
Neural Network Augmented Kalman Filtering in the 
Presence of Unknown System Inputs 

Ramachandra J. Sattigeri *  
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 

 Anthony J. Calise†

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 

We present an approach for augmenting a linear, time-varying Kalman filter with an adaptive neural 
network (NN) for the state estimation of systems with linear process models acted upon by unknown inputs. 
The application is to the problem of tracking maneuvering targets. The unknown system inputs represent the 
effect of unmodeled disturbances acting on the system and are assumed to be continuous and bounded. The 
NN is trained online to estimate the unknown inputs. The training signal for the NN consists of two error 
signals. The first error signal is the residual of the Kalman filter that is augmented with the NN output. The 
second error signal is obtained after deriving a linear parameterization model of available system signals in 
terms of the ideal, unknown NN weights that linearly parameterize the unknown system inputs. The 
combination of two different sources of error signals to train the NN represents a composite adaptation type 
approach to adaptive state estimation. The approach is applied in a vision-based formation flight simulation 
of a leader and a follower unmanned aerial vehicle (UAV). The adaptive estimator onboard the follower UAV 
estimates the range, azimuth angle, and elevation angle to the leader UAV, the derivatives of these LOS 
variables, and the unknown leader aircraft acceleration along the axes of the Cartesian coordinate inertial 
frame. Simulation results with the presented approach are greatly improved when compared to those 
obtained with just a linear, time-varying Kalman filter and a particular adaptive state estimation method that 
utilizes just one source of error signals to train the NN [17]. 

I. Introduction 
HE problem of tracking maneuvering targets has received a considerable degree of research effort over the 
decades in the field of estimation. The primary objective of target tracking is to estimate the state trajectories of 

a moving object. One of the major challenges for target tracking arises from target motion uncertainty. This 
uncertainty refers to the fact that an accurate dynamic model of the target being tracked is not available to the 
tracker. Specifically, even though the general form of the model is known, the tracker lacks knowledge about the 
actual control input of the target, also referred to as the target maneuver. In addition, any measurements of the target 
being tracked are corrupted by noise and time delays. A Kalman filter is usually used in the tracking problem but its 
performance may be seriously degraded unless the estimation error due to unknown target maneuvers is 
compensated. Two different approaches have been widely used to handle the case of unknown target maneuvers: 
model-based adaptive filtering and input estimation. 

T 

 Various mathematical models of target motion have been developed over the past three decades. The models 
may: 1) approximate the actually nonrandom target maneuver as a random process of certain properties, or 2) 
describe typical target trajectories by some representative motion models with properly designed parameters. In the 
class of models where the target maneuver is modeled as a random process, the simplest model is the so-called 
white-noise acceleration model 1. This model assumes that the target acceleration is an independent, white noise 
process. The intensity of this white noise can be adjusted online, which is the basis of some adaptive Kalman filter 
based target tracking algorithms 2-4. Ref. [2] suggested a method in which the process noise covariance matrix can be 
estimated from the lagged prediction error covariance. This estimate is then directly utilized to compute the Kalman 
gain. Ref. [3] suggested techniques to independently estimate both the measurement noise covariance matrix and the 
process noise covariance matrix. The process noise covariance matrix is estimated by adjusting its value such that 
the statistics of the filter residual approach those of the optimum Kalman filter. Ref. [4] provided a procedure for 
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adaptive computation of the process noise covariance matrix in an EKF for ballistic target tracking. The second next 
simplest model for target maneuver is the so-called white noise jerk model 1, which assumes that the derivative of 
the acceleration of the target is an independent, white noise process. While the white noise models have the 
advantage of simplicity, they rarely capture to a sufficient degree the full range of maneuvers that targets are capable 
of performing. For many applications, a better approach is to use Markov process models. An example is the Singer 
model 5 which assumes that the target acceleration is a zero-mean first-order stationary Markov process. This 
formulation of the target maneuver model suppresses the bias in the state estimates to a certain degree but can 
exhibit poorer performance than simpler models when there is no target maneuver. More sophisticated approaches 
include the variable-dimension filter approach 6 in which extra states are introduced in the filter when an input is 
detected and the interacting multiple model (IMM) technique 7 in which the change of the plant is modeled as a 
Markovian parameter having a transition probability. Kinematic approaches to modeling the target maneuver 
include the circular motion model 8 and the more general curvilinear motion model 9. Another technique has been to 
incorporate kinematic constraints as a pseudo-measurement in the Kalman filter 10. An example of kinematic 
constraint is that the acceleration vector is always perpendicular to the velocity vector for a constant speed target. A 
comprehensive survey on target tracking using target models is given in Ref. [11]. In general for the model-based 
approaches to target state estimation, filter performance may not be satisfactory when the target maneuver does not 
comply with the model, and every approach can be defeated with a suitably chosen target maneuver. 
 Input estimation is a different approach in which the existence of target maneuvers is first detected and then the 
magnitude of the target maneuver (input) is estimated 12-15.  Ref. [12] proposes an input estimation technique using 
the least-squares method to calculate the input magnitude. Ref. [13] derives a recursive input estimation technique 
based on multiple-model filtering. Ref. [14] proposes a technique in which the unknown target maneuver is modeled 
as a linear combination of basis functions, which are some elementary functions of time. The coefficients of each 
basis function are estimated. Ref. [15] employs a constant velocity filter, an input estimator and a maneuver detector 
implemented in parallel. This filter structure is similar to that of the two-stage Kalman filter 16 where the target 
acceleration is treated as a “bias” term. In the two-stage Kalman filter approach, two filters are implemented in 
parallel. A constant velocity filter represents the “bias-free” filter and the acceleration filter represents the “bias” 
filter 16. 
 Ref. [17] presents an approach for augmenting an Extended Kalman Filter (EKF) with a NN for adaptive state 
estimation of uncertain nonlinear systems. The NN is trained online with the residuals of the EKF and is designed to 
estimate the unknown target maneuvers in real-time and compensate the EKF. However, in a particular application 
of this approach, we found it difficult to identify a fixed set of NN design parameters that could give reasonable 
target acceleration estimates for varying target maneuvers. This in turn gave rise to state estimation errors that were 
larger than expected. One possible explanation is that the residuals of the EKF used to train the NN online do not 
contain sufficient information.  
 The contribution of this paper is to modify the approach of Ref. [17] by deriving an additional error signal to 
train the NN. We assume that the target acceleration is linearly parameterized in terms of an ideal set of NN weights. 
This is similar to the assumption in Ref. [14], except that the basis functions in our approach are sigmoidal functions 
of the vector of delayed values of the output. We then derive a linear parameterization model in terms of available 
system signals and the ideal, but unknown, NN weights. Replacing the ideal NN weights with their estimates in the 
linear parameterization model provides an estimate of the “system output”. The difference between the “system 
output” and its estimate is the additional error signal that is utilized to train the NN. Our approach is similar in spirit 
to the composite adaptation approach 18, the combined direct and indirect adaptive control approach 19 and the Q-
mod approach to adaptive control 20 that employ additional error signals to improve the performance of the adaptive 
component in the system. The difference is that the approaches in Ref. [18]-[20] were applied to adaptive control 
problems with state feedback, while we apply the approach to an adaptive state estimation problem. The benefits of 
using an additional error signal to train the NN are clearly evident in the simulation results. The results show that the 
target acceleration can be estimated to a reasonably accurate degree and the state estimation errors are much smaller 
when compared to the case when there is no adaptation (nominal case, simple Kalman filter with white noise 
modeling of the target acceleration) and the case when the adaptive law in Ref. [17] is applied. Most important is the 
fact that the performance does not change significantly over varying target maneuvers. When compared to Ref. [17], 
our approach is limited thus far to state estimation of systems with linear process models. Ref. [28] provides another 
approach to adaptive state estimation in the presence of bounded disturbances and time-varying parameters. Neural 
networks are employed to approximate state and control-dependent continuous functional uncertainties and adaptive 
bounding technique is used to reject the effect of bounded disturbances. 
 The paper is organized as follows. Section II presents theorems and definitions that are required in developing 
the theory for our approach. Section III presents the problem formulation and details the procedure utilized to derive 
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the additional error signal to train the NN. Section IV presents the simulation results with discussion. Conclusions 
and future research directions are outlined in Section V. 
  

II. Mathematical Preliminaries 
 Consider the nonlinear dynamical system 

 ( ) ( ) 00  ,, xtxxtfx ==&  (1) 
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Definition 1 21: Let  be an equilibrium point for the nonlinear system in (1). The equilibrium point 0=x 0=x  is 
exponentially stable (ES) if  
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Theorem 2 21:  Let  be an equilibrium point for the nonlinear system in (1). Let 0=x { }00  | rxRxD n <∈= . Let 
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,0≥∀t  , for some 0Dx∈∀ 0>δ , where ( )xW1  and ( )xW2  are continuous positive definite functions on  and 0D
( xt,, )τφ  is the solution of the system that starts at ( )xt, . Then, the origin is uniformly asymptotically stable (UAS). 

If all the assumptions hold globally and ( )xW1  is radially unbounded, then the origin is globally asymptotically 

stable (GAS). If ( ) cxkxW 11 ≥ , ( ) cxkxW 22 ≤ , , , , then the origin is ES. 01 >k 02 >k 0>c
 
Theorem 3 22:  Assume that an  dimensional state vector n ( )tx  of an observable time-invariant system 
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evolves on an  dimensional ball of radius n r  in , nR { }rxRxB n
r <∈=  | . Also assume that the system output 

 and its derivatives up to the order ( ) mRty ∈ ( )1−n  are bounded. Then given arbitrary , there exists a set of 
constant, bounded weights W  and a positive time delay , such that the function  in (8) can be 
approximated over the compact set 
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III. Problem Formulation 
Consider the following single-input-single-output (SISO) system 

 
( )

( )
Cxy

zzzxfz
xxzxBgAxx

z
=

==
=+=

0

0
)0(,,
)0(,,

&

&

 (11) 

where  and  are the states of the system such that xn
x RDx ⊆∈ zn

z RDz ⊆∈ x  represents the modeled states and 

z  represents the unmodeled states,  and  are compact sets,  is an  unknown, 

bounded function and represents the unmodeled dynamics,  is an unknown, uniformly 
bounded and continuous function and represents the way in which the unmodeled dynamics is coupled to the system 
dynamics,  represents the available measurement which is assumed to be bounded, the matrices ( )  are 
known and the pair  is observable. 
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Remark 1: The unknown function acts as the unknown system input or disturbance to the system with linear, 
time invariant process models given by the matrices

( zxg , )
( )CBA ,, . 

A.  Adaptive Estimator and Error Signal Derivation 
Using Theorem 3, consider the following NN approximation of ( )zxg ,  

 ( ) ( ) ( )μεμσ += TWzxg , , *WW F ≤ , ( ) *εμε ≤  (12) 

where ( ) ( ) ( )[ T
N μσμσμσ ,,1 K= ]  is a vector of sigmoidal functions ( )⋅iσ ,  is the number of neurons. The 

sigmoidal functions are uniformly bounded 24, that is, 
N

( ) 1≤μσ i . 
 Consider the following adaptive estimator to estimate the states of the system in (11): 
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where  is the Kalman gain obtained through the following set of matrix differential Ricatti equations 23 )(tK
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where . The solution  of (14) is bounded, symmetric, positive definite 
and continuously differentiable. The output of the NN 
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adν  is given by 

 ( ) ( )μσν T
ad tŴ=  (15) 

where  is the estimate of the weight vector W in (12). The NN output ( )tŴ adν  is designed to approximate the 
bounded disturbance . The formulation so far replicates the formulation in Ref. [17] applied to the system in 
(11). The residual signal of the adaptive estimator 

( zxg , )
( ) ( ) ( )tytyty ˆ~ −=  is the first error signal that is used to train the 

NN. 
 Next, consider the derivation of the second error signal to train the NN. Consider the following non-adaptive 
estimator for the system in (11) 
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where ( ) ( ) ( )tytyty 11 ˆ~ −=  is the residual of the non-adaptive estimator in (16),  is the Kalman gain obtained 
through the following set of matrix differential Ricatti equations 23 
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where . The solution  of (17) is bounded, symmetric, 
positive definite and continuously differentiable. We can choose the design matrices  and  to be different from 
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 Consider the estimation error dynamics of the non-adaptive estimator in (16). Define 11 ˆ~ xxx −=  and 

( ) ( )CtKAtA 11 −= . Then we have the following estimation error dynamics 
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When , the estimation error dynamics can be shown to be GES. To see this consider the unforced 
estimation error dynamics in (19) 
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where ( t, )τΦ  is the state transition matrix of the system (19). Therefore, we have for some 0>δ , 
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 Eq. (18) can be written in terms of the linear parameterization of ( )zxg ,  in eq. (12) as 
 

           ( ) ( )
11

111
~~

~~

xCy
BBWxtAx T

=
++= εμσ&

            (33) 

 
where *WW F ≤ , ( ) *εμε ≤ . The time domain solution for the residual 1

~y  is given by 
 

 
American Institute of Aeronautics and Astronautics 

 

7



     ( ) ( ) ( ) ( ) ( ) ( )∫∫ Φ+Φ+Φ=
t

t

t

t

T dBtCdBWtCtxttCty

00

  ,  ,~,~
0101 τεττμστ        (34) 

 
where  is the state transition matrix of the system in (33). Since ( 0, ttΦ ) ( ) Rzxg ∈,  and W  is a constant vector, eq. 
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where ( 0, ttf )ε  is the output of the following dynamical system, 
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and fε  is always bounded since it is the output of the GES system in (19) with bounded input ε . Let 

( ) *
0, ff tt εε ≤ . Eq. (35) can now be written as 
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         ( ) ( ) ( ) ( )[ ]002010 ,  , ,, ttttttttq fNff σσσ K=          (38) 
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The boundedness of ( )μσ i  implies the boundedness of ( )0, ttfiσ  which in turn implies the boundedness of the row 

vector . The initial condition ( 0, ttq ) ( )01
~ tx  and the filtered NN approximation error ( )0, ttfε  are not available. 

 Eq. (37) is a linear parameterization model in terms of the available residual signal ( )ty1
~  and the unknown, 

constant NN weight vector  Consider an estimate of the residual .W ( )ty1
~  by replacing W  by its estimate ( )tŴ  

 
             ( ) ( ) ( )tWttqty ˆ,~̂

01 =             (40) 
 
The signal formed by the difference between ( )ty1

~  and ( )ty1
~̂  is the second error signal used to train the NN and is 

given by 
 
          ( ) ( ) ( ) ( ) ( ) ( )tWttqtytytyte ˆ,~~̂~

01111 −=−=          (41) 
 
Remark 2: It requires (  time-varying filters (Eq. 16 and 39) to generate the error signal . )1+N ( )te1
 
Let the NN adaptive law be given by 
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&         (42) 

 
with the NN design constants , 0>ΓW 0>Wγ  and 0>Wλ , where WΓ  and Wγ  are adaptation gains and Wλ  is 
the sigma-mod parameter 25. 
 
Remark 3: The form of the adaptive law containing the error term ( )te1  is the gradient descent approach 18 to 
minimizing . Other potential approaches include the standard least-squares minimization, least-squares with 
exponential forgetting 18, etc. 

( )te1

IV. Simulation Results 
We consider the 6 DOF leader-follower formation flight configuration 26 to illustrate the simulation results. The 
leader aircraft in Ref. [26] is the maneuvering target to be tracked. The leader aircraft tracks waypoints in the inertial 
3D space. The waypoints can be arranged so as to result in various target maneuvers. For example, in this paper we 
consider two specific target maneuvers. The first target maneuver is the square-box trajectory maneuver. This 
maneuver is generated by making the target aircraft track waypoints at the corners of a square box in the horizontal 
plane. This maneuver is characterized by sharp heading changes at the corners of the square box followed by larger 
segments of constant velocity flight. The second target maneuver is a circular trajectory maneuver. This maneuver is 
generated by making the target aircraft track waypoints on a circle in the horizontal plane. The resulting target 
maneuver is a smaller amplitude maneuver than the square-box trajectory maneuver but the duration of constant 
velocity flight is much reduced in this case. The two maneuvers are thus different from each other and can be used 
to check the consistency of performance of the adaptive state estimation method presented in the previous sections. 
 The follower aircraft tracks the leader aircraft for a commanded range of 5 meters 26. Since the approach 
presented in the previous sections is applicable for adaptive state estimation only, we do not use the state estimates 
in the guidance law. We implement the guidance law in Ref. [26] that assumes true values of the range , LOS 
azimuth angle 

R
Aλ  and LOS elevation angle Eλ  are available. We consider the LOS kinematics in the inertial 

Cartesian coordinate frame 
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       (46) 

 
where  and  are respectively the projections of the range vector from the follower to the target aircraft 
onto the inertial X, Y and Z axes, and the subscripts T and F refer to target (leader) and follower aircraft 
respectively. We assume that there is a vision sensor onboard the follower aircraft that can measure the subtended 
angle 

YX RR , ZR

α , the azimuth angle Aλ , and the elevation angle Eλ  with zero-mean additive measurement white noise of 
standard deviation 0.01 radians for each measurement 27. The subtended angle measures the maximum size 
subtended by the target aircraft on the follower image plane. Using these raw measurements, we can create pseudo-
measurements of  and  using the relationship between subtended angle, azimuth angle and elevation 
angle and range 27 

YX RR , ZR
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where the subscript m indicates the variables are measurements, and  is the target size (wing-span length), 
assumed constant and known for this simulation. The conversion of the image plane noisy measurements of 

b
,α  Aλ  

and Eλ  into the measurements of ,  and  allows us to use the following linear, measurement model for 
the LOS kinematics in (46) 
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where YX νν ,  and Zν  are now state-dependent measurement noise terms. We evaluate the adaptive state 

estimation approach on the basis of estimation accuracy of the range , range-rate , azimuth rate , elevation 

rate , and the target acceleration . These variables are the most important from point of view 
of implementation in the guidance law, which is the next step after estimation. The range, range-rate, azimuth rate 
and elevation rate terms are related to the states of the LOS kinematics model in eq. (46) through the following 
relations 
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Note that even though the system in (46), (48) is multi-input multi-output (MIMO), each input-output channel is 
completely decoupled and we can use the theory developed in Sections II-IV for implementation. 
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A. Results with Linear, Time-Varying Kalman Filter (No Adaptation) 
This section shows results obtained by using a linear, time-varying Kalman filter as the state estimator. The target 
acceleration components along the X, Y and Z axes are modeled as independent, zero-mean, white noise processes 
in the design of the filter. Figure 1 shows the range and the range-rate estimation error for the square-box trajectory 
target maneuver. The top sub-plot on the RHS is a plot of the true range-rate (red solid line) and the estimated range-
rate (blue dashed line). The bottom sub-plot on the RHS is the range-rate estimation error in m/s. At time 40,20=t  
and s, the target initiates a heading change and Figure 1 shows that the estimation errors peak just after these 
target maneuvers. The reasons for the peaking of the estimation errors is that the white-noise process models used in 
the design of the Kalman filter are in no way representative of the true target acceleration components along the X, 
Y and Z axes. The estimation errors go slowly towards zero when the target stops maneuvering. The simulation is 
stopped at about 84 seconds.  

60

 Figure 2 shows the azimuth rate and elevation rate estimation error for the square-box trajectory target 
maneuver. It is seen that the estimation error for both the LOS rates peaks just after the target initiates a heading 
change maneuver.  
 Next, we show results for the circular trajectory maneuver with the same Kalman filter. Figure 3 shows the range 
and the range-rate estimation error. Figure 4 shows the azimuth rate and elevation rate estimation error. The peaks in 
the estimation errors again correspond to a target heading change maneuver.  
 

  
Figure 1. Range Estimation Error in meters (LHS), Range-rate Estimation Error in m/s (RHS), Square-box 

Trajectory Maneuver, No Adaptation 
 

LHS = Left Hand Side, RHS = Right Hand Side 
 

  
Figure 2. Azimuth Rate Estimation Error in deg/s (LHS), Elevation Rate Estimation Error in deg/s (RHS), Square-

box Trajectory Maneuver, No Adaptation 
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Figure 3. Range Estimation Error in meters (LHS), Range-rate Estimation Error in m/s (RHS), Circular Trajectory 

Maneuver, No Adaptation 
 

  
Figure 4. Azimuth Rate Estimation Error in deg/s (LHS), Elevation Rate Estimation Error in deg/s (RHS), Circular 

Trajectory Maneuver, No Adaptation 
 

B. Results with Adaptive State Estimator in Ref. [17] 
This section shows results obtained by augmenting the Kalman filter in Section V-A with a NN trained online with 
the adaptive law in Ref. [17]. Figure 5 shows the range and the range-rate estimation error for the square-box 
trajectory target maneuver.  Figure 6 shows the azimuth rate and elevation rate estimation error for the square-box 
trajectory target maneuver. It is clear upon comparison with Figs. 1 and 2 that the performance of the adaptive 
estimator is slightly worse off than with just the linear Kalman filter. This can be seen by comparing the peaks of the 
estimation errors of the range, azimuth and elevation rates. 
 Figure 7 shows the target acceleration estimation performance for the square-box trajectory maneuver. The 3 
sub-plots show the target acceleration estimation along the inertial X, Y and Z axes respectively. The true 
acceleration is shown in red, and the target acceleration estimate, which is the output of the NN, is shown by the 
blue dashed line in Figure 7.  The reason why the state estimation performance is not much improved over that of the 
linear Kalman filter is because the target acceleration is not correctly captured by the NN.   
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Figure 5. Range Estimation Error in meters (LHS), Range-rate Estimation Error in m/s (RHS), Square-box 

Trajectory Maneuver, Adaptive Estimator in Ref. [17] 
 

LHS = Left Hand Side, RHS = Right Hand Side 
 

 
Figure 6. Azimuth Rate Estimation Error in deg/s (LHS), Elevation Rate Estimation Error in deg/s (RHS), Square-

box Trajectory Maneuver, Adaptive Estimator in Ref. [17] 
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Figure 7. Target Acceleration Estimation in m/s2, Square-box Trajectory Maneuver, Adaptive Estimator in Ref. [17] 

 
Next, we show results for the circular trajectory maneuver with the same adaptive estimator. Figure 8 shows the 
range and the range-rate estimation error. Figure 9 shows the azimuth rate and elevation rate estimation error. Figure 
10 shows the target acceleration estimation performance. The results again show that the estimation performance 
with the adaptive estimation is slightly worse off than with just the linear Kalman filter. 
 

 
Figure 8. Range Estimation Error in meters (LHS), Range-rate Estimation Error in m/s (RHS), Circular Trajectory 

Maneuver, Adaptive Estimator in Ref. [17] 
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Figure 9. Azimuth Rate Estimation Error in deg/s (LHS), Elevation Rate Estimation Error in deg/s (RHS), Circular 

Trajectory Maneuver, Adaptive Estimator in Ref. [17] 
 

 

 
Figure 10. Target Acceleration Estimation in m/s2, Circular Trajectory Maneuver, Adaptive Estimator in Ref. [17] 

 
It can be clearly concluded that the inaccurate estimation of the target acceleration in Figures 7 and 10 leads to the 
estimation errors in Figures (5), (6), (8) and (9) respectively.  

C. Results with Adaptive State Estimator formulated in this paper 
 In this section, the results are obtained by augmenting the Kalman filter with a NN that is trained with the 
adaptive law in Eq. (42). The following results are shown on the same scale as the results in Figures 1-10 to 
facilitate easier comparison.  
 Figure 11 shows the range and the range-rate estimation error for the square-box trajectory target maneuver. 
Comparing with the corresponding Figures 1 (no adaptation) and 5, it is seen that the peaks in the range estimation 
error and the range-rate estimation error are much smaller in Figure 11. Figure 12 shows the azimuth rate and 
elevation rate estimation error. Comparing Figure 12 with Figures 2 (no adaptation) and 6 shows the vastly 
improved performance with the adaptive state estimator presented in this paper. 
 Figure 13 shows the target acceleration estimation performance. The figure shows that the target acceleration 
estimates are reasonably accurate thus showing a major improvement when compared to the result in Figure 7. The 
acceleration estimates however are noisier when compared to the corresponding plot in Figure 7. The range-rate, 
azimuth-rate and elevation-rate estimation errors in Figures 11 and 12 are much smaller when compared to the 
corresponding plots in Figures 1 and 2 (no adaptation) and in Figures 5 and 6. 
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Figure 11. Range Estimation Error in meters (LHS), Range-rate Estimation Error in m/s (RHS), Square-box 

Trajectory Maneuver, Adaptive Estimator formulated in this paper 
 

 

  
Figure 12. Azimuth Rate Estimation Error in deg/s (LHS), Elevation Rate Estimation Error in deg/s (RHS), Square-

box Trajectory Maneuver, Adaptive Estimator formulated in this paper 
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Figure 13. Target Acceleration Estimation in m/s2, Square-box Trajectory Maneuver, Adaptive Estimator formulated 

in this paper 
 
 Figures 14-16 show results for the circular trajectory maneuver with the adaptive estimator formulated in this 
paper. These figures show that the estimation performance does not deteriorate when the target maneuver is 
changed.  
 Figure 14 shows the range and the range-rate estimation error. Figure 15 shows the azimuth rate and elevation 
rate estimation error. The peak estimation error is much smaller than the peak estimation error in Figures 3 (no 
adaptation) and 9. Estimation performance is consistent over the entire target maneuver.  
 Figure 16 shows the target acceleration estimation performance. Figure 16 again shows that the estimates of the 
target acceleration components are much more accurate than in Figure 10. However, these estimates are also very 
noisy when compared to the estimates in Figure 10. The most significant improvement comes in the estimation of 
the azimuth and elevation rates. 
 
 

 
Figure 14. Range Estimation Error in meters (LHS), Range-rate Estimation Error in m/s (RHS), Circular Trajectory 

Maneuver, Adaptive Estimator formulated in this paper 
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Figure 15. Azimuth Rate Estimation Error in deg/s (LHS), Elevation Rate Estimation Error in deg/s (RHS), Circular 

Trajectory Maneuver, Adaptive Estimator formulated in this paper 
 
 

 
Figure 16. Target Acceleration Estimation, Circular Trajectory Maneuver, Adaptive Estimator formulated in this 

paper 

V. Conclusion 
We present an approach for augmenting a linear, time-varying Kalman filter with a neural network for the adaptive 
state estimation of SISO systems with linear process models in the presence of unknown but bounded system inputs. 
The approach combines two different error signals in the same adaptive law for the purpose of improving the 
adaptation performance. This is a composite adaptation approach to adaptive state estimation. The approach is 
applied to a target-tracking problem and simulation results clearly illustrate the benefits of incorporating an 
additional error signal in the adaptive law. The estimation of the target acceleration is reasonably very accurate and 
consistent for various target maneuvers. 
 Future research will include extending the approach developed in this paper to the adaptive state estimation of 
MIMO systems and systems with nonlinear process and measurement models. Secondly, we will study the issue of 
using the state estimates for the purpose of control. This is a much more challenging problem since we now cannot 
assume a priori that the outputs and inputs to the system are bounded and the adaptive estimation and control 
problems have to be treated in a unified manner. Finally, the adaptive estimation and control design will be 
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integrated with image processing and evaluated in flight tests demonstrating vision-based formation flight between a 
maneuvering leader and follower aircraft. 
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