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SUMMARY

The current trend of ever larger clusters and data centers has coincided with a

dramatic increase in the cost and power of these installations. While many e�ciency im-

provements have focused on processor power and cooling costs, reducing the cost and power

consumption of high-performance memory has mostly been overlooked. This thesis pro-

poses a new address translation model called Dynamic Partitioned Global Address Space

(DPGAS) that extends the ideas of NUMA and software-based approaches to create a high-

performance hardware model that can be used to reduce the overall cost and power of

memory in larger server installations. A memory model and hardware implementation of

DPGAS is developed, and simulations of memory-intensive workloads are used to show

potential cost and power reductions when DPGAS is integrated into a server environment.
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CHAPTER I

INTRODUCTION

Current trends in today's multi-core processors and cluster-based computing have led to a

fundamental shift in how memory can be used and addressed. Improvements in networking

technologies have led to a situation where physical network latencies are dropping at a much

faster rate than DRAM access times. Additionally, the progression by AMD and Intel to in-

tegrate network interfaces closer to main memory and processor cache using HyperTransport

(HT) and the QuickPath Interconnect (QPI) has dramatically reduced the hardware cost for

remote memory accesses. Both of these advances enable the creation of global non-coherent

shared memory systems that have previously been commercially available and viable only in

high-end supercomputers. This thesis introduces a new type of non-coherent shared mem-

ory system called a Dynamic Partitioned Global Address Space (DPGAS), implements a

hardware component to support DPGAS, and evaluates how DPGAS can reduce memory

cost and power requirements for servers.

1.1 Overview of Trends

While this thesis focuses on an initial hardware implementation of DPGAS and its e�ects on

reducing memory cost and power in servers, another contribution of this work is to evaluate

the trends that motivate the use of DPGAS and that are important to consider for any kind

of memory and network integration. These important trends are outlined brie�y here and

are discussed in more detail in Chapter 2.

While network latencies have dropped, and network interfaces have been moved closer

to main memory and processors, multi-core-based systems have increased the pressure on

existing DRAM memory as the number of cores per chip grows. Recent projections [33]

indicate that memory pin bandwidth is likely to drop as more transistors are devoted to

increasing performance with more processor cores. Reduced memory pin bandwidth can

also be related to its e�ects on the trend of increasing virtualization of applications. As
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the number of cores per chip increases, processors can support an increased number of

instructions from concurrent virtual machines (VMs), but each of these virtual machines

will compete for a limited amount of memory bandwidth [57], causing memory pressure.

This memory pressure can lead to performance imbalances between how fast each multi-

core CPU can process data and how fast data can be transferred from o�-chip DRAM.

While many servers [29] can use software NUMA (Non-Uniform Memory Access) solutions

to share unused memory bandwidth with adjacent processors, the complexity and scalability

of NUMA-based solutions and the cost of server memory [26] often lead to the usage of

virtual memory swapped in from associated hard drives to compensate for a lack of memory

bandwidth.

In addition, the cost of high-performance DRAM for servers provides another incentive

to e�ciently share and utilize memory not only on each server rack but also between racks.

Studies have suggested that many servers under normal workloads use on average about 1

Gigabyte of installed DRAM but also that physical memory requirements can vary greatly

from that average amount [8]. While memory prices have dropped due to technology scaling,

more cores will lead to a need for either higher-density (and more expensive) DIMMs or

better memory sharing. The usage of a large non-coherent shared memory space would

require fewer and smaller DIMMs to handle the same workloads, reducing system cost and

Total Cost of Ownership overall due to reduced cooling requirements. This requirement for

an e�cient but dynamic shared memory mechanism lends itself to extensions of existing

partitioned global address space (PGAS) models.

Current PGAS implementations focus on software level abstractions to share memory

and are focused on data sharing for large message-passing based systems, such as those

traditionally served by parallel programming languages like MPI. X10 [9], UPC [14], and

Gasnet [5] are examples of existing PGAS environments that either operate at the software

level or require low level implementations that must be ported for di�erent hardware. These

PGAS languages o�er the ability for a programmer to de�ne variables that are either con-

sidered local or shared, meaning that the variable may be stored in remote memory and
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accessed by multiple nodes. However, these existing PGAS implementations are mainly fo-

cused on programmer productivity at a higher level rather than e�cient address translation

and address space mapping at a low-level. By extending the functionality of these existing

implementations to the hardware level, very fast and e�cient address translations could be

used to solve the previously discussed performance-related problems: 1) a future lack of

memory bandwidth to local DRAM and 2) the need for simple but e�cient mechanisms for

sharing memory beyond the boundary of a server blade to reduce overall need for more mem-

ory. The extensions to standard NUMA and PGAS environments that provide for e�cient

address space management form the basis for the DPGAS model, which is implemented and

evaluated in this thesis.

1.2 Outline

This thesis exploits the availability of low-latency memory controllers that are tightly inte-

grated with network interfaces (such as HyperTransport) to support a global, non-coherent

physical address space where an application's virtual address space can be dynamically al-

located physical memory located on local and remote nodes. Address space management is

tightly integrated into the network to minimize the overhead for remote memory accesses

and to allow for fast dynamic changes in address mappings. The feasibility of using this

address space management to reduce server cost and power is evaluated using memory traces

drawn from typical memory-intensive applications and a cost and power evaluation of four

di�erent server environments. This thesis will demonstrate that signi�cant cost and power

savings can be made by using DPGAS while also preserving the low-latency characteristics

of remote memory accesses.

This thesis presents the following speci�c concepts:

1. A physical address space model, Dynamic Partitioned Global Address Space (DPGAS),

for managing system-wide physical memory in large-scale server systems

2. Design, implementation, and evaluation of hardware support for the DPGAS model

via a memory-mapping unit that is integrated with a HyperTransport local interface

and tunnels memory requests via commodity interconnect�in this case Ethernet.

3



3. An evaluation of the usage of DPGAS with memory-intensive workloads to reduce

overall power and cost in several di�erent server environments

Chapter 2 investigates the trends that make DPGAS a viable choice for reducing cost and

power in servers, and Chapter 3 de�nes the architecture and memory models for a DPGAS

environment. Additionally, a hardware implementation of DPGAS, the HyperTransport over

Ethernet bridge, is described in addition to an OS-level memory allocation algorithm that

is used with the analytical evaluation of DPGAS in this thesis. Chapter 4 provides details

on the memory-intensive workloads and page table simulation that are used to evaluate the

cost and power savings of using DPGAS memory allocation, while Chapter 5 demonstrates

the cost and power reductions that DPGAS can provide for di�erent server environments

via analytical models. Chapter 6 evaluates related work in the areas of PGAS, and cost-

and power-e�cient designs for memory and servers.
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CHAPTER II

ENERGY CONSUMPTION AND COST TRENDS

2.1 Server Trends

Several fundamental trends are shaping the large-scale multi-core systems space, speci�cally

in the design of the memory subsystem. Memory latencies have remained relatively stable

while memory bandwidth is increased to mask the e�ects of the �memory wall� [7] [57] [47].

As shown in Figures 1 and 2, memory latencies (for a column read) across several DRAM

technologies remain constant while memory bandwidth has increased dramatically. With

the exception of FB-DIMM memory, most standard memory technologies are focused on

high-bandwidth memories and memory controllers (MCs) with large numbers of pins to

enable high-bandwidth transfers.

However, at the chip level, ITRS projections for device density and number of pins show

an increasing ratio of cores to pin bandwidth across successive technology generations for

future chip multiprocessors (CMPs) [33]. Coupled with the migration of memory controllers

on die, the available DRAM memory bandwidth per core on a single die will continue to

decrease.

Compensating for this drop in DRAM bandwidth via commensurate increases in depth

and size of on-chip cache hierarchies is not an option since increases in per-chip core count

will compete with SRAM caches for small increases in die area across technology generations.

Thus, in the absence of architectural or algorithmic innovations, performance scaling will be

stymied due to lack of memory bandwidth.

2.2 Application Memory Footprints and Virtualization

Concurrently, emergent applications and trends continue to increase memory pressure on

CMPs. Modern and future data-intensive applications from scienti�c, enterprise, and database

domains have produced applications with large, time-varying memory footprints and work-

ing sets as well as increased demands for memory bandwidth. For example, several of the
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SPEC2006 integer and �oating point benchmarks have memory footprints that exceed 1

GB and average 900 MB [24]. Furthermore, several of these benchmarks have memory de-

mands that vary quite a bit over time in terms of both the allocated memory and working

set size [20]. A 2007 study of server workloads across approximately 3,000 machines found

that about 50% of the applications have footprints that exceeded a gigabyte of memory [8].

Moreover, several studies of grid computing [39] and scienti�c computing [38] have con�rmed

the time-varying nature of application needs, meaning that application needs for memory

are likely to be either periodic or widely varying depending on whether jobs are batched (as

with supercomputers) or submitted on demand (as in cloud or grid computing).

Server consolidation via virtualization has increased by a multiplicative factor the mem-

ory demand of a single server. Thus, for future CMPs we see increasing demand for memory

bandwidth in the presence of decreasing availability of memory bandwidth leading to signif-

icant increase in memory pressure on a single node or server.

To better illustrate this point, we note that memory pressure occurs when applications

either are 1) consolidated onto fewer servers using virtualization or other techniques or 2)

have such large memory requirements (footprints) that the application cannot be contained

in physical memory.

While virtual memory and virtual machine allocation and migration are used to help

mask the lack of physical memory on a server, performance penalties may increase for a

particular application that has a large memory footprint for only a short portion of its

runtime. If memory could be easily shared across server boundaries for these bursts of

intense memory requirement, the entire system utilization could be improved while reducing

the need to overprovision less to meet worst-case demands.

2.3 Interconnect Trends

At a higher level, interconnects for connecting clusters have also experienced dramatic im-

provements in terms of latency and bandwidth. The link and switch cut-through latencies of

modern 10 Gigabit per second (Gbps) Ethernet and In�niband switches and links are com-

parable to modern DRAM access latencies, and are dropping faster than DRAM latencies.
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Figure 3 demonstrates the trends for MPI Ping-Pong header messages on various intercon-

nect switches for the last 10 years. The latency of a small MPI message has dropped from

milliseconds in the 1990s down to 1.2 microseconds today [44]. While In�niband, Myrinet,

and Quadrics all typically have lower latencies, it is useful to notice that 10 Gbps Ethernet

switches exist that have cut-through latencies of 200 ns for small messages at the hardware

layer. Compared to an average latency of 10-15 ns for a DRAM memory read or write

operation (excluding precharge and other setup) [45], interconnect latencies have dropped

dramatically and at the hardware level are rapidly approaching the latency of a standard

memory operation.

Current architectural trends also include the migration of functionality on chip including

memory controllers as well as high-speed interconnects such as AMD's HyperTransport

(HT) and Intel's QuickPath (QPI). AMD's HyperTransport interconnect provides for both

coherent as well as non-coherent links and shared memory operation based on a broadcast

protocol. Two and four socket HT-based single-server coherent shared memory systems have

been commonplace for quite some time. While a speci�cation for Intel's QuickPath has not

been released, several trade publications point to similar physical characteristics [34] [49].

The hardware distance from the wire to the memory controller through the local cross-bar

is very short, signi�cantly reducing remote access latencies for non-uniform access memory

(NUMA) models that extend across servers. However, HT and QPI are not switched inter-

connects. Therefore we either will need a customized inter-server interconnect (undesirable)

or should make use of commodity interconnects. The proliferation of 10 Gbps and 40 Gbps

technology and the expectations for 100 Gbps technologies motivate the use of Ethernet or

In�niband for remote accesses. Architecturally, cores now have access to memory controllers

beyond the local server and therefore increased memory bandwidth in a demand-driven fash-

ion. E�ectively, the high interconnect bandwidths (the HT speci�cation supports up to 40

Gbps in bidirectional bandwidth) are translated into memory bandwidth via access to re-

mote controllers. This is managed in a demand-driven fashion.

Thus, with hardware paths establishing the physical latency properties, we need abstrac-

tions that can be employed by operating systems, middleware, and compilers to manage this

8
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global, non-coherent shared memory system. These abstractions are described as part of

the DPGAS model in Chapter 3.

2.4 Cost and Power Trends

While the price of DRAM memory continually shifts due to the e�ects of Moore's Law,

the price of commodity DRAM still does not scale linearly with increasing DIMM density,

especially for higher-density memory chips. Several other studies [8] [37] have shown that

fully populating a server can result in a nonlinear scaling in cost for high-density DIMMs.

Figures 4(a) and 5(a) show memory cost trends for our low- and high-end servers that are

used to evaluate the e�ects of DPGAS. For the low-end server in Figure 4(a), memory cost

scales linearly due to the use of commodity-priced DIMMs. To fully populate this server

would cost about $2,600. However, for the high-end server in 5(a), the cost for the 8 GB

DIMMs grows at a rate that is at least two times the linear trend for smaller DIMMs. This

is due to the added complexity and density of these chips and to manufacturing scaling�

since 8 GB DIMMs are currently considered high-end, fewer companies have fully scaled out

their manufacturing process to make these DIMMs. The progression of Moore's Law and

manufacturing trends ensures that eventually these high-end DIMMs will be supplanted by

16 GB and 32 GB DIMMs, and the cost curve for 8 GB DIMMs will re�ect that of the current

smaller density chips. To fully populate this eight-core server with 512 GB of DRAM would

cost an astonishing $83,900, a large sum considering the server's base cost of about $48,000.

This �gure also shows that if we were able to reduce overall server memory requirements
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from 512 GB to 384 GB (a decrease of 25%) through e�cient memory usage, we would be

able to save about $21,000 per server in memory costs alone.

Further, the energy provisioning, consumption, and cooling costs of large-scale data

centers have become a major challenge. The memory system alone has been projected to

account for anywhere from 15-30% of these energy costs, which again are ampli�ed when

provisioning the memory/server for peak demand. Additionally, power consumption also

increases with larger-density memories, and can require just as much power as processors

in large con�gurations [37]. This has in part led to proposals such as the use of memory

servers [41] to provide a shared global pool of physical memory that can be used to smooth

out peak demands. For our two server con�gurations in Figures 4(b) and 5(b), we see

that larger-density DIMMs scale linearly in terms of power consumption, especially in the

high-end case. The usage of commodity parts in the low-end server leads to more uniform

requirements between di�erent DIMM sizes. This also reinforces the notion that memory

selection for high-end servers can often be a compromise between cost and power usage.
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Finally, the architecture of servers presents several practical constraints that interact

with and amplify the preceding trends. For example, the memory reach of a server is

currently limited to the on-server memory. While NUMA techniques can be used to share

memory, they do not o�er any additional controls over physical address space management.

Management of the physical address space can be useful for several reasons, which are

discussed more in Section 3.2.

Both of these trends, power and cost, point to a need for using lower-density and lower-

cost memory DIMMs even in large server con�gurations that may require higher perfor-

mance. Servers are often overprovisioned in terms of memory to keep from scaling out with

more lower-density servers. Overprovisioning increases the total amount of memory that

is idle, while other servers may be overutilized but cannot easily request or share memory

beyond their blade boundaries.

Consequently, we note that it is important to be able to dynamically provision and share
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memory across servers to meet instantaneous peak memory demands of applications or vir-

tual machines executing on a single server. This leads to a much smaller physical memory

footprint for the system and consequently lower dollar and energy costs. We propose mem-

ory sharing via tight coupling between the interconnection network and the local memory

controllers. The result is the CMP cores have access to greater instantaneous memory band-

width and larger amounts of physical memory in a demand-driven fashion. These trends

and system architecture drivers lead us to conclude that:

Thesis Statement: By de�ning a global address space and hardware mechanism for

sharing remote memory, we can allow applications with time-varying footprints to e�ciently

share memory across fewer numbers of servers and clusters while preserving performance and

reducing overall power and cost usage.

12



CHAPTER III

A DYNAMIC PARTITIONED GLOBAL ADDRESS SPACE MODEL

This section describes extensions to a well-known PGAS model [9] to permit �exible, dy-

namic management of a physical address space, called Dynamic Partitioned Global Address

Space (DPGAS). The two components of the DPGAS model are the architecture model

and the memory model. Additionally, this section characterizes the hardware component

that this thesis contributes to implement DPGAS, the HyperTransport over Ethernet bridge,

and illustrates a simple OS-based memory allocation algorithm that is used in our �rst-order

analysis of DPGAS.

3.1 Architecture Model

Future high-end systems are anticipated to be composed of multi-core processors that access

a distributed global 64-bit physical address space. Cores nominally have dedicated L1 caches

for instructions and data, but may share additional levels of cache amongst themselves in

groups of two cores, four cores, etc. A set of cores on a chip will share one or more memory

controllers and low-latency link interfaces integrated onto the die. An example of the latter

includes AMD's HyperTransport protocol [30]. All of the cores also will share access to a

memory management function that will examine a physical address and route this request

(read or write) to the correct memory controller�either local or remote. For example, in

the current-generation Opteron systems, such a memory management function resides in

the System Request Interface (SRI), which is integrated on chip with the Northbridge [10].

Several such multi-core chips can be directly connected via point-to-point links. This is the

con�guration made feasible by AMD's Opteron series multi-core processors, leading to two-,

four-, and eight- socket con�gurations with low-latency access across two, four, and eight

nodes via direct HT connections.

Alternatively, the remote memory controller may not be directly accessible over a few

HT links, but rather may be accessible through a switched network such as In�niband [1]
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or a custom interconnect such as those employed in high-end computing con�gurations by

Cray [11]. In this case a get or put operation must be encapsulated into a message and

transmitted to be serviced by the remote memory controller that will subsequently generate

a response to the local memory controller. In this model, memory controllers receive put and

get transactions from any core. Finally, the DPGAS model asserts that the lowest latency

is achieved when the memory controller is tightly integrated with the Network Interface

(NI), e�ectively minimizing the distance from the DRAM to the wire. While this integrated

NI-MC is not available in today's architectures, migration of components like interconnects

and memory controllers on chip seem to indicate that future architectures could feasibly

contain an integrated NI-MC.

The architecture model is memory-centric in the following sense: Cores are becoming

primitive architectural elements that are no longer the primary determinant of performance

because clock frequency is bound by heat dissipation and e�ective instruction issue width

is bound by control and data dependencies. Thus, computation scaling will come from the

availability of additional cores and thread-level and data-level parallelism. Power dissipation

concerns will accelerate the move to simpler streamlined cores, little or no speculation, and

doubling of cores across technology generations. Memory bandwidth and interconnection

bandwidth will have to track the increase in the number of cores, and thus they will need to

be e�ectively utilized to sustain Moore's Law performance growth with the scaling of cores.

Consequently, the DPGAS model is focused on the distribution of memory controllers in

the system and their interaction with the interconnection network, which must deliver the

lowest latency and highest bandwidth.

3.2 Memory Model

The memory model is that of a 64-bit partitioned global physical address space. Each

partition corresponds to a contiguous physical memory region controlled by a single memory

controller, where all partitions are assumed to be of the same size. For example, in the

Opteron (prior to Barcelona core), partitions are 1 TB corresponding to the 40-bit Opteron

physical address. Thus, a system can have 224 partitions with a physical address space of
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240 bytes for each partition. Although large local partitions would be desirable for many

applications, such as databases, there are non-intuitive tradeo�s between partition size,

network diameter, and end-to-end latency that may motivate smaller partitions. Further,

smaller partitions may occur due to packaging constraints. For example, the amount of

memory attached to an FPGA or GPU accelerator via a single memory controller is typically

far less than 1 TB. Thus, the DPGAS model incorporates a view of the system as a network

of memory controllers accessed from cores, accelerators, and I/O devices.

Two classes of memory operations can be generated by a local core: 1) load/store oper-

ations that are issued by cores to their local partition and are serviced per speci�ed core-

semantics, and 2) get/put operations that correspond to one-sided read/write operations on

memory locations in remote partitions. The get/put operations are native to the hardware

in the same sense as load/store operations. The execution of a get operation will trigger a

read transaction on a remote partition and the transfer of data to a location in the local

partition, while the execution of a put operation will trigger a write of local data to a remote

partition. Transactions may have posted or non-posted semantics. The get/put operations

are typically visible to and optimized by the compiler. The address space is non-coherent

to allow for more scalability and simplicity. Coherence is separated from the issues central

to de�ning the DPGAS model because large, scalable coherence is still an unsolved research

problem, and many systems do not require full-scale coherence across large numbers of

servers. Additionally, coherence can be enforced between the one to eight Opteron-based

sockets on a server blade to provide local �islands� of coherence which may su�ce for use

with the DPGAS model.

A sample get transaction on a memory location in a remote partition also requires

some knowledge of the underlying network required to transmit the request to and from a

remote node. This read transaction must be forwarded over some sort of network to the

target memory controller and a read response is transmitted back over the same network.

The speci�c network is not germane to the DPGAS model implementation. However, a

network that closely approximates the desired integrated NI-MC would be optimal. Being

constrained by commodity parts, this study utilizes Gigabit Ethernet.
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Once the DPGAS memory model is enabled, an application (or process) can now be

allocated a physical address space that may span multiple partitions, i.e., local and remote

partitions. Equivalently, the processes' physical address space is mapped to multiple memory

controllers, and thus an application's virtual address space may map to physical pages

distributed across local and remote partitions. There are a number of reasons to physically

distribute an application's physical address space. The most intuitive one is for sharing

where processes from an application may share physical pages by having portions of their

virtual address spaces mapped to the same physical pages. No assumptions need to be made

about how that shared space is managed, leaving open options for optimized management

that are speci�c to the type of shared interactions, e.g., communication and shared libraries.

The set of physical pages allocated to a process can be static (compile-time) or dy-

namic (run-time). The nature of the page management changes in scalable systems due

to the hierarchy of latencies necessitating optimizations that have little relevance in tradi-

tional operating systems, e.g., page placement. Physical partition and page allocation can

a�ect the communication support that must be provided. For example, it may be neces-

sary to maintain a list of remote partitions that can be accessed or information related to

coherence/consistency management that may be maintained on a per-page basis. A likely

candidate for inter-node communication of any dynamic changes in allocated physical pages

is a simple Remote Procedure Call (RPC) that is executed infrequently.

To summarize, the DPGAS model speci�es get/put transactions for accessing physi-

cally distributed pages of a process, and these transactions may have posted or non-posted

semantics. The location of physical pages may be changed under compiler or operating

system control, but the pages remain in a global 64-bit physical address space. All remote

transactions are necessarily split phase.

3.3 DPGAS Implementation

This thesis contributes a hardware component to the DPGAS model called the HyperTrans-

port over Ethernet (HToE) bridge. The HToE bridge uses the on-board HyperTransport

(HT) interconnect integrated with a 1 Gbps Ethernet Medium Access Control (MAC) into a
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Figure 6: HToE Bridge with Opteron Memory Subsystem

Verilog component and is shown in relation to the other pieces of the Opteron memory sub-

system in Figure 6. It incorporates an address translation table to translate local HT packets

to global (64-bit) HT packets and an encapsulation mechanism to send these global packets

over a system-level interconnect such as Ethernet or In�niband. The HToE bridge ful�lls

the requirements of the DPGAS architecture and memory models described in Sections 3.1

and 3.2 by allowing for the implementation of a remote get/put operation.

HyperTransport was selected as a low-cost on-board interconnect due to its tight integra-

tion with the processor and memory using a crossbar for each processor connection instead

of the previous Front Side Bus. HT was also chosen because Intel's QuickPath Interconnect

has not currently been released and likely will not have an open-source speci�cation. Gigabit

Ethernet was selected due to current hardware availability and its ubiquity in clusters as a

low-cost interconnect. While Ethernet is not geared toward the High Performance Comput-

ing (HPC) market but more toward widespread, low-cost deployment, the introduction of

new standards for 40 Gigabit and 100 Gigabit Ethernet ensure that it will provide a low-cost

competitive commodity interconnect. This thesis uses 1 Gbps Ethernet as a demonstration

vehicle while recognizing that other implementations may realize encapsulation using other

technologies such as 10 Gbps Ethernet, In�niband, Myrinet, or Quadrics interconnects.
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Figure 7: HT Read Request Packet Format

3.3.1 HyperTransport Overview

It is useful to �rst provide a simple overview of key operational attributes of HyperTransport.

In its simplest instantiation, HT devices are connected via a point-to-point, one-dimensional

topology anchored at one end by the host bridge. The host bridge implements the interface

to the rest of the system. Data and control packets are transmitted over three classes

of virtual channels: posted, non-posted, and response. HT device request packets travel

upstream to a host bridge where they are either 1) routed upstream to a higher level device

or main memory, or 2) routed back downstream to the target device. As an example, an HT

read request command packet with 40-bit addressing (for pre-Barcelona CPUs) is shown in

Figure 7.

Posted packets are typically associated with operations that don't require a response

(such as some writes), and non-posted packets are used when a response packet is desired,

either for a read or a write which may have a response �TargetDone� packet to indicate the

write completed correctly. In addition, the HyperTransport speci�cation de�nes �ush and

fence commands to help prioritize data as each virtual channel is multiplexed through the

various HyperTransport interconnects. The HyperTransport speci�cation also de�nes how

packets in each virtual channel are prioritized when they are multiplexed over a common link.

Basically, nonposted requests and responses can pass posted write requests if they have a

certain bit �eld set. Additionally, HyperTransport usually speci�es no ordering requirements
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for requests or responses unless their command packets have a certain �eld set that de�nes

a strict ordering. Without strict ordering, requests and responses can pass each other when

traversing HT links, assuming that there are enough credits (bu�er space) available for

them to be transmitted. Our model adheres to normal HT ordering and deadlock avoidance

protocols.

The �elds of the command packet, such as the ones in Figure 7 are used to specify

options for the read transaction, and to preserve ordering and deadlock freedom. The

most important �elds for this example are the UnitID, SrcTag, SeqID, and address. The

UnitID speci�es the source or destination device and allows the local host bridge to direct

requests/responses. The SrcTag and SeqID are used to specify ordering constraints between

requests from a device�for example, ordering between outstanding, distinct transactions.

Finally, the address �eld is used to access memory that is mapped to either main memory

or HT-connected devices. An extended HT packet can be used that builds on this format to

specify 64-bit addresses [30]. The current implementation in this thesis assumes that 40-bit

addresses are used since this was the standard for Opteron processors during the �rst bridge

implementation, but this can be easily changed to support 48- and 64-bit physical addresses.

Additionally, the use of 40-bit physical addresses allows for backwards compatibility with

previous versions of HT-enabled processors.

The HToE bridge implementation uses the University of Heidelberg's HyperTransport

Verilog implementation [52] which implements an HT cave (end point) device. The applica-

tion interface was retained to communicate between the local HT link and the HToE bridge.

Figure 8 shows the stages of the HToE bridge.

3.3.2 HyperTransport over Ethernet - Address Translation and Ethernet En-

capsulation

The HToE implementation is based on a system with Opteron nodes where each Opteron

node has an Ethernet-enabled FPGA card available in the HTX connector slot, such as

the University of Heidelberg HTX card or Celoxica's RCHTX board [6] [51]. Several nodes

are connected via an inexpensive Ethernet switch, and it is assumed that HyperTransport

messages sent to remote addresses via the HToE bridge are routed using one of two methods:

19



Figure 8: HToE Bridge Stages

1) access to the northbridge address mapping tables (via the BIOS) in order to specify the

physical address space mappings for the HToE bridge device, or 2) an intelligent MMU

that distinguishes between accesses to the local memory and the I/O address space and HT

packets that are sent for non-local addresses through the HToE bridge.

Consider a system that has been properly initialized, i.e., all of the con�guration registers

in the DPGAS bridge have been loaded with mappings for destination addresses that map to

an application's remote memory space. Now consider a parallel, shared memory application

that generates a read operation to an address that is in a remote partition. There are

three stages in each individual communication operation (e.g., a read request command) at

a given source host and attached devices: 1) extension from the 40-bit physical address in

the Opteron to the 64-bit physical address, 2) creation of a HyperTransport packet which

includes a 64-bit extended address, and 3) mapping the most signi�cant 24 bits in the

destination address to a 48-bit MAC address and encapsulation into an Ethernet frame.

An e�cient implementation could pipeline the stages to minimize latency, but retaining the

three stages has the following advantages: 1) It separates the issues due to current processor

core addressing limitations from the rest of the system, which will o�er a clean, global shared
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Figure 9: HToE Read Request Transmission

Figure 10: HToE Read Request Reception

address space, thus allowing implementations with other true 64-bit processors, and 2) it will

be easy to port to other platforms that do not encapsulate by using Ethernet frames, but

use other link layer formats�for example, In�niband. Thus, some e�ciency was sacri�ced

for initial ease of implementation and for a cleaner, modular design.

The detailed transmit behavior of the HToE bridge for a read request to a remote par-

tition is described by Figures 9 and 10.

First, the HT packet type is decoded into a request, response, or command packet in

the module called Seq2Mac in Figure 9. For request packets the two most signi�cant bits

of the 40-bit address are decoded to select one of four partition registers to access the 24-

bit partition address�the two most signi�cant bits in the 40-bit address used to address

the partition register are reset in parallel with the access to the partition register. Now

three pieces of information are needed: 1) the extended 24-bit address to form an HT

read request packet with extended address, 2) the MAC address of the destination bridge to

encapsulate the extended HT packet into Ethernet, and 3) the local MAC address, according
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to Ethernet frame format to enable the response. Item 3 has been set during initialization,

and access to the source MAC address is not in the critical path. Items 1 and 2 have a

direct correspondence among them�given a destination node ID or the remote partition

address, there is a unique MAC address associated with both data �elds. Therefore, the

partition register can store both the 24-bit partition address and the destination MAC

address together, thus reducing access time when forming the Ethernet frame. Once the

remote MAC address and the 64-bit address have been found in the partition table, the

new HT packet is constructed and encapsulated in a standard Ethernet packet, illustrated

in the �gure as the Ethernet Frame Assembly module. The encapsulated packet is then

bu�ered until it can be sent using the local node's Ethernet MAC and the physical Ethernet

interface. For packets that send a set amount of data, the control and data packets must be

bu�ered until all the data has been encapsulated into Ethernet frames.

The receive behavior of the bridge on the remote node will require a �response matching�

table where it will store, for every non-posted HT request (request that requires a response),

all the information required to route the response back to the source when it arrives. This

table is required since HT is strictly a local interconnect and response packets have no notion

of a destination 40-bit (or extended 64-bit) address. Since the formats of HT request and

response packets di�er and this implementation desires not to change local HT operation,

the SrcTag �eld of each packet is used to match MAC addresses from an incoming request

packet with an outgoing response packet. Note that each request packet contains the source

MAC address, and this is the address stored in the "response matching" table and later used

as destination MAC address for the corresponding response. Encapsulation and bu�ering

occur once again until the response and data can be transmitted over Ethernet. In the HToE

bridge, this module is listed as the Pending Request Store in Figure 8 and is shared between

incoming and outgoing packets.

It should also be noted that since HT SrcTags are 5 bits, a maximum of 32 outstanding

requests can be handled concurrently by this approach. If two request packets arrive with the

same SrcTag, then the latter packet is remapped before being stored in the table. When the

corresponding response leaves the HToE bridge, the SrcTag is mapped back to its original
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value to ensure proper HT routing on the requesting local node. Once the response reaches

the local HToE bridge that initiated the read request, the HT packet is removed from its

Ethernet encapsulation. The UnitID is changed again to that of the local host bridge and

the bridge bit is set to send the packet upstream. This allows the local host bridge to route

responses to the originating HT device. Other transactions, such as a posted write or a

non-posted write, involve similar sequences of events. The di�erences in these transactions

are that for posted writes, no data is stored to create a response; for non-posted writes, only

a �TargetDone� response is returned and no data needs to be bu�ered before the response

is sent over Ethernet. Similarly, atomic Read Modify Write commands can be treated as

non-posted write commands for the purposes of this model.

Performance results for this model and the HToE bridge are investigated in more detail

in secton 5.6.1.

3.4 Applications of DPGAS to Improve Memory E�ciency

As the previous sections illustrate, DPGAS allows for the dynamic allocation of physical

pages from a full 64-bit address space using simple get/put encapsulation. DPGAS is en-

visioned to work with a variety of operating systems�based techniques to manipulate the

address mappings in the HToE bridge, but it also needs a memory allocation component

in order to decide how remote memory is remapped using the HToE bridge. This section

outlines the memory allocation technique evaluated in this thesis, percentage improvement.

The pseudocode and usage of this algorithm is discussed in Section 5.1.1.

3.4.1 Memory Allocation at the Operating System Level

At a high level, nodes experiencing memory pressure need to request free memory that exists

on remote nodes, and these remote nodes need to allocate memory fairly to all requesting

nodes according to some basic metric. The initial memory allocation scheme de�ned for

this thesis focuses on requesting and allocating memory from nodes that are closest in

terms of number of hops (nearest neighbors) in order to keep remote access latency to

a minimum. Assuming that the network uses a torus interconnect, each node would be

limited to requesting and allocating memory to nodes that are at most one to two hops
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away. A request for memory can then be made by an overutilized node to a nearest neighbor

for an interval of time using high-level communication like server RPCs. This allocation,

or memory �lease�, would last for at least several milliseconds to seconds without further

communication between the nodes. A requesting node can also send a message requesting

a renewal of the lease for a speci�ed number of lease periods as long as there is no other

contention from other neighboring nodes. If at the end of the lease, the node hosting remote

memory accesses decides that it needs its physical memory, it can reject new lease requests or

send a message terminating existing lease renewals. Additionally, the node granting a lease

can use a very simple LRU algorithm to allocate remote memory between several nearest

neighbors contending for space.

The memory allocation algorithm can take several forms�the virtual memory manager

on a node can allocate memory to remote nodes in a round-robin fashion, �rst-come �rst-

served, or by least recently allocated, or it can reserve its local memory for anticipated

memory-intensive tasks it might be running and reject all memory lease requests. This thesis

focuses on a memory allocation scheme that helps improve overall system performance�

percentage improvement. Percentage improvement tries to de�ne how much memory is

needed to gain a certain percentage improvement in application performance. For instance,

if a local node has free memory, and it can improve the performance of Remote Node One

by 10% by allocating an extra 2 GB of DRAM to Remote Node One's application, but it can

improve performance by 30% by allocating the same amount of memory to Remote Node

Two, it may make sense to optimize memory usage to improve performance of the entire

system rather than just performance on one node.

% improvement = % reduction in page faults
amount of memory allocated

This type of analysis does require some dynamic pro�ling, but each system could pro�le

its own code and include a simple estimate with each memory lease request to allow the

local allocator to decide how best to allocate memory. This memory allocation technique is

used with the analytical models for evaluation of memory power and cost with DPGAS in

Chapter 5.

24



CHAPTER IV

MODEL AND EVALUATION

4.1 E�ciency Model

In order to determine DPGAS's e�ect in reducing power consumption and memory cost, two

realistic server con�gurations were selected to test DPGAS memory allocation versus normal

memory allocation. A high-end server con�guration and a low-end Beowulf-capable server

were selected to provide two di�erent cost and power points and to evaluate how DPGAS

a�ects each of these di�erent server installations. The high-end server selected for this study

was the HP Proliant DL785 G5, which has slots for 64 DIMMs and up to 512 GB of PC-5200

DRAM along with eight sockets capable of running quad-core Opterons. The low-end server

used was HP's Proliant DL165 G5, which has two sockets and support for 32 GB of memory

available in eight DIMMs. Both the Opteron and Xeon chips only support one hardware

thread. Both servers were also only con�gured with one hard drive, hot-swappable in the

high-end case and non-hot-swappable in the low-end case. Cost estimates were obtained

from HP's business website [26] and from a third-party vendor [12]. Power statistics were

generated using the HP Power Calculators with a 75% load factor [28]. The two server

setups are described in more detail in Table 1.

Table 1: Server Con�gurations Used for Cost and Power Evaluation

Model CPU Cores Maximum Physical Memory

HP Proliant DL785 G5 8 quad-core 2.4 GHz Opterons 512 GB

HP Proliant DL165 G5 1 dual-core 3.0 Ghz Xeon 32 GB

The latency statistics for the HToE bridge component and related Ethernet and memory

subsystem components were obtained from statistics from other studies [10] [52] [32] and from

place and route timing statistics for our bridge implementation. An overview is presented in

Table 2 and the bridge statistics are discussed more in Chapter 5. Our HToE implementation
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was based on a 1 Gbps Ethernet MAC included with the Virtex 4 FPGA, but latency

numbers were not available for this IP. 10 Gbps Ethernet numbers are shown in this table

to demonstrate the expected performance with known latency numbers for newer Ethernet

standards.

Table 2: Latency Numbers Used for Evaluation of Performance Penalties

Interconnect Latency (ns)

CPU to on-chip memory 80

Heidelberg HT Cave Device 35 - 55

HToE Bridge 20 - 40

10 Gbps Ethernet MAC 500

10 Gbps Ethernet Switch 200

4.2 Evaluation Model

The evaluation criteria for the DPGAS model consists of two experiments to evaluate two

di�erent situations where DPGAS might positively a�ect cost and power usage. The �rst

evaluation looked at the case of server scale up, where servers are dramatically overprovi-

sioned to provide better performance. Secondly, a large-scale case of scale out was evaluated,

where more servers are added to relieve memory pressure that exists on a smaller number of

servers. Current values for supercomputers are in the range of 1,024-4,096 processors [27],

while data centers can vary from 1,000 to tens of thousands of processors in a typical server

farm. For the scale up and scale out evaluations, the metrics used were page faults and over-

all cost and power usage, and DPGAS memory allocation was compared to normal memory

allocation for three cases where each blade was either overprovisioned or underprovisioned

in terms of how much memory was installed in the available DIMMs. Page swapping op-

erations are representative of overall performance in the system, especially in the case of

major page faults (pages that swap from memory to disk). In addition to cost and power

analysis, the performance penalty of the HToE bridge was evaluated to determine the addi-

tional latency to access remote memory and optimizations that can improve performance.

These evaluations are explored in Chapter 5; the rest of this chapter describes the tools and

models used to perform the DPGAS cost and power analysis.

26



Table 3: Benchmarks Used for Evaluation

Benchmark Suite Memory Footprint (MB) Input Set

SSCA #2 HPCS 297 21 vertices

Transitive Closure DIS 275 6000 vertices, 3.6 million edges

MCF SPEC 2006 1600 ref

MILC SPEC 2006 655 ref

LBM SPEC 2006 409 ref

4.2.1 Benchmarks and Simulation Model

Benchmarks were selected from both the High Performance Computing and enterprise are-

nas. The benchmarks include the HPCS Scalable Synthetic Compact Application benchmark

for graph analysis [2], the Transitive Closure benchmark from the updated DIS Stressmark

Suite [13], and three benchmarks from the SPEC CPU2006 [23] suite: the integer MCF

benchmark and the �oating point LBM and MILC benchmarks. The HPCS graph analysis

benchmark implements four kernels that perform memory-intensive operations on a directed

multigraph and has poor memory locality. The DIS Transitive Closure benchmark solves

an all-pairs shortest path algorithm and was scaled up from its original input size due to

technology improvements since its last update. The SPEC MCF benchmark deals with a

combinatorial optimization problem applied to a mass-transit simulation. The SPEC �oat-

ing point benchmarks, MILC and LBM, are both representative of large-scale simulations

using �oating point computations to simulate quantum chromodynamics and computational

�uid dynamics with the Lattice Boltzman Method, respectively.

Memory footprints for the benchmarks were gained from other papers [20] and by using

a simple script that called the Linux �ps� command to capture the resident physical memory

usage under Linux. These memory footprints are shown in Table 3.

In order to demonstrate the e�ects of memory pressure from each application, a page

table simulator was built to hash 64-bit virtual addresses from benchmark traces into sim-

ulated physical pages. Section 4.2.2 describes the trace generation in more detail. Page

replacement used a simple clock-based LRU algorithm similar to what is used in the Linux

kernel; statistics were gathered, including percentage of reads and writes, operations, and
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hits and misses; and replaced pages were tracked for each virtual address in the page ta-

ble. Also, a warm-up period was used with each simulation to help discount the e�ects of

compulsory misses.

Detailed per-page statistics were kept in order to better understand the memory access

patterns for virtual memory and to help in evaluating which virtual addresses would be best

suited for mappings to local physical pages as well as page migrations from remote to local

physical pages. These statistics are not included as results in this work, but their potential

usage for future work is described in Section 5.8.

4.2.2 Trace Generation

Trace generation was performed by instantiating a single-threaded subset of each benchmark

inside the full-system simulator, Simics [42]. Simics models a base processor model, in

this case an AMD Athlon 64 processor, and an installed operating system, in this case

Fedora Core 5 Linux running the 2.6.15 kernel. Physical memory size is con�gurable at

system startup and allows for simulation of SMP processors. This study used a single

processor and single-threaded benchmarks to isolate the e�ects of each benchmark on the

physical memory footprint. Additionally, single-threaded benchmarks represent the e�ects

of either a single task running in a Virtual Machine on a server or a portion of a large multi-

threaded application running in parallel on a cluster. It is expected that multi-threaded

applications would require a similar amount of physical memory and possibly more due

to sharing between threads, so a single-threaded application also represents the best case

memory usage, assuming that enough physical memory is available.

Trace �les of 2.1 billion memory instructions were collected by �rst pro�ling each bench-

mark with the gnu pro�ling tool, gprof [21], and Valgrind's dynamic heap allocation tool,

Massif [46] [43]. After determining which function in a program was responsible for the

largest percentage of computation time and approximately where the application allocated

the most dynamic memory (i.e., the memory footprint was near its maximum value), a Sim-

ics �magic-break� instruction was used to enable trace capture starting at this point in the

program. Insertion of the Simics breakpoint ensured that memory traces were pulled from
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the point when the application had the largest memory footprint and that memory traces

captured a portion of the program that was computationally signi�cant. Operating system

tra�c was included in each trace in order to incorporate the e�ects of the operating system.

The overall memory footprint of each application re�ects a relatively quiet run with minimal

system processes running in that no other applications except normal system services were

run during trace generation. This trace generation process re�ects the fact that application

performance is typically impacted by some kind of operating system tra�c and that some

small portion of page faults might be in�uenced by operating system services.

The inclusion of OS-related memory accesses resulted in almost 20% of the virtual ad-

dresses mapping to operating systems calls, typically related to instruction fetches. While

20% of the total memory accesses is a signi�cant portion of the total trace, it also repre-

sents the standard overhead of a Linux operating system as measured in our Simics trace

generation setup. The 2.1 billion memory instructions, which represented a point in the

application with the maximum memory footprint, were then fed into the C++ simulator

described in Section 4.2.1, with 100 million instructions being used as the warm-up period.
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CHAPTER V

EVALUATION AND RESULTS

As discussed in Chapter 4.1, the evaluation of DPGAS contains two components: an eval-

uation of page fault improvements and memory power and cost reduction using DPGAS

for four di�erent server con�gurations and an evaluation of the performance penalties that

remote memory accesses incur.

5.1 Page Fault Trends

Figure 11 shows the total number of page faults for each memory size in the page table

simulations for the �ve benchmarks that were tested. As the amount of physical memory

is increased to be as large as the application's working set, the page fault rate drops to a

static point where page faults that occur are most likely due to compulsory misses. This

graph also illustrates the variation in worst-case memory requirements for each application.

As discussed in Section 4.2.1, MCF requires about 1,600 MB of virtual memory to satisfy

its working set, while the DIS Transitive Closure application only requires about 275 MB.

5.1.1 Memory Allocation for Experiments

Table 4 shows a more important metric for the memory allocation scheme used in this

work�percentage improvement for each di�erent physical memory size as �rst discussed in

3.4.1. For instance, allocating an extra 64 MB to the DIS application would result in an

improvement of about 8.6% whereas allocating that same 64 MB to MILC would only result

in an improvement of 0.21%. This higher reduction of page faults re�ects that DIS has many

more page faults when it is allocated a small amount of physical memory, whereas MILC

performs similarly as its memory footprint is decreased. The results in Table 4 were used

with percent improvement memory allocation in that remote allocations focused on servicing

these higher-priority applications �rst to improve overall system performance while allowing

for power and cost reductions by using less memory overall.
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Figure 11: Page Fault Trends for Sample Benchmarks

Listing 1 shows the pseudocode used to allocate any free memory available with servers

that implement DPGAS and a percent improvement memory allocation model. This model

was implemented in the analysis of the HP server con�gurations that follow, but it does not

preclude the usage of other memory allocation algorithms, such as slab and buddy allocation

in Linux. Additionally, algorithms designed for shared memory and NUMA architectures

like memory balancing [35] and Berkeley's Firehose [3] could be used with DPGAS.

The percent improvement algorithm assumes existing pro�le knowledge of applications'

paging requirements, and is most likely a higher overhead algorithm for maximizing the

performance of all applications in a given system. Other allocation algorithms may not be

able to preserve the same level of application performance but still can provide the same

memory cost and power savings when used with DPGAS, while requiring less knowledge of

application memory pro�les.

Table 4: Percentage Improvement For Benchmarks

DIS SSCA MCF MILC LBM

64 2.7315 1.8972 0.1572 0.2022 0.3087

128 8.5684 1.8675 0.1659 0.2149 0.3673

256 106.7267 3.5460 0.1743 0.2958 0.5425

512 0.0685 4.4035 0.1791 0.9475 1.6614

1024 0.0000 0.0000 0.1483 2.4725 0.0000

2048 0.0000 0.0000 0.0331 0.0000 0.0000
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Listing 1: Memory Allocation With Percent Improvement

While f r e e memory i s l e f t

For each VM workload

For each s e r v e r

Reset winner and % thre shho ld

f o r each VM running on that blade

i f % improvement f o r VM ≥ % improvement o f other VMs

s e t VM as winner and s e t % improvement as new threshho ld

i f winner e x i s t s

a l l o c a t e memory v ia DPGAS to the winning VM

e l s e i f no winners

a l l o c a t e memory l o c a l l y as needed

5.2 Workload Models

Earlier studies have suggested that virtual machines can be consolidated at a ratio of 15-20

VMs for a dual-socket quad-core system and 16 GB of memory [8]. Since the selected high-

end server con�guration has four quad-core processors, it stands to reason that four times

as many VMs can be supported with 64 GB of DRAM. This scaling assumes that each VM

only requires 0.6-1.5 GB, when in actuality, the same study suggested that a quarter of real

systems used more than 3 GB of DRAM. However, the evaluation in this thesis focused only

on workloads with maximum memory footprints from 0.3-1.6 GB, so this scaling factor was

used to model a dual-core server supporting 15-20 VMs and a quad-core server supporting

60-80 VMs.

Table 5 shows the di�erent workloads used for the scale up case with the low-end server.

These workloads were arbitrarily chosen but do exhibit a varied workload as would be typical

in a real server environment. These workloads were scaled up for the high-end server analysis

and for the scale out analysis to multiple servers. In the scale up case, these workloads were

scaled up by a factor of four, and for 250 servers, this workload was replicated 31-32 times

to represent the maximum memory footprint for these servers.
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Table 5: Workload Modeling for Low-End Server Case

VM instances

Blade Number 1 2 3 4 5 6 7 8

DIS 6 5 4 3 2 5 4 3

SSCA 5 4 3 2 6 3 3 4

MCF 4 3 2 6 5 3 2 5

MILC 3 2 6 5 4 2 4 2

LBM 2 6 5 4 3 4 3 4

Total 20 20 20 20 20 17 16 18

5.3 Cost and Power Evaluation - Scale Up Case

In the scale up experiment, the high-end and low-end server con�gurations were speci�ed for

several di�erent sizes of physical memory. Eight servers were selected and cost and power

statistics were gathered for three cases: 1) The server had more than enough memory to

allocate as much memory as was needed by each host VM (60-80 VMs in the high-end case

and 15-20 VMs in the low-end case). This was referred to as the basic, overprovisioned

case, labeled as 100% in the graphs. For the Proliant DL785, the overprovisioned amount of

memory for our selected workloads was 64 GB, while for the DL165 the overprovisioned case

was 16 GB. 2) Each server was allocated 50% as much memory, and the same workloads

were used with memory allocations to each VM that matched test points from the page table

simulations. For instance, a workload that would require 502 MB in the overprovisioned

case would receive 256 MB in this test case. This allocation is slightly larger than 50% but

represents the closest data point obtained from the page table simulations. 3) Each server

was allocated 25% as much memory, and the same workloads were run.

The use of DPGAS with remote memory was simulated by doing reallocation of free

DRAM memory in each case to simulate sharing of remote memory via one of the suggested

memory allocation algorithms that were discussed in Section 3.4.1 and illustrated in Table

4, percentage improvement. The performance statistics from the page table were used to

analyze the e�ects of sharing remote memory; these statistics are compared with the normal

case, where memory cannot be shared beyond server boundaries, in Figures 12 and 15. The

number of page faults for the overprovisioned case shows no di�erence between using the
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normal method and the DPGAS method. This is because the number of page faults only

drops when the entire application cannot �t into DRAM, and in the overprovisioned case

each application can comfortably �t into DRAM.

5.3.1 DL165 - Low-End Case

For the low-end case, eight servers with either 16 (100%), 8 (50%), or 4 (25%) GB were used

with VM workload combinations of each of the �ve benchmarks. Each server was con�gured

with between 15 and 20 VMs, each with a variable number of benchmarks as shown in Table

5. Each instance of a benchmark was allocated the same amount of memory in the normal

allocation and DPGAS case. DPGAS allocation could also be used to allocate leftover

memory on one server to other benchmark instances on the same server or remote servers.

Figure 12 shows the page fault rate for each physical memory size. The page fault rate for

most of the tested scenarios was constant except for two exceptions: 1) The 50% scenario

using DPGAS had more page faults than the normal memory allocation case because some

servers had 4 GB instead of 8 GB, generating cost and power savings but also increasing

the overall page fault rate by 14%; and 2) the 25% memory scenario had 3% fewer page

faults, due to being able to allocate leftover memory on several servers to benchmarks on

other servers that would increase overall system performance.

Figures 13 and 14 show the power and cost reductions achieved by using DPGAS for

each initial memory allocation of 16 GB, 8 GB, and 4 GB. In the overprovisioned case, the

memory that would not normally be shared across a server boundary can be reallocated by

DPGAS, and the overall size of DIMMs in some of the eight servers can be reduced from 16

GB to 12 GB. This produces a cost reduction of 30% (about $2,400) in the overprovisioned

case and 27% and 10% in the 8 GB and 4 GB cases. Additionally, due to reductions in

DIMM sizes, power is also reduced with DPGAS, from 29% in the 16 GB case to 25% in

the 8 GB case. No power reductions were seen for the 2 GB case, because reducing server

DIMM sizes from 4 GB to 2 GB did not produce any additional power savings due to low

power DIMMs being used for all of the low-end server experiments. The sources used for

these DIMMs indicated that normal and low-power DIMMs were both the same price but
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had slightly di�erent input power budgets.
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Figure 13: Scale Up Cost for Proliant DL165 G5

5.3.2 DL785 - High-End Case

For the high-end experiment, eight servers with either 64 (100%), 32 (50%), or 16 (25%) GB

were used with the aforementioned VM workloads. In the 50% and 25% cases, servers were

not strictly limited to either 32 or 16 GB of memory. In some cases a server was allocated 48

GB or 24 GB in order to improve the performance of the overall system by allowing for more
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Figure 14: Scale Up Power for Proliant DL165 G5

remote memory allocation. In the DPGAS tests, this additional initial memory was usually

found to be unneeded, resulting in performance improvements over the normal case, better

performance related to the overprovisioned case, and signi�cant power and cost savings.

The performance statistics in Figure 15 show that in the overprovisioned case, DPGAS

can be used to reduce the amount of physical memory provisioned across eight servers while

reducing the total number of page faults by 59% and 39% for the 32 GB and 16 GB test

cases.

Figures 16 and 17 show the cost and power savings for DPGAS-enabled servers. Cost is

reduced by 10-19% and power is reduced by 11-18% across the three sizes of memory per

server when DPGAS is used rather than normal memory allocation methods.

Thus, for both the low-end and high-end server con�gurations, the results show that

DPGAS can be used to guarantee better cost and power e�ciency while also reducing the

number of page faults for similarly provisioned servers.

5.4 Cost and Power Evaluation - Scale Out Case

In the scale out case, each server con�guration was used to generate statistics for typical

large-scale server deployments. A server con�guration is usually speci�ed in terms of the

number of CPUs that are installed or the number of square feet that racks of servers take
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up in a data center�this study chose to specify a con�guration in terms of the number of

CPUs that were installed. An average number of CPUs for high-performance clusters can

range from 1,000 to 4,000 processors [27], while data centers for enterprise applications can

run up to tens of thousands of processors. For this study, a base case of 2,000 processors

was selected, which �ts on 250 high-end servers and can theoretically support about 19,500

virtual machines for the eight-core server. 250 servers were also used for the low-end case,

which can support 4,700 VMs across 500 processors. The eight workloads from the scale up

case were replicatied across the 250 servers, with six of the workloads being represented on 31

servers each and two of the workloads being represented on 32 servers. To test the hypothesis

that DPGAS is useful in reducing cost and power usage while preserving performance, a

scale-down of each server install was evaluated using 25 and 50 fewer servers; that is, 225

and 200 servers that supported the same number of virtual machines. By provisioning fewer

servers in the data center, not only can memory cost and power be reduced but heating and

cooling can also be simpli�ed due to a smaller footprint. Additionally, the reduced memory

per server scenario from Section 5.3 was investigated to see how reducing overall memory

a�ects cost, power, and performance.

In order to investigate potential savings with DPGAS, the amount of available memory

on each server and free memory on each server was determined. This unused memory can be
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used to consolidate the overall workload to a smaller number of servers, in essence scaling

down the size of the data center. The base case of 250 servers for the high-end server

evaluation required a staggering 12.188 TB of DRAM memory with an average of 64 GB

of memory for each server, assuming that each server was allocated enough memory for its

VMs and additional OS overhead. If each server is allocated 64 GB of memory, then there

exists a total capacity of 16 TB at a memory cost of $836,000 and 33,268 Watts just for

static and dynamic DRAM power. The large scale of this installation also allows for larger

possible savings. By reducing the amount of memory per server to 48 GB from 64 GB, the

overall memory cost could be reduced by $245,250 and the overall memory power could be

reduced by 9,000 Watts.

5.4.1 DL165 - Low-End Case

In the low-end case, performance was investigated for a 500 processor installation and nine

di�erent cases: three using 250, 225, and 200 servers each with 16 GB, 8 GB, and 4 GB (or

less with DPGAS) of memory. The performance statistics for the entire server installation

are shown in Figure 18. As the number of servers is reduced, the number of VMs per server

creeps up from 15-20 to 17-23 (225 servers) and 19-25 (200 servers). This increase has two

results: 1) The existing memory becomes underprovisioned, which harms performance, and

2) there is less overall unused memory that can be used for remote memory allocations,

which reduces cost and power savings for the 50% and 25% initial memory scenarios.

Figures 19 and 20 show the cost and power improvements that DPGAS provides. For

the overprovisioned case, DPGAS can be used to reduce the amount of memory on some of

the 250 servers, reducing the overall memory costs by 26% or $59,568. When the number

of servers is scaled down to 225 servers and 200 servers, cost savings over normal allocation

are 15% and 17%. For all three numbers of servers in the 50% initial memory case, cost

is reduced by 20% to 27% while the number of page faults is within 15% of the normal

allocation setup. The 25% memory experiments show that at a certain point, decreases in

cost and power become negligible, about 1% to 5% reduction in cost and no reduction in

power (due to factors described in 5.3.1).
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Figure 18: Scale Out Performance for Proliant DL165 G5

Power savings range from 14% to 25% for the 100% memory case and 19% to 25% for the

50% memory case, saving 672-1,300 Watts just by using DPGAS instead of normal memory

allocation with one of these con�gurations. If the server memory could be throttled to use

only 8 GB per blade with DPGAS, the power consumption from memory would drop from

5,250 Watts to 1,690 Watts, a savings of 3,560 Watts at the cost of 9.88 as many page faults.

This same con�guration would also save $157,393 in memory costs.
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Figure 20: Scale Out Power for Proliant DL165 G5

5.4.2 DL785 - High-End Case

As in the scale up case, performance was considered to be a secondary constraint to cost

and power when deciding how DRAM memory in servers could be initially provisioned. The

performance results in Figure 21 show that page faults for the 50% or 32 (or sometimes 48 or

24) GB case were reduced by 57%, 87%, and 29% for the 250, 225, and 200 server scenarios

when DPGAS was used as opposed to normal memory allocation. For the 25% case, page

faults were reduced by 39%, 51%, and 45% when using DPGAS.

In addition, due to high amounts of unused memory on each server with the high-end

servers, the high-end cost and power reductions were much more substantial than in the

low-end case. Figure 22 shows that cost was reduced from 14% to 18% for the 250 server

scenario, 1% to 7% for the 225 server scenario, and 8% to 14% for the 200 server scenario

when DPGAS was used. This translated into a cost savings from $36,500 to $154,000.

Power was reduced from 14% to 17% for the 250 server scenario, 7% to 9% for the 225

server scenario, and 8% to 13% for the 200 server scenario when DPGAS was used. These

results are shown in Figure 23.

Also, if 250 servers could be consolidated onto 200 servers using DPGAS, cost savings

could exceed $619,000 and power savings could exceed 23,000 Watts. However, the number
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Figure 21: Scale Out Performance for Proliant DL785 G5

of page faults would also increase by almost a factor of 30, so this extreme trade-o� would

not likely be worth the extra savings. Most likely a moderate approach of using 225 servers

with 32 GB of memory would be better, resulting in a cost savings of $353,875 and a power

savings of 13,338 Watts for only 2.9 times as many page faults as 250 servers using normal

memory allocation.
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Figure 22: Scale Out Cost for Proliant DL785 G5

The cost and power savings in the scale out case is likely much more dramatic than
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even our results show. By preventing server farms from growing exponentially larger and

focusing more on e�ciency, we can increase performance/Watt as �rst discussed by [36].

Page faults are an indicator of performance and runtime in general, but future tests hope

to incorporate more detailed timing statistics to better predict DPGAS's e�ects on runtime

and performance/Watt.

5.5 DL165 - Performance-Based Analysis

5.5.1 DL165 Scale Up - Performance-Based Analysis

Although DPGAS is being proposed mainly as a technique to improve the cost and power

usage of servers, an evaluation was also done for the low-end servers to focus on how per-

formance could be improved if cost and power were kept constant at 8 GB and 4 GB for

the 50% and 25% cases. This trade-o� resulted in better performance (as shown in Figure

24), but also led to fewer decreases in cost and power as shown in Figures 25 and 26. For

the 16 GB case, the usage of DPGAS resulted in a cost savings of 29% and a power savings

of 30%, but in the 8 GB and 4 GB tests, the power and cost were the same for the normal

and DPGAS allocations.

In the 16 GB case, no performance improvements are seen, but in the 8 GB and 4 GB

cases, DPGAS reduces the total number of page faults across eight servers by a factor of
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Figure 24: Scale Up Performance for Proliant DL165 G5 - Performance-Based DPGAS

53% and 24%, respectively. Additionally, the e�ects of the DPGAS memory allocation algo-

rithm on individual benchmarks can be seen�the performance of DIS and SSCA increases

dramatically (about 94% and 92% for 8 GB and 43% and 26% for 4 GB) compared to the

other applications. This is due to the allocation strategy, which used pro�ling knowledge to

determine that these particular applications would most bene�t from increases in memory

(both through local and remote allocations). Rather than allocating 128 MB of memory

to a local instance of MCF, this algorithm asserts that it is in the best interest of system

performance to allocate this additional memory to a remote instance of DIS or SSCA.

Compared to the cost- and power-based DPGAS analysis, this experiment had 38% to

52% fewer page faults for the 8 GB case and 16% to 25% fewer page faults for the 4 GB

case. These results seem to indicate that in a server that is slightly throttled (closer to

the 50% case), DPGAS could also be used with smaller-memory DIMMs and could increase

page fault performance to be closer to that of an unthrottled or overprovisioned server. This

would keep performance somewhat close to the overprovisioned case while still allowing for

memory and power savings by using smaller DIMMs.
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5.5.2 DL165 Scale Out - Performance-Based Analysis

Figure 27 shows performance results for the low-end server using performance-based DPGAS.

In the 250 server case, the usage of DPGAS reduces the number of page faults by 54% and

24% for the evaluations with 8 GB and 4 GB DIMMs in each server. Also, DPGAS increases

performance by 34% and 22% for the 8 GB and 4 GB 225 server case and 6% and 9% in the

200 server case for the same memory sizes.

The cost and power results in Figures 28 and 29 show that, with the scale up case,

there is not enough overhead to e�ectively reduce the memory DIMM size, especially since

performance was considered to be the �rst-order constraint. The improvements in cost and

power for the DPGAS memory allocation over the normal allocation for the same amount of

DRAM ended up being 25%, 14%, and 17% for the 250, 225, and 200 server con�gurations

with 16 GB DIMMs in each server. This translates to a cost savings of $59,568, $30,464, and

$35,850 and a power savings of 1,314, 672, and 800 Watts for these respective con�gurations.

5.6 HToE Performance Results

Xilinx ISE tools were used to synthesize, map, and place and route the HToE Verilog design

for a Virtex 4 FX60 FPGA. Synthesis tests using Xilinx software have indicated that the four
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modules that make up the bridge are individually capable of speeds in excess of 200 MHz�

combined, unoptimized results indicate that the HT bridge is more than capable of feeding

a 1 Gbps or faster Ethernet adapter with a maximum speed of 166 MHz. Additionally,

estimates using a conservative 125 Mhz (1 Gbps) clock speed and evaluations for each of

the request and reply critical paths suggest that the latency overhead of the bridge is on the

order of 24-40 ns. In a Xilinx Virtex 4 FX60 FPGA, an unoptimized placement of the bridge

uses approximately 1,300-1,500 slices, or approximately 5-6% of the chip. Overheads that
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Table 6: Latency Numbers for HToE Bridge

DPGAS operation Latency (ns)

Mannheim Core (input) 55

Mannheim Core (output) 35

HToE Bridge Read 40

HToE Bridge Write 40

Total Read 1344

Total Write 712

reduced performance included the use of a serial Gigabit Ethernet MAC interface and the

use of only one pipeline to handle packets for each of the three available virtual channels.

Our results utilize place and routing timing numbers to gauge performance of the DP-

GAS system because of the lack of suitable FPGAs with Ethernet capabilities. A suitable

hardware board would be the Woven card with Xilinx Virtex 4 FPGAs and 10 Gbps Eth-

ernet, but porting the HToE bridge to this platform would also require additional time and

expertise due to the higher signaling rate of 10 Gbps Ethernet.

5.6.1 Performance Penalties

Table 6 shows the basic performance penalties for using the HToE bridge to access remote

memory rather than overprovisioning local memory. The performance penalties are calcu-

lated using the formulas:

trem_req = tnorthbridge + tHToE + tMAC + ttransmit

where the remote request latency is equal to the time for an AMD northbridge request

to DRAM, the DPGAS bridge latency (including the Mannheim core latency), and the

Ethernet MAC encapsulation and transmission latency. This general form can be used to

determine the latency of a read request:

trem_read_req = 2*(tnorthbridge + 2*tHToE + tMAC + ttransmit)

These latency penalties compare favorably to other technologies, including the 10 Gbps

cut-through latency for a switch, which is currently 200 ns [48]; the fastest MPI latency,

which is 1.2 µs [44]; and disk latency, which is on the order of 6-13 ms for hard drives used in
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the servers studied [53]. Additionally, this unoptimized version of the HToE bridge is more

than fast enough to feed a 1 Gbps Ethernet MAC without any delay due to encapsulating

packets. Likely improvements for a 10 Gbps-comptable version of the HToE bridge would

include multiple pipelines to allow processing of packets from di�erent virtual channels and

the bu�ering of packets destined for the same destination in order to reduce the overhead

of sending just one HT packet in each Ethernet packet in the current version.

While we assert that the penalties for using DPGAS are low enough to make them

attractive for saving memory cost and power, a more detailed study would be required to

investigate overall e�ects on system power due to the fact that an increase in page faults can

lead to slower overall execution, costing more static power from other system components.

However, there are also other factors that need to be taken into account in this analysis: 1)

Page faults are often overlapped with useful computation, so as long as DPGAS does not

prohibitively restrict performance, its power and cost savings will not be mitigated by overall

system power. 2) One of the basic tenants of DPGAS is that workloads are time-varying,

and while some applications may perform slightly worse in the short-term, overall power

and cost savings are likely to be dramatic.

5.7 Further Discussion

The low-end server demonstrated that while DPGAS is useful in reducing cost and power for

cases when server memory is slightly throttled (as in the 16 GB and 8 GB memory cases),

it does require enough leftover memory to allocate remote memory to other servers. This

scenario illustrated a worst-case workload across eight servers when each workload reached

its maximum memory footprint at the exact same time. Realistically, this is unlikely to

happen since many workloads go through phases that require di�erent amounts of memory,

and each workload most likely is started at a di�erent time or has di�ering loads based on

time of day (as in the case of web servers).

The high-end server con�guration demonstrated both performance improvements with

DPGAS and cost and power savings due to less strict requirements on how much memory

each server could have in the 50% and 25% memory cases. This scenario seemed to show
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that by making a compromise between performance and cost and power, reasonable improve-

ments in all three areas could be made. In other words, this scenario demonstrated what

many system designers already know: performance, cost, and power should all be �rst-order

constraints, if at all possible.

Additionally, the high-end server showed better performance gains than the low-end case

simply because there was more free memory to share with remote nodes. Assuming that this

was a worst-case evaluation when all workloads were at their maximum memory footprint,

the scale out scenario with 250 servers each with 64 GB had about 10,625 GB of unused

memory. By scaling the amount of memory on some nodes back to 48 GB, substantial cost

and power reductions could be made while keeping page fault rates the same.

The two low-end (cost- and power-biased and performance-biased) server con�gurations

studied illustrated several di�erent traits. The low-end server constrained by a performance-

based metric and DPGAS was shown to improve performance but not necessarily power and

cost due to the required DRAM to keep the number of page faults closer to the overprovi-

sioned (16 GB) case. Still, reducing the total amount of memory in the system to 8 GB and

4 GB allowed for reasonable cost savings, and DPGAS was used to reduce the memory costs

for 250 overprovisioned servers by almost $60,000 total. This is still not an insigni�cant sum

when the base cost for this server was around $1,100, so the cost for these servers without

memory would be about $275,000 and DPGAS can save almost 25% of that base cost while

maintaining a low number of page faults.

Both of the server con�gurations used ended up only requiring what could normally be

required as the midpoint amount of DRAM. Not all of the benchmarks initially reviewed

were selected for a variety of reasons. Some of the trace �les gathered illustrated a phase

of the benchmark that exhibited very tight spatial locality, meaning that these trace �les

did not accurately exhibit the memory demands of the benchmark as a whole. Future work

will investigate these phases in more detail to make sure that more traces from benchmarks

with memory footprints larger than 1 GB can be included in the analysis. Additionally,

a very large server workload such as a huge database, search engine, or mapreduce (such

as in core databases, Nutch, or Hadoop) would be likely to fully utilize the large amounts
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of DRAM possible on the high-end server studied while still conforming to a reasonable

number of VMs for the number of cores available on each server (meaning that VMs would

be memory bound and not computation bound). Further e�orts will be made to study the

e�ects of DPGAS on these types of systems as the expected bene�ts make implementing

DPGAS more appealing.

5.8 Further Optimizations

Using DPGAS does not preclude using other power- and cost-saving techniques like dy-

namic voltage scaling (DVS), load-balancing, and consolidation of VMs. Ideally, combining

DPGAS with techniques like VM consolidation could be used to further improve the pow-

er/performance and cost/performance of large clusters. Here we discuss some optimizations

that have not been tested but are future areas for research.

Our prototype incorporates the usage of Gigabit Ethernet, but DPGAS is also a valid

model for other technologies, including In�niband. Although In�niband, Myrinet, and

Quadrics have exhibited much lower latencies in recent years, the introduction of 40 and 100

Gbps Ethernet is likely to continue to close the latency gap between the technologies due

to investments in lower-latency Ethernet switches that work with existing Ethernet clusters

and Fibre Channel over Ethernet (FCoE) clusters [16].

Page migration is another possible application to future studies of PGAS in order to more

e�ciently use memory. By pro�ling each application and tracking which parts of physical

memory are being used most frequently, pages can be migrated from remote nodes to local

nodes in order to improve performance for these pages. For instance, the detailed per-page

statistics of the page table simulations from this thesis showed that certain virtual addresses

are hit at a higher rate, so pages mapping these addresses should be placed in local memory

if at all possible. Further evaluation of these trends would be required to substantiate any

performance bene�ts, but it is possible that an idea like the pro�ling MMC in [4] or pro�ling

using a paravirtualized VM hypervisor (that traps all virtual to physical translations) could

be incorporated to provide dynamic performance bene�ts through page migration.
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CHAPTER VI

RELATED WORK

Other researchers have also been focused on the growing power and cost implications of large

clusters and server farms. Feng, et al [18] discussed the e�ciencies associated with large

servers and proposed a power-e�cient supercomputer called Green Destiny. Other strategies

have included dynamic voltage scaling for power-aware computing [19] with a focus on CPU

power. Raganathy, et al [50] have also suggested that power-management should take place

at the server enclosure levels so that individual systems are not overprovisioned. This study

also focused mainly on high-level CPU power management, not memory power.

However, Lefurgy's 2003 study [37] cited important reasoning behind why DRAM cost

and power should be considered as a major component in improving overall server e�cien-

cies. Additionally, this study proposed techniques for memory compression to reduce overall

memory power. Several other researchers have also begun focusing on memory power man-

agement at the architecture level, including [31], which proposes using adaptive power-based

scheduling in the memory controller, and [17] which uses power �shifting� driven by a global

power manager to reduce power of the overall system based on runtime workloads.

At the operating system level, [25] proposed a power-aware paging method that utilizes

fast MRAM to provide power and performance bene�ts. Tolentino [55] [56] also suggested

a software-driven mechanism to limit application working sets at the operating system level

in order to reduce the need for DRAM overprovisioning.

PGAS has been approached several times in the past �ve years, mostly as a method for

more e�cient use of MPI on clusters and as part of the government's high-e�ciency comput-

ing program [22]. Gasnet [5], X10 [9], and UPC [14] all are projects that are working towards

the governments goal for high-e�ciency programming languages and supercomputers. DP-

GAS is more closely related to Gasnet in that both approaches are focused on low-level or

hardware implementation PGAS, although Gasnet is still focused on providing an e�cient
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substrate for writing shared memory and MPI code rather than on increasing system ef-

�ciency. Additionally, there are several RDMA-based approaches that have attempted to

enable hardware-level remote page swapping, with the most notable attempt being [40].

An evaluation of power and cost trends similar to the ones in this thesis was evaluated

in [41], concluding that separate PCI Express-based memory blades could be used to reduce

overall memory usage and memory cost and power. [15] investigated real-world statistics

for some of the large �warehouse-sized� server farms that Google runs. This study also

proposed using dynamic voltage scaling to reduce power usage and utilizing power overheads

in these systems to deploy new compute facilities. Additionally, several recent studies have

investigated the e�ects of virtualization on server memory requirements [8] and on how

resources are allocated on large clusters and grid-based computers [54].
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CHAPTER VII

CONCLUSIONS

This thesis proposed a new abstraction called Dynamic Partitioned Global Address Space

(DPGAS) for sharing memory between server blades to help reduce the power and cost

constraints that are increasingly becoming important with designers of large clusters and

datacenters.

A hardware model to facilitate DPGAS called HyperTransport over Ethernet was de-

signed and implemented using Verilog and Xilinx FPGAs to gather timing statistics. These

performance statistics were discussed, compared to other current interconnect technologies,

and found to be reasonable at 1.3 µs for an encapsulated HT read operation and 712 ns for

an HT write operation.

A page table simulation and analytical model were then used to illustrate the perfor-

mance, cost, and power e�ects that memory sharing with DPGAS would have on two real

server con�gurations with eight servers each and two cases of a hypothetical datacenter run-

ning real workloads. The two types of scenarios tested, the scale up and scale out scenarios,

were picked to show how DPGAS addresses two of the most common ways that datacenter

designers manipulate their performance, power, and cooling costs. While it may not be ad-

visable to plan for a datacenter that only has about 25% of the physical memory needed for

worst-case workloads, the time-varying nature of workloads along with the usage of DPGAS

allows for a signi�cant reduction in the total amount of DRAM required per server blade

while preserving performance and supplementing limited on-chip bandwidth.

The analysis of these four server environments showed that DPGAS reduced cost from

10% to 30% for the low-end server scale up experiment and 10% to 19% for the high-end

server scale up experiment. Power was not reduced in the low-end server scale up due to

small power margins in the 4 GB and 2 GB low-power DIMMs that were used, but DPGAS

reduced power by 11% to 18% for the high-end server scale up experiment when compared
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to normal memory allocation schemes. The data center experiments showed that cost could

be reduced by 15% to 26% and 1% to 18% for the low- and high-end scenarios, and power

could be reduced from 14% to 25% and 7% to 17% for the low- and high-end scenarios when

using DPGAS versus normal memory allocation. Most importantly, DPGAS was shown to

be most e�ective when servers were overprovisioned (had 100% memory allocations), since it

helped to smooth out demand peaks by sharing unused memory that would normally remain

con�ned to server blade boundaries. In addition, one set of experiments was run with the

low-end server con�guration to show that DPGAS could also be used to reduce the overall

number of page faults in a system while still keeping memory provisioning constant.

Future extensions to the DPGAS model would focus more on improving memory al-

location techniques from the operating systems level and possibly incorporating dynamic

pro�ling information like that o�ered by Xen's xencontrol management library. More enter-

prise benchmarks would be useful for future studies including large server workload models

like those used in the TCP-C and SpecWeb benchmarks and in real systems that implement

web servers like Hadoop and Nutch. Finally, a high-performance port of the HToE bridge

to 10 Gbps Ethernet or In�niband would be a likely candidate for bringing about future

adoption of the DPGAS model.
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