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Regenerative life support systems (RLSS) introduce novel challenges for the develop-
ment of automation systems given the emerging behaviors that result from incremental
system closure. Switching control paradigms offer the ability to manage such uncertainty
by allowing flexibility into the control path, enabling for autonomy modes that depend on
the situation of the system. Previous research proposed a granular approach that combines
sensor information to define operation conditions and act upon them. It makes use of fuzzy
associative memories (FAM) to define the pairs (Situation, Controller) that assign control
actions to each situation. The FAM are composed granules that represent situations in
which the autonomous system may operate. One of the challenges of this approach is the
combinatorial explosion that arises for large numbers of sensors. Human-system interac-
tion offers a solution to this problem and, for such purpose, this paper elaborates on the
aggregation of human-expert data to obtain the granular structure of the FAM. The aggre-
gation process consists of an optimization process based on particle swarms. The result is
a three dimensional array with parameters that define n-dimensional non-interactive gran-
ules. Two alternatives are presented in this paper: (1) a four-dimensional optimization
algorithm to obtain normal fuzzy sets, and (2) a five-dimensional alternative that results
in subnormal fuzzy sets. The results were obtained with simulations of an aquatic habitat
that serves as a small-scale model of a RLSS. The discussion elaborates on which of the two
alternatives may be better suited for applications in situation assessment and automation.

I. Introduction

One of the challenges of long-duration spaceflight is the capability of habitation systems to regenerate
life support consumables, such as oxygen and water.1 Regenerative life support systems (LSS) offer various
options to recycle metabolic byproducts, such as urine, and to achieve an incremental closure of gaseous
and liquid material cycles. Such material closure increases the autonomy of space habitats and helps reduce
the frequency of resupply missions and their overall cost. An example of current regenerative LSS is the
Water Recovery System (WRS) commissioned in the U.S. segment of the International Space Station (ISS),
which recycles waste liquids back into potable (drinking) water. But as researchers continue efforts to
integrate regenerative technologies and to achieve incremental system closure, new challenges arise from their
operation. The closure of material cycles not only makes possible the interconnection of complex material
networks, but also opens the possibility for unexpected events and emergent dynamic behaviors. Such
behaviors are not susceptible to prediction and are discovered as anomalies during operation.2 For closed-
loop LSS, emergent behaviors may manifest by unexpected physico-chemical reactions and accumulation of
undesired chemical compounds. Such is the case of the 2010 WRS anomaly caused by the accumulation
of dimethylsilanediol (DMSD).3 In addition, regenerative processes require energy and time to transform
wastes and byproducts into consumables. Consequently, their monitoring and operation impose considerable
workload on human operators. All these challenges, in addition to their slow dynamic response, create
vulnerabilities that, if unattended, may translate into human errors, performance deterioration, and failures.

∗Doctoral student, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250,
Fulbright S&T Fellow, and AIAA Member. E-mail: drayer@ieee.org
†Associate Professor, School of Electrical and Computer Engineering, Chair of the Robotics Ph.D. Program, Georgia Institute

of Technology, Atlanta, GA 30332-0250, USA. E-mail: ayanna.howard@ece.gatech.edu

1 of 8

American Institute of Aeronautics and Astronautics



The invention of methods to measure environmental variables by means of microsystems or optical devices
tends to reduce the unit cost of novel sensor technology and opens opportunities for engineers to integrate
evermore complex systems. Such innovations allow individual human operators to perform more complex
tasks and to support their effort through automation. This paper proposes a multi-sensor fusion method that
elaborates on a granular approach to these challenges.4 It makes use of sensor data and expert assessments
to generate a granular perception function in support of situation awareness. The method employs an agent
architecture based on FAM4 in an effort to allow for situation observability, i.e. the capability of non-expert
human operators to probe for information about the situation of the system. However, the abundance of
sensor information may result in a combinatorial explosion unsuited for the manual design of monitoring and
automation systems; the difficulty of manually defining fuzzy sets for each individual condition makes such
technique impractical. Therefore, the main contribution of this paper proposes to exploit the interaction of
human experts with the system to collect situation-rich data useful to represent their situation knowledge
base (SKB). The SKB is then used in the perception function of the FAM-based agents to generate the
switching signals that combine control laws into its integrated control signal. Switching signals contain
information about the situation of the system that may also be used in user-interfaces for human-automation
coordination. This general contribution is composed of four more specific ones that include the following
steps: (1) data collection, (2) aggregation algorithm, and (3) coherence operation. In particular, the method
proposed in this paper makes use of particle swarm optimization5 (PSO) to compress sensor data and a
set of human-expert situation assessments into a granular representation of their SKB. In such a way, the
purpose of this work is to make use of computational intelligence tools, consistent with control theory and
principles in cognitive engineering, to contribute to the methodological development of situation-oriented
and user-centered design approaches.6

A. Background

Multi-sensor data fusion consists of combining observations and measurements from a number of different
sensors to provide a complete description of a system and its environment.7 The main multi-sensor fusion
methods are probabilistic in nature and derive from the application of tools in statistics, estimation, and
control theory. These are: (1) the Bayes’ rule, (2) probabilistic grids, (3) the Kalman filter, and (4) se-
quential Monte Carlo methods. However, shortcomings to probabilistic methods are found in their apparent
inability to address unknown situations, which grows in importance for anomaly detection and management
of emergent phenomena. There are four main limitations for probabilistic methods in multi-sensor data
fusion:7

1. Complexity : This limitation in found in the large number of probabilities required to correctly apply
probabilistic reasoning.

2. Inconsistency : It refers to the difficulty in obtaining consistent deductions about the state of a system
from sets of beliefs that are not necessarily consistent.

3. Precision of models: This refers to the difficulty to obtain system representations, primarily caused by
the inability to describe probabilities of quantities for which there is not enough available information.

4. Uncertainty about uncertainty : It is difficult to assign probabilities in the presence of unknown un-
knowns and uncertainty about sources of information.

Less traditional methods, such as interval calculus, fuzzy logic,8 and evidential reasoning,9–11 provide
alternative approaches that help overcome these limitations.7 Such approaches will support current research
efforts in managing large-scale/ubiquitous sensor systems and anomaly detection applications. This paper
represents a step toward a multi-sensor data fusion method for the development of monitoring and automation
systems for LSS that may especially address unknown situations.

B. Organization

The paper is divided in four additional Sections. Section II introduces the FAM-based agent architecture on
which the multi-sensor data fusion method proposed is developed. Section III presents the fusion method.
Section IV illustrates the method with an application to the model of a small-scale aquatic habitat and
discusses results. Finally, Section V provides concluding remarks.
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II. Granular Approach to the Automation and Assessment of LSS

The granular approach employed makes use of the FAM-based agent architecture.4 The architecture is
characterized by a (1) perception function, (2) a set of controllers, (3) and a correspondence function. The
latter associates controllers to each situation that is detected by the perception function and combines them
into a single integrated control signal. Each signal is intended to drive an actuator and, consequently, for
each actuator a FAM-based agent may be defined. The FAM-based agent architecture implements a switched
control paradigm12 that assigns a control action to modes of operation in which the system may perform, i.e.
in the form of (Situation, Controller). The switching nature of the agent introduces flexibility and modularity
to the system and enables its incremental development. The challenge in this case is to develop the FAM
with the intention to promote the coordination of multiple agents, including humans. Hence, the granular
approach used is conceived as a situation-oriented and user-centered methodology, as will be presented in
Section III. Figure 1 shows a diagram of a single FAM-based agent with a user interface manipulating a
single variable in a small-scale aquatic habitat. The diagram describes the components of the FAM-based
agent consistent with Subsections A, B, and C. Some advantages of this approach and running examples
have been shown in previous work.4

Figure 1. Diagram describing the FAM-based agent architecture and its components

A. Perception function and granular structure

Assuming the availability of n measurable variables xi for i = 1, 2, . . . , n from sensors and their universes
of discourse Xi so that xi ∈ Xi ⊆ <, the variables being non-redundant and non-interactive: Xi 6= Xj ;
j = 1, 2, . . . , n; i 6= j. Each universe Xi is partitioned in ki subsets, each of which is denoted as Xα

i ⊂ Xi,
α = 1, 2, . . . , ki. Continuous membership functions describe each one of the subsets as µXαi (xi), which are
normal and convex.13 Such partitions are coherent when complying with the Ruspini condition:14

ki∑
α=1

µXαi (xi) = 1 ∀i = 1, 2, . . . , n (1)

As a result, a number of l possible situations or operating conditions are defined as non-interactive
fuzzy sets Ãj , for j = 1, 2, . . . , l. The l situations are the Cartesian product of the combination of the
subsets Xα

i in Xi. The Cartesian product is implemented with the minimum operator as in Eq. 2, for
l =

∏n
i=1 = ki = k1 · k2 · · · · · kn.

Ãj (x1, . . . , xn) = min
i=1,...,n

α=1,2,...,ki

(
µXαi (xi)

)
(2)

The set Ã = {Ãj} represents the granular structure in which each granule Ãj describes a different
situation and a percept of the FAM-based agent.

B. Control signals

In the same fashion, the set of control signals U ={uj} are obtained from up to l different control laws.

Controllers generate signals uj that correspond to each condition Ãj . These signals may be treated modularly
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to form the set U = {u1, u2, . . . , ul}, with the maximum number of different control signals limited by l. The
control signals can be generated by model-based methods or techniques in soft-computing and computational
intelligence. The error modulation solution15 or a similar technique is required for controllers with integral
control action (poles in zero). Considerations on switched control12,16 should be included in this component
of the FAM-based agent and in the correspondence function Ω described in the next Subsection.

C. Correspondence function and integrated control signal

With the sets Ã and U defined, the Correspondence Function Ω can be expressed as a rule-base or in pairs
(Situation, Control Signal) as in Eq. 3.

Ω : Ã→ U

Ω = {Ωj} =
{(
Ãj (x1, . . . , xn) , uj(t)

)} (3)

The resulting FAM is defuzzified with the weighted average technique to obtain an integrated control
signal uI . This signal drives a single actuator in the system. Thus, each actuator and its controller in a
physical system may be conceived as an agent, constituting a FAM-based multi-agent system. The weights
used in Eq. 4 are the membership values of each corresponding situation, and the weighted arguments are
their corresponding control signals.

uI (x1, . . . , xn, t) =

l∑
i=1

µÃi (x1, . . . , xn) · ui(t)

l∑
i=1

µÃi (x1, . . . , xn)

(4)

III. Granular Multi-Sensor Data Fusion Method

An advantage of the FAM-based agent architecture is the possibility to combine a large number of sensors.
A disadvantage of this approach is the combinatorial explosion that makes intractable to manually define
membership functions µXαi (xi) for situations α detected by each sensor i = 1, 2, . . . , n. Therefore, this paper
makes use of human-system interaction and of tools in computational intelligence to overcome this challenge.
Figure 2 shows a diagram of the methodology proposed. The diagram describes the steps used, consistent
with Subsections A, B, C. Step D has been addressed in previous work4 and is not included in this paper.

Figure 2. Human-system interaction and granular multi-sensor fusion method

The method collects situation assessments from expert human operators, i.e. system snapshots, to obtain
situation-rich datasets that may be useful to generate a representation of the SKB of experts. Datasets
containing a number of N snapshots are aggregated (compressed) into a parametric representation. The
aggregation consists in a particle swarm optimization process that adapts π-membership functions to the
data contained in the dataset for each sensor and each situation. The result is a granular structure useful
for decision support tools and, when coherent, susceptible for adoption as the perception function of the
FAM-based agent architecture. The following Subsections describe each one of these steps.
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A. Data Collection

As Figure 2 shows, data collection consists of taking advantage of the interaction between expert human
operators and the system to obtain situation rich datasets. These datasets include measurements of the
operating condition of the system (internal state), its context (external state), and an identifier of the
expert. Datasets contain N snapshots of the system at times tj for j = 1, 2, . . . , N as shown in Figure 3.

Figure 3. Illustration of a data set resulting from the data collection process

The measurements from sensors xi are denoted as xij , for i = 1, 2, . . . , n. If a sensor measurement would
not be electronically available, these values may also be manually introduced by the expert through a user
interface. In addition to sensor measurements, the dataset includes assessments defining situation codes sγ ,
for γ = 1, 2, ..., G. These values are accompanied by the degree of confidence cj ∈ [0, 1]. If cj = 1, the expert
is fully confident that the system snapshot taken at tj belongs to situation sγ . The number G ≥ l depends
on the presence of levels of resolution in the situation assessments;17 i.e. a granule defined as “nominal”
may be subdivided in subgranules, such as “nominal-high” and “nominal-low.” This paper makes G = l, and
does not address hierarchical granular structures. Finally, the user code hj allows to identify the number of
human experts contributing to the dataset, enabling for crowd-sourcing techniques.18

B. Aggregation or data compression

The aggregation algorithm transforms (compresses) situation-rich datasets into granular structures described
by an array of parameters that define membership functions µXαi for each situation γ susceptible for detection
by sensors i. The following Subsections describe how situation knowledge is represented, how it is obtained
from datasets, and suggests an approach to achieve coherence.

1. Knowledge representation

Given the need to allow for flexible adaptation of a membership function µXαi to collections of snapshots
found in the datasets, the aggregation algorithm makes use of a piece-wise differentiable function defined by
four parameters and known as a π-membership function, defined in Table 1.

µXαi 0 2
(
xi−a
b−a

)2
1− 2

(
xi−b
b−a

)2
1 1− 2

(
xi−c
d−c

)2
2
(
xi−d
d−c

)2
0

Domain xi ≤ a a < xi ≤ a+b
2

a+b
2 < xi ≤ b b < xi ≤ c c < xi ≤ c+d

2
c+d
2 < xi ≤ d xi ≥ d

Table 1. Piece-wise definition of µXαi (xi; a, b, c, d)

The π-membership function is shown in Figure 4, with parameters P4 = [a, b, c, d] for normal or P5 =
[a, b, c, d, e] for subnormal fuzzy sets. Each membership function represents a single situation γ = 1, ..., G
for a single sensor xi. The PSO process obtains the four or five parameters in each case, as described in the
following Subsection.

2. Particle swarm optimization

A PSO5 is the process that transforms the datasets in a granular structure. For each situation γ and sensor i,

find P ∗ ∈ Xi such that the condition in Eq. 5 is found, where f(xi) =
∑(

µXαi (xij)− cj
)2

for j = 1, 2, . . . , N
and in each case subject to the initial constraints shown in Table 2.

P ∗4,5 = arg min
xi∈Xi

f(xi) = {x∗i ∈ Xi : f(x∗i ) ≤ f(xi)∀xi ∈ Xi} (5)
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Figure 4. Plot of π-Membership functions with parameters P4 and P5.

Constraints

1a: a ≤ b ≤ c ≤ d for P4,5, and 1b: 0 ≤ e ≤ 1 for P5

2: minxij − 0.25 |maxxij −minxij | ≤ a ≤ minxij

3: minxij ≤ b ≤ maxxij ; minxij ≤ c ≤ maxxij

4: maxxij ≤ d ≤ maxxij + 0.25 |maxxij −minxij |

Table 2. Initial constraints of the particle swarm optimization.

The swarm is subject to random variables ζ1 ∈ [0, 1] and ζ2 = 1− ζ1, to parameters W = 0.99, ϕ = 0.02,
and follows the steps enumerated in Table 3 with p representing an agent (particle) in the population.

Step Description

1. Randomly distribute particle swarm (or swarm of agents) in the search space.

2. Evaluate the performance of each particle according to f(xi).

3. If the current position is better than previous ones, then update with the best.

4. Determine the best particle so far according to their previous and present positions.

5. Update velocities with vt+1
p = W · vtp + ϕ

[
ζ1

(
xtlp − xtp

)
+ ζ2

(
xtg − xtp

)]
≤ |max xij−min xij |

100 .

6. Update positions of particles according to xt+1
p = xtp + vt+1

p .

7. Repeat from (2) until f(x∗i ) <
|max xij−min xij |

500 or iterations = 2000.

Table 3. Particle swarm optimization algorithm

The process results in a granular structure described as the array of dimensions G × n × 4 shown in
Figure 5. Although the PSO does not necessarily converges to the global optimum, irregularities introduced
by the data collection step make necessary to employ a coherence operation to obtain granular structures
that comply with the Ruspini condition in Eq. 1. The advantage of using PSO is the flexibility it provides
to vary the computer power invested in the aggregation process.

Figure 5. Three-dimensional array containing granular structure for (a) P4 and (b) P5.

C. Coherence operation

The coherence operation adjusts parameters P of each fuzzy set µXαi by determining their similarity or
proximity, and performing operations on P in each case. For example, the similarity between two fuzzy sets
with parameters P ′ and P ′′ can be determined by min (P ′′) < P̄ ′ < max (P ′′), where P̄ ′ is the average of the
parameters of P ′. Future research will elaborate on granular computing solutions to this operation. Section
IV presents results from a numerical example that support such effort.
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IV. Implementation in a Small-Scale Aquatic Habitat

A model of an aquatic habitat19 was used to perform simulations of anomalies that exhibit operation
condition transitions to enable data collection. It makes use of two sensors to allow visualization: dissolved
oxygen (DO) and pH. Possible levels of pH are high, good, or low levels, while DO levels can be good or low,
resulting in a combination of six possible situations. Expert human operators were modeled as a prototype
granular structure to collect data for confidence values greater than 0.1. They read a different situation
every 5 minutes throughout 21 days, allowing for each situation to be monitored every 30 minutes.

A. Results

Figure 6 shows six 3-D graphs comparing results obtained from human-expert data aggregation algorithm.
Each situation is represented by a different color according to the legend. All graphs are meant to be
compared with the prototype granular structure in the top left. Graph (A) (bottom left) provides a spatial
distribution of the confidence values cj . Graphs in the center column (B) are the result of the 4-D (top) and
5-D (bottom) aggregation variants. Outputs of step (B) are processed with a coherence operation based on
similarity and proximity, resulting in the Graphs (C) of the third column (right-hand side).

Figure 6. Comparison of the outputs of steps (A), (B), and (C) with prototype granular structure.

B. Discussion

From the granular structure obtained in (B) and (C), the four-dimensional algorithm with coherence oper-
ation (top-right) shows the best regularity in the distribution of granules and similarity to the prototype
granular structure. The regularity refers to the positions of the situations, e.g. their location by color and
lack of conflict with other situations (no intersections across). The greatest difference between these two is in
their coverage of pH and DO values, i.e. their borders: for the prototype, the borders are “open,” represent-
ing the SKB of the experts, while the other has “closed” borders. Because most points in the sensing space
will be dominated by a single control action, regularity and coherence are best for automation applications.
However, depending on the quality of the datasets, it may not be the best representation of the situation
assessments made by experts. A faithful representation of the confidence values recorded by human experts
could provide insights and useful information about unknown situations. Under such operation conditions,
decision support tools may employ signals from subnormal granules to alert non-expert users about the need
to call an expert to perform measurements and collect additional data points. Every time new data points
are collected, the aggregation algorithm needs to be run to obtain an updated granular structure.

The situation-rich signals generated by the FAM-based agent take values between 0 and 1, and can be used
as switching signals to activate or inhibit controllers driving each actuator in the system in each situation.4

These signals are also useful to develop decision support tools and ecological user interfaces.20 They are
indeed an approach to data abstraction that may find applications in mission control consoles, astronaut
decision aids, and anomaly detection. Future research aims to implement this approach in real-system
settings, and to answer questions related to the quality of datasets, the performance of the aggregation
algorithm, alternatives to the coherence operation, and techniques for the development of ecological user
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interfaces. Future theoretical advances will focus on how this approach may be further informed by tools
in fuzzy logic and evidential reasoning toward the assessment and management of known and unknown
situations in RLSS.

V. Conclusion

This paper elaborated on the aggregation of human-expert data to obtain a granular structure useful
for applications in automation and situation assessment of closed-loop LSS. As regenerative LSS grow in
complexity, so does the potential for emergent behaviors that result from incremental system closure. Switch-
ing control paradigms offer the ability to manage such uncertainty by adding flexibility and modularity to
the control path of automation systems, enabling autonomy modes that depend on the situation of the
system. This paper made use of the FAM-based agent architecture and focused on making use of human-
system interaction to avoid the combinatorial explosion that results from abundant sensor information. The
FAM are composed granules that represent situations in which the autonomous system may operate. The
human-expert data aggregation process consists of an optimization algorithm based on particle swarms. Two
alternatives were presented in this paper: (1) a four-dimensional PSO algorithm for π-membership functions
to obtain normal fuzzy sets, and (2) a five-dimensional one that results in subnormal fuzzy sets. Future
research will explore how these tools may be combined with principles in evidential reasoning to detect
anomalies in the operation of closed-loop LSS, and to allow for operational margin and timely intervention.
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