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SUMMARY 

 

Caisson, pier or drilled shaft foundations are encountered as part of the foundation 

system of tall structures such as bridges, transmission towers, heliostats, etc, and 

correspond to rigid blocks of length-to-diameter (D/B) ratio on the order of D/B = 2-6. As 

a result of their geometry and stiffness characteristics, the mechanisms of load transfer 

from the superstructure to the surrounding soil and their kinematic response to seismic 

wave propagation are governed by a complex stress distribution at the pier-soil interface, 

which cannot be adequately represented by means of simplified Winkler models for 

shallow foundations or flexible piles. Continuum model solutions, such as 3D finite 

elements (FE), may be employed to simulate this complex soil-structure problem, but are 

infrequently employed in practice for the design of non-critical facilities due to the cost 

and effort associated with these analyses. Prompted by the drawbacks of simplified and 

elaborate models available for the design of caisson foundations, the objective of this 

work is to develop a Winkler-type model for the analysis of transversely-loaded caissons, 

which approximately accounts for the complex soil resistance mechanisms mobilized at 

the base and the circumference of these elements, while retaining the advantages of 

simplified methodologies for design at intermediate levels of target accuracy. 

Investigation of the governing load-transfer mechanisms and development of complex 

spring functions is formulated on the basis of 3D FE simulations. Initially, the soil-

structure stiffness matrix is computed by subjecting the pier to transverse static and 

dynamic loading at the top, and numerically estimating the response. Complex 

frequency-dependent functions are next developed for the spring constants by equating 



 xvii

the stiffness matrix terms to the analytical expressions developed for the four-spring 

model. Sensitivity analyses are conducted for optimization of the truncated numerical 

domain size, finite element size and far-field dynamic boundary conditions to avoid 

spurious wave reflections; the latter is ensured by means of a so-called “sponge” layer of 

progressively increasing viscous damping to simulate the infinite domain energy 

radiation damping. Simulations are next conducted to evaluate the transient response of 

the foundation subjected to vertically propagating shear waves, and results are compared 

to the response predicted by means of the 4-spring model. Finally, the applicability of the 

method is assessed for soil profiles with depth-varying properties. While the 

methodology developed is applicable for linear elastic media with no material damping, 

the expressions of complex spring functions may be extended include material hysteretic 

energy absorption (damping), nonlinear soil behavior and soil-foundation interface 

separation, as shown in the conclusion of this study. 
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CHAPTER 1 

INTRODUCTION 

1.1 Pier foundations 

Pier, caisson or drilled shafts are terms typically used interchangeably to describe 

permanent substructures or foundation elements which are either prefabricated and sunk 

into position, thus providing excavation support by protecting the walls against water 

pressure and soil collapse, or are cast in-situ at soil or rock sites. 

These massive concrete foundation elements always require steel reinforcement, 

and occasionally also comprise a steel casing or jacket. The term corresponds to a wide 

range of foundations, generally classified with respect to their dimensions and geometry 

as: 

(a) Deep or shallow, depending on the depth of foundation; 

(b) Small or large, depending on the diameter of foundation; and 

(c) Circular, square or rectangular, depending on the geometry of their cross section. 

Typical pier or caisson foundations are characterized by a diameter on the order 

of 2-12 feet and depth to diameter ratio in the range between 2- 15. As can be readily 

seen, their embedment depth is larger than the corresponding depth of shallow embedded 

foundations, and lower than typical values of pile foundations. Figure 1.1 depicts 

schematically the dimensional and geometrical differences between the alternative 

foundation element types, namely shallow, caisson and pile foundations. 

Large diameter caisson foundations are used for the most part as bridge 

foundation elements, as well as deep-water wharves, and overpasses. On the other hand, 

small caissons are extensively encountered either as single foundation components of 

transmission towers (power lines or cellular towers) and heliostats, or in groups as part of 

the foundation system of high rise buildings, multi-storey parking decks and most 
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importantly scour vulnerable structures. A typical bridge foundation system, comprising 

both caisson and pile group foundation elements is illustrated in Figure 1.2. 

 

Figure 1.1 Comparison between relative dimensions of different types of foundations. 

 

 

 

Figure 1.2 Use of caisson foundation in bridges: the Rokko Island Bridge in Kobe, 

Japan, a double-deck loose arch bridge of length 217m, constructed in 1992 
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Alternatively, drilled shafts are also used for purposes such as slope stabilization, 

foundation for transmission towers, foundation elements in the vicinity of existing 

structures, cantilever or tie-back walls, foundations at marine sites and navigation aid 

systems; the alternative applications of caisson foundations are schematically shown in 

Figure 1.3. For further information, the reader is referred to O’Neil and Reese (1999). 

 

 

Figure 1.3 Uses of drilled shafts (a) Stabilizing a slope (b) Foundation for transmission 

tower (c) Foundation near existing structure (d) Closely spaced shafts to serve as a 

cantilever or tie-back wall (e) foundation at marine site (f) Pier protection or navigation 

aid (O’Neil and Reese, 1999). 

1.2 Advantages of pier foundations 

Drilled shafts are highly versatile in constructability for a wide variety of soil 

formations, and can be installed in virtually any soil type including residual soils, karstic 

formations, soft soils and marine sites (O’Neil and Reese, 1999). Among other 

advantages of these elements, no dewatering is necessary upon installation in soft soils or 

for sites where excessive groundwater is considered to be critical for the selection of the 
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excavation and support method. Instead, bentonite slurry or steel casings are used to 

stabilize the excavation pit, and concrete is pumped using ‘slurry displacement’ or 

‘underwater placement’ method. 

Other advantages include the high capacity of single elements in axial as well as 

lateral loading, which enables large diameter caissons to effectively replace pile groups 

and renders drilled shafts a popular choice for structures anticipated to be subjected to 

significant lateral loads. It should be noted herein that when caisson foundations are 

selected instead of using pile groups, the structural columns may be directly connected to 

the foundation, thus eliminating the need for pile caps.  

In a thorough review of the applicability and advantages of caisson foundations, 

O’Neil and Reese (1999) also present case studies which demonstrate large economic 

savings through the selection of caisson foundations or drilled shaft as alternative 

methods to regular design methodologies, when the structure and site conditions enable 

such an option.  

Due to all the aforementioned advantages of these foundations, including the ease 

of construction, caisson or pier foundations are used extensively in the United States and 

world wide, particularly by private or public agencies that focus on the design and 

construction of lifelines in a wide variety of site conditions, such as the Departments of 

Transportation in the US. 

1.3 Design methodologies for pier foundations  

The main advantage of caisson foundations compared to shallow or pile 

foundations is the high lateral load carrying capacity of single members. For static load 

design purposes, load-deflection curves (often referred to as p-y curves) are employed for 

the estimation of their bearing capacity, typically obtained by means of empirical 

correlations for different soil types which are based on results of lateral load tests. In the 

current state-of-practice, many commercial software packages are available for the 
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purpose, facilitating thus the design process. As an example, Lam and Chaudhury (1997) 

present such p-y curves, further modified to account for the effect of cyclic loading and 

thus extend the approach to seismic loading. However, almost all the methods follow the 

same semi-empirical approach as used for flexible pile foundations. 

Nonetheless, it can be readily seen that for intermediate D/B ratios, the pier 

foundations are more likely to behave as rigid elements rather than as a flexible piles (see 

also Figure 1.1). Thus, a design approach similar to rigid embedded shallow foundations 

seems more reasonable. Analytical solutions that provide the response such foundations 

to lateral loading have been developed by Elsabee and Morray (1977), Kausel (1974) and 

Wolf (1997), restricted -however- to low embedment depths.  

Compared to shallow foundations, soil-structure interaction effects for pier 

foundations that comprise the load-transfer mechanisms from the superstructure to the 

surrounding soil, and the potential altering of loads transferred through the foundation 

from the soil to the structural elements (e.g. during seismic motion) are associated with a 

much more complex stress distribution at pier-soil interface. Continuum model solutions 

like 3D finite element methods (FEM) are feasible but are rarely employed in practice for 

the design of non-critical facilities due to the associated site investigation cost, 

computational time, and user expertise required. Nonetheless, dynamic Winkler models 

that properly account for the multitude of soil resistance mechanisms mobilized at the 

base and the circumference of laterally loaded piers may be used to predict the dynamic 

response of these foundations, given an intermediate level of target design sophistication. 

The main objective of this research project is to develop an improved and 

simplified methodology for the analysis of pier foundations (drilled shafts) of 

intermediate length subjected to lateral dynamic loading, which, while retaining the 

advantages of Winkler-type models will allow for realistic representation of the complex 

soil-structure interaction effects associated with these foundation elements. 
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In particular, this work comprises the development and application of a Winkler-

type model for pier foundations, based on results obtained by means of 3D FE analyses, 

and involves the following steps: 

1. Formulation of global stiffness matrix at the top of pier for the four spring Winker 

Model 

2. Calibration of springs for static loading and sensitivity to Poisson ratio using 

numerical simulations 

3. Calibration of springs as a function of dimensionless frequency for dynamic 

loading 

4. Analytical solution for transfer functions to account for kinematic interaction and 

their comparison with numerical results 

5. Sample calculations to demonstrate application to multi layered soil profiles and 

comparison with numerical results 



 7 

CHAPTER 2  

OVERVIEW OF SOIL-STRUCTURE INTERACTION 

METHODOLOGIES 

2.1 Definition 

Soil-structure interaction is the mechanism that accounts for the flexibility of the 

foundation support beneath the structure and potential variations between foundation and 

free-field motions. It determines the actual loading experienced by the structure-

foundation-soil system resulting from the free-field seismic ground motions. 

 

 

Figure 2.1 Context of SSI in engineering assessment of seismic loading for a structure 

(Stewart et al. 1998) 

2.2 Components of the soil-structure interaction 

During a dynamic loading like ground shaking during an earthquake, the 

deformations of a structure are affected by interactions between three linked systems: the 

structure, the foundation, and the geologic media (soil and rock) underlying and 

surrounding the foundation. A soil-structure interaction (SSI) analysis evaluates the 
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collective response of these systems to a specified free-field ground motion (Figure 

2.2a). Two physical phenomena comprise the mechanisms of interaction between the 

structure, foundation, and soil: 

(a) Inertial interaction: This mechanism refers to the response of the complete 

structure-foundation-soil system to excitation by D’ Alembert forces associated 

with the acceleration of the super-structure due to kinematic interaction as shown 

in Figure 2.2b.  

(b) Kinematic interaction: Provided that the principle of superposition can be applied 

-at least approximately- the mass of structure in this mechanism is set as zero and 

there are no inertial effects. Nonetheless, the presence of stiff foundation elements 

either on the formation or embedded in the underlying soil, may result in the 

deviation of the foundation motion with respect to the corresponding motion of 

the so-called free-field, namely the response of the soil formation in absence of 

the structure (Figure 2.2c). Three mechanisms can potentially contribute to such 

deviations (Stewart et. al, 1998): 

i. Base-slab averaging: Free-field motions associated with inclined and/or 

incoherent wave fields are “averaged” within the footprint area of the base 

-slab due to the kinematic constraint of essentially rigid-body motion of 

the slab. 

ii.  Embedment effects: The reduction of seismic ground motion due to 

embedment. Since the foundation is rigid and cannot deflect in exactly the 

same shape as far-field, the far field motion is filtered by the foundation 

depending on the wavelength of excitation. This is similar to ‘Base Slab’ 

averaging effect but is observed in case of coherent wave fields as well. 

iii.  Wave Scattering: Scattering of seismic waves off of corners and asperities 

of the foundation. 
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The effect of kinematic interaction is generally captured by complex-valued 

transfer functions, namely functions that relate the free-field motion to foundation 

response. 

 

(a) Soil-Foundation-Structure System 

 

        

 (b) Inertial Interaction                              (c) Kinematic Interaction 

Figure 2.2 Geometry and decomposition of a soil-structure interaction problem 

In the case of linear elastic or moderately nonlinear soil-foundation systems of 

surface or embedded foundations, inertial interaction analysis (Figure 2.2b) may be 

conveniently performed in two steps as shown in Figure 2.3 (after Kausel & Rosset, 

1975): 
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(a) Compute the foundation dynamic impedances (springs and dashpots) associated 

with each mode of vibration 

(b) Determine the seismic response of structure and foundation supported by these 

springs and dashpots and subjected to the kinematic accelerations of the base. 

                     

m a
kin

 [K]

 

 

Figure 2.3 Schematic representation of two-step inertial interaction analysis 

 

The dynamic impedance is a complex function, where the real and imaginary 

parts represent the dynamic stiffness and energy attenuation of the system, respectively. 

The attenuation represented by the imaginary part of the impedance function is a 

consequence of hysteretic damping in the soil and foundation, and radiation of seismic 

energy away from the foundation through the soil. Generally it is the radiation damping 

that mostly dominates the imaginary part because the energy loss due to hysteretic 

damping is quite small (5-10%). In most cases the analytical expressions are derived for 

elastic medium with no damping and then the damping is taken into account using the 

correspondence principle by multiplying the impedance function with (1+i2D’), where D’ 

is the coefficient of material damping. 

As can be readily seen, accounting for the effects of soil-structure interaction may 

significantly alter the predicted response of the soil-foundation-structural system, a fact 

that renders these phenomena critical in engineering design. It should be also noted that 
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for the fictional condition of an infinitely stiff soil, the amplitude of the transfer function 

for translational motion is unity and the phase is zero (i.e. the foundation and free-field 

motions are identical), and the impedance function has infinite real part and zero 

imaginary part. As a result, ignoring the effects of soil-structure interaction effects (which 

is common practice in structural design) inherently implies the unrealistic assumption of 

an infinitely rigid underlying soil medium. 

2.3 Methodologies for Soil-Structure Interaction Analysis 

The general methods to quantify soil structure interaction effects are: 

Direct approach: In a direct approach, the soil and structure are simultaneously 

accounted for in the mathematical model and analyzed in a single step. Typically, the soil 

is discretized with solid finite elements and the structure with finite beam elements. Since 

assumptions of superposition are not required, true nonlinear analyses are possible in this 

case. Nonetheless, the analyses remain quite expensive from a computational standpoint. 

Hence, direct SSI analyses are more commonly performed for structures of very high 

importance and are not employed for the design of regular structures. 

 Substructure approach: In a substructure approach, the SSI problem is 

decomposed into three distinct parts discussed above which are combined to formulate 

the complete solution. The superposition principle is exact only for linear soil, foundation 

and structure behavior. Nevertheless, approximations of soil nonlinearity by means of 

iterative wave propagation analyses allow the superposition to be applied for moderately-

nonlinear systems. The principal advantage of the substructure approach is its flexibility. 

Because each step is independent of the others, it is easy to focus resources on the most 

significant aspects of the problem. 

For each one of the three analysis steps, several alternative formulations have 

been developed and published in the literature, including finite-element, boundary-

element, semi-analytical and analytical solutions, a variety of simplified methods, and 
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semi-empirical methods. In addition to the dynamic finite element methods, the most 

popular approaches used in practice for the analysis of soil-structure interaction problems 

are briefly presented in the ensuing: 

(a) Boundary element type methods: The methods of this class are essentially semi 

analytical in the sense that they use closed-form solutions to the pertinent wave 

equations for the soil domain, and discretize only the boundaries and interfaces of 

the system. These closed-form solutions (referred to as fundamental solutions or 

Green’s functions depending on the particular solution) have the ability to 

reproduce exactly the radiation of wave energy to infinity, without requiring 

special lateral boundaries –as is the case for the finite element methods. 

Evidently, this class of methods is the most versatile in treating a variety of 

incident wave fields (such as inclined body waves and Rayleigh waves, in 

addition to vertical waves). Usually however, they cannot accommodate material 

and interface nonlinearities associated with foundation seismic motion. Therefore 

in current state of practice, such sophisticated tools are also used in conjunction 

with finite element methods, which can better model the nonlinear soil-structure 

response. 

(b) Winkler models: Used primarily for the inertial interaction analysis, the 

foundation in these methods is supported by a series of independent vertical, 

rotational and horizontal springs and dashpots along the soil-footing interface, 

which correspond to the vibration modes. For elastic analyses, the most important 

factors affecting the dynamic impedance of foundations are: (i) the shape of the 

foundation; (ii) the stratigraphy (homogeneous halfspace, surface soil layer over 

rigid bedrock or halfspace); and (iii) the amount of embedment. 

For the estimation of the dynamic impedance of footings, algebraic expressions 

have been developed that account for arbitrary foundation shape and degree of 

embedment, and for a variety of soil conditions. For more details, the reader is referred 
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among others to Dobry & Gazetas (1986), Wong & Luco (1985), Gazetas (1983), Kausel 

& Roesset (1975) and Luco (1974). 

In these studies, the dynamic impedance of foundations is shown to be very 

sensitive to the underlying soil stratigraphy. The response of a foundation on a non-

homogeneous halfspace can be substantially different from the response of an identical 

foundation resting on a homogeneous halfspace. This effect arises both from the increase 

of static stiffness and the decrease of radiation damping and is more prominent for the 

vertical and horizontal oscillations. Subsequently, the amplitude of the motion to be 

exerted by the supported structure increases as a result of the resonant peaks which 

appear in the amplitude-frequency response curves (Kausel 1974, Kausel & Ushijima 

1979, Gazetas 1983)  
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CHAPTER 3 

WINKLER TYPE MODEL FOR ANALYSIS OF CAISSON 

FOUNDATIONS   

3.1 Stress Distribution on Pier-Soil Interface 

When a lateral load is applied to a pier foundation, the stress distribution at the 

pier-soil interface is as shown in Figure 3.1. 

 

Figure 3.1 Various mechanisms of soil resistance on lateral loading 

 

Four mechanisms are identified that can contribute significantly to the pier 

response. The mathematical expressions for the resistance mobilized by these 

mechanisms are presented below and comprise the following: 
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(a) Lateral resistance per unit length due to normal stresses along the shaft: 

ψψτψσ ψ

π

rdP rrh ]sincos[
2

0

+= ∫       (3.1) 

(b) Resisting moment per unit length due to vertical shear stress along the shaft: 

ψψτ
π

dBM rzh cos)2/( 2
2

0
∫=       (3.2) 

(c) Lateral base resistance due to horizontal shear stress: 
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2

0
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π

     (3.3) 

(d) Base resisting moment due to normal stresses: 

     drdrM

B

zb ∫ ∫=
2

0

2
2

0

)cos( ψψσ
π

      (3.4) 

 

 

Figure 3.2 The proposed four spring model 
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In order to capture these four mechanisms of resistance and therefore simulate the 

response of pier foundations to lateral loads given the target degree of accuracy, a four 

spring model is being here proposed. The four springs used in the model (schematically 

shown in Figure 3.2) are: 

(a) xk : Lateral translational springs used to characterize lateral force-displacement 

response of soil; 

(b) θk : Rotational springs used to characterize the moment developed at the 

centerline of pier due to vertical shear stress acting at the perimeter of pier, 

induced by pier rotation; 

(c) bxk : Base translational spring used to characterize horizontal shear force-base 

displacement response; and 

(d) θbk : Base rotational spring used to characterize moment developed due to normal 

stress acting at the base of pier, induced by base rotation. 

The model is based on the assumption that the response of each soil layer is 

decoupled from the overlying and underlying ones, namely on the simplification of shear 

beam deformation of the soil column. As a result, in absence of coupling between 

adjacent soil resistance mechanisms, the total response can be obtained through 

integration of the total resistance offered by the individual springs for each layer. This 

assumption is not true in regions very close to the interface of two layers but for thick 

layers, as the distance from the interface increases, the coupling effect diminishes very 

rapidly and relative contribution of the coupling to total response becomes very small. 

Thus for thick layers, these effects can be safely neglected. 

3.2 Formulation of stiffness matrix 

Directly stemming from the fact that the elasticity modulus of concrete (30 GPa) 

or steel (250 GPa) is significantly higher than that of soil (2-5 MPa), the pier foundations 
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investigated in this study, namely foundation elements of intermediate depth-to-diameter 

ratio (D/B), are here assumed to respond as a rigid bodies without significant loss of 

accuracy of the solution, As a result, application of a lateral force (V) and an overturning 

moment (M) at the top will result in a net translation and a rotation of the pier as shown 

in Figure 3.3. Based on the aforementioned assumption, the consequent response of the 

foundation is adequately described in terms of the displacement at the top (ut), and the 

rotation angle of the rigid pier (θ). 

Given these quantities, the horizontal displacement at any point is given by  

 

Figure 3.3 Response of pier upon application of lateral load and overturning moment 

zuzu t θ−=)(          (3.5) 

Applying equilibrium of forces in horizontal direction we have: 

)()(
0

DukdzzukV bx

D

x += ∫  
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Successively, the moment equilibrium requirement evaluated at the top of pier results in: 
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Equations (3.6) and (3.7) are next written in a matrix form as: 
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where the left-hand side of the equation represents the forcing function (F) 

applied at the top of the foundation, and the right-hand side corresponds to the product of 

the so-called stiffness matrix (K) of the soil-foundation system as interpreted from the 

foundation top to the response vector (U), namely the displacement and rotation of the 

caisson, i.e. KUF = . 

In equation (3.7.) the individual components of the stiffness matrix correspond to 

the following expressions: 

bxxxx kDkK +=         (3.9)  
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As can be readily observed from the expressions above, the assumption of a rigid 

caisson results in a symmetric stiffness matrix for the overall foundation system. 

3.3 Non-dimensional analysis - Parametric investigation 

For parametric variation studies and for the purpose of generalization, all the 

terms are normalized with respect to the Young’s modulus of soil (E) and the diameter of 

pier (B), namely the stiffness and geometry characteristics of the surrounding soil and 

foundation element respectively. In a non-dimensional form, the equations are given as 

follows: 
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These expressions, namely the static resistance of the soil-foundation system, will 

be used in the ensuing to describe the response of the foundation system for a wide 

variety of loading conditions, namely forced static loading and vibrations at the top, as 

well as the kinematic interaction of the foundation to incident seismic motion. 
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CHAPTER 4 

NUMERICAL MODELING  

4.1 Finite element software packages 

Three-dimensional finite element simulations have been conducted in this study 

for the evaluation of the coefficients of subgrade reaction (springs) and the calibration of 

the proposed analytical model. The simulations are performed using the FEM software 

package DYNAFLOW (Prevost, 1983) and verified, for the case of static loading- using 

the FEM software package ABAQUS (Hibbitt, Karlsson, Sorensen, 1995). A direct Crout 

column solver has been used instead of an iterative one to achieve greater stability and 

minimize any approximation errors, which would in turn affect the accuracy of the 

analytical approximations developed on the basis of the numerical simulations. The Crout 

column solver uses Crout’s method of matrix decomposition to decompose a matrix into 

a lower triangular matrix (L), an upper triangular matrix (U) and a permutation matrix (P) 

which is then used for inversion of matrices to find an exact solution to linear equations. 

4.2 Mesh type and element properties 

Taking advantage of the symmetry of the problem, only half of the numerical 

domain is here simulated, thus saving considerable computational effort. Both the soil 

formation and pier are simulated using 3D continuum soil elements (8 node brick 

elements). Both soil and pier element material models are here considered linear elastic, 

while perfect bonding is assumed at the interface, i.e., no separation even under tensile 

stress. This assumption is equivalent to that of a cylindrical foundation ‘welded’ in soil, 

as described by Elsabee et al. (1977). The far field, namely the truncated boundaries of 

the numerical domain, are placed at a distance equal to 5 times the diameter of the pier 

(B) at both sides and from the base (unless specified otherwise) to simulate the semi-

infinite domain. 
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For the purpose of this study, two different kinds of meshes were used, hereby 

referred as Model A and Model B. 

(a) Model A: In this model, the far field is cylindrical in shape. The mesh is finer in 

regions close to the pier to accurately capture the response but its coarseness 

(element size) increases in proportion to the distance from pier.  The thickness (z-

direction) of all elements is the same and equal to 0.25 B. The length to width 

ratio is kept constant as the element size increases. The ratio of maximum-to-

minimum dimension, referred to as the foundation aspect ratio, is always kept less 

than 3 to avoid any distortion effects. The mesh is shown in Figure 4.1. 

 

Figure 4.1 Model A with a cylindrical far-field 

 

(b) Model B: The far field is rectangular in shape. The mesh coarseness is almost of 

the same order throughout the model. The elements are mostly cubical in shape 
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with dimension 0.25 B. There is a gradual transformation from cylindrical to 

rectangular shape as we move from pier to far field. The mesh is shown in Figure 

4.2. 

The element size of 0.25 B is determined by maximum capacity of direct solver. 

For finer meshes the number of elements becomes too large to be handled by a direct 

solver.  

 

Figure 4.2 Model B with rectangular far-field 

4.3 Absorbing boundary layers 

The infinite domain represented by finite element models needs to be truncated at 

some finite boundary. Nonetheless, for dynamic analysis involving wave propagation, the 

usual finite boundary of the finite element model will cause the elastic waves to be 

reflected and superimposed to the incident waves. The effect is much more pronounced in 
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absence of damping in the system, as is the case with most of the simulations in this 

research. 

Therefore, the boundary of the numerical model needs to radiate almost entirely 

the outgoing waves (no spurious reflections) and at the same time to allow for the 

application of far field motions as the ones imposed by incident seismic waves. In 

addition, optimization of the computational efficiency requires the boundary to be as 

close to the finite structure as possible. A simple solution to the problem is to impose 

finite damping to the material, and prescribe the boundary at a great distance from the 

finite structure so that the boundary does not influence the results. Inasmuch -however- as 

this method may be feasible, the increased required numerical model renders the 

approach computationally inefficient.  

For 2D simulations, this can be achieved by using viscous damping elements at 

the boundary. Note that for wave propagation in unbounded media, the stress is evaluated 

as:  

V

ui
i ρ

σ
&

=   

where iσ : stress at a point (node)  iu& : velocity at the point (node)  

ρ : Density of material  V : Wave velocity 

Therefore, by using dashpots with coefficients ρvp along the direction of 

propagation of wave and ρvs along the other two perpendicular directions, we can 

successfully implement an approximate absorbing boundary condition. 

Nonetheless, this formulation fails to result in successful absorption of the 

outgoing energy in the following cases:  

(a) High angle of incidence (usually >20 degrees) 

(b) More than one type of wave reaching the boundary.  

In the course of this study, it was observed that surface waves are generated from 

the pier-soil interaction along with body waves, and the resulting wave field has very 
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high angle of incidence at many locations. As a result, this boundary could not be imple-

mented. 

Another option is to use infinite elements at the boundary. Infinite elements are 

elements with special shape functions that decay for large distances such as xe−  or x
1 . 

However, formulation of these elements requires some knowledge of the solution, 

so that the shape functions are close to the actual solution of the problem. Also, the 

boundary conditions at infinity have to be known approximately (a zero displacement or 

zero stress is typically used). These elements can thus be used in conjunction with finite 

elements in boundary value problems defined in unbounded domains or problems where 

the region of interest is small in size compared to the surrounding medium. Since, these 

elements simulate the infinite domain; they provide residual far-field stiffness for static 

problems and ‘quiet’ boundaries for dynamic problems. An overview for infinite 

elements is given by Bettes and Bettes (1984). 

For dynamic case, the transmission of energy outside the finite element mesh 

without trapping or reflecting it, is optimized by making the boundary between the finite 

and infinite elements as close as possible to being orthogonal to the direction from which 

the waves will impinge on this boundary. “Close to a free surface, where Rayleigh waves 

may be important, or close to a material interface, where Love waves may be important, 

the infinite elements are most effective if they are orthogonal to the surface” (ABAQUS 

User’s Manual, 1992). Thus, for higher angles of incidence, even the infinite elements are 

not able to absorb the waves completely. Simulations were performed using ABAQUS 

with infinite elements but the results obtained were not satisfactory. 

Thus a new type of boundary is used, hereby referred to as sponge boundary. The 

reflection of outgoing waves back into the region of interest can be avoided by enclosing 

the region in a sponge layer having high damping coefficients. The mechanical impe-

dance of the sponge layer is kept almost the same as that of soil to avoid any material 

contrast and hence minimize the generation of reflected waves. The damping is 
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introduced by means of Rayleigh damping and is gradually increased with distance to 

avoid any spurious reflections due to sudden change in impedance.  

For Rayleigh damping, also referred to as Modal damping, the damping matrix is 

assumed to be proportional to the mass and stiffness matrix as  

KMC βα +=          (4.1) 

The modal damping ratio is then calculated as: 
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where α is mass proportional damping and β is stiffness proportional damping 

coefficients.  

Assuming the propagation of a sinusoidal wave of the following form: 
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The use of the viscoelastic correspondence principle (Christensen, 1971) results in the 

following expressions: 
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Given the limited maximum size of model due to computational restrictions and 

ensuring that the sponge layer is at sufficient distance from the pier to simulate the far-
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field conditions with sufficient accuracy, the thickness of sponge layer is chosen to be 2.0 

B.  

The coefficients α and β  are chosen using the following two criteria: 

(a) The damping ratio D’ should be relatively uniform over the frequency range being 

considered, which determines the βα /  ratio. 

(b) The amplitude of the damped waves should be less than 5% of the undamped 

amplitude, which determines the actual magnitude of α andβ . 

Using the first criteria a ratio of βα /  = 400 is selected. The variation D’ with 

frequency for the range being used in simulations is shown in Figure 4.3. Using the 

second criteria, a maximum value of α =20 and β =0.05 is selected. The damping in the 

model is applied progressively in 4 to 5 layers as given in Table 4.1. 

 

Layer no. 1 2 3 4 

α  5 10 15 20 

β  0.0125 0.0250 0.0375 0.05 

 

Table 4.1 Mass and stiffness dependent damping coefficient used for ‘sponge 

boundaries’ 

The variation of amplitude reduction function A with frequency is shown in 

Figure 4.4.  
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Figure 4.3 Variation of Rayleigh damping ratio with frequency 
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Figure 4.4 Amplitude reduction as a function of frequency 

Figure 4.5 shows the model used with simulated zone of interest and sponge 

layers outside the far-field boundary. 
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Figure 4.5 The model depicting the simulated region of interest and sponge layers 

outside 

4.4 Maximum frequency and time step 

The numerically accurate representation of wave propagation problems 

corresponding to numerical attenuation because of undersampling requires at least 6-7 

elements per wavelength. Based on this requirement, / 6λ κ≥ B  where κ = ratio of size 

of largest element to B. On the other hand the frequency of foundation vibration oa  may 

be expressed in dimensionless form as /ω=o sa B V . 

As a result, the maximum frequency that can be simulated with sufficient 

accuracy is described by the following expression: 
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For the case of Model A, the ratio of element size to foundation width κ = 0.67, 

and therefore 5.3max ≈a . Similarly, for Model B, κ = 0.50 and therefore 0.4max ≈a . 

Based on the aforementioned highest accurately represented frequency, the 

minimum time step is consequently given by the following expression: 
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 where f = frequency of excitation 

In the simulations presented in the ensuing of this study, a time step of 
20
minT

to 
40
minT

has 

been employed. 

4.5 Advantages and limitations of Model A and Model B 

As mentioned above, model A is an adaptive mesh (element size increases with 

distance from the pier), a fact which has the following implications: 

(a) It consists of lesser number of elements thus considerably reducing the amount of 

computational time; 

(b) the element size increases with distance from pier, which implies that the 

accurate representation of wave propagation restricts the far field to a maximum 

distance from the foundation center, namely the distance where the element size 

equals the maximum element size permitted by frequency consideration (2.5B in 

this case); and  

(c) Beyond the far field, numerical attenuation is observed due to very large element 

size. Nonetheless, the attenuation only adds to the effective damping already 

accounted for in the sponge layers, and hence improves –in this case- the 

performance of the far-field truncated conditions. 
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Based on the aforementioned observations, Model A is here used in all dynamic 

simulations, while Model B has been used in the static case, and in particular for 

comparison purposes only.  

4.6 Simulation of the far-field seismic motion 

In order to evaluate the kinematic response of the foundation, namely the 

response of the element to the incidence of seismic waves, the input motion is prescribed 

directly to the region of interest in form of effective forcing functions at the base and 

lateral boundaries of the numerical domain bounded by sponge boundaries. The forcing 

functions for lateral boundaries are evaluated as the 1D response of the corresponding 

soil columns. The difference between the 1D motion and 2D response evaluated at the 

far-field is actually the scattered energy of the system, which propagates outwards from 

the irregularity and is absorbed by the artificial boundaries. The evaluation of consistent 

boundary conditions prescribed around the numerical domain of interest is based on the 

Substructure Theorem (Rosset, 1975). According to this theorem, the free-field vibration 

problem can be decomposed into substructures (the far-field and the soil-structure 

configuration, referred to as near-field) as shown schematically in Figure 4.6. 

Since the excitation is exactly the same for the far-field and the interaction 

problem, differences in the interface displacements (∆U = Ub – U*b) are solely attributed 

to differences in the interface stresses (∆S = Sb – S*b). If the far-field is now subjected to 

forces ∆S, in the absence of seismic excitation, displacements ∆U will be produced, such 

that ∆S = X ∆U, where X is the frequency-dependent dynamic impedance matrix of the 

far-field, i.e. the stiffness of the far-field as seen by the interface. Substituting the forces 

and displacement differences at the boundaries, we obtain: 
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Figure 4.6 Schematic representation of the Substructure Theorem for soil-structure 

interaction problems (the interaction problem is shown on the top, and the free-field 

problem on the bottom figure) 

 

**
bbbb SXUXUS −+−=−        (4.9) 

Since the domain is infinite, the equivalent spring stiffness implied by X is zero. 

The stresses **
bb SXU −  correspond to the far-field motion and are applied to the lateral 

boundaries. For the wave-propagation problem analyzed herein, the far-field motion is 

defined as the response of a one-dimensional soil column, subjected to the input motion 

prescribed at the base of the two-dimensional configuration. Successively, the fictitious 

forces prescribed at the lateral boundaries of the three-dimensional model are determined 

as follows for the case of SH-wave incidence: 

(a) *
bS  corresponds to the vertical reaction preventing the vertical motion at the far field 

boundary; and 

(b) '*
bsb UVXU =  corresponds to the product of the calculated far field (1D) response and 

impedance, where '
bU  the velocity time history at the 1D column nodes, and sV  the S-

wave velocity at the corresponding location. 
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For the purpose of this study, the forces are applied in form of surface loads 

(tractions) both at the base and the lateral boundaries in the 3D model. It should be noted 

that the substructure theorem is based on the principle of superposition, and is therefore 

applicable to linear problems as well as approximately applicable to moderately inelastic 

systems. 
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 CHAPTER 5 

STATIC TRANSVERSE LOADING AT THE TOP OF CAISSON   

This chapter discusses the methodology used to calculate the stiffness matrix and 

springs and its limitations. The effect of distance of far field boundaries is investigated. A 

parametric study for representative pier to soil stiffness ratios in the field is performed to 

verify the rigid behavior of the pier. The results are presented for static simulations and 

are also compared with other available analytical formulations. The springs obtained are 

then approximated using simple expressions. Various other parametric studies are also 

presented such as sensitivity to Poisson ratio and effect of eccentricity in loading. 

5.1 Calculation of stiffness matrix and individual springs 

Consider the matrix formulation of the equation of equilibrium of externally 

applied forces and soil reactions evaluated in Equation 3.8. This expression can also be 

written as: 
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In particular for the case of unit externally applied lateral force and moment at the 

top of the caisson: 
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where the displacement components on the right-hand side of the equation are: 

Vu : displacement at top upon the application of a unit force 

Vθ : rotation of the rigid body upon the application of a unit force  

Mu : displacement at top upon the application of a unit moment 

Mθ : rotation upon the application of a unit moment 
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As a result, the stiffness matrix can be evaluated by simply computing the 

displacements at top and rotations of pier due to the application of a unit lateral force and 

a unit overturning moment separately and inverting the matrix in Equation 5.2. This 

method is typically referred to as the flexibility approach and is extensively applied in the 

field of structural mechanics. 

The individual lateral springs along the length and at the base of the pier, 

namely xk and bxk  correspondingly, are then back calculated by equating the overall 

lateral and coupled stiffness of the pier shown in equations (3.9) and (3.10)  to the 

numerically evaluated stiffness as: 
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Successively, the overall rotational stiffness of the foundation as interpreted from 

the top, described in Equation 3.11, can be written as: 
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      (5.5) 

In order to evaluate θk and θbk , we evaluate the equality described by Equation 

5.5 for two different but close values of D. The inherent assumption of this approach is 

that the variation of these two springs with (D/B) is small. 

5.2 Effect of far-field boundaries 

Three-dimensional finite element simulations are here conducted using the 

computer code DYNAFLOW for both Model A and Model B with the far field conditions 

imposed at distance equal to 5B on both sides and away from the base. The results were 

compared to static simulations evaluated by means of ABAQUS using infinite elements 

at the boundary.  
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The stiffness matrix and springs evaluated by means ABAQUS were initially 

found to be approximately 20-25% lower than corresponding ones obtained by means of 

DYNAFLOW. This was attributed to the fact that a distance of 5B on the sides was not 

sufficient to simulate the semi-infinite domain for lateral loading, and therefore, the 

variability in far-field representation between the two approaches (infinite elements vs. 

sponge boundary conditions) results in large deviation between the two finite element 

numerical model solutions. 

Based on that observation, more simulations were conducted in DYNAFLOW 

where the numerical domain was truncated at a increasing distance from the foundation 

center; at a distance equal to 10B, values were then found deviate approximately by 5% 

compared to the corresponding results obtained by means of ABAQUS. Results from this 

investigation show that a minimum far field distance of 10B on each side should be 

employed for static simulations, if standard fixities are used at the boundary. The results 

are however not sensitive to the far-field boundary below the foundation base at distances 

greater than 5B. 

In the ensuing, results from the ABAQUS simulations are being presented, and 

selected simulations are compared across the two numerical solutions in table 5.1. 

5.3 Validation of rigid body behavior and effect of Ep/E ratio 

It has been shown above that based on the assumption of rigid body motion of the 

pier and consequent absence of flexural bending, the stiffness matrix obtained in 

Equation (3.10) is symmetric, namely the off-diagonal coupled stiffness terms are 

equal rxxr KK = . Figure 5.1 depicts the sensitivity of coupled stiffness rxxr KK =  , namely 

the expression: 
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DYNAFLOW (far field distance 5B) ABAQUS (with infinite elements) 
D/B ratio 

Kxx Kxr Krr Kxx Kxr Krr 

0.25 1.83 -0.37 0.51 1.53 -0.31 0.49 

0.5 2.36 -0.84 1.02 2.12 -0.76 0.98 

0.75 2.85 -1.43 1.83 2.52 -1.28 1.74 

1 3.32 -2.15 3.00 2.91 -1.90 2.83 

1.25 3.78 -2.99 4.59 3.28 -2.61 4.28 

1.5 4.23 -3.94 6.67 3.63 -3.41 6.16 

1.75 4.68 -5.02 9.28 3.98 -4.30 8.50 

2 5.13 -6.21 12.49 4.33 -5.28 11.35 

2.25 5.58 -7.52 16.35 4.67 -6.35 14.76 

2.5 6.03 -8.96 20.94 5.00 -7.51 18.76 

2.75 6.49 -10.52 26.31 5.34 -8.75 23.42 

3 6.94 -12.21 32.52 5.67 -10.09 28.76 

3.25 7.41 -14.03 39.66 6.01 -11.52 34.85 

3.5 7.88 -15.98 47.78 6.35 -13.05 41.74 

3.75 8.35 -18.07 56.97 6.69 -14.67 49.48 

4 8.84 -20.31 67.31 7.03 -16.39 58.12 

4.25 9.34 -22.71 78.89 7.38 -18.23 67.74 

4.5 9.84 -25.27 91.83 7.74 -20.17 78.39 

4.75 10.37 -28.01 106.22 8.10 -22.24 90.17 

5 10.90 -30.94 122.20 8.47 -24.43 103.13 

5.25 11.46 -34.08 139.90 8.85 -26.77 117.39 

5.5 12.04 -37.45 159.51 9.25 -29.24 133.04 

5.75 12.65 -41.07 181.22 9.65 -31.89 150.21 

6 13.28 -44.96 205.22 10.08 -34.70 169.00 

6.5 14.66 -53.75 261.28 10.98 -40.94 212.18 

7 16.24 -64.16 330.44 11.98 -48.15 264.09 

 

Table 5.1 Comparison between Global stiffness terms obtained using DYNAFLOW 

(lateral far field boundary 5B away from pier) and ABAQUS (infinite elements in far 

field) 
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as a function of the aspect ratio D/B for soil Poisson ratio ν=0.3 and foundation-

soil impedance ratios (Ep/E =104 and 105 , which are representative for the case of 

concrete and steel respectively. For D/B ratios larger than 6, the deviation is shown to 

exceed 0.05 (5%) for Ep/E = 104. Thus, the assumption of a rigid pier is considered valid 

only for aspect ratios D/B ≤ 6. 

Deviation from Rigid Behavior

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 2 3 4 5 6 7 8 9

D/B

dK
xr

/K
xr

E/Es=1e4

E/Es=1e5

 

Figure 5.1 Deviation of pier from rigid behavior for different pile to soil stiffness ratios – 

coupled stiffness sensitivity as a function of the aspect ratio D/B for two foundation-soil 

impedance contrasts. 

Figure 5.2a, b and c compare the components of the stiffness matrix for constant 

Ep/E ratios. As can be readily seen, for D/B > 6 there is significant difference in stiffness 

terms for both cases. However, below D/B = 6, the stiffness matrix is almost independent 

of stiffness contrast between the soil and pier. 
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Figure 5.2a Variation of lateral stiffness Kxx with pier to soil stiffness contrast (Ep/E). 
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Figure 5.2b Variation of coupled stiffness Kxr with pier to soil stiffness contrast (Ep/E). 
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Figure 5.2c Variation of rocking stiffness Krr with pier to soil stiffness contrast (Ep/E). 

5.4 Comparison of results to shallow foundation theory 

In this part, we shall compare the overall foundation stiffness evaluated by means 

of finite element simulations to analytical solutions evaluated for shallow foundations, to 

examine the applicability of the latter for the analysis of intermediate foundation 

elements such as the caisson foundation investigated here. Multiple analytical solutions 

and formulations are available in the literature to describe the behavior of embedded 

foundations subjected to lateral loading. Among others, the formulations against which 

finite element results obtained in this study are being compared are shown below. 

1. Wolf (1997) presents spring-dashpot-mass models for vibrations of rigid cylinder 

foundations embedded in halfspace as shown below in Figure 5.4. The stiffness 

elements of the model are evaluated as follows: 
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Figure 5.3a Cylinder embedded in half space and its equivalent model (Wolf, 1997) 

 

From the above model, the stiffness matrix terms for static loading applied at the 

top of the foundation are calculated as follows: 

hxx KK =  

Khxr fKK =  

2
Khorrr fKKK +=  

2. Elsabee et al. (1977) and Kausel (1974) developed formulations for stiffness of 

rigid embedded cylindrical foundations welded into a homogeneous soil stratum 

over bedrock as shown in figure 5.3b.  

According to these studies, the overall stiffness of the foundation as interpreted 

from the top of the element is expressed as: 
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These expressions are shown to be valid for D/H < 0.5 and D/R < 2. 

 

 

Figure 5.3b Rigid embedded cylindrical foundations welded into a homogeneous soil 

stratum over bedrock 

 

3. Novak et. al (1978) evaluated the dynamic soil reactions for plane strain 

conditions. Despite the fact that for static loading conditions, the formulation 

results in zero soil reactions, for quasi-static loading (i.e. low dimensionless 

frequencies ao = 0.1) and material Poisson’s ratio ν = 0.3, they result in the 

following expressions: 

3≈
G

k x  

75.0
2

≈
GB

kθ  

Assuming that along the length of the caisson, individual cross-sections will 

respond based on Novak’s assumption for plane strain conditions, one needs to 

also account for the base lateral and rotational reaction of the foundation. For the 

case of weightless, linear elastic medium as investigated here, a multitude of 

formulations have been developed in the past for rigid circular foundations on 

halfspace; among others, the most well known are the expressions by Luco and 
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Westmann (1971), Velestos and Wei (1971) and Velestos and Verbic (1974), 

which describe the soil reaction at the base of the footing as: 

ν−
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2

8GR
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8 3
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= GR
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Combining the distributed springs approximated by Novak’s approach and the 

base springs approximated by the reaction of surface foundations, the stiffness 

matrix was evaluated for the analytical model proposed in this study as shown in 

figure 5.3c, and results are compared to the numerical analyses in the ensuing. 

 

 

Figure 5.3c Combination of springs for Novak plane strain case and Velestos rigid 

circular footing on half-space 

 

4. Electrical Power Research Institute (EPRI)(1982) also calibrated a four spring 

model from three dimensional simulations in ABAQUS using a stress based 

approach  for static lateral loading applied at the top of drilled piers for Poisson 

ratio = 0.3; according to this study, the  
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According to this study, the soil reactions (i.e. springs) along the caisson and at 

the case are defined in terms of force per unit area, and converting to stress 

reactions according to the approach proposed here, the expressions become: 
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The displacements of pier in x and z direction for lateral loading are shown in figure 

5.4a-b 

 

 



 44 

 

Figure 5.4a: Displacement contours in X-direction for lateral loading of pier 

 

 

Figure 5.4b: Displacement contours in Z-direction for lateral loading of pier 

 

In the ensuing, Figures5.5a-c depict the variation of overall foundation stiffness 

as interpreted from the top as a function of the aspect ratio (D/B), evaluated by means of 

the spring coefficients developed in this study according to Equation 3.9-3.11 . 
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Figure 5.5a Variation of Kxx with D/B ratio 
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Figure 5.5b Variation of Kxr with D/B ratio 
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Figure 5.5c Variation of Krr with D/B ratio 

 

Results for these components of the overall foundation stiffness matrix are next 

compared to the aforementioned available shallow foundation formulations and shown in 

figure 5.6 (a)-(c). 
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Figure 5.6(a) Comparison of Kxx with different solutions available 
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Figure 5.6(b) Comparison of Kxr with different solutions available 
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Figure 5.6(c) Comparison of Krr with different solutions available 

Based on the results compared above, we conclude the following regarding the 

applicability of shallow foundation theories for the analysis of intermediate rigid 

foundation elements: 

(a) The model proposed by Kausel (1974) and Elsabee (1977) captures the lateral and 

coupled stiffness very well, but significantly under-predicts the rocking 

resistance. 

(b) The model proposed by Wolf (1997) captures the lateral and rocking stiffness 

very well, but under-predicts the coupled resistance. 

(c) The EPRI (1982) model may be used to simulate the coupled and rocking 

stiffness components, but over-predicts the lateral resistance. 

(d) The stiffness values predicted by springs obtained from combination of formu-

lations by Novak (1978) and Velestos (1971), namely constant spring values 

independent of the foundation aspect ratio (D/B) is a good approximation to the 
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configuration investigated here and qualitatively captures the overall variation of 

stiffness as a function of D/B, but quantitatively predicts lower stiffness values 

than the actual ones obtained. 

Based on the aforementioned conclusions, none of the existing models may be 

used to capture all the three modes of soil resistance completely. There exists therefore a 

clear need to calibrate the springs of the proposed model, which may be successively 

employed for the evaluation of the overall foundation stiffness; evaluating the lateral, 

rocking an coupled stiffness at the top of the foundation may be successively used in 

analyses of structural response to replace the continuum formulation of the infinite 

domain and foundation element by the foundation-soil stiffness matrix.  As explained in 

section 5.1, the proposed model is calibrated based on 3D finite element simulation 

results by equating stiffness components of the foundation system and back-calculating 

thus the spring expressions as a function of the material stiffness and geometry 

characteristics of the foundation.  

5.5 Calculation of distributed and base springs 

The variation of all four springs as a function of the foundation aspect ration is 

shown in Figure 5.7. 

When the springs are estimated based on the finite element calculated stiffness 

matrix through the flexibility approach, it is observed that 

(a) The base rotation spring θbk decreases very fast with D/B and becomes zero for 

D/B = 0.75. For higher D/B ratios it shows a random variation and gives negative 

values.  

(b) The distributed rotational spring θk increases with D/B but beyond D/B = 5-6, its 

contribution decays and eventually becomes zero. 
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The trend observed above is interpreted as directly stemming from the spring 

derivation process itself. The stiffness coefficient rrK  according to equation 3.15 is given 

as   
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Figure 5.7 Individual springs obtained as a function of D/B 

 

As the aspect ratio D/B increases, the contribution of θk and θbk  to the overall 

rotational stiffness rrK  relative to other two terms decreases. As a result, for higher D/B 

ratios rrK  becomes increasingly insensitive to changes in values of these two springs. 

Since the sensitivity of rrK  to θk and θbk decreases as D/B increases, it is not possible to 

interpret the values of these two springs through the equation requirement on rrK  beyond 

a certain D/B ratio, which corresponds to D/B=0.75 for θbk and D/B=5-6 for θk . Since 
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θk is a function of D/B as well, the D/B range where θk  may be interpreted without loss 

of accuracy is wider than the corresponding one forθbk . 

As can be readily seen, for the D/B region beyond which the rocking stiffness 

expression becomes insensitive to a given spring value, this spring (i.e. mechanism of soil 

resistance) may be neglected altogether resulting in a simplified version of the model. 

Based on this interpretation, the response of pier can be broadly classified into three main 

zones: 

Zone I:  D/B= 0-2 (four spring model) 

(a) The distributed lateral spring xk  decreases rapidly with D/B ratio. This behavior 

is most possibly attributed to the fact that at higher embedment depths, the soil 

layers respond almost independently to each other, and the shear resistance 

mobilized between the layers is not substantial; this is equivalent ot the 

assumption for plane strain conditions similar to the model proposed by Novak. 

On the other hand, for small foundation embedment depths, there is much more 

interaction between the adjacent layers, namely the plane strain assumption is not 

valid and hence higher resistance is mobilized due to shear interaction between 

consecutive soil layers. 

(b) The base lateral spring bxk  has an initial value of 0.92 which is almost identical to 

the value predicted by the formulation by Velestos for horizontal impedance of 

circular foundations on halfspace. However, as D/B ratio increases, bxk  increases. 

This is explained by the so-called trench effect, according to which the soil at 

deeper layers is more constrained as compared to the surface and therefore 

mobilizes a higher shear resistance. 

(c) The distributed rotational spring θk  increases with D/B. 

(d) The base rotation spring θbk has an initial value of 0.18 for D/B =0.25 which is a 

very good approximation to the theoretical rocking stiffness predicted by the 
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formulation by Velestos. Nonetheless, since the relative contribution of this spring 

to total rocking stiffness is very small, it may be neglected with no loss of 

accuracy in the solution for D/B > 1. 

Zone II :  D/B=2-6 (three spring model) 

(a) The distributed lateral spring xk  decreases slightly with D/B and then remains 

practically constant. The normalized value of /xk E =1.48 which is somewhat 

comparable to the value of 1.15 predicted by Novak for very low frequencies. 

(b) The base lateral spring bxk  increases with D/B ratio throughout as expected due to 

trench effect. 

(c) The distributed rotational spring θk  increases with D/B and then becomes nearly 

constant. The increase is explained by the increase in confinement due to trench 

effect and higher shear resistance mobilized at the sides.  

Zone III:   D/B > 6 (two spring model) 

(a) The distributed lateral spring xk  remains almost constant with D/B. 

(b) The base lateral spring bxk  keep increasing with D/B. 

However, as observed from the simulations for impedance contrast between the 

foundation and soil, for D/B > 6, for concrete piers, the response of pier starts deviating 

significantly from the perfectly rigid assumption. For D/B ratios greater than this, the 

caisson behaves as a flexible foundation and the response can be estimated by using the 

p-y curve approach. For a linear elastic medium, the p-y curve is represented by the 

constant lateral springxk . 

5.5 Simplified expression for springs 

The objective of this study is the spring model calibration for aspect ratios D/B = 

2-6 since to behavior observed in Zones I and III may be captured by formulations 

available for embedded foundations and piles respectively. Using the values of springs 
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obtained by means of the finite element simulations, simple expressions are derived by 

means of least-square curve fitting as follows: 
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The fitted expressions and standard deviation of the results is shown in Figures 

5.8a-c for the lateral distributed, base concentrated lateral and distributed rotational 

stiffness respectively.  
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Figure 5.8 (a) Curve fitting to xk  
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Figure 5.8 (b) Curve fitting for bxk  
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Figure 5.8 (c) Curve fitting for θk  

Using the expressions derived by curve fitting, the overall foundation stiffness 

terms are calculated and the comparison with the corresponding values obtained directly 

through 3D finite element simulations is shown in Figures 5.9a-c. The excellent 
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agreement between the analytically evaluated and numerical values shows that the error 

propagation due to the curve fitted approach used to evaluate the individual expressions 

is minimal. 
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Figure 5.9 (a) Comparison showing Kxx obtained from fitted springs and 3D simulations 

K rr comparison

0

20

40

60

80

100

120

140

160

180

2 2.5 3 3.5 4 4.5 5 5.5 6

D/B

K
rr

/E
B

3

 

Figure 5.9 (b) Comparison showing Krr obtained from fitted springs and 3D simulations 
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Figure 5.9 (c) Comparison showing Kxr obtained from fitted springs and 3D simulations 

 

5.6 Effect of Poisson Ratio 

In the foregoing, the simulations have been conducted for a soil Poisson’s ratio 

equal to ν= 0.3. Additional simulations were next conducted for Poisson ratio varying 

from 0.1 to 0.49. Figures 5.10 (a)-(c) illustrate the effect of Poisson ratio on the stiffness 

of the various model springs. 
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Figure 5.10 (a) Effect of Poisson ratio on xk  

kbx

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5

v

k b
x

D/B=2

D/B=4

D/B=6

 

Figure 5.10 (b) Effect of Poisson ratio on bxk  
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Figure 5.10 (c) Effect of Poisson ratio on θk  

Based on the results shown above, it is concluded that: 

1. xk  is almost constant with Poisson ratio except for values very close to 0.5, which 

is probably due to inability of FEM method to capture perfectly incompressible 

soils. 

2. bxk  decreases with Poisson ratio and the decrease can be quite accurately captured 

by a factor of 
)2)(1(

1

νν −+
which follows logically from the analytical 

formulation by Velestos. 

3. θk  decreases slightly with Poisson ratio, but since the sensitivity of total stiffness 

terms is very little to this spring, the variation can be ignored. 

Nonetheless, the overall stiffness terms are practically insensitive to changes in 

Poisson ratio as shown in Figures 5.11 (a)-(c) and Figures 5.12 (a)-(c). Thus, as a 

simplification, the variation of spring coefficients with Poisson ratio may be safely 

neglected without loss of accuracy, and the springs are heretofore assumed to be constant 

and independent of the value of Poisson ratio. 
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Figure 5.11 (a) Effect of Poisson ratio onxxK for different D/B ratios 
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Figure 5.11 (b) Effect of Poisson ratio on xrK for different D/B ratios 
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Figure 5.11 (c) Effect of Poisson ratio on rrK for different D/B ratios 
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Figure 5.12 (a) Variation of xxK with D/B for different Poisson ratios 
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Figure 5.12 (b) Variation of xrK with D/B for different Poisson ratios 
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Figure 5.12 (c) Variation of rrK with D/B for different Poisson ratios 
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5.7 Eccentric loading and center of foundation rotation 

Additional parametric studies have been conducted for simultaneous application 

of lateral load and overturning moment. The results are presented as a function of 

dimensionless eccentricity /=e VD M . Figure 5.13 shows the change of location of the 

centre of rotation as a function of eccentricity of loading. The concept is shown in Figure 

5.14. 
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Figure 5.13 Movement of centre of rotation with change in loading eccentricity 
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Figure 5.14 Figure showing the physical interpretation of 0 <zc/D<1, zc/D>1, and <0 

 

Successively, Figures 5.15 (a)-(b) show the effective lateral stiffness /V EBu  

and rocking stiffness 3/ θM EB  as a function of eccentricity in loading. 
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Figure 5.15(a) Effective lateral stiffness as a function of loading eccentricity 
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Figure 5.15(b) Effective rocking stiffness as a function of loading eccentricity 
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CHAPTER 6 

FORCED TRANSVERSE VIBRATION OF CAISSON  

This chapter describes how the static springs are modified to complex springs to 

account for stiffness and attenuation in the system.  The methodology to obtain the 

dynamic impedance matrix uses sinusoidal loads instead of static step functions. 

Approximate expressions are then obtained for stiffness and attenuation coefficients of 

the springs as a function of D/B ratio and dimensionless frequency parameter. Finally, a 

comparison is presented between the values of dynamic impedance matrix obtained using 

fitted expressions and those obtained from 3D simulations. 

6.1 Formulation and calculation of stiffness matrix and springs 

For the dynamic loading case evaluated in this part of the study, the static springs 

previously evaluated are replaced by complex impedance functions of the form: 

)()('* ooostat aCiaakKK +=        (6.1) 

where  

statK = Static stiffness 

oa = Dimensionless frequency 
s

o V

B
a

ω=  

)( oak = Frequency dependent stiffness coefficient 

)( oaC = Frequency dependent damping parameter. 

As discussed in Chapter 2, )( oaC represents the effective damping of the soil-

foundation system, which is a combination of energy radiation towards the far-field and 

material damping. Thus Equation 3.8 for displacement and rotation due to any loading 

changes for the dynamic loading case to: 
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and equation 5.2 for back derivation of stiffness matrix becomes equivalently: 
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where the displacements and rotations are complex values as well, representing 

the response amplitude and phase lag between externally applied loading and foundation 

response. The Eigen-functions of the system of equations shown above are represented 

by sinusoidal functions.  

Therefore, for the case of dynamic analyses, lateral forces and moments are 

applied on the top of the pier in the form of a sinusoidal function, and the magnitude and 

phase difference between the applied function and the foundation response, namely the 

displacement and rotation sinusoids, are evaluated.  

The complex stiffness matrix can then be evaluated by inverting the matrix in 

Equation 6.3, similarly to the static case and accounting for the complex form of the 

response in this case. The real and imaginary parts for the springs can successively be 

calculated from the real and imaginary parts of the stiffness matrix, respectively.  

6.2 Model simplification – 3 spring model 

In Chapter 5, it was shown that for the D/B range of interest (namely in the range 

D/B=2-6), the stiffness component of base rotational spring θbk  is negligible. 

Gazetas (1983) showed that for base rotational resistance mechanism, any two 

points located on the opposite side of the base give rise to waves that are 180 degrees out 

of phase with each other, and hence tend to cancel each other out when they meet at 

distant location along the centerline. As a result they cannot reach long distances and no 

significant amount of energy is radiated.  

Since, the base resistance mechanism doesn’t contribute significantly to either 

stiffness or the damping part it can be completely neglected, and the resulting model is a 

simplified 3-spring Winkler formulation. 
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6.3 Variation of stiffness coefficient and damping with frequency 

The variation of stiffness coefficient 'k  and damping parameter C with 

dimensionless frequency oa  is shown in Figures 6.1 (a)-(f). Approximate expressions for 

the stiffness coefficients and soil-foundation attenuation that have been developed as part 

of this work are given below, and the comparison between approximated and actual 

values is also shown in Figures 6.1 (a)-(f). 

(a) '
xk : The lateral resistance distributed stiffness coefficient decreases with 

increasing frequency as shown in Figure 6.1 (a). The numerically derived 

variation shows many fluctuations with frequency, which are probably caused by 

local resonances inside the model due to 

a. The finite dimensions of the model; and 

b. The imperfect absorbing conditions in the far-field numerical boundaries. 

Nonetheless, for all three D/B ratios presented here, the variation may be 

approximated by the following expression 

ox ak 1.01' −=  

(b) '
bxk : The lateral base resistance stiffness coefficient also shows some fluctuations 

with frequency as shown in Figure 6.1(b), most probably due to the same effects 

discussed above. However, for practical purposes and simplicity, it can be 

assumed to be almost constant, namely 

1' =bxk  

(c) '
θk : The side rotational stiffness coefficient also shows a decreasing trend with 

frequency as shown in Figure 6.1(c). The decreasing trend can be approximated 

as:  

oak 225.01' −=θ . 
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The validity of the approximate expressions derived above will be evaluated in 

the ensuing by comparison of the analytically predicted response computed by means of 

the fitted expressions to the numerically predicted response of the foundation-soil system. 
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Figure 6.1(a) Variation of '
xk  with frequency 
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Figure 6.1(b) Variation of '
bxk  with frequency 
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Figure 6.1(c) Variation of '
θk  with frequency 

 

(d) xC : The attenuation (material and radiation damping) for lateral side resistance 

increases as frequency increases, but becomes constant for normalized 

frequencies beyond oa =1. The approximation is given as:  
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This expression implies that the overall system energy attenuation increases 

almost linearly with frequency for oa  >1. 

(e) bxC : The attenuation coefficient associated with base shear also shows a similar 

trend as xC  as shown in Figure 6.1(e) and is approximated as: 
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(f) θC : Unlike the attenuation coefficients presented above, θC  results in a negative 

value as shown in Figure 6.1(f). Counter-intuitively, the negative value does not 

imply the supply of energy into the system; instead, it indicates that the waves 

produced by the side shear resistance are out of phase with those produced by 

other resisting mechanisms. As a result the wavefield produced by this mecha-

nism destructively interferes with the wavefield produced by other mechanisms 

to some extent and reduces the radiation of energy away from the system.  

This attenuation coefficient increases with frequency for values of normalized 

frequency oa <1, beyond which it decreases. Above values of normalized 

frequency oa =2, it becomes almost zero indicating that no energy is being radia-

ted towards the far-field due to this mechanism, and the wavefield for higher 

frequency excitations tend destructively interfere for the rocking mechanism. This 

behavior for side rotational resistance mechanism is quite similar to the one for 

base rotational resistance as described above. Furthermore, the value of this 

parameter is found to increase with increasing D/B ratio. A simple approximation 

is given by: 
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Figure 6.1(d) Variation of xC  with frequency 
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Figure 6.1(e) Variation of bxC  with frequency 
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Figure 6.1(f) Variation of θC  with frequency 

 

6.4 Comparison of analytically and numerically evaluated complex stiffness matrix  

Figures 6.2(a)-(f) show a comparison between the components of the overall 

foundation stiffness matrix obtained by means of the numerical simulations and the ones 

obtained by means of the approximate expressions for dynamic impedances. As can be 

readily seen from the figures, a good approximation is obtained when the fitted 

expressions derived above are employed. 
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Figure 6.2(a) Comparison of xxK  with that obtained from approximate expressions 
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Figure 6.2(b) Comparison of xrK  with that obtained from approximate expressions 
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Figure 6.2(c) Comparison of rrK  with that obtained from approximate expressions 
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Figure 6.2(d) Comparison of xxC  with that obtained from approximate expressions 



 75 

Cxr

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

ao

C
xr

D/B=2

D/B=4

D/B=6

Approx D/B=2

Approx D/B=4

Approx D/B=6

 

Figure 6.2(e) Comparison of bxC  with that obtained from approximate expressions 

Crr

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

ao

C
rr

D/B=2

D/B=4

D/B=6

Approx D/B=2

Approx D/B=4

Approx D/B=6

 

Figure 6.2(f) Comparison of θC  with that obtained from approximate expressions 
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CHAPTER 7 

KINEMATIC INTERACTION 

This chapter discusses the importance of kinematic interaction effects by 

presenting some results obtained by Elsabee and Morray (1977) and Day (1977) for 

embedded shallow foundations. Using the Winkler model proposed, an analytical 

solution for kinematic interaction of caissons is derived in terms of transfer functions for 

top displacement and rotation. A comparison between analytically derived transfer 

functions and those obtained from numerical simulations is also presented. 

7.1 Significance of kinematic interaction effects 

As discussed in Chapter 2, the inability of a stiff foundation to comply to the 

deformation field imposed by the soil in the free-field, leads to incompatible motion 

between free-field and the foundation. This difference in motion results in forces and 

moments being applied on the foundation by free field as shown in figure 7.1. 

In turn, the rigid behavior of the foundation results in filtering the effects of far-

field motion. The filtering is expected to be higher for short wavelengths (i.e. high frequ-

encies). The overall effect of kinematic interaction is expressed in terms of transfer 

functions 

ff

t
ou u

u
aH =)(          (7.1) 

ff
o u

B
aH

θ
θ =)(          (7.2) 

Day (1977) employed finite element analyses to evaluate the base motion of a 

shallow rigid cylindrical foundation embedded in half space and subjected to vertically 

incident coherent SH-waves. Elsabee and Moray (1977) performed similar studies for 

visco-elastic soil of finite depth over a rigid base, and also proposed approximate transfer 

functions for the translational and rocking motion of the foundation as follows: 
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Figure 7.1 Incompatible motions between foundation and free field 
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e

R
ao 2

π=  and 
s

o V

fR
a

π2= . 

For the finite depth case, due to multiple reflections of waves at surface and from 

bedrock, the response is a sinusoid with time varying amplitude (i.e., similar to a beat 

function) instead of a sinusoid with constant amplitude. The frequency of amplitude 

variation is controlled by the thickness of soil layer. Thus, the transfer functions refer to 

the maximum displacement and rotation observed instead of the amplitude of the sinusoid 

as in case of halfspace.  
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Figure 7.2 Comparison of amplitude of transfer function for rigid cylindrical foundations 

embedded in halfspace (Day, 1977), in soil layer of finite thickness and approximation 

(Elsabee and Morray, 1977). Figure from Stewart et al. (1998) 
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Figure 7.2 shows a comparison between the transfer functions obtained by Day 

(1977) for the case of an underlying halfspace, Elsabee and Morray (1977) for a finite 

thickness soil layer, and the approximation for three embedment ratios denoted as e/r = 

0.5,1 and 2 which correspond to D/B = 0.25, 0.5 and 1.0. 

The significant differences between the finite thickness soil layer and the half 

space arise from the oscillations in transfer function for frequencies oa >1 due to 

resonance effects in the finite layer. As a general observation, significant filtering of 

translational motions is observed for oa >0.5 and significant rocking motions for oa >1.0. 

The filtering effect is shown to increase with frequency for low frequencies, where it is 

more or less insensitive to frequencies for higher frequencies. By contrast to a circular 

foundation on the surface of a halfspace, which would experience no reduction in 

translational motion and no induced rocking, the embedment length increases the 

kinematic interaction significantly and cannot be neglected even for D/B ratios equal to 

unity, namely shallow foundations.  

For extension of these formulations to cases such like depth-varying soil 

formations, horizontally propagating SH waves and non-circular foundations, the reader 

is referred to Elsabee and Morray (1977), Day (1977) and Mita and Luco (1989). 

7.2 Analytical Solution for kinematic interaction for three spring model 

For a sinusoidal SH wave propagating vertically upward in a half space, the 

solution to the displacement field is given by 
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where z is the depth from the surface. For the configuration shown in Figure 7.1, using 

equilibrium of forces in horizontal direction, the following expression is obtained: 
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which can be simplified to the following expression: 
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Similarly, applying moment equilibrium at the top of pier, we obtain the following: 
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which can be simplified to the following expression: 
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Equations 7.3 and 7.4 can be written in matrix form as 
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In non-dimensional form, Equations 7.5 and 7.6 can be written as 
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The transfer functions can thus be written as 
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6.3 Comparison with 3D finite element simulation results 

Three dimensional finite element numerical simulations were performed to 

evaluate the transfer functions uH and θH for vertically propagating SH waves. The far-

field motion is applied in the form of effective forcing functions in the interior of the 

truncated numerical domain, as discussed in Chapter 3. A comparison with the values 

derived by means of the analytical expression using both fitted and numerically derived 

unfitted spring constants is shown in Figure 7.3 (a), (b) for D/B =2 and Figures 7.4(a), 

(b) for D/B =4. 
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From the results illustrated above, it can be readily seen that using the analytical 

solution for the kinematic response of rigid intermediate embedded foundations and the 

numerically derived fitted spring functions, the kinematic interaction for pier foundation 

elements may be captured to a certain degree of accuracy. Despite the fact that the 3D 

finite element simulations show values that deviate from the analytically derived ones 

(even on the order of 50% for the case of rocking motions), the following conclusions are 

drawn: 

(a) The model predicts the frequencies corresponding to maxima and minima of 

transfer functions with sufficient accuracy; 

(b) The values predicted by the model are for the most part conservative, i.e., lower 

reduction in translational motion and higher induced rocking motions, and show 

substantial improvement from the assumption of no kinematic interaction; and 

(c) The results are bounded by the transfer functions obtained using Elsabee and 

Morray (1977) approximation for shallow foundations and Gazetas (1993) simple 

Winkler spring model for pile foundations 
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which is as expected but still none of the approaches captures the actual response 

as good as the proposed model. This further highlights the importance of a 

separate model for caisson foundations. 

Using the analytical formulation and the fitted spring values, the transfer 

functions can be easily programmed into a simple script (see MATLAB script attached in 

APPENDIX A) and can be used to predict -to a first approximation- the pier response 

subjected to transient excitation or earthquake loading given the aspect ratio of the 

foundation D/B. 
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Figure 7.3 (a) Displacement transfer function for D/B =2 
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Figure 7.3 (b) Rotation transfer function for D/B =2 
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Hu for D/B=4
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Figure 7.4 (a) Displacement transfer function for D/B =4 
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Figure 7.4 (b) Rotation transfer function for D/B =4
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CHAPTER 8 

APPLICATIONS OF THE PROPOSED MODEL 

 

In this chapter, we present applications of the proposed model and coefficients of 

soil reaction for the estimation of the static and dynamic response of pier foundations in 

multi-layered profiles, and the kinematic response of the foundation elements to incident 

transient seismic motion. Results are also evaluated by means of three-dimensional finite 

element simulations, and compared to the proposed methodology. 

8.1 Static Loading: Multi layered soil profile 

Initially, we examine the soil-structure interaction problem for the layered profile 

shown in Figure 8.1, where the stiffness of the three layers is 1E =10 MPa, 2E =30 MPa 

and 3E =50 MPa respectively. The thickness of the top layer is 1d = 3m, the thickness of 

the second layer is2d =4m; the two layers are overlying a linear elastic halfspace. The 

diameter of pier B = 2 m and the depth of embedment D = 8 m.  

A lateral load of 1000 kN and an overturning moment of 2000 kN.m are applied 

at the top of the caisson, and the response of the foundation element is here evaluated 

using the proposed three-spring model for intermediate foundations. 

 

Figure 8.1 The layered soil profile considered in Problem 1 and 2 
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Using the model proposed, the distributed translational springs are given as: 
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and for the three formations of the layered medium, the corresponding values are: 

1xk  = 14.9 MPa, 2xk  = 44.6 MPa and 3xk  = 74.3 MPa. 

The translational stiffness at the base of the foundation is given by the following 

expression: 
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Finally, the distributed rotational springs are evaluated for each layer as follows: 
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and the corresponding values are computed as: 

1θk  = 81.2 MPa.m2, 2θk = 243.6 MPa.m2 and 3θk = 406 MPa.m2. 

Using  D1 = d1 = 3m 

D2 = d1 + d2 = 7m 

D3 = d1 + d2 + d3 = 8m 

the overall stiffness of the foundation element as interpreted from the top of the caisson is 

computed from the following expressions: 
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= 18257.5 MPa.m3 

In a matrix form, the displacement-force relation of the foundation-soil system is: 
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and substituting the corresponding values of the stiffness matrix and externally applied 

loads at the top, the response is computed as: 

ut = 0.0153 m = 1.53 cm 

θ = 0.00218 rad 

Results of the 3D finite element simulation for the same configuration and 

externally applied loading correspond to the following response at the top of the caisson: 

ut [NUM]  = 0.0178 m = 1.78 cm 

θ [NUM] = 0.00239 rad 

The analytically obtained values deviate from the numerical results by a factor of 

10-15%. As can be readily seen, the assumption of individually responding soil layers 

may be applied with no significant loss of accuracy, and thus the model can be employed 

for the case of multi-layered soil profiles. 

8.2 Dynamic Loading: layered soil profile 

For the same configuration described above, we here evaluate the pier response to 

a dynamic steady-state lateral load applied at the top of the foundation, with amplitude 

1000 kN and frequency 5 Hz. 

The density of layers 1, 2 and 3 is assumed to be 1500, 1600 and 1800 kg/m3 

respectively, whereas a common Poisson’s ratio is assumed throughout the medium and 

equal to ν=0.3. 
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The shear wave velocity of the soil layers and the dimensionless frequency 

describing the soil resistance and radiation damping dependence on the frequency content 

of the pier response are calculated as: 
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Therefore, for each layer the corresponding values are: 
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3sV = 103 m/s 3oa = 0.61 

Given the dependency of stiffness and attenuation coefficients on the frequency 

content of the pier response, namely: 
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The dynamic springs (distributed translational, base translational and distributed 

rotational stiffness and attenuation coefficients) in this case are calculated as: 

*
1xk = 13.04 + 23.12 i, *

2xk  = 41.30 + 30.39 i, and*
3xk  = 69.77 + 34.42 i 

*
bxk  = 119.0 + 21.96 i 

*
1θk  = 58.36 – 31.5 i, *

2θk = 203.04 – 55.20 i, and *3θk = 350.27 – 61.51 i  

Using the above values, the global stiffness matrix can be written as 



 90 

*
xxK = 393.1 + 247.3 i 

*
xrK = -2359.9 – 1145.7 i 

*
rrK = 17351.3 + 6735.9 i 

Using the displacement-loading system of equations described in 8.1 and solving 

for the complex response of the foundation, the resulting amplitude predicted by the 

proposed model is: 

tu = 0.011 m = 1.1 cm 

θ = 0.00147 rad 

Results of the 3D finite element simulation for the same configuration and 

externally applied loading correspond to the following response at the top of the caisson: 

[NUM]tu = 0.015 m = 1.4 cm 

[NUM]
θ  = 0.00186 rad 

Based on the comparison presented above, the model may be employed to predict 

the dynamic response with fair accuracy. Despite the fact that the presence of multiple 

layers causes multiple reflections of waves at the interfaces arising from the impedance 

contrast, it appears that the radiated waves are primarily parallel to the layer interfaces 

(except for the base spring for which they are normal to the interface). As a result, the 

layers act more like a waveguide for waves moving away from the pier and layering has 

little effect on the total response.  

8.3 Response to a transient seismic loading 

As discussed in Section 7.3, the analytical expressions developed for the load-

displacement and rotation transfer functions of the pier response caused by vertically 

propagating SH seismic waves in the free field may be easily implemented in a computer 

script (e.g. MATLAB) and successively be used to calculate the motions corresponding 
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to any transient loading by means of Fourier reconstruction of the response signal, 

provided that the medium of propagation is linear elastic or moderately nonlinear. 

This section presents a comparison between the pier response obtained by means 

of the analytical kinematic response formulation using the approximated spring formulae 

developed in this study, and the numerically evaluated response by means of 3D finite 

element time-domain simulations. 

Figures 8.2a and b show the applied free-field displacement time history and 

Fourier transform correspondingly. The comparison between the analytically-predicted 

and numerically-evaluated response is shown in Figures 8.3 and 8.4.  
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Figure 8.2a The displacement time history applied to free-field 
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Figure 8.2b Fourier spectrum of free-field displacement time history 
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In particular, Figures 8.3a-b show the theoretically predicted and numerically-

computed time histories of the pier displacement at the top and the pier rotation. The 

numerically-obtained time histories have been shifted in time to account for the wave 

propagation duration of the excitation traveling from the far-field to the pier. The Fourier 

spectra of the translational motion are compared in Figure 8.4 (a) and for the rocking 

motion in Figure 8.4 (b). 
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Figure 8.3a Comparison between obtained and theoretically predicted translation motion 

at the top of pier. 
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Figure 8.3b Comparison between obtained and theoretically predicted rocking motion of 

pier. 



 93 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6

Frequency (Hz)

D
is

pl
ac

em
en

t

Analytical Solution

Obtained value

 

Figure 8.4a Comparison between Fourier spectra (obtained from numerical simulation 

and analytical model predictions) for translational motion at the top of pier 
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Figure 8.4b Comparison between Fourier spectra (obtained from numerical simulation 

and analytical model predictions) for rocking motion of pier 

 

From the comparison of results presented above, it can be readily seen that that 

the model is able to capture the response of pier within an acceptable degree of prediction 

accuracy. In particular, the dominant frequency in both translational and rocking motion 
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response evaluated by means of the analytical model is in excellent agreement with the 

numerical results. However, the maximum translation predicted by the analytical model 

is 0.37m which is higher compared to the numerically-obtained value, namely umax = 

0.23m. Also, the pier rotation is predicted to be 0.34rad by means of the analytical model 

and 0.22rad is obtained by means of the numerical simulations. Overall, the results 

predicted are conservative (higher translations and higher rotations than the numerical 

model predicts) but still they are much better approximation than the simulation of the 

response in absence of kinematic interaction effects. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE  

9.1 Conclusions 

In this study, we developed an analytical model to be employed for the prediction 

of the response of rigid cylindrical caisson foundations characterized by aspect ratios D/B 

= 2-6 and embedded in linear elastic soil media, using a simple Winkler spring model 

with four springs namely:  

(a) xk : Lateral translational springs used to characterize lateral force-displacement 

response of soil; 

(b) θk : Rotational springs used to characterize the moment developed at the 

centerline of pier due to vertical shear stress acting at the perimeter of pier, 

induced by pier rotation; 

(c) bxk : Base translational spring used to characterize horizontal shear force-base 

displacement response; and 

(d) θbk : Base rotational spring used to characterize moment developed due to normal 

stress acting at the base of pier, induced by base rotation. 

Based on the results obtained in this study, we have conclude that for the range 

aspect ratio of interest (D/B = 2-6), the effect of base rotational spring is negligible and 

therefore, a simplified three spring model may instead be used to capture the pier respon-

se with sufficient accuracy. Approximate expressions have been developed for the three 

springs as a function of both the D/B ratio and the dimensionless frequency. The 

expressions of the static springs are given by the following expressions: 
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For dynamic loading applied at the foundation top, the springs are expressed as 

dynamic impedances, namely: 
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The global dynamic impedance matrix of the pier is then expressed in terms of the 

distributed translational, rotational and base concentrated springs as: 
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Using the global impedance matrix, the response of the pier subjected to any static 

or dynamic loading may be obtained, which was shown to be in good agreement with 

numerically evaluated results of the configuration subjected of the same externally 

applied loading. 

Successively, accounting for the motion incompatibility between the pier and the 

free field response upon the incidence of vertically propagating anti-plane shear waves, 

an analytical formulation was obtained for the Winkler spring model kinematic response. 

The theoretical values of free-field/pier response transfer functions for translational and 

rocking motion resulting from the free field excitation were compared to the 

corresponding values obtained by means of 3D finite element simulations. Despite the 

fact that the proposed formulation does not simulate the pier response exactly, a fact that 

is attributed to the complex load transfer mechanisms applied at the soil-foundation 

interface that cannot be captured by the simplified 3-spring proposed model, it may be 

applied to capture the important response parameters, namely the frequency content and 

evolution of time-history variation. 

In conclusion, we have developed a simple approach that may be used for the 

evaluation of the response of intermediate embedded foundations instead of the 

heretofore employed; the simplicity of the approach, the applicability of the methodology 

for multi-layered media and seismic incident motion, as well as the advantages compared 

to the embedded foundations or pile theoretical solutions for the analysis of caisson foun-

dations, render the proposed model suitable for the design and performance evaluation of 

these elements for low and intermediate levels of target degree of accuracy required for 

non-critical facilities. 
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9.2 Future work 

1) The Winkler springs developed in this study are applicable for linear elastic 

medium with no material damping. Nonetheless, the effect of material damping 

can be easily accounted for using the elasticity-visco-elasticity correspondence 

principle. According to this principle, the elasticity modulus can be expressed as a 

complex modulus given by 

)'21(* DiEE +=  

where D’ is the material damping ratio. 

2) The current approach assumes no separation between the soil and pier interface. 

Nonetheless, modified Winkler springs that include a stiffness element, a damper 

and a Coulomb friction element with low tension resistance may be developed to 

take into account the separation at the soil-foundation interface. 

3) The approach may be further extended to capture the non-linearities in soil 

behavior by the use of non-linear springs. It should be noted, however, that in the 

case of kinematic interaction, a first approximation to the nonlinear response of 

the soil-foundation system (provided that the foundation material is always 

responding within the linear elastic range) would be the application of equivalent 

linear analyses (e.g. by means of the computer program SHAKE, Schnabel et al, 

1972) in the far-field, which would then be used as the effective forcing function 

at the base and soil-foundation interface for the reduced stiffness and material 

damping evaluated at convergence of the algorithm. 

4) Based on the developed computational platform, analytical formulations may also 

be developed for the motion-response transfer functions of the pier subjected to 

horizontally propagating coherent SH waves or for different geometries of 

foundation cross-sections. 
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APPENDIX A 

MATLAB SCRIPT FOR RESPONSE TO TRANSIENT FREE FIELD 

EXCITATION 

A.1 Transfer function to calculate displacement and rotation for a given 

dimensionless frequency and D/B ratio. 

 
------------------------------------------------------------------------------------------------------------ 
 
function Y = transfxn(a,D) 
 
        if (a < 1.0) 
            kx = 1.828*D^(-0.15)*(1-0.1*a) + i*1.85*a*a; 
        else  
            kx = 1.828*D^(-0.15)*(1-0.1*a) + i*1.85*a; 
        end 
 
        if (a < 0.6) 
            kbx = 0.669+0.129*D+i*0.6*a*a; 
        else 
            kbx = 0.669+0.129*D+i*0.36*a; 
        end 
 
        if (a < 1.0) 
            kt = (1.106+0.227*D)*(1-0.225*a)-i*0.21*D*a*a; 
        elseif (a < 2.0) 
            kt = (1.106+0.227*D)*(1-0.225*a)-i*0.21*D*(2.0-a)*a; 
        else 
            kt = (1.106+0.227*D)*(1-0.225*a)-i*a*0; 
        end 
 
        Kxx = kx*D+kbx; 
 
        Kxr = -1*(kx*D^2)/2-1*kbx*D; 
 
        Krr = (kx*D^3)/3+kbx*D^2+kt*D; 
 
        f1 = kx*sin(a*D)/a + kbx*cos(a*D); 
 
        f2 = kx/(a^2)*((1-cos(a*D))-a*D*sin(a*D))-kbx*D*cos(a*D)-kt*(1-cos(a*D)); 
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        f11 = Krr/(Kxx*Krr-Kxr^2); 
 
        f12 = -1*Kxr/(Kxx*Krr-Kxr^2); 
   
        f22 = Kxx/(Kxx*Krr-Kxr^2); 
         
    if (a == 0) 
        Y(1,1)=1;  
        Y(1,2)=0; 
        Y(2,1)=0; 
        Y(2,2)=0; 
    else 
        u =f1*f11+f2*f12; 
        t =f1*f12+f2*f22; 
        Y(1,1)=real(u);  
        Y(1,2)=imag(u); 
        Y(2,1)=real(t); 
        Y(2,2)=imag(t); 
    end 
      
end 
------------------------------------------------------------------------------------------------------------ 
 

A.2 Response function to calculate the response of pier to a given transient free field 

loading 

The following parameters are needed 
(a) A: The loading time history 
(b) dt: Time step in loading time history 
(c) B: Diameter of pier 
(d) D: D/B ratio of foundation 
(e) Vs: shear wave velocity of soil 

 
------------------------------------------------------------------------------------------------------------ 
function Y = response(A,dt,D,vs,B) 
N = length(A); 
da = 2*pi*B/(N*dt*vs); 
FA = fft(A); 
FT(1)=FA(1); 
FR(1)=0; 
for p=2:N/2+1 
    temp = transfxn((p-1)*da,D); 
    FT(p)=FA(p)*(temp(1,1)+i*temp(1,2)); 
    FT(N+2-p)=FA(N+2-p)*(temp(1,1)-i*temp(1,2)); 
    FR(p)=FA(p)*(temp(2,1)+i*temp(2,2)); 
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    FR(N+2-p)=FA(N+2-p)*(temp(2,1)-i*temp(2,2)); 
end 
Y(:,1) = real(ifft(FT)); 
Y(:,2) = real(ifft(FR)); 
Y(:,3) = imag(ifft(FT)); 
Y(:,4) = imag(ifft(FR)); 
End 
------------------------------------------------------------------------------------------------------------ 
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