penetration 

enhancers can be added directly into topical formulations to increase delivery of some 

molecules by several-fold [164]. In addition to their delivery enhancement, chemical 

penetration enhancers are advantageous because they are easily applied to skin as a 

formulation based additive which minimizes the need for end-user training. However, 
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effective chemical penetration enhancers tend to cause skin irritation and chemical 

penetration enhancers are not broadly useful for many bioactive agents (e.g., 

macromolecules like proteins, peptides) [196]. Alternatively, physical means to increase 

skin permeability (e.g., iontophoresis [100], electroporation [104], sonophoresis [197]) 

can be used to increase skin permeability. Physical penetration enhancement methods 

function by imparting energy in a spatially targeted manner towards the skin to thereby 

increase skin permeability to exogenous molecules. Such types of medical devices are 

also highly effective at delivering a wide class of bioactive agents including water-

soluble and macromolecular entities. However, many physical penetration enhancement 

methods are limited by their complexity, high-cost and difficulty to use across larger skin 

surface areas. 

 

More recently, microneedle (MN) patches have been used to increase skin permeability 

and deliver small-molecule drugs, protein therapeutics and vaccines that would otherwise 

require injection, and do so in a minimally invasive, painless, cost-effective and simple-

to-use manner [114, 169, 170, 198]. MN patches contain needle-like projections 

(approximately 100-1000 µm in length) that are incorporated onto a macro-scale patch. 

Although MN patches have numerous advantages, because of their small footprint, they 

cannot easily treat large skin areas (e.g., > 10 cm2). A variation on MN patches that has 

been developed to resolve the skin surface area limitation is the MN roller [142]. The MN 

roller incorporates MN onto a cylindrical body that can be rolled onto the skin’s surface 

to thereby pre-treat large areas across the body. However, the MN roller procedure is 

performed as a two-step application process (i.e., first apply the MN roller, then apply a 
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topical product) which complicates end usability. Additionally, MN rollers are multi-use 

devices (i.e., not single-use devices) which potentially increases safety risks if not 

properly sterilized between uses or if the same device is used by multiple individuals. 

Given the limitations associated with current skin delivery technologies, there is a need 

for novel technologies that increase skin permeability, especially to hydrophilic 

molecules and macromolecules, across large skin areas in a simple-to-use and low-cost 

manner. 

 

To that end, we have introduced STAR particles, which leverage the MN technology 

platform in a way that enables drug delivery to large areas of skin. Instead of 

incorporating MNs onto a macro-scale patch, STAR particles incorporate MN onto 

millimeter-scale particles. Because of their particulate nature, STAR particles can be 

added into topical formulations and applied to the skin through a simple rubbing motion 

that is analogous to application of other topical products (e.g., sunscreen). As they are 

applied to skin, STAR particles are designed to painlessly puncture across SC to create 

transient, aqueous micro-pores through which topical compounds can more readily be 

absorbed. Additionally, STAR particles can be spread across any size skin surface area 

(large or small), which makes them ideal for cutaneous disorders that can have diverse 

clinical manifestations. 

 

In this present study, we developed two types of STAR particles: metal STAR (mSTAR) 

particles made of stainless steel and ceramic STAR (cSTAR) particles made of alumina. 

We present methods to fabricate STAR particles, as well as detailed characterization of 
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skin puncture and permeability to optimize STAR particle design ex vivo. The objective 

of this study was to determine how STAR particle parameters such as material of 

construction, fabrication parameters, geometry, size, thickness, concentration and 

application time influence STAR particle performance to reduce the skin barrier and 

thereby increase drug delivery into skin. 

 
4.3 MATERIALS AND METHODS 

4.3.1 - Fabrication of mSTAR particles 

mSTAR particles were fabricated out of stainless steel by adapting previously described 

methods to fabricate metal MN [119]. Briefly, stainless steel sheets (SS 304, 12.5 µm and 

50 µm thickness, McMaster-Carr, Atlanta, GA) were mounted onto a glass substrate 

using double-sided adhesive tape (3M, Minneapolis, MN). The glass substrate was then 

secured on the micro-positioning platform of an infrared laser (Resonetics Maestro, 

Nashua, NH, USA). The laser was operated at 1000 Hz, 20 J/cm2 energy density, 10 

mm/s cutting velocity, 10 mm/s stage velocity and 80% energy attenuation. For stainless 

steel sheets of 12.5 µm thickness, a single laser pass was sufficient for cutting. For sheets 

of 50 µm thickness, three passes were needed.  

 

mSTAR particles were fabricated to various geometries (i.e., two, four and six arms) and 

sizes (i.e., 0.5, 1.0 and 2.0 mm). Designs were drawn using AutoCAD software 

(Autodesk, Cupertino, CA) and the laser ablation process was automated using 

programing language compatible with the infrared laser operating system. Following the 

laser ablation process, double-sided adhesive and cut stainless steel sheets were together 

peeled away from the glass substrate. Acetone (Sigma, St. Louis, MO) was used to 
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dissolve away the double-sided adhesive, leaving behind the cut mSTAR particles. 

mSTAR particles were then mixed with aloe vera gel (Fruit of the Earth, Fort Worth, TX) 

at desired concentrations and placed in a closed container until ready for subsequent 

analysis. 

 

4.3.2 - Fabrication of cSTAR particles 

cSTAR particles were fabricated by laser micro-machining (VLS3.50, Universal Laser 

Systems, Scottsdale, AZ) 150 µm thick alumina (Al2O3) green tape (Maryland Tape 

Casting, Bel Air, MD). Laser settings of 0.1% power, 2% speed, 1000 PPI for a total of 

three passes were used to cut cSTAR particles. cSTAR particle designs were drawn with 

AutoCAD software. Once cut, cSTAR particles were gently washed in a water bath and 

dried at 70°C for 24 h.  

 

Dried cSTAR particles were placed on magnesium oxide trays (Alfa Aesar, Haverhill, 

MA) and sintered in a high-temperature box furnace (Carbolite Gero, RHF 16/3, Hope, 

UK). The heating cycle used to sinter cSTAR particles involved first ramping to 600°C at 

2°C/min, holding for 1 h to burn off organic material, then ramping to desired sintering 

temperature (i.e., 800°C - 1600°C) at a ramp rate of 5°C/min and holding at the desired 

sintering temperature for 2 h. The furnace was then cooled to 30°C at 10°C/minute. 

cSTAR particles were then imaged using scanning electron microscopy (Hitachi 

TM3000, Tokyo, Japan) to measure geometrical features such as tip radius. cSTAR 

particles were then incorporated into gel at desired concentrations and placed in a closed 

container until subsequent skin application. 
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4.3.3 – Skin treatment with STAR particles 

Porcine ear skin was acquired from a local meat processing facility (Holifield Farms, 

Covington, GA). Porcine ears were prepared by dissecting skin from underlying cartilage 

and removing subcutaneous fat with a scalpel blade. Porcine ears were stored at -80°C for 

up to three months prior to use. To study the effects of STAR particles on skin 

permeability, skin was treated by application of (i) gel (not containing STAR particles), 

(ii) gel containing abrasive particles (NuPrep, Weaver, Aurora, CO), (iii) a 10x10 MN 

patch made from non-dissolving polymer (see below) or (iv) STAR particles (metal or 

ceramic) incorporated into gel. All topical formulations (i.e., gel, abrasive particles and 

STAR particles) were applied to skin for the same amount of time and using roughly the 

same application force (i.e., hand application) to facilitate direct comparison between 

study groups. Following skin treatment, skin surfaces were wiped clean multiple times 

with alcohol wipes (BD, Franklin Lakes, NJ). 

 

MN patches were used in a poke-and-patch fashion (i.e., as a skin pretreatment to enable 

subsequent delivery of a topical agent). MN patches were applied using the force of a 

thumb and pressed onto skin for roughly 10 s before removal. MN patches were 

fabricated using a melt cast technique. Briefly, polylactic acid (PLA) pellets (Ingeo 

3215D, Natureworks, Minnetonka, MN) were melted for 1 h into polydimethylsiloxane 

(PDMS) MN molds. In these studies, MN on patches were approximately 500 µm in 

length and conical in shape.  
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4.3.4 – Effect of STAR particles on skin barrier properties 

Several methods were utilized to determine the effects of STAR particles on excised 

porcine skin and compared to other skin treatment methods (i.e., gel, abrasive particles, 

MN patch). 

 

4.3.4.1 Gentian violet staining 

Gentian violet (GV) (Humco, Texarkana, TX, USA) was applied to pre-treated skin for 

10-15 min and then wiped away with alcohol wipes to stain sites of SC puncture. 

Microscopic images (Olympus SZX16, Tokyo, Japan) of GV-stained skin were digitally 

processed using ImageJ software (U.S. National Institutes of Health, Bethesda, MD) to 

quantify skin penetration area. Briefly, image analysis involved converting original 

images to 8-bit grayscale, thresholding images to show GV sites and using particle 

analysis plugin in ImageJ to measure total GV-stained area. 

 

4.3.4.3 Skin thickness 

Skin was punched into circular disks with a diameter of 24 mm and massed. Skin 

thickness was calculated by dividing skin sample mass by sample surface area and 

density (ρ = 1.075 g/cm3; [172]). 

 

4.3.4.4 Skin electrical resistance 

After mounting pre-treated skin samples in vertical diffusion cells and hydrating in 

phosphate-buffered saline (PBS, Sigma Aldrich) for approximately 8-12 h at 4°C, skin 
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electrical resistance was measured. Ag-AgCl sintered electrodes (E205, In Vivo Metric, 

Healdsburg, CA) were submerged into donor and receiver chamber PBS solutions (i.e., 

electrodes were placed into PBS solutions near epidermal or dermal sides of the pre-

treated skin sample). Electrodes were connected to an electrical multi-meter (Fluke 

Model 73-III, Everett, WA) and electrical-resistance measurements were recorded. 

4.3.4.5 Transdermal delivery of fluorescent model drugs 

Pre-treated skin samples were mounted in vertical diffusion cells that were filled with 

PBS and 10 mM sodium azide (Sigma Aldrich) as a preservative agent. Skin samples 

were hydrated at 4°C for 8-12 h and then placed in a heating/mixing block (PermeGear 

HS-2, Hellertown, PA) at 37°C. PBS was then removed from the donor chamber and 

replaced with fluorescent model compounds such as sulforhodamine B (SRB) and/or 

FITC-dextran (Sigma Aldrich). The donor chamber was wrapped tightly with parafilm 

(Bemis, Neenah, WI) to minimize evaporation during the course of the experiment. 

Periodically, samples of 150 µl were taken from the receiver chamber and replaced with 

fresh PBS solution. Solutions were measured for fluorescence intensity using a Synergy 

H4 Multi-Mode Plate Reader (Biotek, Winooski, VT) with an excitation/emission of 

(565/585) nm for SRB and (490/520) nm for FITC-dextran. Fluorescence values were 

converted to concentration using standard curves, which allowed for calculation of 

cumulative transport and steady-state flux (J). 

 

4.3.4.6 Histological sectioning to visualize delivery into skin 

To visually assess skin delivery of fluorescent model compounds, skin was cryosectioned 

following topical application of 1 mM SRB solution in PBS. Briefly, skin samples were 
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pre-treated with gel, a MN patch or STAR particles. Skin was exposed to SRB for 1, 6 or 

24 h and then embedded in optimal cutting temperature compound (OCT, Tissue-Tek, 

Torrance, CA) and frozen in liquid nitrogen. Frozen skin was cut into 12 µm sections on 

a Leica 3050S cryostat (Leica Microsystems, Wetzlar, Germany) at -20°C and mounted 

onto glass slides. 

 

4.3.5 - Characterization of alumina material properties based on sintering 

temperature 

cSTAR particles were sintered at 200°C intervals between 800-1600°C using a high-

temperature box furnace (Carbolite RHF16/3). Sintered cSTAR particles were then 

imaged using scanning electron microscopy to determine degree of sintering and grain-

boundary morphology of alumina particles. cSTAR particles were also applied to excised 

skin for each sintering temperature using previously described skin treatment methods 

(e.g., 10 s skin application) and assessment techniques (e.g., GV staining, skin electrical 

resistance) used to determine their functionality. Following skin application, STAR 

particles were collected and imaged to assess their structural integrity. 

 
 

4.4 RESULTS 

4.4.1 - STAR particle fabrication 

Several examples of STAR particles are shown in Fig. 4.1. mSTAR particles were 

fabricated from stainless steel sheets via IR laser ablation to have varying geometries 

(two, four and six arms), sizes (0.5, 1.0 and 2.0 mm) and thicknesses (12.5 and 50 µm). 
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Due to the relatively small laser spot size (~50 µm) and intersection of two cutting 

vectors, mSTAR particles were able to have sharp tips (< 10 µm tip radius) which have 

been shown to be sufficiently sharp to penetrate skin when part of a MN patch [199]. 

 

 

Fig. 4.1: Alumina STAR particles in dry form (black arrow) and incorporated into a 
white skin cream next to a U.S. penny for scale (A). Three-armed alumina STAR 
particles on a fingertip (B). A six-armed stainless-steel STAR particle on a pyramidal 
microneedle patch (C). Magnified image showing three-armed alumina STAR particles 
(D). 

 

cSTAR particles were fabricated from ceramic (alumina) tapes by CO2 laser ablation and 

high-temperature sintering with varying geometries of three, four, six and nine arms (Fig. 

4.2B-E). Due to the relatively larger laser spot size (~100 µm), it was more difficult to 

achieve sharp tips. We found an inversely proportional relationship between the number 

of arms per cSTAR particles and tip radius, where average tip radius for three-armed 

STAR particles was 14.2 µm compared to 20.5 µm for nine-armed STAR particles (Fig. 
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4.2A). Three-armed cSTAR particles were chosen for further study here due to their 

increased tip sharpness and shorter fabrication time. 

  

Fig. 4.2: Plot showing tip radius of curvature for fabricated alumina STAR particles with 
varying geometries (A, n ≥ 63). Representative SEM images of ceramic STAR particles 
with three (B), four (C), six (D) and nine (E) arms. Data show averages ± s.e.m. (** p £ 
0.01), (****p £ 0.0001). 
 

4.4.2 - Imaging of transport into skin following STAR particle treatment 

We next assessed the effect of rubbing STAR particles on porcine skin ex vivo for 10 s on 

skin permeability. Treatment of skin with gel (without STAR particles) had little effect 

on skin permeability, as shown by the lack of dermal penetration of SRB dye after 1, 6 or 

24 h (Fig. 4.3A).  Skin treated with a MN patch showed rapid delivery of SRB after just 1 

500 µm 

A 
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h, which steadily increased over the 24 h study. Skin treatment with four-armed mSTAR 

particles measuring 1.0 mm (Fig. 4.3C) or 0.5 mm (Fig. 4.3D) tip-to-tip treatment also 

showed significant skin penetration of SRB, where 0.5 mm mSTAR particles led to less 

delivery and 1 mm STAR particles led to more delivery compared to the MN patch.

 

Fig. 4.3: Histological cross sections of excised porcine skin pre-treated with gel (A), MN 
patch (B), 1.0 mm mSTAR particles (C) or 0.5 mm mSTAR particles (D) with four arms.  
Skin was topically exposed to SRB for 1 (top row, A1-D1), 6 (middle row, A2-D2) or 24 
h (bottom row, A3-D3). 
 

4.4.3 - Quantification of skin permeability following treatment methods ex vivo. 

Guided by this qualitative imaging, we quantified three different measures of skin barrier 

function reduction (i.e., skin electrical resistance, GV staining and steady state 

transdermal flux of SRB) were measured following skin treatment with STAR particles 

of varying topical concentrations, geometries, application times, thicknesses and sizes 

(Fig. 4.4).   
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Fig. 4.4: Steady state flux (A) and corresponding skin electrical resistance (B) values 
across full-thickness, excised porcine skin following treatment with gel, abrasive 
particles, a MN patch or mSTAR particles. mSTAR thickness is held constant at 12.5 µm 
while varying geometry, concentration and application time (A1, B1). mSTAR 
concentration and application time are held constant at 1000 mSTAR/cm2 and 10 s, 
respectively, while varying thickness and geometry (A2, B2). mSTAR thickness, 
concentration and application time are held constant at 12.5 µm, 1000 mSTAR/cm2 and 
10 s, respectively, while size and geometry are varied (A3, B3).  Data show averages ± 
s.d. (n ³ 3). 
 

4.4.3.1 Skin abrasive gels. 

As a control for comparison, we found that skin treatment with an abrasive gel did not 

significantly increase skin permeability based on steady state flux measurements 

compared to gel treatment (p > 0.99). However, abrasive particles did significantly 

reduce skin electrical resistance compared to gel pretreatment (p < 0.02). These different 

findings may be explained by the much more sensitive measurements of skin electrical 

resistance, that only needs to pass small ions under an electrophoretic driving force 

compared to skin permeability that needs to pass much-larger SRB molecules by a purely 

diffusive driving force.  The limited efficacy of skin abrasion to decrease the skin barrier 
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may be due to this method removing tissue laterally, which requires a lot of tissue to be 

removed before crossing the SC.  

4.4.3.2 Microneedle patch. 

As a positive control for comparison, we applied a polymeric (non-dissolving) MN patch 

to skin (i.e., poke and patch approach). Steady state flux significantly increased and skin 

electrical resistance significantly decreased for MN treatment compared to gel treatment 

alone (p < 0.001). These results were in agreement with expectations that MN patches 

can be used to increase skin permeability. 

 

4.4.3.3 STAR particle concentration. 

Increased STAR particle concentration correlated with increased skin permeability (Fig. 

4.4A1). For six-armed STAR particles applied for 10 s, at a concentration of 100 STAR 

particles/cm2 of skin surface area, steady state flux showed no significant increase 

compared to skin treated only with gel (p > 0.6). Increasing STAR particle concentration 

10 times higher to 1000 STAR particles/cm2 resulted in a flux 68-fold greater than gel-

treated skin (p < 0.0001). Increasing concentration to 2000 STAR particles/cm2 caused 

steady state flux increased 90-fold over gel-treated skin (p < 0.0001). Because 10-fold 

and 20-fold increases in STAR particle concentration increased flux by just 5-fold and 6-

fold, respectively, there may be diminishing advantage to increasing STAR particle 

concentration at a short application time of 10 s. 

4.4.3.4 STAR particle application time. 

When STAR particle application time was increased from 10 s to 2 min, for the majority 

of applied concentrations, there was no significant increase in sulforhodamine flux into 
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skin or decrease in skin electrical resistance (Fig. 4.4B1). This may be because STAR 

particles became ineffective during use due to particle aggregation, bending or other 

deformation that caused loss in functionality. However, effectively increasing skin 

permeability after just 10 s is advantageous for applications that require only briefly 

rubbing topical formulations on the skin.  

4.4.3.5 STAR particle geometry. 

Next, we found that STAR particle geometry influenced skin permeability enhancement. 

STAR particles with two, four and six arms performed differently from one another when 

other parameters were held constant. A general trend was observed that four and six-

armed STAR particles performed more robustly than two-armed STAR particles (i.e., 

more skin effects were observed for four and six-armed STAR particles at low and high 

topical mSTAR particle concentrations). This observation may potentially be attributed to 

the presence of multiple “penetration axes” in STAR particles with greater than two sides 

(i.e., four and six-armed STAR particles have greater probabilities of being oriented in a 

direction where their arms are directionally oriented to penetrate into skin). 

4.4.3.6 STAR particle thickness. 

The effects of STAR particle thickness did not conclusively show general trends across 

the studied parameter space. There were statistically significant differences in steady state 

fluxes (43.38 ± 10.6 x 10-2 and 5.68 ± 6.81 x 10-2 nmol/cm2/h) for six-armed STAR 

particles with different thicknesses (Fig. 4.4-A2, p < 0.0001). However, this result was 

not observed for other STAR geometries and standard deviation was large for these 

groups. Further investigation could potentially elucidate the effects of STAR particle 

thickness on skin permeability. 



 81 

 

4.4.3.7 STAR particle size. 

The effect of STAR particle size on functionality was also investigated. STAR 

particles between 0.5 and 2.0 mm showed differences in resulting skin permeability 

enhancement. For both four and six-armed STAR particles 0.5 mm STAR particles 

showed minimal and non-significant increases in skin permeability compared to gel pre-

treated skin. Next, when four and six-armed STAR particle size was increased to 1.0 mm, 

skin permeability significantly increased (p < 0.001). Interestingly, and in contrast to 

two-armed particles, four and six-armed STAR particles 2.0 mm in size showed 

significantly lower steady state flux values in comparison to their 1.0 mm counterparts (p 

< 0.01). This unexpected result may potentially be attributed STAR particle bending 

during skin application. We observed that the arms of 2.0 mm STAR particles, especially 

four and six-sided geometries which are narrower, bent more easily during skin 

application than 0.5 and 1.0 mm STAR particles, which may have impacted their 

functionality. 

 

4.4.4 - Summary of results from skin permeability studies ex vivo. 

Another key result from this characterization study was the wide range of skin 

permeability enhancement effects that were produced. It can be reasonably concluded 

that STAR particle parameters can be altered to adjust their interaction with skin and 

thereby tune their effects to increase skin permeability in a controlled manner. This 

tunability enables STAR particles to be used in the delivery of a wide range of bioactive 

agents which may have physiochemical properties or required doses. 
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4.4.5 - Cumulative penetration and GV staining area. 

In conjunction with steady state flux and skin electrical resistance measurements, 

cumulative permeation after 24 hours and gentian violet (GV) staining area were 

determined to provide additional information for STAR particle characterization (Fig. 

4.5). As expected, results for cumulative permeation were proportional to steady state 

flux values. Additionally, GV staining generally correlated well with other skin 

permeability measurements. However, GV staining values were more variable relative to 

other measurements and did not always precisely predict skin delivery enhancement. 

Despite a few non-predictive values for GV staining, the trend is valid that increased GV 

staining area is predictive of increased skin permeability. 

 

Fig. 4.5: Cumulative permeation after 24 hours (A) and GV staining area (B) for skin 
treatment with gel, abrasive particles, a MN patch or mSTAR particles. mSTAR 
thickness is held constant at 12.5 µm while varying geometry, concentration and 
application time (A1, B1). mSTAR concentration and application time are held constant 
at 1000 mSTAR/cm2 and 10 s, respectively, while varying thickness (A2, B2). mSTAR 
thickness, concentration and application time are held constant at 12.5 µm, 1000 
mSTAR/cm2 and 10 s, respectively, while size is varied (A3, B3). Data show averages ± 
s.d. (n ³ 3). 
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4.4.6 - Skin permeability enhancement modeling and correlations. 

Next, we correlated measurements obtained from characterization studies to develop an 

understanding of skin barrier properties and resulting permeability effects following 

STAR particle treatment (Fig. 4.6). Not surprisingly, measurements of skin integrity (i.e., 

GV staining) correlated well with permeability measurements (i.e., steady state flux) as 

indicated by the best-fit lines which pass through experimental data in Fig. 4.6A. Also, 

statistically significant correlations were found to exist between steady state flux and skin 

electrical conductance (Fig. 4.6B, R2 = 0.23) as well as conductance and GV staining 

(Fig. 4.6C, R2 = 0.49). We conclude from these results that skin barrier properties and 

resulting delivery were dependent and predictive of one another. 

  

In addition, we sought to better understand the fundamental mechanisms involved in 

STAR particle mediated delivery enhancement. We utilized a simplified model of one-

dimensional diffusion through aqueous micro-channels in the skin to accomplish this 

goal, 

𝐽 = 𝑓𝒟 +
,
        (1)  

where f is the fraction of skin punctured with micro-channels (as determined by GV 

staining), D is aqueous diffusivity of SRB (estimated by Stokes-Einstein equation), C is 

the topical concentration of SRB (10 µM) and l is the diffusion distance (estimated to be 

50 µm for epidermal thickness). This model requires no fitted parameters and can be used 

to make predictions using only parameter values from independent literature. 
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Equation 1: 

 

Fig. 4.6: Graphs showing correlations between steady state flux vs. GV staining area – 
both predicted (red line) and experimental values (open circles) (A); steady state flux vs. 
skin conductance (B); and conductance vs. GV staining area (C). All experimental data is 
reproduced Fig. 4.4 and Fig. 4.5 (A-C, n ³ 3). 
 

4.4.7 - Characterization of cSTAR particles ex vivo. 

cSTAR particles were fabricated out of alumina (Al2O3) through laser ablation and high-

temperature sintering. Ceramic materials have many favorable properties that warrant 

their use to fabricate STAR particles. Ceramics are biocompatible and have extensively 

been used in medical applications for dental and orthopedic implants due to their high 

strength and durability [200]. Also, ceramics have extensively been used in many types 

of topical skin products (e.g., TiO2, ZnO, iron oxides) because of their low-environmental 

burden, low cost and satisfactory aesthetic properties (i.e., most ceramics are white in 

color which allow them to blend in with the surrounding topical formulation). 

 

To determine the ability of cSTAR particles to penetrate into and increase skin 

permeability, we applied cSTAR particles at topical concentrations between 0.1 to 10 

wt% to excised porcine skin for 10 s. We then determined skin permeability through 

measurements such as GV staining area, skin electrical resistance and steady state flux 

A B C 
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(Fig. 4.7). A dose-dependent response was observed. Greater concentrations of cSTAR 

particles resulted in greater skin permeability. A significant enhancement in skin delivery 

was observed when cSTAR particle concentration was increased to 10 wt% for both SRB 

and 4 kDa FITC-dextran (p < 0.01). 

 

Another observation from characterization of cSTAR particles is the presence of 

relatively large GV stain sites, especially in skin treated with 10 wt% STAR particles 

(Fig. 4.7-C2). A likely hypothesis for this result may be due to cSTAR particle tip 

sharpness, which is currently about 2-fold less sharp than mSTAR particles (i.e., more 

blunt STAR particle tips cause more tissue damage during puncture). Additional studies 

should be conducted with other cSTAR particle concentrations (e.g., between 1 – 10 wt% 

and greater than 10 wt% if additional delivery is desired). 
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Fig. 4.7: Representative mages showing topical formulations of cSTAR particles 
incorporated into gel at 0.1 wt% (A1), 1 wt% (B1) and 10 wt% (C1). Representative en 
face images of excised porcine skin which has been GV stained following treatment with 
0.1 wt% (A2), 1 wt% (B2) and 10 wt% (C2) cSTAR particles. Graphs showing GV 
staining area (D), skin electrical resistance (E) and steady state flux of SRB and 4 kDa 
FITC-dextran (F) following treatment with cSTAR particles. Arrow in C2 points to large 
penetration site. Data show averages ± s.d. (n = 4). Statistical significance of difference in 
values compared to 0.1% STAR particles. Symbol key: (*p £ 0.05); (** p £ 0.01); (*** p 
£ 0.001). 
 

4.4.8 - STAR particle sintering temperature. 

We next sought to investigate the effect of lower sintering temperatures on cSTAR 

particle functionality for skin application. High-temperature sintering is needed to 

coalesce ceramic micro-particles into solid or semi-porous structures that can withstand 

higher mechanical loading. However, the high temperatures that typically needed to 

5 mm 
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sinter alumina often require specialized furnace ovens which can reach upwards of 

1600°C. Such specialized equipment can be costly and thereby increase the final cost to 

manufacture cSTAR particles at scale. Therefore, sintering temperatures between 800-

1600°C were investigated to determine if lower sintering temperatures could produce 

functional cSTAR particles. As can be seen in Fig. 4.8, GV staining patterns began to 

appear with STAR particles that were sintered above 1200°C (Fig. 4.8E, p < 0.025). A 

significant decrease in skin electrical resistance was measured with cSTAR particles 

sintered at 1200°C or greater (Fig. 4.8F, p < 0.01). Significant increases in steady state 

flux for SRB and 4 kDa FITC-dextran were measured for sintering temperatures at or 

above 1400°C (Fig. 4.8G, p < 0.05). 

 

STAR particles were also collected following their application to skin to visually observe 

their structural integrity. cSTAR particles fired below 1200°C were unable to withstand 

the forces involved during skin application and fractured. STAR particles sintered at or 

above 1200°C showed superior mechanical properties with minimal or no observed 

fractures (Fig. 4.8 C2-D2). Therefore, we conclude that cSTAR particles can potentially 

be fired at lower temperatures and maintain their functionality when applied to skin. 

Additional studies may be conducted to lower sintering temperatures further if sintering 

time is increased.  
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Fig. 4.8: Representative en face images showing GV stained skin treated with cSTAR 
particles at 10wt% concentration which were sintered at 800°C (A1), 1000°C (B1), 
1200°C (C1) or 1400°C (D1) for 120 min. Representative images to show structural 
integrity of cSTAR particles sintered at 800°C (A2), 1000°C (B2), 1200°C (C2) or 
1400°C (D2) after application to porcine skin ex vivo for 10 s. Graphs of GV stained area 
(E), skin electrical resistance (F) and steady state flux of SRB and 4 kDa FITC-dextran 
dyes (G) as a function of sintering temperature. Data show averages ± s.d. (n = 4). 
Statistical significance of difference in value compared to 1000 °C: (*p £ 0.05); (** p £ 
0.01). 
 

4.5 DISCUSSION 

Delivery of bioactive compounds into skin is severely limited by the SC barrier layer that 

precludes hydrophilic and macromolecular compounds from entering the body. Because 

of poor skin penetration, many bioactive compounds have insufficient cutaneous 

bioavailability and therefore must be delivered through other, potentially less desired, 

delivery methods (e.g., injection via needle and syringe). To overcome this limitation, 
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several skin delivery enhancement technologies have emerged to increase skin 

permeability (e.g., CPE, iontophoresis, ultrasound, electroporation, MN patches). While 

such technologies have provided improvements in skin delivery, there are issues related 

to ease-of-use, cost, presence of side effects, inability to treat large skin surfaces and 

procedural discomfort.  

 

We therefore sought to developed a novel technology capable of enhancing skin delivery 

in a simple-to-use, non-invasive, low-cost, safe and flexible manner. To achieve this goal, 

we developed STAR particles, which uniquely blend the advantages of both formulation-

based delivery technologies that can simply and painlessly be applied to large skin 

surfaces and MN-based technologies that have found broad applicability in delivery of 

hydrophilic molecules and macromolecules into skin. STAR particles function similarly 

to MN patches in that they non-invasively penetrate superficial skin layers to thereby 

increase skin permeability. However, unlike MN patches, STAR particles can be directly 

incorporated into topical formulations, which reduces the need for end-user training since 

most people intuitively understand how to apply topical skin products; imparts flexibility 

to treat large, disseminated skin surface areas; simplifies skin application to a single-step 

(i.e., not a multi-step “poke and patch” application); and eliminates the need for multiple-

use, potentially non-sterile devices (e.g., MN rollers). 

 

The objectives of these studies were to characterize first-generation stainless steel and 

second-generation alumina STAR particles for their functionality in excised skin models. 

To achieve this, we fabricated STAR particles with varying geometries, sizes and 
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thicknesses. We also investigated the effects of end use parameters such as STAR 

treatment application time and concentration of STAR particles incorporated into applied 

skin formulations. We then utilized assessment techniques such as GV staining, skin 

electrical resistance and steady state flux to evaluate the effects of STAR particle 

parameters on skin permeability. In this way, we characterized STAR particles to better 

understand how their design can be optimized to meet varied skin delivery needs. 

Although a wide range of skin delivery enhancement was demonstrated in the present 

study, other STAR particles could potentially be fabricated to achieve further delivery 

enhancement, if desired (e.g., by increasing the number of arms per STAR particle). 

 

An important property of STAR particles relates to their mechanistic function of skin 

penetration. Most types of particles that are added into topical formulations have rough 

surfaces and thereby function as abrasive agents. As abrasive particles are applied to skin, 

they shear the skin’s surface and remove tissue laterally from the skin’s surface during 

the process. In contrast, STAR particles do not function as abrasive agents because their 

arms puncture perpendicularly to the skin’s surface without removing tissue. This is 

supported by GV staining patterns that appears as delineated spots, not streaks. To our 

present understanding, as STAR particles are applied to skin, their arms puncture into 

superficial skin layers to reduce skin barrier function. Therefore, a key distinction 

between skin abrasives and STAR particles is their mechanism of action (i.e., abrading 

vs. puncturing skin). Because of this mechanistic difference, we believe STAR particles 

are inherently safer relative to skin abrasion methods, which can cause significant 

damage during tissue abrasion sufficient to increase skin permeability. 
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Moreover, under presently studied skin application conditions (i.e., the time and force of 

skin application), skin treated with abrasive particles did not show a significant increase 

in skin delivery. Therefore, we conclude that STAR particles function to increase skin 

permeability to a greater extent than abrasive agents. 

 

Another important property of STAR particles is their unique stellate shape which 

prevents them from becoming fully embedded as they puncture skin. Because of their 

geometry, it is highly unlikely, and was never observed in these studies, that STAR 

particles become fully embedded in skin. Their star-like geometry provides an anchor to 

the skin’s surface. Therefore, the shape of STAR particles is a key differentiator in 

comparison to other forms of particulate structures that penetrate and become embedded 

in skin [201]. Moreover, because dermatologic therapies can be applied on a frequent 

basis (e.g., twice daily), foreign materials that are introduced to the body may accumulate 

in skin and cause complications such as foreign body granulomas [202]. In addition to 

improved safety, STAR particles not embedding themselves in skin increases the chances 

that each STAR particle can puncture skin multiple times. Therefore, STAR particles are 

believed to be safe and efficacious because they do not fully embed themselves in skin. 

 

Certainly, the most important characteristic of STAR particles is their ability to increase 

skin permeability across large skin surface areas, in contrast to MN patches that increase 

skin permeability across only smaller areas. Therefore, STAR particles can enhance 
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delivery to a greater extent than MN patches given their ability to deliver therapies across 

larger skin surface areas. 

 

4.6 CONCLUSION 

This study introduced a novel technology called STAR particles which were shown to 

dramatically enhance skin delivery of topically applied agents in a simple-to-use, non-

invasive and flexible treatment manner. Upon application by simply rubbing on the skin, 

STAR particle arms puncture into skin similarly to conventional MN-based technologies. 

STAR particles were fabricated into various geometries, sizes and thicknesses from 

biocompatible materials such as stainless steel and alumina. STAR particle parameters 

were modified and investigated for their effects to increase skin permeability. Increases 

in SRB and 4 kDa FITC-dextran dyes were increased by one to two orders of magnitude 

by STAR particle treatment. Also, skin permeability was modeled based on a simple 

diffusion model and found to be in general agreement with predicted values. 

 

Overall, these studies demonstrate the capacity of STAR particles to significantly 

increase skin delivery. Moreover, these results provide insight into parameters that 

influence STAR particle functionality for skin application. 
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Chapter 5 : Discussion 

 
 
In this project, a novel skin delivery enhancement technology, called STAR particles, 

was designed, fabricated, developed and characterized. STAR particles were inspired by 

MN-based technologies that minimally invasively puncture superficial skin layers to 

increase skin permeability. Although mechanistically similar to MN, STAR particles are 

not restricted by a macro-scale substrate such as a patch or roller which are commonly 

used to apply MN to skin. This key distinction enables STAR particles to be incorporated 

into formulation-based vehicles (e.g., creams, ointments, gels) and thereby applied across 

larger skin surface areas in an intuitive and user-friendly manner. 

 

5.1 CONVENTIONAL METHODS TO DELIVER DRUGS INTO SKIN 

Drug delivery to skin is important for many medical applications, especially for treatment 

of dermatologic (e.g., psoriasis, atopic dermatitis, acne) and cosmeceutic (e.g., blemishes, 

wrinkles) indications [77]. Despite the clear clinical need, cutaneous delivery of bioactive 

agents remains a challenge due to the skin’s formidable barrier properties [186]. As a 

result, only a small number of bioactive agents have the necessary physiochemical 

properties that allow for topical application [4]. Alternatively, systemic administration 

(i.e., oral or injectable forms) can provide a means to effectively deliver bioactive agents 

without being limited by skin permeability. However, due to inherently poor drug 

targeting, systemic agents can often result in adverse side effects (e.g., nausea, hepatic 

toxicity). Moreover, systemic drugs typically generally require administration of large 

initial doses since a significant percentage of drug is distributed and metabolized 



 95 

elsewhere in the body (i.e., not in the skin). Additionally, bioactives which require 

administration by injection (i.e., via needle and syringe) are limited by safety, usability 

and acceptability [203].  

 

To overcome these limitations, several skin delivery technologies have been developed to 

increase skin permeability. When evaluating new skin delivery technologies, it is 

important to consider several criteria. In the following discussion, these criteria are 

discussed and STAR particles are contextualized in relation to other skin delivery 

methods and technologies. 

 

5.2 CRITERIA FOR EVALUATING SKIN DELIVERY METHODS/TECHNOLOGIES 

Safety: Most medical technologies inherently have safety risks. However, it is of 
paramount importance to manage potential safety risks for patients and satisfy 
FDA regulatory requirements. 
 
Side Effects: Of additional importance for new technologies is to minimize 
adverse side effects or, if side effects are unavoidable, to provide a measurable 
clinical benefit relative to incurred side effects. If the method/technology is 
associated with adverse side effects (e.g., pain, nausea) that lower patient quality 
of life, then there is reduced likelihood of patient compliance and therefore 
reduced efficacy. 
 
Delivery Efficacy: The efficacy of the new delivery technologies should be 
superior, or at least non-inferior, to the current standard of care within each 
particular medical indication. Additionally, the technology should enhance 
delivery of many drug compounds (e.g., small molecule, peptides, biologics). 
 
Low cost, Manufacturability: Of particular importance for skin-based delivery 
technologies is the need for low-cost therapies. Because many dermatologic 
indications can be chronic in nature, cost effectiveness is essential to provide 
patients therapies that are not economically burdensome. 
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Usability and Acceptability: Patient experience with the technology is important 
to provide a delivery platform that is simple to use, does not require extensive 
training and is amenable to self-application. If the skin delivery technology does 
not meet these criteria than patient compliance can be an issue. 
 
Product Life Cycle: The technology should also be safe to dispose of after use 
and not harm the environment. The technology should also be in compliance with 
present environmental regulations (e.g., Microbead-Free Waters Act of 2015, 
H.R.1321). 
 
Treatment Flexibility: Due to the heterogeneity of skin types (e.g., diseased vs. 
healthy skin, surface area of skin needing treatment, differences between skin 
anatomical sites, mechanical elasticity/rigidity of skin), there is great importance 
for the medical technology to perform robustly regardless of the skin to which it is 
applied. 
 
Skin Targeting: Localized, efficient delivery of bioactive agents directly to the 
skin is important to reduce both the total required dose (to reduce cost of 
treatment) and minimize potential off-target, adverse side effects. 

 

5.2.1 - Safety 

In these preliminary studies, STAR particles were applied to live animals and to a small 

cohort of healthy human volunteers. The results from these studies showed that STAR 

particles induced only very slight, transient skin erythema with no other apparent side 

effects. Also, STAR particles were never observed to fully embed themselves during skin 

applications. Because STAR particles have been designed to puncture skin without fully 

embedding, it is believed their use is potentially safer than skin delivery technologies 

which can become embedded in skin [201]. However, if STAR particle materials do 

become embedded in skin (e.g., due to tip breakage during skin application) one of 

several scenarios can occur. If STAR particle material is deposited inside the epidermis, 

then the material will likely be sloughed off during the skin’s natural development cycle. 
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Alternatively, if STAR particle material is deposited inside the dermis then a foreign 

body granuloma (i.e., a skin growth) may occur. Granulomas occur when the body cannot 

eliminate a foreign substance and therefore the immune system attempts to isolate the 

foreign material [204]. As a result, foreign-body granulomas need to be surgically 

removed by a physician. While current STAR particles are mechanically robust, the 

potential for adverse events occurring due to material deposition can be avoided in future 

STAR particle designs (e.g., if the STAR particle is composed of water-soluble and/or 

biodegradable materials). 

 

STAR particle safety can also be compared to the safety profiles of CPE and physical-

based delivery technologies. CPE can cause considerable skin irritation due to 

solubilizing agents (e.g., DMSO) which can partition in skin [205]. Most physical-based 

delivery technologies have been shown to be safe for use on skin [206].  

 

Given these initial results, we believe STAR particles can be designed to be safe for use 

during and immediately following a single skin application. However, additional 

investigation of STAR particles is necessary to provide further evidence of STAR particle 

safety (e.g., multiple STAR particle applications to the same skin site). 

 

5.2.2 - Side Effects 

In a limited number of studies conducted with STAR particles, we have not observed the 

presence of adverse side effects (in live animals and more in healthy human participants) 

aside from very slight, transient erythema. STAR particles, in their present configuration, 
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simply act to puncture into skin (i.e., STAR particles serve purely a mechanical function). 

Therefore, STAR particles are functionally closer to physical penetration enhancers 

which themselves disrupt skin barrier functionality and are generally not associated with 

adverse side effects when used under suitable operating conditions. As already discussed, 

CPE can have side effects related to skin irritation. Additionally, systemic agents (i.e., 

oral and injectable drug forms) are commonly associated with adverse side effects due to 

whole-body drug exposure. In summary, STAR particles in their present configuration 

are expected to result in minimal adverse side effects. Additional investigation should be 

conducted if STAR particles are altered beyond their present form (e.g., fabricated from 

other materials or applied to skin multiple times). In addition, side effects may result 

indirectly from STAR particle application because larger drug doses are administered, 

which may increase drug efficacy but may also increase drug side effects.  

 

5.2.3 - Delivery Efficacy 

In these studies, STAR particles were shown to be effective in delivery enhancement of 

topically applied molecules ex vivo and in vivo. Delivery enhancement was demonstrated 

for several compounds of clinical interest (e.g., 5-fluorouracil, methotrexate, bleomycin). 

STAR particles were able to enhance topical delivery in a controlled manner between 14- 

to 90-fold. Delivery increases could be modified (e.g., by altering concentration of STAR 

particles applied to skin) to meet the needs of specific clinical applications and bioactive 

compounds of interest. Compared to abrasive gels or MN patches, STAR particles could 

be formulated to increase skin permeability more or less than these technologies. Other 

technologies have extensively been reported for their delivery enhancement potential 
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(e.g., ultrasound [197], iontophoresis [100], electroporation [104]). These technologies 

have been demonstrated to significantly enhance the delivery of bioactive compounds to 

skin including water-soluble and high molecular weight compounds. CPE have also been 

shown to increase skin permeability. However, CPE are generally ineffective in delivery 

enhancement of macromolecules. Although the microscopic puncture sites created by 

STAR particles are sufficiently large to allow delivery of essentially any molecule, a 

practical limitation exists because STAR particles (in their present form) do not actively 

deliver drugs. Rather STAR particles rely on molecular diffusion of the topically applied 

drug through the microscopic puncture sites. 

 

5.2.4 - Low cost, Manufacturability 

In their present form, STAR particles are fabricated from low-cost and commercially 

available materials such as metals (stainless steel) and ceramics (alumina). Moreover, the 

laser micromachining process used in this study to fabricate STAR particles is almost 

fully automated. Therefore, we believe this process potentially lends itself for use in 

production for research and development purposes. However, future developments 

should be focused to increase production capacity for commercial scale production. In 

addition, based on estimations for raw materials cost, the cost of a single dose of STAR 

particles can potentially be very low (approximately $0.01 materials cost). However, the 

cost to fabricate STAR particles at significantly larger scales may require sophisticated 

equipment which may increase fabrication costs. In comparison to physical-based 

delivery methods, STAR particles are expected to be lower cost and more amenable to 

mass manufacturing given that these alternative technologies involve more sophisticated 
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and costly components (e.g., energy sources, mechanical components). STAR particles 

may potentially be comparable in cost and manufacturability to conventional MN-based 

technologies in which drugs are not incorporated into the MNs (which adds cost), such as 

MN patches for skin pretreatment before application of active agents or MN patches for 

cosmetic skin rejuvenation. However, STAR particles are expected to be more costly to 

manufacture than conventional skin abrasives as abrasive particles are typically irregular 

in size/shape. 

 

5.2.5 - Usability and Acceptability 

To ensure that medical technologies are used as directed, it is important to provide 

patients with an experience that is painless, simple and does not create unnecessary 

burdens. In short, the skin delivery technology should help enable treatment, not limit 

treatment due to poor patient compliance. In the limited clinical study conducted with 

STAR particles in healthy human participants, STAR particles produced fewer 

uncomfortable sensations than application of a hypodermic needle. Additionally, most 

study participants reported that they would feel (very) comfortable in self-application of 

STAR particles and an overwhelming majority (91%) indicated that they considered 

STAR particle formulations to be (very) similar to application of conventional topical 

products (e.g., body lotion, sunscreen, face wash). These results provide limited, but 

compelling evidence that STAR particles are user friendly and simple to use for skin 

treatment. 
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The usability and acceptability of STAR particles in relation to other skin delivery 

technologies was not directly investigated in this study, but alternative skin delivery 

technologies have been reported to provide a minimally invasive, comfortable user 

experience. However, many of these technologies (e.g., MN-roller, ultrasound) require 

use of a separate device and/or a multi-step application process, which may diminish the 

usability for some patients. It can reasonably be concluded that STAR particles may 

provide a patient friendly experience relative to other skin delivery technologies. 

 

5.2.6 - Product Life Cycle 

There is great need for skin delivery technologies which are simple, safe and 

environmentally benign to dispose of following their use. In prior years, many topical 

formulations incorporate micro-particles composed of non-biodegradable polymers (e.g., 

polyolefins) as exfoliants. These micro-particles would then be washed away (i.e., down 

the sink or shower) and accumulate in waterways, thereby causing harm to the 

environment. To mitigate this issue, in 2015, U.S. Congress passed a bill banning rinse-

off cosmetics containing plastic micro-beads. Therefore, to shift away from use of non-

biodegradable polymers, many skin products now incorporate environmentally benign 

exfoliants (e.g., metal oxides, nut shells, fruit pits). 

 

STAR particles in their ceramic (i.e., metal oxide) form are believed to be simple and 

environmentally benign to dispose of after their use. Although ceramics are 

environmentally benign, they are non-biodegradable and will therefore not naturally be 

degraded in the environment. Therefore, additional work should be conducted to develop 
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STAR particles that become deactivated (i.e., non-functional) following their use (e.g., 

mechanical, chemical, breakage of tips, full dissolution) to minimize potential safety 

risks. In summary, STAR particles are expected to have low-environmental impact but 

future work is required to ensure that STAR particles are deactivated and thereby 

increase safety of disposal. 

 

5.2.7 - Treatment Flexibility 

There is also great importance for technologies that can enhance skin delivery in a robust 

and flexible manner regardless of skin type (e.g., healthy vs. diseased skin, surface area, 

biomechanical environment). 

 

Formulation-based methods (i.e., conventional topicals, CPE, skin abrasives) are less 

versatile since they have limited skin permeability, especially in hyperkeratotic 

(thickened) skin (e.g., palms and soles of feet, warts, psoriasis). However, formulation-

based strategies offer flexibility in treatment area since they can be spread across the skin 

regardless of surface area involvement. Physical-based methods are flexible in use since 

they have been demonstrated to deliver most types of bioactive agents and they can be 

used in many different skin types but again delivery across large, disseminated surface 

areas is a limitation for many of these technologies. 

 

STAR particles have presently been demonstrated to increase skin permeability via a 

formulation-based application method. Their application method enables STAR particles 

to be applied across large, disseminated body surface areas. To date, STAR particles have 
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only been investigated on healthy skin so the effects of STAR particles on other types of 

skin is unknown. However, it is envisioned that STAR particles can enable delivery 

regardless of skin physiological state because they are mechanistically similar to MN-

based delivery technologies which have been demonstrated in a number of different skin 

disease states [180, 207, 208]. Therefore, we conclude that STAR particles are more 

versatile compared to conventional formulation-based skin delivery methods and better in 

treatment of large, disseminated skin surface areas relative to physical-based delivery 

methods. 

 

5.2.8 - Localized Delivery to the Skin 

Assuming the drug site of action is within the skin (i.e., not elsewhere in the body), 

targeting of the skin itself can be an important criterion to efficiently and safely deliver 

bioactive compounds. This is especially true if the active compound is costly or is known 

to cause adverse side effects when delivered systemically. STAR particles, like other 

formulation-based delivery methods, spatially localize delivery to the skin which should 

provide for more efficient targeting relative to systemic delivery methods. STAR 

particles also function similarly to MN-based technologies which directly target delivery 

to the skin. Alternative skin delivery enhancement methods also function to permeabilize 

the skin and deliver the bioactive compound directly to skin. 

 

5.2.9 - Overall Analysis and Limitations of STAR Particles 

STAR particles offer a number of advantages relative to conventionally used skin 

delivery technologies. First, STAR particles can be incorporated directly into topical 
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formulations which enables their intuitive application to flexible sized skin surface areas 

(i.e., large or small, localized or disseminated). Second, STAR particles have been very 

well tolerated and, because of their small size, did not induce uncomfortable sensations 

during skin application. Third, STAR particles can be fabricated out of biocompatible, 

low-cost and environmentally friendly materials (e.g., alumina) that should be amenable 

to large-scale manufacturing methods in the future. Fourth, STAR particles enable spatial 

localization of the skin itself and thereby offer the potential to reduce adverse, off-target 

side effects associated with systemic delivery methods. Finally, STAR particles can 

significantly enhance delivery to skin of a broad variety of compounds with a range of 

different physiochemical properties. Because they function similar to conventional MN-

based technologies, STAR particles are expected be safe, tolerable, acceptable and 

efficacious across many types of skin and disease states. 

 

STAR particles are similar to many skin delivery technologies in their capacity to 

increase skin permeability in a minimally invasive, safe and robust manner. However, 

STAR particles uniquely combine many of the traits that make each skin delivery 

technology favorable. Mainly, STAR particles combine the ease of use for formulation 

based-delivery methods and the delivery enhancement capabilities of physical-based 

delivery technologies. 

 

One particular area in which STAR particles are limited is their capacity to rapidly 

deliver drugs to the skin. While STAR particles can increase skin permeability, topical 

delivery requires the passive diffusion of a drug molecule across its concentration 
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gradient (i.e., from the topical formulation into the skin). Assuming molecular diffusion 

at zero Reynolds Number (i.e., Stokes-Einstein diffusion), the diffusivity of a molecule is 

inversely proportional to the cube root of its molecular weight (D µ MW-1/3). In practical 

terms, this means that many macromolecules will be diffusion limited in their skin 

delivery potential (e.g., a 500 kDa molecule will diffuse at one-tenth the rate of a 500 Da 

molecule). This also means that STAR particles in their present form would not be an 

ideal choice for bioactive compounds that require fast delivery. Finally, the slow 

diffusion of molecules into skin also means that a significant fraction of the initially 

applied topical dose will likely not be delivered into the skin and thereby be wasted. 

Therefore, STAR particles in their present form may not be an ideal candidate if the 

bioactive compound is costly. 

 

Another current limitation of STAR particles, related to an inherent property of most 

topical formulations, is related to precise dosing. Unlike delivery methods that precisely 

deliver an exact dose (e.g., injections, oral tablets), most topical skin products do not 

have tightly controlled doses due to variability in the quantity of topical applied, patient 

wear time, environmental factors and others variables [209]. Therefore, STAR particles 

are expected to be of greatest use for delivery of bioactive compounds with wide a 

therapeutic index (Therapeutic Index = Toxic Dose in 50% of subjects / Effective Dose in 

50% of subjects; TI = TD50/ED50). Likewise, STAR particles would not be an ideal 

delivery technology for drug molecules that have a narrow TI [210]. 
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A third potential limitation for STAR particles at present is their formulation-based 

application. Because STAR particles are incorporated into topical products (i.e., creams, 

ointments, gels, etc.), reformulation of the bioactive compound may be required if the 

drug is not already delivered topically. Reformulation requires that the drug molecule be 

homogeneously dispersed within the topical and that the drug remain active within the 

formulation for a sustained period of time that is sufficient for treatment. 

 

To summarize, STAR particles are a unique platform technology which can enable 

painless, simple to use, flexible, low cost and efficacious skin delivery. However, further 

characterization and technical developments are essential to ensure that STAR particles 

reach their clinical and market potential. 
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Chapter 6 : Conclusions 

 

Delivery of bioactive compounds for treatment of dermatologic (e.g., psoriasis, eczema, 

skin cancer, acne) and cosmeceutic (e.g., wrinkles, blemishes, skin aging) indications 

constitute a high-growth, multi-billion-dollar industry that has great impact on improving 

morbidity, mortality and quality of life. A particularly advantageous method to 

administer drugs directly to skin is through simple-to-use and non-invasive topical 

formulations (e.g., creams, ointments, gels). However, only a small number of drugs 

possess the necessary physiochemical properties that allow for passive topical delivery 

into skin. As a result, many skin delivery technologies have been developed to increase 

skin permeability such as CPE, iontophoresis, electroporation, ultrasound and MN-based 

technologies. Although these technologies have enabled increased delivery of many 

bioactive compounds (e.g., water-soluble and macromolecular compounds), limitations 

relating to safety, efficacy and usability still exist. 

 

STAR particles were developed to provide a user friendly, efficacious, safe, minimally 

invasive and flexible technology platform capable of significantly increasing skin 

delivery. Although inspired by MN-based technologies, STAR particles fundamentally 

differ from conventional MN designs which incorporate micro-scale projections onto a 

macro-scale substrate (e.g., patch or roller). Rather, STAR particles incorporate micro-

projections onto particles, which enables their application to large, disseminated body 

surface areas in a simple-to-use topical formulation. 
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The goal of this project was to design, fabricate, develop and characterize STAR particles 

that are capable of increasing skin delivery, via a formulation-based application method, 

in a simple-use and minimally invasive manner. 

 

6.1 DESIGN, FABRICATION AND DEVELOPMENT OF STAR PARTICLES FOR ENHANCED 

TOPICAL SKIN DELIVERY 

The main goal of this study was to design, fabricate and develop STAR particles for 

enhanced skin delivery. First, STAR particles should be designed to be minimally 

invasive and not induce uncomfortable sensations during their application. Next, STAR 

particles should be fabricated to have sharp tips capable of penetrating into skin. STAR 

particles must also be composed of materials that are biocompatible, low cost, 

mechanically robust, environmentally friendly and easily manufactured. Next, STAR 

particles should enhance delivery of topical compounds through a simple, formulation-

based application method that enables their use across large, disseminated body surface 

areas. The main findings from this project were: 

• STAR particles were designed based on learnings from conventional MN-based 
technologies, which penetrate skin in a minimally invasive manner. Namely, 
STAR particles were designed to have needle-like projections (i.e., arms) on the 
length scale of several hundred microns. STAR particle arms of this length could 
penetrate into skin ex vivo and in vivo. 
 

• STAR particles were fabricated with sharp tips (tip radius of curvature < 15 µm) 
from biocompatible materials such as stainless steel (mSTAR) and alumina 
(cSTAR) via micro-laser ablation. Both stainless steel and alumina are 
biocompatible, low cost, mechanically strong, easily manufactured and have 
precedence for use in clinical medicine (e.g., hypodermic needles or 
orthopedic/dental implants). Moreover, alumina is used in topical skin care 
products (e.g., as a skin abrasive) and is generally regarded to be environmentally 
benign. 
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• First-generation mSTAR particles functioned to increase skin permeability in a 
manner that was dependent on both geometry and concentration of mSTAR 
particles applied to skin. mSTAR particles were also incorporated into aloe vera 
gel to enable their simple, formulation-based application to relatively large skin 
surface areas (e.g., > 10 cm2). 

 
• Next, mSTAR particles reduced skin barrier functionality as measured by skin 

electrical resistance and gentian violet staining patterns. mSTAR particles also 
enhanced topical delivery of the fluorescent model compounds sulforhodamine B 
and 4 kDa FITC-Dextran into excised skin as shown through histological analyses 
and steady state flux measurements. 

 
• Additionally, mSTAR particles were demonstrated to be very well tolerated, only 

showing very slight, transient erythema, when applied to hairless rat skin in vivo. 
Topical delivery of sulforhodamine B was also enhanced in skin that had been 
pre-treated with mSTAR particles relative to skin treated with aloe gel alone. 

 
• Second-generation cSTAR particles were shown to be efficacious in increasing 

delivery of several clinically relevant drugs with diverse physiochemical 
properties (i.e., 5-fluorouracil, methotrexate and bleomycin). Delivery for these 
bioactive compounds was between 2- to 10-fold enhancement after just 10 
seconds of cSTAR skin pre-treatment relative to skin treated with aloe vera gel 
alone. 

 
• Finally, mSTAR particles were topically applied to a small cohort of human 

participants. Results from this study showed that mSTAR particle skin application 
was very well tolerated by study participants with only very slight, transient 
erythema observed. STAR particle applications were also very well accepted and 
described by study participants as mostly comfortable. STAR particles were also 
efficacious in creating microscopic skin punctures as shown through gentian 
violet staining. 

 
• In summary, STAR particles were designed, fabricated and developed to increase 

skin permeability via a topical-based, minimally invasive, flexible and simple-to-
use application method. STAR particles were capable of achieving these criteria 
as demonstrated in excised skin models, live animal experiments and studies in a 
limited number of human volunteers. We conclude that STAR particles provide a 
viable technology platform to improve delivery of existing topical compounds and 
potentially broaden the range of molecules capable of topical skin delivery. In 
these present studies, STAR particles were used as a pre-treatment method. 
However, future efforts should focus on using STAR particles in a single-step 
application as opposed to a two-step, skin pre-treatment method. 
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6.2 FABRICATION AND CHARACTERIZATION OF STAR PARTICLES TO ENHANCE 

TOPICAL SKIN DELIVERY EX VIVO 

 The main goal of this study was to fabricate and characterize STAR particles to 

determine design (i.e., STAR particle geometry, size and thickness), formulation (i.e., 

STAR particle concentration) and user (i.e., STAR particle application time) parameters 

that influence their functionality to increase skin permeability. Briefly, these analyses 

included measurements of gentian violet (GV) staining area, skin electrical resistance and 

transdermal delivery of fluorescent model compounds (SRB and 4 kDa FITC-Dextran). 

Also, the effect of sintering temperature was explored with cSTAR particles to determine 

the effect of processing parameters on STAR particle mechanical integrity during skin 

application. The main results from these studies included: 

• mSTAR particles were fabricated to have sharp tips independent of their design. 
Due to their sharp tips and ease of fabrication, we chose mSTAR particles as the 
primary material for subsequent characterization studies. 
 

• Due to present limitations with laser fabrication (e.g., large laser spot size), 
cSTAR particle tip sharpness was more dependent on design parameters such as 
geometry. An inverse relationship between tip sharpness and the number of arms 
per STAR particle was observed. Within these fabrication studies, three-armed 
cSTAR particles were measured to have the sharpest tips (14.2 ± 0.58 µm) and 
nine-armed STAR particles had the least sharp tips (20.5 ± 0.52 µm). Future 
developments to improve fabrication are expected to resolve this limitation. 

 
• Histological analysis of skin pre-treated with mSTAR particles, and exposed to 

topical SRB fluorescent dye, showed increased delivery relative to skin pre-
treated with aloe gel alone. The increase in skin delivery for mSTAR particle pre-
treated skin was visually similar to that of MN patch skin pre-treatment. 

 
• Skin abrasive gel applied for 10 seconds did not significantly increase skin 

permeability as assessed through gentian violet staining and transdermal flux 
values. 

 
• Characterization of mSTAR parameters revealed key parameters that influence 

STAR particle functionality. 
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o mSTAR particle concentration was directly proportional to skin 
permeability enhancement. For example, when mSTAR particle 
concentration (6-arms, 10-second application time) was increased from 
100 to 1000 mSTAR particles/cm2, transdermal flux of SRB increased 14- 
and 68-fold, respectively, relative to skin pre-treated with aloe gel alone. 

o mSTAR particle application time marginally increased transdermal 
delivery when comparing 10-second and 2-minute skin application. We 
conclude, the majority of delivery enhancement occurred after 10 seconds 
of mSTAR skin application. It was not clear the exact reason for this 
effect. However, mSTAR particle arms were observed to bend following 
their application which may have contributed to their decreased 
functionality for longer skin application times. 

o mSTAR particle geometry impacted skin permeability enhancement 
effects. At equivalent concentrations and skin application times, in 
general, STAR particles with more arms produced greater skin effects. 
This effect may be attributable to an increased probability of mSTAR 
particles being spatially oriented to allow for skin puncture. 

o In general, mSTAR particle size influenced skin permeability. For 
example, when mSTAR particle (tip-to-tip) size was increased from 0.5 to 
1.0 mm, steady state flux increased by 38- and 33-fold for four- and six-
armed mSTAR particle geometries, respectively. 
 

• General agreement existed between experimental results and predictions, based on 
a simplified diffusion model, of steady state flux across STAR particle pre-treated 
skin. Likewise, trends were observed to correlate skin barrier properties such as 
conductance, steady state flux and gentian violet staining area. 
 

• Skin permeability enhancement increased in relation to concentration of cSTAR 
particles applied to skin. Skin delivery enhancement was most significant when 
concentration of cSTAR particles applied was increased to 10wt%. 

 
• Sintering temperature influenced mechanical integrity of cSTAR particles and 

their ability to puncture into skin. cSTAR particles sintered below 1400°C were 
mechanically fragile, broke during skin application and did not have measurable 
effects on skin barrier properties. 

 
• In summary, metal and ceramic STAR particles parameters were characterized for 

their effects on skin permeability ex vivo. Short application times (10 seconds) 
were sufficient to increase skin permeability. These results demonstrate the 
capacity of STAR particles to be modified for a wide range of skin delivery 
enhancement effects. Additional work should seek to understand the practical 
limitations of STAR particle mediated skin delivery with macromolecular 
compounds. 
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Chapter 7 : Future Directions  

 

The STAR particles developed in these studies were demonstrated to reduce skin barrier 

functionality through a simple and flexible formulation-based application method. STAR 

particles produced microscopic puncture sites in skin and thereby enhanced delivery of 

topical compounds ex vivo and in vivo. Moreover, STAR particles were demonstrated to 

be safe, tolerable, acceptable and efficacious when applied to skin in a small cohort of 

human participants. Although these discoveries have provided a solid foundation for the 

technology, more work is needed to ensure that STAR particles are translated beyond 

research-stage development. In the following discussion, several areas of research will be 

described as they relate to future work that would further enable STAR particle mediated 

skin delivery. 

7.1 STAR PARTICLE MATERIALS DEVELOPMENT 

In the present study, two different materials were used to fabricate STAR particles – 

stainless steel and alumina. Both stainless steel and alumina satisfied many key criteria 

such as biocompatibility, low cost and high strength. However, there are other important 

criteria that should be considered when selecting next generation STAR particle 

materials. 

 

Firstly, both stainless steel and alumina are non-biodegradable (i.e., they will not be 

broken down through natural/biological mechanisms). Although, non-biodegradable 

materials may not be of concern for many applications, there are some potential safety 

concerns which could be eliminated if STAR particle materials were biodegradable.  



 113 

Therefore, to improve their safety profile, STAR particles should be composed of 

materials that safely degrade in some cases. Potential materials can be biopolymers (e.g., 

poly [lactic-co-glycolic acid], polylactic acid, polyvinylpyrrolidone), sugars (e.g., 

sucrose, trehalose), carbohydrates (e.g., carboxymethyl cellulose), waxes and many other 

natural or synthetic biodegradable materials. 

 

Another material-based development that should be undertaken in future work relates to 

deactivation of STAR particles following their skin application. In their present form, 

STAR particles puncture skin and remain intact. Due to their mechanical robustness, 

STAR particles can repeatedly puncture into skin multiple times to increase their efficacy 

(i.e., each STAR particle can create multiple puncture sites). However, it may be desired 

to disable STAR particles after a single or multiple skin punctures (e.g., between 1 to 10 

skin punctures per STAR particle arm). Disabling STAR particles after they are applied 

can provide an additional level of user safety. Disabling STAR particles can potentially 

be accomplished by fabricating STAR particles (or regions of STAR particles) from 

materials that can breakdown (e.g., chemical-, photo-, thermal-, mechanical-mediated 

breakdown). In a particular example, STAR particles could be fabricated from water-

soluble materials that dissolve once entering an aqueous environment such as the skin. 

Such STAR particles could be fabricated through conventional micro-molding based 

schemes as has been demonstrated with conventional MN patches.  
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7.2 STAR PARTICLES COMBINED WITH BIOACTIVE COMPOUNDS VIA COATING OR 

ENCAPSULATION 

STAR particles in their present form function similarly to solid, non-dissolving MN in 

that they increase skin permeability through creation of microscopic puncture sites (i.e., 

poke and patch approach). Because they serve a purely mechanical function, STAR 

particles do not directly deliver any drugs to skin which may be limiting in some medical 

applications. For example, topical delivery of large molecular weight compounds (e.g., 

biologics) may be diffusion limited. Therefore, enabling STAR particles to actively 

deliver drugs would potentially increase their usefulness, make drug dosing more 

reproducible and improve the cutaneous bioavailability for a broader range of bioactive 

compounds. Several potential strategies may accomplish this goal. 

 

Firstly, currently available STAR particles (mSTAR or cSTAR) could be coated with a 

water-soluble formulation that has incorporated a bioactive compound. This method has 

been proven successful with coated MN structures to deliver many types of bioactive 

compounds [119, 121, 122, 180]. The advantage of this method is the dual benefit of 

having a strong material (i.e., metal or ceramic) to provide structural integrity during skin 

application and a coating that dissolves once skin penetration has occurred. It will be 

important to find a fabrication method that can evenly deposit the coating formulation 

onto each STAR particle. It is also important to formulate the coating so it rapidly 

dissolves during skin penetration. Because STAR particles have not yet been observed to 

penetrate and remain in skin, it is hypothesized that STAR particle penetration occurs 



 115 

very quickly (i.e., < 1 second). Therefore, rapid dissolution of the coating formulation is 

of great importance. 

 

In another strategy, STAR particles could be fabricated to incorporate drugs into a water-

soluble matrix such as a polymer or sugar. This fabrication scheme has found usefulness 

in dissolving MN patches that have been demonstrated to deliver a large number of 

bioactive compounds [114, 132, 133, 211]. The challenge here will be to adapt these 

fabrication methods to produce STAR particles with sharp tips, ensure that the resulting 

structure is mechanically robust and select a material that rapidly dissolves in skin. 

 

7.3 DEVELOPMENT OF HIGH-THROUGHPUT PRODUCTION PROCESS 

Current laser-based fabrication of STAR particles has been sufficient to produce 

quantities useful for early-stage research and development efforts. However, if STAR 

particles are to be produced at commercial scale, increased throughput is required. 

Several production methods may potentially be useful to provide greater production 

capacity of STAR particles. First, STAR particles may be fabricated via a roll-to-roll 

process where sheets of a desired material are fed through a hot-stamping process to 

produce the desired STAR geometries. Next a micro-molding process can be used to 

produce STAR particles (i.e., similar to MN patch based fabrication). Other mass-

fabrication strategies may also potentially be explored. 
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7.4 DETERMINATION OF STAR PARTICLE SKIN PENETRATION DEPTH 

To date STAR particle penetration depth has not been directly visualized. Although 

STAR particles have been designed to have a maximum possible penetration depth (i.e., 

the total length of each arm), it is hypothesized that this maximum penetration depth is 

rarely (if ever) actually reached. This is due to the topical application method of STAR 

particles which makes the likelihood of STAR particles penetrating skin at a non-

perpendicular angle more probable. This is in contrast to conventional MN patches which 

are applied to skin at a perpendicular angle to the skin’s surface. Even in the case of MN 

patches, the full length of the MN structure does not fully insert, likely due to skin 

deformation. Knowledge and control of skin penetration depth may also have important 

implications regarding how STAR particles are regulated. Therefore, future studies 

should focus on elucidating, designing and controlling the depth to which STAR particles 

puncture skin. 

 

Confocal microscopy may be used to visualize penetration sites created by STAR 

particles. For example, STAR particles can be applied to excised skin and followed by 

topical application of a high-molecular-weight fluorescent compound (e.g., 2000 kDa 

FITC-Dextran). The fluorescent compound would preferentially localize to the 

microscopic skin puncture sites (i.e., diffusion would be limited outside of the skin 

puncture sites) and thereby enable their visualization. Appropriate controls would be 

needed to provide comparisons to known skin penetration depths (e.g., application of a 

MN patch with a known skin penetration depth).  
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Another experimental technique that could be used to roughly determine skin penetration 

depth is heat stripping of skin. In this method, skin epidermis is heat separated from the 

underlying dermis. In this way, STAR particles could be applied to skin, skin would then 

be heat separated and the epidermal layer analyzed to determine if STAR particles had 

fully penetrated past skin epidermis (i.e., through visual examination of the basal layer of 

the epidermis).  

 

7.5 CLINICAL DEVELOPMENT OF STAR PARTICLES 

In present studies, mSTAR particles were demonstrated to be safe, tolerable, acceptable 

and efficacious in a small cohort of healthy human participants for a single (one time) 

skin application. While these results were encouraging, additional investigation is 

needed. In a similar fashion to the first experiment conducted with mSTAR particles, 

investigation of cSTAR particles should also conducted in a small number of healthy 

human participants to demonstrate their safety, tolerability, acceptability and efficacy. In 

these next set of clinical experiments, it would be preferable to include non-invasive 

measurements of skin barrier properties following STAR particle application (e.g., skin 

electrical resistance, transepidermal water loss). Such non-invasive measurements can 

enable determination of STAR particle efficacy and also provide valuable information on 

skin repair following STAR particle application [212, 213]. Additional clinical studies 

should also be conducted with multiple STAR particle applications to the same skin 

treatment area (e.g., once or twice per day for up to two weeks). Repeated skin 

applications are important for many dermatologic and cosmeceutic applications. 
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Therefore, STAR particles should be investigated for their safety, tolerability, 

acceptability and efficacy during multiple skin applications. 

7.6 SUBJECT DEPENDENT VARIABILITY IN SKIN PERMEABILITY  

In this present study, STAR particle parameters were characterized for their effects on 

skin permeability enhancement (e.g., geometry, size, application time, concentration). 

However, in all of these studies, the application was performed by a single individual. If 

STAR particle-based therapies are to one day be self-applied, it is important to elucidate 

the impact of inter-user variability on resulting skin permeability. To accomplish this 

goal, studies may be conducted both directly in humans and in excised skin models. First, 

study participants can be enrolled to self-apply STAR particles with a set of 

written/pictographic instructions. Skin permeability enhancement could then be 

characterized via non-invasive methods such as gentian violet skin staining, 

transepidermal water loss and skin electrical resistance measurements. Participants could 

also be asked to apply STAR particle formulations to excised skin. Skin delivery could 

then be evaluated through gentian violet staining, skin electrical resistance and diffusion 

cell measurements of steady state flux. With these studies, user-based variability can be 

more fully understood and STAR particles and/or their application method can be 

adapted to reduce such variability. 
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Chapter 8 : Appendix A - Supplementary figures for chapter 3 

 

 
Fig. S 1: Impact of STAR particle removal following application. Skin-electrical 
resistance (A) and cumulative transport for SRB (B) across porcine cadaver skin pre-
treated with STAR particles where STAR particles were left on or removed following 
their application. (n = 4). 
 

 
Fig. S 2: Skin-electrical resistance measurements for hairless rat skin pre-treated with 
either aloe vera gel or mSTAR particles in vivo [n=7]. 
 
Exclusion/inclusion criteria used for human study. Participants must: 

- not have diseased or otherwise abnormal skin at or within 20 cm (approximately 8 
inches) of the skin site(s) under study. 

- not be using a medicine applied to the skin during or immediately following the 
study at or within 20 cm (approximately 8 inches) of the skin site(s) under study. 

- not have any disease or condition known to affect pain sensation. 
- not have a known allergy to the materials used to make the STAR particles or the 

gels, ointments and/or creams containing STAR particles.  
- not have a known allergy to gentian violet. 

 
Table 3: Demographics of participants enrolled in STAR particle application study. 

A B 
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Total number of study 
participants 11 

Male 6 
Female 5 

Average participant age 29 years 
Self-identified 
race/ethnicity  

Hispanic or Latino 3 
White 4 
Asian 4 

 

 
Fig. S 3: Assessment treatment methods on skin tolerability in human participants. 
Tolerability scores for human skin applications of a 26 gauge hypodermic needle, aloe 
vera gel, 0.5 mm circular micro-disks in aloe vera gel or mSTAR particles in aloe vera 
gel. 
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Fig. S 4: Acceptability of skin treatment methods in human participants. Summary of 
sensations, and sensation comfort, reported by study participants for skin applications of 
a 26 gague hypodermic needle, aloe vera gel, 0.5 mm circular disks in aloe vera gel or, 
six-armed mSTAR particles in aloe vera gel. 
 

 
Fig. S 5: Usability of STAR particles relative to conventional skin products. Summary of 
results reported by study participants related to self-application of STAR particles and 
similarity of STAR particles to conventional skin products. 
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Fig. S 6: Standard curves for 5-fluorouracil (5-FU), methotrexate (MTX) and bleomycin 
(BLEO) as assessed via high performance liquid chromatography (HPLC). 
 

 
 
Fig. S 7: Delivery of SRB into hairless rat skin in vivo. (From left to right) - En face 
fluorescence images showing hairless rat dorsal skin which is: intact (i.e., no treatment) 
and not exposed to topical SRB (first column); pre-treated with aloe gel and exposed to 
SRB for 3 hours (second column); pre-treated with a MN patch and exposed to SRB for 3 

Aloe Gel
3 h SRB

MN Patch 
3 h SRB

STAR 
3 h SRB
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15 min SRB

R
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R
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No SRB

5 mm
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hours (third column); or pre-treated with mSTAR particles and exposed to SRB for 3 
hours (fourth column) or 15 minutes (fifth column). All images taken at identical settings 
(i.e., room darkness, camera exposure). 
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Chapter 9 : Appendix B - Tolerability Scores for Human Study 

 
Table 4: Tolerability scoring grades used in human study to determine adverse reactions 
following skin application. 

 Grade 0 Grade 0.5* Grade 1 Grade 2 Grade 3 Grade 4 
Tenderness No 

discomfort to 
touch 

N/A Mild 
discomfort to 
touch 

Discomfort 
with 
movement 

Significant 
discomfort at 
rest 

ER visit or 
hospitalizatio
n 

Erythema  
(Size) 

0 cm 0.1 – 1 cm  
 
[erythema 
less than or 
equal to 
application 
area] 

1.1 – 5 cm 
 
[erythema 
spreading 
beyond 
application 
area] 

5.1 – 10 cm > 10 cm Necrosis or 
exfoliative 
dermatitis 

Erythema 
(Intensity) 

No erythema N/A Very slight 
erythema 
(barely 
perceptible) 

Well-defined 
erythema 

Moderate to 
severe 
erythema 

Severe 
erythema 
(beet 
redness)  

Swelling  0 cm 0.1 – 1 cm  
 
[swelling 
less than or 
equal to 
application 
area] 

1.1 – 5 cm 
and does not 
interfere with 
activity 
 
[swelling 
spreading 
beyond 
application 
area] 

5.1 – 10 cm 
or interferes 
with activity 

> 10 cm or 
prevents 
daily activity 

Necrosis 

 
* 0.5 grade only used only for erythema size and swelling scores 
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