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SUMMARY

Caisson, pier or drilled shaft foundations are emtered as part of the foundation
system of tall structures such as bridges, trarsaristowers, heliostats, etc, and
correspond to rigid blocks of length-to-diametefEpratio on the order of D/B = 2-6. As
a result of their geometry and stiffness charastied, the mechanisms of load transfer
from the superstructure to the surrounding soil Hradr kinematic response to seismic
wave propagation are governed by a complex stiggsbdtion at the pier-soil interface,
which cannot be adequately represented by mearsngilified Winkler models for
shallow foundations or flexible piles. Continuum aheb solutions, such as 3D finite
elements (FE), may be employed to simulate thisptexnsoil-structure problem, but are
infrequently employed in practice for the desigmoh-critical facilities due to the cost
and effort associated with these analyses. Promptetie drawbacks of simplified and
elaborate models available for the design of caigsondations, the objective of this
work is to develop a Winkler-type model for the lgses of transversely-loaded caissons,
which approximately accounts for the complex sedistance mechanisms mobilized at
the base and the circumference of these elemeri$e wetaining the advantages of
simplified methodologies for design at intermedidi&vels of target accuracy.
Investigation of the governing load-transfer medbiais and development of complex
spring functions is formulated on the basis of 3B $imulations. Initially, the soil-
structure stiffness matrix is computed by subjertihe pier to transverse static and
dynamic loading at the top, and numerically estintatthe response. Complex

frequency-dependent functions are next developedhi® spring constants by equating

XVi



the stiffness matrix terms to the analytical expi@ss developed for the four-spring
model. Sensitivity analyses are conducted for ogttion of the truncated numerical
domain size, finite element size and far-field dyima boundary conditions to avoid
spurious wave reflections; the latter is ensureanieans of a so-called “sponge” layer of
progressively increasing viscous damping to sineuld#te infinite domain energy
radiation damping. Simulations are next conductedvaluate the transient response of
the foundation subjected to vertically propagashgar waves, and results are compared
to the response predicted by means of the 4-spnimdel. Finally, the applicability of the
method is assessed for soil profiles with depthyvnar properties. While the
methodology developed is applicable for linear tedamedia with no material damping,
the expressions of complex spring functions magxiended include material hysteretic
energy absorption (damping), nonlinear soil behawaod soil-foundation interface

separation, as shown in the conclusion of thisystud

XVii



CHAPTER 1

INTRODUCTION

1.1 Pier foundations

Pier, caisson or drilled shafts are terms typicagd interchangeably to describe
permanent substructures or foundation elementshnduie either prefabricated and sunk
into position, thus providing excavation support irptecting the walls against water
pressure and soil collapse, or are cast in-sisoidbr rock sites.

These massive concrete foundation elements alveaysre steel reinforcement,
and occasionally also comprise a steel casingakefa The term corresponds to a wide
range of foundations, generally classified withpexg to their dimensions and geometry
as:

(a) Deep or shallow, depending on the depth of foundati
(b) Small or large, depending on the diameter of fotindaand
(c) Circular, square or rectangular, depending on dwmrgetry of their cross section.

Typical pier or caisson foundations are charaaterizy a diameter on the order
of 2-12 feet and depth to diameter ratio in thegeabetween 2- 15. As can be readily
seen, their embedment depth is larger than thesponding depth of shallow embedded
foundations, and lower than typical values of piteindations.Figure 1.1 depicts
schematically the dimensional and geometrical dbfiees between the alternative
foundation element types, namely shallow, caissahple foundations.

Large diameter caisson foundations are used for ntost part as bridge
foundation elements, as well as deep-water whaares overpasses. On the other hand,
small caissons are extensively encountered eitbegirggle foundation components of
transmission towers (power lines or cellular toywersd heliostats, or in groups as part of

the foundation system of high rise buildings, mstbrey parking decks and most



importantly scour vulnerable structures. A typibadge foundation system, comprising

both caisson and pile group foundation elemenitkisrated inFigure 1.2

=
A
y

Figure 1.2 Use of caisson foundation in bridges: the Rokkanid Bridge in Kobe,

Japan, a double-deck loose arch bridge of lengfim? tonstructed in 1992



Alternatively, drilled shafts are also used forgses such as slope stabilization,
foundation for transmission towers, foundation edats in the vicinity of existing
structures, cantilever or tie-back walls, foundasicat marine sites and navigation aid
systems; the alternative applications of caissamdations are schematically shown in

Figure 1.3 For further information, the reader is referredNeil and Reese (1999).

Potential
sliding
surface

(@) )

Permanant casing
« o temporary form

Breasting or Y
mooring daiphin | [

Figure 1.3 Uses of drilled shafts (a) Stabilizing a slope foundation for transmission
tower (c) Foundation near existing structure (dpsely spaced shafts to serve as a
cantilever or tie-back wall (e) foundation at marisite (f) Pier protection or navigation

aid (O’Neil and Reese, 1999).

1.2 Advantages of pier foundations

Drilled shafts are highly versatile in constructdpifor a wide variety of soil
formations, and can be installed in virtually amyl $ype including residual soils, karstic
formations, soft soils and marine sites (O’Neil aReese, 1999). Among other
advantages of these elements, no dewatering iss@geupon installation in soft soils or

for sites where excessive groundwater is considerdx critical for the selection of the



excavation and support method. Instead, bentotiteysor steel casings are used to
stabilize the excavation pit, and concrete is puimpsing ‘slurry displacement’ or
‘underwater placement’ method.

Other advantages include the high capacity of siefgments in axial as well as
lateral loading, which enables large diameter camisgo effectively replace pile groups
and renderglrilled shafts a popular choice for structures anticipated to lgescted to
significant lateral loads. It should be noted herthat when caisson foundations are
selected instead of using pile groups, the stratttolumns may be directly connected to
the foundation, thus eliminating the need for piés.

In a thorough review of the applicability and adteayes of caisson foundations,
O’Neil and Reese (1999) also present case studmshwlemonstrate large economic
savings through the selection of caisson foundation drilled shaft as alternative
methods to regular design methodologies, when tiluetare and site conditions enable
such an option.

Due to all the aforementioned advantages of thesedations, including the ease
of construction, caisson or pier foundations amdusxtensively in the United States and
world wide, particularly by private or public agéex that focus on the design and
construction of lifelines in a wide variety of sitenditions, such as the Departments of

Transportation in the US.

1.3 Design methodologies for pier foundations

The main advantage of caisson foundations compaoedhallow or pile
foundations is the high lateral load carrying cayaaf single members. For static load
design purposes, load-deflection curves (ofterrredeto as p-y curves) are employed for
the estimation of their bearing capacity, typicabiptained by means of empirical
correlations for different soil types which are éaon results of lateral load tests. In the

current state-of-practice, many commercial softwpeekages are available for the



purpose, facilitating thus the design process. Aexample, Lam and Chaudhury (1997)
present such p-y curves, further modified to actdonthe effect of cyclic loading and

thus extend the approach to seismic loading. Howehmost all the methods follow the
same semi-empirical approach as used for flexiidefpundations.

Nonetheless, it can be readily seen that for inteliate D/B ratios, the pier
foundations are more likely to behave as rigid @ets rather than as a flexible piles (see
alsoFigure 1.1). Thus, a design approach similar to rigid embeddsteallow foundations
seems more reasonable. Analytical solutions thatige the response such foundations
to lateral loading have been developed by Elsabhdeviorray (1977), Kausel (1974) and
Wolf (1997), restricted -however- to low embedmeepths.

Compared to shallow foundations, soil-structureenattion effects for pier
foundations that comprise the load-transfer meamasifrom the superstructure to the
surrounding soil, and the potential altering ofdsdransferred through the foundation
from the soil to the structural elements (e.g. myiseismic motion) are associated with a
much more complex stress distribution at pier-sagrface. Continuum model solutions
like 3D finite element methods (FEM) are feasihlg &re rarely employed in practice for
the design of non-critical facilities due to thes@asated site investigation cost,
computational time, and user expertise requirechdtlteless, dynamic Winkler models
that properly account for the multitude of soilistgnce mechanisms mobilized at the
base and the circumference of laterally loadedspiealy be used to predict the dynamic
response of these foundations, given an intermetkael of target design sophistication.

The main objective of this research project is ®vedlop an improved and
simplified methodology for the analysis of pier faations (drilled shafts) of
intermediate length subjected to lateral dynamiading, which, while retaining the
advantages of Winkler-type models will allow foaligtic representation of the complex

soil-structure interaction effects associated wh#se foundation elements.



In particular, this work comprises the developmamd application of a Winkler-
type model for pier foundations, based on resuttainoed by means of 3D FE analyses,
and involves the following steps:

1. Formulation of global stiffness matrix at the tdppeer for the four spring Winker

Model

2. Calibration of springs for static loading and séwgy to Poisson ratio using
numerical simulations

3. Calibration of springs as a function of dimensissldrequency for dynamic
loading

4. Analytical solution for transfer functions to acaodor kinematic interaction and
their comparison with numerical results

5. Sample calculations to demonstrate application wdtirfayered soil profiles and

comparison with numerical results



CHAPTER 2
OVERVIEW OF SOIL-STRUCTURE INTERACTION

METHODOLOGIES

2.1 Definition

Soil-structure interaction is the mechanism thaoaats for the flexibility of the
foundation support beneath the structure and patergriations between foundation and
free-field motions. It determines the actual loadiexperienced by the structure-

foundation-soil system resulting from the freediskismic ground motions.

Figure 2.1 Context of SSI in engineering assessment of seikrading for a structure

(Stewart et al. 1998)

2.2 Components of the soil-structure interaction

During a dynamic loading like ground shaking duriag earthquake, the
deformations of a structure are affected by intitwas between three linked systems: the
structure, the foundation, and the geologic mediail (and rock) underlying and

surrounding the foundation. A soil-structure intgéi@n (SSI) analysis evaluates the



collective response of these systems to a specifeselfield ground motionKigure
2.28. Two physical phenomena comprise the mechanidmateraction between the
structure, foundation, and soil:

(@) Inertial interaction: This mechanism refers to the response of the tmmp
structure-foundation-soil system to excitation byAdembert forces associated
with the acceleration of the super-structure dukinematic interactioms shown
in Figure 2.2h

(b) Kinematic interaction: Provided that the principle of superposition t@napplied
-at least approximately- the mass of structurdnig inechanism is set as zero and
there are no inertial effects. Nonetheless, thegiree of stiff foundation elements
either on the formation or embedded in the undeglysoil, may result in the
deviation of the foundation motion with respecttih@ corresponding motion of
the so-calledree-field, namely the response of the soil formation in abseof
the structureKigure 2.2c) Three mechanisms can potentially contribute twhsu
deviations (Stewart et. al, 1998):

i. Base-slab averaging-ree-field motions associated with inclined and/o

incoherent wave fields are “averaged” within thetfint area of the base
-slab due to the kinematic constraint of essentiafid-body motion of
the slab.

ii. Embedment effectsThe reduction of seismic ground motion due to

embedment. Since the foundation is rigid and cadefiect in exactly the
same shape as far-field, the far field motion lierfed by the foundation
depending on the wavelength of excitation. Thisimsilar to ‘Base Slab’
averaging effect but is observed in case of cohavame fields as well.

iii.  Wave ScatteringScattering of seismic waves off of corners anueaties

of the foundation.



The effect of kinematic interaction is generallyptaed by complex-valued

transfer functions, namely functions that relate tinee-field motion to foundation

response.
ay
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Figure 2.2 Geometry and decomposition of a soil-structurerenttion problem
In the case of linear elastic or moderately nominsoil-foundation systems of
surface or embedded foundations, inertial inteoactanalysis Kigure 2.2b) may be

conveniently performed in two steps as showrFigure 2.3 (after Kausel & Rosset,

1975):



(a) Compute the foundation dynamic impedances (spramgk dashpots) associated
with each mode of vibration
(b) Determine the seismic response of structure anddi@ation supported by these

springs and dashpots and subjected to the kinemetilerations of the base.

m akin
Foundation
Impedance Matrix
[K]
I ;/-t\ ' ) _/\M,*—I |
D —_ \ |_|
A (K]
SsSSsSS S ) 7Z Z 7 Z = 77 2

Figure 2.3 Schematic representation of two-step inertialraxtéon analysis

The dynamic impedance is a complex function, wheee real and imaginary
parts represent the dynamic stiffness and enetgyuation of the system, respectively.
The attenuation represented by the imaginary parthe impedance function is a
consequence of hysteretic damping in the soil amehdation, and radiation of seismic
energy away from the foundation through the sodn&ally it is the radiation damping
that mostly dominates the imaginary part because ehergy loss due to hysteretic
damping is quite small (5-10%). In most cases tiadyadical expressions are derived for
elastic medium with no damping and then the damsnigken into account using the
correspondence principle by multiplying the impexkafunction with (1+i2D’), where D’
is the coefficient of material damping.

As can be readily seen, accounting for the effet®oil-structure interaction may
significantly alter the predicted response of tbé-foundation-structural system, a fact

that renders these phenomena critical in engingetasign. It should be also noted that

10



for the fictional condition of an infinitely stifoil, the amplitude of the transfer function
for translational motion is unity and the phaseeso (i.e. the foundation and free-field
motions are identical), and the impedance functi@s infinite real part and zero
imaginary part. As a result, ignoring the effedtsail-structure interaction effects (which
is common practice in structural design) inherentiplies the unrealistic assumption of

an infinitely rigid underlying soil medium.

2.3 Methodologies for Soil-Structure Interaction Aralysis

The general methods to quantify soil structureradgon effects are:

Direct approach: In a direct approach, the soil and structure saneultaneously
accounted for in the mathematical model and andlyza single step. Typically, the soil
is discretized with solid finite elements and tireicture with finite beam elements. Since
assumptions of superposition are not required, iardinear analyses are possible in this
case. Nonetheless, the analyses remain quite expdnsm a computational standpoint.
Hence, direct SSI analyses are more commonly peddrfor structures of very high
importance and are not employed for the desigegdlar structures.

Substructure approach: In a substructure approach, the SSI problem is
decomposed into three distinct parts discussedealdwch are combined to formulate
the complete solution. The superposition principlexact only for linear soil, foundation
and structure behavior. Nevertheless, approximsatiminsoil nonlinearity by means of
iterative wave propagation analyses allow the qugmation to be applied for moderately-
nonlinear systems. The principal advantage of thstsucture approach is its flexibility.
Because each step is independent of the othasse#sy to focus resources on the most
significant aspects of the problem.

For each one of the three analysis steps, sevieshative formulations have
been developed and published in the literatureludicg finite-element, boundary-

element, semi-analytical and analytical soluticmssariety of simplified methods, and

11



semi-empirical methods. In addition to the dynaiinite element methods, the most
popular approaches used in practice for the arsabfssoil-structure interaction problems
are briefly presented in the ensuing:

(a) Boundary element type methodshe methods of this class are essentially semi

analytical in the sense that they use closed-fashatisns to the pertinent wave
equations for the soil domain, and discretize dh&/boundaries and interfaces of
the system. These closed-form solutions (referoedst fundamental solutions or
Green’s functions depending on the particular smh)t have the ability to
reproduce exactly the radiation of wave energy nfnity, without requiring
special lateral boundaries —as is the case for fitiée element methods.
Evidently, this class of methods is the most véesah treating a variety of
incident wave fields (such as inclined body wavesl d&ayleigh waves, in
addition to vertical waves). Usually however, tleynnot accommodate material
and interface nonlinearities associated with fotindaseismic motion. Therefore
in current state of practice, such sophisticatedistare also used in conjunction
with finite element methods, which can better matiel nonlinear soil-structure
response.

(b) Winkler models Used primarily for the inertial interaction ansiy, the

foundation in these methods is supported by a seafeindependent vertical,
rotational and horizontal springs and dashpots qalihve soil-footing interface,
which correspond to the vibration modes. For etaatialyses, the most important
factors affecting the dynamic impedance of fouratetiare: (i) the shape of the
foundation; (ii) the stratigraphy (homogeneous s$pdte, surface soil layer over
rigid bedrock or halfspace); and (iii) the amouhémbedment.
For the estimation of the dynamic impedance ofifs, algebraic expressions
have been developed that account for arbitrary dation shape and degree of

embedment, and for a variety of soil conditions: Fmre details, the reader is referred

12



among others to Dobry & Gazetas (1986), Wong & L(I@85), Gazetas (1983), Kausel
& Roesset (1975) and Luco (1974).

In these studies, the dynamic impedance of fouadatis shown to be very
sensitive to the underlying soil stratigraphy. Tiesponse of a foundation on a non-
homogeneous halfspace can be substantially ditfédrem the response of an identical
foundation resting on a homogeneous halfspace. &ifést arises both from the increase
of static stiffness and the decrease of radiatammng and is more prominent for the
vertical and horizontal oscillations. Subsequenthge amplitude of the motion to be
exerted by the supported structure increases asut rof the resonant peaks which
appear in the amplitude-frequency response curfesisel 1974, Kausel & Ushijima

1979, Gazetas 1983)
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CHAPTER 3
WINKLER TYPE MODEL FOR ANALYSIS OF CAISSON

FOUNDATIONS

3.1 Stress Distribution on Pier-Soil Interface

When a lateral load is applied to a pier foundatibve stress distribution at the

pier-soil interface is as shown kigure 3.1

Figure 3.1Various mechanisms of soil resistance on latedihg

Four mechanisms are identified that can contribaigmificantly to the pier

response. The mathematical expressions for thestaese mobilized by these

mechanisms are presented below and comprise tlogviog:
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(a) Lateral resistance per unit length due to normal stresses along the shaft:
2
P = I[O’r cosy +r1,, sing]rdy (3.1)
0
(b) Resisting moment per unit length due to vertical shear stress along the shatft:
2
M, = J'r,Z(BIZ)2 cosdy (3.2)
0

(c) Lateral baseresistance due to horizontal shear stress:

2r

R = J'(—rrZ cosy +1,, sing)rdydr (3.3)
0

o t—N| W

(d) Base resisting moment due to normal stresses:

2

M, = J'(aZ cosy)r2dydr (3.4)

O =N | T

IEGIE]

28

Ay
lcy,,

Figure 3.2 The proposed four spring model
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In order to capture these four mechanisms of @sist and therefore simulate the
response of pier foundations to lateral loads githentarget degree of accuracy, a four
spring model is being here proposed. The four gpriumsed in the model (schematically
shown inFigure 3.2) are:

(a) k,: Lateral translational springs used to charactelaeral force-displacement
response of soil;

(b) k,: Rotational springs used to characterize the monu®veloped at the

centerline of pier due to vertical shear stressngcat the perimeter of pier,

induced by pier rotation;

(c) k,: Base translational spring used to characterizéztwatal shear force-base
displacement response; and

(d) k,,: Base rotational spring used to characterize momieveloped due to normal

stress acting at the base of pier, induced by tmdagon.

The model is based on the assumption that the mespof each soil layer is
decoupled from the overlying and underlying onesnely on the simplification of shear
beam deformation of the soil column. As a result,albsence of coupling between
adjacent soil resistance mechanisms, the totalonssp can be obtained through
integration of the total resistance offered by ithg@ividual springs for each layer. This
assumption is not true in regions very close toitherface of two layers but for thick
layers, as the distance from the interface inceabe coupling effect diminishes very
rapidly and relative contribution of the coupling total response becomes very small.

Thus for thick layers, these effects can be safebjected.

3.2 Formulation of stiffness matrix

Directly stemming from the fact that the elastiaipdulus of concrete (30 GPa)

or steel (250 GPa) is significantly higher than thiasoil (2-5 MPa), the pier foundations

16



investigated in this study, namely foundation eletaef intermediate depth-to-diameter
ratio (D/B), are here assumed to respond as a bgities without significant loss of
accuracy of the solution, As a result, applicatiba tateral force (V) and an overturning
moment (M) at the top will result in a net transdatiand a rotation of the pier as shown
in Figure 3.3 Based on the aforementioned assumption, the qaesé response of the
foundation is adequately described in terms ofdisplacement at the topuand the
rotation angle of the rigid pie#).

Given these quantities, the horizontal displacemaeany point is given by

T ———
e

Figure 3.3Response of pier upon application of lateral laad overturning moment
u(z)=u, - & (3.5)

Applying equilibrium of forces in horizontal direoti we have:

D
V= j k u(z)dz +k, u(D)
0
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D 2
= [ k(U - @)dz + ki, (U ~6D) =K, (uD -6 )dz+ k,, (U, ~€D)
0

O V=u(kD+k)+ok 2 -k,0) (3.6)

Successively, the moment equilibrium requiremeadated at the top of pier results in:

D D
M :J'kxu(z)zdz+ k. u(D).D +jkgeuz+ k. ,0
0 0

D D
=~ [k, (u, ~62) 2z~ k,, (U, —6D).D + [ k,Qiz + k0
0 0

D? D°®
= _kx(ut7_9?)_kbx(utD_aD2)+k€aD+kaH

2 3
or M :ut(—kx%—kbe)+6(kx%+kbe2+keD+kb9) 3.7)

Equations (3.6) and (3.7) are next written in a mdtrm as:

\Y K Ky llu,
= (3.8)
M K, K,]|@&
where the left-hand side of the equation repres#msforcing function )

applied at the top of the foundation, and the riggmid side corresponds to the product of
the so-called stiffness matriX) of the soil-foundation system as interpreted frtha
foundation top to the response vecto,(namely the displacement and rotation of the
caisson, i.ek- = KU .

In equation (3.7.) the individual components of stifness matrix correspond to

the following expressions:

K, =k,D+k,, (3.9)
er = er = _(kx DTZ + kbx D) (310)
Krr :(kx%3+kbe2 +k6D+kb6) (311)
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As can be readily observed from the expressionseglibe assumption of a rigid

caisson results in a symmetric stiffness matrixitieroverall foundation system.

3.3 Non-dimensional analysis - Parametric investig@sn

For parametric variation studies and for the puepos generalization, all the
terms are normalized with respect to the Young’s rhudaf soil (E) and the diameter of
pier (B), namely the stiffness and geometry charatics of the surrounding soil and

foundation element respectively. In a non-dimeraidarm, the equations are given as

follows:
V & Ky Ug
EB? | —| EB EB? | B
M K Ki g (3.12)
EBS® EB?  EB®
where:
Ky :ﬁ(Ej + Ko (3.13)
B E\B EB
K k 2k
. o 1k (DY)  ky(D (3.14)
EB 2E\(B EB\ B
K K K 2k K
. E_X(Ej 4 Ko (Ej L (2} (3.15)
EB 3E\B EB\ B EB-\ B EB

These expressions, namely the static resistantteeoil-foundation system, will
be used in the ensuing to describe the respongkeofoundation system for a wide
variety of loading conditions, namely forced stdtiading and vibrations at the top, as

well as the kinematic interaction of the foundationncident seismic motion.
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CHAPTER 4

NUMERICAL MODELING

4.1 Finite element software packages

Three-dimensional finite element simulations haeerbconducted in this study
for the evaluation of the coefficients of subgraeaction (springs) and the calibration of
the proposed analytical model. The simulationspedormed using the FEM software
package DYNAFLOW (Prevost, 1983) and verified, for thase of static loading- using
the FEM software package ABAQUS (Hibbitt, Karlsson, Sseen 1995). A direct Crout
column solver has been used instead of an iteratineto achieve greater stability and
minimize any approximation errors, which would innuaffect the accuracy of the
analytical approximations developed on the baste®@humerical simulations. The Crout
column solver uses Crout’'s method of matrix decositfon to decompose a matrix into
a lower triangular matrix (L), an upper triangulaatnix (U) and a permutation matrix (P)

which is then used for inversion of matrices to famexact solution to linear equations.

4.2 Mesh type and element properties

Taking advantage of the symmetry of the problenly dralf of the numerical
domain is here simulated, thus saving considerabieputational effort. Both the soill
formation and pier are simulated using 3D continusaoil elements (8 node brick
elements). Both soil and pier element material n®eee here considered linear elastic,
while perfect bonding is assumed at the interfaee, no separation even under tensile
stress. This assumption is equivalent to that oflendrical foundation ‘welded’ in soll,
as described by Elsabee et al. (1977). The fadl,frehmely the truncated boundaries of
the numerical domain, are placed at a distancel equatimes the diameter of the pier
(B) at both sides and from the base (unless specttherwise) to simulate the semi-

infinite domain.
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For the purpose of this study, two different kindsreshes were used, hereby

referred as Model A and Model B.

(a) Model A: In this model, the far field is cylindrical shape. The mesh is finer in

regions close to the pier to accurately capturerdsponse but its coarseness
(element size) increases in proportion to the detdrom pier. The thickness (z-
direction) of all elements is the same and equd.&» B. The length to width
ratio is kept constant as the element size inceeaBee ratio of maximum-to-
minimum dimension, referred to as the foundatiqreasratio, is always kept less

than 3 to avoid any distortion effects. The mesthiswn inFigure 4.1

Y

10

Figure 4.1 Model A with a cylindrical far-field

(b) Model B: The far field is rectangular in shape. Thesh coarseness is almost of

the same order throughout the model. The elementsnastly cubical in shape
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with dimension 0.25 B. There is a gradual transfaionafrom cylindrical to

rectangular shape as we move from pier to far fiekte mesh is shown Figure

4.2.

The element size of 0.25 B is determined by maxinuapacity of direct solver.
For finer meshes the number of elements become$atge to be handled by a direct

solver.

10
0
5 | 5
103—

Figure 4.2Model B with rectangular far-field

4.3 Absorbing boundary layers

The infinite domain represented by finite elemeidels needs to be truncated at
some finite boundary. Nonetheless, for dynamicyammsinvolving wave propagation, the
usual finite boundary of the finite element modell wause the elastic waves to be

reflected and superimposed to the incident wavks.€ffect is much more pronounced in
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absence of damping in the system, as is the casemost of the simulations in this
research.

Therefore, the boundary of the numerical model sdedradiate almost entirely
the outgoing waves (no spurious reflections) andhat same time to allow for the
application of far field motions as the ones impmbd®/ incident seismic waves. In
addition, optimization of the computational effictg requires the boundary to be as
close to the finite structure as possible. A singn&ution to the problem is to impose
finite damping to the material, and prescribe toeruary at a great distance from the
finite structure so that the boundary does notarikce the results. Inasmuch -however- as
this method may be feasible, the increased requmesherical model renders the
approach computationally inefficient.

For 2D simulations, this can be achieved by usisgatis damping elements at
the boundary. Note that for wave propagation in unided media, the stress is evaluated

as:

where g; : stress at a point (node) u, : velocity at the point (node)
p . Density of material V : Wave velocity

Therefore, by using dashpots with coefficientg, along the direction of
propagation of wave angdvs along the other two perpendicular directions, we can
successfully implement an approximate absorbingidary condition.

Nonetheless, this formulation fails to result in cessful absorption of the
outgoing energy in the following cases:

(a) High angle of incidence (usually >20 degrees)

(b) More than one type of wave reaching the boundary

In the course of this study, it was observed thdasa waves are generated from

the pier-soil interaction along with body waves, ahd resulting wave field has very
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high angle of incidence at many locations. As altethis boundary could not be imple-
mented.

Another option is to use infinite elements at thermary. Infinite elements are
elements with special shape functions that decalafge distances such as‘ or 1.

However, formulation of these elements requires skmogviedge of the solution,
so that the shape functions are close to the astlation of the problem. Also, the
boundary conditions at infinity have to be known rapgmately (a zero displacement or
zero stress is typically used). These elementdtuas be used in conjunction with finite
elements in boundary value problems defined in unded domains or problems where
the region of interest is small in size compareth® surrounding medium. Since, these
elements simulate the infinite domain; they providsidual far-field stiffness for static
problems and ‘quiet’ boundaries for dynamic proldermin overview for infinite
elements is given by Bettes and Bettes (1984).

For dynamic case, the transmission of energy oaittie finite element mesh
without trapping or reflecting it, is optimized byaking the boundary between the finite
and infinite elements as close as possible to baitigpgonal to the direction from which
the waves will impinge on this boundary. “Close tveee surface, where Rayleigh waves
may be important, or close to a material interfadegere Love waves may be important,
the infinite elements are most effective if theg arthogonal to the surface” (ABAQUS
User’'s Manual, 1992). Thus, for higher angles oidance, even the infinite elements are
not able to absorb the waves completely. Simulatiwsese performed using ABAQUS
with infinite elements but the results obtained wesesatisfactory.

Thus a new type of boundary is used, hereby refeéor@dsponge boundary. The
reflection of outgoing waves back into the regionmérest can be avoided by enclosing
the region in a sponge layer having high dampingffements. The mechanical impe-
dance of the sponge layer is kept almost the santbat of soil to avoid any material

contrast and hence minimize the generation of ctftk waves. The damping is
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introduced by means of Rayleigh damping and is uatiyg increased with distance to
avoid any spurious reflections due to sudden changepedance.

For Rayleigh damping, also referred to as Modal glag) the damping matrix is
assumed to be proportional to the mass and st#fmegrix as

C=aM + K (4.1)

The modal damping ratio is then calculated as:
D=L (aw+ P 4.2)
2 w

wherea is mass proportional damping apids stiffness proportional damping
coefficients.

Assuming the propagation of a sinusoidal wave effttlowing form:

uxty=e " v (4.3)

The use of the viscoelastic correspondence pri@¢iphristensen, 1971) results in the

following expressions:

E" =E@+i2D") (4.4)
I2
vi=_ Y| 1VIHADT L (4.5)
V1+4D™ 2
1 1 . 2D’ 1 :
—=—l-—|=—1-1a"' (46)
\% V{ 1+\/1+4D'2} V[ |
2D'
whereg'= ———M— 4.7)
1++/1+4D"*
iot—) o jwe-X) X

_70'
Thus,u(x,t)=e ¥ =e ¥ e YV =e ¥ U (xt)=AlwXUu,(xt) (4.8)
Given the limited maximum size of model due to catagional restrictions and

ensuring that the sponge layer is at sufficientatise from the pier to simulate the far-
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field conditions with sufficient accuracy, the thiess of sponge layer is chosen to be 2.0
B.

The coefficientsa and  are chosen using the following two criteria:

(a) The damping ratio D’ should be relatively uniformeo the frequency range being

considered, which determines thé S ratio.

(b) The amplitude of the damped waves should be lems H9 of the undamped

amplitude, which determines the actual magnitude ahdg.
Using the first criteria a ratio ofr/ § = 400 is selected. The variation D’ with

frequency for the range being used in simulatianshiown inFigure 4.3. Using the

second criteria, a maximum value @=20 and £ =0.05 is selected. The damping in the

model is applied progressively in 4 to 5 layergiaen inTable 4.1

Layer no. 1 2 & 4
a 5 10 15 20
B 0.0125 0.0250 0.0375 0.05

Table 4.1Mass and stiffness dependent damping coefficised dor ‘sponge
boundaries’
The variation of amplitude reduction function A witequency is shown in

Figure 4.4
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Damping Ratio

Figure 4.3 Variation of Rayleigh damping ratio with frequency

Damping Function A(f)

0.3

0.25 |
0.2

> |

€ 015
0.1 -

0.05 1

f (Hz)
Figure 4.4 Amplitude reduction as a function of frequency
Figure 4.5shows the model used with simulated zone of isteard sponge

layers outside the far-field boundary.
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Figure 4.5The model depicting the simulated region of indes:nd sponge layers

outside

4.4 Maximum frequency and time step

The numerically accurate representation of wave pgagation problems
corresponding to numerical attenuation becausendersampling requires at least 6-7
elements per wavelength. Based on this requiremef®> kB where « = ratio of size

of largest element to B. On the other hand theueeqy of foundation vibratiom, may

be expressed in dimensionless formas wB/V,.

As a result, the maximum frequency that can be lsited with sufficient
accuracy is described by the following expression:

B 2B 2/B 2n
a = = == "<

° vy v P

S S

(4.8)
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For the case of Model A, the ratio of element s@éoundation widthx = 0.67,

and therefore,,, = 35Similarly, for Model B,x = 0.50 and therefore, ., = 40

Based on the aforementioned highest accuratelyesepted frequency, the
minimum time step is consequently given by theokelhg expression:

B B 1 T
- = <

t=2=2 =" = = min

v. fA 6f 6

S

where f = frequency of excitation

In the simulations presented in the ensuing ofghigly, a time step 2”“8 to 4Lg has

been employed.

4.5 Advantages and limitations of Model A and ModeB

As mentioned above, model A is an adaptive mestm@ht size increases with
distance from the pier), a fact which has the feitgy implications:

(a) It consists of lesser number of elements thus denably reducing the amount of
computational time;

(b) the element size increases with distance from padrich implies that the
accurate representation of wave propagation réstife far field to a maximum
distance from the foundation center, namely théadie where the element size
equals the maximum element size permitted by frequeonsideration (2.5B in
this case); and

(c) Beyond the far field, numerical attenuation is olaed due to very large element
size. Nonetheless, the attenuation only adds toetfextive damping already
accounted for in the sponge layers, and hence wepre-in this case- the

performance of the far-field truncated conditions.
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Based on the aforementioned observations, Mode ere used in all dynamic
simulations, while Model B has been used in thdicstease, and in particular for

comparison purposes only.

4.6 Simulation of the far-field seismic motion

In order to evaluate the kinematic response of finendation, namely the
response of the element to the incidence of seigraies, the input motion is prescribed
directly to the region of interest in form of effee forcing functions at the base and
lateral boundaries of the numerical domain boungedponge boundaries. The forcing
functions for lateral boundaries are evaluatedhas1iD response of the corresponding
soil columns. The difference between the 1D moaod 2D response evaluated at the
far-field is actually the scattered energy of tlgetem, which propagates outwards from
the irregularity and is absorbed by the artifi®daundaries. The evaluation of consistent
boundary conditions prescribed around the numedoatain of interest is based on the
Substructure Theorem (Rosset, 1975). Accordingpiotheorem, the free-field vibration
problem can be decomposed into substructures @hdiefd and the soil-structure
configuration, referred to as near-field) as sheenematically irFigure 4.6

Since the excitation is exactly the same for thefildd and the interaction
problem, differences in the interface displaceménts= Ub — U*b) are solely attributed
to differences in the interface stress&S € Sb — S*b). If the far-field is now subjected to
forcesAS, in the absence of seismic excitation, displacesr€J will be produced, such
thatAS = X AU, where X is the frequency-dependent dynamic imped matrix of the
far-field, i.e. the stiffness of the far-field asem by the interface. Substituting the forces

and displacement differences at the boundariesbiagn:
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Figure 4.6 Schematic representation of the Substructure The&we soil-structure
interaction problems (the interaction problem isvgh on the top, and the free-field

problem on the bottom figure)

-S, =-XU,+ XU, -S, (4.9)
Since the domain is infinite, the equivalent spratigfness implied by X is zero.
The stressesXU, — S, correspond to the far-field motion and are apptiedhe lateral

boundaries. For the wave-propagation problem aedlyzerein, the far-field motion is
defined as the response of a one-dimensional shihm, subjected to the input motion
prescribed at the base of the two-dimensional gandition. Successively, the fictitious
forces prescribed at the lateral boundaries oflihee-dimensional model are determined

as follows for the case of SH-wave incidence:

(@) S, corresponds to the vertical reaction preventirgy\vértical motion at the far field
boundary; and

(b) XU, =V .U, corresponds to the product of the calculatediéd {1D) response and
impedance, wher&), the velocity time history at the 1D column nodasd V., the S-

wave velocity at the corresponding location.
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For the purpose of this study, the forces are egdpin form of surface loads
(tractions) both at the base and the lateral baugslan the 3D model. It should be noted
that the substructure theorem is based on theipkgnof superposition, and is therefore
applicable to linear problems as well as approxatyatpplicable to moderately inelastic

systems.
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CHAPTER 5

STATIC TRANSVERSE LOADING AT THE TOP OF CAISSON

This chapter discusses the methodology used tole#dcthe stiffness matrix and
springs and its limitations. The effect of distanédar field boundaries is investigated. A
parametric study for representative pier to saffrn&ss ratios in the field is performed to
verify the rigid behavior of the pier. The resudir® presented for static simulations and
are also compared with other available analytioaintilations. The springs obtained are
then approximated using simple expressions. Varaihsr parametric studies are also

presented such as sensitivity to Poisson raticeffiedt of eccentricity in loading.

5.1 Calculation of stiffness matrix and individualsprings

Consider the matrix formulation of the equation exfuilibrium of externally
applied forces and soil reactions evaluated in EguaB.8. This expression can also be

written as:

ul K, K,TTVvT] Tuw u, TV
t — XX Xr — \ M (51)
7] K, K, M e 6, |M
In particular for the case of unit externally apdlilateral force and moment at the

top of the caisson:

-1
el &l 62

where the displacement components on the right-satedof the equation are:

u, : displacement at top upon the application of & fance

g, : rotation of the rigid body upon the applicatidraaunit force

u,, : displacement at top upon the application of & omument

6, : rotation upon the application of a unit moment
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As a result, the stiffness matrix can be evaluaigdsimply computing the
displacements at top and rotations of pier duéécapplication of a unit lateral force and
a unit overturning moment separately and inverting matrix in Equation 5.2. This
method is typically referred to as tfexibility approach and is extensively applied in the
field of structural mechanics.

The individual lateral springs along the length amdthe base of the pier,

namelyk,and k., correspondingly, are then back calculated by éqgathe overall

lateral and coupled stiffness of the pier showrequations (3.9) and (3.10) to the

numerically evaluated stiffness as:

K,D+K
kbx = —(%j (5.4)

Successively, the overall rotational stiffnessha foundation as interpreted from
the top, described in Equation 3.11, can be wriign

Krr _(kx%3+kbe2) :k6D+kb49 (55)

In order to evaluat&k,andk,,, we evaluate the equality described by Equation

5.5 for two different but close values of D. Théenent assumption of this approach is

that the variation of these two springs with (Digsmall.

5.2 Effect of far-field boundaries

Three-dimensional finite element simulations argeheonducted using the
computer code DYNAFLOW for both Model A and Modeln&h the far field conditions
imposed at distance equal to 5B on both sides wag &#om the base. The results were
compared to static simulations evaluated by me&dsBAQUS using infinite elements

at the boundary.
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The stiffness matrix and springs evaluated by me@BAQUS were initially
found to be approximately 20-25% lower than coroesiing ones obtained by means of
DYNAFLOW. This was attributed to the fact that stdince of 5B on the sides was not
sufficient to simulate the semi-infinite domain flateral loading, and therefore, the
variability in far-field representation between ttveo approaches (infinite elements vs.
sponge boundary conditions) results in large dmnabetween the two finite element
numerical model solutions.

Based on that observation, more simulations werelected in DYNAFLOW
where the numerical domain was truncated at a asong distance from the foundation
center; at a distance equal to 10B, values wene finend deviate approximately by 5%
compared to the corresponding results obtained dgns of ABAQUS. Results from this
investigation show that a minimum far field distanof 10B on each side should be
employed for static simulations, if standard fiegtiare used at the boundary. The results
are however not sensitive to the far-field boundaelpw the foundation base at distances
greater than 5B.

In the ensuing, results from the ABAQUS simulati@ame being presented, and

selected simulations are compared across the twencal solutions itable 5.1

5.3 Validation of rigid body behavior and effect ofEp/E ratio

It has been shown above that based on the assumagftragid body motion of the
pier and consequent absence of flexural bending, stiffness matrix obtained in
Equation (3.10) is symmetric, namely the off-diaglooupled stiffness terms are

equalkK, =K, . Figure 5.1depicts the sensitivity of coupled stiffnelds, = K, , namely

rx !

the expression:
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DYNAFLOW (far field distance 5B

ABAQUS (with infinite elements)

D/B ratio
I<XX I<XI’ I<I'I' I<XX I<XI’ I<I’I’

0.25 1.83 -0.37 0.51 1.53 -0.31 0.49
0.5 2.36 -0.84 1.02 2.12 -0.76 0.98
0.75 2.85 -1.43 1.83 2.52 -1.28 1.74
1 3.32 -2.15 3.00 2.91 -1.90 2.83
1.25 3.78 -2.99 4.59 3.28 -2.61 4.28
1.5 4.23 -3.94 6.67 3.63 -3.41 6.16
1.75 4.68 -5.02 9.28 3.98 -4.30 8.50
2 5.13 -6.21 12.49 4.33 -5.28 11.35
2.25 5.58 -7.52 16.35 4.67 -6.35 14.76
25 6.03 -8.96 20.94 5.00 -7.51 18.76
2.75 6.49 -10.52 26.31 5.34 -8.75 23.42
3 6.94 -12.21 32.52 5.67 -10.09 28.76
3.25 7.41 -14.03 39.66 6.01 -11.52 34.85
35 7.88 -15.98 47.78 6.35 -13.05 41.74
3.75 8.35 -18.07 56.97 6.69 -14.67 49.48
4 8.84 -20.31 67.31 7.03 -16.39 58.12
4.25 9.34 -22.71 78.89 7.38 -18.23 67.74
45 9.84 -25.27 91.83 7.74 -20.17 78.39
4.75 10.37 -28.01 106.22 8.10 -22.24 90.17
5 10.90 -30.94 122.20 8.47 -24.43 103.13
5.25 11.46 -34.08 139.90 8.85 -26.77 117.39
5.5 12.04 -37.45 159.51 9.25 -29.24 133.04
5.75 12.65 -41.07 181.22 9.65 -31.89 150.21
6 13.28 -44.96 205.22 10.08 -34.70 169.00
6.5 14.66 -53.75 261.28 10.98 -40.94 212.18
7 16.24 -64.16 330.44 11.98 -48.15 264.09

Table 5.1Comparison between Global stiffness terms obtairsétg DYNAFLOW

(lateral far field boundary 5B away from pier) ahBAQUS (infinite elements in far

field)
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der —_— 2 (KXI' B er)
Ke? (K =Ky

(5.6)

as a function of the aspect ratio D/B for soil Bois ratiov=0.3 and foundation-
soil impedance ratios (HE =10' and 16 , which are representative for the case of
concrete and steel respectively. For D/B ratiogdathan 6, the deviation is shown to
exceed 0.05 (5%) fordE = 10. Thus, the assumption of a rigid pier is consideralid

only for aspect ratios D/B 6.

Deviation from Rigid Behavior

0.14

—e—E/Es=1e4
o244 )
—a—E/Es=1e5

0.10 A

0.08 A

AdKxr/Kxr

0.06 A

0.04

0.02 A

0.00 A

Figure 5.1 Deviation of pier from rigid behavior for differepile to soil stiffness ratios —
coupled stiffness sensitivity as a function of ésgect ratio D/B for two foundation-soil
impedance contrasts.

Figure 5.2a, bandc compare the components of the stiffness matrixcémstant
E,/E ratios. As can be readily seen, for D/B > 6 ¢hisrsignificant difference in stiffness
terms for both cases. However, below D/B = 6, tiftness matrix is almost independent

of stiffness contrast between the soil and pier.
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Kxx (Contrast effect)

D/B
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Deviation from Rigid Behavior
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Figure 5.2cVariation of rocking stiffness Kwith pier to soil stiffness contrast{E).

5.4 Comparison of results to shallow foundation thary

In this part, we shall compare the overall founalastiffness evaluated by means
of finite element simulations to analytical solutsoevaluated for shallow foundations, to
examine the applicability of the latter for the Bs& of intermediate foundation
elements such as the caisson foundation investigagee. Multiple analytical solutions
and formulations are available in the literatured&scribe the behavior of embedded
foundations subjected to lateral loading. Amongeaththe formulations against which
finite element results obtained in this study aga compared are shown below.

1. Wolf (1997) presents spring-dashpot-mass modelsibvations of rigid cylinder
foundations embedded in halfspace as shown beldvigure 5.4 The stiffness
elements of the model are evaluated as follows:

f, =025
Khn - % (1+Ej
2—-V r
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3 3
K =% |1423% 0548
3(1-v) r, r,

3 2
Kor = Kr - Gro 1+E E
2(2-v) r, \ 1,
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3
= K 1 M ir
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Figure 5.3aCylinder embedded in half space and its equivatesdel (Wolf, 1997)

From the above model, the stiffness matrix ternnsfatic loading applied at the

top of the foundation are calculated as follows:

Ky =K,
er = Kh fK
Krr = Kor + Kh sz

2. Elsabee et al. (1977) and Kausel (1974) developediflations for stiffness of

rigid embedded cylindrical foundations welded iatdhomogeneous soil stratum

over bedrock as shown figure 5.3b.

According to these studies, the overall stiffnebshe foundation as interpreted

from the top of the element is expressed as:

KXx = @(1+ij{l+ 2)(1+ 2)
2-v 2H 3R 4H

K, =04k, D
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3
K = &R @+RIH§%@+WDJ
3t-v)\" 6H R H

These expressions are shown to be valid for D/kb<afid D/R < 2.

-.._I

H orD

Y

LA Iy
Figure 5.3bRigid embedded cylindrical foundations welded iatbomogeneous soil

stratum over bedrock

3. Novak et. al (1978) evaluated the dynamic soil tieas for plane strain
conditions. Despite the fact that for static logdiconditions, the formulation
results in zero soil reactions, for quasi-statiading (i.e. low dimensionless
frequencies @a= 0.1) and material Poisson’s ratwo= 0.3, they result in the
following expressions:

Kk
X =3
G

Ko

o = 075

Assuming that along the length of the caisson,viddial cross-sections will
respond based on Novak’'s assumption for planenstranditions, one needs to
also account for the base lateral and rotatioredtren of the foundation. For the
case of weightless, linear elastic medium as inyastd here, a multitude of
formulations have been developed in the past fgid rcircular foundations on

halfspace; among others, the most well known ageettpressions by Luco and
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Westmann (1971), Velestos and Wei (1971) and Madeand Verbic (1974),

which describe the soil reaction at the base ofdbé&ng as:

_ 8GR
bx 2 -v

_ 8GR®
0 31-v)

Combining the distributed springs approximated byw#&k’s approach and the
base springs approximated by the reaction of serfaandations, the stiffness
matrix was evaluated for the analytical model ps®abin this study as shown in

figure 5.3¢ and results are compared to the numerical anaiypsthe ensuing.

Figure 5.3cCombination of springs for Novak plane strain caisé Velestos rigid

circular footing on half-space

4. Electrical Power Research Institute (EPRI)(1982patalibrated a four spring
model from three dimensional simulations in ABAQWSIng a stress based
approach for static lateral loading applied at tibye of drilled piers for Poisson

ratio = 0.3; according to this study, the

kB _ 5,1{2)0'525
E B

-0.052
Ko _ o,47g{2)
EB B
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-0139
kB _ 154(2)
E B

0.426
L 0.17{9j
EB B

According to this study, the soil reactions (i.priisgs) along the caisson and at
the case are defined in terms of force per unig,aeed converting to stress

reactions according to the approach proposed tieexpressions become:

-0.525

!Si:: SLLE{}EEJ
E B

-0.052
% - 0.476(2j
EB? B

-0.139
kbx = T 1_&{2)
EB 4 B

0.426
_EEEQ_ ::.Z{().1:7E{:JE23
EB® 4 B

The displacements of pier in x and z direction l&deral loading are shown iigure

5.4a-b
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Figure 5.4a Displacement contours in X-direction for latel@ding of pier

MDARDY Vereiom 6.6-1 AER B ki S 3 0 B S et erns Btandard,

1.000

mation Scale Factor: +7.705e+03

Figure 5.4k Displacement contours in Z-direction for latdaading of pier

In the ensuingFigures5.5a-cdepict the variation of overall foundation stifése
as interpreted from the top as a function of theeeasratio (D/B), evaluated by means of

the spring coefficients developed in this studyoading to Equation 3.9-3.11 .
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Kxx/EB vs D/B

D/B

Figure 5.5aVariation of Ky with D/B ratio

K«/EB?vs D/B

L8317

Figure 5.5bVariation of K with D/B ratio
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K,/EB®vs D/B

450

400 A

350 A

300 A

250

Kr/EB®

200

150 A

100 A

50 1

Figure 5.5cVariation of K, with D/B ratio

Results for these components of the overall fouadadtiffness matrix are next
compared to the aforementioned available shallawdation formulations and shown in

figure 5.6 (a)-(c).
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Kxx/EB Vs Embedment
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Figure 5.6(b) Comparison of k with different solutions available
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K,/EB* Vs Embedment
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Figure 5.6(c)Comparison of K with different solutions available

Based on the results compared above, we concliedéotlowing regarding the
applicability of shallow foundation theories forethanalysis of intermediate rigid
foundation elements:

(a) The model proposed by Kausel (1974) and Elsabe&rjl@aptures the lateral and
coupled stiffness very well, but significantly umgeedicts the rocking
resistance.

(b) The model proposed by Wolf (1997) captures therdhtand rocking stiffness
very well, but under-predicts the coupled resistanc

(c) The EPRI (1982) model may be used to simulate thapled and rocking
stiffness components, but over-predicts the latesiktance.

(d) The stiffness values predicted by springs obtaifnech combination of formu-
lations by Novak (1978) and Velestos (1971), nanmpstant spring values

independent of the foundation aspect ratio (D/Ba igood approximation to the
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configuration investigated here and qualitativedpttires the overall variation of

stiffness as a function of D/B, but quantitativ@lsedicts lower stiffness values

than the actual ones obtained.

Based on the aforementioned conclusions, none eoexisting models may be
used to capture all the three modes of soil rasist@ompletely. There exists therefore a
clear need to calibrate the springs of the propasedel, which may be successively
employed for the evaluation of the overall foundatstiffness; evaluating the lateral,
rocking an coupled stiffness at the top of the ftatron may be successively used in
analyses of structural response to replace theintamh formulation of the infinite
domain and foundation element by the foundatiohstdiness matrix. As explained in
section 5.1, the proposed model is calibrated base®D finite element simulation
results by equating stiffness components of thexdation system and back-calculating
thus the spring expressions as a function of thdemah stiffness and geometry

characteristics of the foundation.

5.5 Calculation of distributed and base springs

The variation of all four springs as a functiortloé foundation aspect ration is
shown inFigure 5.7.
When the springs are estimated based on the &hataent calculated stiffness
matrix through thélexibility approach, it is observed that
(a) The base rotation sprink, , decreases very fast with D/B and becomes zero for
D/B = 0.75. For higher D/B ratios it shows a randeamiation and gives negative
values.

(b) The distributed rotational sprinkg, increases with D/B but beyond D/B = 5-6, its

contribution decays and eventually becomes zero.
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The trend observed above is interpreted as diretdynming from the spring

derivation process itself. The stiffness coeffitié&h, according to equation 3.15 is given

K, _ 1kx(Dj3 kbx(Djz K, (Dj K,
S L e e i ) iy S = |+
EB* |3E\B) EB\B) EB?’(B) EB

Knorm VS D/B

as

knorm

054 P ************************* bl —e—kbx |
| | =Ko

~ - =
0 TSP S DS S S D S SHED SH S S D P S S S S U SHNED D S

0 1 2 3 4 5 6 7 8

Figure 5.7 Individual springs obtained as a function of D/B

As the aspect ratio D/B increases, the contributbrk,and k,, to the overall
rotational stiffnessK,, relative to other two terms decreases. As a reulhigher D/B
ratios K, becomes increasingly insensitive to changes inegbf these two springs.
Since the sensitivity oK, to k,and k,, decreases as D/B increases, it is not possible to
interpret the values of these two springs throlghetquation requirement df,, beyond

a certain D/B ratio, which corresponds to D/B=0f@b k,, and D/B=5-6 fork,. Since
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k,is a function of D/B as well, the D/B range whégg may be interpreted without loss

of accuracy is wider than the corresponding oné&far

As can be readily seen, for the D/B region beyoruckv the rocking stiffness
expression becomes insensitive to a given sprihgeyéhis spring (i.e. mechanism of soil
resistance) may be neglected altogether resulting simplified version of the model.
Based on this interpretation, the response ofqaarbe broadly classified into three main
zones:

Zone |: D/B= 0-2 (four spring model)

(a) The distributed lateral spring, decreases rapidly with D/B ratio. This behavior

is most possibly attributed to the fact that atheigembedment depths, the soil
layers respond almost independently to each othed, the shear resistance
mobilized between the layers is not substantials tis equivalent ot the
assumption for plane strain conditions similartie model proposed by Novak.
On the other hand, for small foundation embedmeptits, there is much more
interaction between the adjacent layers, namelypliee strain assumption is not
valid and hence higher resistance is mobilized tdughear interaction between
consecutive soil layers.

(b) The base lateral sprinky, has an initial value of 0.92 which is almost idesitto

the value predicted by the formulation by Velesimshorizontal impedance of

circular foundations on halfspace. However, as Bfi® increasesk,, increases.

This is explained by the so-callédench effect, according to which the soil at
deeper layers is more constrained as compared etostinface and therefore
mobilizes a higher shear resistance.

(c) The distributed rotational sprinig, increases with D/B.
(d) The base rotation sprink,, has an initial value of 0.18 for D/B =0.25 whichais

very good approximation to the theoretical rockstgfness predicted by the
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formulation by Velestos. Nonetheless, since thatiret contribution of this spring
to total rocking stiffness is very small, it may beglected with no loss of
accuracy in the solution for D/B > 1.

Zone Il: D/B=2-6 (three spring model)

(a) The distributed lateral sprinky, decreases slightly with D/B and then remains
practically constant. The normalized valuekof E =1.48 which is somewhat

comparable to the value of 1.15 predicted by Ndweakery low frequencies.

(b) The base lateral sprinky, increases with D/B ratio throughout as expectesltdu

trench effect.

(c) The distributed rotational sprink, increases with D/B and then becomes nearly
constant. The increase is explained by the incrisasenfinement due ttvench

effect and higher shear resistance mobilized at the sides
Zone lll: D/B > 6 (two spring model)

(a) The distributed lateral sprink, remains almost constant with D/B.
(b) The base lateral sprink}, keep increasing with D/B.

However, as observed from the simulations for inpee contrast between the
foundation and soil, for D/B > 6, for concrete giethe response of pier starts deviating
significantly from the perfectly rigid assumptioRor D/B ratios greater than this, the
caisson behaves as a flexible foundation and thgorese can be estimated by using the
p-y curve approach. For a linear elastic mediume, phy curve is represented by the

constant lateral sprirlg.

5.5 Simplified expression for springs

The objective of this study is the spring modellrakion for aspect ratios D/B =
2-6 since to behavior observed in Zones | and ldynbe captured by formulations

available for embedded foundations and piles rasmdg. Using the values of springs
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obtained by means of the finite element simulati@isple expressions are derived by

means of least-square curve fitting as follows:

Kk, D -015
% =0.669+ 0.125(%] (5.8)
Ekéz =1.106+ 0.227(%) (5.9)

The fitted expressions and standard deviation efrésults is shown iRigures
5.8a-c for the lateral distributed, base concentratedrd&tend distributed rotational

stiffness respectively.

ky Fitting
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Figure 5.8 (a)Curve fitting tok,
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kpx Fitting
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Figure 5.8 (b)Curve fitting fork,,
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Figure 5.8 (c)Curve fitting fork,

Using the expressions derived by curve fitting, tdverall foundation stiffness
terms are calculated and the comparison with theesponding values obtained directly

through 3D finite element simulations is shown Hkigures 5.9a-c The excellent
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agreement between the analytically evaluated amdenigal values shows that the error
propagation due to the curve fitted approach ueeglvaluate the individual expressions

is minimal.

Kxx comparison

Kxx/EB

D/B

Figure 5.9 (a)Comparison showing ) obtained from fitted springs and 3D simulations

K,y comparison

180
160
140 ~
120
100 ~

Kn/EB®

Figure 5.9 (b) Comparison showing Kobtained from fitted springs and 3D simulations
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Kxr comparison

Kx/EB?

Figure 5.9 (c)Comparison showing Kobtained from fitted springs and 3D simulations

5.6 Effect of Poisson Ratio

In the foregoing, the simulations have been coretuébr a soil Poisson’s ratio
equal tov= 0.3. Additional simulations were next conducted Poisson ratio varying

from 0.1 to 0.49Figures 5.10 (a)-(c)llustrate the effect of Poisson ratio on thefstts

of the various model springs.
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Figure 5.10 (a)Effect of Poisson ratio oR,

bx

k

Figure 5.10 (b)Effect of Poisson ratio ok,
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Koe

Figure 5.10 (9 Effect of Poisson ratio ok,

Based on the results shown above, it is conclullad t

1. k, is almost constant with Poisson ratio except tdues very close to 0.5, which

is probably due to inability of FEM method to cagtyerfectly incompressible
soils.

2. k, decreases with Poisson ratio and the decreaseecquite accurately captured

by a factor of;Which follows logically from the analytical
@+v)(2-v)

formulation by Velestos.

3. k, decreases slightly with Poisson ratio, but siteedensitivity of total stiffness

terms is very little to this spring, the variatioan be ignored.

Nonetheless, the overall stiffness terms are maltyi insensitive to changes in
Poisson ratio as shown iRigures 5.11 (a)-(c)and Figures 5.12 (a)-(c) Thus, as a
simplification, the variation of spring coefficientwith Poisson ratio may be safely
neglected without loss of accuracy, and the sprargsheretofore assumed to be constant

and independent of the value of Poisson ratio.
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Figure 5.11 (a)Effect of Poisson ratio af,, for different D/B ratios
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Figure 5.11 (b)Effect of Poisson ratio oK, for different D/B ratios
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Figure 5.11 (c)Effect of Poisson ratio oK, for different D/B ratios

KXX
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Figure 5.12 (a)Variation of K, with D/B for different Poisson ratios
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Figure 5.12 (b)Variation of K, with D/B for different Poisson ratios
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Figure 5.12 (c)Variation of K, with D/B for different Poisson ratios
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5.7 Eccentric loading and center of foundation rotaon

Additional parametric studies have been conductedsiimultaneous application
of lateral load and overturning moment. The resalts presented as a function of
dimensionless eccentricig=VD /M . Figure 5.13 shows the change of location of the
centre of rotation as a function of eccentricityad#ding. The concept is shownkigure

5.14.

z./D

zc/D

—a—D/B=6

05

VD/M

Figure 5.13Movement of centre of rotation with change in liogdeccentricity
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Figure 5.14Figure showing the physical interpretation of @/Bx1, z/D>1, and <0

SuccessivelyFigures 5.15 (a)-(b)show the effective lateral stiffneds EBu

and rocking stiffness / EB®@ as a function of eccentricity in loading.

—e—D/B=2

V/UEB

VD/M

Figure 5.15(a)Effective lateral stiffness as a function of laagleccentricity
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M/GEB*

VD/M

Figure 5.15(b)Effective rocking stiffness as a function of laaglieccentricity
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CHAPTER 6

FORCED TRANSVERSE VIBRATION OF CAISSON

This chapter describes how the static springs areifrad to complex springs to
account for stiffness and attenuation in the systefihe methodology to obtain the
dynamic impedance matrix uses sinusoidal loadseaastof static step functions.
Approximate expressions are then obtained forn&#$ and attenuation coefficients of
the springs as a function of D/B ratio and dimenkass frequency parameter. Finally, a
comparison is presented between the values of dgnampedance matrix obtained using

fitted expressions and those obtained from 3D satrans.

6.1 Formulation and calculation of stiffness matrixand springs

For the dynamic loading case evaluated in this platttie study, the static springs
previously evaluated are replaced by complex impeeldunctions of the form:

K* = Ko,k (a,) +ia,C(a,) 6.1)
where

K4, = Static stiffness

aB

a, = Dimensionless frequency, = VA

S

k(a,) = Frequency dependent stiffness coefficient

C(a,) = Frequency dependent damping parameter.

As discussed in Chapter Z(a, represents the effective damping of the soil-

foundation system, which is a combination of enaagiation towards the far-field and
material damping. Thus Equation 3.8 for displacens@am rotation due to any loading

changes for the dynamic loading case to:
. K- k- Tu
MR R I 6.2)
M K, K., |8
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and equation 5.2 for back derivation of stiffnessnm becomes equivalently:

* * * » -1
Kxx er = uV uM (63)
K, K, 8, 6,

Xt r

where the displacements and rotations are compéxes as well, representing
the response amplitude and phase lag between alyeapplied loading and foundation
response. The Eigen-functions of the system of tespneashown above are represented
by sinusoidal functions.

Therefore, for the case of dynamic analyses, |ater@es and moments are
applied on the top of the pier in the form of ausiidal function, and the magnitude and
phase difference between the applied function aedfdundation response, namely the
displacement and rotation sinusoids, are evaluated.

The complex stiffness matrix can then be evalusgdnverting the matrix in
Equation 6.3, similarly to the static case and antag for the complex form of the
response in this case. The real and imaginary parthe springs can successively be

calculated from the real and imaginary parts ofdfifness matrix, respectively.

6.2 Model simplification — 3 spring model

In Chapter 5, it was shown that for the D/B ranfieterest (namely in the range

D/B=2-6), the stiffness component of base rotalispang k,, is negligible.

Gazetas (1983) showed that for base rotationasteesie mechanism, any two
points located on the opposite side of the base igee to waves that are 180 degrees out
of phase with each other, and hence tend to caeami other out when they meet at
distant location along the centerline. As a rethdly cannot reach long distances and no
significant amount of energy is radiated.

Since, the base resistance mechanism doesn't loot&rsignificantly to either
stiffness or the damping part it can be completelglected, and the resulting model is a

simplified 3-spring Winkler formulation.
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6.3 Variation of stiffness coefficient and dampingvith frequency

The variation of stiffness coefficienk and damping parameter C with
dimensionless frequengy, is shown inFigures 6.1 (a)-(f) Approximate expressions for
the stiffness coefficients and soil-foundation att&tion that have been developed as part
of this work are given below, and the comparisotwben approximated and actual
values is also shown figures 6.1 (a)-(f)

(@) k.: The lateral resistance distributed stiffness ficieht decreases with

increasing frequency as shown kgure 6.1 (a) The numerically derived
variation shows many fluctuations with frequencyich are probably caused by
local resonances inside the model due to

a. The finite dimensions of the model; and

b. The imperfect absorbing conditions in the far-fialdmerical boundaries.
Nonetheless, for all three D/B ratios presentedehé¢he variation may be

approximated by the following expression
k,=1-01a,

(b) k., : The lateral base resistance stiffness coefficidsu shows some fluctuations
with frequency as shown igure 6.1(b), most probably due to the same effects

discussed above. However, for practical purposeas simplicity, it can be

assumed to be almost constant, namely

k. =1

(c) k,: The side rotational stiffness coefficient alsmwh a decreasing trend with
frequency as shown iRigure 6.1(c) The decreasing trend can be approximated

as:

k, =1-0.225, .
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The validity of the approximate expressions deriabdve will be evaluated in
the ensuing by comparison of the analytically petti response computed by means of

the fitted expressions to the numerically predictsponse of the foundation-soil system.

k'x Fitting

—— Approximation

1.50 2.00 2.50 3.00

Figure 6.1(a)Variation of k with frequency
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Figure 6.1(b) Variation of k,, with frequency
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(d) C,: The attenuation (material and radiation dampiiog)lateral side resistance

increases as frequency increases, but becomes anbn&r normalized

frequencies beyond, =1. The approximation is given as:

X

_ 1853, a,<1
| 185 a, >1

This expression implies that the overall systemrgneattenuation increases

almost linearly with frequency foa, >1.
(e) C,,: The attenuation coefficient associated with bstsear also shows a similar

trend as C, as shown in Figure 6.1(e) and is approximated as:

_|06a, a,<06
71036 a, >06
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() C,: Unlike the attenuation coefficients presentedvab@, results in a negative

value as shown ifrigure 6.1(f). Counter-intuitively, the negative value does not
imply the supply of energy into the system; instagadndicates that the waves

produced by the side shear resistance are out adeptvith those produced by
other resisting mechanisms. As a result the walgefeoduced by this mecha-

nism destructively interferes with the wavefieldguced by other mechanisms
to some extent and reduces the radiation of erssgy from the system.

This attenuation coefficient increases with frequefor values of normalized

frequency a, <1, beyond which it decreases. Above values of atned

frequencya, =2, it becomes almost zero indicating that no epé&sdeing radia-

ted towards the far-field due to this mechanisng #re wavefield for higher
frequency excitations tend destructively interfimethe rocking mechanism. This
behavior for side rotational resistance mechansmuite similar to the one for
base rotational resistance as described abovehdforbre, the value of this
parameter is found to increase with increasing fi®. A simple approximation
is given by:

-o21g)a, <1
C, =1~ 021(3)(2-a,)1<a, <2

0 a, >?2
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6.4 Comparison of analytically and numerically evalated complex stiffness matrix

Figures 6.2(a)-(f) show a comparison between the components of tleealbv
foundation stiffness matrix obtained by means efnlamerical simulations and the ones
obtained by means of the approximate expressiandyisamic impedances. As can be
readily seen from the figures, a good approximatisnobtained when the fitted

expressions derived above are employed.
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CHAPTER 7

KINEMATIC INTERACTION

This chapter discusses the importance of kinematieraction effects by
presenting some results obtained by Elsabee andaWdd977) and Day (1977) for
embedded shallow foundations. Using the Winkler ehogroposed, an analytical
solution for kinematic interaction of caissons &ided in terms of transfer functions for
top displacement and rotation. A comparison betwaaalytically derived transfer

functions and those obtained from numerical sintetis also presented.

7.1 Significance of kinematic interaction effects

As discussed in Chapter 2, the inability of a stiffindation to comply to the
deformation field imposed by the soil in the fregld, leads to incompatible motion
between free-field and the foundation. This diffee in motion results in forces and
moments being applied on the foundation by freld fes shown ifigure 7.1

In turn, the rigid behavior of the foundation reasuh filtering the effects of far-
field motion. The filtering is expected to be higlier short wavelengths (i.e. high frequ-

encies). The overall effect of kinematic interantis expressed in terms of transfer

functions
H,(a,) = —- (7.1)
ff
2]
Hy(a,) =— (7.2)
uff

Day (1977) employed finite element analyses to uatal the base motion of a
shallow rigid cylindrical foundation embedded infhgpace and subjected to vertically
incident coherent SH-waves. Elsabee and Moray (L®érformed similar studies for
visco-elastic soil of finite depth over a rigid baand also proposed approximate transfer

functions for the translational and rocking motaifrthe foundation as follows:
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Yy

——

Figure 7.1 Incompatible motions between foundation and frelel f

e _
cog —a, |a, < 0.7a,
0453 % ~ Y13,

0.257(1_003{36l D _
|H5(a))|= R R ao<&

0.257 a, >a,
R
wherea, -2R anda, =@.
2¢€ V,

For the finite depth case, due to multiple reflees of waves at surface and from
bedrock, the response is a sinusoid with time waryamplitude (i.e., similar to a beat
function) instead of a sinusoid with constant atopke. The frequency of amplitude
variation is controlled by the thickness of soiyda Thus, the transfer functions refer to
the maximum displacement and rotation observeeausof the amplitude of the sinusoid

as in case of halfspace.
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Figure 7.2 Comparison of amplitude of transfer function figriat cylindrical foundations
embedded in halfspace (Day, 1977), in soil layéimite thickness and approximation

(Elsabee and Morray, 1977). Figure from Stewaal.ef1998)
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Figure 7.2 shows a comparison between the transfer functdmsined by Day
(1977) for the case of an underlying halfspacealt#de and Morray (1977) for a finite
thickness solil layer, and the approximation foeéhembedment ratios denoted as e/r =
0.5,1 and 2 which correspond to D/B = 0.25, 0.5 h8d

The significant differences between the finite kiniess soil layer and the half

space arise from the oscillations in transfer fiomctfor frequenciesa,>1 due to

resonance effects in the finite layer. As a genetaervation, significant filtering of

translational motions is observed fay>0.5 and significant rocking motions fa >1.0.

The filtering effect is shown to increase with fuegcy for low frequencies, where it is
more or less insensitive to frequencies for higiheguencies. By contrast to a circular
foundation on the surface of a halfspace, which ldiaexperience no reduction in
translational motion and no induced rocking, thebedment length increases the
kinematic interaction significantly and cannot leglected even for D/B ratios equal to
unity, namely shallow foundations.
For extension of these formulations to cases suké tlepth-varying soll

formations, horizontally propagating SH waves and-nircular foundations, the reader

is referred to Elsabee and Morray (1977), Day ()@nd Mita and Luco (1989).

7.2 Analytical Solution for kinematic interaction for three spring model

For a sinusoidal SH wave propagating vertically amhin a half space, the

solution to the displacement field is given by
z z Bz z
Uy (2) =u, cos@mr—) =u, cos = U, COS(——) =u, cos@a, —
¢ () =uy cos@rr) =uy cos() =uy cos{ =2 =uy cost, o)

where z is the depth from the surface. For theigardtion shown in Figure 7.1, using

equilibrium of forces in horizontal direction, tfalowing expression is obtained:

D
[Kur (2dz+Kk,u; (D) =0
0
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[0 (2)-t; @2+ K, (& () -u, () =0

D
J'k;(uf -6 z-u cos@, é))dﬁ kgx(ut* -6 D -uj cos, %)j =0
0

2
kuD-k6& b K U Esin(ao 2) +k U, —k & D-k u. cos@, 2) =0
2 a, B B

which can be simplified to the following expression

2
u (KD +k; )+ 9*(— K. % - k;XDj =u, (k; aEsin(ao %) +k., cos@, %)] (7.3)

(0]

Similarly, applying moment equilibrium at the toppoer, we obtain the following:

D D
- [Ku; (2) 202~ k;,u; (D)D + [ K, (2)dz + k6 (D) = 0
0 0

- (K0 (2 -} (@)zdz- K, (' (D) - vy (D))D + [ K36 (2) - 6, (2))dz + (6 (D) - 6, (D)) =0

0

k;[uf -8 z-u, cosf, é)jzdz—kgx(uf -d'D-uj cos, %)jD

+

o0 O*——0

k;(ﬁ* +U, %sin(ab é)jdz+ kgg(e* +Uy %sin(ab %)j =0

..D* ..D° .. [B_. . D (BY D
KU 7+kxc9 ?+quff [gDsm(abE){gj (cos(ang m 9} k. .Du +k 6 D

+k;Xu*ﬁDcos@,,%)+Kgoe —Rgaﬁ(cosgo% . %Rbg@ ity & sinz()% 5 0

which can be simplified to the following expression
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D? D?
i[4 5 k0)r0 (k5 kD ipek, |-

kx(gj ((1—005@%))—@)% sin(aD% 9—

D oost 2K D) 3 gD
B kaDcos(aDB)—kg(l— cosioB) kbgB Slr&(,B_

Equations 7.3 and 7.4 can be written in matrix fasn

Koo Ko f[ui|_| Ve
K;r K:r 0* M;ff

where the effective forces are formulated as fadiow

Vi = (klzsin(an%ﬁ K, cost, = )j

kx(gj ((1—003@%)}—%% sineD% j—

In non-dimensional form, Equations 7.5 and 7.6 lmamvritten as

K K Va
EB EB’ |5 |=| EB’
K Xr Krr M eff
EB* EB® ER3

Vg Ug(ki1 ., D, Kk D
=—| X"sin(a, —) +—=cosf@ —
EB? B (E a @, B) EB @ B)J

0

81

e 2 . 2 v & 2
B kaDcos(aoB)—kg(l— cosa(DB} kbth SIm(’B_
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(7.5)

(7.6)
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- , )
k (1 D D . D k,, D D
= — 1-cos@,— )|—-a,— sing,— ) ——=— cos{,— } .l
M;ﬁ_uﬁ E(aoj(( e"B)j a°B e"Bﬂ EB B SEQ’B-)
EB° B .
kH D kbg
- 1- cosa — sing —
The transfer functions can thus be written as
U K, K.]°
|:Hu (ao):| — uff — E E82 fl*
Hﬁ(ao) H*B er K:r fz*
u, EB? EB?®
where
. k* 1 kb
f. = sin(a, —) + =% cos
15 Ea @ ) @ )J
- , _
k (1 D D D
e 1-cos@ — )|—a — sin — cod, —
. E(aoj(( a“B)j &5 JEBB SE"’B-)
f, =
k* kb
1- cos 2 sing —
EBZ( en j EBSaD nao ) |

6.3 Comparison with 3D finite element simulation reults

(7.8)

(7.9)

(7.10)

(7.11)

Three dimensional finite element numerical simolasi were performed to

evaluate the transfer functiort$,and H ,for vertically propagating SH waves. The far-

field motion is applied in the form of effectiveréing functions in the interior of the

truncated numerical domain, as discussed in Cha&pté& comparison with the values

derived by means of the analytical expression ubmwity fitted and numerically derived

unfitted spring constants is shownkigure 7.3 (a), (h for D/B =2 andFigures 7.4(a),

(b) for D/B =4.
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From the results illustrated above, it can be tgai#ien that using the analytical
solution for the kinematic response of rigid intedrate embedded foundations and the
numerically derived fitted spring functions, theématic interaction for pier foundation
elements may be captured to a certain degree ofawe Despite the fact that the 3D
finite element simulations show values that deviaben the analytically derived ones
(even on the order of 50% for the case of rockimgioms), the following conclusions are
drawn:

(a) The model predicts the frequencies correspondingn&axima and minima of
transfer functions with sufficient accuracy;

(b) The values predicted by the model are for the mast conservative, i.e., lower
reduction in translational motion and higher indicecking motions, and show
substantial improvement from the assumption of inerkatic interaction; and

(c) The results are bounded by the transfer functidogimed using Elsabee and
Morray (1977) approximation for shallow foundaticarsd Gazetas (1993) simple

Winkler spring model for pile foundations

k, =1.2E or Lo 12
E

aB -025 aC
— | or —x=062a’"
V. ] E %

C, = 1.6,0VSB[
which is as expected but still none of the appreaataptures the actual response
as good as the proposed model. This further higtdighe importance of a
separate model for caisson foundations.
Using the analytical formulation and the fitted isgr values, the transfer
functions can be easily programmed into a simplps(see MATLAB script attached in
APPENDIX A) and can be used to predict -to a fapproximation- the pier response

subjected to transient excitation or earthquakelit@p given the aspect ratio of the

foundation D/B.
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Figure 7.3 (a)Displacement transfer function for D/B =2
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Figure 7.3 (b)Rotation transfer function for D/B =2
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Figure 7.4 (a)Displacement transfer function for D/B =4
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Figure 7.4 (b)Rotation transfer function for D/B
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CHAPTER 8
APPLICATIONS OF THE PROPOSED MODEL

In this chapter, we present applications of theppsed model and coefficients of
soil reaction for the estimation of the static alythamic response of pier foundations in
multi-layered profiles, and the kinematic respookéhe foundation elements to incident
transient seismic motion. Results are also evailulayemeans of three-dimensional finite

element simulations, and compared to the proposttadology.

8.1 Static Loading: Multi layered soil profile
Initially, we examine the soil-structure interactiproblem for the layered profile
shown inFigure 8.1, where the stiffness of the three layer€js10 MPa, E, =30 MPa

and E;=50 MPa respectively. The thickness of the toprayed, = 3m, the thickness of

the second layer &,=4m; the two layers are overlying a linear elastadfspace. The
diameter of pier B = 2 m and the depth of embedent8 m.

A lateral load of 1000 kN and an overturning momen2000 kN.m are applied
at the top of the caisson, and the response ofotlvedation element is here evaluated

using the proposed three-spring model for interatedioundations.

B=2m

D1=3m

D2=Tm

D3=8m

Figure 8.1 The layered soil profile considered in Problermd 2
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Using the model proposed, the distributed trarhati springs are given as:

-015
k, = 1.8{2j E
B

and for the three formations of the layered meditma,corresponding values are:
kK, =14.9 MPak,, = 44.6 MPa anll,, = 74.3 MPa.

The translational stiffness at the base of the dation is given by the following

expression:

Ky, :[0.67+ 0.1{%)}533: 119 MPa.m

Finally, the distributed rotational springs arelaaged for each layer as follows:

Ky = [1.11+ oz{%ﬂa B2

and the corresponding values are computed as:
k, =81.2 MPa.rhk,, = 243.6 MPa.mandk,,= 406 MPa.m
Using D =d; =3m
Dy=th+dh=7m
D3=di+ b+ d=8m
the overall stiffness of the foundation elemeningéerpreted from the top of the caisson is
computed from the following expressions:

Ky =KyD, +K,(D, =D;) +K,;(D; - D,) +k,, =416.4 MPa.m

2 2 _ "2 2 N2
K. = —{kxlD—zl " kxz(Dz—leJ ¥ kx{%] ¥ kbxoel = -2468.3 Mpa.fh
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D3 D3-D? D3-D3
K =k,—t+k 2 1 +k 3 72 |+k D2
"3 *2[ 3 j X‘{ 3 ] »7* = 18257.5 MPa.t
+ kalDl + kHZ(DZ - Dl) + kez(D3 - Dz)

In a matrix form, the displacement-force relatidrthe foundation-soil system is:

HbaIM
7] K, K, M
and substituting the corresponding values of tiftness matrix and externally applied
loads at the top, the response is computed as:
ur =0.0153 m=1.53 cm
0 =0.00218 rad
Results of the 3D finite element simulation for tekame configuration and
externally applied loading correspond to the follagwresponse at the top of the caisson:
Urpnuvy = 0.0178 m=1.78 cm
0 num = 0.00239 rad
The analytically obtained values deviate from thenerical results by a factor of
10-15%. As can be readily seen, the assumptiomdiVidually responding soil layers
may be applied with no significant loss of accuraayd thus the model can be employed

for the case of multi-layered soil profiles.

8.2 Dynamic Loading: layered soil profile

For the same configuration described above, we éekiate the pier response to
a dynamic steady-state lateral load applied atdpeof the foundation, with amplitude
1000 kN and frequency 5 Hz.

The density of layers 1, 2 and 3 is assumed to39,11600 and 1800 kgfm
respectively, whereas a common Poisson’s ratiessirmed throughout the medium and

equal tov=0.3.
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The shear wave velocity of the soil layers and dimensionless frequency
describing the soil resistance and radiation daghgapendence on the frequency content

of the pier response are calculated as:

V, = _E and a, _ 278
20+v)p v,

Therefore, for each layer the corresponding vatues
V,=50m/s a,;=1.25
V,=85m/s a,=0.74

V=103 m/s a = 0.61

Given the dependency of stiffness and attenuabefficients on the frequency

content of the pier response, namely:

. 18 <1
k, =1-01a, C. = 2 &
185 a,>1
. 0.6 <06
kbx :1 Cbx = aO aO
036 a, >06

-0248)a, &<l
k, =1-0.225, C,={-0212)(2-a,)1<a, <2
0 a,>2

The dynamic springs (distributed translational,ebtranslational and distributed
rotational stiffness and attenuation coefficiemshis case are calculated as:

k,=13.04 +23.12 ik, = 41.30 + 30.39 i, anld, = 69.77 + 34.42 i
k., =119.0 + 21.96 i
k,, =58.36 — 31.5 ik,, = 203.04 — 55.20 i, ank,,= 350.27 — 61.51 i

Using the above values, the global stiffness mataix be written as
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K, =393.1+247.3i
K, =-2359.9 —1145.7 |

K’ =17351.3 + 6735.9 |

Using the displacement-loading system of equatawsribed in 8.1 and solving
for the complex response of the foundation, thailteg amplitude predicted by the

proposed model is:

u/=0.011m=1.1cm

|6|=0.00147 rad

Results of the 3D finite element simulation for tekame configuration and

externally applied loading correspond to the follagwesponse at the top of the caisson:

U, = 0-015 M = 1.4 cm

[NUM]

|6l vy = 0-00186 rad

[NUM

Based on the comparison presented above, the m@aebe employed to predict
the dynamic response with fair accuracy. Despigeféitt that the presence of multiple
layers causes multiple reflections of waves atitierfaces arising from the impedance
contrast, it appears that the radiated waves aneaply parallel to the layer interfaces
(except for the base spring for which they are rabrta the interface). As a result, the
layers act more like a waveguide for waves moviwgyafrom the pier and layering has

little effect on the total response.

8.3 Response to a transient seismic loading

As discussed in Section 7.3, the analytical exjpwassdeveloped for the load-
displacement and rotation transfer functions of pier response caused by vertically
propagating SH seismic waves in the free field inayasily implemented in a computer

script (e.g. MATLAB) and successively be used twwate the motions corresponding
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to any transient loading by means of Fourier rettanson of the response signal,
provided that the medium of propagation is lindastc or moderately nonlinear.

This section presents a comparison between therggponse obtained by means
of the analytical kinematic response formulatiomgghe approximated spring formulae
developed in this study, and the numerically evaldaesponse by means of 3D finite
element time-domain simulations.

Figures 8.2aand b show the applied free-field displacement time drigtand
Fourier transform correspondingly. The comparisetween the analytically-predicted

and numerically-evaluated response is showkigares 8.3 and 8.4

0.6

0.4
0.2 {

0
-0.2

Displacement

-0.4

-0.6

time (sec)

Figure 8.2aThe displacement time history applied to freefiel

Displacement

Frequency (Hz)

Figure 8.2b Fourier spectrum of free-field displacement tintdry
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In particular,Figures 8.3a-bshow the theoretically predicted and numerically-
computed time histories of the pier displacementhattop and the pier rotation. The
numerically-obtained time histories have been stifin time to account for the wave
propagation duration of the excitation travelingnfr the far-field to the pier. The Fourier

spectra of the translational motion are compareBigure 8.4 (a)and for the rocking

motion inFigure 8.4 (b)

0.4 :
034---------"-"-"-~--Jp------

T
,,,,,,, . |— Analytical solution

I
I
| —— Obtained value
I
I
I

Displacement

time (sec)

Figure 8.3aComparison between obtained and theoreticallyigtedl translation motion

at the top of pier.

0.4
|

034~ dmmmooo-
|

T T
,,,,,,, l — Analytical solution

|

|

—— Obtained value

Rotation*B

time (sec)

Figure 8.3b Comparison between obtained and theoreticallyipied rocking motion of

pier.
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Figure 8.4aComparison between Fourier spectra (obtained framerical simulation

and analytical model predictions) for translatiomaltion at the top of pier

0.4

— Analytical Solution
Obtained value

0.35

0.3
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Displacement

0.15
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Figure 8.4b Comparison between Fourier spectra (obtained framerical simulation

and analytical model predictions) for rocking mataf pier

From the comparison of results presented abowsgntbe readily seen that that
the model is able to capture the response of pithiman acceptable degree of prediction

accuracy. In particular, the dominant frequencpath translational and rocking motion
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response evaluated by means of the analytical medelexcellent agreement with the
numerical results. However, the maximum translapoedicted by the analytical model
is 0.37m which is higher compared to the numenealitained value, namelymk =
0.23m. Also, the pier rotation is predicted to b&4@ad by means of the analytical model
and 0.22rad is obtained by means of the numericalilations. Overall, the results
predicted are conservative (higher translations lasigtier rotations than the numerical
model predicts) but still they are much better agpnation than the simulation of the

response in absence of kinematic interaction effect
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CHAPTER 9

CONCLUSIONS AND FUTURE

9.1 Conclusions
In this study, we developed an analytical modddécemployed for the prediction
of the response of rigid cylindrical caisson founates characterized by aspect ratios D/B
= 2-6 and embedded in linear elastic soil medimgua simple Winkler spring model
with four springs namely:

(a) k,: Lateral translational springs used to charactelaeral force-displacement

response of soil;

(b) k,: Rotational springs used to characterize the monu®veloped at the
centerline of pier due to vertical shear stressngcat the perimeter of pier,
induced by pier rotation;

(c) k,: Base translational spring used to characterizeztwatal shear force-base

displacement response; and

(d) k,,: Base rotational spring used to characterize momeveloped due to normal

stress acting at the base of pier, induced by twdagon.

Based on the results obtained in this study, wee l@nclude that for the range
aspect ratio of interest (D/B = 2-6), the effectbake rotational spring is negligible and
therefore, a simplified three spring model mayeastbe used to capture the pier respon-
se with sufficient accuracy. Approximate expressibave been developed for the three
springs as a function of both the D/B ratio and thmensionless frequency. The

expressions of the static springs are given bydhewing expressions:

-015
Ky = 1_82({2j
E B
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LY = 0.669+ 0.12{2]
EB B

Ko =1.106+ 0.227(2)
E B

BZ

For dynamic loading applied at the foundation thg springs are expressed as

dynamic impedances, namely:

K* = Kguk'(8,) +13,C(a,)

where
. 1853, a,6 <1
k, =1-0.a, C, =
185 a,>1
. 06a, a, <06
kbx :1 bx =
036 a,>06

- 021(2)a, a, <1
k, =1-0.225a, C, =1-0218)2-a,)1<a, <2
0 a, >2

The global dynamic impedance matrix of the pighen expressed in terms of the

distributed translational, rotational and base eotrated springs as:

&—&2 +&
EB E\B/ EB

Ke __ 1&(2)2 k_(zj
EB? 2E(B EB\ B

K, _ 1kX(Dj3 kbx(Djz K, (Dj Koo
— = === + — | + — |+
EB®* |3E\B EB( B EB*\B) EB®
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Using the global impedance matrix, the respongbepier subjected to any static
or dynamic loading may be obtained, which was shtavbe in good agreement with
numerically evaluated results of the configuratisubjected of the same externally
applied loading.

Successively, accounting for the motion incomphtybbetween the pier and the
free field response upon the incidence of vertycpliopagating anti-plane shear waves,
an analytical formulation was obtained for the Wankspring model kinematic response.
The theoretical values of free-field/pier respotrsmsfer functions for translational and
rocking motion resulting from the free field extiten were compared to the
corresponding values obtained by means of 3D fielegnent simulations. Despite the
fact that the proposed formulation does not sineullaé pier response exactly, a fact that
is attributed to the complex load transfer mechmarisapplied at the soil-foundation
interface that cannot be captured by the simpliBespring proposed model, it may be
applied to capture the important response paras)aetamely the frequency content and
evolution of time-history variation.

In conclusion, we have developed a simple apprdabhah may be used for the
evaluation of the response of intermediate embedibeshdations instead of the
heretofore employed; the simplicity of the apprqable applicability of the methodology
for multi-layered media and seismic incident motiag well as the advantages compared
to the embedded foundations or pile theoreticaltgwmis for the analysis of caisson foun-
dations, render the proposed model suitable fodéstggn and performance evaluation of
these elements for low and intermediate levelsaajett degree of accuracy required for

non-critical facilities.
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1)

2)

3)

4)

9.2 Future work

The Winkler springs developed in this study areliapple for linear elastic
medium with no material damping. Nonetheless, tiecteof material damping
can be easily accounted for using the elasticisgaielasticity correspondence
principle. According to this principle, the elagtfcnodulus can be expressed as a
complex modulus given by

E' =E@l+i2D")

where D’ is the material damping ratio.
The current approach assumes no separation betWeesoil and pier interface.
Nonetheless, modified Winkler springs that incladstiffness element, a damper
and a Coulomb friction element with low tensionisesce may be developed to
take into account the separation at the soil-fotindanterface.
The approach may be further extended to capturentrelinearities in soil
behavior by the use of non-linear springs. It stidag noted, however, that in the
case of kinematic interaction, a first approximatto the nonlinear response of
the soil-foundation system (provided that the faatimh material is always
responding within the linear elastic range) wouddthe application of equivalent
linear analyses (e.g. by means of the computerranogHAKE, Schnabel et al,
1972) in the far-field, which would then be usedtses effective forcing function
at the base and soil-foundation interface for th@éuced stiffness and material
damping evaluated at convergence of the algorithm.
Based on the developed computational platform,yéisal formulations may also
be developed for the motion-response transfer fomgtof the pier subjected to
horizontally propagating coherent SH waves or fdfifecent geometries of

foundation cross-sections.
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APPENDIX A
MATLAB SCRIPT FOR RESPONSE TO TRANSIENT FREE FIELD

EXCITATION

A.1 Transfer function to calculate displacement andotation for a given

dimensionless frequency and D/B ratio.

function Y = transfxn(a,D)

if (@< 1.0)

kx = 1.828*D"(-0.15)*(1-0.1*a) + i*1.8&*a;
else

kx = 1.828*D"(-0.15)*(1-0.1*a) + i*1.885;
end

if (@< 0.6)

kbx = 0.669+0.129*D+i*0.6*a*a;
else

kbx = 0.669+0.129*D+i*0.36*a;
end

if (@< 1.0)
kt = (1.106+0.227*D)*(1-0.225*a)-i*0.2D*a*a;
elseif (a < 2.0)
kt = (1.106+0.227*D)*(1-0.225*a)-i*0.2*(2.0-a)*a,;
else
kt = (1.106+0.227*D)*(1-0.225*a)-i*a*0;
end
Kxx = kx*D+kbx;
Kxr = -1*(kx*D"2)/2-1*kbx*D;
Krr = (kx*D"3)/3+kbx*D"2+kt*D;
f1 = kx*sin(a*D)/a + kbx*cos(a*D);

f2 = kx/(a”2)*((1-cos(a*D))-a*D*sin(a*D))4x*D*cos(a*D)-kt*(1-cos(a*D));
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f11 = Krr/(Kxx*Krr-Kxr*2);
f12 = -1*Kxr/(Kxx*Krr-Kxr"\2);
22 = Kxx/(Kxx*Krr-Kxr’2);

if (@a==0)
Y(1,1)=1;
Y(1,2)=0;
Y(2,1)=0;
Y (2,2)=0;

else
u =f1*f11+f2*f12;
t =f1*f12+f2*f22;
Y(1,1)=real(u);
Y(1,2)=imag(u);
Y(2,1)=real(t);
Y(2,2)=imag(t);

end

A.2 Response function to calculate the responsemér to a given transient free field
loading

The following parameters are needed
(a) A: The loading time history
(b) dt: Time step in loading time history
(c) B: Diameter of pier
(d) D: D/B ratio of foundation
(e) Vs: shear wave velocity of soil

function Y = response(A,dt,D,vs,B)

N = length(A);

da = 2*pi*B/(N*dt*vs);

FA = fft(A);

FT(1)=FA(1);

FR(1)=0;

for p=2:N/2+1
temp = transfxn((p-1)*da,D);
FT(p)=FA(p)*(temp(1,1)+i*temp(1,2));
FT(N+2-p)=FA(N+2-p)*(temp(1,1)-i*temp(1,2));
FR(p)=FA(p)*(temp(2,1)+i*temp(2,2));
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FR(N+2-p)=FA(N+2-p)*(temp(2,1)-i*temp(2,2));
end
Y(:,1) = real(ifft(FT));
Y(:,2) = real(ifft(FR));
Y(:,3) = imag(ifft(FT));
Y(:,4) = imag(ifft(FR));
End
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