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Information Sharing to Improve  
Retail Product Freshness of Perishables 

 
 
 
Abstract 

 
We explore the value of information (VOI) in the context of a retailer that provides a 

perishable product to consumers and receives replenishment from a single supplier. We assume a 

periodic review model with stochastic demand, lost sales, and order quantity restrictions. The 

product lifetime is fixed and deterministic once received by the retailer, although the age of 

replenishment provided by the supplier varies stochastically over time.   

Since the product is perishable, any unsold inventory remaining after the lifetime elapses 

must be discarded (outdated).  Without the supplier explicitly informing the retailer of the 

product age, the age remains unknown until receipt.  With information sharing, the retailer is 

informed of the product age prior to placing an order and hence can utilize this information in its 

decision–making.  We formulate the respective scenarios as Markov Decision Processes (MDPs) 

and measure the VOI as the marginal improvement in cost that the retailer achieves with 

information sharing, relative to the case when no information is shared. We establish the 

importance of information sharing and identify the conditions under which relatively substantial 

benefits can be realized.   

.   
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1. Introduction  

We place our research in the context of food and agribusinesses and specifically, in the 

grocery industry.  The importance of perishable goods is growing in terms of sales, SKUs, and 

the competitive importance of attracting consumers.  For supermarkets, perishables are the 

driving force behind the industry’s profitability and represent a significant opportunity for 

improvement.   Perishables account for more than half of supermarket sales or up to $150 billion 

a year, but also subject the firms to losses of up to 15 percent due to damage and spoilage.   

Further, perishables have become the order winning criteria of consumers, becoming the core 

reason many consumers choose one supermarket over another (Heller, 2002).  These are all 

powerful incentives for investment in information enabling technologies for the management of 

perishables.  Indeed many suppliers are embarking on supply chain initiatives premised on 

information technologies.  For example, 

Del Monte is focusing on making the retailer’s life easier by taking on 
more of the work through supply partnerships… Technology has been the 
key to Del Monte’s strategy – along with a sophisticated partnering 
package.  Del Monte is working with retailers on accounting, packaging, 
merchandising, and sales – shared technology that allows broader and 
richer enhancement of information. (Hennessy, 2000, p. 74) 
 

A distinguishing characteristic of perishables is that they have a finite lifetime and hence, 

the age of the products must be considered in their management.  While our research focus is on 

groceries, the management of perishable inventories is an important problem confronting many 

other industries including blood banks, food service, pharmaceuticals, chemicals, and 

increasingly, biotechnology.  Yet the grocery industry is particularly appropriate, given current 

practitioner activity and industry initiatives.  In this paper, we introduce a model that extends the 

research on perishable inventory systems by evaluating a system where the age of the 

replenishment is uncertain, the retailer orders in batches, and unmet demand results in lost sales: 
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three highly significant and relevant aspects to the management of perishables in the grocery 

industry.     

While the importance of managing perishables is growing, there has also been a growing 

interest in the value of information sharing for supply chain management (VOI) as exemplified 

by recent contributions to the academic literature by Cachon and Fisher. (2000), Lee et al. 

(2000), and Moinzadeh (2002).  Most of the current research has focused on the potential 

benefits of sharing downstream facility information with upstream facilities located closer to the 

originating suppliers.  Such information may include demands characteristics and inventory 

positions of the downstream firms.  The upstream suppliers can then incorporate this information 

into their decision making process to better match supply with demand.  In contrast, the potential 

benefits with respect to the reverse flow of information (supplier to the retailer) have received 

scant attention in the literature.  We note that both Chen (2002) and Huang et al. (2003) remark 

on the need for future research in this area.  In this respect, we extend the literature on the VOI 

sharing in this important direction. 

We address the VOI in the context of a retailer that provides a perishable product to 

consumers.    Demand is stochastic and unsatisfied demands are lost.  The retailer receives 

replenishments from a single supplier and there is a batch ordering constraint on the ordering 

decisions.  The product lifetime is fixed and deterministic once received by the retailer, although 

the age of replenishment varies stochastically over time.  These assumptions correspond to the 

widespread use of packaging highly perishable products with expiration dates.  Without the 

supplier explicitly informing the retailer of the product age, the age of any replenishment 

remains unknown until receipt.  Since the product is perishable, any unsold inventory remaining 

after the lifetime elapses must be discarded (outdated).  With information sharing, the retailer is 
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informed of the product age, prior to placing an order, and hence can utilize this information in 

its decision–making.  We formulate the respective scenarios as Markov Decision Processes 

(MDPs) and measure the VOI as the marginal improvement in profit that a retailer achieves with 

information sharing, relative to the case when no information is shared.  Given the complexity 

and computational limitations of these policies, we also introduce and test heuristic policies for 

both the information sharing and no information sharing cases.  These heuristic policies perform 

very well and allow us to extend our analysis of the VOI over a wider range of parameter values.     

Through a numerical study, we establish the importance of information sharing and 

identify the conditions under which relatively substantial benefits can be realized.  We find the 

average VOI to be 9.6% with a range from 0% to 225%.  In a sensitivity analysis, we find that 

the key drivers behind the VOI are: the expected product lifetime, the issuing policy (FIFO or 

LIFO), and the variability of both the demand and the remaining lifetime of the product upon 

receipt.  We also investigate the impact of information sharing on the supplier and the whole 

supply chain.  The rest of the paper is organized as follows.  §2 reviews the literature,  §3 defines 

the model,  §4 provides bounds on the optimal policies,  §5  presents a numerical study, §6 

introduces and tests heuristic policies,  and §7 concludes the paper with future research 

directions.   

2. Literature Review 

Our research draws on two separate research streams: the literature on perishable 

inventory theory and the value of information.  In this section, we provide a review of prominent 

research in each stream and position our study at the point of their intersection.   
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2.1 Perishable Inventory Theory 

There are two problems addressed by the literature on fixed lifetime perishable inventory 

theory that are related to the problem we address.  These include determining reasonable and 

appropriate methods for issuing inventory and for replenishing inventory.  Since inventory may 

contain units of different ages, the issuing problem focuses on the order in which units of each 

age category are withdrawn from inventory to satisfy demand.  Early work by Leiberman (1958) 

and Pierskalla and Roach (1972) address the conditions where issuing the oldest items first 

(FIFO) and youngest items first (LIFO) are optimal.  With constant product utility until 

outdating, as is the case with our research, FIFO issuing is optimal.  Even so, we also address 

LIFO inventory issuing since it is clear from practice that inventory issuing is not necessarily 

controllable by a retailer. 

Significant research has been done to derive and evaluate replenishment policies for 

items with a fixed lifetime.  Simultaneously, yet independently, Nahmias (1975) and Fries (1975) 

were the first to derive and evaluate optimal policies for perishable products with lifetimes 

greater than two periods.  In their models, the quantity of product to be outdated is expressed 

recursively in terms of previous outdates and demands. They formulate their respective problems 

as cost–minimizing dynamic programs that include both outdating and shortage costs.  In both 

cases, the optimal ordering policy is shown to be non–stationary and dependent on the age 

distribution of inventory.  Unlike our model, the product is assumed to be fresh on receipt (i.e. 

the amount of remaining lifetime upon receipt does not vary from one replenishment to the next). 

Given the multidimensional state of inventory, computation of optimal solutions using 

dynamic programs on long lifetime products is impractical since the state space expands 

exponentially with the number of possible age categories.  Hence, much of the more recent work 
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has focused on well performing heuristic policies.   More recently, Nandakumar and Morton 

(1993) and Chui (1995) provide approximations for continuous review perishable systems.  We 

also introduce well performing heuristics that are designed to evaluate the VOI in a periodic 

review system where all units do not arrive fresh at the retailer.  The remaining lifetime depends 

on the age of stock at the supplier used to satisfy a retail order. 

2.2 Value of Information  

Recently, a few articles have emerged that provide literature reviews and taxonomies that 

address the VOI for supply chain management. Sahin and Robinson (2002) and Huang et al. 

(2003) are representative examples, each providing a very broad overview of the literature and 

offering classification schemes.  Chen (2002) is notable for the depth of analysis in exploring the 

different types of information sharing and explaining and comparing the analytical results among 

several key contributions to the field.  Collectively, the reviews indicate that a preponderance of 

the research in this area focuses on the value of demand information to improve supply chain 

performance.  Representative examples include contributions by Bourland et al. (1996), Cachon 

and Fisher (2000), and Moinzadeh (2002).  Only a few studies have addressed the value of 

supply information.  For example, Chen and Yu (2002) consider the case where lead-time 

information is shared forward in the supply chain so that customers can reduce supply 

uncertainty.   

Beyond our own study, Ketzenberg and Ferguson (2003) is the only study we are aware 

of that addresses the value of information sharing in the context of perishable inventory.  The 

authors address the value of information sharing in a serial supply chain consisting of a single 

retailer and a single supplier.  Here, information is shared upstream, where the retailer shares its 

age–dependent inventory state, replenishment policy, and demand information with the supplier.  
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While we also address the value of information with respect to the supply of a perishable 

product, we examine the reverse flow of information in which the supplier shares its inventory 

state with the retailer.  Also, Ketzenberg and Ferguson (2003) model supply chains where the 

supplier’s ordering policy is highly dependent on the retailer’s actions, we model supply chain 

structures where the supplier provides for a large number of retailers.  Thus, the replenishment 

actions of a specific retailer are considered inconsequential to the choice of ordering policy of 

the supplier.  This type of scenario is more appropriate for the grocery industry.  

3. Model 

The general setting is a retailer that provides a perishable product to consumers and 

receives replenishments from a larger supplier.  We assume a periodic review inventory model, 

as this is the most common system used in the grocery industry.  The product is perishable and 

has a maximum retail product shelf life of M  periods, although the remaining shelf life at the 

time of replenishment varies between 1 and M  as we later discuss.  Throughout its lifetime, the 

utility of the product remains constant until the remaining lifetime is zero periods, after which 

the product expires and is outdated (disposed) without any salvage value.  

 The order of events each day follows the sequence: 1) receive delivery, 2) outdate 

inventory, 3) observe and satisfy demand, and 4) place replenishment order.  Retail demand is 

discrete, stochastic, and stationary over time.  Let D  denote total demand in the current period, 

with probability mass function ( )φ ⋅ , a cdf of ( )Φ ⋅ , a mean of Dµ , and a coefficient of variation 

of DC .  Unsatisfied demand is lost.  Let p be the selling price and w the per unit purchase cost 

from the supplier.  We assume that the only penalty for a lost sale is the lost margin, p-w.  A 

holding cost h  is assessed on ending inventory.  



7

 The replenishment decision q is restricted to multiples of a batch quantity Q such that 

q nQ=  in the current period, where 0,1, 2, ...n = .  The batch quantity Q  is given and fixed.  

This assumption captures certain economies of scale in transportation, handling, or packaging, 

although we do not model these economies explicitly (i.e., there is no fixed order cost).   Such an 

assumption is common in practice and the literature (see Chen 1998, Cachon and Fisher 2000, 

Moinzadeh 2002).  Although Q is exogenous in our model, we nevertheless evaluate the impact 

of this important parameter in our analysis. 

 Since the product is perishable, inventory may be composed of units with different ages.  

Let xi  denote inventory, after outdating and before demand, that expires in x periods, where 

1,  ...,  x M= .  Let ( )1 2,  ,  ..., Mi i i=i  represent the vector of inventory held at each age class and 

define 
1

M

x
x

I i
=

=∑ .    

 We separately explore both FIFO and LIFO inventory issuing policies used to satisfy 

demand.  While it is clear that FIFO issuing is optimal, generally retailers do not have explicit 

control of how demand is satisfied.  Exceptions exist however, such as the load-from-the-back 

shelving systems often used for dairy products.  When control is left to customers, they are apt to 

select the freshest products first.  

 Product ordered in period t arrives in period t+1, where t denotes the current period.  This 

is consistent with our discussions with managers in the grocery industry because delivery trucks 

from the supplier operate daily and may include a stop with as little as one days notice.  The 

retailer orders from a completely reliable exogenous supplier.  That is, the supplier has ample 

capacity so that all retail orders are fully satisfied one period later.  The remaining lifetime of 

replenishment received in any period is a discrete random variable, although all units have the 
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same remaining lifetime.  We do not model the supplier explicitly, but rather address the 

stochastic nature of the product age at the time of replenishment.  These assumptions represent 

the case of a large supplier that provides product to many independently controlled (in terms of 

ordering policies) retailers, a scenario that is common in the grocery industry today. Since the 

retailer makes up only a small portion of the supplier’s total order quantity in any given period, 

the supplier’s inventory policy is assumed to be independent of the retailer’s policy.    

 Let { },  1, 2, ...,A A M∈ , denote the remaining lifetime of replenishment associated with 

an order placed in the current period.  Further, let ( )ψ ⋅  denote its probability mass function with 

mean Aµ  and coefficient of variation AC .  Without information sharing, A  is unknown at the 

time an order is placed, although the retailer does know ( )ψ ⋅ .  Note that this scenario represents 

common practice in the grocery industry.  Retailers do not typically know the age of 

replenishment until it is received, although they can estimate the age distribution from their 

replenishment history.  We formulate the replenishment problem as an infinite-horizon dynamic 

program where the objective is to find the retailer’s optimal reorder policy so that its expected 

cost is minimized.  The linkage between periods is captured through the one period transfer 

function of the retailer’s age dependent inventory.  This transfer is dependent on the current 

inventory level, any order placed in the current period, the realization of demand D in the current 

period, and the realization A  of the remaining lifetime for any replenishment.   

 For ease of exposition, let ( ) ( )max ,0z z+ ≡  and z′  denote a variable defined for the next 

period, whereas a plain variable z is defined for the current period.  Letting ′i  denote the 

retailer’s inventory level in the next period and ( ), , ,D nQ Aτ i  denote the one period transfer 

function, then ( ), , ,D nQ Aτ′ =i i  where 
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1

1

1

1

x

x

x

z
z

x
x

z
z

i D i x A

i

i D i nQ x A

+

+

++

=

++

=

   − − ≠      ′ = 
   − − + =      

∑

∑
 for FIFO inventory issuing 

and 

1

1

2

2

x

x

M

z
z x

x
M

z
z x

i D i x A

i

i D i nQ x A

+

+

++

= +

++

= +

   − − ≠      ′ = 
   − − + =      

∑

∑
 for LIFO inventory issuing. 

 Given a starting vector of inventory i and an order quantity multiple of n, the infinite 

horizon cost-to-go, if future periods behave optimally, is g(n,i).  The order quantity multiple that 

minimizes the cost-to-go is denoted by *( )n i .  We represent the one period holding and penalty 

cost by L(I).  Formally: 

 
0

( ) ( ) ( ) ( ) ( ) ( )
I

D D I
L I h I D D p w D I Dφ φ

∞

= =

= − + − −∑ ∑ .     (1) 

We can explicitly write the infinite horizon recursion as: 

 ( ) ( )( ) ( )
1

1
0 0 1

( , ) ( ) ( ) , , , ( )
i M

D D A
g n L I nQ w i D D f D nQ A A Dφ τ ψ φ

∞

= = =

= + + − +∑ ∑∑i i  (2) 

where 

 
0

( ) min ( , )
n

f g n
≥

=i i .         (3) 

 The right hand side of equation (2) computes the total expected cost that is composed of 

the one-period holding and penalty cost, the cost of any unsold product that perishes this period, 

and the future expected cost.  Note that the expectation of current period costs are predicated 

only on ( )φ ⋅ , while the expectation of future cost is predicated on both ( )φ ⋅  and ( )ψ ⋅ .  The 
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initial state space for n is the set of positive integer values.  This formulation is similar to the 

approaches followed by Fries (1975) and Nandakumar and Morton (1993). 

4. Bounds and Policies 

 In this section, we derive lower and upper bounds on the order quantity to reduce the 

state space of our optimization problem.  We then present finite-horizon versions of equation (2) 

that provide optimal solutions for the no information sharing and information sharing cases.  

4.1 Lower bound 

 For a lower bound on the order quantity, we assume that all replenishments arrive with a 

lifetime of only one period, i.e. 1i=i .  From a perishable product standpoint, this presents a worst 

case for the retailer and raises its overage cost significantly as all unsold inventory perishes and 

can not be carried over to future periods.  In this case, the retailer’s problem reduces to a series 

of single period newsvendor problems and equations (1), (2) and (3) reduce to:  

 
0

( ) ( ) ( ) ( ) ( ) ( )
nQ

D D nQ
L n w nQ D D p w D nQ Dφ φ

∞

= =

= − + − −∑ ∑ , 

 ( ) ( )g n L n=   and 

 
0

( ) min ( )
n

f n g n
≥

= , 

resulting in the classic newsvendor solution: 1 p wq nQ
p

−  −
= ≥ Φ  

 
.   

 The underbar notation on q and n represents the lower bound solution where n  is the 

smallest integer that satisfies the inequality condition.   
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4.2 Upper bound 

 For an upper bound on the order quantity, we use the solution to the basic infinite-horizon 

periodic review system for a non-perishable product.  It is intuitive that the possibility of a 

product perishing before it can be sold raises the overage cost for the retailer.  Since the underage 

cost remains the same, the order-up-to level is smaller for a perishable product compared to a 

non-perishable product.  If no outdating occurs, the infinite horizon recursion (see Zipkin, 2000 

pg 382 – 385) becomes: 

 ( )( )
0

( , ) ( ) , , ( )
D

g n I L I nQ f I D nQ Dτ φ
∞

=

= + +∑ ,     (4) 

where (4) is simply (2) minus the outdating term and (1) and (3) are the same as in the original 

case.  The recursion is minimized when, at the end of each period, the retailer chooses the 

smallest value of n such that 1 p wI nQ
p w h

−  −
+ ≥ Φ  − + 

, giving an upper bound of q nQ= .  The 

upperbar notation represents the upper bound solution and n  is the smallest integer that satisfies 

the inequality condition.  This result is proven in Nahmias (1975).  We now define our new state 

space as N, consisting of all integer values in the range [ ],n n .  

4.3 Finite Horizon Policies 

Given the reduced state space provided by the upper and lower bounds, we proceed to 

modify equation (2) for the finite horizon case of no information sharing.  Since all inventory, 

either on hand or on order, expires within the next M periods (i.e. any decision made this period 

has no effect on the retailer’s cost in period M + 1), our problem reduces to an M-period, finite-

horizon MDP.  By assuming that the terminal cost is 1( )Mf wI+ = −i , or equivalently, the retailer 

may sell back any remaining stock at its purchase cost, the infinite horizon problem is easily 
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reduced to a finite horizon problem.  Let the superscript NIS denote the no information sharing 

case.  The M-period, finite-horizon recursion is 

 ( )
( )

( )( ) ( )
( )

1

1
0

1

, ( )
, , ,

tNIS
M tNISD
A

w i D
g n L I nQ D

f D nQ A A
φ

τ ψ

+

∞

+
=

=

  − +  = + + ∑  ∑    

i
i

 (5) 

where ( ) min ( , )NIS t t

n N
f g n

∈
=i i .  

 Since the state and decision spaces are discrete and finite and the cost is bounded, there 

exists an optimal stationary policy that does not randomize (Putterman, 1994 pg 102 - 111).  Let 

1( )NISn i  denote the optimal stationary policy of order quantity multiples.  The resulting optimal 

cost-to-go is ( )NISf i , for all 0,...,t M∈ .    

 With information sharing, the retailer knows A  prior to placing an order in the current 

period.  In this case, the state space is expanded to include this information.  Let the superscript 

IS denote the information sharing case.  The M-period, finite-horizon recursion is: 

 ( )
( )

( )( ) ( )
( )

1

1
0

1

, , ( )
, , , ,

tIS
M tISD

A

w i D
g n A L I nQ D

f D nQ A A A
φ

τ ψ

+

∞

+
=

′=

  − +  = + + ∑  ′ ′∑    

i
i

 (6) 

where ( , ) min ( , , )IS t IS t

n N
f A g n A

∈
=i i .  

 Let 1( )ISn i  denote the optimal stationary policy of order quantity multiples.  The resulting 

optimal cost-to-go is ( , )ISf Ai , for all 0,...,t M∈ .   Note that while A  is known with respect to 

any order placed in the current period, this information is not known for subsequent periods. 

Hence, the state transition probability from state ( ), Ai  to state ( ), A′ ′i  is predicated on both 

( )φ ⋅  and ( )ψ ⋅  just as it is in the optimization of equation (5) for the no information sharing case. 
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Since expected profit is a more appropriate metric for the grocery industry, we interpret 

the VOI in terms of a change in expected profit due to information sharing by a simple 

conversion of our cost minimizing policies.  Our switch to a profit maximization problem is 

simplified by the fact that we set the cost of a lost sale equal to the lost margin.  Thus, the 

optimal ordering quantity multiples 1( )NISn i  and 1( )ISn i  are equivalent for both the cost 

minimization and profit maximization problems.  Letting ( )NISπ i  and ( , )IS Aπ i represent the 

optimal expected profits from the stationary policy for the no information sharing and 

information sharing cases respectively, we have:       

( ) ( )   and    ( , ) ( , )NIS NIS IS IS
D Dp f A p f Aπ µ π µ= − = −i i i i  . 

In the next section, we explore the VOI through an extensive numerical study.  We use 

value iteration to compute the results for the respective MDPs and then solve the accompanying 

state transition matrices using the method of Gaussian elimination to evaluate steady state 

behavior as described in Kulkarni (1995, p. 124).   

5. Numerical Study 

We evaluate the VOI, measured as the % improvement in expected retailer profit, relative 

to the case where information is not shared.  Specifically, define 

 
( )( ) ( , )

( )

NIS IS

NIS

A
VOI

π π

π

−
=

i i
i

. 

Consumer demand ( )φ ⋅  corresponds to a truncated negative binomial distribution with a 

maximum value of 50  (any probabilities for demand values exceeding 50 are redistributed 

proportionately within the truncated limit of the distribution).  See Nahmias and Smith (1994) 

regarding the advantages of assuming negative binomial distributions for retail demand.    
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The maximum product lifetime M  is 5 periods, although the age of receipts A  varies 

according to ( )ψ ⋅ .  The distribution ( )ψ ⋅  is derived randomly using Excel Solver as follows:  

The allowable range for A  are integers between 1 and M , and we set the probabilities for each 

integer to achieve the desired Aµ  and AC .  There is not a unique distribution that satisfies these 

constraints, but through a series of numerical tests, we have observed that the shape of the 

distribution has no measurable impact on the results.  This method is analogous to the approach 

previously tested and used in Souza, et al. (2002).   

Each period represents a day and the holding cost is 25% of the purchase cost, measured 

on an annual basis.   We consider a set of experiments that comprise a factorial design for all 

combinations of the following parameters: 

{ }3, 4Dµ ∈      { }0.60,0.75,0.90DC ∈    { }1,2, 4,6Q∈  

{ }2,3, 4Aµ ∈    { }0.2,0.3,0.4AC ∈    { }0.4,0.55,0.70w∈  

Our selection of parameter values reflect a broad range of situations for many short life-

time products that include deli items, fresh cut produce, packaged meats and seafood, as well as 

many packaged produce items (Raper, 2003 and Pfankuch, 2004).  These include low and high 

demand variability, small and large batch sizes (relative to mean demand), low and high 

variability in the age of replenishment, and low and high-priced inventory.  While the mean 

demand rates are low, they are reasonable, particularly given the ever-increasing number of 

products over which demand is spread (Kollars, 2001).  At the same time, our selection is 

constrained by the computational feasibility of the resulting MDP, since the size of the state 

space expands exponentially with the vector of age–dependent inventory.   

We duplicate the full set of 648 experiments contained in our factorial design for the two 

inventory issuing policies we explore: LIFO and FIFO.  Hence, there are a total of 1,296 
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experiments with which we explore the VOI.  In §5.1, we discuss our general observations, in 

§5.2 we report the results of our sensitivity analysis, and in §5.3 we evaluate the impact of 

information sharing on the supplier. 

5.1 Computational Results and General Observations 

In general, we find that the sharing of supply information enables a retailer to purchase 

considerably fresher product and consequently, information can be quite valuable.  In Table 5.1 

we report the VOI at given percentiles of the set of 1,296 experiments evaluated.  For example, 

the 0.50 percentile denotes the median values for VOI.  Across experiments, the range of the 

VOI is between 0% and 225%, with a mean of 9.6% and a median of 6.1%.  We also report 

additional performance measures of interest that include the percentage change in the average 

remaining product lifetime of receipts, remaining product lifetime at the point of sale, level of 

outdating, and service (fill-rate), where all measures are relative to the no information sharing 

case.  Note that the values for each performance measure are ranked according to the percentile 

(from lowest to highest) and not according to the VOI.   

% Change in 

Percentile VOI 
Lifetime of 
Receipts 

Lifetime of 
Sales Oudating Service 

0.00 0.0% 0.4% -14.7% -83.8% -32.8% 
0.05 1.4% 3.9% -4.7% -61.0% -4.4% 
0.10 1.8% 4.7% -3.3% -53.1% -1.6% 
0.25 3.4% 6.6% -0.7% -37.8% -0.1% 
0.50 6.1% 11.9% 1.4% -22.6% 0.8% 
0.75 11.6% 17.6% 3.6% -11.6% 2.5% 
0.90 20.5% 22.2% 6.1% -2.3% 5.5% 
0.95 26.9% 24.7% 7.9% 0.0% 7.6% 
1.00 224.6% 36.1% 18.2% 0.0% 32.5% 

Table 5.1: Performance measures at percentiles of the 1,296 experiments 

 
Although it is clear from Table 5.1 that the VOI can at times be large, the range that is 

reported also reveals that any realization of value is sensitive to model parameterization.  Below, 
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we first discuss the drivers of value and follow with a sensitivity analysis to understand the 

conditions in which information sharing is most beneficial. 

In general, we find that a retailer, by using the supplier’s age of inventory in its 

replenishment decision, will increase the expected lifetime of its replenishment by ordering more 

in periods when the supplier has fresher product and less in periods when the supplier has older 

product.  On average, the expected improvement in replenishment lifetime increases from 3.0 

days to 3.4 days (13.3%).  In turn, the level of outdating that arises from product expiration 

decreases from an average of 0.48 units per period to 0.37 (-22.9%).  

The improvement in product freshness is not necessarily shared with consumers.  

Although on average consumers realize a 1.4% improvement in the remaining lifetime at the 

point of sale, it ranges from -14.7% to 18.2% as shown in Table 5.1.  We find that the change in 

product freshness to consumers is largely a function of a change in retailer service.  When the 

service level increases, average inventory levels also increase so that product freshness decreases 

at the point of sale.  On average, the retailer observes a slight improvement in the expected 

service fill rate (1.0%) since the expected cost of over–stocking, relative to the opportunity cost 

of a lost sale, is reduced with a fresher product.   Yet this is not always the case as shown in 

Table 5.1 where we observe that the service fill-rate actually decreases in approximately 25% of 

the experiments.  We find that information sharing enables a systematic tradeoff between a 

decrease in the cost of outdating and an increase in profit contribution due to higher service 

levels so that at times service, is sacrificed for a very significant savings in outdating.  On 

average, we observe that 82% of the improvement in average expected profit arises from a 

reduction in outdating and 18% arises from higher service.   In Figure 5.1, we present the 
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average change in outdating cost and the average change in profit contribution at fixed intervals 

of the VOI.  Note that the outdating cost is reported in absolute values for ease of comparison.  
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Figure 5.1: The Components of the VOI 
 

As Figure 5.1 illustrates, a reduction in the cost of outdating is largely responsible for the 

VOI that we observe across experiments.  Generally, the improvement in outdating is 

accompanied by a much smaller improvement in service, although we do find that the increase in 

profit contribution exceeds the reduction in outdating cost in approximately 10% of the 

experiments.   We elaborate below with a sensitivity analysis.  

5.2 Sensitivity Analysis 

In Table 5.2, we report the average VOI across all 1,296 experiments for each fixed 

parameter value.  In addition, we report the associated average change in the cost of outdating, 

the average change in profit contribution, and the average change in the retailer’s order size.  

Corroborating our prior results, we find the VOI is largely a function of a decrease in the cost of 

outdating and there is virtually no sensitivity or pattern that we can observe with respect to 

changes in profit contribution that arise from a change in service fill-rate.  The VOI itself is 
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largely a function of product perishability, the ability of the retailer to match supply with 

demand, and the drivers of retail profitability as we explain below.   

Parameter Value VOI ∆ Contribution ∆ Outdating Cost ∆ Order Size 
FIFO 10.4% $0.01 $0.07 -0.10 Issue Policy LIFO 8.9% $0.01 $0.05 -0.06 

3 10.8% $0.01 $0.06 -0.07 Mean Demand 4 8.5% $0.02 $0.07 -0.09 
.60 7.5% $0.01 $0.06 -0.09 
.75 9.8% $0.02 $0.06 -0.07 Demand CV 
.90 11.6% $0.02 $0.07 -.0.08 
2 11.8% $0.01 $0.08 -0.08 
3 9.8% $0.02 $0.06 -0.05 Expected 

Lifetime 4 7.4% $0.01 $0.05 -0.11 
.2 3.7% $0.01 $0.03 -0.04 
.3 9.0% $0.01 $0.06 -0.07 Age CV 
.4 16.2% $0.02 $0.10 -0.13 

0.40 3.9% $0.01 $0.05 -0.09 
0.55 7.4% $0.01 $0.06 -0.08 Product Cost 
0.70 17.7% $0.01 $0.07 -0.06 

1 7.6% $0.02 $0.05 -0.04 
2 7.6% $0.02 $0.05 -0.03 
4 8.7% $0.02 $0.06 -0.07 Batch Size 
6 14.7% $0.00 $0.09 -0.18 

Table 5.2: Sensitivity of the VOI to Parameters 
 

5.2.1 Product Perishability 

As shown in Table 5.2, the VOI is larger as the expected lifetime of the product at 

replenishment Aµ decreases.  When the product lifetime is short, improvements in product 

freshness have a larger impact than when the product lifetime is long.  Improvements in product 

freshness reduce the potential for outdating, allowing the retailer to carry more inventory for the 

same amount (or less) of product outdating. 

In contrast, long product lifetimes result in smaller VOI since the prospect of outdating is 

small.  In this scenario, service levels are higher and outdating is lower so that any improvement 

in product freshness will not materially change the retailer’s behavior.  To see this, consider the 

extreme case of a non-perishable product.  Here, there is no outdating and information sharing 
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has no effect on retailer behavior because product freshness is no longer material to the problem.  

Consequently, the VOI is zero. 

The issuing policy that is used to satisfy demand is another aspect of product perishability 

that impacts retailer behavior and hence the VOI.   We find that the VOI is higher with FIFO 

issuing.  In Table 5.3 we report the average expected values for retailer profit across experiments 

for both issuing policies and each level of information sharing. 

 LIFO FIFO % Change 
Without Information $1.01 $1.15 13.9% 
With Information Sharing $1.10 $1.27 15.5% 
% Change 8.9% 10.4%  
Table 5.3:  Comparison of LIFO versus FIFO Issuing Policies 

 

Since the impact of perishability is greater with LIFO issuing, we would expect that the 

VOI would also be greater with LIFO issuing.  Although we do find that in 35%  

of the cases the VOI is indeed greater, the results in Table 5.3 and in the majority of experiments 

show that the VOI can be substantially larger with FIFO issuing.  We find that the difference is 

greatest at low values for AC ,  DC , Aµ , and higher values for Dµ .  

To better understand these results, it is necessary to dig deeper into the underlying factors 

that drive profitability with each policy.  With FIFO issuing, the retailer has better control of its 

inventory so that product outdating is minimized and it is profitable to maintain an 85% service 

fill rate without information sharing.  With information sharing, the freshness of replenishment 

increases by 14.1% and consumers realize a corresponding increase of 2.2% in product freshness 

at the point of sale.  The key is that in any replenishment period, an improvement in the freshness 

of replenishments decreases the likelihood of product outdating in future periods. 

Now with LIFO issuing, the retailer has inherently less control of product outdating so 

that the cost of holding inventory is greater than we observe with FIFO issuing.  Consequently, 



20

the retailer maintains a lower service level on average (80% fill rate) without information 

sharing.  Just as with FIFO issuing, when information is shared, it results in an improvement in 

the freshness of replenishment.  Yet here, any improvement will not necessarily result in a 

decrease in product outdating because consumers buy the freshest product first.  Moreover, any 

new replenishment may increase the likelihood of outdating product that is already in stock.  

Hence, with LIFO issuing the retailer is more constrained in its ability to take advantage of a 

fresher product replenishment.    Thus, we find that the improvement in product freshness with 

information sharing is on average 11.2%, which is 20.5% less than that observed with FIFO 

issuing.   

 As a final point, it is interesting to note that retailer profitability generally increases by a 

much larger percentage by switching from LIFO to FIFO than from information sharing.  Only in 

approximately 10% of the cases do we find that VOI is greater than switching from LIFO to 

FIFO and these instances, not surprisingly, correspond to where the VOI is greatest – low 

expected product lifetime, high variability in the age of receipts, high product cost, large batch 

size, and high demand variability.  This result indicates that retailers who have not implemented 

FIFO may be better off trying to do so first, before making investments in information sharing. 

5.2.2 Matching Supply and Demand 

Two factors that affect the retailer’s ability to efficiently match supply with demand are 

demand uncertainty, measured as the coefficient of variation in demand DC , and the batch size 

Q.  As shown in Table 5.2, the VOI increases with respect to both parameters.  This occurs 

because the potential for product outdating increases when either demand is more uncertain or 

the replenishment batch size is larger.    To demonstrate, consider an extreme case where 0AC =  

and 1Q = .  Demand is deterministic and the retailer orders D units every period.  In this 
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scenario, the retailer fully satisfies demand and incurs no inventory related costs.  Hence, VOI is 

zero. 

 Another related factor that impacts the retailer’s ability to match supply and demand is 

the inherent uncertainty with respect to supply, as measured by the coefficient of variation in the 

age of replenishment AC .  We observe the same, if not stronger, relationship between supply 

uncertainty and the VOI as we do between demand uncertainty and the VOI.  That is, the more 

uncertainty there is with regard to the age of replenishment the higher the VOI.  Again, an 

extreme example is sufficient to demonstrate.  Consider the case where 0AC = .  Here, there is no 

variability over time with respect to freshness of replenishment and hence the VOI is zero. 

5.2.3 Drivers of Retail Profitability 

Since ( )NISπ i  resides in the denominator of the VOI equation, we find that when  ( )NISπ i  

is small, the VOI is larger than when ( )NISπ i  is large.  Clearly on a relative basis, even small 

changes will be more pronounced when the denominator is small.  Hence, we find tat the VOI 

increases with respect to parameter values that induce a low level of profitability in the no 

information sharing case.  Most notable among these include a low mean demand rate and a high 

product cost.  For example, as the product cost increases from $0.40 per unit to $0.70 per unit, 

the average expected profit decreases from $1.60 to $0.58.  This significant reduction in the 

denominator of the VOI equation is largely responsible for the increase in the VOI as the product 

cost increases.  Notice that while the total improvement in expected profit due to information 

sharing also increases as the product cost increases (from $0.06 to $0.08), the change in the 

denominator clearly pronounces the relationship.   
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5.3 Impact on the Supplier 

Our analysis would not be complete without an analysis on the impact of information 

sharing on the supplier.  While the supplier is exogenous to the model, we can nevertheless 

measure the impact that information sharing has on its performance by considering the net 

change in expected retail orders.  Across experiments, we observe a range of between –25.8% 

and +34.0% and a mean of –2.0% in the change in expected size of retail orders per period.  The 

size of the change depends largely on the relative improvements in retailer outdating and retailer 

service.  Improvements in retailer outdating translate to a decrease in orders to the supplier while 

improvements in service translate to an increase in orders to the supplier.  In 27% of the 

experiments, the average expected order size to the supplier increases.   

Generally, however, the reduction in unit outdating is greater than the increase in units of 

satisfied demand so that the supplier is worse off on average.  In Table 5.4 we report the impact 

that information sharing has on the supply chain by reporting, at given percentiles across the 

1,296 experiments, the change in orders to the supplier and the change in supplier revenue.  We 

also report the impact on both the supplier’s expected profit and the combined expected profit for 

both the retailer and the supplier.  We do so by evaluating two cases: one in which the supplier’s 

product margin is 10% and another in which it is 50%.  This provides a relative comparison 

between cases when the supplier is a distributor (low margin) and a manufacturer (high margin). 
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Supplier Combined 

Percentile 
 

∆ Order 
 

∆ Revenue
∆ Profit  

(10% Margin) 
∆ Profit  

(50% Margin) 
∆ Profit  

(10% Margin) 
∆ Profit  

(50% Margin)
0.00 -0.82 -0.54 -0.05 -0.20 0.00 -0.15 
0.05 -0.36 -0.22 -0.02 -0.11 0.02 -0.01 
0.10 -0.27 -0.14 -0.01 -0.07 0.02 0.00 
0.25 -0.15 -0.07 -0.01 -0.04 0.03 0.02 
0.50 -0.06 -0.03 0.00 -0.02 0.06 0.05 
0.75 0.01 0.00 0.00 0.00 0.10 0.08 
0.90 0.10 0.06 0.01 0.03 0.13 0.12 
0.95 0.16 0.09 0.01 0.05 0.15 0.15 
1.00 0.86 0.48 0.05 0.24 0.23 0.34 

Table 5.4: Impact of information sharing on the supply chain 
 

As sown in Table 5.4, while the supplier is worse off in a preponderance of the cases, 

total supply chain profits are almost always higher under information sharing.  Only with the 

assumption of a high supplier product margin (and then only in 70 of the 1,296 experiments) do 

we find that the combined change in profitability of the retailer and supplier is negative.  There is 

no clear pattern to these cases except that they all occur with a product cost of $0.70w = , an 

expected lifetime of 2Aµ = , and LIFO issuing.  With a small retailer product margin and a large 

supplier product margin, a significant reduction in outdating can have a greater negative impact 

on the supplier than a positive impact on the retailer.  Nevertheless, the viability of information 

sharing rests with the aggregate performance of hundreds if not thousands of perishable products 

and the results make clear that even with a high supplier product margin, total supply chain 

profitability increases in approximately 95% of the cases.   

Since the supplier is generally worse off, some form of contract beyond the normal price-

only contract is needed to induce the supplier to participate in the information sharing.  Cachon 

and Lariviere (2003) discuss revenue sharing contracts, where the product is sold to the retailer at 

the supplier’s cost and the retailer shares a pre-determined percentage of the revenue with the 

supplier.  The percentage of revenue shared is generally set such that the contract is pareto 
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improving.  Given the widespread use of scanners in the retail industry, the cost of implementing 

and monitoring such a contract should not be prohibitive. 

6. Heuristic Policies 

In this section, we introduce, test, and explore the relative performance of heuristic 

policies.  Clearly, the policies introduced in §3 are impractical to implement for larger sized 

problems given that the size of the state space expands exponentially with the age dependent 

vector of inventory.  Hence, our purpose here is to develop policies that enable a broader 

evaluation on the VOI and that are more relevant to practice. 

 In §6.1 we define two heuristic policies that correspond to the two optimal policies for 

no information sharing and information sharing.  In §6.2 we demonstrate through a series of tests 

that not only do these policies perform extremely well, they also qualitatively exhibit the same 

relative performance in terms of the VOI.  Finally, in §6.3 we further our analysis on the VOI by 

using these policies in an extended numerical analysis of problems sized much larger than those 

explored in §5.   

6.1 Heuristic Policies 

The structure of the heuristic policies is predicated on a balance between simplicity and 

performance.   Since a retailer can place an order each day and the lead-time is one day, the 

heuristics represent a myopic policy.  That is, the order decision rests on whether sufficient stock 

exists in the current period that will carry over and minimize expected cost in the next period 

only.  If sufficient stock exists, then the decision to order is postponed to the next day.   

To begin, a major component of the heuristic policies is the one period loss function 

( )L I .  This function does not take into account the cost of product outdating however.  To do 
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so, we introduce a new function.  Let ( )toutdate i  denote the total estimated outdating cost 

associated with inventory i , t days in the future from the current period, where { }1, 2, ...,t M∈ .   

Hence, ( )1outdate i  denotes the total estimated future outdating cost of inventory i  in the next 

period.  Formally, we have 
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 With ( )toutdate i  and the one period loss function ( )L I , we have the two essential 

components of our heuristic cost-to-go function ( )g i  where 

 ( )1( ) ( )g L I outdate= +i i . 

 Now, let ( )HNISf i  denote the minimum total estimated cost for the Heuristic No 

Information Sharing policy (HNIS), where   

 ( ) ( )( ) ( ) ( )
0 1

min , , ,
M
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n N D A
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For the Heuristic Information Sharing policy (HIS), we simply add the age of replenishment to 

the state space so that 

 ( ) ( )( ) ( )
0
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While the heuristic policies, as defined, operate with the same state space as the optimal 

policies, they have two distinct advantages.  First, the computational time is a fraction of that 

required for the corresponding optimal solution allowing larger problems to be solved.  Second, 

it is not necessary to solve for all states simultaneously, except when evaluating the total 

expected cost in steady-state (i.e. performance evaluation).  Hence, from a practical perspective, 

the policies are extremely fast and straight-forward to implement.  Perhaps most importantly, 

they provide near optimal performance as we discuss below. 

6.2 Comparison of Heuristic Policies to Optimal Policies 

We test the heuristics by comparing their cost performance with the optimal policies.  To 

do so, we use the full set of 1,296 numerical examples defined for the experimental design in §5 

and employ the same solution procedure, except of course, we substitute the optimal policies 

with the heuristic policies for each state.  We measure the performance of each heuristic policy 

by taking the percentage difference in expected profit, relative to the corresponding optimal 

policy.  Overall, the results are very good.  The no information sharing heuristic achieves, on 

average, a total expected profit that is 0.8% less than optimal and the information sharing 

heuristic achieves, on average, a total expected profit that is 1.7% less than optimal.  We report 

the performance at selected percentiles of the 1,296 test cases in Table 6.1. 
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Percentile
No Info 

Heuristic 
Info Sharing

Heuristic 
0.00 0.0% 0.0% 
0.05 0.0% 0.2% 
0.10 0.0% 0.4% 
0.25 0.2% 0.9% 
0.50 0.4% 1.5% 
0.75 1.0% 2.3% 
0.90 1.9% 3.4% 
0.95 3.0% 4.3% 
0.99 5.0% 6.5% 
1.00 9.2% 9.8% 

Table 6.1: Heuristic Performance 
 

As shown in Table 6.1, the worst-case performance is less than 10% from optimality for 

both heuristics and is less than 5% from optimality in over 95% of the test cases.  We were not 

able to identify any patterns in the results to explain why the performance under a few sets of 

parameter values was worse than others.  In a second test, we compared the VOI achieved with 

the heuristics to that of the optimal policies.  The average VOI of the heuristics across all 1,296 

examples is 8.7%, or 0.9% less than reported for the optimal policies.  This is not unexpected as 

the performance of the information sharing heuristic is also, on average, 0.9% further from 

optimality than the performance of the no information sharing heuristic.  Hence, we would 

expect that the VOI to be underestimated by the heuristics.   Moreover, a thorough comparison of 

the heuristic VOI to the optimal VOI, across parameter dimensions, demonstrates the same 

qualitative relationships.  To demonstrate, in Table 6.2 we provide a side-by-side comparison of 

the average heuristic VOI and the average optimal VOI for all parameters and their values used 

in the test cases.   From the basis of these comparisons, we consider the heuristic policies to be 

well suited for our purposes and proceed to support and extend our analysis on the VOI. 
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Parameter Value Heuristic VOI Optimal VOI 
FIFO 9.6% 10.4% Issue Policy LIFO 7.7% 8.9% 

3 9.9% 10.8% Mean Demand 4 7.4% 8.5% 
.60 6.5% 7.5% 
.75 8.8% 9.8% Demand CV 
.90 10.6% 11.6% 
2 10.6% 11.8% 
3 9.4% 9.8% Expected Lifetime 
4 6.0% 7.4% 
.2 3.2% 3.7% 
.3 7.7% 9.0% Age CV 
.4 15.0% 16.2% 

0.40 2.9% 3.9% 
0.55 6.2% 7.4% Product Cost 
0.70 16.8% 17.7% 

1 6.5% 7.6% 
2 6.8% 7.6% 
4 7.3% 8.7% Batch Size 
6 14.1% 14.7% 

Table 6.2: Heuristic VOI compared to optimal VOI 
 

6.3 Extended Analysis 

We use the heuristics to explore the VOI in the context of problems sized much larger 

than those evaluated in §5.  With the optimal policies and the bounds developed in §4, we are 

able to solve problems up to approximately four million states expediently.  While this may 

sound considerable in itself, we are nevertheless limited to evaluating examples with small mean 

demand rates and small batch sizes.  Here we explore problems with larger mean demand rates 

and a larger batch size.  Specifically, we consider a set of experiments that comprise a factorial 

design for all combinations of the following parameters: 

{ }5,6,7Dµ ∈      { }0.5,0.6,0.7DC ∈    { }2, 4,8Q∈  

{ }2,3, 4Aµ ∈    { }0.2,0.3,0.4AC ∈    { }0.4,0.55,0.70w∈  

As in the prior analysis, we duplicate the factorial design for each of the two issuing 

policies so that there are a total of 1,458 experiments. The age distribution ( )ψ ⋅  in each 
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experiment is determined randomly to achieve the chosen mean and coefficient of variation 

using the same procedure as described in §5.  The maximum product lifetime M is 5 days and 

the holding cost rate is fixed at 25% of the product cost. 

As one can see for the set of parameter values, we remain restricted in our choice of 

values due to the size of the state space because it is necessary to compute the heuristic policies 

for every viable state and then solve for steady state probabilities.  To a large extent, computer 

memory, not computing speed is the limiting factor.  Consider that with a product lifetime of five 

days, a mean demand rate of seven, and a coefficient of variation in demand equal to 0.7, there 

are approximately 32 million states to evaluate.  Smart computing, using the bounds on the 

decision space as defined in §4 helps considerably and we can solve this problem in less than 20 

minutes.  Yet, it remains infeasible to extend our analysis to product lifetimes of six days.  

Consider that by doing so, the state space would exceed 888 million.  This is not to say, however, 

that the heuristic policies could not be extended to these problems.  In practice, it is only 

necessary to solve for a single state.  

In general, the results on the VOI for this set of experiments provide the same insights as 

those in §5.  The mean VOI across all 1,458 experiments is 4.1%, with a range between 0.0% 

and 64.0%.  While the mean and range are smaller than observed with the optimal policies, this 

is not unexpected given both the larger mean demand rates we explore here and the performance 

of the heuristics themselves.  In Table 6.3 we present the results of a sensitivity analysis where 

we report the average expected VOI for each parameter and value. 
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Parameter Value VOI 
FIFO 4.8% Issue Policy LIFO 3.5% 

5 4.5% 
6 3.8% 

 
Mean Demand 

7 3.7% 
.50 3.4% 
.60 4.1% Demand CV 
.70 5.4% 
2 6.4% 
3 3.6% Expected Lifetime 
4 2.4% 
.2 1.8% 
.3 3.8% Age CV 
.4 6.9% 

0.40 1.5% 
0.55 3.3% Product Cost 
0.70 7.6% 

2 4.1% 
4 3.6% 

 
Batch Size 

8 4.8% 
Table 6.3: Sensitivity Analysis 

 
Except for the smaller reported values for the VOI, qualitatively, the results are nearly 

identical to that observed in our sensitivity analysis of the optimal policies.  The only difference 

we observe is that the VOI in this test, does not increase monotonically with respect to the batch 

size, although the VOI is largest for the largest batch size.   

7. Conclusion 

In this paper, we study the benefits of information sharing to a retailer that sells a 

perishable product with a fixed lifetime and is constrained to order in fixed lot sizes.  We first 

propose a policy for the retailer under no information sharing and then provide an exact analysis 

for expected cost.  We compare these results to ones obtained with information sharing using a 

numerical study and find that the retailer benefits the most from information sharing when:  1) 

the variability of the retailer’s replenishment lifetime is high, 2) product lifetimes are short and 

batch order quantities are large, and 3) uncertainty in demand is significant and batch order 

quantities are large.  We also find that information sharing is generally more beneficial when 
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demand is satisfied with a FIFO issuing policy than with a LIFO issuing policy.  In fact, we 

observe that it is generally more profitable to switch from LIFO to FIFO issuing (if possible) 

than from sharing information. 

The average improvement from information sharing is 9.6%.  The benefits of information 

sharing, however, are not necessarily shared with the supplier.  Although the supplier is 

exogenous to our model, we observe that information sharing can result in a net decrease in 

retailer replenishment orders due to a reduction in the amount of retailer outdating.  The benefits 

of information sharing to the whole supply chain however are almost always positive, indicating 

the possibility exist for pareto improvement through some form of coordination contract.   

There are a number of important issues left to be addressed.  First, we have not addressed 

the impact that holding fresher product has on retail sales.  As mentioned earlier, the availability 

of perishable products is an order winning criteria of consumers.  It is reasonable to assume that 

a firm carrying fresher product will observe higher demand and or higher margins than one that 

carries older product.  We expect that the inclusion of this important relationship will only 

increase the value of information sharing.  Other areas left for future research include models 

that address longer or stochastic lead times, random issuing policies, and non-stationary demand. 
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