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SUMMARY
A common issue noted by detractors of the traditional scoring of Multiple Choice (MC)
tests is the confounding of guessing or other false positives with partial knowledge and
full knowledge. The current study provides a review of classical test theory (CTT)
approaches to handling guessing and partial knowledge. When those methods are
rejected, the item response theory (IRT) and cognitive diagnostic modeling (CDM)
approaches, and their relative strengths and weaknesses, are considered. Finally, a
generalization of the Multicomponent Latent Trait Model for Diagnosis (MLTM-D;
Embretson & Yang, 2013) is proposed. The results of a simulation study are presented,
which indicate that, in the presence of guessing, the proposed model has more reliable
and accurate item parameter estimates than the MLTM-D, generally yielding better
recovery of person parameters. Discussion of the methods and findings, as well as some

suggested directions for further study, is included.

viil



CHAPTER 1

INTRODUCTION

Multiple choice (MC) testing in educational settings has been around since the
early 20th century, and has been controversial for nearly as long. Concerns about the
inclusion of guessing and exclusion of partial knowledge in raw scores (e.g., Chernoff,
1962; Potthoff & Barnett, 1932; Ramsay, 1968) and issues related to item quality (e.g., de
Finetti, 1965; Jersild, 1929; Jones, 1928) sprang up shortly after the use of MC and other
such “objective tests” came in vogue. Other potential drawbacks have been identified: as
early as the 1970s, concerns about the broadening use of MC scores had entered the
literature (e.g., Bligh, 1979; Hall, Carroll, & Comer, 1988; Rust, 2002). There is a lack of
agreement on the optimal number of alternatives to provide for an MC item (e.g.,
Haladyna & Downing, 1993; Haladyna, Downing, & Rodriguez, 2002; Rodriguez, 2005).
There is further disagreement as to how such an item should be scored or formulated:
alternatives to the conventional, number-right (NR) MC scoring method as well as to the
standard objective item format have been proposed and studied (e.g., Bickel, 2010; Boldt,
1971; Gibbons, Olkin, & Sobel, 1979; Haladyna, 1992; Ramsay, 1968; Searle, 1942;
Wilcox & Wilcox, 1988; Wisner & Wisner, 1997; Yunker, 1999), each with their own
advantages and disadvantages. This paper will explore several of these alternatives in
turn and discuss their relative merits, with special consideration given to primary works
that address guessing and partial knowledge in MC test taking.

Armed with all of the different arguments for and against MC testing, the purpose

of this paper is to investigate various proposed methods of formulating and scoring MC



tests, leading up to a proposal of a generalized cognitive diagnostic model that accounts
for guessing on MC items. Chapter 1 is both an introduction to the response methods
underlying item responses to MC items, presenting the purpose and general overview of
the following chapters, and an introduction to MC testing. In Chapter 2, various means of
addressing the previously noted issues, item formulation and design, as well as other
scoring strategies are covered, along with some empirical results for those schemes. Test-
taking and test-writing strategies are investigated from a psychometric viewpoint, as are
strategies that lend themselves more or less to guessing. Approaches from classical test
theory and item response theory are discussed and several models from the cognitive
diagnostic modeling (CDM) framework are introduced, examining various existing latent
trait and latent class models. Chapter 3 outlines the proposed study, drawing on the
information presented in the preceding chapters for justification and groundwork,
defining the scope of the proposed simulation and real data analysis, as well as the
theoretical underpinnings of the estimation methods for the items and persons. The
results of two pilot studies are also included as an indicator of feasibility. Chapter 4
contains the results of the described study, beginning with a comparison of the original
and new models and then delving into the results in more detail. Finally, the paper
concludes with a discussion of the results and their implications in Chapter 5.
Motivation for the Proposal

This introduction reviews a variety of classical test theory- (CTT) and latent-trait
theory-based approaches to modeling guessing, partial knowledge, and misinformation,
as well as determining whether and how guessing manifests itself in test-taking. It then

reveals that the popular interpretation of “guessing”, while not entirely inaccurate, is



incomplete. IRT models have been in use for several decades, but it was with an
improved estimation method in the early 1980s that the most general 3-parameter logistic
model (3PL) has seen wider application. The 3PL contains a lower asymptote, which is
meant to account for the probability of correctly guessing on item (Birnbaum, 1968), and
is now commonly referred to as the guessing parameter. Chapter 2 will cover the relevant
IRT models and CDMs more thoroughly, the questions to consider here are: though
Birnbaum included it to represent the probability of correctly guessing on an item, is the
lower asymptote accurately defined and interpreted as a guessing parameter? How may
the lower asymptote better be interpreted: is it an artifact of test-taking or scoring
strategies?

Birnbaum’s (1968) theoretical value for the lower bound, based on basic
probability theory, is often not obtained when freely estimating the lower asymptote from
real data. At times, the estimated lower asymptote is quite a bit higher than theory would
suggest, which may simply be indicative of fewer functional distractors for a given item.
On the other hand, the estimated lower asymptote may be lower than theory predicts, and
it is this scenario that suggests that something is occurring with the item or the examinees
to make it less likely to get a correct answer than just chance would allow. It is important
to more fully understand the “guessing parameter” as it appears in various models, so that
its inclusion in the proposed model in Chapter 2 can be justified.

To study the issue thus addressed, one must look at what is meant by “guessing”
and how it has been handled by other researchers. Some of the models discussed
distinguish “random guessing” to be a truly random selection from among the alternatives

present, where an alternative is selected based on no knowledge of the content of the item



in question; this definition is most similar to what is commonly referred to as guessing in
the context of the lower asymptote of the 3PL model, as that is the theoretical probability
of correctly responding to an item with a complete absence of knowledge. However, as
previously mentioned, the interpretation of the lower asymptote as random guessing is
not always supported by the actual estimate arrived at in the 3PL framework. Other
definitions of guessing include the notion of partial knowledge, or “constrained
guessing”, which is often treated as a separate type of guessing. In the case of partial
knowledge, it is assumed that the examinee has some working knowledge in the domain
of the item, but is unable to fully identify any one alternative as the single best answer. In
these cases, an examinee may be able to eliminate one or more alternatives as incorrect,
leaving several alternatives remaining from which to choose: it is at this point that
random guessing from the remaining alternatives may occur.
Achievement Testing in Education

Bligh (1979) focused on the criticism that achievement testing was being used for
purposes other than those originally intended, even while people were calling for more
standardized testing. By broadly defining achievement tests as those used for any
evaluation and both norm- and criterion-referenced information, Bligh unifies the type of
instrument one may be working with. Within the framework so defined, Bligh then notes
that the “primary purpose [of achievement tests] is to provide relevant information to be
used with other sources in decision making”(p. 2). The importance of this caveat cannot
be understated when dealing with past and present criticism of the standardized test: such
tests must be interpreted within the context of other student achievements and

assessments, a major component of test validity. As the popularity of standardized



achievement testing continues to grow, and as the demand for such tests increases due to
government incentives, one must also be cognizant of how the tests themselves are
designed and scored, and what information is being gleaned from them.

Hall, Carroll, and Comer (1988) noted the issue that Bligh (1979) framed so well:
standardized achievement tests should not be the only measure considered for decision
making. Classroom teachers from different grade levels rated their use of three different
levels of assessment: their own tests, national exams, and state competency tests. The
primary interest was in how the teachers used the three different sources in making their
own decisions for their classroom, as well as student learning and as a reflection on how
they, themselves, were performing as teachers. The results of the survey revealed that all
three sources contributed to teachers’ decisions about academic progress, adequacy of
instruction materials, diagnosis of student weaknesses, and other indicators. None of the
three sources was weighted much more than any other, each coming in at roughly equal
levels, with more consideration generally being given to the teacher-prepared
assessments. The external sources are taken into account, but other factors are also
considered, and are considered more important. Teachers of different levels (e.g.,
elementary, middle and high school) used the tests for different purposes, specifically the
elementary level teachers used the tests less for student promotion and retention and for
motivating student learning.

With the passage of the No Child Left Behind (NCLB) Act of 2002, the federal
government attempted to improve nationwide literacy and scholarship of its primary and
secondary education students via measures of accountability, specifically performance of

K-12 students on standardized achievement examinations. The NCLB, then, made major



use of the national and state achievement tests to grade schools, teachers, and student
promotion and retention, contradicting the teachers’ own weighting preference (Hall,
Carroll, & Comer, 1988). However, Duckworth, Quinn, and Tsukayama (2011) urge
caution in interpreting achievement test scores as the ultimate predictor of success in and
out of the classroom; report card grades serve a separate and distinct function in such
decision making.

The difference in objectives and student outcomes between standardized tests and
report card grades can likely be attributed to in-class curriculum. Less emphasis on some
topics means a student will pick up the knowledge outside of class for standardized tests,
while diligence on material emphasized by the teacher would naturally correspond with
higher report card grades. In one study, self-control and intelligence were measured as
two distinct constructs that contribute differentially to academic performance:
intelligence was found to contribute significantly to standardized achievement test scores,
and less so or not at all to a student’s grade point average (GPA; Duckworth, Quinn, &
Tsukayama, 2011). Conversely, self-control contributed significantly to GPA, but not at
all to standardized achievement test scores. If standardized test scores are determined by
intelligence and less so by self-control, which is linked to classroom learning, are
standardized test scores the best measure of a classroom or school? Indeed, the teachers
involved in Study 3 (Duckworth, Quinn, & Tsukayama, 2011), recognized the distinction
between the two types of assessment and used them in appropriate, complementary ways,

neither giving more credence to one nor the other.



CHAPTER 2

LITERATURE REVIEW

In this chapter, several scoring strategies from each of the classical test theory
(CTT), item response theory (IRT), and cognitive diagnostic modeling (CDM)
frameworks will be discussed. Each model has advantages and disadvantages, and some
measure guessing better than others, if they do so at all. Alternatives to the traditional
MC item design are also presented and considered. Ultimately, the traditional test
administration and design are settled upon for moving forward with the proposed model,
but some options are presented and weighed here.

Classical Test Theory Scoring Strategies

In this section, the various methods of scoring to accommodate guessing
and partial knowledge will be reviewed. The following methods, except where noted, are
all scored within the CTT paradigm, where the test score is an estimate of an examinee’s
true score, or ability, in a given domain. It is only in how the item scores are calculated
that these methods differ. Table 1 outlines the major alternative strategies discussed here,
identifying the examinee and administrative tasks that differ relative to NR scoring. Also
included in Table 1 are some of the more salient disadvantages and recommendations

against the alternative scoring methods when compared to traditional scoring.
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Number right scoring

The conventional MC scoring method proceeds in the following manner: each
examinee indicates a single alternative of those available for an item that he feels is the
most correct, yielding a binary pattern over the length of the test; if an item is correctly
answered, the examinee gets one point or full credit, else no credit is awarded. Over the
course of an entire examination, a pattern of ones and zeroes for each student is
obtained—the item response pattern—which is used in both CTT and IRT applications
for scoring exams. This conventional scoring method is often referred to as “number
right” (NR) scoring, where the final score on the test is simply the number of items an
examinee answered correctly. Two major arguments have been made against this
allocation system, that the scores include additional credit for items on which the
examinee guessed (e.g., Chernoff, 1962), and that the scores are not reflective of partial
knowledge on items on which the examinee might have answered incorrectly (e.g., de
Finetti, 1965). In the case of CTT, one’s true score is estimated by his observed score on
a given instrument, typically the NR score; as Chernoff (1962) argues, that true score
estimate and measurement error are artificially inflated by those items on which the
examinee successfully guessed. It can be argued that some alternatives may be “more
right” than others (e.g., Wilcox & Wilcox, 1988, Yunker, 1999), or that an incorrect
alternative was endorsed simply because there was roughly equal certainty between it and
the correct one (e.g., Bickel, 2010), with the remaining alternatives ruled out as
possibilities.

Option weighting



Chernoff (1962) identified the likelihood of guessing or uncertainty as a product
of both an individual examinee’s selection of the correct alternative and the relative
proportion of the overall population selecting each alternative presented. In his example,
a correct alternative selected at a rate approximately equal to that of the other alternatives
present indicated that only a few examinees actually know the correct response; in
contrast, a correct alternative selected at a much higher rate than the remaining
alternatives indicates that more students know the answer and are not randomly guessing
among all options. The proposed approach to handling guessing was more direct: it
explicitly identified items on which guessing by an examinee was likely and differentially
weighted.

Ramsay (1968) noted that the expected average score due to guessing could be
comparatively large and addressed that issue and the missed measurement of partial
knowledge with a statistically-based method. By assigning post hoc weights to the
different alternatives for an item, one could separate groups of respondents based on their
resulting group mean scores. The relative weights for the alternatives for a given item can
be chosen to maximize the separation between groups of respondents of different ability
classifications, which informs criterion scores for said separation. As the weights can be
determined for the alternatives based on the sample proportions of the item alternatives
for students of different criterion groups, students can be awarded partial credit from
those weights based on their partial knowledge. That is, incorrect alternatives selected by
students from higher-performing groups would receive higher weights because of their
attraction to the more able students. As weights can also be allowed to be negative,

random guessing is penalized by costing the examinee points on an item for a random
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selection of an unpopular alternative. Like Chernoff (1962), Ramsay’s method depends
on the group’s distribution among answer options for each item to help determine an
individual’s score. Other methods for weighting alternatives, by experts or consensus a
priori have been proposed (e.g., Pascale, 1971).

It is the nature of weighting the alternatives (Ramsay, 1968) that allows for
potential misclassifications, which may have severe ramifications for the examinee.
Criterion scores for classifying test-takers must be continually updated as the class and
material evolve, but even updated scores may yield misclassification. While MC tests are
primarily considered to be objective measures of one’s knowledge state, subjectivity can
be introduced by non-uniform item weights; Potthoff and Barnett (1932) noted that
teachers often disagreed with the marks given by an un-weighted, standard scoring
system, and that such discordance is not predictable. One suggestion for improving the
quality of option-weighted items is for the different distractors to aligned along the
construct of interest, enabling diagnosis and a more valid assessment and utilization of
the resulting weights: the distractors could then be weighted by the criterion scores of
those examinees selecting the respective alternatives (Echternacht, 1973). An IRT
variation of this method, the nominal response model (Thissen & Steinberg, 1984), will
be discussed later in this chapter.

Several studies have investigated the psychometric properties of tests scored
under option weighting. Chevalier (1998) conducted an extensive review of different
partial-credit and correction-for-guessing scoring systems and found inconsistent effects
on reliability and validity of those methods. In another study, comparing the validity of

option-weighted tests and NR tests for making pass/fail decisions, such as in end-of-year
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examinations for promotion to the next grade level, Haladyna (1984) noted that previous
research noted a tradeoff in reliability and validity: increases in reliability for option-
weighted tests generally led to no gains in validity. Haladyna’s study partially confirmed
these results, finding that option weighting effectively increased reliability and also
improved pass/fail decisions with regard to misclassificationHaladyna suggested that, as
option weighting must be regulated and requires well-designed items, it should only be
utilized for large, well-controlled testing programs and not for teacher-developed or other
in-house classroom tests.

Haladyna’s results are refuted by a study conducted by Kansup and Hakstian
(1975), in which the option weights were determined empirically from examinees’
subjective rankings of the alternatives. The option-weighted scores for both verbal and
mathematics items were used and no practical increase in internal consistency was
identified: in fact, a decrease in said reliability was found for one of the testing
conditions. Kansup and Hakstian did not find significant changes in validity for the
scoring methods over traditional NR methods, though a significant decrease in validity
was observed for one of the administered tests. Due to the inconsistent and generally
insignificant changes in reliability and possible decreases in validity, the research
findings do not support option weighting as improving psychometric properties.

In a review of a number of option weighting studies, Frary (1989) likewise
concluded that validity of option-weighted tests is suspect and had been poorly measured
in the past, though a consistent increase in reliability was found. Haladyna’s admonition
against option weighting in smaller examinations reduces the exposure of students to

such items and may confound exam performance with anxiety over a different
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administration, which must be considered in the context of Pascale’s (1971)
recommendation in general against non-conventional test administration methods for
younger children. However, larger-scale tests involving more centralized administration
may benefit from option weighting via the nominal response model (Thissen &
Steinberg, 1984).
Formula scoring

Formula scoring is one alternative to option weighting methods and is often also
referred to as “correction for guessing” or “correction for chance” (e.g., Chevalier, 1998;
Cross, 1975; Foster & Ruch, 1927; Horst, 1932; Little & Creaser, 1966; Ruch & DeGraff,
1927). Instead of identifying items based on the overall population’s performance,
formula scoring looks at individual item responses and applies one of several formulae to
account for guessing or partial knowledge. Kurz (1999) and Chevalier (1998) provide
two reviews of several such methods, from both CTT and IRT perspectives. The impact
of risk-aversion and non-compliance with instructions, however carefully given, and the
unequal penalization of examinees across the ability continuum raise concerns for its
implementation. The next two sections outline some of the more common formula
scoring methods and the drawbacks associated with post-hoc score corrections,
respectively.

Variants of formula scoring

Two CTT formula scoring models, the random-guessing model and the rights
minus wrongs (RW) correction model, respectively award partial credit for omitted items
and penalize examinees for incorrectly answered items, where the reward and penalty are

each weighted by the number of alternatives provided for each item. In the case of the
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random-guessing model, omitted items are awarded a fraction of full item credit, under
the assumption that an answer would otherwise have been based on a random guess. The
random-guessing model is considered to be a positive model: by omitting items,
examinees are assumed to be aware of their own knowledge state and are rewarded for
this awareness for each omitted item. The RW model assumes all incorrectly answered
items are due to random guessing, so the examinee is penalized for attempting an item he
did not know. Any correction for guessing based on a penalization for incorrect
responses, such as RW, depends on the equal difficulty of the distractors for the
weighting of the penalty to be valid (Horst, 1932).

Both of the random-guessing and RW models require additional instructions to
the examinee, outlining the scoring method and how omits in the former are rewarded
and guessing in the latter are penalized (e.g., Lord, 1975; Ruch & DeGraff, 1927). The
mechanics of responding to an item are unchanged between these formula scoring
systems and a standard MC exam. However, more understanding of the instructions is
required for the formula scoring models, which may penalize lower ability examinees
before they begin the exam (e.g., Kurz, 1999).

Formula scoring and students’ cognitive processes

Lord (1975) premised the success of formula scoring on explicit instructions to
the examinees, where it is explained how one may maximize his performance by
guessing only on those items for which he is able to eliminate at least one alternative and
otherwise omitting items on which he can do no better than chance, which is instruction
in test-wiseness. Even when providing explicit instructions to students to relate test-

taking strategies with different scoring outcomes (Lord, 1975), non-compliance and other
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issues arise when tests are administered in the formula scoring paradigm. Cross and Frary
(1977) and others (e.g., Bliss, 1980; Plake, Wise, & Harvey, 1988) tested Lord’s
suggested, explicit instructions (see Lord, 1975). Those studies found instead that
formula scoring unduly penalizes able students, who perhaps better understand the
instructions. Cross and Frary (1977) also found individual differences in interpreting the
test instructions as well as in examinees’ ability to assess their own partial knowledge and
guessing behavior, supporting earlier findings by Granich (1931).

Formula scoring and psychological variables

Cross and Frary (1977) also identified the potential of personality factors, such as
risk aversion, to influence formula scoring results. Frary (1989) argued that formula
scoring belongs in the classification of confidence testing because of the need for
examinees to recognize their own partial knowledge and relative likelihood of item
alternatives to judge whether they have a better-than-chance probability of getting an
item correct. Foster and Ruch (1927) found that, though formula scoring supplies more
information on examinee abilities than NR scoring, RW scoring tends to over-penalize
examinees due to excessive omissions or risk-seeking in guessing when one ought not.
Burton (2004) showed no consistent increase in RW scores, though that finding is
impacted by low-ability examinees. In another study, risk-seeking behavior was assessed
and compared with scores from NR and RW scoring methods (Bliss 1980); in that study,
RW scoring yielded a higher internal consistency, but more risk-averse students omitted
items that they had a better-than-chance probability of getting correct, yielding a higher

penalty in terms of true score estimate than those less risk-averse.
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Little and Creaser (1966) found that examinees are be penalized unduly under
RW scoring , as a student may identify the correct response to an item, but with low
confidence, which would lead to that item’s being omitted under formula scoring. Such a
scenario would lead to a lower true score estimate for that examinee as a result. From an
administrative standpoint, one has to consider that RW scoring has the possibility of a
negative true score estimate, while positive corrections for omits may yield a non-zero
score for a blank test (e.g., Chevalier, 1998). It would be up to the test administrator to
determine how to interpret and report such scores, as the political ramifications of a
negative score can be tremendous, while receiving a negative score may have
demoralizing effect on an examinee.

Summary of formula scoring findings

Glass and Wiley (1964) showed mathematically how RW formula scores are
generally less reliable than NR scores, while at the same time RW scores increase the
validity of the scores and their interpretations. Due to many problems with formula
scoring, including the reliance on examinees of all ability levels to fully understand the
instructions and to recognize their own partial knowledge, and the small-to-negligible
changes in test validity and reliability, formula scoring is not recommended for general
use.

Confidence testing

Given the insensitivity to confidence in an alternative of conventionally scored
MC tests, a number of confidence testing methods have been developed. In all such
methods, additional work is required of both test-takers and administrators, and to

varying degrees. There are a variety of confidence testing models that have been
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proposed, requiring varying amounts of additional input from both test-takers and
administrators. Whether explicitly assigning a confidence level to all alternatives or just
to those selected, or rating the correctness of the various alternatives or the one selected
on a Likert-type scale to indicate confidence, these test-administration schemes are all
forms of “confidence testing” (Echternacht, 1971). There is a large number of different
confidence-testing formats available for selection, all of which attempt to measure either
one or both of guessing and partial knowledge. The current review will cover the more
general cases of these models. Some aspects of option weighting, such as when students
assign their own weights, tie in with the notion of confidence testing. However,
confidence testing as a type of scoring strategy is conceptually different from option
weighting, as the latter typically has weights assigned by the test administrator during the
scoring process or during test development.

Advantages of confidence testing

Wisner and Wisner (1997) identified the advantages of confidence testing to
include rewarding genuine knowledge, reflected by correct answers confidently given,;
penalizing guessing or attempts to game the system, reflected by incorrect answers
confidently given; and through the first two, providing additional motivation for more
thorough studying and understanding of the content in question. More coverage in this
review will be given to Bickel (2010), as it describes the most general form of confidence
testing. As other studies and methods are included in the review, it will become apparent
that, though Bickel’s work is more recent, the other studies describe more specific ways
of addressing the problem. All possess the advantages above to some extent, as well as

similar disadvantages discussed later.
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In testing the situation may arise where an examinee is able to eliminate most, but
not all, of the alternatives for a given MC item, which is the same assumption
underpinning correct RW scoring instructions. Consider the example posed by Bickel
(2010), where two alternatives remain: a student may have a confidence vector for those
two remaining alternatives of p1 = (0.85, 0.15), while a second student may have a vector
of p2 =(0.51, 0.49). In both cases, the standard MC scoring would prompt both to select
the first alternative. A third student may have a confidence vector of p3 = (0.49, 0.51) for
the same two alternatives, thereby selecting the second alternative because of her
marginally higher confidence. In the standard MC scoring, the first two students would
receive full credit on the item, while the third student would receive no credit. Bickel
(2010) argues that there is a dual insensitivity of the scoring of these three students: the
student with the most confidence in the correct answer receives the same credit as the
student who all but randomly chose that correct answer from the two that remained. The
third student, who basically has the same knowledge state as the second student, gets no
credit for the item. Thus, students who are aware of their own knowledge and ability with
high confidence are not separated from those who are less confident in their knowledge,
and students of similar low confidence are separated in scores; this is the major argument
for confidence testing and other methods that handle partial knowledge.

Probability testing

The most complex method of confidence testing was described and tested by
Bickel (2010), in which examinees assign to each alternative their confidence of that
alternative's being correct for a given item. A student can therefore maximize his score by

assigning his personal probability of correctness for each alternative when the
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administrator utilizes a “strictly proper scoring rule” (p. 347). Bickel recommends the
logarithmic scoring rule for the reason that it possesses the desirable properties of locality
and an association between score and increased knowledge of the content. For a scoring
rule to have the local property, the score must only depend on the confidence assigned to
the correct alternative when multiple alternatives are possible for a given item (Bickel,
2010). Local scoring rules will always give a higher score to correct answers given
greater confidence.

Pick-One testing

Boldt (1971) proposed a “Pick-One” scoring system, in which the examinee
selects one alternative he believes to be correct and assigns it a value from a 4- or 5- point
scale to indicate his certainty in that alternative’s correctness. In this way, there is no
concern for scores of negative infinity as with probability testing (Bickel, 2010), nor of
the difficulty addressed by de Finetti (1965) of specifying specific personal probabilities
for any alternative. By only having to rate one’s confidence on a pre-determined scale for
a single alternative, the examinee has more time to complete more items on an
examination. Tables for scoring using the Pick-One system can be provided a priori so
students can understand how confidence ratings on a correct alternative correspond with
the score on the exam.

Other confidence indicators for single alternatives

Wisner & Wisner (1997) developed and tested two systems similar to Pick-One.
In both cases, examinees indicated the alternative they believed to be correct and then
noted their confidence in that selection. In the first system, a 3-point Likert scale,

representing high, moderate, and low confidence was used. In the second system, an
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examinee indicated high confidence by circling the item number on his answer sheet: un-
circled items were deemed to be of moderate confidence. Correct, high-confidence
answers received extra credit, whereas incorrect answers with high confidence were
penalized. Correct answers given with moderate confidence were neither penalized nor
rewarded and were used to determine the base score available for an item. Honesty in
admitting low confidence was encouraged by awarding partial credit for correct
responses and lower partial credit for incorrect responses. In the experimental stage of
these systems, examinees who opted for the confidence-weighted tests also received a
report of their conventional score and their overall confidence level, helping diagnose
overconfidence, which in this case was interpreted as misinformation.

With a wider range of possible scores, both scoring systems had a higher variance
of scores than the standard method, and confidence-weighted scores were higher than
standard scores (Wisner & Wisner, 1997). A lengthy scoring time was reported for the 3-
point confidence scale system, due to the six possible point values available for each
item; the two-level confidence system was relatively easier to grade, but still more time-
consuming than traditional electronic NR scoring. The students in the study who opted in
generally found the confidence testing format to be more fair in awarding points and that
it encouraged additional time spent with the material. The instructions and scoring for
both scoring systems are fairly straightforward to explain and understand, but require
additional work on the part of the student during the test administration.

Disadvantages of confidence testing
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Bickel (2010) conducted his study on college-age students in a decision analysis
program. As the other studies included in this review were also used college-aged
participants, there may be an issue with broadly replacing MC exams at all education
levels with confidence weighting. Bickel (2010) discussed the use confidence testing
throughout the first week of the class, and included assignments to further illustrate the
outcomes associated with different confidence allocations for the scoring system, as that
was the standard used to determine final grades in the course. It was also emphasized that
an infinitely negative score was possible for a given exam because of the nature of the
logarithmic scoring rule, and that a withdrawal or a grade of an ‘F’ were the two
outcomes possible should that situation arise. College-level students without strong
mathematics backgrounds or ability would have a difficult time understanding the scoring
system and its impact on their grade.

Although Bickel (2010) strongly recommends the logarithmic scoring rule,
Hakstian and Kansup (1975) found that confidence tests in general, and the logarithmic
scoring rule in particular, provide no major gains in test reliability and some losses in
validity. The authors argued that adopting a more complex scoring system has no benefit,
besides the approval of students noted by Bickel (2010). Hakstian and Kansup did,
however, find some gains in internal consistency and stability of confidence tests over
NR scoring.

Echternacht (1971) conducted a review of several confidence testing techniques
available at the time, and drew similar conclusions to those identified here. In general,
confidence testing requires more of both the examinee and test administrator, in terms of

time spent on their respective tasks of taking and scoring the exam. Implementation of a

21



confidence testing protocol requires thorough explanation of the scoring rules and system
in place, which may put lower-ability or younger test-takers at a disadvantage (Kurz,
1999). Some scoring systems are too complex for use in primary school grades (e.g.,
Bickel, 2010; Wilcox & Wilcox, 1988), as it is doubtful school-age children would be
able to fully grasp the mathematical intricacy involved, or to fully understand the
ramifications of assigning different confidence levels to the alternatives.
Elimination and subset testing

One alternative to probability testing is the subset selection technique (Gibbons,
Olkin, & Sobel, 1979), or elimination test (ET; Coombs, Milholland, & Womer, 1956).
Under these test systems, confidence is demonstrated by selecting a subset of alternatives
from those provided, as either probable correct alternatives (subset selection) or probable
incorrect alternatives (ET). By allowing the selection of multiple alternatives, the two
techniques allow for the measurement of partial knowledge and discourage guessing
(Chang, Lin, & Lin, 2007; Coombs, Milholland, & Womer, 1956; Cross, Thayer, &
Frary, 1980; Gibbons, Olkin, & Sobel, 1979; Tollefson & Chung, 1986); any subset from
none to all alternatives is allowable, and if the subset contains the correct response to the
item, the whole subset is deemed correct or incorrect, depending on inclusion or
elimination testing. Under subset selection, the maximum score for an item is obtained
for correct subsets of size one, much like with confidence testing, indicating complete
confidence in the correct response, with scores diminishing for correct subsets of larger
sizes. No score is earned if the subset contains all possible alternatives, indicating
complete lack of confidence in any subset or alternative. Similarly to the logarithmic

scoring method endorsed by Bickel (2010), incorrect subsets receive increasingly
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negative scores (Gibbons, Olkin, & Sobel, 1979), corresponding to subsets of larger
sizes, thereby penalizing students for wild guessing.

Hakstian and Kansup (1975) found no consistent increase in validity or reliability
of ET over NR testing and, due to the increase in testing and scoring time of ET,
recommended against its adoption, which was corroborated by the findings of Cross
(1975). However, Chang, Lin, and Lin (2007) found that ET does measure partial
knowledge better than NR scoring, which was consistent with the findings of a previous
study that ET controls guessing better than other methods (Cross, Thayer, & Frary,
1977). The first study, however, found that ET unduly advantages random guessers
(Cross, Thayer, & Frary, 1977).

There is a potential penalization of examinees with low confidence and incorrect
partial knowledge; the lowest score possible on an item occurs when an incorrect subset
of size k — 1 is indicated (Gibbons, Olkin, & Sobel, 1979), revealing low confidence on
the part of the examinee. A misapplication or misunderstanding of a rule could occur, but
this practice of giving smaller penalization to high-confidence incorrect selections than to
low-confidence incorrect selections is contrary to other confidence testing protocols.
Immediate feedback

Wilcox and Wilcox (1988) developed a scoring formula for the answer-until-
correct (AUC) method of testing, which is facilitated by computer-based testing systems.
In AUC situations, a student indicates an alternative for an item and is given immediate
feedback via presentation of a new item if the student answered correctly or re-
presentation of the current item—with the previously selected alternative removed—if

the student answered incorrectly. Feedback of this simple nature can prove instructive to
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the test-taker and improve ability and learning, but also help measure the extent to which
that test-taker may be guessing by the number of chances he needs to answer the item
correctly. In this case, two models are of interest: one where examinees are assumed to
guess perfectly randomly, and the other where the probability of a second alternative’s
being selected is conditioned upon the first alternative. In the second model, the “second
response conditional probability” model, partial knowledge may come into play when the
conditional probabilities for given alternative pairs vary, determined by the proportion of
ordered alternative pairs observed in a calibration study, common error is the difference
between the two alternatives. Thus, there is a non-random pattern of second choice
alternatives for incorrectly answered items: some second choices are more popular given
the initial incorrect selection.

While the AUC paradigm is well-measured by the conditional probability model,
it requires the task analysis of each item for appropriate modeling of the probabilities
(Wilcox & Wilcox, 1988). This is a large burden to place on a test administrator,
especially for long tests with broad content. Additionally, as the original study consisted
of similar spatial reasoning items involving apparent rotations of a point-of-view, the
appropriateness of such a scoring format for disparate constructs or items without
observable tasks may be questionable. More research into AUC models and scoring
functions must be done before widespread implementation. Early work discovered that
examination on otherwise unknown material was an aid to learning in an academic
environment (e.g., Jersild, 1929), so the very mechanics of eliminating alternatives with

minimal feedback may further familiarize the student with the material.
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In a review of different confidence testing methods, Frary (1989) identified AUC
as one way of potentially measuring partial knowledge under the same assumptions of
Wilcox and Wilcox (1988). However, that review found AUC scores to be generally
lower than the corresponding NR scores, which may be due to the self-fulfilling nature of
immediate feedback for lower-ability examinees measured by Arkin and Walts (1983),
among others. That is, lower-performing students who receive immediate feedback
regarding their poor performance continue to do worse than if no feedback had been
received. The items for AUC must be well-constructed such that the alternatives fall
along the continuum of the construct so that the order in which alternatives are selected
can also provide diagnostic information as to the examinees’ abilities (Frary, 1989). In
addition to impacting examinees’ performance, AUC tests further polarize the naturally
occurring difference in scores for lower and higher-ability students. Arkin and Walts
(1983) found a significant interaction between test anxiety and feedback. Specifically,
examinees with low test-anxiety were more impacted by immediate feedback than high
test-anxious students.

Concerns raised by Cross (1975) regarding ET scoring in the previous section led
to the development of a modified AUC/ET method. In the scoring paradigm of Cross,
Thayer, and Frary (1980), a higher penalty is imposed on misplaced confidence, as occurs
in the case of misinformation. In the study, elimination testing was used, but immediate
feedback was provided such that no more alternatives could be eliminated once the
correct answer was chosen. The study found higher reliability coefficients than strict ET,

but not to conclusively recommend the new method over ET.
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Psychological Variables and Alternative Scoring Systems

All of the alternative scoring methods previously discussed may have implications
for psychological, construct-irrelevant variables. A major potential drawback to
confidence testing is that confidence is a personality variable, which is often not the
construct of interest in classroom or achievement testing; some studies show that such a
variable may be a factor in determining exam scores. Echternacht, Boldt, and Sellman
(1972) found at least a tentative correlation between confidence levels and test scores;
personality traits were assessed prior to the commencement of training in a technical
course. Partial correlations between confidence level from the Pick-One (Boldt, 1971)
and Distribute 100—an alternative rating system similar to that of Bickel (2010)—and
personality indicators, including dogmatism, anxiety, rigidity, impulsiveness, and self-
sufficiency (Echternacht, Boldt, & Sellman, 1972) were calculated. The study found that
some partial correlations were significant, but none consistently across both testing
formats. The authors they asserted that confidence level is something inherent to each
person, and so they tentatively concluded that there is no impact of a person’s confidence
in general on performance on a confidence test.

Koehler (1974) found an association between overconfidence and risk-taking
propensity on confidence tests, by inserting nonsense items into a standard test. In that
study, it was found that over-confidence was associated with increased variability in
confidence test scores, beyond variability related to knowledge. However,
overconfidence was not equivalent to risk-taking behavior, as determined by the number

of attempted nonsense items when strictly instructed not to guess. Thus, over-confidence
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is a personality trait that contributes to increased variability in confidence test scores,
which is a recommendation against confidence testing.

Zakay and Glicksohn (1992) found a link between overconfidence and test scores:
specifically that overconfident students received lower grades. In their study, students
assigned a confidence level from 0 to 100 for the alternative they selected for each item
on an exam. The tests were NR scored and students with high grades were well-calibrated
and reported high confidence on items they answered correctly. On the contrary, students
who were overconfident were, by definition, reporting high confidence on items they had
incorrectly answered: these findings contradict those of Walker and Thompson (2001),
who determined that students are risk-neutral on MC exams, and that risk-seeking and
risk-averse behaviors do not factor into test scores. Zakay and Glicksohn (1992)
concluded that personality influences on overconfidence and MC test-taking should be
explored further.

Arkin and Walts (1983) found that test-anxiety interacted with immediate
feedback when feedback is given early on, indicating that scores can be impacted by
extraneous factors and differences in test scores can be polarized beyond what otherwise
would have been expected. Hansen (1971) found that certainty in an answer was
significantly correlated with F-scale measures of an authoritarian personality as well as,
in some cases, risk-seeking activity. Further, Tollefson and Chung (1986) found that
examinees had difficulty adjusting to alternative testing systems, as the examinees
reported that the new instructions were perceived to be more difficult than conventional
testing. Plake, Wise, and Harvey (1988) warned against non-conventional scoring or test-

taking situations, noting that examinees do not always behave according to the rules in
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those situations, even when they express understanding of the rules in place and how to
optimize their test score. Edgerton and Stoloff (1967) identified test-wiseness, or facility
with MC tests, to be a factor leading to variability in test scores. And, to reiterate Cross
and Frary’s (1977) findings, there are clear individual differences in how students
interpret scores and identify their own partial knowledge, so the assumptions of the
alternative scoring methods are not necessarily upheld. DeMars (2009) showed that
motivation wanes over the course of multiple assessments and even within an assessment,
and she provides a model to account for the decrease in effort exerted for later items, as
there was a clear correspondence in effort, test scores, and guessing.
Design Considerations in Item Format

As teachers note the importance of both classroom assessments and standardized
achievement tests for big decisions about their classroom and students (e.g., Duckworth,
Quinn, & Tsukayama, 2011; Hall, Carroll, & Comer, 1988), having well-constructed
assessments at all levels is vital to the success of educational programs. Even before
automated scoring of MC items and fill-in-the-bubble forms and electronic form readers,
there was an advantage in scoring accuracy gained by the use of MC items, as well as in
scoring speededness (Cuff, 1931). Chang, Lin, and Lin (2007) found corroborative
evidence indicating that the cost of administering a test can be reduced further by
implementing computer based testing (CBT) systems, eliminating the need for pencil-
and-paper tests, as there is no difference in performance on the two test formats. Now, the
debate is less over the accuracy of scores and more over how the tests can be constructed
so that the scores are meaningful in terms of examinee knowledge and skills.

Item types
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Students in the United States are familiar with the standard MC test format and
scoring rules, but there are other ways to administer an objective test, some of those with
desirable properties are reviewed in this section. Searle (1942) described one such test, in
which each item would have a variable number of correct alternatives, from none of the
options to all of them. In this way, the amount of information directly tested could
increase with little extra cost in time to the item writer: “each single alternative can be
made a differentiating unit in the scoring of the test” (p. 703). Searle (1942)
recommended that the number of correct alternatives should be approximately equal to
the number of incorrect alternatives over the course of the entire test; machine-assisted
scoring was can quickly score multiple-answer MC questions. Edgerton and Stoloff
(1967) and Scheideman (1931) were other early proponents of drafting MC items with a
varying number of alternatives.

Another alternative that simultaneously minimizes guessing and the chance of
correctly answering an item solely due to guessing was proposed by Kubinger et. al
(2010), in which it was shown that the 2-of-5 item designs were superior to those of 1-of-
6 testing. In 2-of-5, five alternatives are presented for each item, exactly two of which are
correct. The a priori probability of correctly guessing on the item is 0.10; in 1-0f-6 the
traditional MC presentation of one correct response out of six possible alternatives is
scored, with an a priori guessing probability of 0.17. Kubinger et al. found that this small
change in item design resulted in large changes in item difficulty for otherwise identical
items, where 2-o0f-5 was found to be more difficult than 1-0f-6, and as difficult as free-
response. It can be extrapolated to assume that 2-of-5 would perform even better when

compared to a more traditional, 4-alternative MC item. However, constructing a test—say
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a mathematics test—where each item has two correct responses may be burdensome or
impossible for the item writer.

Of the different forms of MC item construction, a few stand out as better than the
others. True-False (TF) items have the advantage of being short, enabling the inclusion of
more items that can be tested in a given length of time, but they have lower reliability
than other formats and their quality depends on the ability of the item writer (Haladyna,
1992). MC items may contain as few as two alternatives and still yield higher reliability
than TF (Haladyna, 1992), and MC items are only as good as the number of functional
distractors available (e.g., Haladyna, 1992; Haladyna & Downing, 1993). In Haladyna’s
(2004) estimation, progress has been made in the development of alternative objective
item types, such as multiple true-false and alternate choice, but more research into their
relative advantages and disadvantages is warranted.

Distractor properties

Consideration must be given to guidelines for item writing and formulation for
those specific item types. If one is interested in the phenomenon of guessing, and if the
theoretical probability of correctly answering an item is a function of the number of
alternatives on said item, one must consider the appropriate number of distractors. There
is some disagreement in the literature as to how many distractors should be used for an
MC item (e.g., Haladyna, 2004; Haladyna & Downing, 1993; Rodriguez, 2005).
Haladyna, Downing, and Rodriguez (2002) conducted a review of dozens of item-writing
textbooks, and ultimately recommended that four alternatives be used. Haladyna and
Downing (1993) found that most often there was only one functioning distractor in an

MC test, which is an argument for fewer, rather than more, alternatives.
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Rodriguez (2005) conducted a meta-analysis spanning eight decades of research,
and found three alternatives to be optimal. Rodriguez suggested that three alternatives
was in line with the suggestion of Haladyna, Downing, and Rodriguez (2002) that one
use only as many distractors as feasible, insofar as there are usually only three plausible
alternatives. Further, the meta-analysis found that distractors are not the sole contributor
to item difficulty and discrimination, though Haladyna and Downing (1993) did find a
relationship between the number of distractors and an item’s discrimination. As the
number of alternatives is also used in generating a start value for the lower asymptote for
some IRT estimation software, using items with unnecessary and infeasible distractors
will hinder that estimation.

Distractor functioning

Like with item design, the development of the alternatives must be a thoughtful
process. Horst (1932b) discussed the use of well-crafted alternatives as contributing to
item difficulty: if the alternatives are ordered along the construct, selection of each
alternative can provide information about an examinee’s ability beyond just the NR
score. Horst’s recommendation was a prelude to IRT item-person comparisons.

Thissen, Steinberg, and Fitzpatrick (1989) used trace lines of the distractors to
identify how different alternatives function for different ability levels, regardless of
location on the construct. The distractor trace plots can indicate good distractors: such as
those with monotonically decreasing functions over increasing ability; non-functioning
distractors, such as those with constant functions over ability; and non-monotonic
functions, which may help discriminate between moderate and high ability levels as well

as indicate to whom that particular distractor is attractive. The authors argue against such
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trace analyses for person ability estimation, however, indicating that the traces work best
in large, well-controlled assessment programs with thousands of examinees, and are
meant only for item analysis and improvement.
Test length

It has long been known that longer tests are more reliable, per the Spearman-
Brown prophecy formula, but Glass and Wiley (1964) found an added benefit to lengthier
tests: the reduction in differences in guessing behavior between examinees of different
ability levels, which was upheld in Wang and Calhoun’s (1997) construction of test-score
critical values, recommending corrections for guessing for shorter assessments. However,
longer tests—especially those perceived as low-stakes by the examinees—are prone to
poorer estimates of examinee abilities due to lower effort or fatigue exerted on later items
(DeMars, 2007). If a longer test is also timed, poorer person item parameter estimates
under the IRT paradigm will be obtained due to the impact of test speededness on
guessing and time spent on later items (e.g., DeMars, 2007; Goegebeur, DeBoeck,
Wollack, & Cohen, 2008), and alternative item- and person-analyses must be
implemented to account for those changes in test-taking behavior.
Test-taking strategies

The current review covers what studies of different testing methods have exposed
about examinee behavior into guessing. Examinees are not very consistent in recognizing
their own guessing behavior or partial knowledge (Cross & Frary, 1977), even when in
full understanding of the testing scheme in use. Early in the MC literature, guessing—
operationalized as willingness to attempt new and unfamiliar material—was shown to be

independent from ability level (Granich, 1931). Thus, guessing itself arises due to
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unfamiliarity with material, perhaps that which an examinee neglected to review before
an examination; misapplication of a principle as in a mathematics or physics test resulting
in an answer not present; an inability to identify the correct answer out of some
distractors, rather than proceeding to eliminate known incorrect alternatives (e.g., Plake,
Wise, & Harvey, 1988); or it may be due to the instruction and general rule that it is
better to guess than leave an item blank, resulting in random guesses on speeded tests for
slower students (e.g., Goegebeur, DeBoeck, Wollack, & Cohen, 2008); or a lack of
motivation (e.g., DeMars, 2009). That is, construct-relevant and —irrelevant factors come
into play when measuring guessing and test-taking strategies so the phenomenon of
guessing is itself ill-defined.
Item Response Theory Models

Given the general recommendations against the alternative CTT scoring methods,
a different approach to measuring guessing and partial knowledge must be considered. In
this section, several dichotomous and polytomous IRT models are reviewed. Two IRT
models for use with polytomous responses are explored for their utility in measuring
partial knowledge and elimination of the impact of guessing, when used with items
designed for those purposes. The IRT models are contrasted against CTT and some of the
methods described earlier in this chapter.
The 3PL and the lower asymptote

As the 3PL model is the primary dichotomous IRT model of interest, the
following sections describe the model, its derivation, and uses more thoroughly. As the

3PL is the only dichotomous IRT model that includes guessing as an item property,
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empirical studies are also reviewed that describe issues with both the estimation of the
overall model as well as the guessing parameter.

History of the 3PL.

Birnbaum (1968) furthered his logistic test model (LTM) theory and introduced
guessing into the latent-trait models of item response theory.
Even subjects of very low ability will sometimes give correct responses to
multiple-choice items, just by chance. One model... assumes that if an examinee
has ability 6, then the probability that he will know the correct answer is given by
a normal ogive function... of exactly the kind considered [in the previous
section]; it further assumes that if he does not know it he will guess, and, with
probability [c;], guess correctly (p. 404).
The 3PL models this probability by including c;, a lower asymptote that accounts for the
chance that an examinee of sufficiently low ability will still correctly answer an item. The

3PL model for the probability of correctly answering an item is provided in (2.1).

1
Pr[X, =1|0]=c, +(1—c,-)1+exp{_1 74,0 - b, )}

2.1)

In (2.1), a;is descriptive of the information the item provides about person ability 6, or
the discriminatory power of item i; b; is the value of # at which the point of inflection
occurs, and is representative of the item difficulty, or the location of the item; and c¢;
defines the minimum probability of successfully answering the item, or the probability
that a person completely lacking in ability (6 = -o) gets the item correct. Although ¢; can
be justified as the psychological parameter for guessing, it need not mathematically or
realistically be the case that guessing has occurred, or that it has occurred at random as in

the CTT methods (Birnbaum, 1968).
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For MC items where alternatives are laid out and among which exactly one is
explicitly stated to be correct, the only way to respond incorrectly with any certainty is to
omit it altogether. In the 3PL the psychological and statistical probability of a correct
item response is tied in with the logistic model. As one may expect, the value of ¢; would

be a function of k;, the number of alternatives for an item (Birnbaum, 1968), that is

1

1 ) . . . .
c, = k_ However, as will be discussed in the next section, ¢; can also be freely estimated

from the data during the process of fitting the overall logistic test model.

Changing the lower asymptote of a logistic model has the drawback of changing
the meaning of the item difficulty. If one has a better than zero chance of correctly
getting an item correct by merely choosing an answer, then that will naturally increase
the probability he correctly answers an item at his ability level, or where 6 = f;. However,
a; and f; maintain their interpretations as item discrimination and difficulty parameters,
respectively.

Empirical findings

Although Birnbaum (1968) introduced the 3PL model to address the reality of
guessing on MC items, the lower asymptote does not always hold up to that interpretation
under scrutiny. In some instances, the disconnect between the theoretical lower
asymptote of the 3PL and the empirically-derived value will be highlighted.

Rasch vs. 3PL.

Some studies have been conducted to investigate the utility of the 3PL over the
Rasch model (e.g., Glas, 2009; Maris & Bechger, 2009; Parchev, 2009). Specifically,
one’s personal perspective into IRT and measurement impacts the model selected and the
determination as to whether guessing has occurred. Two people with different frames of
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reference can arrive at different conclusions given the same data, where expected scores
did not matched the observed score distribution for low abilities (Maris & Bechger,
2009). In that case, someone with Rasch-leanings may interpret the problem as one of
poor person selection, where enough low-ability examinees did not sit the test; so that no
guessing has occurred when the 3PL is fit. The Rasch model could still be found to
perfectly fit the data, and so truncating the distribution of abilities resolves the issue of
poor person representation. However, another may be more inclined to believe that
guessing has taken place, and rather than look to the sample of people to fix the problem,
the model itself is changed; the expected and observed scores might not have matched at
the low ability levels because people with low ability may still chance upon the correct
response. The two divergent perspectives achieve perfect fit, but with two very different
models based on two different sets of assumptions: a sampling problem where students
do not guess, or a well-sampled population where guessing has occurred.
The 3PL versus the IPL

Partchev (2009) raised an issue similar to that of Maris and Bechger (2009): by
virtue of the freely estimated “guessing” parameter, and non-zero priors for that
parameter, the 3PL will find guessing where it may not actually exist. In his simulations,
Partchev found that when guessing didn’t exist the 1PL nearly perfectly recaptured the
true item difficulty, but the 3PL over-estimated it. When guessing does occur, however,
the 1PL tended to shrink harder items’ difficulty estimates in response to the increased
number of correct responses, and the 3PL again overestimated item difficulty. Partchev’s
(2009) simulations helped illustrate the situation that Maris and Bechger (2009)

discussed: assumptions about strategies or examinees that influence the choice of model
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will then influence the model estimates. Again, the intention of an analysis and the
examination itself are major factors in choice of model to use, even in the instance of
significant improvement in model fit (e.g., Embretson & Reise, 2000).

The 3PL and local optima.

Samejima (1973) identified a peculiarity of the 3PL parameter estimation: the
possibility of non-global maxima. While Bock and Aitkin (1981) were instrumental in
bringing MML and EM estimation to the forefront for IRT model estimation, the problem
addressed by Samejima (1973) can still arise with poorly selected priors. In the case of
the 3PL, for example, the Bock-Aitkin algorithm as implemented by Bilog-MG
(Zimowski, Muraki, Mislevy, & Bock, 2003) may arrive at a local optimum if one uses
incorrect priors for the lower asymptote, yielding very different and sometimes inaccurate
item parameter estimates.

The lower asymptote and theoretical chance

Another issue that may arise with the 3PL is the apparent inconsistency between
the theoretical value of the lower asymptote, based on the number of alternatives
available in an item (Birnbaum, 1968) and actual estimates obtained using various IRT
estimation programs. For example, one study of seventh-grade mathematics achievement
items, which were drafted within the 3PL framework, revealed a wide range of estimates
for the lower asymptote (Lutz & Embretson, 2012). All items had four alternatives, so the
theoretical lowest probability of person correctly answering the item would be 0.25, using
Birnbaum’s (1968) logic and the rules of probability. While the average lower asymptote
across all items on that test was 0.23, the minimum and maximum values were 0.092 and

0.50, respectively. It should be noted that those parameter estimates were found using
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Bilog-MG (Zimowski, Muraki, Mislevy, & Bock, 2003) with starting points for the lower
asymptote equal to 1/4 = 0.25; the data led the estimation away from the theoretical
value, sometimes drastically. In fact, 17 of the 84 items on that test had a lower
asymptote below 0.15 and eight of the items had a lower asymptote estimated to be
greater than 0.35; nearly 30% of the items had a guessing parameter estimated to be at
least 0.10 away from the theoretical value of 0.25 (Lutz & Embretson, 2012).

In another study, an abstract reasoning test (ART; Embretson, 1998, as presented
in Embretson & Reise, 2000) also had variation in its lower asymptote estimates, though
to a lesser degree. The ART consisted of 30 items with eight alternatives each
(Embretson, 1998), so the theoretical probability of correctly obtaining the right answer
by guessing is relatively low (1/8 = 0.125). In that study, however, there was still some
substantial variability among the lower asymptotes, with a minimum of 0.095 and a
maximum of 0.226 (Embretson & Reise, 2000). The findings of the ART are surprising,
as the 30 items were generated to fit different previously identified item structures and
were all testing the same construct with the same basic item type (Embretson, 1998).

The wide variety of item types within the math achievement tests discussed,
which was designed to be a comprehensive examination of a year’s worth of math gains,
leads one to be less surprised at the high variation in the guessing parameters’ estimates
because of the different nuances of the math achievement construct (e.g., number sense,
algebra, geometry, probability) involved (Lutz & Embretson, 2012), as opposed to the
narrowly defined construct of abstract reasoning and the tightly controlled item formats

of the ART (Embretson, 1998). It should be noted here that the sample size for both of
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the math achievement tests and for the ART were, respectively, 4,000 and 787, both of
which are sufficiently large to yield reliable estimates.

For estimated asymptotes much larger than theory would suggest, one could argue
that even low ability students are still able to eliminate one or several alternatives before
then guessing from those remaining, which is to say that some distractors are more
functional than others. Lower-than-expected asymptotes are less easy to explain. An
asymptote nearly equal to zero could mean that there is no guessing occurring in the
sample, as Maris and Bechger (2009) and Partchev (2009) suggested in their examples
and simulations. Another possibility is that there may be too few people at sufficiently
low an ability level that are guessing to accurately estimate the asymptote, so there may
be a problem of sample sufficiency. A third possibility is that the distractors are
functioning too well, and are more attractive to students who know the material and
would otherwise correctly answer the item; in this case the difference between the correct
and incorrect alternatives is nuanced such that only higher ability students are attracted
the incorrect alternative.

To investigate the third scenario of functional distractors, one would need to
perform a distractor analysis, including inspection of the biserial correlations for the
distractors or examination of the distractor trace plots (Thissen, Steinberg, & Fitzpatrick,
1989). One thing is clear: there is something about those items or their alternatives that
make it less likely to answer them correctly by chance. Andrich & Styles (2011)
performed one such analysis with a partial credit Rasch model, based upon the hypothesis
that not all distractors are equally incorrect when scoring an MC test. Distractors with

information, or functional distractors, were identified using the NRM, and then those
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alternatives selected at a rate greater than chance were counted as partially correct. The
additional information gained by selection of partially correct, as opposed to the wholly
correct, alternative can be modeled using the PCM, where the categories are incorrect,
partially correct, and correct, with no limit on the number of alternatives included in
either of the first two categories (Andrich & Styles, 2011).

In order to successfully handle the people who are of insufficient ability to arrive
at either the partially or wholly correct, a minimum probability for successful item
completion can be implemented and examinees who fall below that probability on a
given item will have their response treated as omitted, rather than have spurious guessing
data included in the analysis: in the original paper, a probability cutoff of 0.2, or the
reciprocal of the number of alternatives (Andrich & Styles, 2011) was used. The authors
concluded that having an item with a functional distractor identified in this manner and
scored using a three-point PCM was the same as having two independent, dichotomously
scored items where the most correct answer in each was either the wholly or partially
correct alternative.

Polytomous models

While a number of polytomous IRT models have been developed over the years,
two are appropriate in a discussion of measuring guessing and partial knowledge on
standard MC tests. The confidence testing procedures address partial knowledge by
having students directly report their confidence in one or all of the alternatives,
depending on the scoring method used. Confidence testing requires a change in testing
strategy on the part of the examinee, increasing time spent per item due to the additional

task and introspective, and may introduce the influence of the psychological variable of
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confidence. The partial credit model (Master, 1982) and the nominal response model
(Thissen & Steinberg, 1984) are the only two polytomous IRT models included in the
current study because they are best suited for addressing guessing and partial knowledge
on an otherwise standard MC instrument.

The partial credit model (PCM).

The PCM (Masters, 1982; 1988) is a polytomous IRT model that requires nothing
extra on the part of the examinee and can be easily estimated using IRT software like
Parscale (Muraki & Bock, 1997). The PCM is a Rasch-family model, satisfying the
requirements that person and all item parameters be separable, so sufficient statistics exist
in the data for each parameter to be estimated (Masters, 1982). While the PCM can be
used for rating-scale type surveys (Masters, 1982), it was more generally developed for
items where there are inherent thresholds, or steps, one must successively achieve to
maximize points on a given item. A common example is a math item that requires the
appropriate application of order of operations, e.g. 2*(4-5)? = x. In this example, the steps
one must go through are: Parentheses, 4-5 = -1; Exponents, -1? = 1; and Multiplication,
2*]1 = 2. Thus, three steps are involved in the example item and correctly solving the item
depends on both proceeding through the steps in the right order (PEM) and applying the
required operation in each step appropriately (addition, exponentiation, multiplication).
An item with three steps has a total of three possible points that could be awarded in the

following manner, seen in Table 2.
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Table 2
Sample scoring for PCM categories

Response  Score

Failed 0
4-5=-1 1
-12=1 2
2*¥1 =2 3

The ability to complete the successive step, having achieved the current step, is
rewarded increasing partial credit; the same can be done for MC mathematics items with
well-crafted distractors that result from common mistakes at each step. The PCM is
appropriate for non-math or step-based solutions, as in Masters’ (1982) geography

example (p. 151), reproduced in Table 3.

Table 3
Sample item for scoring in PCM

The capital of Australiais  Score

a.  Wellington 1
b. Canberra 3
c. Montreal 0
d. Sydney 2

While there are no steps per se involved in the recall that Canberra is the capital
of Australia, there is an increasing correctness of the alternatives: Montreal is the capital
of Quebec, Canada and is not in or near Australia and is the least correct alternative;
Wellington is the capital of New Zealand and so earns one point; Sydney is a major,

recognizable city and is actually in Australia, and so earns two points. While some may
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argue Table 3 outlines an all-or-nothing question, one can also argue that the recall of
relevant facts about Sydney and Wellington in particular, and familiarity with Oceania in
general, indicates partial knowledge about Australian geography and should be credited
as such.

The nominal response model (NRM)

Like the PCM, the NRM (Thissen & Steinberg, 1984) allows for the measurement
of information present in various distractors. However, in the case of the NRM, there is
no requirement of ordinal responses. Indeed, the name nominal response model indicates
that the responses to the different items may in fact be nominal: in the case of an MC
item, this means that the distractors may not be steps toward solving a problem or be
subjectively more or less correct than others. Thissen and Steinberg (1984) addressed the
issue by noting that, while standard scoring gives points only for the correct alternative
when chosen, there is a great information loss when lumping the remaining alternatives
together simply as “wrong”. The NRM models the information from the distractors
without any assumption of order among them. The NRM allows all alternatives of an MC
test to be modeled directly as functions of the latent ability of interest (Thissen &
Steinberg, 1984). Thus, the NRM is a response to the standard all-or-nothing scoring
method of MC tests because it models the probability of nominally scaled alternatives.

The interpretation of the different parameters of the NRM can be a challenge
(Thissen & Steinberg, 1984): it is instead the item response curves, and not the
parameters, that reveal about the functioning of and information in the distractors over a
given trait level, rather than the parameters themselves. Finally, there is a cost to the

inclusion of information gained from this initial model, arising from inconsistent ability
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estimates given a response near a narrow ability range, where selecting the correct
response may actually penalize one’s estimate. The use of graphical techniques with the
NRM is imperative as it can illustrate such potential pitfalls and inform item design.
Baker (1993) demonstrated that vertical and horizontal equating are both possible under
the NRM. Further tests can be scored for partial credit and NRM enables identification of
informative parameters (e.g., Andrich & Styles, 2011; Penfield, 2008).

Comparison to CTT

The fundamental difference between CTT and IRT lies within the assumptions
made for the two paradigms’ models’ validity. The CTT model of an examinee’s
performance is a function of the observed raw score for that examinee; indeed the true
score Tj for examinee j is the expected value of his raw score, E[X]j]. As the raw score is
then a point estimate for the true score, the CTT true score formula is a basic means
model, shown in (2.2) (e.g., Crocker & Algina, 2008).

I, =X,+¢, (2.2)
In (2.2), ¢ is a random variable representing the error in estimating one’s true score with
his observed score, which is effectively the bias of the test, normally assumed in CTT to
be zero.

If 7; is considered to be analogous to ability, then one’s ability estimate, Xj is the
total number of items correctly answered on a test. As has been shown with the Rasch
family of models (e.g., Andrich, 1988; Masters, 1982; Rasch, 1960), the raw score in IRT
contains a lot of information about a person’s ability—it is a sufficient statistic for the
ability estimate—but CTT does not account for the nature of the items themselves. CTT

does estimate item difficulty, which is the sufficient statistic for item difficulty in the
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Rasch family of models: the proportion of students correctly answering an item. The CTT
item difficulty is often referred to as the item’s p value. The CTT estimate of item
difficulty—or item facility, as higher p values indicate easier items—is calculated
without consideration for the abilities of the people in the sample.

As Embretson and Reise (2000) illustrate when outlining their “‘Rules of
Measurement”, under CTT, “unbiased estimates of item properties depend on having
representative samples” (p. 15), so the consideration for population abilities is included in
the assumption of the model, and not in the mathematics of the model itself. However, as
IRT models all include simultaneous estimation of person and item characteristics,
unbiased estimation of item properties—Ilike difficulty and discrimination—can be
obtained with even unrepresentative samples. As unbiased estimates for IRT model-based
item parameters can be obtained with variable samples, those items are said to be
calibrated and can be used to assess student ability and obtain highly reliable scores for
examinees from other populations and samples, through computerized adaptive testing
(e.g., Embretson & Reise, 2000). The CTT requirement for test equating is parallel forms
and an equal number of items: each examinee has the same T for each form and the error
variances for each form are equal (Crocker & Algina, 2008). The assumptions of IRT are
easier for the practitioner to meet, facilitating test equating even when using
heterogeneous sample of examinees. It is for this reason that IRT and other latent trait
models are recommended.

Cognitive Diagnostic Models
Cognitive diagnostic models (CDMs) are an alternative to the IRT approach to

latent trait modeling. The aim of IRT models is to simultaneously locate persons and
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items on the same interval scale for assessment of ability. CDMs also allow for the
comparison of persons to items, but on a different basis. Unlike the binary IRT models
discussed, which all assume the unidimensionality of the measure, CDMs require an
assessment of the different dimensions of an item, be they the result of differing
strategies, skills, or steps required to solve the item, as with the PCM. Other dimensions
within an item may arise from different cognitive requirements, which may or may not be
relevant to the construct. In the following sections, a brief summary of CDMs is
described, followed by an introduction of three basic CDMs. General CDMs, which
encompass a wide variety of models, are also discussed. An alternate CDM, where the
person parameters are latent traits on multiple dimensions instead of latent classes of
mastery or non-mastery of skills, is described. The chapter concludes with a comparison
between CDMs and IRT models.
Background of CDMs

In unidimensional IRT each person is given a scale score, which is compared
against other persons for criterion-referenced testing, and against items for item selection
in CAT (e.g., Embretson & Reise, 2000). In cognitive diagnostic modeling, persons are
often assessed as masters or non-masters of the item dimensions; the latent scale of IRT
is dichotomized on each item dimension, though this is not the case for latent trait
models, some of which will also be covered in this chapter. CDMs do not necessarily
assess item difficulty directly. Instead, the dimensions are represented in the model via a
Q-matrix, which, when properly specified, indicates the pattern of dimension
representation on each of the items, and comparisons can be made between dimension

mastery and item requirements.
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The Q-matrix identifies constraints on the model, and its misspecification can
have serious repercussions for estimation of both person and item parameters (Rupp &
Templin, 2007). For the deterministic inputs, noisy “and” gate (DINA; Haertel, 1989;
Junker & Sijtsma, 2001) model a misspecified Q-matrix may make itself evident in poor
model fit or in extreme values for the slip and guess parameters (e.g., Embretson & Yang,
2013; Rupp & Templin, 2007). As now the sets of both person parameters and item
parameters are dichotomized for the DINA and other classification models, the
dimensions of interest in the items will be referred to as components or attributes, the
respective presence or mastery of which can be indicated using the binary scoring system
for items and persons.

A number of CDMs exist with approaches ranging from the form of logistic item
response models (e.g., Embretson & Yang, 2013; Henson, Templin, & Willse, 2009; von
Davier, 2005) to cluster analysis (e.g., Chiu, Douglas, & Li, 2009; Nugent, Dean, &
Ayers, 2010). As in the coverage of the IRT models, discussion will be limited to only a
few CDMs, with focus on those that model guessing either explicitly or implicitly. The
core CDMs selected are those that can be parameterized in the framework of the log-
linear cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 2009). Although
some discussion is included in that paper, the current review will include an introduction
to those models from the original perspectives as well. The models here discussed fall
into one of two categories, compensatory and non-compensatory. In the case of
compensatory models, which are represented here by the compensatory reparameterized
unified model (C-RUM; Hartz, 2002, as cited in Rupp, Templin, & Henson, 2010), an

abundance of one attribute is said to make up for, or compensate, a lack in another for a
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given examinee. That is, an item requiring two attributes can still be successfully
answered by an examinee who is a master of only one of those attributes.

Non-compensatory models generally assume that all attributes, or specific subsets
of attributes, must be mastered for an examinee to successfully answer an item; having
one attribute does not compensate for the lack of the others in this case. Mathematics
achievement items are often thought to be non-compensatory. Consider, for example, an
item that asks “How many ways can a committee of three people be chosen from a group
of 5?77 The answer, sC3 = 10 ways, is arrived at by correctly setting up and applying the
ratio for combinations. This is a non-compensatory item because a student may be
perfectly able to perform the required arithmetic, but if he does not recognize that the
situation calls for a combination he will not successfully answer the problem: arithmetic
does not compensate for a lack of mastery in basic combinatorics.
Core models

The core CDMs were chosen for inclusion in the current paper because they are in
the LCDM family of models. Each of the models selected represents one of the
noncompensatory or compensatory model classification. The reason for their associated
classification will be discussed, along with parameter interpretation and the LCDM
equivalent. All of the core CDMs in the current paper and the LCDM are binary skills
models (Haertel, 1989), as the attributes are themselves dichotomously scored skills or
abilities.
The DINA.

The DINA (Haertel, 1989; Junker & Sijtsma, 2001) is a latent classification

model, and a fairly simple one (e.g., Rupp, Templin, & Henson, 2010). The DINA is a
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conjunctive, non-compensatory model, meaning that an examinee must possess all skills
required of an item to correctly answer an item. Although Haertel (1989) introduced the
DINA model, Junker and Sijtsma (2001) provide cleaner notation and parameterization,
and so it is their form that is utilized here.

The DINA models both latent and manifest response patterns of an examinee on
an item. The latent responses are deterministic: 1 if the examinee has mastered all
required attributes and 0 otherwise. Furthermore, all examinees with the same attribute
mastery pattern have the same latent response pattern (Haertel, 1989; Junker & Sijtsma,
2001). The “noisy” portion of the model occurs because latent responses are not
necessarily reproduced by a manifest response: just because a student should be able to
answer an item correctly does not mean he will (Haertel, 1989).

As there are two possible responses to a dichotomous item, so there are two
possible mismatches between a manifest response and a latent response, introducing
noise into the system because the mismatches are probabilistic. In Haertel’s (1989) terms,
a false negative occurs when a student has mastered the required attributes but has an
incorrect manifest response, which is often mnemonically referred to as a “slip”, with
probability s; (Junker & Sijtsma, 2001). There is also the possibility of a false positive,
which occurs when a student has not mastered the required attributes but still correctly
answers the item. Junker and Sijtsma (2001) refer to the mnemonic “guessing” for false
positive, but warn that both a true slip and a true guess are not necessarily represented by
the DINA model. Thus, as with the 3PL, the DINA can be said to model something
similar to guessing, though whether that is the true strategy involved in such false

positives is unknown. Given a calibrated item, the intent of the DINA is to assess the true
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latent state of the examinee, accounting for the noisy “and” gates that lead to false
positives and false negatives (Haertel, 1989).
The C-RUM

The compensatory reparameterized unified model (C-RUM; Hartz, 2002, as cited
in Rupp, Templin, & Henson, 2010) is a CDM that explicitly outlines the additional gain
in the probability of successfully answering an item due to mastery of additional
attributes required of that item. In the definition of the C-RUM, the mastery of an
attribute contributes uniquely to the probability of endorsing an item, independently of
other mastered or non-mastered attributes. The C-RUM treats the item-required attributes
as mutually exclusive of one another, thus eliminating any need to consider their
interactions or intersections. Both CDMs discussed so far involve some sort of lower
bound for probability of correct item endorsement, which may or may not reflect the
strategy of guessing.

As cognitive diagnostic modeling becomes more popular in testing, a number of
general models have been derived in an effort to unify the models that currently exist and
to provide a basis for flexible new models to be determined at the item level. For
example, von Davier’s (2005) general diagnostic models (GDMs) are flexible enough to
accommodate both compensatory and non-compensatory models, as well as some IRT
models. The GDM encompasses polytomous IRT models, which lifts the restriction of
other CDMs that responses and classification be binary assignment. Dimitrov and
Atanasov (2012) extended the conjunctive least squares distance model (LSDM;
Dimitrov, 2007) into two models with looser restrictions on the relationship between the

attributes and items: the LSDM-C, the conjunctive model that looks at patterns or
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minimum subsets of item attributes required, and the LSDM-D, a disjunctive version
(Dimitrov & Atanasov, 2012) of the original LSDM. Finally, de la Torre (2011)
developed the generalized DINA (G-DINA) to address the relationship between the
attributes and the items using three different link functions: the identity, the logit, and the
log. The G-DINA is a general model that has been shown to include the DINA, DINO,
and A-CDM under its umbrella of previously defined models. One notable advantage of
such general models is that, once implemented, they allow for easy model comparisons
among candidate models on an item-by-item level (e.g., Henson, Templin, & Willse,
2009).
The LCDM

In the interest of containing the scope of the current study, the remainder of the
discussion of general CDMs will be limited to the LCDM (Henson, Templin, & Willse,
2009). The LCDM considers the relationship between attributes and the item directly, in
the framework of log-linear models with a latent variable, a. The defining feature of such
models is that the discrete observations are related to one another only through the latent
variable, they are otherwise independent of one another. This is similar to the assumption
of conditional independence of items in the IRT framework, in which the relationship
between one item and another (or between the selection of one response option over
another) is defined entirely by the person parameter. In IRT, it is the items that are
conditionally independent; in LCDM, it is the item-required attributes that are
conditionally independent (Henson, Templin, & Willse, 2009).

The LCDM is a general CDM that, via reparameterization, can represent the three

core models described in the previous sections, as well as a variety of other models, both
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defined in the literature and otherwise unspecified. The LCDM can be used for both
exploratory and confirmatory purposes, depending on the requirements of the instrument
and the theory underlying its use (e.g., Rupp, Templin, & Henson, 2010).

By incorporating the spectrum of CDMs, the LCDM defines a family of
diagnostic models and is flexible enough to allow for different item types to be estimated
even within a given test. That is, a test may consist either or both of non-compensatory or
compensatory items, and the general nature of the LCDM can handle that (Henson,
Templin, & Willse, 2009). Furthermore, the saturated LCDM, which contains all main
effects and all possible interactions, can be used in an exploratory and theory-driven
manner to investigate the behavior of items and their components.

The LCDM can be estimated using an EM algorithm, albeit with some constraints
on the number of latent classes (e.g., Rupp, Templin, & Henson, 2010), as well as via
Markov chain Monte Carlo (MCMC) methods, with uniform priors on the item
parameters and a dichotomized multivariate normal prior on the latent variable side
(Henson, Templin, & Willse, 2009). The saturated model is a useful diagnostic in and of
itself, but limitations in the current state of the art, as well as computational time, means
that for some assessments the full benefits of the model cannot be realized (e.g., Lutz,
2012). As algorithms and processing speeds improve, however, the LCDM will likely
prove to be a more useful model across a wider range of applications.

The MLTM-D

The MLTM-D (Embretson & Yang, 2013) is a non-compensatory, hierarchical

model. When item attributes can be considered to be finer measures of a larger construct,

or component, the MLTM-D is an appropriate diagnostic model to use. Situations where
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attributes may be nested within components may arise on broad scale tests of competency
or achievement (e.g., Embretson & Yang, 2013; Lutz, 2012). In those cases, due to
perhaps a limited test length, each attribute will have only a few items devoted to it,
whereas in a more tailored classroom assessment of one construct, more items of a given
skill can be included. The MLTM-D, then, identifies the probability of successful item
completion to be a function of both the attributes and the higher-level components
present in the item. The two levels of item-feature relationships are described by two
different scoring matrices, Q and C.

As in the previous CDMs, the attribute-item relationships, or constraints, are
identified by a Q-matrix, but in the case of MLTM-D those entries are not restricted to
binary scores. For a test measuring M components consisting of K,, components each, if
each item is assumed to measure at least one component, there are B = 2M-1 possible
component combinations, or blocks, that the items may be categorized into (Embretson &
Yang, 2013). It follows that each block of items must have its own Q-matrix to represent
the relationship of the K, attributes for the components defining the items within that
block. The item-component relationships are represented in an B x M C-matrix, which
contains binary indicators of involvement of the mth component on the bth item block.

While the previously discussed CDMs were all restricted latent class models in
which person parameters were a probability of attribute mastery or non-mastery, the
MLTM-D reduces the parameter estimation load by instead locating the person on each
of the higher level components. Thus, the MLTM-D is not a latent class model but is

instead a latent trait model, more like the IRT models previously discussed. The two
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levels of the MLTM-D are illustrated (2.3) and (2.4), emphasizing the hierarchical nature

of the model in defining the probability that examinee j correctly answers item i.

Pr{Xx, =1]=]] P (2.3)
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In (2.4), the coefficient of 1.7 in the exponent is used to scale the normal ogive
model to the LTM, 7.« is the weight of the kth item feature on component m, and 7,0 is
the intercept for component m. The cin in (2.3) are the elements of the C matrix,
indicating the involvement of component m on item i. Equation (2.4) can be interpreted
as the probability that examinee j correctly responds to the portions of item i relating to
component m, or that examinee j has sufficient ability on component m.

One can see that the MLTM-D enables the common scaling of items and persons
within a component, allowing for the item-person comparison possible in IRT. In (2.4),
the attributes comprising the components involved on the item contribute differentially to
an item’s difficulty, so their location on the component scale can also be compared to a
person’s latent trait, allowing for diagnosis of what an examinee can and cannot do.
Modeling item difficulty is not new to the MLTM-D, as it is the defining feature of the
linear logistic test model (LLTM; Fischer, 1973), an extension of the Rasch model (1960)
that also used qualitative item features to model item difficulty.

As MLTM-D requires estimation of only M person parameters for each examinee,

there is a big advantage in estimation over the other CDMs that estimate 2* latent classes,
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corresponding to the attribute mastery patterns. The MLTM-D is preferable for longer
tests that are broad in scope and cover a large number of attributes, as only locating
persons on the component scale means that there is no cost to adding narrower or more
finely defined attributes within the subsuming components (Embretson & Yang, 2013).
Additionally, if a Q-matrix is not specified for the items within each component, (2.4)
simplifies to the Rasch model, where i, = #mo is the ith item difficulty on component m.
Noncompensatory IRT models

While not often formally referred to as cognitive diagnostic models, several
models under the IRT umbrella fit with the CDM paradigm and bear mentioning here. An
unnamed early noncompensatory model for dichotomous, multidimensional item, is
similar in form to the MLTM-D and the model proposed later in this paper (Sympson,

1977), and is presented in (2.5).

Y 1
Prix, =11=7,+(1-7)[]
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One can see the major difference between (2.5) and the MLTM-D is the inclusion of a
lower asymptote and the exclusion of the component indicator. In this way, the MLTM-D
and the subsequent proposed model are more general, as they allow the dimensionality of
the items to vary throughout the test. Other latent trait models can also be construed as
CDMs, such as the linear logistic test model (LLTM; Fischer, 1973), the
multidimensionsional IRT models (e.g., Hattie, 1981; Reckase, 1997a), the MLTM
(Whitely, 1980) and the GLTM (Embretson, 1984). The LLTM, like the MLTM-D,
models the item difficulty as a function as item attributes; unlike the MLTM-D, however,
it is a unidimensional item and persons and items are still aligned along a single

component. The multidimensional IRT models are similar to the MLTM-D in that they
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treat person abilities and items as arrayed along multiple dimensions; however, the
multidimensional IRT models typically do not model item difficulties as a function of
item features. The MLTM and GLTM are the two direct precursors to the MLTM-D.
Comparison to IRT

Cognitive diagnosis models and item response theory models are both classes of
latent trait models. All of the models discussed here are full-information models, meaning
that the scored item responses are used directly in the estimation of both person and item
parameters. A major goal of IRT is to provide a basis for equating across heterogeneous
forms and populations, allowing for the reporting of a proficiency or interpretable ability
score for the persons. Calibrated IRT items can be “banked” for use in computerized
adaptive testing, wherein items selected for presentation to a given examinee are based on
a rough estimate of the examinee’s ability; further item exposure is based on an
examinee’s item responses to fine-tune the final estimation of the examinee’s ability. IRT
items can also be used to equated test scores and person abilities across different forms,
when the psychometric properties of those forms are known. However an IRT-based test
is delivered the end goal is to understand the behavior of items in the population so that a
single proficiency score can be estimated for the test-takers.

Cognitive diagnostic models may also be used to bank items and to compare
students’ performance across forms. The key difference lies in the level at which said
comparisons can be made: for IRT it is at the level of ability; for CDMs it is at both the
ability level and the attribute level. That is, CDMs enable comparisons to be made
between two respondents with the same overall proficiency level (e.g., Embretson &

Yang, 2013). By identifying and measuring the features of items that contribute to item
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difficulty (e.g., Embretson & Yang, 2013; Fischer, 1973; Henson, Templin, & Willse,
2009), or by classifying students according to what skills they have or have not mastered
(e.g., Haertel, 1989; Junker & Sijtsma, 2001; Templin & Henson, 2006), one can draw
distinctions between examinees that would otherwise be treated the same, as either
proficient or not-proficient on the construct as a whole. The major benefit of CDMs is the
estimation of attribute profiles, so teachers, administrators, parents, and students can see
where remediation might best be focused for each individual. Such efforts are already
underway at the component level (Embretson & Yang, 2013), and are made easier with
the increased access to and speed of computers used in educational testing.

As with IRT, for a test to yield the best diagnostic information about the
examinees, the items must be designed with diagnosis in mind. While CDMs have been
applied to currently existing assessments (e.g., Embretson & Yang, 2013; Haertel, 1989;
Templin & Henson, 2006), like any valid assessment and measurement, the diagnostic
test must be grounded in theory (e.g., Gierl & Cui, 2008; Rupp & Templin, 2008) as
CDMs are inherently confirmatory in nature. In the sense that CDMs are confirmatory,
based on the model constraints outlined in the Q-matrix, poor model fit or suspect
parameter estimates can be treated as evidence against the current model specifications
(Rupp & Templin, 2008), which goes back to the theory underpinning the design of the
items. With that in mind, the Q-matrix should be constructed to reflect only those item-
attribute relations theorized to strongly influence item difficulty (e.g., Embretson &
Yang, 2013; Henson, Templin, & Willse, 2009). IRT items, however, can be applied to
current test forms and the model can be determined based on fit and substantive theory

post-hoc. Tests for proficiency must cover a wide range of possible abilities, with items
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clustered around areas on the latent scale of interest, such as cutoff points for minimum
proficiency. Tests for diagnosis must cover a range of tasks or attributes of interest, and
depend on the type of model believed to apply to the item-attribute relationships (Gierl &
Cui, 2008).

Henson and Douglas (2005) extensively considered the problem of test
construction for diagnosis—specifically reliability and information, two key concepts for
developing an IRT-based assessment—within the context of the DINA and several other
conjunctive models not discussed in the current review. In that paper, a cognitive
diagnostic information index (CDI) was developed to help discriminate between attribute
mastery patterns for examinee classification. For IRT, the most information occurs at the
item’s difficulty, as that is where the item response function in (2.1) has the steepest rate
of change. Items with higher discrimination have correspondingly higher information, in
terms of the Fisher information, at their location for this reason: the most information
about differences between examinees with similar trait levels occurs where the
discrimination parameter is fully realized (e.g., Embreston & Reise, 2000), thus the
reference to the “discrimination” parameter. The CDI is a measure similar to the Fisher
information, but for discrete classes and not a continuous trait. More information is
desired and needed to discriminate classifications between people with similar ability
patterns, so in terms of Euclidean distance those patterns that are “near” each other will
be weighted more heavily in the CDI function than those patterns that are already
disparate. Then the principle of selecting items to populate a test based on desired
information (e.g., Eignor & Douglass, 1982) can be utilized for diagnostic assessments.

using traditional likelihood methods.
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Research Proposal

If one is trying to answer the question “is guessing occurring?” neither this paper
nor the models discussed can answer with a definitive yes or no. In the context of
probabilistic testing, guessing is a risk-seeking behavior so the estimated true scores are a
confounding of actual ability and the risk-seeking/risk-averse psychological variable. In
formula scoring, where the instructions explicitly state that guessing is not associated
with a positive gain in the expected score, one still sees incorrect responses, indicating
that the penalty scores for each student are a confounding of guessing in the absence of
knowledge and or misinformation. In CTT, guessing is not assessed directly, though it
impacts the standard error of measurement, or the reliability, of the instrument by
artificially inflating one's true score estimate.

The IRT models and the CDMs discussed do have some means of handling
guessing: by including either a guessing parameter, as in the 3PL and DINA, or a
reference group probability, as in the LCDM and C-RUM. The polytomous IRT models
allow for the possibility of guessing by allowing for alternative strategies toward reaching
the correct answer. In the context of the CDMs and IRT, guessing also includes the
notion of a false positive (e.g., Haertel, 1989), which may be achieved by other means,
such as highly able students selecting an attractive, though incorrect, distractor that would
not appeal to students with lower ability. Especially in the case of the 3PL, estimation of
the guessing parameter does not always line up with theory, making the claim of purely
random guessing on those items less reliable.

Random guessing may not be a constraining definition, it is only relevant for

those who are interested in the phenomenon of truly random guessing by low-ability
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examinees, or those interested in describing the strategy as an alternative to other
approaches to test-taking. Recognizing that the guessing parameter is actually a
confounded measurement of guessing and other person- and item-relevant aspects that
may generate a false positive on an item may be enough to complete the analysis of
interest, either continuing with the models as defined, or accounting for more item
variability by the inclusion of additional, valid, and theoretically-derived variables, such
that guessing is arguably the only thing remaining in the error.
Proposed model

If one considers the MLTM-D to be sufficiently generalizable to include a so-
called guessing parameter, one must also consider where that parameter belongs and what
it may look like. At the component level, the MLTM-D resolves to the Rasch model. As
the 3PL is a generalization of the Rasch model with unique discrimination and lower
asymptote for each item, one conceptualization of a generalized MLTM-D has a lower
asymptote at this lower, component-model level. The inclusion of a lower asymptote at
the component level (2.6) would mean that an examinee has some non-zero probability of
yim for a positive latent response to the mth component involved in item i. The situation
that would therefore arise is not entirely unlike that of the compensatory
multidimensional IRT model (Reckase, 1997b; Sijtsma & Junker, 2006). As discussed in
Chapter 2, examinees who are lacking in one dimension but are high in another can still
perform well overall on an item under a compensatory model. Similarly, an item with
higher probabilities of “guessing” at the component level, as in (2.6), would compensate

for lower ability on that component, thereby increasing that component level’s
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probability and, multiplicatively, increasing the overall probability of successful item
completion.

= (2.6)
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The drawback to (2.6) is that the lower asymptote then contributes
multiplicatively to the overall probability for successful item completion, resulting in an
interpretation that is inconsistent with that of Birnbaum (1968). For an item with ¢
alternatives, Birnbaum claimed that the theoretical minimum probability of a correct
response would be 1/c. If a component-level lower asymptote were based on the number
of alternatives presented in the item, the item-level lower minimum probability would,
through multiplication, be on the order of 1/c¢" . Unlike with the 3PL, it is hard to
conceptualize what value y;, might theoretically take on, again due to the latent nature of
the component-level model. Even fixing a common value for y within or across
components does not resolve the interpretability issue, and Birnbaum’s (1968)
justification for such a lower bound is lost.

The lower asymptote, if truly it were to represent a theoretical minimum
probability for a correct MC item response, must be interpretable in that regard. For this
reason a more appropriate parameterization of a generalized MLTM-D would take the
form of (2.7)

LA (2.7)
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where P is as originally formulated in (2.4), and repeated in here for ease of reference:
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A more restricted version of (2.7) may be obtained by constraining the lower asymptote
to be equal for all items, such that y;= y;i=1, 2, ..., I. For y;= 0, the MLTM-D as
described by Embretson and Yang (2013) is obtained. Therefore, the proposed model is
the MLTM-D, generalized for guessing, and so will be hereby referred to as the gMLTM-
D.

Whether y; is unique or common across all items, the lower asymptote in (2.7) is
applied to the probability of a positive manifest item response, given the components
involved in the item and the examinees’ ability relative to those components and the
attributes comprising those components. The current study proposes further investigation
into gMLTM-D and the implications for estimation of such lower asymptotes. The study
will identify testing conditions in which the general model is and is not appropriate. The
gMLTM-D should be estimable in a manner similar to the 3PL or 3PL multidimensional
IRT model, in which the number of alternatives for each item is used to determine a
starting point for the item lower asymptotes.

Hypothesis

It is hypothesized that in cases where guessing does actually occur, the gMLTM-
D will result in better item and person ability estimates, both in terms of precision and
accuracy, than the MLTM-D. In the absence of guessing, the gMLTM-D resolves to the
MLTM-D, so estimates from both models should be fairly similar, and the MLTM-D

would likely be recommended for its parsimony.
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CHAPTER 3

RESEARCH METHODS

The model proposed in Chapter 2 will be estimated in two Feasibility Studies,
outlined in the current chapter, to determine the extent to which further investigation can
be undertaken for the resulting proposed study. The current chapter first outlines the
parameter estimation methods for items and persons. A description of the constraints on
the two feasibility studies already conducted for this proposal is next provided. The
chapter concludes with a description of the proposed real data analysis and conditions for
the proposed simulation study.

Parameter Estimation

Estimation of both the MLTM-D and gMLTM-D will be conducted via a two-step
process: the item parameters y;, Qu,and 7., Will be estimated first. The item parameter
estimates will then be used to estimate each person’s ability vector, 6.

Item parameter estimation
The 3PL item parameters can be estimated via the Bock-Aitkin MML-EM

procedure (Bock & Aitkin, 1981). MML-EM treats each person as an observational unit,

and all examinees with the same item response pattern X are grouped together, reducing

the effective number of observations involved (Johnson, 2007). That is, MML-EM
estimates items based on unique response patterns, X , » which are assumed to be a

random sample from the population, and the number of examinees with that response
pattern, n, (Embretson & Reise, 2000). The probability of obtaining a response pattern is

dependent on the ability levels, 8,, present in the population, the relative frequency of
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those Q ability levels in the populations, and the probability of observing X ,on items

with parameters B , given those abilities and their frequencies (Embretson & Reise,
2000).

Although abilities are unknown at the outset, in order to hone in on a unique set
of parameter estimates, the abilities are assumed to follow a known distribution, typically
the standard normal; ability parameters are estimated once the item estimation has
stabilized (Birnbaum, 1968; Bock & Aitkin, 1981), discussed in the following section.
Rather than assume the latent ability 8, to be a discrete random variable, as is a
requirement of the LCDM-family of models, one may prefer to think of ability as located
along a continuum and better represented by a continuous probability distribution. By
assuming a known distribution, such as the standard normal, one can choose latent trait
levels over which to integrate the response pattern likelihood as a representation of what
is actually present in the population (Bock & Aitkin, 1980).

For the gMLTM-D, the probability of obtaining the jth item response pattern, x;,
given ability vector 0; is given in (3.1), and based on the assumption of local item
independence.

Pr{X=x,]= J.IL[P] (1-P) g (0)0
0 = (3.1)
= [L(®)g(B)a0
0
Here, g(0) is the underlying distribution of person abilities, and is typically assumed to be
the multivariate standard normal distribution such that ; ~ N(0, I/). After one has
obtained a set of item response patterns for J examinees, the likelihood equation for the

component-level attribute weights, #mux, is
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where 0 h is the Ath M-dimensional quadrature point with weight A (G i ) derived from the

standard multivariate normal distribution, and where
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X

represent the expected number of examinees at a given ability level and the expected
number of correct responses to the ith item for students at that ability level, respectively.
The likelihood equations for the remaining item parameters are provided in (3.3) through

(3.5).
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For this paper, item parameters were estimated using the SAS software’s
NLMIXED procedure, copyright SAS Institute Inc. The estimation method used in the
NLMIXED procedure is maximum likelihood with non-adaptive Gaussian quadrature for
integral approximations; it differs from the MML-EM algorithm by using the full
information matrix instead of estimated response frequencies. Sample source code and

model definition is provided in Appendix A and Appendix B.
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Person parameter estimation

The M-dimensional person ability vector will be estimated using EAP estimation,
under the assumption of a multivariate standard normal distribution, such that 6; ~ N(0,
Iv), utilizing a simple extension of existing SPSS code for estimating MLTM-D abilities
(Embretson & Yang, 2013) to account for the inclusion of item asymptotes and
component discriminations. SPSS version 21 (SPSS IBM, New York, U.S.A) was used to
perform the analysis. In this case, 11 quadrature points from each dimension for the
stated distribution for 0, were used.

Simulation Design

The simulation was designed to meet several ends: to demonstrate the
appropriateness of the gMLTM-D under different test constructions and the accuracy of
the parameter estimates from the gMLTM-D relative to the MLTM-D in those situations.

For each test condition, a total number of 40 replications was performed. All tests
consisted of / = 75 items and M = 3 components, and all components were assumed to be
independent (i.e., £ = I3). The same C-matrix was used for all test conditions (Table 4),
which was based on having unidimensional items make up 80% of the test, and the multi-
component involvement was balanced among the remaining 20% of the items. The
proportions of single- to multi-component items was based on the ratio found in the real-
world test. The three manipulated conditions are the Q-matrix, the mean lower
asymptote, and the sample size. The experimental conditions are outlined in Table 5.

Using a full factorial design for the variables at the levels defined in Table 5, there are a
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Table 4

C-matrix for all simulated tests

c.2 c.3

c.1
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Table 4 Continued

40

41

42

43

44
45

46

47

48

49

50
51

52
53
54
55
56
57
58
59
60
61

62
63

64
65

66
67

68

69
70
71

72
73

74
75

68



total of 18 different experimental combinations. Throughout the analysis a test condition
is referred to as the combination of the Q-matrix and mean lower asymptote, for a total of

6 test conditions, regardless of sample size.

Table 5

Simulation study conditions

Variable Description Value/Distribution
1 Number of items 75
J Number of examinees 1,200
3,000
4,800
K Maximum number of attributes per 10
component
M Maximum number of components 3
per test
C Item-component involvement see Table 4
Nm Attribute weights and intercept for  Saturated model: U(-1.8,0) V &k
component m Attribute model:

e U(-18,0)fork=1,2,...,6
e U(-1.8,-0.25) fork=7,8,9, 10

0, Ability parameters for person j MVN(0, Iv)
Vi Lower asymptote: “guessing” 0
parameter Beta(13.55, 94.83); i, = 0.125
Beta(46.6, 139.8); u, = 0.25
Q,* Item-attribute involvement for 17
component m Q= [Q1 Q, Q3]

* The non-identity Q,, matrices were randomly generated once and then held constant
across other variable test conditions.

Q-matrix

Two different Q-matrices were used for the simulations, representing a saturated
model and an attribute model. The saturated model corresponds to a Q-matrix that results
in a Rasch model for each Pj;,. That is, an item has a uniquely estimated #.« on every

component with which it is involved. Thus, K, = I,,, the number of items involved on
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component m. As the same C-matrix was used for all tests, by necessity all tests run
under the saturated model utilized the same Q-matrix.

In this case of the attribute model, K, < I,,, and the 7. are estimated based on the
attributes that comprise the components, so that an item’s difficulty is dependent not on
the item but on the attributes of which it consists. In this case, the Q-matrix is necessarily

smaller than that of the saturated model. For the purpose of the simulation study, all K, =

10, and the same Q = [Q1 Q, Q3] was used for tests run under the attribute model

(Table 6 through Table 8). For the attribute model, Q was designed to guarantee as equal
a representation among the attributes and attribute pairs across the items as possible to

ensure good parameter estimation.
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Table 6

Q-matrix for first component attributes

ql.2 ql3 ql4 ql.5 ql.6 ql.7 ql.8 ql.9 ql.10

ql.1
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Table 6 Continued

ql.2 ql.3 ql4 ql.5 ql.6 ql.7 ql.8 ql.9 ql.10

ql.1
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Table 7

Q-matrix for second component attributes

q2.1 g22 g23 q24 q25 q2.6 g2.7 q2.8 q2.9 q2.10
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Table 7 Continued

g2.1 q2.2 q23 q24 g2.5 q2.6 q2.7 qg2.8 q2.9 q2.10
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Table &

Q-matrix for third component attributes

q3.1 q3.2 q33 q34 qg35 q3.6 q3.7 q3.8 q3.9 q3.10
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Table 8 Continued
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Lower asymptote

For all test conditions, the most general version of the gMLTM-D was
implemented, so the lower asymptote was simulated and then estimated at the item level.
The different levels of y; were chosen to reflect the absence of guessing (i.e., y;=0,i =1,
2, ..., 75) as well as the theoretical lower bounds for two common forms of MC items: 4-
and 8- alternatives. The Beta distributions used to generate those lower asymptotes have
corresponding means of 0.125, and 0.25, with variances of 0.001 for each distribution, or
B(13.55, 94.83) and B(46.6, 139.8), respectively.
Sample

The sample sizes were based on the rule of thumb that 1,200 examinees are
required for the 3PL unidimensional IRT model and the subsequent choices of 3,000 and
4,800 were equally spaced so that polynomial contrasts could be estimated across sample
sizes if desired. The sample size of 4,800 was chosen as the minimum size required to
reliably obtain estimates for all non-zero lower asymptotes, as determined by pilot
studies.
Data generation

The simulation was conducted entirely in R versions 2.14.0 (R Development Core
Team, 2011). The code for simulating item responses was adapted from that found in the
MAT package (Choi, 2011), and all R code can be found in Appendix C. All #u« for the
saturated models were randomly generated from a uniform distribution, U(-1.8, 0),
yielding relatively easy items (average P;i-o= 0.822 for single-component items), with
new parameters generated for each replication and each test condition. For the three

attribute model test conditions, the single-component #,« were randomly generated from
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the U(-1.8, 0) distribution. Empirical results have demonstrated that multi-component
items are easier than single-component items; to mimic that, the 7« for the multi-
component attributes were drawn from the U(-1.8, -0.25) distribution. New parameters
were generated for each replication and each test condition.

All person abilities were assumed to be independent, mirroring the independence
of item components. Person abilities were therefore drawn from the MVN(O0, I)
distribution, with new abilities sampled for each replication and each test condition. In
the end, a total of 720 tests were simulated.

Analysis

All tests were simulated under the gMLTM-D, but item parameters were
estimated using both gMLTM-D and MLTM-D models, so each simulated test had two
sets of item parameter estimates, enabling comparison and facilitating conclusions as to
when the gMLTM-D is appropriate. This comparison is be similar to that of the 3PL and
Rasch model of Maris and Bechger (2009) discussed in Chapter 2. The two models will

be evaluated according to several criteria, outlined in Table 9.

Table 9

Analysis criteria

Criterion Description
1 Root mean squared error (RMSE) of item parameter estimates
2 Bias of item parameter estimates
3 Bias-adjusted RMSE of item parameter estimates
4 Correlation of item parameter estimates with true values
5 RMSE of ability parameter estimates for a small sample of tests
6 Bias of ability parameter estimates for a small sample of tests
7 Correlation of ability parameter estimates with their true values
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The models were also evaluated by comparing the root mean squared errors
(RMSE) against the root mean squared standard errors (RSSE) of the estimates, and is
useful in determining the precision of an estimate.

RMSE is a function of both variance and bias, and is calculated as the root mean
squared deviation between parameters and their estimators for each replication, », where
=1, 2, ..., 40 in the simulation study. Using the attribute weights as an example, the
RMSE for replication r is calculated using (3.6), where m is the component, k is the
attribute within the component, and K, is the maximum number of attributes on

component m..

Km
Z (ﬁrmk —Mymk )2
3.6
RMSE, ={[*= (-0

K

m
The empirical bias was also calculated to complement the RMSE; while RMSE is a
measure of an estimator’s precision, bias indicates the presence and direction of
inaccuracy in an estimator when it exists, as illustrated in (3.7) and again using attribute
weights as an example.

Trmk = Mem + BIAS, (M) + € i (3.7
The empirical bias was also calculated to complement the RMSE; while RMSE points
toward precision, bias indicates the presence and direction of any inaccuracy in an
estimate, when any inaccuracy exists. The empirical bias for an estimator was calculated
using equation (3.8), in which the mean of the simulated “true” values is subtracted from

the mean of the estimated values.
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Km
2 Mrmie —Mrmk

3.8
Bias, (1) = *= G

K

m
If an estimator is biased, per (3.7), one can adjust it by re-centering the estimator around
the true value by subtracting off the bias. This is done in (3.9): for a better estimate of
precision, the bias was parceled out from the estimate when calculating the RMSE,

resulting in a bias-adjusted RMSE (RMSEadj), which was also compared against the

RSSE.
K, 2
Z[(ﬁrmk _B[Asr(ﬁmk))_nrmk:l 3.9)
RMSEadj, =\|*=!
Km

Numerical and graphical summaries of the criteria were examined, followed by
statistical tests to determine whether and where significant differences occurred. With
only 40 replications at each design point, the hypothesis tests are particularly important
for drawing statistical conclusions about any difference between the models, sample

sizes, asymptote levels, or attribute types.
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CHAPTER 4

RESULTS

This chapter begins with a presentation of some global results to provide
perspective for subsequent results. The major findings for comparisons between the
gMLTM-D and MLTM-D are presented, then the seven analytical criteria are covered in
turn.

Global Results

To establish a basis for comparing the relative utility of the gMLTM-D and the
MLTM-D, the RMSE of the estimated attribute weights, #u, are illustrated in Figure 1
and Figure 2; one can see the RMSE values increase as the lower asymptote increases for
the MLTM-D estimates, while the RMSE values stay relatively constant for the gMLTM-
D estimates; the RSSEs are smaller than both model RMSEs. The RMSE and RSSE are
are higher for both models for the smaller sample sizes, which is consistent with
statistical theory. There is clear visual evidence for a difference in the precision of the
attribute weight estimates from the two model specifications, particularly for different

levels of guessing.
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RMSE for gMLTM-D and MLTM-D Attribute Weight Estimates
Saturated Models
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0.6000
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RSSE for gMLTM-D and MLTM-D Attribute Weight Estimates
Saturated Models
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Figure 1. RMSE and RSSE for attribute weights of saturated models for gMLTM-D and
MLTM-D estimates.
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Figure 2. RMSE and RSSE for attribute weights of attribute models for gMLTM-D and
MLTM-D estimates.
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As RMSE is influenced in part by the bias of the parameter estimates, and the
MLTM-D estimates were expected to be biased for increasing levels of guessing, the
same plots are provided for the bias of the parameter estimates in Figure 3. One can see
from inspection of the plots that the MLTM-D parameter estimates are, and increasingly
so for higher levels of the mean lower asymptote. The two models perform approximately
equally, in terms of precision and bias, when there is no guessing involved. This is to be

expected, as the gMLTM-D resolves to the MLTM-D.
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Figure 3. Bias for attribute weights of saturated and attribute models for gMLTM-D and
MLTM-D estimates.

85



Item Parameter Results

The results for the item and component parameter estimates will be discussed in
this section. The criteria for evaluating the three levels of item parameter estimates are
RMSE, bias, bias-adjusted RMSE, and the correlation between the parameter estimates
and simulated values. For each criterion, an ANOV A of the results is first presented,
indicating whether there are any significant relationships to investigate. As the gMLTM-
D and MLTM-D were estimated from the same simulated test results, that model
comparison is a repeated measure, and sample size, lower asymptote, and attribute type
are between effects, yielding a mixed-effect design. The repeated-measures tests are
reported first, as it is the comparison between the gMLTM-D and MLTM-D that are of
primary interest, and the tests include all interactions with sample size, lower asymptote,
and attribute type. The remaining comparisons are between-subjects, where the factors
are the three levels of sample size (random effect), the three levels of the true lower
asymptote (random effect), and the two attribute types (fixed effect): the study looked at
main effects and all two-way interactions due to these factors, and the between-subjects
effects are reported second. A summary table of the criterion means are then presented
and discussed. Each of the item parameters is considered in turn.
Component discriminations

The simulated component discriminations were all set to unity: the tests at the
component level were generated from the Rasch model for all saturated model runs. The
results for the four evaluation criteria will be discussed in turn in the following sections.

RMSE
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A summary of the significant findings is provided in Table 10 and Table 11,
which indicates that there are significant main effects due to model (i.e., gMLTM-D vs.
MLTM-D), sample size, and attribute type (i.e., attribute or saturated model) on RMSE
for component discrimination. Additionally, the effects of sample size, lower asymptote,
and attribute type are all impacted by the model used to estimate the item parameters, as
they all interact significantly with model. There are significant main effects for each of

sample size, attribute type, and lower asymptote.
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Table 11
RMSE: Tests for between-subjects effects for component discrimination estimates

Source df SS MS Fobs  p-value 7%

Intercept 1 35.344 35.344 305233 <0.001 0.998
Sample Size 2 0.004  0.002 17.875 <0.001 0.048
Asymptote 2 0.065 0.032  279.163 <0.001  0.442
Attribute Type 1 0.001 0.001  12.924 <0.001 0.018
Sample Size * Asymptote 4 <0.001 4.17E-05 0.36 0.837 0.002
Sample Size * Attribute Type 2 2.24E-05 1.12E-05 0.097 0.908 0

Asymptote * Attribute Type 2 <0.001 9.91E-05 0.856 0.425 0.002

Error 706  0.082 0 - - -

Table 12 contains the average RMSE and RSSE of the component discriminations
recovered from the gMLTM-D and MLTM-D model estimates. The mean RMSE values
tend to decrease for the gMLTM-D as the lower asymptote increases, and the RMSEs are
approximately equal for the saturated and attribute models simulated under the same
guessing condition for the gMLTM-D. The same decreasing pattern is observed for each
of the three sample sizes. The mean RMSE increases slightly as the sample size
increases, but it is relatively stable within a test condition for the gMLTM-D.

All RMSEs for the gMLTM-D discriminations are lower than those for the
corresponding MLTM-D estimates. In general, the RMSEs for the MTLM-D component
discriminations display a different pattern, and increase as the lower asymptote decreases.
Like those for the gMLTM-D, the mean RMSE with test condition increase slightly as
sample size increases, but are relatively stable: the major change occurs within sample
size as the level of guessing increases for the saturated- or attribute-type model. The
RMSE for both the gMLTM-D and MLTM-D discrimination estimates are inflated

relative to the RSSE, or the root mean squared standard errors of the parameter estimates,
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indicating that the recovery of the true parameter values are less precise than the

parameter estimates on average.

90



LOTO'0 OIT0°0 LOIO'O vOIO'0O 80100 [IILOO 80100 <oOI10°0 HASSYH UBdN A-INLTIN
LELT0 LLIEO 808T°0 9TTT0 €vLTO0 TETEOD €08T°0 S61ITO ASINY UBdN d-INL'TIN
GLOO'0  LLOO'O  SLOO'O  €L00°0  SLOOO  LLOOO  SLOOO  €L00°0 008t

¢600'0 86000 96000 6000 96000 66000 S6000 €600°0 000°€

[S10°0 96100 0OSIO0  9¥I00 CSI0O0  SSI0O0  CSI00  LvIOO 00T°1 HSSY U\

09LT°0 LOTEO0  €C8C0O0 ISCCO ISLTO  L¥YCEO 9I8CTO  061CT0 008t

9¢€LT0  88I€0 108C0 ICCCO ¢€vLCO SICE0 TI8CO 20CTO 000°€

SILTO BEIE0 66LC0 LOTTO 9ELTO vECEOD TBLTO  €61C0 00T°1 HSINY UBdIN - d-INLTIN
S910°0  S0T0°0 S910°0 ¥TI0°0  VLIOO 0TTO'0 €L10°0 8TIOO ASSY U d-IW.LTINS
ECLI'0  6VPI°0  €VLI'0  LL6I'O0  6S91°0 99¢€1'0 0L91°0 Ivel'0 ASINY UedIAl d-INL'TINS
91100 ¢vI10°0 91100 L8000 CCIOO €SIOO 2CIO0 06000 008t

o100 <8100 9vI0°0 TIII00 +SIOO S6I00 €SI0°0  ¥II00 000°€

¢ec0’0 16200  TECO'0  €LI0OO  9¥CO'0  CTIEO0 9vC00 08100 00T°1 HSSY UedN

SSLT'0O  ¥8YVI°0  LPLI'O  €€0T0 66910 CIvI'0 80LI'0O 8L6I0 008t

TELT0O  COPI'0  vSLI'O  6L61°0  LL9T°0  LSET'0  LOLT'O 99610 000°€

€891°0  COVI'0  LCLI'O  6I61°0 10910 8CEI'0 S6SI'0  6L8I°0 00T°1 ISINY UBdN - d-INLTINS
UBIN Sz0=¢z10=" =% UBOIN  S70=9Y¢6zr0= =% ozigoidweg ainsed|N [°POIN

S[9POI AMQLINY

S[9POIN PRieInjes

S2IDWIIIS2 UODUIULIDSIP JUdUOdU0D O FSSY pub FSIWY 230424

cl2IqeL

91



o9)
et
)
w2

As with the RMSEs, there are significant differences in the mean bias, as
illustrated in Table 13. Most notably, there is again a significant effect due to model, and
the same two-way interactions are also significant, indicating that the model specification
influences the bias of the component discrimination estimates beyond the simple effects
of each of the lower asymptote, attribute type, and sample size. Table 14 shows that, as
with RMSE, the sample size, lower asymptote, and attribute type all significantly impact
the bias of the component discrimination estimates.

The average empirical bias of the component discriminations is summarized in
Table 15. As the lower asymptote increases, the bias for the gMLTM-D discrimination
estimates decreases, regardless of sample size. The same pattern holds for both the
saturated model and the attribute models. All gMLTM-D estimates are, on average, less
biased than the corresponding estimates from the MLTM-D. A similar pattern to the
RMSE emerges, where bias sizably increases for the MLTM-D estimates as the lower
asymptotes increase. For both saturated and attribute models there is evidence of some
increase in bias for gMLTM-D and MLTM-D estimates as sample size increases. These
findings are consistent with what was predicted; the MLTM-D would yield biased item
parameter estimates in the presence of guessing. The gMLTM-D, because it models the

possibility of guessing, would be less biased in other item parameter estimates.
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Bias-adjusted RMSE

The change in the bias noted for both the MLTM-D and the gMLTM-D model
estimates impacts the chosen estimate of precision. As seen in Table 16, there is still a
significant main effect due to model on the precision of the estimates once bias has been
accounted for; model also still interacts significantly with each of sample size, asymptote,
and attribute type. Sample size, lower asymptote, and attribute type all still have
significant main effects, averaged over the source of the estimates, as seen in Table 17.
While adjusting the RMSE for the component discriminations for the bias makes them
more precise, it does not eliminate the effects due to the different aspects of the
simulation study.

The average bias-adjusted RMSE values are provided in Table 18. The removal of
bias from the RMSEs yields values much closer to the RSSEs calculated from the
standard errors of the model estimates for both models. The mean bias-adjusted RMSE
increases as the mean lower asymptote increases for both the gMLTM-D and MLTM-D
discrimination estimates. Additionally, as the sample size increases, the mean bias-
adjusted RMSE tend to decrease within a given test condition for both models, which is

consistent with statistical theory.
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Correlation with true values

The simulated component discriminations were all set to unity, so they did not
have any variance. Therefore, a correlation between the simulated and estimated
component discriminations cannot be calculated, nor would such a statistic be valuable in
this instance.

Discrimination summary

The MLTM-D estimates of discrimination are consistently more biased than those
of the gMLTM-D. Furthermore, the accuracy of the MLTM-D estimates grows worse as
the lower asymptote increases, for both the saturated and attribute models. The gMLTM-
D estimates were fairly stable, regardless of sample size. The accuracy of the
discrimination estimates improved on average for the gMLTM-D improved as the mean
lower-asymptote increased, indicating that the gMLTM-D has better discrimination
parameter recovery than the MLTM-D, particularly when there is an increasing chance of
false positives on an item.

Attribute weights

The attribute weights for both the saturated and attribute models were generated
from a Uniform distribution with a mean less than zero to simulate an achievement test
with relatively easy items. It was anticipated that increased guessing would increase the
bias in MLTM-D attribute weight estimates, which are directly linked to an item’s
component difficulty.

RMSE
All effects involving the difference between the gMLTM-D and MLTM-D

estimates are significant, including two- and three-way interactions with sample size,
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attribute type, and lower asymptote level, indicating that the precision of the attribute
weight estimates are influenced by the model used for estimating the item parameters
(Table 19). There are also significant main effects due to sample size, asymptote, and
attribute type, and the two way interactions involving attribute type, as seen in Table 20.
The RMSE of the attribute weight estimates, therefore, is influenced by a variety of
design factors.

The RMSE and RSSE values for the attribute weights are provided in Table 21. A
similar pattern emerges for the attribute weight estimates as for the discrimination
estimates in the previous section. For the attribute model estimates, the RMSEs for the
gMLTM-D decreases as the mean lower asymptote increases. Under the saturated model,
on average the RMSEs increase with the lower asymptote, but that pattern does not hold
true at each sample size. This is likely due to the fact that the lower asymptotes were
often poorly estimated for the gMLTM-D in the 1,200 simulee cases—and always poorly
estimated in the absence of guessing (i.e., when x, = 0)—impacting the remaining item
parameter estimates. Unlike with the component discrimination RMSEs, the precision
increased as the sample size increased within each test condition, which is expected under
statistical theory.

The MLTM-D estimates fared worse, with consistently higher RMSE values. As
with the discrimination estimates, some of this was due to the impact of the bias on the
estimates, discussed in the next section, increasing the measure of RMSE. The precision
within each test condition stayed relatively stable, regardless of sample size for the

MLTM-D estimates.
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Contrast tests for differences in mean bias due to the estimating model reveal a
significant main effect and multiple two- and three-way interactions, which may
contribute to the relationships found in the preceding section (Table 22). Bias in the
attribute estimates is also significantly contributed to by lower asymptote and attribute
type, though not by sample size, indicating that, averaged across the two models, even
smaller samples can yield equally accurate attribute weight estimates (Table 23).

Inspection of Table 24 shows the gMLTM-D attribute weight estimates are
uniformly less biased than those of the MLTM-D, regardless of sample size and test
condition, as expected,. That both the MLTM-D and gMLTM-D estimates have non-zero
bias for the attribute and saturated models where u, = 0 can be partially explained by the
bias in the discrimination parameters for those test conditions and the model specification
in the SAS program. More discussion into these causes is included in Chapter 5. The bias
and model specification may also explain why the mean empirical biases for tests in the
absence of guessing are not equal for the MLTM-D and gMLTM-D, indicating very
different parameter estimates from what should be two identical models under that
condition.

The MLTM-D attribute weight estimates become dramatically more biased as the
lower asymptote increases, though the estimates are fairly stable within a test condition
regardless of sample size. The small bias present in the gMLTM-D estimates is relatively

constant across sample sizes and levels of guessing.
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Bias-adjusted RMSE

Due to the large, non-constant bias of the MLTM-D estimates, the bias-adjusted
RMSE is a useful measure for ascertaining the precision of the estimates themselves.
Analysis of the repeated-measures contrasts due to model on the adjusted RMSEs reveals
a significant difference, as well as all significant two-and three-way interactions due to
change in estimating model (Table 25). The signifant difference due to model was
hypothesize and is expected, particularly based on the results for the RMSE and bias
from the previous sections. It is interesting to note that, after removing bias from the
RMSE, all main effects and interactions due to asymptote, sample size, and attribute type
significantly impact the precision of the attribute weight estimates as well, as seen in
Table 26.

When the bias of the MLTM-D estimates is removed, one can see that the
precision is on-par with that of the gMLTM-D estimates, as shown in Table 27. The bias-
adjusted gMLTM-D RMSEs are mostly unchanged from the original RMSEs, as the
estimates themselves were fairly accurate. However, neither the gMLTM-D nor the
MLTM-D estimates are very precise relative to the true values, as measured by RMSE,
when compared to the RSSEs from the estimates; both models yield high mean RMSEs
on average, even after adjusting for bias. The pattern observed for the RMSEs in the

previous section still exist for the bias-adjusted RMSEs of the attribute weight estimates.
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Correlation with true values

The correlation between the estimated attribute weights and the known, simulated
values were uniformly high for both the gMLTM-D and MLTM-D estimates, as shown in
Table 28. As the sample size increase, the mean correlation within a test condition
consistently increases, indicating a more reliable ordering of the attributes along the
ability scale with a large number of simulees. The minimum correlation observed across
all replications was 0.9256, which was obtained for a replication of the saturated model
with a mean lower asymptote of 0.25 with 1,200 simulees estimated under the gMLTM-
D. This corresponds with the results in Table 28, which indicate that for such a model,
involving many parameters, adequate recovery along the continuum would be difficult
with relatively few people.

In terms of mean correlation, the MLTM-D estimates of attribute weights perform
better than those of the gMLTM-D for all sample sizes under the saturated model in the
absence of guessing, and across all test conditions for 1,200 simulees. The gMLTM-D
orders the attribute weight estimates better, however, as the sample size increases,
particularly for the attribute models. This is further evidence that the relative parsimony
of the MLTM-D makes it more efficient for smaller samples, while better recovery is
possible as both sample size and the probability of false positives increase under the

gMLTM-D.
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Attribute weight summary

In terms of RMSE and bias, the gMLTM-D estimates outperform the MLTM-D
estimates, particularly as the lower asymptote increases. However, once the RMSE is
adjusted for bias, the MLTM-D attribute weight estimates generally are more precise on
average, with the exception of the saturated model in the absence of guessing. On the
final criterion, the correlation between the estimates and true values, the MLTM-D
estimates also marginally outperformed the gMLTM-D estimates across all test
conditions and sample sizes. The model used to estimate the item parameters
significantly impacts both the accuracy and the precision of the attribute weight
estimates, and interacts significantly with random test features such as guessing, sample
size, and attribute type. Test and item design features, such as the Q-matrix and amount
of guessing, significantly contribute to the accuracy and precision of the attribute
weights, when averaged across the model used to estimate the item parameters.

Lower asymptotes

Unlike the other item parameters, the mean of the lower asymptotes was
manipulated in the design of the experiment across test conditions. For the saturated
models, estimation of the lower asymptotes with 1,200 simulees was often unreliable. All
replications of test conditions where x, = 0 could never estimate all lower asymptotes:
many estimates would get stuck at one of the estimation constraints, regardless of sample
size. The more parsimonious attribute models were better at estimating the lower
asymptotes at all sample sizes. In the case where a lower asymptote estimate reached a
constraint, no actual estimate or standard error was obtained. The following sections

cover the analysis criteria for the estimated lower asymptotes in turn, excluding the items
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whose lower asymptotes could not be estimated as well as the reference item on each test.
As only the gMLTM-D estimates a lower asymptote, that is the pertinent model for the
ensuing discussion.
RMSE

Tests for the mean RMSE obtained for the lower asymptote estimates shows
significant main effects due to both sample size and attribute type, as well as their
interaction, shown in Table 29. The mean RMSE and RSSE for the estimated lower
asymptotes for the different test conditions and sample sizes are provided in Table 30.
Relative to the attribute weight estimates, the lower asymptote estimates are fairly
precise, when one compares the mean RMSE and RSSE. As expected, the mean RMSE
decreases as the sample size increases within a given test condition, and the best RMSEs
within a sample size are observed for the three attribute models. An interesting
relationship among test conditions for both the saturated and attribute models can be
seen, where the tests with ¢, = 0.125 have lower mean RMSEs than the other two tests at
each sample size. As the distribution for the attribute weights was unchanged across the
test conditions, the increased precision for the lower asymptotes at the middle level of
guessing may reflect an optimal matching of the items’ difficulty with the probability of

guessing.
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The mean RMSEs do not indicate that the lower asymptotes are very inaccurate,
but investigation into possible bias is still worthwhile. Unlike with the RMSEs, the bias
of the lower asymptote is only significantly influenced by the true lower asymptote of the
items, as well as the interactions of the sample size and lower asymptote and sample size
and attribute type, as indicated in Table 31. As the lower asymptote was, anecdotally,
difficult to estimate for the smaller sample sizes, particularly for the saturated model, the
findings in Table 31 are not surprising.

The mean bias of the lower asymptote estimates is detailed in Table 32, and one
can see that some bias does exists for some test conditions and sample sizes. The bias in
the lower asymptote estimates is the smallest for all sample sizes under testing conditions
with the highest rate of guessing (i.e., u, = 0.25), and bias is relatively stable as sample
size increase. The bias stabilizes at the middle level of guessing for both the saturated and
attribute models after 3,000 simulees. There is a decline in the bias for tests in the
absence of guessing as the sample size increases, as well, though the bias in the estimates

was large enough to begin with that the same absolute gain yielded some bias in the end.
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Bias-adjusted RMSE

Removal of the empirical bias observed in some of the lower asymptote estimates
yields a better representation of the precision with which the estimates match the
simulated values. Consistent with the results from the original RMSEs, analysis of the
bias-adjusted RMSEs reveals significant effects due to sample size, attribute type, lower
asymptote, and all two- and three-way interactions (Table 33). However, inspection of
Table 34 reveals a different pattern present in the bias-adjusted RMSEs than that of the
RMSEs in the previous section, which increased as the true lower asymptote increases.

One can see that there is marked improvement in the RMSE values relative to
RSSE, particularly for the attribute and saturated models simulated in the absence of
guessing, which exhibited the most bias in the lower asymptote estimates. It is the
attribute and saturated models simulated in the absence of guessing that were the most
troublesome in terms of lower asymptote estimation, as even at the largest sample size at
least one estimate got caught at a constraint and could not be estimated in each simulated

test.
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Correlation with true values

Two test conditions were simulated such that all lower asymptotes were set equal
to zero, to represent the situation where no guessing occurs; in those cases, the correlation
between the estimated values and the true values is necessarily zero, as the true values do
not vary. The other two test conditions were simulated such that the variance of the true
lower asymptote was 0.001, meaning that correlation analysis would not be meaningful
for the lower asymptote estimates. Discussion of parameter recovery for the lower
asymptotes therefore, is limited to bias and RMSE, or the accuracy and precision, of the
estimates, which has been covered in the previous sections.

Lower asymptote summary

Per the correlation and both RMSE summaries of the lower asymptote estimates,
the best recovery of the true lower asymptotes occurred for test conditions at the middle
level of guessing (1, = 0.125). The non-monotonic association between correlation and
RMSEs as the true lower asymptote increases is different from that observed for both the
discrimination and attribute weights, discussed in the previous sections. As the MLTM-D
does not estimate a lower asymptote, a model comparison can not be conducted for lower
asymptote estimates.

Person Parameter Results

Person parameters were estimated using the MLTM-D and gMLTM-D item
parameter estimates obtained for a selection of 18 tests, based on several criteria for
appropriateness: representation across the design and plausibility of the item estimates.
The tests were chosen to represent all design points from the simulation, while the

specific replications of the tests were selected based on the gMLTM-D item parameter
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estimation. Whenever possible, a replication where all lower asymptotes were estimated
was selected; when such a case did not exist, a replication was chosen where the fewest
lower asymptotes were constrained at the lower boundary during the estimation process.
The rationale behind the item parameter criterion was the more item parameters were
successfully recovered, the better they would be, and the better the resulting person
estimates.

The mean and standard deviation for the true and estimated component abilities
for each sample size and model for the saturated model are provided in Table 35. As the
true lower asymptote increases, the mean of the gMLTM-D estimates tends to be closer
to the true mean of 0 than MLTM-D means, and means of both estimates decrease as the
sample size increases. The person estimates obtained for the attribute model tests follow a

similar pattern, where the larger samples generally yield means closer to zero.
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RMSE

The RMSE and RSSE of the person estimates for each component are provided in
Table 37 through Table 39: one must bear in mind the table cells each represent a single
replication of the simulation. Both RMSE and RSSE are fairly stable across sample size
within a test condition, there is no clear relationship for the values for estimates obtained
from either model. For a given test, however, the RMSE values are uniformly lower for
the person estimates obtained from the gMLTM-D items than those obtained from the
MLMT-D items, which is a relationship that generally holds for the RSSEs, as well.
There is evidence that the more parsimonious attribute models yield less precise
estimation of the person abilities, regardless of the source of the item parameter
estimates: the RMSE and RSSEs for the attribute models than for tests under the
saturated models with the same mean lower asymptote. Within tests of saturated models
or attribute model types, as the lower asymptote increased, the RSSE of the person
estimates tends to increase for both the gMLTM-D and MLTM-D; there is no consistent

trend for the RMSE relative to increasing lower asymptote.
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Bias

Although the RMSE values closely aligned with the RSSE calculated from the
standard errors of the person estimates, the bias of the person estimates for each
component are presented in Table 40 through Table 42. One can see that, altogether, both
the gMLTM-D and MLTM-D were fairly accurate in the person ability estimation. The
two model sources of item parameter estimates performed about equally in terms of bias,
regardless of sample size and attribute type. No consistent pattern emerges within
attribute type for either model as sample size or lower asymptote increases, though bias
generally appears to decrease as the lower asymptote increases, and to increase as the
sample size increases. On average, the gMLTM-D estimates were less biased than the

MLTM-D estimates, but marginally so.
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Correlation with true values

The correlations of the person ability estimates for each component with the
simulated true values are summarized in Table 43 through Table 45. For both models, the
correlation decreases as the true lower asymptote increases, regardless of attribute type.
The gMLTM-D and MLTM-D items yield person estimates that correlate roughly equally
with the true person abilities for each design point; the correlations are never consistently
better from one model or the other, even for a single test. On average, on tests with non-
zero guessing (i.e., u, = 0.125, u, 0.25), the correlations for the gMLTM-D person
estimates exceed those of the MLTM-D estimates.
Summary of person estimates

All three criteria tend to indicate better person parameter recovery for the
gMLTM-D, though with the limited sample in each table cell no formal tests can be
conducted. Generally, the better abilities estimates coincide with those test conditions and
models where the item parameters are also better estimated; similar trends in RMSE,
bias, and correlations for both person and item estimates are observed under gMLTM-D
and MLTM-D. Although only one test for each test condition and sample size was used
to demonstrate person parameter recovery, the findings at each level are of practical use

for determining whether and when to use the gMLTM-D or MLTM-D.
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CHAPTER 5

DISCUSSION

This final chapter includes discussion of the major findings of this study. The
main concentration is on the relative merits of the MLTM-D and the gMLTM-D in
different test and item design contexts. The implications of the findings is then discussed,
followed by an outline of the limitations of the current study. The paper concludes with
recommendations for areas of future study, as directed and identified by the current study
and findings.

Discussion of Findings

It was hypothesized that the gMLTM-D would produce better item and person
estimates than the MLTM-D, particularly for tests with a non-zero probability for
obtaining a false positive, and that item parameter estimation would improve, regardless
of model, as the sample size increased. It was further hypothesized that better person
estimates would be obtained from gMLTM-D item parameter estimates under the same
conditions. The results support these hypotheses to an extent. As a whole, the gMLTM-D
outperformed the MLTM-D in terms of item parameter estimation, with better results on
all decision criteria except for correlations between true and estimated attribute weights.
The gMLTM-D-estimated component discriminations and attribute weights were both
significantly less biased and more precise than the corresponding MLTM-D estimates,
even under the two test conditions where the models are functionally equivalent.

Recovery of the lower asymptotes was less successful than that of the other item

parameters, regardless of the metric used. Although the inclusion of the asymptote

141



estimate in the model specification improved the estimation of all gMLTM-D item
parameter estimates, the lower asymptote estimates themselves were poorly estimated,
when they were estimated at all. Particularly for the saturated models, there were
replications for 4,800 simulees where all lower asymptotes were not successfully
estimated.

In the absence of guessing the gMLTM-D and the MLTM-D are functionally
equivalent, and one would expect the two models to yield equal item parameter estimates.
Despite the noted difficulty estimating y = 0, however, the gMLTM-D discrimination and
attribute weight estimates were significantly less biased and significantly more precise
than the corresponding estimates from the MLTM-D. The unexpected, extreme difference
in parameter estimates from two equivalent models leads the author to believe that the
estimation algorithm within the NLMIXED software is the cause, and not something
inherent in the model. As the RSSEs values of the MLTM-D estimates are all smaller
than those of the gMLTM-D, there must be some other cause for the discrepancy between
the two model’s estimates for the non-guessing conditions.

Although the gMLTM-D outperformed the MLTM-D on all metrics in item
parameter estimation, there was little difference between the two models in recovery of
person parameters on all criteria. The 16 tests chosen for person measurement were
selected based on the gMLTM-D asymptote estimation, where the fewest asymptotes
were held at a boundary condition during the estimation process. The individual tests
selected were representative of all simulated tests in terms of bias and RMSE of item
parameter estimates. Firm statistical conclusions about ability parameter recovery cannot

be made, as only one test was selected from each design point.
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Implication of Findings

Administrators who are interested in latent trait diagnostic information but are
also concerned about the impact of guessing and partial knowledge on item calibration
and their subsequent ability estimation should view these findings as a positive,
promising first step. The results of the real data analysis indicate that the gMLTM-D is
practical for use on currently existing tests that have items that can be scored with a
sparse, hierarchical component and attribute structure. It should be noted that item
calibration under the gMLTM-D, particularly for quality estimation of lower asymptotes,
is only feasible with very large sample sizes under the current technology. Smaller
samples can produce some lower asymptote estimates under the condition of the attribute
model, but as the simulation study revealed, those estimates do not correlate highly with
the true values.

The noted relationship between increasing sample size and increasing correlation
for the lower asymptote estimates should be considered when implementing the gMLTM-
D, and it should only be used for large-scale testing. If one uses the MLTM-D in the
presence of guessing, one must be cognizant of the increasing impact on the person
ability estimates as the guessing probability increases.

The simulation study was designed to reproduce the conditions of a test
administered in an academic setting, specifically using the seventh-grade mathematics
achievement test as a blueprint for the basic design. The items, with an average easiness
of approximately 0.7, mimic tests of academic achievement, which are generally easier
than tests of aptitude. One outcome of simulating relatively easy items is difficulty

estimating a lower asymptote, particularly with a standard normal distribution. If there is
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poor representation of the lower abilities then there will be fewer simulees with
sufficiently low abilities who need to guess on any item. When one considers the
matching of the simulated person distribution, with a latent trait mean greater than the
single-component item means, one realizes that few students would guess on any item,
even those with small lower asymptotes; it is little surprise that there was poor lower
asymptote recovery for the smaller sample sizes, particularly for the saturated models.
Aptitude tests are intended to gauge a person’s intelligence or ability to learn, not what
one has already learned in school, and so items tend to be more difficult; had the current
study modeled more difficult items like would typically be found on an aptitude or
intelligence test, more simulees from the sampled population would have had to guess,
and the lower asymptotes would have been better recovered even at the smaller sample
sizes.
Limitations

As with any simulation study, one must be careful about generalizing these results
to other testing scenarios. The test designs were tightly controlled, and the C and Q
matrices did not vary at all throughout the simulation. In normal testing administrations,
forms seldom have identical structures so this is an unlikely scenario to encounter outside
the simulation. Due to time constraints, the simulation only consider a standard
multivariate normal distribution for the examinee abilities; it is certainly possible on
achievement tests of a unified construct that abilities may be correlated and not
independent. The current study did not investigate the possibility of correlated abilities,

however; nor did it investigate the possibility of non-normal ability distributions, which

144



would further impact the estimation of the lower asymptote, depending on the skewness
of the population.

A major limitation for this study was computation time and power. Estimation of
a single replication of the MLTM-D item parameter estimates could take 1.5 to 30 hours,
with smaller sample sizes and attribute models taking less time. Estimation of the
gMLTM-D—particularly for the saturated models—took noticeably longer, because it is
a less parsimonious model. The gMLTM-D estimation could take 12 to 300 hours, where
the smaller sample sizes and attribute models took less time. The two test conditions that
took the longest to run under the gMLTM-D were the attribute and saturated model with
a true lower asymptote of zero. As mentioned in Chapter 4, many estimates for the lower
asymptotes in those cases got held at a boundary constraint and were never estimated,
regardless of sample size. Some investigation into the issue has led the author to believe
this is an algorithmic problem with the software and is not specific to the model itself.

Recommendations for Future Study

The results and limitations of the current study point to some interesting areas for
future research.

e Performance of the gMLTM-D on different test lengths. The current study
was time-limited and could only investigate one test length. For
completeness, shorter and longer tests should be investigated.

e As discussed in the literature review, the recommended number of
alternatives for an MC item is three. The current study simulated items
with eight and four alternatives; simulating a test under the recommended

scenario would be warranted.
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Investigation into larger sample sizes. Recovery of the lower asymptote
was better on tests administered to larger samples; for recommendation or
rule-of-thumb to administrators, more study is needed to determine a
minimum sample size for lower asymptote estimation for the gMLTM-D.
Improved matching of lower asymptotes to item difficulties. Non-zero
lower asymptotes would likely be better estimated on tests with harder
items, where guessing is more likely to occur. The ability distribution
should also be matched to the item distribution so that the persons taking
the test are likely to guess when guessing is expected.

More understanding is needed of the NLMIXED algorithm and start
values. The gMLTM-D and MLTM-D are the same model with the lower
asymptote is zero, yet different estimates were obtained under the model
specification. Alternative specifications result in identical estimates, but
no lower asymptote estimates for the gMLTM-D. Both resulted in biased

estimates when there should be no bias.

The current results show that the gMLTM-D is promising and offers advantages

over the MLTM-D, but that more study is warranted before it is implemented in a testing

program. The gMLTM-D provides unbiased item and person estimates in the presence of

guessing on comprehensive, multidimensional tests. However, the requirement of large

sample sizes, particularly for estimating tests designed under saturated model, and longer

estimation times are a drawback to the gMLTM-D. As guessing and partial knowledge

are a concern and are only addressed by a handful of latent trait models, the

generalization of the MLTM-D is an important step in measurement.
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APPENDIX C

Test Simulation

simGMod<-function (ipar,cors, M, J, D=1.7, easiness=T, seed=1) {
call<-match.call ()
I<-nrow (ipar)
if (M == 1){
sigma <-1
} else if (M >1) {
sigma <- as.matrix(cors)
sigma [upper.tri (sigma) ]<-t (sigma) [upper.tri (sigma) ]
if (dim(sigma) [1] !=dim(sigma) [2] | IM!=dim(sigma) [1])
stop ("ERROR: number of dimensions and covariance matrix
non-conforming")
} else stop ("ERROR: number of dimensions and covariance matrix
non-conforming")
if (M == 1){
sigma.inv=1
} else sigma.inv<-solve (sigma)
gg<-matrix(ipar[,1])
aa<-matrix (iparl([,2])
bb<-matrix (ipar[,M: (3+M-1)],ncol=M)
cc<-matrix (ipar([, (3+M) : (3+M+M-1) ], ncol=M)
if (!easiness)
bb<--bb
if(!is.null (seed))
set.seed (seed)
TH<-matrix (rnorm(J*M), J,M) #create an initial theta matrix
random<-matrix (runif (J*I),J,I)
if (all (sigma!=0) &&M>1)
TH<-TH %*%chol (sigma)
resp<-matrix (0, J,I)
P<-matrix (NA,J, I)
for (j in 1:J){ ##added
for (i in 1:1I){
Pm.comp<-matrix (0, nrow=M)
for(m in 1:M) {
Pm.comp [m]<-Pm.comp [m]+ (1l+exp (-D* (TH[],m] -
bb[i,m])))"(-ccli,m])
}
#calculate the probability of correctly solving item i for examinee j
P[j,1]1<-ggl[il+(1-ggl[i])*
Reduce ("*", Pm.comp, accumulate=FALSE)
resp[j,i]<-respl[j,il+ifelse(random[]j,1i]<P[]j,1]1,1,0)
}
} ##end loop through J people
resp<-as.data.frame (resp)
names (resp) <-paste ("S",1:I,sep="")
out<-list(call=call, theta=TH, resp=resp)
return (out)
}#end function simGMod
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