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SUMMARY

Periodic gratings utilized as emitters increase the efficiency of thermophoto-

voltaic (TPV) systems. These gratings work by altering the emittance spectrum

incident on the photovoltaic cell to better match the band gap of the cell. Photons

at slightly higher energies than the band gap are the most efficient as they generate

electron-hole pairs while minimizing thermalization losses. This prompts the use of

gratings to be used as selective emitters. Even for a one-dimensional (1D) grating,

millions of possible geometries exist, and simulating even a fraction is infeasible. This

prompts the use of metaheuristics. It should be noted that due to the stochastic na-

ture of these optimization methods, a globally optimal solution is not guaranteed,

and instead, these methods seek to provide “close enough” solutions.

Generally, metaheuristic algorithms have been extensively studied and compared

with each other; according to the “no free lunch” (NFL) theorem, all optimization

algorithms are equivalent when averaged over all possible problems. Therefore, a com-

parison of existing algorithms for the optimization of a system, composed of a 2,000

K 1D tungsten binary grating paired with a 300 K InGaSb cell, was performed. Af-

ter using the comparison, a hyper-heuristic optimization was used to algorithmically

develop a purpose-built metaheuristic algorithm. Rigorous coupled-wave analyses

(RCWA) take too long to natively perform for the hyper-heuristic search. Fully con-

nected neural nets (FCNN) solve this problem when used as surrogate models. The

new optimization algorithm created in this way showed significantly better perfor-

mance than all the existing algorithms it was compared against. Then, this algo-

rithm was used to optimize emitters for a normalized emittance spectrum, maximum

efficiency, and maximum power.

xv



CHAPTER 1

INTRODUCTION

Heat Transfer is of foundational importance to a broad range of engineering ap-

plications. Radiation heat transfer, that is the transfer of energy through electromag-

netic waves/photons, is the most universal, as it needs no facilitating medium [1][2].

This results in greater distances being impacted compared to convection or conduc-

tion. Radiative heat transfer also dominates at higher temperatures. This makes

it incredibly important for aerospace and naval applications. Micro/Nanostructures

and metamaterials allow for unprecedented control of the optical properties that drive

the radiative heat transfer effects.

Optical nanostructures and Metamaterials can achieve optical responses not pos-

sible with natural bulk materials, through the use of arranged structures with dimen-

sions smaller than the wavelengths of interest. The sub-wavelength nature of these

structures insure that the optical properties of the material is not predominately de-

termined by bulk optical phenomena, as would be the case with wavelength scale

structures [3].

Metamaterials and Micro/Nanostructures have a broad range of novel applica-

tions. Famously, metamaterials have been used to simultaneously exhibit nega-

tive permeability and permittivity [4][5]. Micro/nanostructures, particularly one-

dimensional gratings can be used to optimize thermophotovoltaic (TPV) emitters

to better match the band gap energy of the photovoltaic cell [6][7]. Metamaterials

have also been implemented to create super lenses that can overcome the diffraction

limit associated with geometric optics [8]. Research has also shown their feasibil-

ity for cloaking applications [9]. Circular and Linear polarization effects can also
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be manipulated with metamaterials, having beneficial applications to Stereochem-

istry[10][11][12].

Due to the wide range of applications for optical nano-structures and their infinite

possible complexity, it can be challenging to determine new designs and geometric

parameters for new applications or to further optimize existing applications. This

presents several unique problems in understanding the complex non-linear phenomena

that drive different architectures. This study primarily investigates a small subset

of optical nano-materials known as diffraction gratings, particularly those made of

Tungsten. The optimization methods associated with the discovery of new grating

configurations will be explored in this study, and how tungsten gratings can be used

in TPV systems.

The fundamentals of the photoelectric effect is first introduced along with its

utilization in semiconductors and photo-diodes is first introduced. Along with the

purpose of emitters in TPV systems. From there, a background on calculating the

optical properties of gratings with RCWA is shown, including the special consider-

ations needed for conical diffraction scenarios. Then, an explanation of the basic

fundamentals of Neural Networks is provided to facilitate an understanding of their

utilization in subsequent sections.

An overview of existing optimization algorithms and how they can be broken down

into building blocks is provided. This building block model of algorithms allows for the

rearrangement of building blocks to create new algorithms through Hyper-heuristic

optimization techniques. Then these new algorithms are compared to existing opti-

mization algorithms. These Hyper-heuristic techniques are made possible with the

implementation of RCWA surrogate neural net models, which increase the calculation

time of optical properties by several orders of magnitude, at the cost of initial training

data.
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A model was developed to calculate the efficiency at maximum power for a par-

ticularly TPV system. This model assumed 100% internal quantum efficiency. The

aforementioned optimization methods were implemented to produce gratings opti-

mized to have maximum power and efficiency. The optical properties of these gratings

were investigated to allow for conclusions of which particular behaviors are of par-

ticular interest to TPV systems. Overall, this study aims to advance the design and

optimization of one-dimensional gratings for any application and uses TPV systems

as a robust real-world example.

3



CHAPTER 2

THEORETICAL BACKGROUND AND PROBLEM

2.1 Thermophotovoltaics

The defining characteristic of humankind’s success in the last 500 years has been

the ability to “trick” energy, particularly heat, into doing work. This first started with

ancient water mills and steam engines, like Hero’s Aeolipile [13], and evolved into the

complex hydroelectric dams and steam engines that supply the world’s electricity

today. Thermophotovoltaics (TPV) similarly ”tricks” heat, photons radiating from

a heated thermal body are converted directly into electricity without the need for

working fluids or moving parts. This is accomplished through the photovoltaic effect,

first demonstrated by Edmond Becquerel in 1839 [14].

2.1.1 Photovoltaic Effect in Semiconductors

The photovoltaic effect is the transfer of a photon’s energy to an electron, which

promotes the electron to a higher energy orbital. Ideally, this promotion would be

from the valence band to the conduction band of the atom. This creates and electron-

hole pair. The electron and hole can still have an inherent electric attraction to one

another, meaning promotion can happen but the electron will still be bonded to the

hole. This is referred to as the optical bandgap [15]. The amount of energy required

for promotion and to sever inherent bonding is called the electronic bandgap. The

electronic bandgap is of primary interest for photovoltaic power generation.

However, this promotion of electrons is not always a straightforward jump. The

minimum energy of the conduction band does not always line up with the maximum

energy of the valence band at the same k value. When these k values align, this is
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Figure 2.1: Direct vs. Indirect Bandgap Semiconductors

known as a direct bandgap material. Reciprocally, a misalignment of these k values is

called an indirect bandgap material[16]. Figure 2.1 depicts a simplified diagram of the

differences. This behavior is driven by the chemistry of the atoms and the crystalline

structure of the material. For instance, crystalline Silicon is an indirect material while

amorphous Silicon is direct material. In both types of materials, momentum must

always be conserved with electron promotion, therefore a transition in an indirect

bandgap material must be facilitated by an interaction with the crystal in the form of

a phonon[16], this is represented depicted in Figure 2.1. The nature of the band gap

also affects the absorption coefficient. At frequencies slightly higher than the direct

bandgap the absorption coefficient is related by [17]:

α ∝ πe2x2vcω

ϵ0ℏnindexc
ρc(ω)[fv(ℏω)− fc(ℏω)] (2.1)

5



where fv(ℏω) and fc(ℏω) are the Fermi-Dirac functions:

fv(ℏω) =
1

1 + exp([Ev(ℏω)− Efp]/kbT )

fc(ℏω) =
1

1 + exp([Ec(ℏω)− Efn]/kbT )

and xvc is a matrix element dependent on the crystal structure, Ev and Ec are the

valence and conduction band energy levels, ℏ is Plank’s constant, kb is Boltzmann’s

constant, T is the temperature, ϵ0 is the permittivity of free space, c is the speed

of light, ω is the frequency, nindex is the index of refraction, and e is the elementary

charge. The Fermi Dirac functions represent the probability that a state at a certain

energy level will be occupied. In indirect bandgap materials, the absorption coefficient

during electron promotion is related by[18] :

α ∝ (ℏω − Ec − Ev + Ep)
2

exp(Ep/(kbT ))− 1
+

(ℏω − Ec − Ev − Ep)
2

1− exp(−Ep/(kbT ))
(2.2)

where Ep is the energy from the phonon assistance.

The photovoltaic effect can happen in any type of atom. However, it is most

useful when occurring in semiconductors. In insulators, most photons do not carry

the energy required to promote electrons across large band gaps. In conductors, the

conduction band and valence band overlap with each other causing free elections to

always be available. The movement of these electrons is (mostly) random, resulting

in (almost) no current flow. Semiconductors on the other hand do not have over-

lapping conduction and valence bands; yet, the bandgap involves reasonable photon

energies. Additionally, to further facilitate current flow, semiconductors take advan-

tage of diodes (p-n junctions) to force the flow of electrons in 1 direction.

These p-n junctions are composed of p-type and n-type semiconductors metal-

lurgically fused together. P-type semiconductors are doped with atoms with fewer

6



Table 2.1: Bandgaps of a Variety of Semiconductors at Room Temperature (300K)

Symbol Name Group Type Bandgap [eV] Reference
Si Silicon IV Indirect 1.14 [19]
Ge Germanium IV Direct 0.67 [19]
GaSb Gallium antimonide III-V Direct 1.43 [20]
InSb Indium antimonide III-V Direct 0.17 [20]
AlP Aluminium phosphide III-V Indirect 2.5 [19]
CdTe Cadmium telluride II-VI Direct 1.5 [21]
Cd3P2 Cadmium phosphide II-V Direct 0.55 [22]
β − CuGaO2 Copper Gallium Dioxide I-III-VI2 Direct 1.47 [23][24]

electrons in their valence shell than the valency properties of the intrinsic semicon-

ductor, resulting in a net positive charge. Common atoms for this doping are Boron,

Zinc, Cadmium, and Beryllium. N-type semiconductors are instead doped with atoms

with more electrons in their valence shell than the valency of the intrinsic semicon-

ductor, typically: Phosphorous, Arsenic, Antimony, and Selenium.

Figure 2.2: Zero Bias P-N Junction

Figure 2.2 shows a band diagram of a P-N junction under equilibrium, assum-

ing both the P and N doped semiconductors are non-degenerate. The difference in

conduction band energy levels creates a ”hill” for electrons in the n-region, except

instead of gravity creating the barrier it is created by an electric field. This electric

7



field is related to the charge density with Poisson’s equations:

∇ · E =
ρc
ϵrϵ0

(2.3)

which, can be simplified to fit a 1 dimensional model of a P-N junction:

dE

dx
=

ρc
ϵrϵ0

(2.4)

where ρc is the density of carriers, and ϵr is the relative permittivity. The size of

this ”hill” is quantized in the form of an unbiased or built-in voltage, related to the

number of charge carriers:

Vbuilt in =
kbT

e
ln(

NAND

n2
i

) (2.5)

where NA and ND are the number of acceptor and donor carriers and ni is the number

of intrinsic carriers. There is an equivalent barrier or ”hill” to holes in the p-region

since they have negative effective mass. This electric field causes carriers to Drift in

accordance with Ohm’s law, Jdrift = eρcµe,hE , where µe,h is the mobility of electrons

and holes respectively. The mobility of electrons due to this effect is referred to as

the drift current Jdrift. The number of carriers can be determined in a P-N junction

at equilibrium with [16]:

ND = n = ni exp(
Ef − Ei

kbT
) (2.6)

and for acceptors:

NA = p = ni exp(
Ei − Ef

kbT
) (2.7)

Therefore, it is obvious that the p-region is going to have more holes than the n-

8



region, and reciprocally the n-region is going to have more electrons than the p-region.

This causes diffusion of carriers in accordance with Fick’s law, Jdiffusion = −eDe,h
dρc
dx

.

These movements of carriers cause a significant unbalanced dopant site charge near

the metallurgical junction. This region around the junction where there is a non-zero

charge is referred to as the depletion region, as a reference to the apparent depletion

of charge carriers. The relationship of diffusion and drift current can be related to

the ambipolar transport equation [16]. For p-type semiconductors:

De
∂2(∂n)

∂x2
+ µnE

∂(∂n)

∂x
+ g′ − ∂n

te0
=
∂(∂n)

dt
(2.8)

where (∂n) is the excess minority carrier, electron concentration and te0 is the minority

carrier lifetime under low injection. g′ is the generation of new carriers, this will be

visited later.

Equivalently for n-type semiconductors:

Dh
∂2(∂p)

∂x2
+ µpE

∂(∂p)

∂x
+ g′ − ∂p

th0
=
∂(∂p)

dt
(2.9)

where (∂n) is the excess minority carrier, hole concentration, and th0 is the minority

carrier lifetime under low injection. De,h represents the diffusion coefficient for elec-

trons and holes.

However, it is advantageous to change the size of the hill for photovoltaic purposes.

Here a forward bias is applied to the P-N junction to reduce the size of the ”hill”.

This causes an increase in the supply of majority carriers, resulting in an increase in

the diffusion current. The drift current remains the same as the supply of minority

carriers is constant with the applied bias. It is worth noting that the number of

carriers with sufficient energy to overcome the ”hill” increases exponentially with the

applied bias VA[16].

9



Figure 2.3: Carrier Concentration in a Forward Biased P-N Junction

Under bias, the P-N junction is no longer under equilibrium conditions. However,

the electric field outside of the depletion region is assumed to be zero E ≈ 0, in so-

called quasi-neutral regions. The carrier concentrations in these regions can be found

with:

n = ni exp(
Efn − Ei

kbT
) (2.10)

p = ni exp(
Ei − Efp

kbT
) (2.11)

Then the current flow from electron and hole carrier gradients in each quasi-neutral

region can be found with[25]:

Jh(x) = −eDh
d∆p

dx
=
eDh

Lh

∆p exp(−x/Lh) (2.12)

Je(x) = −eDe
d∆n

dx
=
eDe

Le

∆n exp(−x/Le) (2.13)

where Le,h is the minority carrier diffusion length for electrons and holes respectively.

10



These properties are related to the relaxation time τe,h with the following relation:

Le,h =
√
De,hτe,h (2.14)

The current flow in each quasi-neutral region can be used as boundary conditions

to solve the dark current of the diode with no carrier generation[16]:

−→
J dark =

−→
J Diffusion +

−→
J drift (2.15)

−→
J dark = J0(exp(

eV

kbT
− 1)) (2.16)

where:

J0 ≈ JDiffusion = e((
N2

i

NA

√
De

τe
) + (

N2
i

ND

√
Dh

τh
)) (2.17)

Whenever a semiconductor is in non-thermal equilibrium, recombination and gen-

eration processes aim to bring balance to the energy carriers in the device. These

effects include band-to-band recombination and generation, R-G center recombina-

tion and generation, auger recombination, and generation via impact ionization [25].

The focus of this study is not on optimizing these generation processes, therefore

100% internal quantum efficiency will be assumed to determine the current genera-

tion from incident photons, Jph. This means every photon is assumed to generate 1

electron-hole pair in the depletion region of the P-N junction. The current flow from

incident photons is determined with:

−→
J ph =

∫ ∞

ωg

e

hω
q”(ω)dω (2.18)

The total current flow is the combination of photocurrent and dark current.
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−→
J (V ) =

−→
J ph +

−→
J dark(V ) (2.19)

Figure 2.4: J-V Characteristics of a Diode

Figure 2.4 shows the current density and voltage characteristics of a diode in at

equilibrium and a diode being illuminated. Here Jsc is equivalent to Jph since the

photocurrent is the only mechanism contributing to non-equilibrium in our model.

Voc is the voltage of the diode with no current flow[26]:

Voc =
kbT

e
ln(Jph/Js + 1) (2.20)

where Js = J0 is assumed. The power, P =
−→
J · V , of the PV cell depends on the

operating voltage. The maximum power that a PV cell is capable of generating can

be determined with the illuminated diode curve as seen in Figure 2.4. The maximum

power generated is[26]:

PE = JphVoc[1−
1

ln(Jph/Js)
][1− ln(ln(Jph/Js))

ln(Jph/Js)
] (2.21)
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2.1.2 Emitters

Instead of the incident photons on a photovoltaic cell coming directly from the

sun or another light source as seen with solar photovoltaics, thermophotovoltaics pair

low bandgap photovoltaic cells with emitters. These emitters absorb heat and re-emit

the energy as photons at desirable frequencies onto the cell. The source of heat can

come from a myriad of sources, such as waste heat from power plants, radioactive

isotopes[27], sun [28], and waste heat from spacecraft [29]. This flexibility combined

with the absence of moving parts is the primary advantage of TPV systems [30].

Generally, the optical performance of an emitter is determined by the ability to

selectively radiate energy in a specific wavelength region. This wavelength region

is usually at energies just above the bandgap of the PV cell, as energies below the

bandgap have a low probability of creating electron-hole pairs, and energies much

larger than the bandgap have energy lost to thermalization. Due to the large op-

erating temperatures of TPV systems, emitters must also exhibit long-term high-

temperature stability. There are a plethora of emitter materials and structures to try

to optimize these metrics for different system implementations [31].

Tungsten, W, has been extensively identified as a suitable material for TPV appli-

cations[32, 33, 34], this is due Tungsten’s chemical stability and high melting temper-

ature of around 3600K [35]. The desirable thermal properties of Tungsten have been

combined with different structures such as thin multilayer films[36], photonic crys-

tals[36] and diffraction gratings [33]. These structures work to enhance the optical

properties with sub-wavelength geometric features. The baseline optical properties

of Tungsten are presented by Palik [37]. The primary type of emitters explored in

this document are 1-dimensional gratings made of Tungsten deposited on a Tungsten

substrate.
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2.2 Diffraction Gratings

One-dimensional gratings have the advantage of being relatively easier to manu-

facture than some of the more complicated proposed structures for selective emitters.

Their simplicity also comes with the advantage of being able to be represented with

few parameters. Figure 2.5 shows how a periodic grating can be represented with as

few as 3 parameters, Λ, w, d.

Figure 2.5: Periodic Binary Grating

These gratings fundamentally work based on the Huygen-Fresnel principle, which

states that every point on a wavefront is itself the source of spherical wavelets, and

the secondary wavelets emanating from different points mutually interfere with each

other. These micro/nano structures also take advantage of several optical phenomena

(e.g. surface plasmon polaritons (SPPs), microcavity resonance, magnetic polaritons

(MPs) and inter-resonance interactions) to exhibit their selective emitter character-

istics.
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2.3 Rigorous coupled-wave analysis

Due to the complex non-homogeneous nature of Maxwell’s equations in 1D grat-

ing, several different computational methods have been utilized to handle computing

the optical properties: Finite Difference Time Domain (FDTD) [38], effective medium

theory [39] and rigorous coupled-wave analysis (RCWA) [40, 41]. All of these methods

have various advantages and disadvantages for their utility on calculating the optical

properties of sub-wavelength structures. However, analysis in frequency domain with

rigorous coupled-wave analysis calculates the optical properties of 1-dimensional pe-

riodic structures much faster by taking advantage of Floquet’s theorem.

Floquet’s theorem generally states that if there is a system of linear differential

equations:

dx(t)

dt
= A(t)x(t) (2.22)

and A(t) is a real, non singular, periodic n× n matrix such that:

A(t+ T ) = A(t)

where t, T are arbitrary parameters the function is periodic in (time, space, etc).

This system must have the fundamental matrix solution P , of the form:

P (t+ T ) = P (t)P−1(0)P (T ) (2.23)

The monodromy matrix P−1(0)P (T ), can be equated to a possibly complex matrix

B:

exp(TB) = P−1(0)P (T ) (2.24)
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Then the fundamental matrix solution can be expressed in the form of:

P = S(t)exp(TB) (2.25)

Felix Bloch applied this theorem to the wave function in solid-state physics. The

wave function ψ can be expressed as a plane wave modulated by a periodic function:

ψ(r) = exp(ik · r)u(r) (2.26)

where k is the wave vector, r is a position vector, and i is
√
(−1). This can be

utilized in a perfect crystal where u(r) has the same periodicity as the structure of

the crystal or in the case of a one-dimensional periodic grating, the period of the

grating Λ, as defined in Figure 2.5. This property serves as the basis for solving

Maxwell’s equations with RCWA in the Transverse Electric (TE) and the Transverse

Magnetic (TM) cases.

Figure 2.6: TE wave on 1D periodic grating
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2.3.1 Transverse Electric

Suppose there is a transverse electric (TE) plane wave incident on a 1D grating at

an incident angle θ as seen in Figure 2.6, the dielectric function can be split into

three different regions. Region I is free space and has a uniform dielectric function

of ϵr = 1. Region II has a periodic piece-wise dielectric function of a 1-dimensional

position vector x.

ϵ(x) =


ϵr = ϵm when x ∈ 0 · hΛ ≤ x ≤ hΛ + fΛ

ϵr = ϵ0 when x /∈ ·hΛ ≤ x ≤ hΛ + fΛ

(2.27)

where [h] = [0, 1, 2, . . . ,∞] and ϵm is the dielectric function of the material. E and H

are the normalized incidence electric field and magnetic field with unity magnitude,

respectively. This assumption of unitary magnitude means E can be expressed as

exp(ikxx+ ikzz − iωt) where kx and kx are the x and z components of wavevector k.

The magnitude of k in regions I and III ca be expressed as:

kI =
2π

λ
(2.28)

kIII =
2π

λ

√
ϵm (2.29)

Every kxj satisfies the aforementioned Floquet therom in region I such that:

kx,j =
2π

λ
sinθ +

2π

Λ
j (2.30)

Factoring out the wave vector, k, from this equation results in the grating diffraction

equation:

sinθj = sinθ +
jλ

Λ
(2.31)
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where θj = sin−1 kxj
k

is the jth order diffraction angle. If sinθj > 1, the result is

an evanescent wave, as opposed to a propagating wave, whose field strength decays

exponentially with the z direction. Propagating and evanescent diffraction orders

must be included in the formulations of RCWA to maintain the continuity of the

boundary conditions.

The z components of k are [42]:

krzj =


√
k2 − k2xj, k2 > k2xj

i
√
k2xj − k2, k2xj > k2

(2.32)

where kr denotes a reflected wave vector. The electric field in region I is a linear

combination of the reflected and incident waves:

EI(x, z) = exp(ikxx+ ikzz) +
∑
j

E r
j exp(ikxjx− ikrzjz) (2.33)

where E r denotes the reflected electric field strength. Then the electric field in region

III is the linear combination of transmitted waves.

EIII(x, z) =
∑
j

E t
j exp(ikxjx+ iktzjz) (2.34)

The electric field in Region II can be expressed as:

EII(x, z) =
∑
j

χyj(z)exp(ikxjx)ŷ (2.35)

Here χyj is the jth order space-harmonic electric field magnitude in region II.

χyj matches the jth diffraction order previously discussed in regions I and III. The

electric field in Equation 2.33, Equation 2.48, and Equation 2.35 can be substituted

into Maxwell’s equations. RCWA’s main objective is to arrange Maxwell’s equations
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into a summation of phasors of the form exp(ikxjx), and then set each coefficient

to zero for every j. The result of this substitution is an infinite set of second-order

coupled equations while each space-harmonic term is coupled with other components

through the multiplication of two Fourier series. Ideally, the order of this summation

would be∞. However, this is truncated to make the solution computationally feasible.

The permittivity in Region II will have discontinuities, as it is a piece-wise function

based on the periodicity,Λ, of the grating. To overcome these discontinuities the

permittivity can be expanded as a Fourier series:

ϵ(x) =
∑
P

ϵordP exp (i
2Pπ

Λ
), P = 0, 1, 2, 3, ... (2.36)

where ϵordP the Pth Fourier coefficient for the ordinary of ϵ(x):

ϵordP = fϵm + (1− f)ϵ0 when P = 0

or

ϵordP =
(ϵm − ϵ0) sin(Pfπ)

Pπ
when P ̸= 0

ϵordP does not have physical meaning and instead is just a mathematical tool. With

this, the coupled-wave equations with Maxwell’s equations can be rearranged as the

following: ∑
j

(
∂2χyj

∂z2
− k2xjχyj +

∑
P

ϵj,pχy,p) exp(ikxj, x) = 0 (2.37)

A sufficient number of space harmonic orders should be used depending on the desired

accuracy and be in agreement with the number of diffraction orders. The agreement

in the number of orders allows these equations to be expressed in matrix form:

1

k2
∂2Xy

∂z2
= [KXKX −E][XY ] (2.38)
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whereXY is the column vectors formed by χyj. K
X is a diagonal matrix with elements

KX
l,l =

kxj
k

where j = l− oh−1. oh given Norders = 2oh+1. E is the matrix generated

by the Fourier coefficients of the dielectric function such that El,m = ϵordP where the

index follows as P = l −m. The size of all of these matrices is Norders ×Norders. χy,j

can be expressed with the eigenvectors and eigenvalues of the above matrices.

χy,j(z) =
N∑
l=1

V A
j,l [C

A+
l exp(kξl(z − d))k + CA−

l exp(−kξlz)] (2.39)

V A
j,l are the elements of the matrix V A which is composed of the eigenvector corre-

sponding to the eigenvalue for the matrix [KXKX −E]. The C’s are the unknown

coefficients of exponential terms that represent the forward and backward coupled

diffracted waves in Region II, using +, - to denote them respectively. Q is the matrix

of positive square roots of the eigenvalues of [KXKX−E]. ξl represents the diagonal

values of Q.

Region II can have its magnetic field written in the form of:

HII(x, z) = i
k

µ0ω

∑
j

[γx,j(z)x̂+ γz,j(z)ẑ exp (ikxjx)] (2.40)

where γxj and γzj are the x and z component of the jth order space-harmonic of the

electric field in Region II. Expanded this is the following:

γxj(z) =
N∑
l=1

WA
j,l[C

A+
l exp(kξl(z − d))k + CA−

l exp(−kξlz)] (2.41)

where WA
j,l = QV A

jl . The diffraction efficiencies of the grating can be found by solving

for CA+
l , CA−

l ,Erj,Etj for each diffraction order, for a total of 4·N unknowns. Using the

continuity boundary conditions between each region, the diffraction efficiency for the

jth order reflected wave and transmitted wave can be obtained by its time-averaged
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Poynting vector[42]:

DEr
j = E r

j E r∗
j Re

krzj
k cos θ

(2.42)

DEt
j = E t

j E
t∗
j Re

krzj
k cos θ

(2.43)

It should be noted that since the beam output plane is different from the plane of

incidence, in general, the polarization status of the diffracted waves will be different

from the incident wave. The directional-hemispherical reflectance and transmittance

can be obtained by:

R =
∑

DEr
j (2.44)

Tm =
∑

DEt
j (2.45)

For all of the gratings considered in this study, the substrate is assumed to be opaque,

so the emittance is:

ϵ(θ, ϕ, λ) = 1−R(θ, ϕ, λ) (2.46)

2.3.2 Transverse Magnetic

Figure 2.7 shows a transverse magnetic (TM) wave incident on a 1D grating. Here

the oscillation direction of the magnetic and electric fields is switched from the TE

case. Typically the TM polarization case of gratings tends to exhibit more dramatic

optical properties than the TE case.

The magnetic field in region I is:

HI(x, z) = exp(ikxx+ ikzz) +
∑
j

H r
j exp(ikxjx− ikrzjz) (2.47)

where H r denotes the reflected magnetic field strength. Then the magnetic field in
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Figure 2.7: TM wave on 1D periodic grating

region III is the linear combination of transmitted waves.

HIII(x, z) =
∑
j

H t
j exp(ikxjx+ iktzjz) (2.48)

where H t
j is the jth order transmitted field strength. The magnetic field in Region

II can be expressed as:

HII(x, z) =
∑
j

γyj(z)exp(ikxjx)ŷ (2.49)

Due to the rules of Fourier Coefficients, the dielectric functions’ discontinuities are

expressed with the inverse of the dielectric function:

ϵinv(x) =
1

ϵ(x)
=

∑
p

ϵinvP exp (i
2Pπ

Λ
x) (2.50)

where ϵinvP pth Fourier coefficient for the inverse of ϵ(x). Similar to the previous TE,
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solving Maxwell’s equations using the previous equation results in:

∑
j

(
∑
P

ϵinvj,P

∂2γyP
∂z2

−
∑
P

kxj(ϵ
ord)−1

jP kxPγyP + k2γyj) exp(ikxjx) = 0 (2.51)

These equations can be solved in a similar matrix form. Again, the diffraction effi-

ciencies are the time-averaged Poynting vectors[42]:

DEr
j = E r

j E r∗
j Re

krzj
k cos θ

(2.52)

DEt
j = E t

j E
t∗
j Re

ϵ0k
r
zj

ϵmk cos θ
(2.53)

Again, the directional-hemispherical reflectance and transmittance can be obtained

by:

R =
∑

DEr
j (2.54)

Tm =
∑

DEt
j (2.55)

2.3.3 Conical Diffraction

A unique scenario occurs when the polarization of the incident wave does not line

up with the orientation of the grating (ie. the azimuthal angle, ϕ ̸= 0, π/2). A plane

of incidence can be established, defined by the vector [cosϕ, sinϕ, 0] for these cases.

The majority of the diffracted waves (j ̸=0) do not lie in the plane of incidence,

instead, they form a cone centered around the grating grooves. It is convenient to

establish polarization in these cases with an angle Ψ, which is the angle between

the electric field vector and the plane of incidence. This angle translates to the

previously discussed TE wave when Ψ = 90o or a TM wave when Ψ = 0o. All other

linear polarizations can be decomposed into these two polarizations.
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Solving Maxwell’s equations in the conical case is extremely similar to the TE and

TM cases, except the electric field has x,y, and z components. The electric field in

region I is:

EI(x, y, z) = exp(ikxx+ ikyy + ikzz) +
∑
j

E r
j exp(ikxjx+ ikyy − ikrzjz) (2.56)

Subsequently the electric field in region III is:

EIII(x, y, z) =
∑
j

E t
j exp(ikxjx+ ikyy + iktzjz) (2.57)

Again, the electric field in region II can be expressed as a Fourier series:

EII(x, y, z) =
∑
j

[χxj(z)x̂+ χyj(z)ŷ + χzj(z)ẑ]exp(ikxjx+ (ikyjy)) (2.58)

as can the magnetic field:

HII(x, y, z) = i

√
ϵ0
µ0

∑
j

[γxj(z)x̂+ γyj(z)ŷ + γzj(z)ẑ]exp(ikxjx+ (ikyjy)) (2.59)

In the previous section, obtaining the diffraction efficiencies required 4 · N un-

knowns to be solved for. In the conical case, 10 ·N coefficients need to be solved for.

This significantly increases the computational time required to obtain the diffraction

efficiencies. This leads to the hemispherical optical properties of gratings being quite

computationally expensive to determine with RCWA.
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2.4 Basic Fundamentals of Neural Networks

The atomic unit of neural networks is the neuron, named after their original bio-

logical inspiration. Essentially these neurons take in input data, perform calculations

on that data and then output the result. Neural networks are a series of neurons

connected in various patterns to emulate a desired data manipulation operation, this

can be as simple as emulating an analytical function or a more complex application

of recognizing handwriting. Typically these neurons are organized in layers, an input

layer to receive the data, hidden layers to manipulate the data, and an output layer

to pass the result.

The neurons in each layer base their value on the previous neurons. How much

each neuron influences the current neuron is represented in a collection of weights w.

Then all of the inputs to the neuron are summed together and combined with a bias

b. Then an activation function is applied to determine the value of the neuron. The

weights and biases are determined using training data. For example, given a set of

input and output data, each training iteration will try to manipulate the weights and

biases to minimize the difference between the ground truth and the output neuron

values. The numerical evaluation of the difference is done with what is referred to as

a loss function. The loss function is determined based on what type of error should be

punished more. For example, mean squared error punishes large mistakes more than

small ones. The neural net is trained from the output layer backwards to the input

layer through a process called backpropagation. Each layer has the derivative of the

cost expressed as a product of derivatives between each layer. A manipulation of the

weights provides a simple modification of these partial products. Thus the weights

are manipulated to reduce the backwards propagating error (backpropagation). The

activation functions make training easier by introducing non-linearity into the possi-

ble values of a neuron. These activation functions must be monotonic, differentiable,
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and quickly converging for backpropagation to work.

Figure 2.8: Single layer Perceptron
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CHAPTER 3

INVERSE DESIGN AND OPTIMIZATION METHODS

Gratings are incredibly simple and complex at the same time. Every TPV sys-

tem has different requirements and optimal optical characteristics for its employed

emitter. This is an inverse problem, the optical properties are the starting point

and the parameters are to be calculated. These optimal properties might not even

be possible/feasible, instead, the best grating to emulate these properties is desired.

Therefore, the introduction of a function F (s) where s = [Λ, f, d] that can quanti-

tatively assess the utility of a grating is required, is often referred to as an objective

function, loss function, or fitness function. In the case of gratings, the optical proper-

ties can be determined with the aforementioned (RCWA) calculations. Determining

the forward mapping s → F of this problem is relatively easy, however the inverse

F → s is often extremely difficult if not impossible, this is coupled with the fact

the most real-world loss functions are relativistic and intended to compare solutions

against one another. The inverse design problem is solved by optimizing F , this

chapter discusses the techniques and challenges associated with this optimization.

3.1 Emitter Optimization Techniques

There are two main classes of optimization, continuous and discrete. Continu-

ous optimization problems have an uncountable number of possible parameters, s.

Discrete problems have a finite number of possible parameters, s, for instance, the

number of ways to order a multi-layer emitter composed of a finite number of layers

[43]. Gratings on the other hand can theoretically have an infinite number of possible

parameters. In the real world, the parameters are bounded by the manufacturing
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resolution, meaning the units of the parameters are actually countable. Problems like

these are referred to as quasi-continuous. For the purposes of this study, the manu-

facturing tolerances of Tungsten gratings are assumed to be 10nm. For example, a

grating could have a period, Λ, of 1.47µm, but another grating with Λ = 1.473µm

would be rounded and considered an equivalent to Λ = 1.47µm.

A local minimum can be defined as F (s∗) ≥ F (s) for all s with in any non

zero difference, ∆ > 0, of s∗. A local maximum can be defined as F (s∗) ≤ F (s) for

all s with in any non zero difference, ∆ > 0, of s∗. In terms of optimization, these

problems are equivalent. Maximization problems can be transformed into minimiza-

tion problems by simply reflecting the loss function about the x-axis. The same can

be done to transform minimization problems into maximization problems. The opti-

mization problems presented in this study will be framed as minimization problems.

Oftentimes, local minimization utilizes convex optimization techniques to find

minima. Typically these are based on the assumption that the function is differen-

tiable. First-order algorithms involve the gradient of the function, usually estimated

by sampling, to determine which direction to move in the next algorithm iteration.

These algorithms often converge on local minima or oscillate indefinitely depending

on the shape of the objective function and the starting conditions. Famous algorithm

examples of these include stochastic gradient descent, and adam [44]. There are also

second-order algorithms based on the hessian, to determine the movement direction;

examples include Newton’s method and secant method.

The above algorithms excel at finding local minima, for a relatively cheap compu-

tational cost. However, when optimizing emitters the loss function is almost always

multimodal, and a local minimum may be much greater than the global minimum. A

global minimum can be defined as a point s∗ such that F (s∗) < F (s) for all possible

s. Therefore, an algorithm that can identify global optima is desired. Some tech-
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niques for this include deterministic pattern search algorithms. One of the simplest

methods is a parameter sweep, this has been used to design the geometry of a grat-

ing[6] and the operating conditions of the TPV system [45]. These methods try to

map out the entire operating space of feasible solutions through essentially a guided

pattern search. These algorithms typically search a problem space in a systematic

fashion. Even with the simple nature of gratings, there can be millions of possibilities

in relatively small design spaces, making complete pattern search algorithms infea-

sible and partial searches resulting in information holes. This prompts the use of

heuristic methods to find approximate solutions when classical methods fail to find

any exact solution. Heuristic methods are often stochastic in nature, meaning how

well the algorithm performs on a given problem can change based on how ”lucky”

the algorithm got. Most heuristic methods also do not rely on the objective function

to be differentiable, allowing them to be applied to a wide range of applications and

problems.

3.1.1 Metaheuristics

Several common Metaheuristic methods and algorithms have been applied to TPV

optimization. Nguyen et. al. applied a genetic algorithm (GA) to optimize 1D Tung-

sten gratings [7]. Genetic Algorithms have also been used to optimize the thickness

and doping characteristics of the photovoltaic cell [46]. Particle swarm optimization

(PSO) is another widely implemented algorithm for emitter design optimization [47].

All of these algorithms are examples of metaheuristics, a higher-level procedure that

combines simple heuristics to create a search algorithm. Other well-known examples

of metaheuristics include: differential evolution, simulated annealing, ant colony opti-

mization, firefly optimization, and scatter search. Fundamentally all these algorithms

can be expressed as a collection of low-level heuristics.
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Consider all possible candidate solutions to a problem,S. Although, a little ab-

stracted, this can be mathematically defined as:

S = {s ∈ RD : (∃L,U ∈ RD[L ≤ s ≤ U ])} (3.1)

where L and U are the lower and upper bounds of the problem in real space and

D is the dimensionality of the solutions. Simple Heuristics (SH) are the simplest

unit of search algorithms. There are two classes of simple heuristics: constructive

and perturbative. Constructive SH aim to generate new candidate solutions while

perturbative change existing solutions into ideally a better one[48]. A constructive

SH can be represented as

h(S)→ s(t) (3.2)

where t is the algorithm iteration. A perturbative SH can be represented as:

s(t)→ h(s(t),S)→ s(t+ 1) (3.3)

These simple heuristics can be combined together to form a Metaheuristics (MH).

A Metaheuristics can be defined as an iterative procedure, composed of a finite se-

quence of simple heuristics, that renders an optimal solution s∗ for a given optimi-

sation problem[48]. Figure 3.1 shows the structure of how simple heuristics can be

combined into a Metaheuristic (MH). ho is referred to as the initializer, often times

this is a constructive heuristic that generates candidate solutions randomly or accord-

ing to some pattern. Common patterns used are the vertexes of the solution space S

or diamond patterns around the centroid of S. hf , referred to as the finalizer, eval-

uates the quality of a solution base on the current value of F (s(t)) and information

about the previous values of F i.e. ( F (s(t − i))) where i ∈ N. The finalizer deter-

mines if subsequent iterations are needed. If this is determined the current position,
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Figure 3.1: Architecture of a Metaheuristic

s(t), is used in place of the initializer in subsequent iterations. An example algorithm

of how all these pieces fit together is given in Algorithm 1.

Algorithm 1 Sample Optimization Algorithm composed of Simple Heuristics

n← population index
Npop ← population size
t← current iteration
p ∈ P A parameter in a collection of parameters governing the simple heuristics
∀ n sn = U(S) Generates random candidate solutions uniformly across S

while t ≤ tf do
sn(t+ 1)← h1(sn(t),p)
...
sn(t+ 1)← hj(sn(t),p)
if F (sn(t)) < sn(t+ 1) then

sn(t+ 1) = sn(t)
end if

3.2 Creating Metaheuristic Optimization Algorithms with Hyper-heuristics

Typically when new optimization algorithms are created, the status quo has been

for the architect to take inspiration from naturally occurring phenomena, as an anal-
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ogy for a data manipulation process. Basically, any animal has an associated op-

timization algorithm, a suggested exercise to prove this would be to think of any

animal, add optimization after it, and search for publications. However, oftentimes,

the utility of these optimization algorithms leads much to be desired. According

to the ”no-free lunch” theorem, any given metaheuristic optimization algorithm has

equivalent performance compared to any other algorithm averaged over all possible

problems. In other words, an algorithm’s utility is dependent on the problem, and

the problem should be considered when creating a new optimization algorithm.

Using the building block model of a metaheuristic optimization algorithm, as seen

in Figure 3.1, new algorithms can be algorithmically constructed. This is extremely

similar to the optimization problem previously discussed. The possible solutions are

the different ways to order simple heuristics to make an algorithm of a given cardi-

nality. Then a cost function is used to evaluate the performance of the algorithm,

typically a statistic capturing the average function value of the original problem given

a number of iterations. A discrete heuristic optimization algorithm can be used to

search over the algorithm possibilities. This procedure of using heuristics to select

heuristics is commonly referred to as a Hyper-heuristic.

3.2.1 Ideal Emittance Spectrum Problem

Consider a TPV system composed of a Tungsten grating, and a In0.18Ga0.82Sb cell

with a band gap of 0.56eV. The grating period that is going to be appropriate in

exciting SPP with positive and negative diffraction orders is [7]:

Λ >
jλ

nindex

, j > 0 (3.4)

|j|λ
2nindex

< Λ <
|j|λ
nindex

, j < 0 (3.5)
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The cavity resonance effects from the interference of the diffracted waves have a

corresponding wavelength given by [49]:

λm,n =
2√

(l/w)2 + (m/d)2
(3.6)

where w is the grating with such that w = Λ·f , and d is the depth. l and m determine

the contributions of the width and depth to this frequency. Wood’s anomaly causes

abrupt changes in the optical properties of the grating and can be predicted with [50]:

(
λj

Λ
)2 = 2

λ

Λ
j sin θ − cos2 θ (3.7)

It is ideal that the dominant frequency of grating is just above the bandgap of the

PV cell. If it too close to the bandgap significant energy can be lost, therefore the

previous equations can be used to generate a design space of the possible grating

parameters.

S(Λ, f, d) =


Λ 0.3µm ≤ Λ ≤ 2.0µm

f 0.1 ≤ f ≤ 0.9

d 0.3µm ≤ d ≤ 2.0µm

(3.8)

An idealized normal emittance was used to evaluate the gratings, that is an emit-

tance of 1 above the bandgap and an emittance of zero below the bandgap.

TEid =


1 600nm ≤ λ ≤ 2200nm

0 2200nm ≤ λ ≤ 4000nm

(3.9)

TMid =


1 600nm ≤ λ ≤ 2200nm

0 2200nm ≤ λ ≤ 4000nm

(3.10)
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The optical properties are determined with RCWA, using 100 evenly spaced data

points from 0.6µm to 2.2µm. This translates to 47 data points below the bandgap

and 53 data points above the bandgap. Again, 40 positive and negative diffraction

orders were also used. The difference between the actual emittance and idealized can

be quantified with a discretized least squares summation:

min
Λ,f,d

F (s) = w1

j∑
1

1

j
(TEact − TEid)

2 + w2

k∑
1

1

k
(TEact − TEid)

2

+w1

j∑
1

1

j
(TMact − TMid)

2 + w2

k∑
1

1

k
(TMact − TMid)

2

Subject To: 0.3µm ≤ Λ ≤ 2.0µm

0.1 ≤ f ≤ 0.9

0.3µm ≤ d ≤ 2.0µm

w1 = 0.5

w2 = 0.5

j = 47

k = 53

(3.11)

where TEact and TMact is the emittance for a particular wavelength as determined

by RCWA for transverse electric and transverse magnetic polarizations.

3.2.2 Hyper-heuristic Methodology

A Hyper-heuristic (HH) algorithm was applied to the problem outlined insubsection 3.2.1,

with the goal of creating a more efficient optimization algorithm for similar problems

than common existing methods seen in the literature. The cost function of an algo-
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rithm was designed to be:

75%tile of
100⋃
1

F (s∗)|t = 10 (3.12)

This equation represents the function value the algorithm should achieve or beat 75%

of the time given 10 iterations based on 100 sample runs. Then a discrete simulated

annealing algorithm was applied to globally search over the possible algorithms. Pos-

sible algorithms being those composed of less than 2 simple heuristics and having a

population size of 8.

A python software package called CUSTOMHys [48] was used to for the Hyper-

heuristic implementation and provided a data set of simple heuristics extracted from

common optimization algorithms. Figure 3.2 shows the structure of our initial Hyper-

heuristic applied to the problem outlined in subsection 3.2.1. One thing to notice

about the procedure is the extensive use RCWA, to evaluate 1 Algorithm with the

Hyper-heuristic framework would require 1.6 million individual RCWA calculations

of the spectral emittance. This is essentially impossible with the computational

resources available to most. Therefore, a computationally quicker replacement for

RCWA is required to facilitate the Hyper-heuristic.

Figure 3.2: Initial Hyper-heuristic Structure

3.2.3 RCWA Surrogate

It can be famously shown that neural networks can emulate any function to

an arbitrary accuracy given enough training data, allowing them to be used as a
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”surrogate” for physics-based simulations and calculations. Recurrent neural net-

works(RNN) models have the outputs of neurons and cycle back to feed into the

inputs. RNNs are commonly used for physics simulations [51], as these models try

to show how a system evolves over time. An extremely popular type of RNN, Long

Short-Term Memory (LSTM) networks have been extensively applied to sequence pre-

diction and modeling [52]. However, in the case of an RCWA surrogate, the various

data points have no temporal relationship so these more complex model architectures

are not needed. Another widely popular neural net feature is convolutions (CNN),

similar to RNNs, but RNNs have infinite impulse response while CNNs have a finite

response. CNNs are typically used with data that has a spatial relationship. Again,

this is not applicable to creating a RCWA surrogate and instead, a fully connected

neural net (FCNN) model was used, as seen in Figure 3.3.

This FCNN has 9 input neurons representing the geometry of a grating, angle of

incidence, azimuthal angle of incidence, polarization, wavelength, and the complex

and real parts of the dielectric function of Tungsten at that wavelength. In this model,

every single neuron affects every neuron in the next layer. The 9 input neurons are

connected to 3 hidden layers of size 512, 1024, and 1024 in order of their propaga-

tion. The sizes of these layers were determined with a highly advanced optimization

algorithm called ”Graduate Student Search”, in which a graduate student tried out

different model parameters to identify what worked the best.

Each neuron in the hidden layers used a Leaky Rectified Linear Unit (LReLU)

activation function. LReLU, as seen in Figure 3.4c, provides quick training conver-

gence and non-linearity, albeit slightly slower than Rectified Linear Unit (ReLU),

Figure 3.4b. However, LReLU does not have the problem of ”dead ReLU”. This is

where the input values into the activation function are always < 0, and the partial

derivatives for the backpropagation algorithm are always zero. Dead Relu is mostly a
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Figure 3.3: RCWA Surrogate Model Architecture

concern with image pixel data, and can actually be advantageous in certain scenarios

as it introduces ”optimal brain damage” to regularize and simplify the model.

The output neuron used a Sigmoid activation function, as seen in Figure 3.4a.

Sigmoid is a traditional ”old school” activation function that has been phased out

in favor of functions with faster convergence. Sigmoid squishes the input data into

values between 0 and 1, making it uniquely applicable for representing the emittance

property. Since Sigmoid is just used for a single neuron is going to have a negligible

effect on training speed. Sigmoid also does not require consideration for dead neu-

rons like ReLU as some slope is present for all function values. This ensures that the
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(a) Sigmoid (b) ReLU (c) LReLU

Figure 3.4: Activation Functions

neuron can still learn from near-zero activation function value cases.

The data set for the FCNN model was built in a pseudo-active manner. Tungsten

gratings were optimized according to the problem in subsection 3.2.1, and the RCWA

calculations were then saved in the database. The database served 2 purposes, future

calculations can query the database to prevent duplication, and training data, which

is biased toward the desired application of the FCNN model, is generated. Training

was done using MSELoss:

MSE Loss(x, y) = (x− y)2 (3.13)

where x is the ground truth and y is the model’s guess. This punishes the model for

making big mistakes. L1Loss was used as a visualization tool for testing purposes, as

it can be quit hard to decipher the meaning of MSEloss numbers. L1loss is simply:

L1Loss(x, y) = |x− y| (3.14)

where x is the ground truth and y is the model’s guess. Testing was done on a

data set of approximately 20% of the size of the training data set. The training

set was also supplanted with emittance values of completely unique gratings. This
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was done to ensure that the model was actually learning RCWA calculations and not

simply interpolating between data points, and to evaluate its effectiveness at handling

gratings it has zero training data on.

Table 3.1: FCNN Model Accuracy

# of Training Points [106] Test Avg MSE Loss Test Avg L1 Loss Epochs Batch Size

0.16 0.001517 0.038951 50 1024

0.32 0.000878 0.029631 50 1024

0.48 0.000504 0.022449 50 1024

0.64 0.000344 0.018547 50 1024

0.80 0.000252 0.015874 50 1024

0.96 0.000193 0.013892 50 1024

1.12 0.000152 0.012328 50 2048

1.28 0.000128 0.011313 50 2048

1.6 0.0000498 0.007056 500 2048

The accuracy results for different training conditions are outlined in Table 3.1, to

show the relationship between the amount of training data and the accuracy of the

FCNN model. The models were trained with the Adam optimizer algorithm for the

backpropagation over a variety of epochs and batch sizes. The models were trained

on a RTX 3070 graphical processing unit (GPU), with 5888 CUDA cores, this allowed

most of the models to be trained in a couple of hours, obviously depending on the

amount of training data and number of epochs. Unsurprisingly, the model’s accuracy

increases with more data. However, it is quite interesting how accurate the model

is with a relatively low amount of data. An average L1loss of < 0.02 was able to

be achieved with just 640,000 data points. The model trained with 1.6 million data

points over 500 epochs achieved an average test MSEloss of 0.007. An example of

this FCNN model’s output compared with the native RCWA calculations is depicted

in Figure 3.5. The model struggles with detecting the smaller features of an emit-
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tance spectrum. Despite this the data definitively shows that FCNN can be used as

RCWA surrogates. The final model, (last row in Table 3.1) was determined to be of

acceptable quality for use in the Hyper-heuristic creation of new optimization algo-

rithms. Passing data through the model was done on the same graphical processing

unit (GPU) used for training. 100 native RCWA calculations took about 2 seconds

on an i7 6700 CPU with 4 cores, while 100 surrogate RCWA calculations takes about

0.002 seconds with the FCNN model.

Figure 3.5: RCWA Surrogate Performance

3.3 Hyper-heuristic Results

The Hyper-heuristic framework described in subsection 3.2.2 and depicted in Fig-

ure 3.2 was performed with the FCNN model, as seen in the last row of Table 3.1, in

place of the native RCWA calculations. After about 500 iterations of the simulated

annealing Hyper-heuristic algorithm a new algorithm was generated composed of the
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following simple heuristics[53]:

h1 : sn(t+ 1) = s∗(t)− r⃗RD(θ)(s(t)− s∗(t)) (3.15)

where RD(θ) is the rotation matrix determined by the product of all the combinations

of two-dimensional rotation matrices by utilizing Euler-Rodrigues’s rotation formula,

s∗(t) is the best solution of the population, r⃗ is a uniformly distributed random vector

r⃗ = ri ∼ U(r0 − σ, r0 + σ) and ro = 0.9, σ = 0.1, θ = 22.5o. This is referred to as a

spiral dynamic heuristic. This was linearly followed by a differential mutation simple

heuristic:

h2 : sn(t+ 1) = sz1(t) + F · (s∗(t)− sz2(t)) + F ·
M∑

m=1

(sz2m+1(t)− sz2m+2(t)) (3.16)

where F = 1 is the ”strength” of the mutation, M = 1 is the number of Mutations,

and zi ∼ U(1, N) is a random member of the population of solutions. This heuristic

essentially randomly mutates a random agent toward the best solution.

These heuristics were paired with a uniform random initializer to generate the

first population of solutions. Due to the nature of the cost function evaluating the

utility of the algorithms, the combination of these heuristics balance exploitation and

exploration. The Spiral dynamic heuristic mostly serves to explore new solutions,

while differential mutation is more exploitative. The combination of both however

is where the strength of this algorithm comes from. The objective function values

from 100 optimization runs using this algorithm, with a population size of 8, were

collected to serve as an indication of this algorithm’s performance. Figure 3.6 shows

the interquartile range of this data.
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Figure 3.6: Custom Algorithm Interquartile Range

3.4 Metaheuristic performance comparison

The algorithm created in section 3.3 was compared to several well know meta-

heuristics algorithms with non-optimized parameters: simple uniform random search

(RS), single point crossover genetic algorithm (GA), inertial particle swarm optimiza-

tion (PSO), firefly optimization (FA), and differential evolution (DE). These were

selected based on what is commonly used in the literature for optimizing gratings,

with the addition of random search. All of these methods were implemented with a

population size of N = 8.
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3.4.1 Uniform Random Search

Random search serves as the ultimate baseline for an evaluation of heuristics, it

represents the values you would get just uniformly randomly guessing solutions. The

heuristic that represents this mathematically is:

h1 : sn(t+ 1) = U(S) (3.17)

where S is all possible solutions. The objective function values from 100 optimiza-

tion runs were collected to serve as an indication of this algorithm’s performance.

Figure 3.7 shows the interquartile range of this data.

Figure 3.7: Random Search Interquartile Range
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3.4.2 Genetic Algorithm

Genetic Algorithms have been employed to simulate natural selection and mating

criteria. The idea of simulating learning with evolutionary processes was first pro-

posed by Alan Turing. Essentially, given a population of candidate solutions, the

solutions are first randomly mutated. Typically a parameter (Λ, f, d) is randomly

selected and changed by a random value. Then the strongest solutions of the popu-

lation have their attributes crossed over with one another.

Genetic algorithms are attractive because of their ability to generate extremely

unique high-fitness solutions, that combine traits in constructive ways not able to

be easily seen by humans. There are some considerable drawbacks to genetic algo-

rithms, they often require a large number of function evaluations, and the number

of function evaluations required increases exponentially with the dimensionality of

the problem. This is not a problem with 1-dimensional grating, but more complex

three-dimensional structures would have significant difficulties.

The specific Genetic Algorithm used in this comparison can be represented with

the following heuristics[53]:

h1 : sn(t+ 1) = (1− m⃗)⊙ sn(t) + αm⃗⊙ sq∀n ∈ [p2N, ..., N ] (3.18)

where where α = 1 is the scale of the mutation,p2 = 0.125 is the portion of the

population protected from mutation,⊙is the Hadamard-Schur product, m⃗ = H(ri −

p1), H is the component-wise Heaviside function,p1 = 0.25 is the mutation percent. sq

is the uniform random variable: sq = U(−1, 1), and ri is a uniform random variable:

ri = U(0, 1). This is a mutation heuristic, which is then followed by a single point
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cross over heuristic[48]:

h2 : sn(t+ 1) = (1− m⃗)⊙ u⃗+m⊙ v⃗ (3.19)

where m⃗ = H(i − z),i = (1, 2, ..., D)T ),D = 3 is the dimension of the problem,

z = U(1, D), u⃗ and v⃗ are the parents selected from a mating pool of size p3N ,

p3 = 1/3 being the proportion of the population selected for mating. The objective

function values from 50 optimization runs were collected to serve as an indication of

this algorithm’s performance. Figure 3.8 shows the interquartile range of this data.

Figure 3.8: Genetic Algorithm Interquartile Range
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3.4.3 Differential Evolution

Differential Evolution algorithms are extremely similar to Genetic Algorithms. The

key difference is genetic algorithms were primarily conceived to operate on data rep-

resented as bitstrings, while Differential Evolution was designed to operate on real-

valued numbers. However as seen in subsection 3.4.2, Genetic Algorithms can be

modified to operate on real-valued numbers. The differential evolution algorithm

explored in this study can be represented by the following heuristics[53]:

h1 : sn(t+ 1) = sn(t) + F · (s∗(t)− sz1(t)) + F ·
M∑

m=1

(sz2m(t)− sz2m+1(t)) (3.20)

where F = 1 is the ”strength” of the mutation, M = 2 is the number of Mutations,

and zi ∼ U(1, N) is a random member of the population of solutions. This is followed

by a cross over heuristic:

h2 : sn(t+ 1) = sn(i)(t)← sk(i)(t), sk(i)(t)← sn(i)(t) (3.21)

where sk is a random member of the population, and i is a randomly selected pa-

rameter of a solution. The objective function values from 50 optimization runs were

collected to serve as an indication of this algorithm’s performance. Figure 3.9 shows

the interquartile range of this data.
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Figure 3.9: Differential Evolution Interquartile Range

3.4.4 Particle Swarm Optimization

Particle Swarm optimization (PSO) was originally intended to model avian social

behavior [54], but was then re-adapted for optimization purposes. The particles use

the information found by other particles to determine their velocity. The inertial

particle swarm characteristic used in this study can be represented with the following

heuristic:

h1 : sn(t+ 1) = sn(t) + v⃗n(t+ 1) (3.22)

where

v⃗n(t+ 1) = ωPSOv⃗n(t) + ϕPSO1r⃗1 · (sn,∗(t)− sn(t)) + ϕPSO2r⃗2(s∗(t)− sn(t)) (3.23)
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and sn,∗ is the best position that particle has found, ωPSO = 1, ϕPSO1 is the strength

of the particle’s independent behavior, ϕPSO2 is the strength of the particle’s swarm

behavior and r⃗1, r⃗2 = U(0, 1). The objective function values from 50 optimization

runs were collected to serve as an indication of this algorithm’s performance. Fig-

ure 3.8 shows the interquartile range of this data.

Figure 3.10: Particle Swarm Optimization Interquartile Range

The reason for the large interquartile range is due to premature convergence and

a lack of exploration by the algorithm. This is due to the small population size of 8

and the parameters chosen. These parameters could be optimized through a similar

process to the Hyper-heuristic search, called meta-optimization. This would almost

certainly yield more efficient results than what is presented here. However, the focus

of this study was Hyper-heuristic optimization, and controlling for the population

allowed easy comparison between algorithms.
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3.4.5 Firefly Optimization

The Firefly Algorithm FA is incredibly similar to particle swarm optimization, and

critics have said the differences are negligible. The nature-inspired analogy fueling

this algorithm is that a swarm of fireflies transmit information about the solution

they have found in the form of light intensity, which dictates how the fireflies make

their movements. The light intensity decays exponentially so fireflies farther away

from light are less affected. This can be specifically represented with the following

heuristic[55]:

h1 : sn(t+ 1) = sn(t) + αr⃗ + β
N∑

k=1,≠=n

H(−∆In,k)∆sn,k exp−γ|sn,k|2 (3.24)

where

∆In.k = F (sk(t))− F (sn(t)) (3.25)

and

∆sn.k = sk(t)− sn(t) (3.26)

α = 1 ,β = 1,γ = 100, and r⃗ = U(−0.5, 0.5). If instead γ = 0, the algorithm

would almost exactly match a standard particle swarm optimization algorithm. The

objective function values from 50 optimization runs were collected to serve as an

indication of Firefly Optimization’s performance. Figure 3.11 shows the interquartile

range of this data.
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Figure 3.11: Firefly Optimization Interquartile Range

3.4.6 Overall Comparison

Overall the custom algorithm had much greater consistency, and convergence

speed than all the other algorithms it was compared to. Figure 3.12 shows the 75th

percentile of the optimization runs performed with each algorithm. Figure 3.12 shows

the custom algorithm finds a better solution than every other algorithm 75% of the

time. Figure 3.6 shows the extreme consistency in the new algorithm as well, there is

a lower interquartile range at almost all iterations than the other algorithms. As dis-

cussed before, each of the comparison algorithms can have their defining parameters

changed to improve their performance. The hyper-heuristic optimization essentially

already tried different parameters of the comparison algorithms, and still found the

new algorithm to be the best. Therefore, if each of the comparison algorithms were

meta-optimized the result would probably be the same, albeit with the new algorithm

having a less dramatic advantage.
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Figure 3.12: Metaheuristic Comparison
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CHAPTER 4

OPTIMIZATION OF EMITTERS BASED ON MAXIMUM POWER

AND EFFICIENCY

Often times when an emitter is optimized according to an ideal emittance spec-

trum problem, similar to subsection 3.2.1, it is serving as a proxy or for an actual

desired system property. This is done because it is required that the problem be

simplified because of the large computational time of calculating the actual system

property. This chapter will shift focus away from these simplified problems and uti-

lize the optimization algorithm generated in Chapter 3, to optimize the efficiency and

power of a TPV system.

4.1 Efficiency and Power Model of a TPV System

Efficiency is particularly important for TPV systems. Solar photovoltaics typically

have incident power on the order of ∼1kW, while TPV systems can have incident

power on the order of ∼100kW. This means every photon that is not converted

to electrical power results in excess heat raising the temperature of the cell. The

efficiency of photovoltaic cells decreases as the temperature increase [56], and the

components making solar cells can be damaged. For instance, the melting point of

InSb is around 800K [57]. This requires extensive cooling infrastructure for these

systems, and every increase in efficiency significantly reduces the amount of heat that

needs to be removed.

Consider a TPV system composed of a Tungsten grating and a In0.18Ga0.82Sb

with a band gap of 0.56eV, the same system considered in subsection 3.2.1. This

system can be modeled as as two infinite parallel plates. It is also assumed that
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Figure 4.1: TPV System

the thermal radiation between the plates is far-field, meaning no evanescent waves

contribute to the energy flux between the two plates. The flux for s polarized waves

is[1]:

q” =
1

2π3c20

∫ ∞

0

∫ π/2

0

∫ π/2

0

[Θ(ω, T2)]−Θ(ω, T1)]

· [ 1

1/ϵsω,θ,ϕ,1 + 1/ϵsω,θ,ϕ,2 − 1
]ω2cosθsinθdθdϕdω

(4.1)

and for p-polarized waves it is:

q” =
1

2π3c20

∫ ∞

0

∫ π/2

0

∫ π/2

0

[Θ(ω, T2)]−Θ(ω, T1)]

[
1

1/ϵpω,θ,ϕ,1 + 1/ϵpω,θ,ϕ,2 − 1
]ω2 cos θ sin θdθdϕdω

(4.2)

where the mean energy of Planck’s oscillator, Θ(ω, T ), is defined as [1]:

Θ(ω, T ) =
ℏω

exp(ℏω/kBT )− 1
+

ℏω
2

(4.3)

1 and 2 are subscripts that denote the property for the emitter and the cell respectively

such that T is the temperature, ϵ is the dielectric function[37], θ is the angle of
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incidence from the normal direction, ϕ is the azimuthal angle, and ω is the frequency.

Integrating over all possible frequencies is not feasible therefore a characteristic subset

is used. This facilitates the introduction of ωmax and ωmin, which are the limits

of the frequencies. For this particular model, limits of 0.4µm and 10µm with 200

logarithmically spaced frequencies were used with trapezoidal numerical integration.

Similarly, the values were calculated every 5o for the zenith and azimuthal angle

for their trapezoidal numerical integration. This changes the flux equations to the

following for s-polarized waves:

q” =
1

2π3c20

∫ ωmax

ωmin

∫ π/2

0

∫ π/2

0

[Θ(ω, T2)]−Θ(ω, T1)]

[
1

1/ϵsω,θ,ϕ,1 + 1/ϵsω,θ,ϕ,2 − 1
]ω2cosθsinθdθdϕdω

(4.4)

and for p-polarized waves it is:

q” =
1

2π3c20

∫ ωmax

ωmin

∫ π/2

0

∫ π/2

0

[Θ(ω, T2)]−Θ(ω, T1)]

[
1

1/ϵpω,θ,ϕ,1 + 1/ϵpω,θ,ϕ,2 − 1
]ω2 cos θ sin θdθdϕdω

(4.5)

The emittance values for the grating are obtained with RCWA by summing up the

diffraction efficiency for 40 diffraction orders:

ϵ = 1−
40∑
0

DEr
j (4.6)

It is worth noting again that RCWA calculations for azimuthal angles not equal to

zero take significantly longer to calculate, due to conical diffraction effects. The

emittance of the PV cell, In0.18Ga0.82Sb, was calculated with the Fresnel reflection

coefficients [2]:

rs =
n1cosθi − n2cosθt
n1cosθi + n2cosθt

(4.7)
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rp =
n1cosθt − n2cosθi
n1cosθt + n2cosθi

(4.8)

these equations can be manipulated to the following by solving for cosθt:

rs =
n1cosθi − n2

√
1− (n1

n2
sinθi)2

n1cosθi + n2

√
1− (n1

n2
sinθi)2

(4.9)

rp =
n1

√
1− (n1

n2
sinθi)2 − n2cosθi

n1

√
1− (n1

n2
sinθi)2 + n2cosθi

(4.10)

where n1 is the refractive index of the incident medium (vacuum), n2 is the refractive

index of the PV cell and θi is the zenith incident angle.

Once the radiative flux on the cell was determined, the current from photons was

determined:

Jph =

∫ ∞

ωg

e

hω
q”(ω)dω (4.11)

where ωg is the frequency associated with the band gap of the cell. This equation

essentially assumes 100% internal quantum efficiency, that is every photon generates

exactly one electron-hole pair. Then the diffusion current is assumed to be:

J0 ≈ JDiffusion = e(
N2

i

NA

√
De

τe
+ (

N2
i

ND

√
Dh

τh
) (4.12)

which was calculated with the properties seen in Table 4.1. Then the Diffusion Cur-

rent is used to find the dark current:

Jdark = J0[exp(
eV

kbT
)− 1] (4.13)

.

Again, the power depends on the operating voltage. The maximum power gener-
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Table 4.1: In0.18Ga0.82Sb Cell Properties

Property Value Unit
NA 1019 cm−3

ND 1017 cm−3

Ni 1013 cm−3

De 125 cm2s−1

Dh 31.3 cm2s−1

τe 9.75 ns
τh 30.8 ns

ated is:

PE = JphVoc[1−
1

ln(Jph/Js)
][1− ln(ln(Jph/Js))

ln(Jph/Js)
] (4.14)

where

Voc =
kbT

e
ln(Jph/Js + 1) (4.15)

and Js = J0 is assumed. Then the efficiency, of the system is defined as:

η =
PE

q”
(4.16)

4.2 Optimizing Efficiency and Power

The above model allows for 2 new optimization problems, one for efficiency:

max
Λ,f,d

Feff(s) = η(s)

Subject To: 0.3µm ≤ Λ ≤ 2.0µm

0.1 ≤ f ≤ 0.9

0.3µm ≤ d ≤ 2.0µm

(4.17)
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and one for maximum power output:

max
Λ,f,d

Fpower(s) = PE(s)

Subject To: 0.3µm ≤ Λ ≤ 2.0µm

0.1 ≤ f ≤ 0.9

0.3µm ≤ d ≤ 2.0µm

(4.18)

Both of these problems were then optimized using the new algorithm created and de-

fined in subsection 3.2.2 and section 3.3. The optimization problem the algorithm was

originally designed for is different from and , so this served as a test of the algorithm’s

application to similar optimization problems. Each problem was optimized using a

population size of 8, for 100 iterations. This optimization procedure was performed 5

times, to see the variability in the convergence of the algorithm, as more optimization

runs were computationally infeasible.

4.2.1 Optimization Results

Table 4.2: Optimized Gratings for Different Objective Functions

Function F1(s) Fpower(s) Feff(s)
Λ[µm] 1.11 1.11 1.11
f 0.14 0.1 0.1
d[µm] 2 2 2
η 26.90 27.06 27.06
PE[kWm−2] 71.16 71.91 71.91
Emitter # 1 2 2

All three emitters optimized for different properties were extremely similar; in

fact, the optimization for power and efficiency actually converged on the same grat-

ing. This is surprising as it was expected that maximum power and efficiency would

be Pareto-optimal. Also, all of the emitters converged to the boundary of the search

space. This means that the original set of original possible solutions is not com-
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prehensive and expansion of this search space would almost certainly yield a better

emitter. However, the extremely similar nature between these two emitters shows

that non-conical diffraction and normal incidence optical properties serve as an ex-

cellent proxy or surrogate loss function for power and efficiency optimization. The

optimized emitters were given numbers to identify them. The emitter optimized for

the normal incident problem is designated as ”1” and the emitter optimized for power

and efficiency is designated as 2.

4.3 Optical Properties of the Emitters

The similarities of the emitters extends to their optical characteristics as well. The

hemispherical and normal emittance for each emitter is depicted in Figure 4.2 and

Figure 4.3. The TE and TM waves almost seem to mirror each other, for example

at short wavelengths (0.4 − 1.3µm) emitter 1 has higher TM emittance and lower

TE emittance than at longer wavelength just above the band gap, TE has a higher

emittance characterized by 2 distinct peaks. Similar behavior is observed in emitter 2

yet the large peaks seen just near the bandgap are red-shifted slightly. Both emitters

have a constant low emittance of about 0.1 at wavelengths longer than the bandgap,

albeit emitter 2 has a slightly lower emittance in this region. The hemispherical

emittance is of course not as dramatic and is essentially identical between emitters 1

and 2.

Full contour plots at 2µm were produced of each emitter to provide insight into

why F1(s) is a good surrogate for efficiency and power optimization. A wavelength of

2µm was chosen based on the geometric parameter values of the gratings. 2µm Both

emitters actually have their largest emittance values resulting from a zenith angle

of about 50o. This was true for most wavelengths and not just the shown values at

2µm. Both emitters also have a sort of ”dark zone” at higher zenith angles in between
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Figure 4.2: Emitter 1 Optical Properties

azimuthal angles of 30o and 60o. It is also interesting that both optimization results

are similar despite F1(s) having no optical information about the cell or operating

conditions of the TPV system, which shows that the normal spectral emittance is a

good starting point for TPV system optimization.
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Figure 4.3: Emitter 2 Optical Properties

Figure 4.4: Emitter 1 Emittance Contour at 2 µm
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Figure 4.5: Emitter 2 Emittance Contour at 2 µm
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CHAPTER 5

CONCLUSION

Thermophotovoltaics remains a promising technology with a growing range of ap-

plications and their utility will increase as more unique and efficient power systems are

needed. Binary gratings utilized as selective emitters are just one way the efficiency

of TPV systems can be improved. Selective emitters can be used in conjunction with

other efficiency improving technologies (e.g. multi-junction photovoltaic cells, anti-

reflection coatings, and back reflectors). This study primarily showed how to create

efficient optimizers for the design of binary gratings. Highly efficient optimization

algorithms for designing emitters are paramount for selective emitter utilization and

adoption. This will be particularly true when the geometric parameters of the emit-

ters are being optimized alongside system configurations. This study showed how

Hyper-heuristic techniques can be employed to facilitate the creation of these highly

efficient optimization algorithms. This creation of new algorithms was facilitated with

fully connected neural nets serving as RCWA surrogates for the calculation of optical

properties.

An investigation into the full efficiency and power output of a TPV system showed

that simplified surrogate objective functions based on normal spectral emittance prop-

erties are good baseline optimizers when compared to optimizing for efficiency and

power directly. System efficiency and power are several orders of magnitude more

computationally expensive than the normal spectral emittance, increasing the speed

at which an ideal binary grating can be found. Better-designed surrogate objective

functions could serve as even better initial optimization problems. For instance, a

surrogate function involving a normal incidence spectrum where the wavelengths are
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weighted based on their difference from the bandgap could serve to better mimic the

thermalization processes captured with efficiency calculations. These optimization

techniques could also be explored for TPV systems taking advantage of evanescent

waves and photon tunneling effects, a phenomena that has been shown to significantly

increase the efficiency of TPV systems. Fabrication is the major barrier for further

development and utilization of these near-field thermophotovoltaics.

There still remain key challenges and problems that need to be addressed be-

fore the widespread adoption of thermophotovoltaics. TPV application has been

mostly relegated to low-power systems due to their efficiency and high fabrication

cost. Nano-materials particularly one-dimensional gratings, serve as a tool to in-

crease the efficiency of these systems and will pave the way for more high-powered

macroscale TPV applications. Yet the fabrication of these materials is a roadblock

to their adoption. This is where the simplicity of one-dimensional binary gratings

becomes useful compared to other sub-wavelength structures.
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