DESIGNING POLICY OPTIMIZATION ALGORITHMS FOR MULTI-AGENT
REINFORCEMENT LEARNING

A Dissertation
Presented to
The Academic Faculty

Sihan Zeng

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2023

© Sihan Zeng 2023

DESIGNING POLICY OPTIMIZATION ALGORITHMS FOR MULTI-AGENT
REINFORCEMENT LEARNING

Thesis committee:

Dr. Justin Romberg, Advisor
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Siva Theja Maguluri
Industrial and Systems Engineering
Georgia Institute of Technology

Dr. Guanghui Lan
Industrial and Systems Engineering
Georgia Institute of Technology

Dr. Daniel K. Molzahn
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Thinh T. Doan

The Harry Lynde Bradley Department of
Electrical and Computer Engineering
Virginia Polytechnic Institute and State
University

Date approved: May 1, 2023

ACKNOWLEDGMENTS

Over my time as a graduate student at Georgia Tech, I am extremely fortunate to have
worked and interacted with a wonderful group of mentors, friends, and colleagues, who
have profoundly shaped how I conduct research and how I live my life.

First and foremost, I express my deepest gratitude to my advisor, Dr. Justin Romberg.
Without his continuous support, encouragement, and intellectual guidance, the completion
of this dissertation would have never been possible. It is a privilege to have known and
worked with Justin. His empathy, kindness, dedication, and integrity have set an example
that I will forever strive to follow.

I would like to thank Drs. Thinh Doan and Kyle Xu for their collaboration and men-
torship in academic research, professional growth, and life in general. Enlightening con-
versations with Thinh sparked my interest in reinforcement learning research and opened
up a new world to me. His strong hands-on research guidance in my early graduate school
years helped me quickly get into the field. Kyle is one of the first few people I met upon my
arrival at Rice University and has been a close friend and tremendous mentor ever since. The
collaboration with Kyle on compressive sensing and generative models is a great pleasure.

My internships are truly fun and rewarding experiences. I am grateful to have collab-
orated with and been advised by Drs. Alyssa Kody, Daniel Molzahn, Kibaek Kim, and
Youngdae Kim at Argonne National Lab, Drs. Parisa Hassanzadeh and Sumitra Ganesh at
JPMorgan Al Research, and David Kawashima and Dr. Yukikazu Hidaka at Tinder.

I would also like to extend my gratitude to the rest of my thesis proposal and defense
committee members Drs. Siva Maguluri, Guanghui Lan, and Ashwin Pananjady, who
have provided insightful feedback and discussions throughout the proposal and defense
process and whose research in optimization and reinforcement learning has been a source of
inspiration for my own works.

I have had many thoughtful discussions and enjoyable chats with Rakshith, Tomer, Jihui,

1l

Cole, Brighton, Namrata, Liangbei, Nauman, Peimeng, Greg, Andrew, and the rest of the
Children-of-the-Norm community. I thank my friends, classmates, and collaborators at
Georgia Tech, especially Ageel Anwar, whose work inspired my initial research on multi-
task reinforcement learning. The drone simulation platform developed by Ageel provides a
great testbed for my reinforcement learning experiments.

Special thanks go to my friends outside of Georgia Tech, many of whom I have known
since childhood, Dan Zhou, Hanwen Zheng, Zhenzhen Qu, Caleb Lu, Tony Chen, Yuqgiang
Heng, and others, for their prolonged companionship and emotional support.

Finally, words cannot express how grateful I am to my parents, to whom I owe everything.
I am also deeply indebted to my partner, Hanging Sun, who moved multiple times with me
and sometimes put her own goals on hold to ensure that I can focus on my research. Their

unconditional love and unwavering support have always been my source of strength.

v

TABLE OF CONTENTS

Acknowledgments i ittt e e e e e iii
Listof Tables ¢ i i i i it i i e i et e ittt et et et a s e anas xi
Listof Figures i i i i i it it ittt ittt ot oo seneseas xii
SUMMATY . & & v v i vt e e e e vt o ot o oo ot o oo o oo o oo oeesoees xiii
Chapter 1: Introduction and Background 1
1.1 Introduction 1
1.2 Related Literature 3
1.3 Contribution 4

Chapter 2: Two-Time-Scale Stochastic Optimization and Its Applications in

Actor-Critic Algorithms 7
2.1 Introduction 8
22 RelatedWorks L 9
2.3 Two-Time-Scale Stochastic Gradient Descent Algorithm 12
2.4 Applications to Actor-Critic Algorithms 14

2.4.1 Online Actor-Critic Method for Infinite-Horizon Average-Reward
MDPs e 14

2.4.2 Online Natural Actor-Critic Algorithm for LQR 16

2.4.3 Online Actor-Critic Method for Regularized MDPs 19

24.4 Two-Time-Scale Policy Evaluation Algorithms 21

2.5 Technical Assumptions 21
2.6 Finite-Time and Finite-Sample Complexity of Two-Time-Scale SGD 24
2.6.1 Strong Convexity e 26
2.6.2 Non-Convexity under PL Condition 27

2.6.3 Non-Convexity vt 28

277 Conclusion L 29
Chapter 3: Multi-Agent Multi-Task Reinforcement Learning 30
3.1 RelatedWorks L 31
3.2 Average-Performance Multi-Task Reinforcement Learning Formulation . . 32
3.3 Structure in Multi-Task Reinforcement Learning 34
3.4 Decentralized Policy Gradient Algorithm 37
3.5 Convergence Analysiso 38
3.6 Achieving Global Optimality 39
3.7 Experimental Results 41
3.77.1 GridWorld Problems oo 41

3.7.2 Drone Navigation 43

3.8 Constrained Multi-Task Reinforcement Learning 46
3.8.1 AlgorithmDesign 47

3.8.2 Finite-Time Convergence 49

3.9 Conclusion & Future Directions 50

vi

Chapter 4: A Direct Policy Optimization Approach to Two-Player Zero-Sum

4.1

4.2

4.3

4.4

4.5

4.6

4.7

MarkovGamesttt 52
Introduction 52
Related Works L 54
Preliminaries 56
4.3.1 Entropy-Regularized Two-Player Zero-Sum Markov Games 58
4.3.2 Softmax Parameterization 60
Solving Regularized Markov Games 62
Main Results - Solving the Original Markov Game 64
Numerical Simulations Lo 68
Future Directions L 70

Chapter 5: Accelerating Power System Optimization with Reinforcement Learning 71

5.1

5.2

5.3

54

Related Works 72
Preliminaries L 73
5.2.1 Alternating Direction Method of Multipliers 73
5.2.2 Alternating Current Optimal Power Flow 74
523 ACOPFSolvedviaADMM 76
Reinforcement Learning Algorithm Design 77
5.3.1 Factorized Entry-wise Policy & Multi-Agent Interpretation 81
5.3.2 Q Learning Algorithm in ADMM Solver. 83
Numerical Experiments 83
5.4.1 Performance on Training Scheme 85
5.4.2 Generalization of RL Policy to Varying Loads 85

vil

5.4.3 Generalization of RL Policy to Generator and Line Outages 86

5.4.4 Generalization of RL Policy to Unseen Network Structures 87

5.5 Future Directions 88
Chapter 6: Conclusion ittt ittt eneennn 90
Chapter A: Supplementary Material for Results in Chapter2 92
A.1 Analysis Decomposition and Proof of Main Theorem 92
A.1.1 Decision Variable Convergence 93

A.1.2 Auxiliary Variable Convergence 95

A.1.3 Two-Time-Scale Lemma 98

A.1.4 Proofof MainResults. 102

A.2 Proof of Additional Lemmas 104
A2.1 Proofof LemmaA.l1 104

A22 Proofof Lemma A3 108
Chapter B: Supplementary Material for Results in Chapter3 110
B.1 Computation Details of Examples in Section3.3 110
B.2 Lipschitz, Gradient Lipschitz, and Hessian Lipschitz Constants 118
B.2.1 Proofof LemmaB.1, 118

B.2.2 Proofof LemmaB.2 L. 121

B.3 Proofof Theorems 123
B.3.1 Proofof Theorem3.1 123

B.3.2 Proof of Theorem3.2 128

viil

B.3.3 Proof of Theorem3.3 130

B.4 Proof of Propositions 137
B.4.1 Proof of PropositionB.1 137

B.5 Proof of Additional Lemmas 140
B.5.1 Proofof LemmaB.3 140
B.5.2 Proofof LemmaB.4 144
B.53 Proofof LemmaB.7 144
B.54 Proofof LemmaB.8 0L 145
B.5.5 Proofof LemmaB.9 147
Chapter C: Supplementary Material for Results in Chapter4 152
C.1 Proof of Theorems and Corollaries 152
C.1.1 Proofof Theorem4.1 153
C.1.2 Proofof Corollary4.1. 158
C.1.3 Proofof Theorem4.2 162

C.2 ProofofLemmas 171
C2.1 Proofof Lemmad4.l. 171
C.22 ProofofLemmad.2. 173
C23 Proofof Lemma43. 175
C24 Proofof Lemmad.4d. 177
C.2.5 Proofof LemmaC.1 177
C2.6 Proofof LemmaC.2 181
C.277 Proofof LemmaC3 185

1X

C.2.8 Proofof LemmaC4,
C2.9 Proofof LemmaC.5
C.2.10 Proofof LemmaC.6,
C.2.11 Proofof Lemma C.7

C.3 Experiment Details

2SS 3) 1 1 <

2.1

3.1

5.1

5.2

5.3

54

5.5

LIST OF TABLES

MSF of Learned Policy

RL Action Space & Initial p Values
Performance of RL Policy Under Training Loads (ADMM Iterations)
Performance of RL Policy Under Varying Loads (ADMM Iterations)
Performance of RL Policy Under Generator Outages (ADMM Iterations) . .

Performance of RL Policy Under Line Outages (ADMM Iterations)

X1

85

86

87

87

3.1

3.2

33

34

4.1

4.2

5.1

5.2

5.3

LIST OF FIGURES

Two-Task GridWorld Problem Without a Deterministic Optimal Policy . . .
Evaluate Learned Policy in Multi-task GridWorld
Environments used in drone navigation.

MSF During Training (REINFORCE)

Convergence of GDA for a Completely Mixed Markov game

Convergence of GDA for a Deterministic Markov game

Environment (ADMM Solver) and RL Agent Interaction
Primal and Dual Residuals under RL Policy for 9-bus System

ADMM Convergence with RL Policy for the 9-bus System with Generator
and Line Outages e

Xii

SUMMARY

Multi-agent reinforcement learning (RL) studies the sequential decision-making problem
in the setting where multiple agents exist in an environment and jointly determine the
environment transition. The relationship between the agents can be cooperative, competitive,
or mixed depending on how the rewards of the agents are aligned. Compared to single-agent
RL, multi-agent RL has unique and complicated structure that has not been fully recognized.
The overall objective of the thesis is to enhance the understanding of structure in multi-agent
RL in various settings and to build reliable and efficient algorithms that exploit and/or
respect the structure.

First, we observe that many data-driven algorithms in RL such as the gradient temporal
difference learning and actor-critic algorithms essentially solve a bi-level optimization
problem by tracking an artificial auxiliary variable in addition to the decision variable and
updating them at different rates. We propose a two-time-scale stochastic gradient descent
method under a special type of gradient oracle which abstracts these algorithms and their
analysis in a unified framework. We characterize the convergence rates of the two-time-scale
gradient algorithm under several structural properties of the objective functions common in
RL problems. Targeting single-agent RL problems, this framework builds the mathematical
foundation for designing and studying data-driven multi-agent RL algorithms that we will
later deal with.

Second, we consider multi-agent RL in the fully cooperative setting where a connected,
decentralized network of agents collaborates to solve multiple RL tasks. Our first problem
formulation deploys one agent to each task and considers learning a single policy that
maximizes the average cumulative return over all tasks. We characterize the key structural
differences between multi-task RL and its single-task counterpart, which make multi-task RL
a fundamentally more challenging problem. We then extend our formulation by considering

maximizing the average return subject to constraints on the return of each task, which forms

Xiil

a more flexible framework and is potentially more practical for modeling multi-task RL
applications in real life. We propose and study decentralized (constrained) policy gradient
algorithms for optimizing the objectives in these two formulations and validate our analysis
with enlightening numerical simulations.

While the previous chapter studies cooperative agents, we now shift our focus to the case
where the agents compete with each other. We study the two-player zero-sum Markov game,
which is a special case of competitive multi-agent RL naturally formulated as a nonconvex-
nonconcave minimax optimization program, and consider solving it with the simple gradient
descent ascent (GDA) algorithm. The non-convexity/non-concavity of the underlying
objective function poses significant challenges to the analysis of the GDA algorithm. We
introduce strong structure to the Markov game with an entropy regularization. We apply
GDA to the regularized objective and propose schemes of adjusting the regularization weight
to make the GDA algorithm efficiently converge to the global Nash equilibrium.

The works we have discussed so far treat RL from the perspective of optimization. In
the final chapter, we apply RL to solve optimization problems themselves. Specifically, we
develop a multi-agent RL based penalty parameter selection method for the alternating cur-
rent optimal power flow (ACOPF) problem solved via ADMM, with the goal of minimizing
the number of iterations until convergence. Our method leads to significantly accelerated
ADMM convergence compared to the state-of-the-art hand-designed parameter selection

schemes and exhibits superior generalizability.

X1V

CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1 Introduction

Fueled by powerful function approximations such as large-scale deep neural networks,
reinforcement learning (RL) has been successfully applied to solve real-life problems in a
range of applications including game playing [1-3], healthcare [4, 5], robotics [6, 7], and
autonomous navigation [8—10]. From a mathematical standpoint, recent advances have shed
light on the structure of various RL problems and facilitated the design of more reliable and
efficient algorithms. These achievements, however, are primarily made only in the single
agent setting. Our understanding remains inadequate for multi-agent RL systems where
the agents exhibit complex interactions driven by different rewards. Depending on whether
the rewards of the agents are identical, opposite, or mixed, multi-agent RL problems can
be categorized into cooperative, competitive, or more complicated settings, each of which
has its own unique characteristics. The main thrust of this dissertation is to develop better
insight into the structure of some of these multi-agent RL settings, to design multi-agent
RL algorithms that leverage/respect the structure, and to apply multi-agent RL to solve
meaningful problems in real life.

On the theoretical perspective, we start by proposing a stochastic optimization framework
for single-agent RL that lays the mathematical foundation for data-driven multi-agent RL
algorithms. This framework unifies a range of existing methods in RL including the actor-
critic algorithm and gradient-based temporal difference learning. Providing an abstraction
at a higher level of generality also allows us to discover previous unknown algorithms with
state-of-the-art convergence rates. In the multi-agent setting, we study the structure and

limitations of two specific problems. In the first problem, we consider a group of the agents

connected in a network that have aligned interests. Specifically, each agent is assigned a
local RL task and needs to cooperative with each other to learn a unified policy that performs
well across all tasks. The second scenario is the two-player zero-sum Markov game, which is
a completely competitive setting with one agent maximizing the same discounted cumulative
reward that the other agent seeks to minimize. This problem connects to game theory and
lays the foundation for understanding more complicated games involving more than two
players or general-sum rewards. By taking advantage of the structure and obeying the
limitations, we design reliable and efficient algorithms for the two settings and characterize
their convergence properties.

On the side of application, we apply RL to enhance the solution of optimization problems.
We focus on solving the alternating current optimal power flow (ACOPF) problem with the
alternating direction method of multipliers (ADMM) algorithm. Usually formulated as a
non-convex quadratically constraint quadratic program (QCQP), the ACOPF problem studies
optimally generating power to satisfy network demands subject to constraints dictated by
the power system structure. For large power systems, it is known that the convergence of
the ADMM algorithm depends heavily on the choice of penalty parameters, and poorly
selected penalty parameters can even lead to divergence. As the current practice of choosing
these important parameters is usually based on heuristics, we are motivated to develop
a RL parameter selection policy with the aim of accelerating the ADMM convergence.
We start our problem formulation and algorithm design from a single-agent perspective,
but as we leverage the problem structure to simplify the policy our solution exhibits an
interesting multi-agent interpretation. Through extensive numerical simulations, we find that
our RL-selected penalty parameters result in significantly accelerated ADMM convergence

over state-of-the-art human designed methods.

1.2 Related Literature

In the multi-agent RL setting where the agents live in the same environment and jointly
determine the state transition, the problem can be viewed as a single-agent RL for each agent
if the policies of the other agents are fixed. This is an important observation that allows
our work to take advantage of the recent advances in the understanding of single-agent RL.
In particular, [11, 12] find that the value function in RL observes the gradient domination
condition that upper bounds the optimality gap (measured in objective function value) by
a metric on the norm of the gradient. The authors in [13] show that a stronger structure
resembling the Polyak-ELojasiewicz (PL) condition exists when the value function is properly
regularized by the entropy of the policy.

We briefly give the reference to some fundamental results in multi-task multi-agent RL

and two-player competitive RL below and note that each individual chapter will have its
detailed discussion on related works.
Cooperative Multi-task Multi-Agent RL. Our aim in multi-task multi-agent RL is to find a
single policy that maximize the sum of the cumulative rewards across multiple environments.
Most existing works on this problem [14, 15] propose sharing the local trajectories/data
collected by the agents in each environment to a centralized server where learning takes place.
When the data dimension is large, the amount of information required to be communicated
could be enormous. In contrast, we propose what is referred to as the federated reinforcement
learning later in the literature [16], where the agents exchange the policy parameters in a
decentralized communication graph. In applications with a large state representation but a
much smaller policy representation, exchanging the policy parameters can be a much more
compact and efficient form of communication. Moreover, we observe that a wide range of
practical problems do not allow for a centralized communication topology and the agents
may only communicate locally with their neighbors [17].

Our work can be considered as a special case of distributed optimization where the local

objective function is the cumulative reward in each environment. In distributed optimization
problems where the objective function has strong structural properties like convexity or
strong convexity, decentralized gradient descent methods have been shown to enjoy the
same complexity as their centralized counterpart up to a factor that captures the connectivity
of the agents [18-21].

Two-Player Zero-Sum Markov Game. The two-player zero-sum Markov game can be
naturally formulated a non-convex non-concave minimax optimization program. Mini-
max optimization has been extensively studied in the case where the objective function is
convex/concave with respect to at least one variable [22-25]. In the general non-convex
non-concave setting, the problem becomes much more challenging due to the lack of strong
structure, and the notion of stationarity is even unclear [26]. In [27, 28], non-convex non-
concave objective functions obeying a one-sided or two-sided PL. condition are considered,
which the authors utilize to show the last-iterate convergence of GDA.

By exploiting the gradient domination condition of a Markov game with respect to
each player, [29] is the first to show that the GDA algorithm provably converges to a Nash
equilibrium of the Markov game. However, the convergence of the algorithm is guaranteed
only on the averaged iterate rather than the more preferable last iterate. In addition, no
explicit convergence rate has been given. Our work fills in this gap by designing a efficient
GDA algorithm whose last iterate converges with explicit finite-time worst-case performance

guarantees.

1.3 Contribution

As the first main contribution of the thesis, we present a two-time-scale stochastic optimiza-
tion framework that unifies the analysis of various actor-critic algorithms in RL. Though
it is originally proposed for the single-agent setting, the framework and the mathematical
tools introduced therein lay the mathematical foundation for understanding and analyzing

online sampled-based multi-agent RL algorithms

Second, we discuss structure of multi-agent RL in the cooperative multi-task setting
and the two-player competitive setting that is previously unknown. Specifically, we show
that many favorable properties of single-agent RL are violated when multiple agents are
involved, including the aforementioned gradient domination condition and the existence of a
deterministic optimal policy. We observe that there is an abundance of heuristic multi-agent
RL algorithms built by intuitively extending single-agent RL. methods (such as federated
Q learning [30, 31] for the multi-task setting and gradient-descent ascent for two-player
Markov games [32, 33]), and we discuss how these algorithms designed without being aware
of the multi-agent RL structure can fail to achieve their desired performance.

Our third contribution is to propose and study algorithms that obey and/or exploit the
special characteristics of multi-agent RL. In the cooperative multi-task setting, our work
draws inspiration from distributed optimization and federated learning but combines them
with RL in a way that has not been considered in the previous literature. In the two-player
competitive setting, our work introduces a structured regularization that allows the GDA
algorithm to provably find the optimal solution with a convergence rate that vastly improves
over the best known existing result.

Finally, we use RL to develop an adaptive parameter selection mechanism for the ACOPF
problem solved via ADMM, with the goal of minimizing the number of iterations until
convergence. As a main contribution, our work is the first to formulate this problem in
the language of RL and to develop a novel Q-learning algorithm for training the penalty
parameter selection policy. Through extensive numerical simulations, we show that the
RL policy can result in significantly accelerated convergence (up to a 59% reduction in the
number of iterations compared to existing, curvature-informed penalty parameter selection
methods). Furthermore, we show that the policy demonstrates promise for generalizability,
performing well under unseen loading schemes as well as under unseen losses of lines
and generators (up to a 50% reduction in iterations). Our work thus provides a successful

proof-of-concept for using RL for parameter selection in power systems applications.

Organization. This dissertation is based on the published works [34—40]. The organization
of the chapters is as follows. In Chapter 2, we discuss the two-time-scale stochastic
optimization framework which models single-agent sample-based RL algorithms. In Chapter
3, we study the multi-task multi-agent RL problem. Chapter 4 presents a regularization-
based GDA approach to two-player zero-sum Markov games. Chapter 5 applies RL to
improve the solution of a power system optimization problem. We conclude and make a few
remarks on possible future works in Chapter 6. As the works are mathematical in nature, we
present the problem formulation, algorithms, assumptions, and main theoretical results in

the main text and defer the analysis to the appendix in Chapters A-C.

CHAPTER 2
TWO-TIME-SCALE STOCHASTIC OPTIMIZATION AND ITS APPLICATIONS
IN ACTOR-CRITIC ALGORITHMS

Actor-critic algorithms are an important class of data-driven techniques for policy optimiza-
tion in reinforcement learning. They can be cast as optimization programs with a special type
of stochastic oracle for gradient evaluations. Specifically, the gradient of the optimization
variable is computed with the aid of an auxiliary variable under samples generated by a
time-varying Markov chain. In this chapter, we present an abstraction of the actor-critic
framework for solving general optimization programs with the same type of stochastic
oracle. This optimization framework focuses on the single-agent RL setting but builds the
mathematical foundation for studying and analyzing data-driven multi-agent RL algorithms.

The main contribution of this work is to characterize the finite-time and finite-sample
complexity of the proposed two-time-scale stochastic gradient method under different struc-
tural properties of the objective function, namely, strong convexity, the Polyak-Lojasiewicz
(PL.) condition, and general non-convexity. Our abstraction unifies the analysis of actor-critic
methods in reinforcement learning; we show how our main results can be specialized to
recover the best-known convergence rate for policy optimization under an infinite-horizon
average-reward Markov decision process (MDP) and to derive state-of-the-art rates for the
online linear-quadratic regulator (LQR) controller and policy optimization using entropy

regularization'.

I'The presentation in this chapter is partly adapted from [34].

2.1 Introduction

The overall goal of our optimization framework is to solve the program

0* = argmin f(6), (2.1)

feRd

where the gradient of f is accessed through a stochastic oracle H(0,w, X). The three
arguments to H are the decision variable #, an auxiliary variable w € R", and a random
variable X drawn over a compact sample space X. For a fixed 6, there is a single setting of
the auxiliary variable, which we will denote w*(6), such that H returns an unbiased estimate

of the gradient V f(#) when X is drawn from a particular distribution 1,

VI(0) = Exwy[H(0,w" (6), X)]. (2.2)

For other settings of w # w*(6) or X drawn from a distribution other than py, H (0, w, X)
will be (perhaps severely) biased. The mapping from 6 to the “optimal” setting of the
auxiliary variable w*(#) is implicit; it is determined by solving a nonlinear system of
equations defined by another stochastic sampling operator G : R x R" x X — R". Given 6,

w*(0) is the (we will assume unique) solution to

Ex,,[G(6,w"(8), X)] = 0. (2.3)

Combining Equation 2.2 and Equation 2.3, solving Equation 2.1 is equivalent to finding

(0", w*(0*)) that satisfies

Ex . [H(0*,w*(6%), X)] = 0,
Xpuge [H (67,07 (0%), X)] 04

Exppe [G(0*,w*(6),X)] = 0.

In the applications we are interested in, we only have indirect access to the distribution

1. Instead of parameterizing a distribution directly, § parameterizes a set of probability
transition kernels on X’ x X through a mapping P : X x R? — dist(X). Given # and X, we
will assume that we can generate a sample X’ ~ P(-| X, 0) using one of these kernels. Each
of these P(:|-, #) induces a different Markov chain and a different stationary distribution iy,
which is what is used in Equation 2.2 and Equation 2.3 above.

This problem structure is motivated by online algorithms for reinforcement learning. In
this class of problems, three of which we describe in details in Section 2.4, we are searching
for a control policy parameterized by # that minimizes a long term cost captured by the
function f. The gradient for this cost depends on the value function under the policy indexed
by 6, which is specified implicitly through the Bellman equation, the analog to Equation 2.3
above. These problems often also have a mechanism for generating samples, either through

experiments or simulations, that makes only implicit use of the transition kernel P.

2.2 Related Works

Our work is closely related to the existing literature on two-time-scale stochastic approxi-
mation (SA), bi-level and composite optimization, actor-critic algorithms in reinforcement
learning, and single-time-scale stochastic optimization algorithms under unbiased or biased
(sub)gradients. In this section, we discuss the recent advances in these domains to give
context to our contributions.

Two-Time-Scale SA. Two-time-scale SA solves a system of equations similar in form to
Equation 2.4, but typically considers the setting where 1y = p is independent of the decision
variable 6. The convergence of two-time-scale SA is traditionally established by analyzing
an associated ordinary differential equation [41]. Finite-time convergence of two-time-scale
SA has been studied in the case where H and G are linear [42-47] and in more general
nonlinear settings [48, 49], under either i.i.d. or Markovian samples. In these previous
works, the analysis for the nonlinear setting is restricted to the case where H and G are both

strongly monotone, while our work studies a wide range of function structures including

strong convexity, the PE condition, and general non-convexity.

Bi-Level and Composite Optimization. The optimization objective in our work is closely
connected to the bi-level optimization framework [50-52] which solves programs structured

as

min fi(z,y*(x)) subjectto y*(z) € argmin fo(x,y). (2.5)
r Y

From the first-order optimality condition, it is clear that Equation 2.5 is equivalent to finding

a stationary point (z’, /') that observes
fo1($/,y/) = 07 vyf2($/7y/) =0.

This is a special case of our objective in Equation 2.4 where G is a gradient mapping.
However, in RL applications G usually abstracts the Bellman backup operator which is
associated with the estimation of the value function. It is well-known that the Bellman
backup operator is not the gradient of any function. In this sense, our framework is more
general and suitable for modeling algorithms in RL. In addition, and similar to the works
in two-time-scale SA discussed above, the analysis in [S1] uses a stochastic oracle with a
fixed distribution p, while we solve Equation 2.4 with the distribution of the samples also
depending on the decision variable. This is another important generalization as many realistic
problems in control and reinforcement learning can only be abstracted as Equation 2.4 with
(o being a function of the control variable . Making this generalization requires generating
decision-variable-dependent samples from a Markov chain whose stationary distribution
shifts over iterations, which creates additional challenges in the analysis.

We also note the connection of our objective to stochastic composite optimization [53,

54], which solves optimization problems of the form

mxin 91(g2(z)). (2.6)

10

At a first glance, Equation 2.6 reduces to Equation 2.5 by choosing ¢g; = f; and gs(x) =
(x,y*(z)) where y*(x) is the minimizer of fy(x,-) and therefore seems more general.
However, the key assumption in stochastic composite optimization is the differentiability
of g» (and ¢g;) and the access to an oracle that returns the stochastic gradient V g, which is
highly unrealistic in reinforcement learning applications where only indirect information
about g, is available.

Actor-Critic Algorithms. In the RL literature the aim of actor-critic algorithms is also to
solve a problem similar to Equation 2.4, where 6 and w*(f) are referred to as the actor and
critic, respectively; see for example [55-58]. Among these works, only [58] considers an
online setting similar to the one studied in this paper. In fact, the algorithm studied in [58] is
a special case of our framework with a non-convex objective function. Our analysis recovers
the result of [58] while slightly loosening the assumptions — we are able to remove the
projection operator used by [58] to limit the growth of the critic parameter.
Single-Time-Scale Stochastic Optimization. When the samples are i.i.d., stochastic
gradient/subgradient algorithms are fairly well-understood for smooth (see [59-61] and
the references therein) and non-smooth [62—64] functions. In the smooth setting, [36, 65,
66] study various SGD/SA algorithms under samples generated from time-invariant state
transition probabilities (we will later refer to this as a time-invariant Markov chain) and show
that the convergence rates are only different from that under i.i.d. samples by a logarithmic
factor. The key argument used in these works is that the Markovian samples behave similarly
to i.i.d. samples on a mildly dilated time scale.

In many policy optimization algorithms in RL, the samples are drawn under the control
of the current policy. As the policy gets updated, the transition probabilities shift, resulting
in a Markov chain with a time-varying stationary distribution (we will refer to this as
the time-varying Markov chain). This setting requires more sophisticated mathematical
treatment. The single-variable SA algorithm under time-varying Markovian samples is first

analyzed by [67], while our paper is among the first works to extend the analysis to the

11

scenario where two coupled variables are updated simultaneously.

2.3 Two-Time-Scale Stochastic Gradient Descent Algorithm

In this section, we present our two-time-scale SGD method (formally stated in Algorithm 2.1)
for solving Equation 2.4 under the gradient oracle discussed in Section 2.1. In the algorithm,
0y and wy, are estimates of §* and w*(6*). The random variables { X}, } are generated by a

Markov process parameterized by {6} under the transition kernel P, i.e.,

Xo 2 xy 2 x, B By B X 2.7)
As 6, changes in every iteration, so do the dynamics of this Markov process that generates the
data. At a finite step k, X is in general not an i.i.d. sample from the stationary distribution
to, » implying that H (6, wx, Xx) employed in the update Equation 2.8 is not an unbiased
estimate of V f(6y) even if wy tracks w* () perfectly. This sample bias, along with the
gap between wy, and w*(6y), affects the variables 6y, and wy; of the next iteration and
accumulates inaccuracy over time which needs a careful treatment.

The updates use two different step sizes, oy and ;. We choose oy, < [as a way to
approximate, very roughly, the nested-loop algorithm that runs multiple auxiliary variable
updates for each decision variable update. Many small critic updates get replace with a
single large one. In other words, the auxiliary variable wy, is updated at a faster time scale
(larger step size) as compared to 6, (smaller step size).

The ratio 55/ay, can be interpreted as the time-scale difference. We will see that this
ratio needs to be carefully selected based on the structural properties of the function f
for the algorithm to achieve the best possible convergence. Table 2.1 provides a brief
summary of our main theoretical results, which characterizes the finite-time complexity of
Algorithm 2.1 and the corresponding optimal choice of step sizes under different function

structures. Table 2.1 also contrasts the convergence of Algorithm 2.1 with the rates of

12

Algorithm 2.1: Two-Time-Scale Stochastic Gradient Descent
Initialization: the decision variable 6, auxiliary variable wy, step size sequences {c}
for the decision variable update, {/3;} for the auxiliary variable update
Observe a initial sample X
fork=1,2,3,...do
Decision variable update:

Okr1 = Ok — o H (O, w, Xi) (2.8)
Auxiliary variable update:
W1 = Wk — GG (Oky1, Wiy Xi) (2.9)
Draw sample
Xis1 ~ P(- | X, Ops1) (2.10)

end for

standard SGD (which in our context means that the samples are 1.i.d. and the auxiliary
variable is always exactly accurate). The PL condition and general non-convexity cases are

particularly interesting as they abstract actor-critic algorithms in RL which we now discuss.

Table 2.1: Summary of Main Results - Time and Sample Complexity.

Structural Metric Rate Order of Standard Applications
Property ak, B SGD Rate pp

Strong Convexity ||, — 0*|> O(k~3) k~',k=3 O(k™') Gradient TD Learning

N Policy Optimization
PL Condition f(6;) — f(6*) O(k™3) k', k=5 O(k™') for LQR, Entropy
Regularized MDP

Policy Optimization
for Infinite-Horizon
Average-Reward MDP

2

Non-convexity |V (8)|2 O(k~3) k-

ulw
]
Sl
S
—~
]
N
~—

13

2.4 Applications to Actor-Critic Algorithms

In this section, we show how our results on two-time-scale optimization apply to a variety
of policy evaluation and optimization algorithms in RL. The first three applications can be
categorized as actor-critic algorithms for policy optimization. The objectives are non-convex
in these applications, but the second and third problems are more structured and observe the
PL condition. In Subsection 2.4.4, we briefly discuss an application of the framework to
two-time-scale gradient-based policy evaluation algorithms where the objective function is

strongly convex.

2.4.1 Online Actor-Critic Method for Infinite-Horizon Average-Reward MDPs

We consider the standard infinite-horizon average-reward MDP model M = (S, A, P,),
where S is the state space, A is the action space, P : S x A — Ag denotes the transition
probabilities, and 7 : S x A — [—1, 1] is the reward. Our aim is to find the policy my € AY,
parameterized by 6 € R (where d may be much smaller than |S|x |.A]), that maximizes the

average cumulative reward

1 K
0 = = lim —E =B aon ca)l, 2.11
arageréldax J(0) Keréo % [;T(Sk,ak)] s~ig, o7 (s,a)] ()

where 11y denotes the stationary distribution of the states induced by the policy 7y. Defining

the (differential) value function of the policy 7y

we can use the well-known policy gradient theorem to express the gradient of the objective

function in Equation 2.11 as
VI (0) =iy ammat 2 |(1(5,0) = T (0) + V() =V (5)) Viog ma(a |).

14

Optimizing Equation 2.11 with (stochastic) gradient ascent methods requires evaluating
V7™ and J(6) at the current iterate of ¢, which are usually unknown and/or expensive to
compute exactly. “Actor-critic” algorithms attack this problem on two scales as discussed in
the sections above: an actor keeps a running estimate of the policy parameters 0, while a
critic approximately tracks the differential value function for 6, to aid the evaluation of the
policy gradient.

For problems with large state spaces, it is often necessary to use a low-dimensional
parameter w € R™ to approximate V™ where m « |S|. In this work, we consider the linear
function approximation setting where each state s is encoded by a feature vector ¢(s) € R™
and the approximate value function is V™% (s) = ¢(s) . Under the assumptions that the
Markov chain of the states induced by any policy is uniformly ergodic (equivalent of As-
sumption 2.5 in this context) and that the feature vectors {¢(s)}scs are linearly independent,
it can be shown that a unique optimal pair (J(6),1*(0)) exists that solves the projected
Bellman equation

J(0) —r(s,a)

Esnpio().anmo(1),5'~P([s,) =0.

(r(s,a) = J(0) + &(s") v (0) — ¢(s) " (6)) ¢(s)

We use an auxiliary variable w = (j , 1) to track the solution to this Bellman equation.
Due to the limit in the representational power of the function approximation, there is an
approximation error between /™ and V™0:¢"(0) a5 a function of 0, which we define over the

stationary distribution

euppon (6) = 3 Evpy [(6() 707 (0) — Vo (5))7].

: max max d
We assume the existence of a constant ;5% such that €,pprox () < €y for all 6 € R

Comparing this problem with Equation 2.2 and Equation 2.3, it is clear that this is a

15

special case of our optimization framework with X = (s, a, '), w*(0) = (J(0),1*(0)) and

f(0) = =J(0), G(O.w,X) =[] —r(s,a), (r(s,a) = J + &(s) "9 — d(s) "¥)o(s) "],

H0,w,X)=—(r(s,a) — J+ d(s) T — o(s) Y + Eapprox (8))V log mg(a | s),

where €,ppr0x (6) is an error in the gradient of the actor carried over from the approximation

max

error of the critic which can be upper bounded by 2¢, 7%

in expectation. In this case, the
function —.J(#) is non-convex and our two-time-scale SGD algorithm is guaranteed to find

a stationary point of the objective function with rate 5(1{:*2/ %), up to errors proportional to

max

6approx .

This rate matches the state-of-the-art result derived in [58]. A subtle improvement of
our analysis is that we do not need to perform the projection of the critic parameter onto a
compact set that [58] requires in every iteration of the algorithm to guarantee the stability of

the critic.

2.4.2 Online Natural Actor-Critic Algorithm for LQR

In this section, we consider the infinite-horizon average-cost LQR problem

L N T
mlr{lgglze Yll_r)rgo fE[kZ:;) (l‘k Q:L’k + Uy, Ruk) \350]

(2.12)

subject to 41 = Az + Buy + wy,

where 7, € R%, u;, € R% are the state and the control variables, wy ~ N(0,¥) € R% is
time-invariant system noise, A € R%*% and B € R4 *% are the system transition matrices,
and Q € R4 R e R¥2*% gre positive-definite cost matrices. It is well-known (see, for
example, [68, Chap. 3.1]) that the optimal control sequence {uy} that solves Equation 2.12

is a time-invariant linear function of the state

up = —K xy, (2.13)

16

where K* € R%*41 is a matrix that depends on the problem parameters A, B, (), R. This
fact will allow us to reformulate the LQR as an optimization program over the feedback

gain matrix K. It is also true that optimizing over the set of stochastic controllers
up = —Kuxp, + o€, € NN(O,J2I),

with o0 > 0 fixed will in the end yield the same optimal K™ [69]. In the RL setting considered
below, we will optimize over this class of stochastic controller as it encourages exploration.

Defining ¥, = ¥ + ¢2BB", we can re-express the LQR problem as

minimize J(K) = trace(PxV,) + o trace(R)
K (2.14)
st. Pk = Q+ K'RK + (A — BK)" Pg(A - BK).

Our goal is to solve Equation 2.14 when the system transition matrices A and B are
unknown? and we take online samples from a single trajectory of states {x;} and control
inputs {uy}. This problem has been considered recently in [70], and in fact much of our
formulation is modeled on this work. The essential difference is that while [70] works in the
“batch” setting, where multiple trajectories are drawn for a fixed feedback gain estimate, our
algorithm is entirely online.

Given a feedback gain K, we define
Ex =2(R+ B'PxB) K — 2B" Pk A.

It turns out that the natural policy gradient of the objective function in Equation 2.14, which
we denote by V.J, is V.J(K) = Ex.
To track Ex when A and B are unknown it suffices to estimate R + B' Px B and

BT Py A. We define

2We do assume, however, that we know the cost matrices () and R or at least we can compute 2 ' Qz+u ' Ru
for any x and u.

17

Qi 012 Q+ATPkA ATPiB
Qp = - , (2.15)

02 02 B"PxA R+ BTPB

of which R + BT PxB and B" Px A are sub-matrices. We define the operator svec(-)
as the vectorization of the upper triangular sub-matrix of a symmetric matrix with off-
diagonal entries weighted by /2, and define smat(-) as the inverse of svec(-). We also define
¢(z,u) = svec([zT, uT]T [27,u"]) for any 2 € R, u € R%. Then, it can be shown that
Qg and J(K) jointly satisfy the Bellman equation

J(K)

Em~uK,u~N(—Km,a2I) [Mz,u,x’,u’] = Em~,uK,u~N(—Kr,021) [Ca:,u]) (216)
svec(Qx)

where the matrix M, , ., and vector ¢, ,, are

1 0 ' Qr +u' Ru

Mm,u,r',u’ = y Cou =

o, w) o, w) [b(x,u) — ¢ ()] (+7Qr + uT Ru) (e, u)|

The solution to Equation 2.16 is unique if K is stable with respect to A and B [70]. An
auxiliary variable () can be introduced to track () for the decision variable K.

We connect this to our optimization framework by noting that Equation 2.16 corresponds
to Equation 2.3 with K, (z,u,2’,u'), and [J(K),svec(Q2x) "] mirroring 6, X, and w* (),
respectively. The natural gradient oracle in this case is H(0,w, X) = 202K — 202!,
which does not depend on the samples X directly, and the operator G is G(0,w, X) =
—Mpy 42 ww + €30 A Kkey structure of Equation 2.12 is that the objective function is non-
convex but observes the PL. condition [70], which we formally define later in Assumption 2.8.
As a result, applying Algorithm 2.1 to this problem leads to an online actor-critic flavored
algorithm that converges with rate (5(16*2/ 3) under proper assumptions. To our best knowl-
edge, our work is the first to study the online actor-critic method for solving the LQR, and

our result vastly improves over the rate @(k‘l/ %) of the nested-loop actor-critic algorithm

18

derived in [70] which also operates under more restrictive assumptions (e.g. sampling from

the stationary distribution, boundedness of the iterates).

2.4.3 Online Actor-Critic Method for Regularized MDPs

As a third application of our framework, we study the policy optimization problem for the
infinite-horizon discounted-reward MDP M = (S, A, P, r,~v) where v € (0, 1) is the dis-
count factor and the rest are defined in the same manner as above in Section Subsection 2.4.1.
We restrict our attention to the tabular setting where the parameter 6 encodes the policy

through the softmax function

exp (0s.q)
Za’eA eXp <057‘1/) .

mola | s) =

To accelerate the convergence of the actor-critic algorithm, we regularize the objective
with the policy entropy as proposed by [13]. Specifically, with regularization weight 7 > 0,

the regularized value function of a policy 7 is

0

‘/;.TF(S) = Eak~7r(|Sk) Sk+1~7> |Sk ak [Z Sk,ak - Tlog'ﬂ'(a,k | Sk))) ‘ 50 = S].

Under the initial state distribution p € Ag, the expected cumulative reward collected by

policy 7 is J-(m) = E,-,[V/(s)]. We consider solving the policy optimization problem
max J ().
Expressing the gradient of the objective with the policy gradient theorem, we have
Vol () — ﬁE[(r(s,a) — Tlogmo(a |) + FV7O(s') = V() Valogmo(a | 5)].

where the expectation is taken over s ~ d7¢,a ~ m(- | 5),8' ~ P(- | s,a), and the the

19

discounted visitation distribution dz € Ag is defined as

09]

d5(s) = (1= 1)EayerClse) s ~PClswan [D, Y Llsk =) [50 ~ pl.

k=0

To evaluate the gradient, we need to compute the regularized value function V™, which

is the solution to the following Bellman equation

ES'\»dZB,QNW@("S),S/NP("S,G) [T<Sv CL) - TlOg 71'9(& | S) + VVTW9<S/) o ‘/Tﬂ'e (S>:| = 0.

Interestingly, [71] shows that we can regard d7 as the stationary distribution under 7 in an

environment with the modified transition probability

B(- | 5,0) = vP(- | s,) + (1= 7)p(").

This observation allows us to generate Markovian samples (s, a, ") with d7* @ 7 ® P as
the stationary distribution, in an online manner that resembles [72][Algorithm 1].

In the actor-critic framework, we introduce a critic (auxiliary variable) V € RIS! to esti-
mate the solution of the Bellman equation under the current policy iterate. Our optimization

framework abstracts this problem by choosing

X =(s,a,8), w=V, f(0) = —J.(mp),
1

-7
G(0,w, X) = r(s,a) — Tlogme(a | s) + YV (s') = V(s).

H0,w,X) = : (r(s,a) — Tlogmy(a | s) + YV (s') — V(s))Vlog me(a | s),

The objective function is non-convex but satisfies the PL condition under standard as-
sumptions (see [13][Lemma 15]). Our two-time-scale SGD framework specializes to an
online actor-critic algorithm, which by our analysis to be discussed later in Subsection 2.6.2

is guaranteed to find the globally optimal solution of the regularized objective with rate

20

(5(!{:*2/ 3). To our best knowledge, this is the first time such data-driven algorithms are
studied for solving an entropy-regularized MDP in the tabular setting. Compared with the
result presented in Subsection 2.4.1, the introduction of the entropy regularization leads to an
accelerated convergence rate. We note that the gap between the solutions to the regularized
and original MDP is proportional to the regularization weight 7 [39, 73]. By carefully
choosing 7, solving the regularized MDP provides a reliable and efficient way to find the

approximate solution of the original unregularized MDP.

2.4.4 Two-Time-Scale Policy Evaluation Algorithms

Our framework also abstracts GTD (gradient temporal-difference), GTD2 , and TDC
(temporal difference learning with gradient correction) algorithms [74, 75], which are
gradient-based two-time-scale policy evaluation algorithms in RL. They can be viewed as
degenerate special cases of our framework where the expectation in Equation 2.4 is taken
over a fixed distribution p that does not depend on 6, and therefore do not require the full
capacity of our framework. The objective function in this problem is strongly convex, and
our framework under proper assumptions guarantees a convergence rate of (5(k‘2/ 3), which
matches the analysis in [76]. As this subject is well-studied, we skip the detailed discussion

of the problem formulation and algorithm statement and refer interested readers to [74-76].

2.5 Technical Assumptions

In this section, we present the main technical assumptions important in our later analysis.

We first consider the Lipschitz continuity of H and G.

Assumption 2.1. There exists a constant L > 0 such that for all 0,05 € R%, w;,w, € R",

and X e X

| H (01, w1, X) — H(02, w2, X)| < L([|fh = Oaf + [lwr —w2l),

||G(91,W1,X) — G(QQ,UJQ,X)H < L (HQl — 92” + le — OJQH) . (217)

21

We also assume that the objective function f is L-smooth.

Assumption 2.2. There exists a constant L > 0 such that for all 0, , 0, € R?

IV F(61) = Vf(02)] < L]0y — 2] (2.18)

Assumption 2.1 and Assumption 2.2 are common in the literature of stochastic approx-
imation [49, 77] and hold in the actor-critic methods discussed in Section 2.4. Next, we
assume that the operator G(0, -, X) is strongly monotone in expectation at w*(#) (which we

have assumed is unique).

Assumption 2.3. There exists a constant A\ > 0 such that

Exmp[G(O,w, X)), w = w*(0)) < —Alw —w*(O), VOeR,weR"

This assumption is often made in the existing literature on two-time-scale stochastic
approximation [49, 51] and is a sufficient condition to guarantee the fast convergence of the
auxiliary variable iterate. This assumption essentially states that G' behaves similarly to the
gradient of a strongly convex function in expectation, though it may not even be a gradient
mapping. It can be verified that Assumption 2.3 holds in the actor-critic methods discussed
in Section 2.4.

In addition, we assume that w*(-) is Lipschitz continuous with respect to 6.

Assumption 2.4. There exists a constant L, B > 0 such that

lw*(0) —w* (@) < LI0 = &', [w*(0)] <B, v6,0"R".

Given two probability distributions y; and - over the space X, their total variation (TV)

22

distance is defined as

. (2.19)

sup
v:X—[—1,1]

N | —

dTV(Mh M2) =

Jydpl — fl/d,ug

The definition of the mixing time of a Markov chain { X} is given as follows.

Definition 2.1. Consider the Markov chain {X}} generated according to X! ~ P(- |
X? |,0), and let g be its stationary distribution. For any o > 0, the mixing time of the

chain { X!} corresponding to « is defined as

7o(a) = min{k € N : sup dpy(P(X? = - | X0 = X), o()) < a}.
Xex

The mixing time 7y(«v) essentially measures the time needed for the Markov chain
{X?} to approach its stationary distribution [78]. We next consider the following impor-

tant assumption that guarantees that the Markov chain induced by any static § “mixes’

geometrically.

Assumption 2.5. Given any 0, the Markov chain { X} generated by P(- | -,0) has a unique
stationary distribution |9 and is uniformly geometrically ergodic. In other words, there exist

constants m > 0 and p € (0, 1) independent of 0 such that

sup dy(P(Xg = - | Xo = X, 0), o (-)) < mp” forall € R and k > 0.

XeXx
Denoting 7(a) £ suppera To(), this assumption implies that there exists a positive
constant C' depending only on p and m such that
(o) < Clog (1/a) . (2.20)
Assumption 2.5 is again standard in the existing literature [58, 67, 79].
We also consider the following assumption on the ensemble of transition kernels.

23

Assumption 2.6. Given two distributions d, d over X and parameters 0, 0 € R% we draw
the samples according to X ~ d, X' ~ P(- | X,0) and X ~ d, X' ~ P(- | X,0). We

assume that there exists a constant L > 0 such that
dry(P(X' =), P(X' =) < dpy(d,d) + L]0 — 4. (2.21)
In addition, we assume that the stationary distribution is Lipschitz in 0
drv(pe, 1) < L]0 —). (2.22)

This assumption amounts to a regularity condition on the transition probability matrix
P(- | -,0) as a function of #, and has been shown to hold in the reinforcement learning
setting (see, for example, [58, Lemma A1]). Without any loss of generality, we use the same

constant L in Assumption 2.1-Assumption 2.6 and assume B > 1. We define
D = max{L + max |G(0,0, X) |, | (0)], B}, (223)
€

which is a finite constant since X is compact. A simple consequence of Assumption 2.1 is

thatforall e R, weR", X e X
|G(0,w, X)| < D(|0] + |w] +1), and [w*(8)] < D(0] +1). (2.24)
Finally, we assume the optimal solution set {6*: f(6*) < f(6), V0 € R?} is non-empty.

2.6 Finite-Time and Finite-Sample Complexity of Two-Time-Scale SGD

This section presents the main results of this paper, which are the finite-time and finite-
sample convergence of Algorithm 2.1 under three structural properties of the objective

function, namely, strong convexity, non-convexity with the PL condition, and general non-

24

convexity. Our results are derived under the assumptions introduced in Section 2.5, which
we assume always hold in the rest of this paper.

The convergence of Algorithm 2.1 relies on ay, S — 0 with reasonable rates. As
mentioned in Section 2.3, o, needs to be much smaller than 3} to approximate the nested-
loop algorithm where multiples auxiliary variable updates are performed for each decision

variable update. Therefore, we consider the following choices of step sizes

Bo
(k+ 1)’

(&%)

(k + 1)’

Br = Vk >0, (2.25)

ap =

where a, b, o, [y are some constants satisfying 0 < b < a < 1and 0 < ay < fy. Given oy,
recall from Definition 2.1 that 7(cy,) is the mixing time associated with «. In the sequel, for
convenience we denote 7, = 7(ay,). Since 75, < C'log((k + 1)*/ap) (from Equation 2.20),
we have limy,_,, o, 77 = limy_, o 8577 = 0. This implies that there exists a positive integer

K such that

1 A A A3
"6LB’ 22Cy 4+ 32D?’ 2Cy 32L%CY

B 72 < min {1 } vk > K, (2.26)

where C; and C, are positive constants defined as

2L% B>

3 +2L*B% (2.27)

C, =18D* + 20LDB, Cy = (4D* + 1)(4C} + 32D?) +

In addition, there exists a constant ¢, € (0, 1) such that for any k& > 7, we have

m<(1l—c)k+(1—-¢), and c (k+1)<k—7+1<k+1 (2.28)

We carefully come up with the constants and conditions in Equation 2.26 and Equa-
tion 2.27 to prevent an excessively large step size from destroying the stability of the updates.

We stress that K is a constant that only depends on the quantities involved in the step sizes

25

in Equation 2.25.

2.6.1 Strong Convexity

We consider the following assumption on function f.

Assumption 2.7. The function f is strongly convex with constant *

F) = f@) + (Viahy — o)+ Sly—al’, VeyeRL @29)

Theorem 2.1 (Strongly Convex). Suppose that Assumption 2.7 holds. Let the step size

sequences {ay} and {f} satisfy Equation 2.25 with

a=1, b=2/3, «ay=

>~
)

(@) ()
N | —

Then for all k = K where K is defined in Equation 2.26, we have

IC+1 4L2Oéo
E)16, — 0*]*] < E [0 — 0% E — w*(0)?
161 1] < iy (ELe =071 + Sl - w60
02 1Og2((l€ + 1)/0&0) 8L2CQ 06050 16L4B2063
Cy + 282 20%|1 + 1 9
3(]€+1)2/3 ((6 2 + + A2 (H ” +)) c, +)\353 >

Our theorem states that when f is strongly convex the iterates of Algorithm Algorithm 2.1
converge to the optimal solution with rate (5(/{‘” 3). Comparing with the deterministic
gradient descent setting where the convergence rate is linear and the standard SGD setting
where the convergence rate is O(k™'), our result reflects the compromise in the convergence
rate due to the gradient noise and inaccurate auxiliary variable. Compared with the con-

vergence rate of the two-time-scale SA algorithm for bi-level optimization [S1] under 1.1.d.

3Without any loss of generality, we slightly overload), the strong monotonicity constant of the operator G
in Assumption 2.3, to denote the strong convexity constant here.

26

samples, our rate is the same up to a logarithmic factor which naturally arises from the bias

caused by the time-varying Markovian samples.

2.6.2 Non-Convexity under PL. Condition

We also study the convergence of Algorithm 2.1 under the following condition.

Assumption 2.8. There exists a constant \ > 0 such that
1 2 * d
IV 2 A (f) ~ 1), YreR

This is known as the PL condition and is introduced in [80, 81]. The PL condition does
not imply convexity, but guarantees the linear convergence of the objective function value
when gradient descent is applied to solve a non-convex optimization problem [82], which
resembles the convergence rate of gradient descent for strongly convex functions. Recently,
this condition has been observed to hold in many important practical problems such as
supervised learning with an over-parametrized neural network [83] and the linear quadratic

regulator in optimal control [70, 84].

Theorem 2.2 (PL Condition). Suppose the function [satisfies Assumption 2.8. In addition,
we assume that the stochastic gradient is bounded, i.e. there exists a constant B > 0 such

that *
|HO,w, X)| <B, V9eR\weR XeA. (2.30)

Let the step size sequences {«y} and { (i} satisfy Equation 2.25 with

2 1
a=1, b=2/3, ay= max{l,x}, and % < 7

4Again, for the convenience of notation, we use the same constant B as in Assumption 2.4.

27

Then for all k = K where K is defined in Equation 2.26, we have

K+1

. 2L%qq 2C%Cslog* (k+1)
ot BV

E /(6 1")< ol - o (6)]) + XA D

150L2B3a? 2 481*B2%a
where Cy = — 0 4 48L)\02(”90H2+32043+1)agf0 + e 0,

Under the PL condition, we show that f(6)) converges to the optimal function value
f* with rate (5(!{:*2/ 3). This is the same rate as if f is strongly convex. However, in this
case the convergence is measured in the function value, whereas under strong convexity the
iterates ¢, converge to the unique global minimizer. The convergence rates of deterministic
gradient descent and standard SGD under the PL condition also match those in the strongly
convex case. To our best knowledge, functions exhibiting the PL. condition have not been

studied in the bi-level optimization framework.

2.6.3 Non-Convexity

Finally, we study the case where the objective function f is non-convex and smooth. In
general, we cannot find an optimal solution and may only reach a stationary point. Analyzing
the convergence without any convexity or PL condition is more challenging, and we need to

make an additional assumption to ensure stability.

Assumption 2.9. There exists a constant L. > 0 such that

||G<91,W1,X) — G(GQ,WQ,X)H < L(le - WQH + 1),V91,92 € Rd,wl,wg € RT,X eX.

We note that this assumption holds in the actor-critic algorithm discussed in Subsec-

tion 2.4.1 where GG does not depend on 6, as well as in problems where G is bounded in

6.

Theorem 2.3 (Non-convex). Let the step size {«y} and {5y} satisfy Equation 2.25 with

28

a = 3/5, and b = 2/5. Under Assumption 2.9, we have for all k = K

4 417
—— E[f(6x) — f] + =—————==E — w*(0k)|?
aoli+ 1y el O0) = I+ gy Bl =& (6ol
n 25[/233068 n 2L4B2Oég n L2Oé()ﬂoCQ 87']? log(k: + 1)

2¢, A\G?) 5log(2)c (k + 1)2/5

min E[|V /(0[] <

Our theorem in the non-convex case shows the convergence of the two-time-scale SGD
algorithm to a stationary point of the objective function (measured by the squared norm
of the gradient) with rate (5(1{;_2/ ®). One may contrast this with the convergence rate of
deterministic gradient descent O(k~') and standard SGD O(k~'/2) to see the cost of the
gradient noise and auxiliary variable inaccuracy. Compared with the bi-level optimization
algorithm under i.i.d. samples [51], our rate is again the same up to a logarithmic factor due

to the time-varying Markovian samples.

2.7 Conclusion

The main contribution of our work in this chapter is to introduce a novel stochastic op-
timization framework, which allows us to plug-and-play various data-driven algorithms,
especially actor-critic algorithms, in RL and control. Specialized to certain RL settings,
our two-time-scale SGD algorithm and its analysis recover existing algorithms with their
state-of-the-art convergence rates. In some other settings, our two-time-scale SGD algo-
rithm translates to new algorithms that were previously unknown and/or enjoy superior
convergence properties. This framework mainly targets single-agent RL problems but lays
the mathematical foundation for understanding and analyzing algorithms in the multi-agent

settings.

29

CHAPTER 3
MULTI-AGENT MULTI-TASK REINFORCEMENT LEARNING

The aim of our work in this chapter is to solve a multi-task RL problem using a network of
agents. Each task, characterized by a different MDP, is assigned to one agent. Although each
agent only makes observations and acts in its own environment, their goal is to collectively
learn a policy that performs well across all environments by sharing information with each
other. We do not require the state spaces to be the same in each of the environments. In
general, the learned policy is a mapping from the union of state spaces to the action space.

Existing approaches to the multi-task RL problem [14, 15, 85] are mostly heuristic
in nature and typically use a specific “master/worker” model for agent interaction where
worker agents independently collect observations in their respective environments, which are
then summarized (perhaps through a gradient computation) and reported to a central master.
We are interested in understanding multi-task RL under a more flexible, decentralized
communication model where the agents only share information with a small subset of other
agents and in developing algorithms with provable convergence guarantees.

To this end, we first present a clean mathematical formulation for multi-task RL over
a network of agents. We study the structure of the underlying optimization objective and
show how multi-task RL is fundamentally more challenging to solve than its single-task
counterpart through two simple yet illustrative examples.

Despite the challenges, framing the problem in the language of distributed optimization
allows us to develop a decentralized policy gradient algorithm that finds a single policy
effective for each of the tasks. We provide theoretical guarantees for the performance of our
decentralized policy gradient algorithm. Specifically, we show that in the tabular setting, the
algorithm converges to a stationary point of the global (non-concave) objective. Under a

further assumption on the structure of environments’ dynamics, the algorithm is guaranteed

30

to find the global optimality.

We demonstrate the effectiveness of the proposed method using numerical experiments
on challenging multi-task RL problems. Our small-scale “Grid World” problems, which
can be reliably solved using a complete tabular representation for the policy, demonstrate
how the decentralized policy gradient algorithm balances the interests of the agents in
different environments. Our experiments for learning to navigate airborne drones in multiple
(simulated) environments show that the algorithm can be scaled to real-life problems that
require a significant amount of training data and use complicated function approximations
(such as neural networks) to parameterize the policy.

Inspired by the numerical simulations, we propose any formulation of multi-task RL
under the constrained MDP framework, to control the performance of the policy in a
more fine-grained manner. Under the assumption that the MDPs behind environments
operate under the same dynamics, we propose a natural policy gradient based algorithm that
efficiently and provably converges to the globally optimal policy, both in objective function
and in constraint violation. We then extend this algorithm to the sample-based setting where
we do not know the transition probability kernel of the environments, by introducing local
“critic” variables that track the local value functions. We present the finite-sample complexity

of this algorithm!.

3.1 Related Works

In recent years, multi-task RL has become an emerging topic as a way to scale up RL
solutions. This topic has received a surge of interests, and a number of solutions have been
proposed for solving this problem, including policy distillation [86, 87], distributed RL
algorithms over actors/learner networks [14, 15, 85, 88], and transfer learning [89, 90].
Distributed parallel computing has also been applied to speed up RL algorithms for solving

single task problems [91-93].

IThe presentation in this chapter is partly adapted from [35-38].

31

Similar to our work, [14, 15] also aim to solve MTRL with policy gradient algorithms
in a distributed manner. These works propose sharing the local trajectories/data collected
by workers in each environment to a centralized server where learning takes place. When
the data dimension is large, the amount of information required to be exchanged could
be enormous. In contrast, exchanging the policy parameters could be a more compact
and efficient form of communication in applications with a large state representation but a
much smaller policy representation. Moreover, we observe that a wide range of practical
problems do not allow for a centralized communication topology [17]. Motivated by these
observations, we consider a decentralized policy gradient method where the agents only
exchange their policy parameters according to a decentralized communication graph. This
makes our work fundamentally different from the existing literature. Indeed, our work can
be considered as a decentralized and multi-task variant of the policy gradient method studied
in [12], where the authors consider a single-task RL.

Other works in meta-learning and transfer learning also essentially aim to achieve MTRL,
where these two methods essentially attempt to reduce the resources required to learn a
new task by utilizing related existing information; see for example [10, 94, 95]. Our work
is fundamentally different from these papers, where we address MTRL by leveraging the
collaboration between a number of agents.

We also note some relevant works on decentralized algorithms in multi-agent reinforce-
ment learning (MARL), where a group of agents operate in a common environment and aim
to solve a single task [96—105]. The setting in these work is different from ours since we

consider multi-task RL, which is more challenging than solving a single task.

3.2 Average-Performance Multi-Task Reinforcement Learning Formulation

A natural formulation for multi-task RL is to find a single policy that “on average” collects
the highest cumulative rewards from all environments. Mathematically, we characterize

the MDP at agent i by M, = (S;, A, P;, 14, 7;) where S; is the set of states, A is the set of

32

possible actions which has to be common across tasks, P; is the transition probabilities that
specify the distribution of the next state given the current state and an action, r; : S; x A — R
is the reward function, and ~; € (0, 1) is the discount factor. We denote by S = u;S;, where
S; can share common states. Each agent ¢ maintains a policy m; : S — A4 with m;(a | s)
denoting the probability of selecting action a in state s.

Given a policy m, let V" be its value function in the ¢-th environment
o0
k. (ck kY| O
Vii(s:) = B (lsi) shs1~Pil-lsi,ar) Z Viri(si,ai) s =si |- 3.1)
k=0
Similarly, we define the () function and advantage function in the ¢y environment

o
- . P N 0o_
Q7 (si,a;) = Eap~rlsi)sira~Pillskar) [Z Vir(si,ai) | s; = si,a; = ai])
k=0

Af (s, ai) = QF (84, a:) — V" (54). (3.2)

Without loss of generality, we assume that r;(s, a) € [0, 1], implying for any policy = and

VseS;,ae A

1 1 1
, - < Al(s,a) < :
L= L= L=

0<V7(s) <

)

(3.3)

Let p; be an initial state distribution over S;. With some abuse of notation we denote the
expected cumulative reward associated with this distribution as V;"(p;) = Eg,~,, [Vi"(s:)].
To represent the policy, we consider the scenario where each agent maintains 6; € RISI* Al

and uses the popular softmax parameterization, i.e.

exp (92 ; s,zz)
a'eA eXP(Qi ; s,a’) .

T, (a|s) = 5 (3.4)

The goal of the agents is to cooperatively find a parameter #* that maximizes the total

33

cumulative discounted rewards

N
6" € argmax V™ (p) = > V™(p:), p=[p1;.--;pn]- (3.5)

9eRISIx|A| =

Treating each environment as an independent RL problem would produce different
policies, each maximizing their respective value function, while our focus is to find a single

0* that balances the performance across all environments.

3.3 Structure in Multi-Task Reinforcement Learning

While single task RL is relatively well understood at least in the tabular setting, multi-task
RL is more challenging than it appears from Equation 3.5. We discuss two fundamental
challenges of multi-task RL that make this problem much more difficult than its single-task
counterpart.

Deterministic vs stochastic policies. Under mild assumptions there always exists a deter-
ministic policy that maximizes the objective in single task RL [106]. The value function of
the optimal deterministic policy observes the Bellman optimality equation, which motivates
the development of value-based methods for policy optimization. In multi-task RL where the
tasks operate under different transition probability kernels, there need not be a deterministic
optimal policy in general, and hence there may not be a natural analog of the Bellman
optimality equation. We illustrate this with a simple GridWorld example.

In the two-task GridWorld problem shown in Figure 3.1, there are two environments
with the same state and action spaces. The dynamics and reward functions, however, are
different. The two actions, labeled L and R, deterministically move the agents to the left
and right, respectively, in all states in Task 1. In Task 2, the effect of L and R is reversed for
states Sy and Sy: applying L (resp. R) in S, transitions to Sz (resp. S), while applying L
(resp. R) in S, transitions to S5 (resp. S3). In both environments, the agents stay in states

S1 and S5 when they reach them. In Task 1 there is a reward of +1 for reaching S; and a

34

P(S,1S,)=1 P(S;|S:)=1
| Pifis) P(Rsy) ’
< >
p(lis) P(Rs,)
P(S;]5,)=1 P(S;|S;)=1
] Bis) Puds)
Task 2 S, Srel Ss_|.Ss Se
P(Ls,) P(RIS:)

Figure 3.1: Two-Task GridWorld Problem Without a Deterministic Optimal Policy

penalty of —1 for reaching S5; these rewards are reversed for Task 2.

To find a single policy that maximizes the sum of the cumulative rewards of the two
tasks, it is obvious that the optimal policy for state Ss and Sy is to always take action L
in order to reach the positive reward or to stay away from the negative reward. The only
state whose optimal policy remains unclear is S5. With the detailed computation deferred to

Section B.1, we find that the optimal (stochastic) policy 7* is

. 0.5, a=1L,
m*(alS3) =
0.5, a=R,
which yields V™ (S3) = % By symmetry, the two possible deterministic policies

7TZ(G|S3) = and 7TT<G|S3> =

produce the same value for state Ss, with V™ (S3) = V™ (S3) = v < V™ (S3) when v > 0.
This implies that any deterministic policy is sub-optimal.

As a consequence, RL methods that implicitly rely on the existence of a deterministic
optimal policy (e.g., Q learning) cannot solve this type of problems in general. This

observation provides motivation for us to study randomized policies and take on a policy

35

gradient approach.
Gradient domination condition. In single task RL, [12] shows that the objective function,
despite being non-concave, satisfies a “gradient domination” condition under the softmax
parameterization, which implies that every stationary point is globally optimal. This is
important as it guarantees that the policy gradient algorithm can find the globally optimal
policy by converging to a stationary point. In the multi-task problem we cannot expect to
have this condition in the general setting. The landscape of the multi-task RL objective is so
irregular that there could exist multiple stationary points which are not global optima. We
illustrate this issue with another simple example.

Let us consider again the 2-task GridWorld problem in Fig.Figure 3.1. Here we make a
slight modification to the dynamics of the tasks. In task 1 and task 2, regardless of the action

taken in state S, and Sy, the transition probability is

s (
1_p» S:SI 1_p7 S:S3

Pi(s]S,) = < Pi(s]S4) = {
L b, S_SS L D, 5—85

s (
D, SZSl D, 8253

P2<S|SQ) = A P2(S|S4) =9
k1—p, 5s=953 Ll—p, 5 =955

for some 0.5 < p < 1.
It is obvious that the policy gradients for S, and S, are always zero as the value function
is independent of the policy at these two states. We only have to optimize the policy at Ss.

Under the softmax parameterization, we maintain parameters 6g, ;, and s, g such that

e¥s3.L eVss.r

" and 79(R|S3) =

e¥ss. 4 ¥ss.

mo(L|S3) =

eVs3.L 4 efss.r

We consider the case where the agents always start from state S3. It can be shown that
Os,. = 1,05, r = o0 (always taking action R) and 0g, ;, = o0,0g, p = 1 (always taking

action L) are both stationary points and achieve the global maximum of the objective in

36

Equation 3.5, while g, ;, = 1,05, g = 1 (taking action L and R each with probability
0.5) is a sub-optimal stationary point. When gradient based methods are used to optimize
Equation 3.5, it could be trapped at the stationary points without finding the global optimality.
Later in this chapter, we will dive deeper into the problem and show that the gradient

domination condition can be recovered under a restrictive structural assumption.

3.4 Decentralized Policy Gradient Algorithm

In this section, we propose a decentralized variant of the policy gradient algorithm that
solves Equation 3.5 in consideration of the aforementioned challenges. Similar to what is
observed in the single agent case, the softmax parameterization poises a challenge due to its
exponential scaling. To handle the challenge, we use the relative-entropy as a regularization
for the objective in Equation 3.5 inspired by [12]. We consider optimizing the modified

objective function

2

z:LA (0;pi) = Z (V. (pi) — ARE (my)) ,

where A > 0 is a regularization parameter, and RE(7y) denotes the relative entropy between

U 4, which is the uniform distribution over A, and 7y

RE(7g) = Eqotnits [Dxr (Ua, mo(-|5))] = |S||A|§410gﬂ'9a| —log | Al

We apply gradient ascent to optimize L* in a decentralized manner, with the updates
formally stated in Algorithm 3.1. Each agent can communicate with each other through an
undirected and connected graph G = (V,), where agents ¢ and j can exchange messages if
and only if they are connected in G. We denote by NV; = {j : (i,j) € £} the set of agent i’s
neighbors.

At any time k& > 0, agent 1 first exchanges its iterates with its neighbors j € N; and

compute the gradient g¥ of L}(0%; p;) only using information from its environment. Agent

37

Algorithm 3.1: Decentralized Policy Gradient Algorithm (DCPG)

Initialization: Each agent ¢ initializes 9? € R?, an initial distribution pi», and step
sizes {a*}pen.
for k=1,2,3,... do
Each agent 7 simultaneously implements:
1) Exchange 6% with neighbors j € N;
2) Compute the gradient g~ of L} (0F; p;)
3) Policy update:

OFt = Y Wbk + ofgl. (3.6)
JEN;

end

i updates 6; by implementing Equation 3.6, where it takes a weighted average of 6% with
9;‘? received from its neighbors j € A;, following by a local gradient step. The goal of this
weighted average is to achieve a consensus among the agents’ parameters, i.e., 0, = 0;
while the local gradient steps are to push this consensus point toward the optimal 6*. Here,
W;; is some non-negative weight that agent ¢ assigns for (9;?. The conditions on W;; to

guarantee the convergence of Algorithm Algorithm 3.1 will be specified shortly.

3.5 Convergence Analysis

In this section, our focus is to study the performance of Algorithm 3.1 under the tabular

setting, i.e., 0 € RISIMAI,

It is worth recalling that each function V" in Equation 3.5 is in
general non-concave. To show the convergence of our algorithm, we first study the case

when g; is exactly VL2, and consider the following assumption on the weight matrix W

Assumption 3.1. Let W = [W;;] € RY*Y be a doubly stochastic matrix, i.e., >,, W;; =

Zj Wi; = 1, with W;; > 0. Moreover, W;; > 0 iff i and j are connected, otherwise W;; = 0.

Assumption 3.1 is fairly standard in the literature of decentralized consensus-based
optimization [96, 100]. Given an undirected communication graph, the matrix W satisfying
the assumption can be easily generated using the lazy Metropolis method [107]. We denote

by 09 and oy the second largest and the smallest singular values of W. Our first main

38

result shows that the algorithm converges to a stationary point of Equation 3.5 at the rate

O(1/VK) when p; = p;.

Theorem 3.1. We choose the step size of Algorithm 3.1 to be o = « with a@ <

o vx- Then under Assumption 3.1, the iterates 0% satisfy Vi = 1,2,--- | N

i=1 Goy3 TS

N 2 2
mply S| <ol sy Ty

First, our upper bound in Equation 3.7 depends quadratically on the inverse of the
spectral gap 1 — o5, which shows the impact of the graph G on the convergence of the
algorithm. Second, this bound states that under a constant step size the norm of the gradient
converges to a ball with radius O(«) at a rate O(1/+4/K). As the step size is reduced, we
get closer to a stationary point of Equation 3.5. This rate matches the one for single task
RL in [12]. However, while we only show the convergence to a stationary point, a global
optimality is achieved there. As we have illustrated in Section 3.3, first-order methods can
converge to a stationary point which does not have to be globally optimal due to the lack of

a gradient domination condition in multi-task RL.

3.6 Achieving Global Optimality

Despite the difficulty of the MTRL problem, we provide a sufficient condition on the
structure of the MDPs, under which the gradient domination condition can be recovered and

Algorithm 3.1 can find the globally optimal policy.

Assumption 3.2. Let wy« be an optimal policy solving Equation 3.5. Then for any 7y and

we have

dige (5) _ dip, (5)

di(s) djj,(s)

, Vs:se&nS;, Vi, je[N]. (3.8)

39

We know that d7%, (s;) (similarly, d}", (s;)) is the discounted fraction of time that agent i
visits state s; € S; when using p; (similarly, y;) as the initial distribution. Qualitatively, this
assumption can be interpreted as enforcing that the joint states between the environments
are equally explored. Mathematically, this assumption guarantees the objective function
Equation 3.5 obeys a kind of gradient domination when each function V,(p;) satisfies this
condition. We note that Assumption 3.2 holds in the important case where the component
tasks share the same state space and transition probability, but differ in their reward functions.

For simplicity, we assume without loss of generality that 6y = 67, Vi,j. Let o* = «

satisfying

1
N 8 22
= (i +)

AN(1 — oy)
4|S[|1A] <2N/\ v ZjN_l ;) } 59

(1—7:)?

o<

min{l +oN;

Theorem 3.2. Suppose that Assumption 3.1 and Assumption 3.2 hold. Given an € > 0, let
A\ = €/2N|dp”* /u|w and o satisfy Equation 3.9. Let 6* be a solution of Equation 3.5.

Then Vi, 0F returned by Algorithm 3.1 satisfies

min{V (6*; p) = V(655 p)} < €
k<K

N
K=o 1S[2| A2 ijl (1_1%_)6 5 2 (3.10)
- (1= 02)€ Bl)
To% d#"f S
where we denote dp” = maX_J#](v)'
o seS (1 ’Y])#J(S)
j:SES]'

Under Assumption 3.2, Algorithm 3.1 achieves the globally optimal value function with
the same rates as the ones in [12], except for a factor 1/(1 — 05)? which captures the impact
of communication graph G. Equation 3.10 also shows the impact of the initial distribution gt
on the convergence of the algorithm through the distribution mismatch coefficient. A bad
choice of p may result in a local optimum (or stationary point) convergence by breaking

Assumption 3.2, as we will illustrate by simulation in Subsection 3.7.1.

40

3.7 Experimental Results

We evaluate the performance of our proposed algorithm on two platforms: GridWorld and
drone navigation. We first verify the correctness of our theoretical results by applying
the decentralized policy gradient (DCPG) algorithm for solving small-scale GridWorld
problems, where each agent uses a tabular policy. We next apply the proposed method
to solve the more challenging problem of large-scale drone navigation in simulated 3D
environments, where the policy is approximated by neural networks.

General setup. In each simulation, the agents runs a number of episodes of DCPG. In
each episode, each agent computes its local gradient by using the Monte-Carlo method.
Each agent then communicates with its neighbors over a fixed ring graph (i.e. agent ¢
communicates with agent 7 — 1 and ¢ + 1 for¢ = 2,3, ..., N — 1; agent 1 communicates with
agent 2 and N; agent N communicates with agent N — 1 and 1) and updates its iterates
using Equation 3.6. Given the communication graph G, we generate the weight matrix W

using the lazy Metropolis method.

3.7.1 GridWorld Problems

We first consider a GridWorld problem in tabular settings, i.e., # € RI°II. This is a notable
small-scale RL problem, where the agent is placed in a grid of cells. Each cell can be labeled
either by the desired goal, an obstacle, or empty. The agent selects an action from the set of
4 actions {up, down, left, right} to move to the next cell. It then receives a reward of +1 if
it reaches the desired goal, —1 if it gets into an obstacle, and O otherwise. The goal of the
agent is to reach a desired position from an arbitrary initial location in a minimum number
of steps (or maximize its cumulative rewards).

For multi-task RL settings, we consider a number of different single GridWorld environ-
ments of size 10 x 10, where they are different in the obstacle and goal positions. We assign

one agent to each environment, which implements Algorithm 3.1 with the local gradients

41

abcde f ghi]j abcde f ghi]j abcde f ghi]j abcde f ghi]j abcde f ghi]j

e et anel e ==
E E

LT

2, 3

L IR I LI RSCI I

3| 3|

© 0NN O

© 0N U WO

© 00 DG W
© 00U W

©

[1
d) Start position top-left

[1
e) Start position top-right

a) No conflicts (b) Resolvable conflicts (¢) Unresolvable conflicts

Figure 3.2: Evaluate Learned Policy in Multi-task GridWorld

—

estimated using a Monte-Carlo approach. The state is the agent’s location in the grid. After
1000 training episodes, the agents agree on a unified policy, whose performance is tested
in parallel in all environments. The results are presented in Figure 3.2, where we combine
all the environments into one grid. In addition, yellow and red cells represent the goal and
obstacle, respectively. For each environment, we terminate the test when the agent reaches
the goal or hits an obstacle. The light green path is the route which the agent visits in these
environments. Since we have a randomized policy, we put the path mostly followed by the
agents. Figure 3.2 (a)—(c) consider experiments on four environments, while (d) and (e) are
on six environments.

In Figure 3.2(a), we illustrate the performance of the policy when there is no conflict
between the environments, i.e., the block of one environment is not the goal of the others and
vice versa. In this case, we can see that the algorithm returns an optimal policy which finds
all the goals at the environments. Next, we consider the conflict setting in Figure 3.2(b),
where one obstacle of environment 2 is the goal of environment 3. Here, the : number in
white and black represents the goal and the obstacles of the i-th environment, respectively.
Although in this case there is a conflict between the tasks, it is solvable, that is, there is still
an optimal path, which the agents eventually find.

We next consider an unsolvable conflict in Figure 3.2(c), where the goal of agent 2 is
the obstacle of agent 3 and vice versa. In this case, there does not exists a policy that can
always visit all goal positions without running into an obstacle. Instead, the agents need to
make a compromise, where they finish three out of the four tasks.

To summarize, the experiments with no conflict and resolvable conflict have dynamics

42

that allow the optimal value of Equation 3.5 to be the sum of the optimal values of the
individual tasks, while the experiment with unresolvable conflict does not. Nevertheless, in
all three cases, DCPG successfully finds the optimality of the global objective function in
Equation 3.5.

Finally, we illustrate the impact of the initial conditions with the simulations in Fig-
ure 3.2(d) and (e). In (d), if the agents start from the top left corner they cannot find the
optimal solution. However, when the agents start from the top right corner the algorithms
return the gobal optimality as shown in (e). This empirical evidence hints that to achieve the
global optimality with the DCPG algorithm, conditions on the initial state distribution like

Assumption 3.2 may be necessary.

3.7.2 Drone Navigation

For the drone experiment we use PEDRA, a 3D stimulated drone navigation platform [108].
In this platform, a drone agent is equipped with a front-facing camera, and takes actions
to control its flight. The reward received by the drone agent is designed to encourage
the drone to stay away from obstacles. We select 4 indoor environments on the PEDRA
platform (denoted as Env 0-3), which contain widely different lighting conditions, wall
colors, furniture objects, and hallway structures, as shown in Figure 3.3. The performance
of a policy is quantified by the mean safe flight (MSF), the average distance travelled by
the agent before it collides with any obstacle. This is a standard criterion in evaluating the
performance of flying autonomous vehicles [109].

To evaluate the policy learned using Algorithm 3.1 (DCPG), we compare it with the
single agent trained independently in each environment. For brevity, we denote by SA-:
the single agent trained in environment ;. We note that the SAs can be considered as the
solutions to the local objective functions, while DCPG optimizes the sum of the local
objective functions. Therefore, if trained to the global optimum, each SA provides an upper

bound on the performance of the DCPG policy in the respective environment. The aim of

43

Indoor_long
N

; Indoor_cloud

Figure 3.3: Environments used in drone navigation.

Mean Safe Flight in EnvO

Mean Safe Flight in Env1l

160
60{ —— SA 140/ — SA
50 1 DCPG 1201 DCPG
40 . 100+ |
301 | ;w hf", r.x'\ 28: A “w
20+ M..w wam 40 M[/ﬂ n\";xwa
10 wmm 20- A\ DR Y
o // 0. = 'AM
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Episode Episode
Mean Safe Flight in Env2 Mean Safe Flight in Env3
1201 — SA 1200 a
100/ — DCPG 1001 pcpG
80, - 801
60 A W ‘)\"»’“J’\ h 601 A /
40 /v,‘ m{ AN A \W 40 r"\i /d,’w \
201 S 20 /
0 g 0
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Episode

Episode

Figure 3.4: MSF During Training (REINFORCE)

the experiments is to show in practical problems where the tasks are highly related, the

DCPG policy often performs close to this bound.

To demonstrate the compatibility of our algorithm with a wide range of policy gradient

44

Table 3.1: MSF of Learned Policy

REINFORCE Env0 Envl Env2 Env3 Sum
SA-0 159+5.3 4.5+1.2 41+1.3 3.6 £3.0 28.1
SA-1 3.0+0.2 554+4+29.3 9.7+ 2.8 8.1+3.8 76.2
SA-2 1.5+0.5 0.8+ 0.2 21.1 £ 18.3 2.0+£0.6 254
SA-3 2.3+0.5 0.8+0.2 8.6 +£2.0 40.1+ 174 51.8

DCPG 2522 +20.1 679 +355 405+18.0 61.8+39.2 1954
A2C Env0 Envl Env2 Env3 Sum
SA-0 21.8 £ 6.5 7.0+0.8 15.1+54 14.9 + 8.2 58.8
SA-1 1.3+04 541 + 20.1 2.84+0.9 6.4 +1.2 59.4
SA-2 1.8+ 0.7 3.9+0.3 1052+ 385 99+1.3 120.8
SA-3 1.1+0.2 1.4+0.2 15.8 £ 5.0 786+259 969

DCPG 252 +7.5 50.1 +24.6 1658 +64.6 159.6 + 61.0 380.7
PPO EnvO Envl Env2 Env3 Sum
SA-0 283+ 155 11.2+6.3 8.7+£5.9 13.5£5.7 61.7
SA-1 1.1+06 753 +43.2 1.6+0.4 1.6 £0.8 79.6
SA-2 25+1.8 3.0£1.1 63.2+36.4 156+ 10.6 84.3
SA-3 1.9+1.6 1.2+ 0.5 14.3+87 139.0+72.5 1564

DCPG 26.3+10.9 66.7+30.8 144.0 +82.4 195.2 +924 432.2

methods, we conduct three sets of experiments, where we run Algorithm 3.1 with the
gradient g¥ estimated by three popular variants of policy gradient algorithms: REINFORCE,
advantage actor-critic (A2C), and proximal policy optimization (PPO). In each case, a
S-layer neural network is used to approximate the policy. We stress that in each set of the
experiments, the SAs and DCPG are trained identically, with the only difference being
whether the agents communicate their policies.

In Figure 3.4, we show MSF of the DCPG and SA policies in the training phase with the
REINFORCE algorithm. In the testing phase, we deploy the policies learned by DCPG and
SAs in the four environments and present the results in Table Table 3.1. Across the three
sets of experiments, we consistently see the performance difference between DCPG and the
SAs. As expected, SA-i only performs well in ¢-th environment but does not generalize to

environment it has not seen. On the other hand, the policy returned by DCPG performs very

45

well in all environments. Surprisingly, DCPG often performs even better than each SA-7 in
the ¢-th environment, which we speculate is due to the benefits of learning common features

and representation among the agents.

3.8 Constrained Multi-Task Reinforcement Learning

We observe from Table 3.1 that the DCPG policy, while performing better than the SAs,
does not achieve balanced cumulative rewards across the environments. Motivated to control
the policy in a more fine-grained manner, we consider another formulation of multi-task
RL that allows us to specify the performance upper and lower bounds of the policy in each
environment. In the rest of the section, we will focus on the case where all environments
have identical state spaces and transition kernels and only differ in the reward functions.
This setting satisfies Assumption 3.2 and recovers the gradient domination condition. Under

notations introduced in Section 3.2, we denote

for simplicity. Given local performance upper and lower bounds {/; € R, u; € R} |, our

constrained multi-task RL objective is to solve the following optimization problem

7 =argmax V{(p)

subjectto ¢; < V"(p) <wu; Vi=1,2,...,N. (3.11)

It is worth noting that Equation 3.11 obviously recovers the constraint-less formulation
in Equation 3.5 by properly choosing /;, u;. Again, we considers the tabular setting under
the softmax parameterization (Equation 3.4).

Although neither the objective nor the constraint set of Equation 3.11 is convex, it

is known from [110][Theorem 3.6] that strong duality holds under the following Slater’s

46

condition.

Assumption 3.3 (Slater’s Condition). There exists a constant 0 < £ < 1 and a policy 7

such that U; + £ < V7 (p) < wu; — € foralli=1,--- | N.

This is a mild and standard assumption in the study of constrained MDPs [38, 111, 112],

and states that the constraint set must have at least one interior point.

3.8.1 Algorithm Design

In this section, we develop an algorithm for solving Equation 3.11 and formally present the

updates in Algorithm 3.2. As a first step, we form the Lagrangian of Equation 3.11

N

VM (p) = Vi () + D5 (N (Vi (p) = 4) — v (Vi (p) — wa)) . (3.12)

i=1

where A = [A\f,...,A\v] € RY and v = [11, ..., vy] € RY are the dual variables associated
with the lower and upper bound constraints.

The dual function Vé\ " is defined as

Vp"(p) = max Vi (p), (3.13)
and the dual problem is
A", v* = argmin V) (p). (3.14)
XVERf

A consequence of Slater’s condition is the boundedness of *, v*.

Lemma 3.1. Under Assumption 3.3, we have

N B N B
Nl < 5 and 17w < f

where By = 5(11_7)

47

The strong duality states

Vo (p) = Vi (p), and 7" (X",v") = argmax argmin V;, ©-15)

™ AV

where 7%, A*, and v* are the (not necessarily unique) optimal solutions to Equation 3.11
and Equation 3.14. Motivated by the existence of the strong duality, we take a primal-dual
approach to find the saddle point of the minimax objective in Equation 3.15. Specifically,
weuse \¥ = [\ ... \E] e RV and v* = [vF, ..., VK] € RY to estimate * and v* and
maintain local variables 6% € RIS/l such that gk tracks 7* at each agent .. We update the
variables with gradient descent ascent.

Primal Variable. Carrying out gradient descent ascent requires computing the (natural)
gradients of the Lagrangian with respect to the primal and dual variables, which both have
closed form expressions. On one side, it is known that the natural gradient of the value
function under reward r; with respect to ¢, denoted by %gi (p), is the advantage function

scaled by 1/(1 — «) [113]. This means that for any distribution p, we have

N 1 al
Vo, VM (p) = —1 (A (s, a) Z (N — 1)AT (s, a))
' -7 i=1
N1
= <N + i — 1) AP (s,a). (3.16)

In our decentralized primal variable update in Equation 3.17, each agent essentially
moves in the direction of a locally available component of this natural policy gradient,
followed by an averaging step that mixes the agents’ policy parameters to achieve consensus.
Dual Variable. On the other hand, the gradient of the Lagrangian with respect to the dual

variable is

VaVEM () = Vi (p) —ti= > pls)m(al $)QF (s,a) — £,

s:p(s)>0,a

48

Vo, ViM(p) = =Vim(p) + u; = 2 (a]$)Q7(s,a) + u;.

p(s)>0

This naturally leads to the update in Equation 3.18, in which the operator ITjg 5,; : RV — RN

denotes the

element-wise projection of a vector to the interval [0, B,]. We use the projection

to guarantee the stability of the dual variables and note that the optimal dual variables are in

the span of

I}, 5,) according to Lemma 3.1.

Algorithm 3.2: Decentralized Primal-Dual Natural Policy Gradient Algorithm in

Tabular Setting
Initialization: Each agent i initializes 67 € RISl = 0 and dual variables
)\?, V’L € R+ - O
fork=0,1,--- /K —1do

end
end

for Each agenti=1,--- | N do

1) Exchange 6% with neighbors j € N
2) Policy update:

Tk

1
it — }:W@%+aQV+Ak—MxQI

JEN;
(3.17)
k+1 _ EXp (Qf“(s, a))
Tri (CL | S) - k+1 /
Dareaexp (0,7 (s,0))
3) Local dual variable update:
. ok
ﬁ“zﬂmam&—UWflm—&>
- . 7o (3.18)
v =1l B, (Vi +n(V; " (p) - Uz))

3.8.2 Finite-Time Convergence

With the de

tailed proof deferred to the appendix, we now present the finite-time complexity

of Algorithm 3.2 in the following theorem, which essentially states that the policy at every

local agent

converges to the globally optimal policy both in objective function value and

constraint violation with rate O (K ~1/?).

49

Theorem 3.3. Consider the iterates {7*} obtained from K iterations of Algorithm Algo-
rithm 3.2. Let the step size sequences be

) Mo

=g TR

(3.19)

with ag = O(y/1 — 09(W)). Then, under Assumption 3.3, we have forany j = 1,--- /N

wax {2 Y -0 L 3 0 (16— v, + [0 - wl,)}
k=0 k=0 i=1

N5/4)

< I —
O(Vl —02K1/2

We omit the dependency of the bound on structural constants including |S|, |A[,1 — v
and note that it is the same as in the centralized single-task constrained MDP setting with a
single constraint [112]. The convergence rate scales up with /V, which shows the difficulty

of the problem as the number of tasks increases. The dependency on (1 — g5) ™1/

captures
the effect of the network connectivity, which becomes smaller as the communication graph

gets denser.

3.9 Conclusion & Future Directions

To conclude and summarize our main contribution in this chapter, we studied two multi-
task agent RL formulations and proposed provably convergent algorithms for solving
the formulations, under the assumption that the local environments have the same state
space and transition probability kernel. In the drone navigation experiments presented in
Subsection 3.7.2, we observed that the learned multi-task policy performs even better than
each single agent trained in its own environment under a moderate number of training
episodes. Conceptually, we attribute this phenomenon to the existence of a common
representation which facilitates learning, which is not completely surprising. In the extreme

case where all local tasks are exactly identical, learning a joint policy effectively reduces

50

the noise in the gradient estimates, which could mathematically justify our observation.
However, in the drone navigation experiments, the local tasks are related but not identical,
and explaining the observation becomes a much more challenging, but still interesting,
possible future work. Another future direction from the experimental perspective is to
investigate whether the constrained multi-task RL formulation can actually lead to more

desirable performance of the learned policy in practical problems.

51

CHAPTER 4
A DIRECT POLICY OPTIMIZATION APPROACH TO TWO-PLAYER
ZERO-SUM MARKOV GAMES

In this chapter, we study the structure in the two-player zero-sum Markov game and leverage
it to design a gradient descent ascent (GDA) algorithm that provably and efficiently finds
the Nash equilibrium. Despite the fact that Markov games observe a “gradient domination”
condition with respect to each player, strong structure such as the convexity does not exist
that can be exploited to guarantee the fast convergence of GDA.

Our approach to this challenge is to introduce a structured entropy regularization. The
regularized Markov game enjoys a series of favorable properties including the existence
and uniqueness of the Nash equilibrium (whose distance from the Nash equilibrium of the
unregularized problem can be upper bounded by the regularization weight) and a Polyak-
Lojasiewicz (PL) flavored condition. Exploiting these properties, we show that the the GDA
algorithm can find the unique Nash equilibrium of the regularized Markov game linearly
fast. We propose schemes of adjusting the regularization weight properly over time that
allows the last iterates of the GDA algorithm to converge to the Nash equilibrium of the

original Markov game'.

4.1 Introduction

The two-player zero-sum Markov game is a special case of competitive multi-agent rein-
forcement learning where two agents driven by opposite reward functions jointly determine
the state transition in an environment. Usually cast as a non-convex non-concave mini-
max optimization program, this framework finds applications in many practical problems

including game playing [114, 115], robotics [116, 117], and robust policy optimization [32].

IThe presentation in this chapter is partly adapted from [39].

52

A convenient class of algorithms frequently used to solve multi-agent reinforcement
learning problems is the independent learning approach. Independent learning algorithms
proceed iteratively with each player taking turns to optimize its own objective while pre-
tending that the policies of the other players are fixed to their current iterates. In the context
of two-player zero-sum Markov games, the independent learning algorithm performs GDA,
which alternates between the gradient updates of the two agents that seek to maximize and
minimize the same value function. Despite the popularity of such algorithms in practice,
their theoretical understandings are sparse and do not follow from those in the single-agent
case as the environment is not stationary from the eye of any agent. [118] shows that iterates
of GDA can possibly diverge or be trapped in limit cycles even in the simplest single-state
case when the two players learn with the same rate.

It may be tempting to analyze the two-player zero-sum Markov game by applying the
existing theoretical results on minimax optimization. However, as the objective function in
a Markov game is not convex or concave, current analytical tools in minimax optimization
that require the objective function to be convex/concave at least on one side are inapplicable.
Fortunately, the Markov game has its own structure: it exhibits a “gradient domination”
condition with respect to each player, which essentially guarantees that every stationary
point of the value function is globally optimal. Exploiting this property, [29] builds on
the theory of [22] and shows that a two-time-scale GDA algorithm converges to the Nash
equilibrium of the Markov game with a complexity that depends polynomially on the
specified precision. However, deriving an explicit finite-time convergence rate is still an
open problem. In addition, the analysis in [29] does not guarantee the convergence of the
last iterate; convergence is shown on the average of all past iterates.

In this chapter, we show that introducing an entropy regularizer into the value function
significantly accelerates the convergence of GDA to the Nash equilibrium. By dynamicially
adjusting the regularization weight towards zero, we are able to give a finite-time last-iterate

convergence guarantee to the Nash equilibrium of the original Markov game. The main

53

contribution of the work in this chapter is twofold.

First, we show that the entropy-regularized Markov game is highly structured; in par-
ticular, it obeys a condition similar to the well-known PL condition, which allows linear
convergence of GDA to the (unique) equilibrium point of the regularized game with fixed
regularization weight. We also show that the distance of the equilibrium point of the regu-
larized game to the equilibrium point of the original game can be bounded in terms of the
regularizing weight.

Furthermore, we show that by dynamically driving the regularization weight towards
zero, we can solve the original Markov game. We propose two approaches to reduce the
regularization weight and study their finite-time convergence. The first approach uses a
piecewise constant weight that decays geometrically fast, and its analysis follows as a
straightforward consequence of our analysis for the case of fixed regularization weight. To
reach a Nash equilibrium of the Markov game up to error ¢, we find that this approach
requires at most O(e~3) gradient updates, where O only hides structural constants. The
second approach reduces the regularization weight online along with the gradient updates.
Through a multi-time-scale analysis, we optimize the regularization weight sequence along
with the step size as polynomial functions of k, where k is the iteration index. We show
that the last iterate of the GDA algorithm converges to the Nash equilibrium of the original
Markov game at a rate of O(k~'/3). Compared with the state-of-the-art analysis of the GDA
algorithm without regularization which shows that the convergence rate of the averaged
iterates is polynomial in the desired precision and all related parameters, our algorithms

enjoy faster last-iterate convergence guarantees.

4.2 Related Works

A Markov game reduces to a standard MDP with respect to one player if the policy of
the other player is fixed. This is an important observation that allows our work to exploit

the recent advances in the analysis of policy gradient methods for MDPs [13, 113, 119-

54

121]. Various entropy-based regularizers are introduced in these works that inspire the
regularization of this paper. Our particular regularization is also considered by [122], but we
discuss and leverage structure in the regularized Markov game that was previously unknown.

As the two-player zero-sum Markov game can be formulated a minimax optimization
problem, our work relates to the vast volume of literature in this domain. Minimax optimiza-
tion has been extensively studied in the case where the objective function is convex/concave
with respect to at least one variable [22-25]. In the general non-convex non-concave setting,
the problem becomes much more challenging as even the notion of stationarity is unclear
[26]. In [27], non-convex non-concave objective functions obeying a one—sided PE condition
are considered, which the authors use to show the convergence of GDA. [28] analyzes GDA
under a two-sided PL condition and has a tight connection to our work as the value function
of our regularized Markov game also has structure that is similar to, but weaker than, the
PL condition on two sides.

By exploiting the gradient domination condition of a Markov game with respect to
each player, [29] is the first to show that the GDA algorithm provably converges to a Nash
equilibrium of a Markov game. A finite-time complexity is not derived in [29], but their
analysis and choice of step sizes indicate that the convergence rate is at least worse than
O(k~1/105) " Additionally, [29] does not guarantee the convergence of the last iterate, but
rather analyzes the average of all iterates. In contrast, our work provides a finite-time
convergence analysis on the last iterate of the GDA algorithm.

While our work treats the Markov game purely from the optimization perspective, we
would like to point out another related line of works that consider value-based methods
[122-126]. In particular, [123] is among the first works to extend value-based methods
from single-agent MDP to two-player Markov games. Since then, the basic techniques for
analyzing value-based methods for Markov games are relatively well-known. [124] considers
a value iteration algorithm with confidence bounds. In [122], a nested-loop algorithm is

designed where the outer loop employs value iteration and the inner loop runs a gradient-

55

descent-ascent-flavored algorithm to solve a regularized bimatrix game. In comparison, pure
policy optimization algorithms are much less understood for Markov games, but this is an
important subject to study due to their wide use in practice. In single-agent MDPs, value-
based methods and policy optimization methods enjoy comparable convergence guarantees
today, and our work aims to narrow the gap between the understanding of these two classes
of algorithms in two-player Markov games.

Finally, we note the recent surge of interest in solving two-player games and minimax
optimization programs with extragradient or optimistic gradient methods in the cases where
vanilla gradient algorithms often cannot be shown to converge [122, 127-132]. These
methods typically require multiple gradient evaluations at each iteration and are more
complicated to implement. Most related to our work, [122] shows the linear convergence of
an extragradient algorithm for solving regularized bilinear matrix games. They also show
that a regularized Markov game can be decomposed into a series of regularized matrix games
and present a nested-loop extragradient algorithm which solves these games successively
and eventually converges to the Nash equilibrium of the regularized Markov game. The
regularization weight can then be selected based on the desired precision of the unregularized
problem. Although our overall goal of finding the Nash equilibrium of a general Markov
game is the same, the manner in which we decompose and analyze the problem is different.
Our analysis here is based on GDA applied directly to a general regularized Markov game.
We show that for a fixed regularization parameter for a general Markov game, GDA has
linear convergence to the modified equilibrium point. We also give a scheduling scheme for
adjusting the regularization parameter as the GDA iterations proceed, making them converge

to the solution to the original problem.

4.3 Preliminaries

We consider a two-player Markov game characterized by M = (S, A, B, P,v,r). Here, S

is the finite state space, .4 and B are the finite action spaces of the two players, v € (0, 1) is

56

the discount factor, and 7 : S x A x B — [0, 1] is the reward function. Let A denote the
probability simplex over a set F, and P : S x A x B — Ag be the transition probability
kernel, with P(s’ | s, a, b) specifying the probability of the game transitioning from state
s to s when the first player selects action a € A and the second player selects b € B. The
policies of the two players are denoted by m € AS and ¢ € Ag, with w(a | s), ¢(b | s)
denoting the probability of selecting action a, b in state s according to 7, ¢. Given a policy

pair (7, ¢), we measure its performance in state s € S by the value function

0

VWﬁ(s) = EakNﬂ—('lsk)vbk'\’(ﬁ("sk)%sk-%—lN,P("Slmak,bk)I:Zk:() ,ykr (Sk, ag, br) | so = S].

Under a fixed initial distribution p € Ags, we define the discounted cumulative reward under

(7,)
J(m,¢) = Equep[VT(s0)],

where the dependence on p is dropped for simplicity. It is known that the Nash equilibrium
always exists in two-player zero-sum Markov games [133], i.e. there exists an optimal

policy pair (7*, ¢*) such that

max min J(m, ¢) = min max J(w, ¢) = J(7*, ¢*). 4.1)

TEAS $EAF PeAZ TEAS

However, as J is generally non-concave with respect to the policy of the first player and
non-convex with respect to that of the second player, direct GDA updates may not find
(7*, ¢*) and usually exhibit an oscillation behavior, which we illustrate through numerical
simulations in Section 4.6. Our approach to address this issue is to enhance the structure of

the Markov game through regularization.

57

4.3.1 Entropy-Regularized Two-Player Zero-Sum Markov Games

In this section we define the entropy regularization and discuss structure of the regularized

objective function and its connection to the original problem. Let the regularizers be

[o0]

Ha(s, m, ¢) = Eak~7r(-|sk),bk~¢(-\sk),sk+1~"P(-\sk,ak,bk)[Zkzg —~*logm (ak | s) | so = s],

0
Hy(s,m,¢) = Eak~7r(-|sk),bk~¢(-‘sk),sk+1NP("Sk,ak,bk)[Zk:O —Wk log ¢ (bk | s1) | so = S]~
We define the regularized value function

VO(s) = V™ (s) + 7Ha(s, 7, ¢) — THy(s, T, ¢)

= EW,¢,P[ZOO: y* <r (Sk, ak, by) — Tlog w(ak | sk) + 7log & (by, | 3k:)> | 80 = s}

where 7 > 0 is a weight parameter. Again under a fixed initial distribution p € Ag we

denote J, (7, ¢) = Es,[V™(s)]. The regularized advantage function is

AZ@(S? a, b) = T’(S, a, b) - Tlogﬂ-(a ’ S) + TlOg ¢(b | S) + ’yEs/~73(-|s,a,b) [‘/quﬁ(sl):l - de)(S),

T

which later helps us to express the policy gradient.
We use d;“"ﬁ € Ags to denote the discounted visitation distribution under any policy pair

(7, ¢) and the initial state distribution p

o]

d;“"z’(s) = (1- ’Y)Eﬂ@,P[Zk:O Y 1(sp = s) | 80 ~ p]

For sufficient state visitation, we assume that the initial state distribution is bounded away
from zero. This is a standard assumption in the entropy-regularized MDP literature [13,

134].

Assumption 4.1. The initial state distribution p is strictly positive for any state, and we

58

denote prin = mingg p(s) > 0.

When the policy of the first player is fixed to 7 € A%, the Markov game reduces to an
MDP for the second player with state transition probability Py(s | s,0) = 3 _ AP(s |
s,a,b)m(a | s) and reward function 74(s,b) = > _,7(s,a,b)m(a | s). A similar argument
holds for the first player if the second player’s policy is fixed. To denote the operators that
map one player’s policy to the best response of the other player and the corresponding value

function, we define

mr(¢) + argmax J-(w,¢), ¢-(w) £ argmin J (7, ¢),

TEAS PeAS

g-(m) = min J. (7, ¢) = J.(7, ¢ (7)). (4.2)

S
PeEAR

For any 7 > 0, the following lemma bounds the performance difference between optimal
and sub-optimal policies and establishes the uniqueness of 7. (¢) and ¢, (7). When 7 = 0,
we use mo(¢) and ¢o(7) to denote one of the maximizers and minimizers since they may not

be unique.

Lemma 4.1 (Performance Difference). Under Assumption 4.1 and given T > 0, 7.(¢) is

unique for any ¢ € Ag, and ¢,(r) is unique for any m € AS. Given any min player policy

¢ e AZ,
To(5e(0), 0) = Jo(m.6) = 1w o (9) — wl?, vme AL 43)
Given any max player policy 7 € Ai,
To(5,60(m)) = Jelm 0) < — g lon(m) — 0, Voe AR @4

The Nash equilibrium of the regularized problem is sometimes referred to as the quantal

response equilibrium [135] and is known to exist under any 7. Leveraging Lemma 4.1, we

59

formally state the conditions guaranteeing its existence and affirm that it is unique.

Lemma 4.2 (Minimax Theorem for Entropy-Regularized Markov Game). Under
Assumption 4.1, for any regularization weight T > 0, there exists a unique Nash equilibrium

policy pair (%, ¢r) such that

max min J.(m, ¢) = min max J, (7, ¢) = J. (7}, 7). 4.5)

TeAS peAF peAF TN i

We are only interested in the solution of the regularized Markov game if it gives us
knowledge of the original problem in Equation 4.1. In the following lemma, we show that
the distance between the Nash equilibrium of the regularized game and that of the original
one is bounded by the regularization weight. This is an important condition guaranteeing that
we can find an approximate solution to the original Markov game by solving the regularized
problem. In addition, this lemma also shows that the same policy pair produces value

functions with bounded distance under two regularization weights.

Lemma 4.3. For any 7 > 7' > 0 and policy ,

—(r =7 1og|B| < Jr (72, ¢%) — Jo(mh, %) < (17— 7') log | Al (4.6)

—(1 = 7)o |B| < g,(7) — g (1) = (7, 67 (7)) — Joo (7, s (7)) < (7 — 7') log | Al.
“4.7)

T—T

7 log|B| < J:(m,¢) — Jo(m,¢) <

T—T

log | Al 4.8)
L=x

4.3.2 Softmax Parameterization

In this work we use a tabular softmax policy parameterization and maintain two tables

9 € RS*A, 4/ € RS*B that parameterize the policies of the two players according to

exp (0(s,a))
Za’eA eXp (6(57 d)) ’

exp (¢(s, b))
and dy(b|s) = Zb’eA exp (Y(s,0'))

mola | s) =

60

The gradients of the regularized value function with respect to the policy parameters admit

closed-form expressions

00(s,a) 1—y "

0J(mo, 1 .
6127(27 Z;w) - 1 - Vdp ¢w (8)¢¢(b | S) Z(IGA 7T9(a ‘ S)AT (M) (87&7 b)a

aJT(’/TQ,QSw) 1 dwg’qw (3)71‘9(& | 8) ZbeB wa(b | S)Az—re’d)w (Saa7b)a

4.9)

and computing them exactly requires knowledge of the dynamics of the environment. Note
that the gradients of value function and the regularizer are Lipschitz with respect to the
policy parameters with constants Ly = ﬁ and Ly = ﬁfi—oﬂ%'f". This property is more
formally stated and proved in Lemmas C.1 and C.2 of the appendix.

We next present an important property that we will later exploit to study the convergence
of the GDA updates to the solution of the regularized Markov game. Under the softmax

parameterization, the regularized value function enjoys a gradient domination condition

with respect to the policy parameter that resembles the PE condition.

Lemma 4.4 (PL-Type Condition). Under Assumption 4.1, we have for any 0 € RS** and
w c RSXB

[Vo (o, dy)|* =

S,a

2(1 —) 7P (

7 (minma(a) (e (60): 60) — I,),

2(1 —)72, ?
1901)1 > 2T (i (0|)) (s 8) = s)

The PL condition is a tool commonly used in the optimization community to show the
linear convergence of the gradient descent algorithm [34, 82]. The condition in Lemma 4.4
is weaker than the common PL condition in two aspects. First, our PL coefficient is a
function of the smallest policy entry. When we seek to bound the gradient of the iterates
IVoJ- (7o, by,) |* and ||V 7 (g, , P,)||* later in the analysis, the PE coefficients will
depend on min, , 7y, (@ | s) and ming, ¢y, (b |), which may not be lower bounded by any

positive constant. Second, the coefficients involve 7, which is not a constant but needs to be

61

carefully chosen to control the error between the regularized problem and the original one.

4.4 Solving Regularized Markov Games

Leveraging the structure introduced in Section 4.3, our first aim is to establish the finite-time
convergence of the GDA algorithm to the Nash equilibrium of the regularized Markov game

under a fixed regularization weight 7 > 0. The GDA algorithm executes the updates

Ort1 = Ok + Vo (g, , Dy,), V1 = Yk — BV (To, 1, Oy)- (4.10)

The convergence bound we will derive reflects a trade-off for the regularization weight
7: when 7 is large, we get faster convergence to the Nash equilibrium of the regularized
problem, but it is farther away from the Nash equilibrium of the original one. The result
in this section will inspire the 7 adjustment schemes designed later in the paper to achieve
the best possible convergence to the Nash equilibrium of the original unregularized Markov
game.

It can be shown that the Nash equilibrium of the regularized Markov game is a pair of
completely mixed policies, i.e. V7> 0 there exists ¢, >0 such that min, ,7(a | s) =c,, and
ming , @5 (b | s)=c, [119]. In this work, we further assume the existence of a uniform lower

bound on the entries of (7%, ¢*) across .

Assumption 4.2. There exists a positive constant c (independent of T) such that for any

7>0

min7}(a|s) = c, mibn<b;(b | s) = c
S,

S,a

To measure the convergence of the iterates to the Nash equilibrium of the regularized

Markov game, we recall the definition of g, in Equation 4.2 and define

62 = JT(W:,gb:_) - 97(7@1@)7 51? = JT(W9k7¢¢k) - gT(WQk)' (4.11)

62

The convergence metric is asymmetric for two players: the first player is quantified by its
performance when the second player takes the most adversarial policy, while the second
player is evaluated under the current policy iterate of the first player. We note that ¢} and (5,‘?
are non-negative, and 9] = 5,‘? = 0 implies that (7, , ¢y,) is the Nash equilibrium. Under
this convergence metric, the following theorem states that the GDA updates in Equation 4.10
solve the regularized Markov game linearly fast. The proofs of the theoretical results of this

paper are presented in Section C.1 of the appendix.

24/15|

——, dNn
V (1_’7)pminc,

choose the initial policy parameters to be 8, = 0 € RISl and ¢y = 0 € RISXIBI (the

Theorem 4.1. We define L. = 3Ly, max{r, 1}, C; = ﬁi‘?(‘)‘ég), and Cy =

d

initial policies 7y, and ¢y, are uniform). Let the step sizes of Equation 4.10 be

ap = Q, ﬁkzﬁa

with «, (8 satisfying

1 « . (T —=7)p3. A2 _ Col? | 16|S|
< -, 5 < = .8}, a < L ,
et < T 5 S eS¢ S ME T T e e
If Assumption 4.1 holds and
307 + 05 < Oy, (4.12)

then the iterates of Equation 4.10 satisfy for all k = 0

T 1- v Oﬂ—prgninc2 T
307 + 00 < (1— (3)2|8’)E (307 + 69).

Theorem4.1 establishes the linear convergence of the iterates of Equation 4.10 to the
Nash equilibrium of Equation 4.5, provided that the initial condition Equation 4.12 is

satisfied. The convergence is faster when 7 is large and slower when 7 is small. Choosing

63

}.

T to be large enough guarantees the initial condition but causes the Nash equilibrium of
the regularized Markov game to be distant from that of the original Markov game. This
motivates us to make the regularization weight a decaying sequence that starts off large
enough to meet the initial condition and becomes smaller over time to narrow the gap
between the regularized Markov game and the original one. We discuss two such schemes

of reducing the regularization weight in the next section.

4.5 Main Results - Solving the Original Markov Game

This section presents two approaches to adjust the regularization weight that allow the
GDA algorithm to converge to the Nash equilibrium of the original Markov game. The first
approach uses a piecewise constant weight and results in the nested-loop updates stated
in Algorithm 4.1. In the inner loop the regularization weight and step sizes are fixed, and
the two players update their policy iterates towards the Nash equilibrium of the regularized
Markov game. The outer loop iteration reduces the regularization weight to make the
regularized Markov game approach the original one. The regularization weight decays
geometrically in the outer loop, i.e. 7,41 = 17y, where 1 € (0, 1) must be carefully balanced.

On the one hand, recalling the definition of ¢, in Equation 4.2 and defining

zk = JTt (71';, :'z) - th<7T‘9t,k>7 6219 = JTt(ﬂ-et,k7 ¢¢t,k> — 9n <7T9t,k>7

we need 7) to be large enough that if ¢; ¢ and v, o observe the initial condition 307 + 55? 0 <
Ci 7, then so do 6,11 and 9,11 in the worst case. On the other hand, an 7 selected
excessively large makes the reduction of 7; too slow to achieve the best possible convergence
rate. Our next theoretical result, as a corollary of Theorem4.1, properly chooses 7 and K,
and establishes the convergence of Algorithm 4.1 to the Nash equilibrium of the original

original problem.

Corollary 4.1. Suppose that Assumption 4.1-Assumption 4.2 hold and 1y is chosen such

64

Algorithm 4.1: Nested-Loop Policy Gradient Descent Ascent Algorithm with
Piecewise Constant Regularization Weight
Initialize: Policy parameters 6y = 0 € RS*4 and vy = 0 € RS*5, step size
sequences {«;} and {f;}, an initial regularization parameter 7
fort=0,1,--- ., T do
fork=0,1,--- | K; —1do
1) Max player update:

9t,k+1 = ‘gt,k + OthQJT(ﬂ'et’k, gbwt,k)
2) Min player update:

¢t,k+1 = 77Z)t,k - 6tv¢<]7' (7T9t,k+17 qbllh:,k)

end

Set initial policies for next outer loop iteration 6,119 = 0; i, Y1410 = Vi K,
Reduce regularization weight 7,1 = n7; and properly adjust oy, 5,

end

that 36§ o + (53570 < C1719% We choose) = 2%11122%5’ where Ly = 4log | A| + 3log |B| + %
and C is defined in Theorem4.1. Then, under proper choices of oy and (3, the iterates of

Algorithm 4.1 converge to a point such that
‘](W*7 Qb*) - gO(ﬂ-HT,o> <€ and J<7T9T,0’ ¢¢T,0) - g0<7T9T,0) S € (4.13)

in at most T = O(log(e™1)) outer loop iterations. The total number of gradient updates

required is Y,_, K; = O(¢™3),

Corollary 4.1 guarantees that (7y,., ¢,) converge to an e-approximate Nash equilibrium
of the original Markov game in T' = O(e~3) gradient steps. In order to achieve this rate,
K, has to be adjusted along with 7: we need K, = O(7;) when 7, becomes smaller
than 1. The varying number of inner loop iterations may cause inconvenience for practical
implementation. To address this issue, we next propose another scheme of adjusting the
regularization weight that is carried out online along with the update of the policy iterates.

Presented in Algorithm 4.2, the second approach is a single-loop algorithm that reduces

2This inequality is guaranteed to hold with a large enough 7y if 7y, and @y, are initialized to be uniform.

65

Algorithm 4.2: Policy Gradient Descent Ascent Algorithm with Diminishing
Regularization Weight

Initialize: Policy parameters 6, = 0 € RS*4 and vy = 0 € RS*5, step size
sequences {«y} and {3}, regularization parameter sequence {7y}

for k =0,1,--- , K do

1) Max player update:

Opi1 =0, + OékVGJTk (ﬂ-ek7 ¢'¢'k>
2) Min player update:

2/Jl'c+1 = ¢k - ﬁkvaTk (7T9k+17 ¢'¢'k)

end

the regularization weight as a polynomial function of the iteration k. We define the auxiliary

convergence metrics

P =T 05) = gn(m). OF = Jn(mo, du) = 9r,(m0,),

which measure the convergence of (7, , ¢y,) to the Nash equilibrium of the Markov game
regularized with weight 7. To judge the performance of the iterates in the original Markov
game, we are ultimately interested in bounding J (7, ¢*) —go (7,) and J (g, , ¢y,) —Go (s,)-
Thanks to Lemma 4.3, we can quantify how fast 67 and (5,f approach these desired quantities
as 7y, decays to 0. Under an initial condition on ¢} and 6,‘5, we now establish the convergence

rate of Algorithm 4.2 to (7*, ¢*) of Equation 4.1 through a multi-time-scale analysis.
Theorem 4.2. Let the step sizes and regularization parameter be

&%)

RN PSP

To

5k=50, T = ma

with «g, Bo, T0, and h = 1 satisfying a system of inequalities discussed in details in the

analysis. Under Assumption 4.1-Assumption 4.2, the iterates of Algorithm 4.2 satisfy for all

66

Ci1o + 3(log | A| + log |B])mo

J(W*7¢*) - 90(77-91@) < 3(]{,’ + h)1/3 ’ (414)
(1 —~)Ci7 + (log |A| + log |B|)mo
J<7T0k7 ¢wk) - gO(WGk) < (1 — ’}/)(k T h>1/3 5 (415)

where the constant C' is defined in Theorem4.1.

Theorem4.2 states that the last iterate of Algorithm 4.2 converges to an O(k~'/3)-
approximate Nash equilibrium of the original Markov game in £ iterations. This translates
to the same sample complexity as Algorithm 4.1 derived in Corollary 4.1. Compared with
Algorithm 4.1, reducing 7; online along with the gradient updates in a single loop simplifies
the algorithm and makes tracking the regularization weight, step sizes, and policy iterates
simpler and more convenient. We note that the techniques in [29] may be used to analyze
the finite-time performance of GDA for Markov games and lead to a convergence rate at

71/10.5)

least worse than O (k , which we improve over.

Remark 4.1. Assumption 4.2 is a restrictive assumption that does not seem necessary
but rather arises as an artifact of the current analysis. When we apply the weaker PL-
type condition (Lemma 4.4) in the analysis, the entries of the iterates Ty, , ¢y, need to be
uniformly lower bounded, which is difficult to establish using the game structure. We come
up with an innovative induction approach to quantify the connection between min, , 7y, (a |

™

$), ming j, ¢y, (b | s) and the optimal gap 6], 5,‘?. This approach allows us to transform the
uniform lower bound requirement on my, , ¢y, to that on the Nash equilibrium, leading to
Assumption 4.2.

A Markov game is said to be completely mixed if every Nash equilibrium of the game
consists of a pair of completely mixed policies, i.e. min,,7*(a | s) > 0, ming, ¢*(b |
s) > 0 for any Nash equilibrium (7*, $*) of the Markov game (if more than one exists).

Assumption 4.2 intuitively seems no stronger than requiring the original Markov game

to be completely mixed. If the original Markov game has at least one completely mixed

67

Nash equilibrium, the Nash equilibrium of the regularized Markov game should also be
completely mixed even when the regularization weight is small, since the regularization
encourages the solution to be more uniform. The reward function that results in completely

mixed Markov games is well studied in [136—138].

4.6 Numerical Simulations

In this section, we numerically verify the convergence of Algorithm 4.2 on small-scale
synthetic Markov games. Our aim is to confirm that the algorithm indeed converges rather
than to visualize the exact convergence rate, as achieving the theoretical rate derived in
Theorem4.2 requires very careful selection of all involved parameters. Considering an
environment with |S| = 2 and |A| = |B| = 2, we first choose the reward and transition

probability kernel such that the Markov game is completely mixed?.

a=1le—-3,Br=1le-2, u=(k+1)"® a=1e-3,Bc=1e—2, x=0 ax=1e—-3,Bk=1le—-2, 4x=0

£ 10! . 10t e _
w3 | — J(m, ") — golme,) 10! — J(m",¢°) — go(mp,) \ — J(m", ¢") — go(ik)
= /Mo, $y.) = 9ol(me,) 10° i J(1te,, $y,) — go(me,) J(ite, @) — golity)
8 T
I |
o -1 | 10]
5 | 10 \ “
o ' -2 N
o L I 10
>
c 107! ‘h\ 10-3 \
S 1071

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

k k k
Figure 4.1: Convergence of GDA for a Completely Mixed Markov game
We run Algorithm 4.2 for 50000 iterations with oy, = 1073, 8, = 1072, 7, = (k+1)7Y3,

and measure the convergence of 7 and ¢; by metrics considered in Equation 4.14 and
Equation 4.15 of Theorem4.2. As shown in the first plot of Figure 4.1, the last iterate
exhibits an initial oscillation behavior but converge smoothly after 10000 iterations. In

comparison, we visualize the convergence of the last iterate and averaged iterate of the

3To create a completely mixed game with |A| = |B| = 2, we simply need to choose the reward function
such that r(s, -, -) as a 2x2 matrix is diagonal dominant or sub-diagonal dominant for any state s € S, and we
can use an arbitrary transition probability kernel. The exact choice of the reward function and transition kernel
as well as the Nash equilibrium of this Markov game are presented in Section C.3 of the appendix.

68

GDA algorithm without any regularization (second and third plots of Figure 4.1), where
the average is computed with equal weights as 7, = S o To P = o S o by, The
existing theoretical results in this case guarantee the convergence of the averaged iterate
but not the last iterate [29]. According to our simulations, the last iterate indeed does not
converge, while the averaged iterate does, but at a slower rate than the convergence of the
last iterate of the GDA algorithm under the decaying regularization.

The theoretical results derived in this paper rely on Assumption 4.2. To investigate
whether this assumption is truly necessary, we also apply Algorithm 4.2 to a Markov game
that has a deterministic Nash equilibrium and does not observe Assumption 4.2*. As
illustrated in Figure 4.2, the experiment shows that Algorithm Algorithm 4.2 still converges
correctly to (7%, ¢*) of Equation 4.1. This observation suggests that Assumption 4.2 may be
an artifact of the current analysis and motivates for us to investigate ways to remove/relax
this assumption in the future. We note that the pure GDA approach without regularization
also has a last-iterate convergence and does not exhibit the oscillation behavior observed in
Figure 4.1, since the gradients of both players never change signs regardless of the policy of

the opponent in this Markov game.

ax=1le—3,Bxk=1le—-2, u=(k+1)"® a=1e-3,Bx=1e—2,x=0 ax=1le—3,Bxk=1e—2, %x=0
L2 10! — 10t L. 10t .. _
= — J(m*,¢") — go(ms,) — J(m",¢") — go(ms,) — J(m*, ¢") — golit)
= 10 J(Mte,. @y,) = o(le,) | 10 J(Mg,, Py,) — 9olms,) I i) = Gole)
(O] 100
o
qc) 10-1 101
o
o 1
S o -2 10~
o
]
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
k k k

Figure 4.2: Convergence of GDA for a Deterministic Markov game

4The detailed description of the game is again deferred to Section C.3 of the appendix.

69

4.7 Future Directions

Our current work on Markov games relies on the Nash equilibrium being a pair of completely
mixed policies. Numerical simulations suggest that our proposed algorithm converges
efficiently in Markov games that do not satisfy this assumption. However, significant
challenges are present in removing or relaxing this assumption, and we leave it as a possible
future direction.

It is also interesting to investigate the extension of the work to the sample-based
setting. The gradient of the policy optimization objective in Equation 4.9 depends
on the value functions, which can be estimated with a critic variable updated on a
faster timescale. Our current analysis for the deterministic gradient setting relies on
a connection between the optimality gap (67, 5;?) and difference in smallest policy en-
try (ming, 7*(a | s) — min, , mx(a | s), ming , ¢*(b |) — ming , ¢x(b | s)) established in
Lemma C.4 and its proof. Showing a similar connection under stochastic errors is the
biggest challenge of this extension. It is possible that a convergence with high probabil-
ity (rather than in expectation) is the correct metric to use to control the aforementioned

difference in smallest policy entry in the stochastic setting.

70

CHAPTER §
ACCELERATING POWER SYSTEM OPTIMIZATION WITH REINFORCEMENT
LEARNING

In this chapter, we apply reinforcement learning to solve a parameter selection problem in
power system optimization. In particular, we consider the alternating current optimal power
flow (ACOPF) problem, which studies minimizing the cost of generating and transmitting
electrical power while satisfying the network demands and obeying physical transmission
laws. Formulated as a complicated and highly non-convex optimization program, the
ACOPF problem is crucial for the efficient operation of modern power networks and needs
to be solved at a high frequency in real time as the network demands and topology change.
One of the most successful approaches of solving large-scale ACOPF problems leverages
the alternating direction method of multipliers (ADMM) algorithm [139], which efficiently
distributes the computation and accelerates the solution.

However, it is known that the convergence behavior of ADMM in this context is highly
dependent on the selection of penalty parameters, which are usually chosen heuristically.
[140] shows that poorly selected parameters can severely slow down the algorithm conver-
gence or even lead to divergence.

Motivated to develop a more reliable penalty parameter selection scheme, we view
the ADMM solving process as stochastic environment and propose learning a parameter
selection policy using RL, with the goal of minimizing the number of iterations until
convergence. We train our RL policy using deep Q-learning, and show that this policy can
result in significantly accelerated convergence (up to a 59% reduction in the number of
iterations compared to existing, curvature-informed penalty parameter selection methods).
We also show the superior generalizability of our policy, which performs well under unseen

loading schemes as well as under unseen losses of lines and generators (up to a 50%

71

reduction in iterations). Though initially formulated as a single agent RL problem, our

solution interestingly turns out to have a multi-agent interpretation'.

5.1 Related Works

To speed up convergence and reduce the effort of penalty parameter tuning in ADMM, adap-
tive penalty parameter algorithms have been studied in order to update penalty parameters
during the optimization using feedback from the previous iteration. Examples include resid-
ual balancing [141], which increases or decreases penalty parameters based on the relative
magnitudes of the primal and dual residuals, and methods that use estimates of the local
curvature of the dual function to inform updates [142]. Mhanna et al. in [143] demonstrate
significantly improved convergence performance for the ACOPF problem using adaptive
penalty parameter algorithms over vanilla ADMM with static penalty parameters. However,
the techniques in [143] still rely on tuned parameters within the adaptive algorithm, and also
require additional logic steps and the computation and storage of gradient information.

Ultimately, these existing adaptive penalty parameter algorithms rely on heuristics,
presenting an opportunity for their replacement with machine learning techniques that may
have superior performance. In this work, we develop a reinforcement learning (RL) [144]
method to train a policy for selecting penalty parameters to accelerate the convergence
of an ADMM algorithm for solving ACOPF problems. The ADMM parameter selection
task has a sequential decision making structure, as penalty parameters are updated based
on feedback from past iterations. RL, as a convenient framework for sequential decision
making problems, is a natural fit for this task.

Machine learning techniques have been used to design optimization methods [145, 146].
There are fewer works that develop embedded-ML methods specifically for distributed
optimization algorithms. In [147], a recurrent neural network is trained to predict the

converged values of variables in ADMM subproblems for DC-OPF. In [148], the authors

IThe presentation in this chapter is partly adapted from [40].

72

replace ADMM subproblems with an RL policy that predicts solutions. In [149], the authors
learn to solve ADMM subproblems by recasting them as deep neural networks. Recent
contemporaneous work [150] trains an RL policy to tune parameters to accelerate ADMM
convergence using policy gradient methods; however, they focus on convex QP problems
with convergence guarantees and do not specifically consider power systems problems.

Moreover, RL methods have shown promise in other power systems applications [151, 152].

5.2 Preliminaries

In this section, we provide a brief overview of the ADMM algorithm, present the ACOPF
problem formulation, and describe how the underlying objective for ACOPF can be re-

formulated to fit into the ADMM framework and to be solved with ADMM.

5.2.1 Alternating Direction Method of Multipliers

ADMM is designed to solve problems of the form

min_ f(z) + g()
reR™1 zeR™2 (51)

s.t. Az + BT = c,

where A e R™>*™ B e R™*™ and ¢ € R™, and where f : R™ — Rand g : R"> — R are
closed functions. Only linear equality constraints are present in this formulation, but we note
that non-linear and/or inequality constraints can be easily modeled by properly introducing
slack variables [153].

Let y € R™ be the vector of Lagrange multipliers used to enforce the constraints. We

form the augmented Lagrangian as
1
L,(z,%,y) = f(z) + g(z) + y" (Ax + BT — ¢) + §(Ax + Bz —¢)"Q(Ax + BT — ¢).

The matrix (2 € R™*" is a diagonal matrix with the diagonal entry defined as €2;; = p; for

73

some scalar p; > 0. We refer to p; as the i-th penalty parameter.

The ADMM algorithm essentially uses a blend of dual descent and method of multi-
pliers to find the saddle point of the Lagrangian. Let k£ be the ADMM iteration counter,
where iterates are marked via square brackets in superscript. In each iteration of ADMM,
we sequentially update variable x according to Equation 5.2a , variable ¥ according to

Equation 5.2b, and the Lagrange multipliers y via Equation 5.2c.

2% = argmin L, (z, 241, yI¥) (5.2a)
j[k—&-l] _ arg{nin Lp(lL‘[kJ'_l], z, y[k]) (5.2b)
g1l = g5 QA 4 ekt — () (5.2¢)

The primal residual rz[,k] and dual residual rgk], defined as follows, provide a metric of

convergence.

P9 = A2tM 4 Bzl — ¢ (5.3)

Tgﬂ] — 20ATB (j[k] _ a—;[kfl]) _ 5.4)

The ADMM iterations proceed until the /5 norms of the primal and dual residuals, which
represent the feasibility of the primal and dual problems, meet their convergence thresholds

€, > 0 and ¢4 > 0, respectively:
Hr][f]Hz <e¢, and HTC[Ik]HQ < €, (5.5

5.2.2 Alternating Current Optimal Power Flow

Consider a power system represented by an undirected graph (5, L), where 5 and £ denote
the collection of nodes and edges. Each node i € B, also referred to as a bus, has a complex

power demand denoted as d; = p¢ + j = ¢ for some p¢, ¢¢ € R. The voltage of bus i is v; € C,

74

and we use e; and f; to denote the real and imaginary parts, i.e. v; = e; + 7 * f;. We can
alternatively represent the voltage in a polar form with w; = €2 + f? and §; = arctan(f;/e;).
A subset of the buses may have a power generator attached, and we use G < B to denote the
collection of generators®. Each generator bus i € G can generate a complex power with a
real part p/ € R and imaginary part ¢/ € R.

An edge of the graph, also referred to as a branch, represents a transmission line. For a
branch from bus 7 to j, p;; and g;; denote the real and imaginary power flow through the
branch in the nominal direction, and p;; and g;; denote the real and imaginary power flow in
the reverse direction. We note that p;; and g;; are not simply the negative of p;; and g¢,;; these
quantities are determined from the voltage at bus ¢ and j by solving a system of power flow
equations, which corresponds to Equation 5.6d-Equation 5.6g in the optimization problem
below.

The objective of the ACOPF problem, presented in Equation 5.6, is to find the most
economic operating point of the generators that obeys the physical laws and satisfies the
power demand p¢, ¢¢ at every node i. The generation cost ¢; is a quadratic function in
the real power output. Equation 5.6b-Equation 5.6¢ are known as power balance equa-
tions and represent the power transmission laws along with Equation 5.6d-Equation 5.6;.
Equation 5.6k-Equation 5.61 restrict the magnitude of the power flow between bus 7 and j.

Equation 5.6m-Equation 5.6n represent the limit of the power generators.

min ci(pd) (5.6a)
Po;dg; wirOi Wit wi; ;
s.t.p? — p? = gow; + 2 Dijs Vie B (5.6b)
JEN;
q — qf = —b;’ng’ + Z Qij, Vie B (5.6¢)
JeN;
Pij = GiWi + Gigwiy + bjwy, V(i,j) e L (5.6d)

ZWe assume that there is at most one generator at each bus to simplify the discussion. In general, multiple
generators can be on a bus, and our problem formulation easily extends to such scenarios.

75

qij = —byw; — bz‘ng + gijwz‘lju V(i,j) e L (5.6¢)

pii = gj;w;j + gj,-wg — bjiwfj, V(i,j) € L (5.6f)
¢ji = —bjw; — bjiwg — gjiwi[j, V(i,j) e L (5.6g2)
—or <6, <o, Vie B (5.6h)
(wi)* + (wi)* = wiwy, (i, j) € L (5.6i)
0, —0; = arctan(wilj/wf;), V(i,j) e L (5.6))
NP5 @S T V(i,j) e L (5.6k)

P+ @G < Tij, V(i,j)e L (5.61)
B? <p?! <7, Vg, €G (5.6m)
¢ <ql <7, Vgie G (5.6n)

We use N; to denote the neighbors of bus 7, i.e. N; = {j € B : (i,7) € L}. The decision
variables of this optimization program include p?, ¢/, w;, 0; and auxiliary variables wi’j and
w/;, which are defined to be /w;w; cos(6; —6;) and , /w;wy sin(6; —6;). The other quantities

in Equation 5.6 are parameters that depend on the structure and physical properties of the

power network (see [143] for details).

5.2.3 ACOPF Solved via ADMM

The authors in [143] propose a method to decompose the ACOPF problem Equation 5.6
based on the observation that certain variables can be decoupled by properly duplicating these
variables and enforcing a consensus through coupling constraints. Ultimately, Equation 5.6
can be reformulated as the composition of small sub-problems and written in the form
of Equation 5.1 with suitable choices of A, B, ¢, and (non-convex) loss functions f and g.
Recall that the ¢-th coupling constraint in the ADMM formulation is associated with
penalty parameter p;. In [140], improved convergence performance is observed for ACOPF

when p; values are assigned based on the type of coupling constraint they are penalizing.

76

slk] K

| RL Agent(s)
vl 2|
Residual
Calculation
1 ol K] pl
XL XY ADMM
Solver
xle=1] glie=1] k1]

Figure 5.1: Environment (ADMM Solver) and RL Agent Interaction

They categorize the coupling constraints into two different types: constraints that correspond
to the real (p) and reactive (q) power flows, and constraints that correspond to voltages (v)
and angles (). We use n,, and n,g to denote the number of the two types of constraints,
and define C,,, and C,y to be the index set of power related and voltage related constraints,
respectively. We use p,, € R"r? for the penalty parameters for the p or ¢ coupling constraints

and p,¢ € R™?¢ for the penalty parameters for the v, w, or # coupling constraints.

5.3 Reinforcement Learning Algorithm Design

While we seek to reduce the number of ADMM iterations until convergence by properly
choosing penalty parameters, the goal of an RL agent is to maximize the discounted
cumulative reward it collects from the environment. To translate our objective to that of
the RL agent, we have to model our ADMM parameter selection problem as a suitable RL
problem, which includes identifying the environment and dynamics and making the proper
choice of the state space, action space, and reward function.

We regard the ADMM solution process as the RL environment in the following sense.
Each iteration of the ADMM algorithm corresponds to one RL iteration. In iteration
k =0,1,..., the agent observes the current state of the ADMM solver sl¥l. Based on s*!,

the agent selects an action a!*], which is simply a choice of p!*], the penalty parameter of

77

the k-th iteration, and receives a reward R(s!*], al*l), which we will design to reflect the
value of the current state to the ADMM convergence. The parameter pl*! is then fed back
to the ADMM solver for another ADMM iteration. This process is repeated until both the
primal and dual residuals from the ADMM solve drop below the thresholds in Equation 5.5.
The interaction of the environment and the agent in ADMM solving process is shown in
Figure 5.1.

State space S: The state provides an important source of information that should summarize
the progress of the ADMM algorithm and include key factors necessary for the agent to
make decisions about p. In this problem, we naturally expect the primal and dual residuals to
contain information about the optimal choice of p. To ensure that s!¥! sufficiently represents
the state of the ADMM solving process, we include the past n-point history of the residuals

k]

in sl ie.

Mkl — [(rz[,’f‘”“], ng_nﬂ]), e (Tl[)k]7 rg“])] e R27*(patnve)
Action space A: As p values are continuous variables, the action space for this problem
is continuous, which dictates the use of RL algorithms compatible with continuous action
spaces. Nevertheless, in this work we discretize the action space into the collection of 10
values, motivated by the observation that the effective discretization of a continuous action
space can sometimes lead to better trained policies [154].

The existing literature suggests that p values picked from a certain range result in superior
convergence speed. Specifically, [143] considers using two different p for the two types of
constraints: for constraints related to real and reactive power, p,, = 400 is used for IEEE
9-bus, 30-bus, and 118-bus systems; for constraints related to voltage, p,9 = 40000 is used
for IEEE 9-bus and 30-bus systems and p,¢ = 4000 is used for the 118-bus system. Though
this particular choice of the parameters may not be optimal, it suggests a reasonable interval

for p to provide to the RL agent. We select [100, 1000] as the range of p,,, and [500, 70000]

78

for p,p in the 9-bus and 30-bus systems and [500, 7000] in the 118-bus system, discretized
as shown in Table 5.1.

Table 5.1: RL Action Space & Initial p Values

p Category Initial Value Action Space

Ppq 400 {100, 200, 300, 400, 500, 600, 700,
800, 900, 1000}

P (9-, 30-bus) 40000 {500, 2000, 5000, 10000, 20000,
30000, 40000, 50000, 60000, 70000}

pvo (118-bus) 4000 {500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 5500, 7000}

Reward function R2: The reward function is a crucial signal that affects the behavior of the
agent. We have to carefully design the reward function to translate our objective, which is to
accelerate ADMM convergence, correctly to the agent. The reward function R should be
chosen such that R(s, a) is large if taking action a while in state s leads to fast convergence
and small if taking action a while in state s leads to slow convergence. With this in mind, a
natural choice of the reward function is a large bonus given only to the convergence state;

for instance,

200, if

Tp

k+1 k+1
o], s omna [, <

Rconv(s[k]a a[k]) =
0, else.

Due to the presence of the discount factor y € (0, 1), the reward received further in the future
becomes less valuable. Therefore, to maximize the discounted cumulative reward under this
reward function, the agent will aim to reach the convergence state in as few iterations as
possible.

Though this design of the reward function encodes our objective, it causes the agent
to receive extremely sparse reward signals in the training process. Until the very last

iteration, the agent will not receive any useful signal throughout the hundreds or thousands

79

of iterations that are typically required for ADMM algorithms to converge for moderately
sized ACOPF problems. Sparse rewards commonly cause exploration and credit assignment
issues in RL and significantly slow down the learning process.

To offer a denser signal to the RL agent, we add the residuals to the reward function.

Specifically, the reward received by the agent in state s!¥! is proportional to the reduction in

[rF 1 and [P+, from |75, and [#47),:
R (s gy — L om [k-+1] Loy [k-+1]
(5,) = 2= = I) + (e =),

where Z, and Z; are normalizing factors that balance the magnitude difference between the
primal and dual residuals. This reward function makes sense, as achieving fast convergence
is equivalent to quickly driving the residuals to the thresholds. This reward is non-zero in
every ADMM iteration.

While we observe that the combination of R, and R, works well in this problem, we
further innovate the reward function design by taking advantage of the non-counterfactual
nature of the environment. We note that in most RL problems, the environment transition
is irreversible, that is, once an action a[*! is deployed in state s*], the environment moves

[k+1]

forward to the next state s , and the consequence of selecting a different action in s!*]

is never observable. However, in this problem, the progress of every ADMM iteration can
be saved and we can therefore try different actions in the same state and compare their
outcomes. This feature of the environment affords more flexibility in the reward design.

In this work, we use a reward function computed with the help of a baseline policy 7.
In state sI¥], we select the baseline action al*! ~ 7 (- | sl¥l) and observe the resulting next

[k+1] [k+1]

[*+1] including primal and dual residuals 7 ' and T, . We note that this baseline

state s
action is only used to compute the residuals. We roll back to state s*! once the residuals are

collected. From state s!¥], we then deploy the RL policy, making the environment transition

[k+1] [k+1]

[++1] and reveal 75 ' and r, . The reward is defined as the relative advantage of the

to s

80

RL policy over the baseline:

~[k+1 k41 k41 1
I i i O L P
||'F][)k+1]H2 ||f5k+1]”2

This reward function essentially aims to achieve the same goal as R, but can have much
smaller variance. We note that \\r£k+1] 2 — Hr}[f] |2 and Hfrc[lkH] |2 — Hrc[lk] |2 can fluctuate across
several orders of magnitude through ADMM iterations regardless of the choice of p. The
reward function R, effectively removes the impact of the natural fluctuation of the residuals
and makes the variance of R, significantly smaller than that of R,..;. We emphasize that the
sole purpose of the baseline policy is to offset the fluctuation in the norm of the residuals
over iterations. Therefore, the baseline policy can be very simple. In the experiments of

this work, the baseline policy is to always use p,, = 500 and p,¢ = 500. Accordingly, the

reward function we choose in this work combines 7., and 7:

5.3.1 Factorized Entry-wise Policy & Multi-Agent Interpretation

We have discussed the transformation of the ADMM parameter selection problem into
a RL problem where the policy selects a vector p given the state vector. With the ten
possible choices of p values for each constraint, the total cardinality of the action space is
10™at™0 which grows exponentially in the number of constraints and quickly becomes
computationally intractable. To address this issue, we reduce the action space by simplifying
the policy using the structure of ACOPE.

First, we find that the existing heuristic methods of adjusting p, which determine p; in an
element-wise manner only using the residuals of constraint ¢, lead to reasonably accelerated
convergence rate. This observation suggests that the local information may provide sufficient

knowledge for us to (almost) optimally determine the local penalty parameter p;. As a result,

81

we are motivated to factorize the policy into the product of local policies with significantly
reduced action spaces. Specifically, let 7r; denote the policy for updating parameter p; and s;
denotes the portion of the state vector s associated with constraint ;. We assume that the

optimal policy 7* can be factorized as

Npq+Nye

m(p|s) = H m; (i | 8,

i=1

which means that we can equivalently train smaller policies 7; foreach i = 1,..., (n,, +
Nyg)-

Learning the set of small policies with its size scaling up linearly with the number of
constraints, however, can still be prohibitive in computation and memory usage. Therefore,
we make one more simplification by restricting all power related constraints to employ the
the same policy, i.e. m; = 7, for all i € C,,, and all voltage and angle related constraints
to employ the same policy, i.e. 7} = m, for all 2 € C,4. This means that the policy can be

represented as

(a|s) H (@ | s;) 1_[mog(ai | si) | - (5.7)

1€Cpq 1€Cyp

As aresult of this factorization, we only need two small entry-wise policies, each mapping
the local state vector s; € R?" to an action from 10 possible choices. The cost of maintaining
and updating such policies is fairly small.

Along with advantages in computational tractability, another important benefit of the
factorized entry-wise policy lies in its ability to be deployed to ACOPF ADMM problems
with different numbers of constraints from the one seen by the RL agent in training. This
means that the entry-wise policy pair trained under one power network can be flexibly
applied to various other network structures. Later in Section 5.4, we will discuss an
important generalization of the learned policy to minor system modifications, where it is

necessary for the policy to adapt to a change in the number of constraints.

82

Interestingly, another interpretation of this factorized policy is that there exist two
cooperative agents in the environment with aligned reward functions. In the current learning

paradigm, the agents do not communicate with each other and can only learn individually.

. . . . x . (k] _[K]
Suppose we use an iterative learning algorithm to find 7}, and 7; , where we use 7y , T,

to denote the policy iterates in the k-th iteration. Then, when m[)];] (resp. W£IZ]) is updated, it

essentially seeks to find the optimal policy in the environment with the state transition and

reward function marginalized over 7T1[]]271] (resp. 7?,[3];71]).

5.3.2 Q Learning Algorithm in ADMM Solver

In Algorithm 5.1, we formally present how we incorporate the RL agent to the ADMM

solver. We use deep Q learning to find 7

»q» Tog- Specifically, we maintain and update two

neural networks parameterized by 1, and v, to approximate the Q function of 7, and 77,

updated as shown in line 12-14. The behavior policy used to generate the samples is the

e-greedy policy based on v, and 1), (line 15), where we select € to be a small constant.
The ADMM solver employs a prescribed p vector initially and starts sampling p from

the behavior policy after n iterations.

5.4 Numerical Experiments

We demonstrate the performance of our RL policy on the 9-bus, 30-bus, and 118-bus IEEE
networks in the MATPOWER format [155]. Two additional evaluation tasks are carried out
to validate the generalization of the learning performance to the practical scenarios in power
system operations. In the first task, the RL policy is evaluated for its effectiveness in unseen
load profiles in the original network. This is an important task as the loads of a power system
frequently change, requiring the ACOPF problem to be solved repeatedly in an efficient
way. The second task tests the RL policy on a slightly modified version of the system by
removing generators and/or disconnecting transmission lines. This task is more challenging

and also important in practice since we may need to solve ACOPF problems under generator

83

Algorithm 5.1: Parameter Learning Through Q-Learning in ADMM ACOPF
Solver

1: ADMM initialization: Initial parameters z[°! € R™ z[% e R™ yl0) e R™ 5 e R

2: RL initialization: Initial Q function parameters z/;LZ] for pq agent and %E%] for v6 agent,
step size sequence o!¥], exploration parameter e, state vector length n

3: fork=0,1,2,...do

4: if k£ > n then

5: Compute residuals 'r’c[lk], r,[)k] from z!¥!, z*] and form state vector
k—n+1 k—n+1 k k
S[k] :[(TIE +],T‘0[l +])7"' ,(7’;[)],7”5])]

6: Sample action az[k] in an element-wise manner and translate to p!*!

S (| sz[k), forieCy
i W s, forie Cug
. else
8: Use the initial p value: pl¥l = p
end if

10: Perform an ADMM update Equation 5.2 with penalty parameter pl*]

11: if k£ = n then

12: Observe R(sl¥], al*!) and s+ and compute the vector Q2! such that

Qe _ R(s™ al*l) + max, me (s kH], a), forieC,y
' R(s™, al*l) + max, Q¥ (s Wl), forie Cu

13: Compute loss
) wlsh) = (@ (s alt) — i)y 3 (@ (s,) —)’
1€Cpq i€Cypp
14: Update the Q function parameter
k
ol = uld — a1y, 0wl v)
k41 k k
Vug ! = b — oIV Ll 0
15: Set the behavior policy to be e-greedy for all s
Al—1)el¥] . ~lk+1
2l (a] s) = {1 - B ifa=ap ()
Pq - elk] .)
S otherwise
Al
~ (LA[=Del* ~[k+1]
Ay a]s) = {1 - fa=ay ()
% otherwise
where a1 (s) = argmax, Qi (s,a), al5"(s) = argmax, Qi (s,a).
16: end if
17: Terminate if ADMM has converged
18: end for

84

and line outages.

Two small-sized neural networks of identical structure (4 fully-connected layers with
hidden dimension 256) are used to approximate (),,, and (). The action space has dimen-
sion 10, and we choose the number of residual history points n = 20. This makes the input
and output dimension of the neural network 40 and 10, respectively. We take the initial p,,
and p,, to be the values suggested by [143] (provided in Table 5.1). Each test instance is

solved from a cold-start in ADMM.
Table 5.2: Performance of RL Policy Under Training Loads (ADMM Iterations)

[Mhanna 2019] | RL policy | Iteration Reduction
9-bus 879 358 59.3%
30-bus 1400 738 47.3%
118-bus 525 343 34.7%

5.4.1 Performance on Training Scheme

The RL policy is trained under the default loading for 1000 RL episodes, where one episode
is a complete ADMM solving process. Compared with the state-of-the-art p adjustment
scheme in [143] that results in ADMM convergence in 879, 1400, and 525 iterations for
9-bus, 30-bus, and 118-bus systems, the RL policy reduces the number of ADMM iterations
by at least 30% (see Table 5.2). To understand the mechanism behind the fast convergence
under the RL policy, we show the primal and dual residuals over ADMM iterations under
the RL policy and the scheme in [143] for the 9-bus system. While the scheme in [143] leads
to frequent fluctuations of the residuals which prolong the ADMM solving process, the RL
policy avoids these fluctuations. Although this trend is not as obvious in 30-bus and 118-bus

systems, we still observe that the RL policy allows the residuals to drop more smoothly.

5.4.2 Generalization of RL Policy to Varying Loads

We also test the generalization of the RL policy to varying loads. Note that the RL policy has

only been trained on the default loads from MATPOWER, not on any other loading schemes.

85

[Mhanna 2019] RL Policy

< 10 L10° — T 10°] R
- g S q ©
_-L.% 1014 102 re) _-g 1014 F10? —g
0. o 9 LD
o 107 Q o 10724 P10t @
_ , & o
© 107 =T 10 10° "o
£] 10t 3 = >
DL_ 10 QO QC_ 10741 L1010
! , , ‘ — l102
0 200 400 600 800 0 200 400 600 800
ADMM lteration ADMM lteration

Figure 5.2: Primal and Dual Residuals under RL Policy for 9-bus System

We create a dataset of 50 test instances by randomly perturbing the default loads in the range
[-10%, 10%] at each bus. We summarize the number of ADMM iterations to convergence
in Table 5.3. The RL policy reduces the ADMM iterations by 28% to 50% across test cases

compared with the scheme in [143].

Table 5.3: Performance of RL Policy Under Varying Loads (ADMM Iterations)

p selection method

[Mhanna 2019] | RL policy

mean std | mean | std | Iteration Reduction
9-bus 813.4 | 204 | 407 | 99 50.0%
30-bus | 14143 | 43.6 | 772.5 | 18.9 45.4%
118-bus | 486.6 8 346 | 7.2 28.9%

5.4.3 Generalization of RL Policy to Generator and Line Outages

In practical situations, we may need to solve the ACOPF problem after generator and line
outages. It is therefore of interest to investigate the performance of the RL policy in a
modified network. In this section, we evaluate the ADMM convergence speed when applied
to systems with 1) one generator removed and 2) one line disconnected.® Again, we note

that the RL policies were trained on the original MATPOWER networks, without considering

3We consider all possible generator outage scenarios. Line outages are sampled in a uniformly random
manner such that they do not island the network. We exclude line outages that lead to infeasible solutions
under the method in [143].

86

line or generator losses. Table 5.4 and Table 5.5 summarize the performance of the RL
policy and its comparison with the state-of-the-art method in [143].

Table 5.4: Performance of RL Policy Under Generator Outages (ADMM Iterations)

p selection method
[Mhanna 2019] RL policy
No. Iteration
. mean std mean std .
of instances Reduction
9-bus 3 856.0 | 221.4 | 654.0 | 119.9 23.6%
30-bus 6 1325.8 | 404.3 | 695.8 | 78.9 47.5%
118-bus 54 483.8 17.7 | 340.0 | 8.8 29.7%

Table 5.5: Performance of RL Policy Under Line Outages (ADMM Iterations)

p selection method
[Mhanna 2019] | RL policy
No. Iteration
. mean std mean | std .
of instances Reduction
9-bus 6 698.7 | 218.5 | 367.3 | 31.1 47.4%
30-bus 10 1455.5 | 225.6 | 800.4 | 93.2 45.0%
118-bus 50 486.5 6.0 346.1 | 6.1 28.9%

In the 9-bus system, there are three generator buses and six lines that can be disconnected
while avoiding islands. In Figure 5.3, we detail the ADMM convergence under the RL
policy for each outage scenario, and note that the proposed method always outperforms

[143] by a large margin.

5.4.4 Generalization of RL Policy to Unseen Network Structures

We also performed experiments on the generalization of the RL policy to networks that were
not seen during training. For example, one may be interested in training a RL policy for a
9-bus system and deploying it to a 30-bus system. Though our policy factorization described
in Subsection 5.3.1 makes it possible to apply the RL policy to an ACOPF problem with a
different number of constraints, we experimentally found that policies trained in one network

perform poorly in a completely different network. This observation strengthens our belief

87

Gen1 Gen 2 Gen 3 Outage [Mhanna 2019] RL Policy

Gen 1 555 iters 485 iters

Gen 2 1081 iters 727 iters

. | Gen 3 932 iters 750 iters
Line E Line F Line A 535 iters 335 iters
Line B 1178 iters 431 iters

Line A LineDp LineC 591 iters 360 iters
Line D 604 iters 351 iters

- Line E 680 iters 377 iters

Line C Line B Line F 604 iters 350 iters

Figure 5.3: ADMM Convergence with RL Policy for the 9-bus System with Generator and
Line Outages

that there may not exist a universally optimal strategy that works for any ADMM problem,

and thus supports the need for specialized approaches like the RL policy in this work.

5.5 Future Directions

We conclude by pointing out a few ways to further improve the performance of the RL
trained penalty parameter selection method. First, we can improve the training of 7,, and
Ty through communications. The current learning paradigm outlined in Algorithm 5.1
updates each of the two policies independently assuming that the other policy is fixed to
its previous iterate. As we discussed in Subsection 5.3.1, the two policies can be regarded
as two agents that have aligned interest but would like to achieve their interest without
explicit cooperation. In multi-agent RL, it is known that in general independent learning
does not lead to the optimal policies and communication between the agents may be required.
Properly designing the communication between the agents as well as the overall algorithm
under the communication is a natural next step of this work.

Another interesting direction is to use information beyond what is available at the local
constraint. To factorize the policy according to Equation 5.7, we made the assumption that
the optimal choice of p; can be determined solely from residuals available at constraint ¢,

which likely does not hold. The fact that local information is insufficient is reflected in our

88

observation that the advantage of the RL policy over [143] shrinks as the size of the power
network scales up (since the local residuals make up a smaller percentage of the overall
information as the network becomes larger). A more reasonable assumption may be that
we can determine p; from residuals at constraint ¢ and its one-hop neighboring constraints

(constraints that share at least one variable), which leads to a policy factorization of the form

(Z ‘ S (H 7qu al {SJ}JEN > (1_[7'(';9 (ai ’ {SJ}JEM)>)

1€Cpq i€Cypo

where ; denotes the collection of one-hop neighbors of constraint 7. A significant challenge
of this approach lies in modelling the variable input dimension of the policy as the cardinality

of V; can be different across 7.

89

CHAPTER 6
CONCLUSION

In this dissertation, we presented a collections of results on single-agent and multi-agent RL
from both theory and application perspectives. To summarize, in the first aim, we recognized
that a range of data-driven algorithms in RL can be regarded as using two-time-scale
stochastic gradient descent to solve a optimization problem with a special type of gradient
oracle. We proposed a mathematical algorithmic framework that unifies these algorithms
and present the convergence rates of the algorithm for strongly convex, nonconvex, and
PL objective functions.

In the second aim, we considered multi-agent multi-task RL in the average cumulative
reward formulation. We discussed two properties of this multi-task RL problem which make
it significantly harder to solve than its single-task counterpart, followed by the introduction
and analysis of a decentralized policy gradient algorithm that converges in local and global
senses under different assumptions. We then shifted focus to a constrained multi-task RL
formulation which allows for the specification of the performance of the policy in each task.
We presented a decentralized primal-dual algorithm that provably converges the globally
optimally policy, both in objective function value and in constraint violation.

In the third aim, we studied using GDA to find the Nash equilibrium of the two-player
zero-sum Markov game, which is notoriously hard to solve with direct optimization methods
due to its nonconvex-nonconcave objective function. To bypass the issue and introduce
stronger structure into the problem, we regularize the reward function by the policy entropy.
The regularized value function exhibits a property that resembles the PL. condition, which
guarantees that GDA converges linearly fast to the Nash equilibrium of the regularized
objective. We then designed methods to properly reduce the regularization weight that

allows GDA to efficiently converge to the Nash equilibrium of the original unmodified

90

Markov game.

Finally, in the third aim we applied RL to design a penalty parameter selection policy
with the aim of improving the convergence of the ADMM algorithm applied to a power
system optimization problem. We showed that the RL policy significantly accelerates the
ADMM convergence compared with the state-of-the-art human designed penalty parameter
adjustment scheme. In addition, the RL policy exhibits strong promise for generalizability,
performing well under unseen loading schemes as well as under unseen line and generator

outages.

91

APPENDIX A
SUPPLEMENTARY MATERIAL FOR RESULTS IN CHAPTER 2

A.1 Analysis Decomposition and Proof of Main Theorem

In this section, we briefly explain the main technical challenge in analyzing Algorithm 2.1,
which is the coupling between 6, w, and the time-varying Markovian samples. Our approach
to the challenge is to properly “decouple” the variable updates so that we can handle them
individually. Specifically, we first show under time-varying Markovian samples the conver-
gence of the decision variable up to an error in the auxiliary variable (Subsection A.1.1)
and the reduction of the auxiliary variable error which hinges on the decision variable
convergence (Subsection A.1.2), which essentially form a coupled dynamical system. In
Subsection A.1.3, we introduce an important lemma that performs Lyapunov analysis on
a coupled dynamical system of two inequalities. This lemma is a unified tool to analyze
our algorithm under different function structures and may be of independent interest in the
study of the finite-time performance of multiple-time-scale dynamical systems apart from
those considered in this paper. Finally, we prove the theorem under the PL. condition in
Subsection A.1.4. Strongly convex and general non-convex functions can be treated with
similar analytical techniques, and the full details of their analyses can be found in [34].
When f observes the PE condition, we show | f(6;) — f*|* — 0. We frequently employ

a few quantities for which we introduce the following shorthand notations

2 = W — w*(@k),

m = H(Hk,wk,Xk) — H(Qk,w*(ek),Xk),
(A.1)

AHk = H<9k7w*(ek>>Xk) —E [H(ekvu}*(ek)aj()]a

X~po,

AGk = G(@k,wk,Xk) —E [G(Qk,wk,f()].

X~po,

92

We can think of A Hj, as the bias in the stochastic gradient due to the inaccurate auxiliary

variable and A H, and AGY}, as the errors that the Markovian samples cause to H and G.

A.1.1 Decision Variable Convergence

We derive a recursive formula for the iteration-wise decision variable convergence measured
in E[f(0x) — f*]. As a first step, we have from the update rule Equation 2.8 and the

L-smoothness of f

fOri1) < f(Or) + <V f(O), Okyr — Ok) + g”ek-i-l — 0]

2
= (k) — axlV f(Or), H Ok, wr, X)) + %H(%WMXMQ

~

= f(O) = arlV f(Ok), Exepy [H Ok, 0" (0k), X)])

—_— Lo?
— O <Vf(9k>, AHk+AHk> + TkHH(ekv WEg, Xk)HQ

- La?
— F(O0)— |V F(O0) > —ax (V£ (6), AHy+ AH,) + %HH(Gk,wk,Xk)HZ, (A.2)

where the last equality follows from Equation 2.2, i.e. Vf(0;) = EXW% [H (0, w* (0r), X))
A key challenge to overcome is the time-varying Markovian randomness. If the samples were
i.i.d. and the auxiliary variables were always solved perfectly, we would have E[AH}| =
E[AH,] = 0, reducing the problem to the one studied in the standard SGD. In the following
lemma, we carefully treat the Markovian noise by leveraging the uniform geometric mixing
time of the time-varying Markov chain and the Lipschitz condition of the state transition

kernel.

Lemma A.1. For any k > 7, we have
E [— <Vf(9k), AHk>] < 12[;2837']30%,%.

We can use the Lipschitz continuity of H to study the error caused by A H;, and show

that it can be bounded by the sum of |6, — 0* | and ||2;|*>. The bound on A H}, together with

93

the result established in Lemma A.1 leads to the following proposition, which states that
E[f(6x) — f*] is sufficiently reduced in every iteration if the auxiliary variable error z, is

controlled.

Proposition A.1. Under Assumption 2.1-Assumption 2.6, we have for all k = K

Lay, 2%5L2B3

9 T O Qg7 -

E[f(Ors1) — f7] < (1=Aap)E[f(Ok) — f*] +

E [[l2:]7] +

Proof. By the Lipschitz condition of the operator H,

—E[Vf(O),)] < SE[IVF(00)° + [H (O, wr, Xi) — H(Or, " (0k), Xi)]

2

< LElIve + LE]

N~ N —

EANE

Using this inequality along with Lemma A.1 in Equation A.2, we have for all k£ > 7

E[f(Or+1)] < E[f(Or)] — ar{V f(0r), AHy) — axE[|V £ (0r)]
LB%*a?

— B [(V/(O), AHi)] +

< E[f ()] + 12L* B r o, — oxE[|V (01)]

o L« LB?a?
+ S ENVAO)]+ = Elal] + =5+
a L« 251%B3
< E[f(00)] = SEIVI O] + 5 E [la] + = —mionan,
~ . LPa 25L*B3
< E[f(Or)] — AE[f(0) — f*] + "E [2]?] + 5 TR ry s

where the last inequality is due to the PL condition. Subtracting f* from both sides of the

inequality leads to the claimed result.

94

A.1.2 Auxiliary Variable Convergence

In this section, we present and analyze the convergence of the auxiliary variable, summarized

in the proposition below.

Proposition A.2. Under Assumption 2.1-Assumption 2.6, we have for all k = K

P!
2

202B20?

Efzx0a*] < (1 o

JE[l 2 *] + Cori Br—r BLE [16x]7] + + CoTjt Bi—n, B

Recall the auxiliary variable error z; defined in Equation A.1. Proposition A.2 establishes
an iteration-wise reduction of this error in expectation in face of the drift of ¢,. To prove
this proposition, we introduce Lemma A.2 that bounds the error in the auxiliary variable
caused by the Markovian samples. We skip the proof of this lemma due to its similarity to

Lemma A.1 and refer interested readers to [34] for the full proof details.

Lemma A.2. Recall the definition of C in Equation 2.27. For any k > T, we have

E[Czr, AGw)] < C17iiBrn B [l2n—r I* + 107 + wi[* + 1]

Analyzing Proposition A.2 requires properly controlling |wy, — wg—-, ||, which we handle

in the following lemma.

Lemma A.3. Forall k > 1, we have

lewr = wk—r, | < 3DBr—r, i (il + |6k + 1) .

Proof. Recall that z;, = wy, — w*(0)). We have from Equation 2.9

|z |* = [wr + BeG (Or1, wie, Xi) — w* (i)
= [(wp — W (0k)) + BuG (Orr1, wie, Xi) + (W (0k) — w* (Or41)) |
< lzl® + 2812k, G (Ors1, wiy X)) + 221, w* () — w* (Ori1))

95

+ 267 |G Oy, wr, Xu)|* + 2w (6%) — w™ (8.
From the definition of AG}, in Equation A.1,

l2kia? < lze? + 2612k, G (Ohi1, Wi, Xi) — G (Ok, wr, Xi)) + 26kzk, GOk, wi, X))
+ 2z, " (O8) =0 (Os1))+267 |GG s Xi)[*+2]w” (k) — " (Brs)

< 2l + 281(zr, G(Orir, Wi, Xi) — G(Or, wi, X))
+ 281 2, E)ngk [G(Ok, wi, X)]>+2,8k<zk, AGk) + 2z, w* (0r) —w* (Or11))

+ 282G (Opr1, wi, X3) | + 2L°B%ad, (A.3)
where the second inequality applies Assumption 2.1 and Equation 2.8, i.e.,
Hw*(ek) — w*(9k+1)“2 < L2H‘9k — 9k+1H2 = LQHOékH((gk,wk,Xk)HQ < LZBQOJ% (A4)

We next analyze each term on the right-hand side of Equation A.3. First, using the relation
(2v1,v9) < cf|v1|* + %] va|? for any vectors vy, v, and scalar ¢ > 0, we bound the second

term of Equation A.3

A 1
(2 G (Or1, s Xi) = GOk, 0, X)) < 2”4+ NG Okesr, wr, Xe) = G (O, o, Xi) |

A L? A L?B?%a}
< Zlanl? + S0 — 66l < Sl + =,

(AS)

where the second inequality follows from the Lipschitz continuity of G and the last inequality

is due to Equation A.4. Similarly, we consider the fifth term of Equation A.3

A 2
2o, (00) = 0" Bu)) < P+ 5" Bn) = " B
A 2172 A 2L2B%a?
< B al+ i - 0l < B2+ 2200 (16)

96

Next, using Assumption 2.3 and z;, = wy — w* () we treat the third term of Equation A.3
2612 E vy, [G O, wis X)) < —22Bu . (A7)

By Equation 2.24 and Equation 2.8 we have
|G (Opy1, wr, Xi)|? <2D? (||9k+1 |+ |k + 1)2 <2D? (HQkH + Bay, + |wy |+ 1)2. (A.8)

Taking the expectation on both sides of Equation A.3 and using Equation A.5-Equation A.8

and Lemma A.2

BrA

2L°B?B.a? A
El 2] < Ell] + =5 Ell/*] + Brai , B

A 2

2L*B?*a3
Bk
— 2XBhE[|2k)%] + C17 Brer BRE [2k=r |2 + 16k]% + v + 1]

Efll2x]"] +

+2D232(| 0| + Boy, + |wi| + 1)* + 2L2B%a?
< (1= ABo)E[|2]?] + C172 Brer BE [28—ry]
+ (Cy + 8D*) 72 By r BE [0k + k)]

| 2B 21?B?

Y +(Cy + 32D + + 2L B*)7} B—r, Bk (A.9)
k

where the last inequality uses a < fj and Bay < 1. Note that |z, |* obeys

|2k |? = |2k = (W — Wher) + (W (Ok) — " (Or—r,)) |
<3 (Jaul? + ln — w2 + 10" (6) — O [?)
<8l + 3 (el + 10012 + 1) + L2k — Our P
<8 (Jal? + el + [4]P) + 2B}, +

< 3 (lanl® + floww]* + 0] + 1),

where the second inequality is due to Lemma A.3 and the Lipschitz continuity of w*, and

97

the last inequality follows from the step size condition LB7,0—,, < %. Substituting the

preceding relation into Equation A.9, we have for all k£ > 7,

Elzk1”] < (1 = ABR)E[l2]*] + 3C173 Bor, BE [26]°]

+ (401 + 8D?)72 Br—r BeE [0k + |wi[?]
212 B%a? 212 B?
+ 222 Mk (40, + 32D +
ABr
< (1= ABE[|z)*] + (11Cy + 16 D?)73 Bro—r, BiE [1| 2 7]
2L%B%a3
ABr
+ 2L B*)77 Br—r, B (A.10)

+ 2L2BQ)Tlgﬁk77kﬁk

+ (AD* + 1)(4C1 + 8D*) 72 Br—r BE [|04]?] +

2 P2

2L
+ ((4D* +1)(4C, + 32D?) +
where in the last inequality we use Equation 2.24 to derive
i * < 2l —w* (01) |+ 20w (O0) [* < 2] 2 * + 2D (164 + 1)* < 20 e [* + 4D ([0 [* + 1)

By the choice of the step size we have (11C; + 16D%)723;_,, < 3. Thus, using the constant

(s defined in Equation 2.27, we know that Equation A.10 implies

_ A

2L2B?a?
2)E[szHQ] + C2leﬁk—7k6kE [H9kH2 + 1] + —k

E[sz+1”2] < (1 Aﬁk

]

Propositions A.1 and A.2 show that the convergence of the decision variable and the
auxiliary variable forms a coupled dynamical system that evolves under two different rates.

In the next section, we introduce a two-time-scale lemma that solves the system.

A.1.3 Two-Time-Scale Lemma

Although we analyze the performance of our algorithm for different types of objective

functions and with different convergence metrics, these analyses eventually reduce to the

98

study of two coupled inequalities. The dynamics of these two inequalities happen on
different time scales determined by the two step sizes used in our algorithm. In this section
we present a general result, which we call the two-time-scale lemma, that characterizes the

behavior of these coupled inequalities.

Lemma A4. Let {ay, by, cx, dy, e, fr} be non-negative sequences satisfying ZZ—E < Z—’; <
1, forall k = 0. Let {x}}, {yr} be two non-negative sequences. We consider two settings on

their dynamics.

1. Suppose that xy, yy satisfy the following coupled inequalities

Thr < (1 —ap)ve + ey + cus Yor1 < (1 —di)yr + exr + fi (A.11)

In addition, assume that there exists a constant A € R such that

Ad? A
A — by — 2% > 0 gng 25k <

k=0 A.12
d. . , Jfora (A.12)

N |

Then we have forall 0 < 7 < k

2. Suppose that {xy, yx} satisfy the following coupled inequalities

Tey1 < (1 + ap)zp + ey + ¢y Yrr < (L —di)yr + exzp + fr (A.13)

{uy} is a non-negative sequence such that

Up < (1 + ak)xk — Tpy1 + bryr + Ci, (A.14)

99

then we have for any 0 < 7 < k

k
S (1 Yo+ S0) (g Py 97)

Proof. Case 1) Consider V;, = zj + %yk’ From the second equation in Equation A.11,

Aa Aa Aa
M e < Sy < =2 (1= di)ye + enr + fr)
d+1 dy, dy,
A A A A
= (1 — ak)ﬂyk + (ak — dk) akyk + Ak Tk + akfk.
dy, dy, dy, dy,

Combining this with the first inequality of Equation A.11 yields

Aa
Vi1 = g1 +] kHka
k+1

A A A A

< (1_ak)xk+bkyk+ck+(1_ak)ﬂyk+(ak;_dk) akykJr WhTE | it
dy dy dy, dy,

A Aa? A A
= (1 — ak) T + DYk + ﬂ — Aak + by, Y + Cp + Ak CkLk + akfk
A A
< (1—aVi+ Lyt o+ 200 < (1= By g 4 A0S
2 dy, 2 dy;

where the second inequality follows from Equation A.12. Applying this relation recursively,

k—1 a k—1 Aa[fg k—1 a

de /) Zin

k—1 k—1 k—1
< (o + 2% T = 2 4 » (cz + Aaff@) [Ta-%.

t=1 l=T dﬂ
Case 2) Re-arranging the second inequality of Equation A.13 and multiplying by fl_i’

by by brerxr bifi
by < oy — Okl
kYk dr Yk ds Yk+1 T d. + d

100

Plugging this inequality into the first inequality of Equation A.13 yields

b brerx bi.f,
1 < (14 ap)zp + o + d_yk _ d_kka + kdl;; k ;Zikk
L i fi
! dy — A.l5
< (L + g + dkyk . —E Y1 + o+ a0 (A.15)

where we define g = ay, + bff. Since 1 + ¢ < exp(c) for any scalar ¢ > 0, we have

Tpi1 < exp(gr) Tk + Zk?/k - Z_I]:yk+1 + ¢ + %
k k k b, bof,
<exp(D gz, +exp (Y g) Y] (d—(yt —) ot -)
t=1 t=1 t=1 t t
< i bTyT i tft A 16
< eXp(;gt)<xT + 7 + ;(: + 0)) (A.16)

where the second inequality applies the first inequality recursively. The inequalities Equa-

tion A.15, Equation A.16, and Equation A.14 together imply

3 k i
b f
Zut<2(fvt—xt+1 ng%ft th+2 (X yt+1)+ct+£>

dy
k

k
$T+thexp th <$T TyT —I—Z(ctJr ;{t)> +d—Ty ~|—Z(ct+bt—ft)

dr t

=T

k k
< Z a; + % exp(Z(at + b;—?))) (xT + bzlyr 4+ Z(¢+ b&—?)))

t=1

Lemma A.4 studies the behavior of the two interacting sequences {z} and {y;} that
have generic structure. In our analysis, properly selected convergence metrics on 6, and
wy, evolve as zy, and y; above, respectively, according to Equation A.11 for strongly con-
vex and PL functions and Equation A.13 for non-convex functions, while the sequences

{ak, bk, ck, dg, ek, fr} are ratios and products of the step sizes {ay} and {5 }.

101

A.1.4 Proof of Main Results

In this section, we present the proof of Theorem 2.2 which considers functions observing the
PL condition. The analyses of strongly convex and general non-convex functions use similar
techniques: one needs to properly select a convergence metric according to the function
structure, set up a step-wise decay of the convergence metric like Proposition A.1 which
forms a coupled dynamical system with Proposition A.2, and apply the two-time-scale
lemma introduced in Subsection A.1.3 to the coupled system.

From the analysis of the auxiliary variable in Proposition A.2, we have for all £ > K

MG 2L2%2B%02
Elllzre1]?] < (1—Tk)E[HZkHQ]+Cﬂzfﬁk4kﬁk5 [|’9’“H2]+)\—ﬁkk + Comi Br—r, B
Due to the boundedness of the operator H,
1601 < 160 + 3 16101 — 01] < 160] + 2 o] + B8l + 1)
kll X 0 par t+1 t 0 n + 1 < 0 10g<2))

where the last inequality follows from Zf:o 2 2(42) for any ¢ > 0. This relation

Gr S Tlog(®)

implies for any k& > 0

2B%a?log?(k + 1) _

012 < 260> +
16| 6o log? (2)

24([6o|* + B%a?) log®(k + 1).

Using this inequality in the bound on E[||z;1?], we have

A 2L?B?%a}
Efoes 7] < (1 25O)+ Carf o E [16017]+ 25 4 Car o
A 212 B%a?
(1_%) [el]+24Co 1007+ B2 + 1), B log? (1) + ===,

We can apply Lemma A.4 case 1) to the result of Proposition A.1 and the inequality

102

above with 7 = KC and

L%y, 2L2B%
2) Ck‘: 2 TkOékOék_Tk,

A
di = %, er =0, fu = 24Cs([00]* + B0 +1) 7 Bi—r, B Jog® (k +1) +

zr=E[f(0k)—f*], ye=E[llz]?]. ar=Aa, b=
2L*B%a?
Ao

In this case, one can verify that we can choose A = L—2 if the step size sequences satisfy

ﬂ—’“ +. As aresult of Lemma A.4 case 1), we have forall £ > IC

2L2041C k—1)\OZt k—1 k-1 /\Oét
EL/(0n) =< (E[f(00) = /] + So=Elle D 0=+ 2 [T -5
t=K (=K t=(+1

2512 B3 48C, L2 AL oy
* (2 TROuQy_g+ ,\2 (160]*+ B0 +1)7 By—r cxlog*(k+1) + 2B} k)
k

Plugging in the step sizes to the second term, we have

2 k—1
E[/(6) —] < (E [/ (0c) — £+ 21;&%)H -2

. = <25L233a0 . AL'Bj
.
A2 (0+1)2 0 NBR(L+ 1)

48C, L*
|

k—1
pYe!
0 2 B2 2 1 Ll k+1 1__t
(|60]2+ B2a2+)CT(£+1)5/3 og”(k+))HHI(>)
k

H
>
2

< (Etr00 - 71+ 2§;i’CE[zK|2]) (-2

k—1 k—1)\at
+ 72 1og?(k + 1) Z 5/3 [T« (A.17)
£=IC

t=0+1

where we use the fact that W < 12 for all £ > 0 and the definition of Cs.

Since 1 + ¢ < exp(c) for any scalar ¢, we have

A Ao i pYe) o A g
[Ja-55) < [[exp(-57) =exp(—) 55) <exp(-= > ——)
t=K 2 t=K 2 =K 2 2 K t+1
Ay k+1 K+1 2 K+1
<exp(—2221 < < , Al
exp(—— Og(KH)) (k:+1) o1 (A.18)

103

where the last inequality results from oy > %, and the third inequality follows from

k2+2

P kg = log(257). Similarly, we have

k—1

Aoy 2£+1 2(0+1)
[To-7530< 157 <"y a1
t=0+1

Using Equation A.18 and Equation A.19 in Equation A.17,

ELf(6k) — f7] < (E [f(gic)—f*]JFQL aKE[|ZK|2]) L log as Tki 6203

B k+1 kE+1 +1)2/3
K+1 2%y 5 2Cs5 log? (k + 1)1
< E - E :
ot (EL00 - 11+ 2l) + 2O

. .. . / / 1/3
where the second inequality is a result of the relation }";_ (t+i)2/3 < W ;)

for any t' > 0.

The claimed result follows from this and Equation 2.20.

A.2 Proof of Additional Lemmas

A.2.1 Proof of Lemma A.1

Our Markov process is a time-varying one (they depend on the iterates ¢). Therefore, one
cannot directly utilize Assumption 2.5 to analyze the bias of GG in Algorithm 2.1 since the
mixing time is defined for a fixed Markov chain (see Definition 2.1). To handle this difficulty,
we introduce an auxiliary Markov chain {X’ «} generated under the decision variable 6,

starting from X;,_,, as follows

ekak ekfrk

O~ ~ ~
Xiery —F Xpri1 — - Xy —2% X, (A.20)

104

For clarity, we recall original the time-varying Markov processes { X} generated by Algo-

rithm Algorithm 2.1

Gk—fk+l ek—‘r‘k+2 ek—l Hk
Xpone 5 Xppor 7 X X

Using the shorthand notation y;, = V f (), we define the following quantities

~

Ty = B[Sk = Yb—rys Ex oy [H Ok, 0" (01), X)] = H (0r, 0" (61), Xi))]

Ty = E[Yr—ry, H(O—r,, 0" (Or—r,), X&) — H(Oh, 0" (01), X))l

Ty = E[Yp—rys HOprps 0 (O), X)) — H(Op—rp, 0 (O,), X))

Ty = E[(Yk—r,, EXWQICW[H(@k—Tk,W*(ek—m), X)] = H(O—ry, 0 (O5—r,), X1))]

T5 = E[(yk—m, EXNﬂek[H(Qk—wW*(Qk—m)aX)] ~Exepg,_ [H Ok, W (O—r), X)])]

Ts = E[<yk_7'k7 EX~u9k[H(0k7 w*(gk)v X)] - EX~,LL9)€ [H(ek—ﬂw W*(ek—m)ﬂ X]>]
It is easy to see that
—EKVf(Op), AH)| =Ty +To + T3+ Ty + T5 + Tg. (A.21)

We analyze the terms of Equation A.21 individually. First, we treat 7} using the boundedness

of H and the Lipschitz continuity of V f

‘H(ek,w*(0k>7Xk) —Ex o, [H(Gk,w*(ekLX)]H]

Ty < E[|yx — Yh—r|

< LE[|0k — Ok—r, || |] - 2B < 2B*L7y,ctyer,, (A.22)

where the last inequality follows from
k

[0k = Ox—r]| < Z | H (61, wi, Xo) | < BTyQtgp—ry -

t=k—Tg

105

Similarly, for 7, we have

Ty < E[llys—r || H (O, 0" (01), Xi) — H(Op—r,, 0" (O,) Xio)[]
< BE[”H(ka W*(Qk)’ Xk) - H(ek‘—m?w*(ek’—m)’ Xk)”]
< BLE[|0 — Ox—r, || + [w* (0k) — w*(Or—r,)|]

< BL(L + DE[[|0x — s, |] < B’L(L + 1), (A.23)

To analyze T3, we utilize the law of total expectation: given F < F’ and a random variable
X we have E[X | F] = E[E[X | F'] | F].

Let Fj be Fi, = {Xo,..., Xk, 00, .., 0k, wo,...,wx}, and for convenience we denote
pr(@) = P(Xp =2 | Fiey) and () = P(Xy = o | Fia).
Then, we have

E[<yk77k, H(ekaMW*(@kak),X'k) - H(9k77k7W*(9k77k)7Xk)> ’]:kfrk:l
< Yy | |ELH (Bpryr 0* (O—r)y X)) — H(Opmr, 0" O—r)y Xi) | Fiomry]|
= ykry | |E[E[H (Or—r,., w* (Or—r), Xi) — H (O, w* (Orer)y Xi) | et | | Fiomri]|

< B[L H(O s (B,) (1 (&) — i) | Fisy]

< QB2E[dTV<pk()7ﬁk<)) |]:k—Tk]

< 2B2E[dry (pr-1(-) Pe-1() + L6k — Or—r | | Fir],

where the second inequality uses the definition of the TV distance in Equation 2.19, and the
last inequality is a result of Assumption 2.6. Recursively applying this inequality and taking

the expectation, we get
k—1
Ty <2B°L). E[|6; — 6hr[] < 2B°Lr0y_,. (A.24)

t=k—7+1

106

Similarly, to bound 7}, we again use the definition of TV distance

E[<yk_7'k’ EX\uekak [H(ka_Tk’w*(ekf_Tk)? X)] - H(gk—’rm("}*(ek—m)’ Xk)> |]:k—Tk]
< Hyk—m H “E[H(Qk_7k7w*(0k_7'k>7 Xk) - EX~u9k7_rk[H<9k—TmW*(Qk—m)7 X)] |‘Fk_7'k]H

< B - 2BE[drv (Di(), oy,) | Fre—n]-
Taking the expectation and using the definition of the mixing time 2.1,
Ty < 2B°E[dyy (P(Xy, = -), oy,)] < 2B%a,. (A.25)

We next consider 75

E[<yk—m) EX~u9k[H(0k—Tk ’w*(ek—ﬁe)?X)] - EXN,ugki_r]EH(ek_Tk ’w*(ek—Tk)aX)]> | *Fk—Tk]
< BHE[EX~,LL9,€7TI€[H<9/€—T1@) w*(ek_Tk)7X)] _EX~’u,9k[H(0k_Tk) w*<9k/‘_7'k)7X)] | ‘Fk—m] H

< QB2E[dTV(M0k_Tka/~L9k) | ‘7:k_7'k]’

where the last inequality again comes from the definition of the TV distance in Equation 2.19.

By Equation 2.22 in Assumption 2.6, we have
Ts < 2B°E[drv (po,_,, » to,)] < 2B*LE[|6 — Ok,] < 2B°Lryay. (A.26)
Finally, we bound 7§ using the boundedness of V f and the Lipschitz continuity of H

~

Ts < E[lyp—r|IE g~y [H (O 0" (Ohr), X)| = Exer, [H (010" (01), X)]]

< BLE[||0—r, — Ok |+ |w* (Ok—r,) —w* (61)[] < 2L° BE[|0)—r, —Ok|] < 2L* B*1.0t)—r, -

The claimed result follows from plugging the bounds on 77-7§ into Equation A.21.

107

A.2.2 Proof of Lemma A.3

As a result of Equation 2.24, for any k£ > 0
|wrsrll = will < lwrsr —will = 18k G (Okr1, wie, Xi) | < DBy ([|Opsr| + o] +1) . (A27)
Define hy = ||wg| + ||fk+1]. We have forall &k > 1

hi, = |lwk—1 + Br—1G Ok, wi—1, Xx—1)| + [0k + i H (Or, wi, Xi) |
< wi—a| + DB (0] + |wr—a] + 1) + [|0k]| + By,

< (14 DBg—1)hg—1+ (B + D)Br_1

where the second inequality follows from Equation 2.24 and Assumption 2.1, and the last
inequality is due to oy, < [y, and the fact that {/3;} is a decaying sequence.

Sincel + x < e*forallx > 0,wehaveforallk > m,and k — 7, <t <k

hi < (14 DBi—1)hi—1 + (B + D)Bi—1
t—1

< (1+ DB)y g + (B4 D)Br, D, (14 Dffr)™

t'=k—ry
< (1+ DBi—r,) ™ hg—r, + (B + D)Br—r, (1 + DBg—r,)™
1
< GD’Bk*Tkahk_Tk + (B + D)Bk_TkaeDﬁkffka < Qhk—m + g,

where the last inequality follows from the step size 2(B + D)fBy_., 7, < 3 < log(2).

Combining this inequality with Equation A.27, we have for all k£ > 7,

k-1 k-1 k—1
4
lwk = wher | < D Jwisr —wi| <D D) Bi(he+1) < DBier, Y, (2hesr, + §)
t=k—T1y t=k—T1y t=k—T1y
2 2
<2D B (lwp—n [+ [0k —r 11| +§) <2DBr—n Tk (| wr—r, | + 10k | + B Br—r (76 — 1) + g)

< 2Dz, 7k (|wk = Whry | + k]| + 64 + 1) -

108

Re-arranging terms and again using the step size condition 2D f_,, 7 < %, we get

lewr — wk—r, | < 3DBr—r, i (il + |k + 1)

109

APPENDIX B
SUPPLEMENTARY MATERIAL FOR RESULTS IN CHAPTER 3

B.1 Computation Details of Examples in Section 3.3

First, we look at the example in Section 3.3 which illustrates that deterministic optimal
policy may not exist in multi-task RL. As we discussed, it is easy to see that the optimal
policy in state Sy and Sj is to always take action L in order to reach the positive reward or
to stay away from the negative reward, and all that is left to be figured out is the policy at
state .S3.

There are 2 possible deterministic policies in state S5, to always take action L or to
always take action 2. First, consider one policy 74, which is to always take L.

We have V;"*'(S3) = 7 as the agent reaches S in 2 steps under 74, and claims the +1
reward. However, this policy produces a zero value in environment 2, V,"*(S55) = 0, since
an agent will move back and forth between S35 and S, forever. Therefore, this deterministic

policy achieves

VI (S) + V5 (S3) = v + 0 = 7.

By symmetry, the value of the policy 74, which is to always take action R in state Ss, is

VI (S3) + Vo 7 (S5) = 04+ = 1.

Now, let’s consider a stochastic policy 75, which we will show performs better than the

two deterministic policies. This policy 7, takes the same deterministic actions as 74; and

110

T4, 10 state Sy, Sy, and is defined as follows for state Ss.

D, a = left
ms(alSs) =

1—p, a=right
We compute cumulative rewards under 7.

Vi (Ss) = py + p(1 — p)y® + p(L — p)*y° + ...

= py i (1 —p)?)"

___ b
1—(1—p)?
Similarly,
Vie(Ss) =1 —p)y+ QA —ppy* + (1 —p)p*° + ...
=(1-p Y ()"
k=0
_(d-p)y
1—py*
Then,
1 _
‘/171'3 (53) + ‘/27[3 (53) _ p’Y + (p)/}/

1-(1-=p» 1-p
Taking the derivative with respect to p and setting it to 0, we get

1 1

I-(1=p*)? A=p)*

which leads to p = 0.5.

111

(B.1)

The value of policy 7, at state S5 is

- . Py 1—p)y
_
_2_72_

Then, we explain how the three stationary points are computed in the second example in

Section 3.3. Note that the gradient of the value function can be expressed as

R .
aQMVi (pi) = 7 _%di7pi(s)7re(a|s)Ai (s,a). (B.2)

We define D]’ to be the |S;| x |S;| matrix where the entry (7, j) is d;°(s;|s;). It can be

easily seen that

dit.(s) = D pi. (B.3)

Given P the transition probability matrix of task i under policy my (whose entry (7, k)

denotes P;(j | k)), the matrix D’ can be computed as

DI = (1—~P")~". (B.4)

Given the small scale and the known dynamics of the problem, we can also compute the
value function and the Q function of the policy 7y in the two tasks by solving the Bellman

equation, from which we get A’ (s, a). Specifically, under a policy 7, the value functions

112

associated with the first and second tasks are

Vi=(I—+PN)H)™"| o |, and V=

In addition, we can compute the Q functions

QT(? L) = [07 (1 _p) + ’valw(si’b)? ’7‘/17T(S2)7
Q71r(’ R) = [07 (1 - p) + Wp‘/lw(s?))v ’VVvIW(SZl)J
Q3(L) =10, ~(A—=p)V5"(S3) —p, V5 (52),

Q3(, R) =10, ~(1—=p)V5(S3) —p, V5 (S),

(I =(P)")™

(1 = p)Vi"(S3) — p,
(1 = p)Vi"(S3) — p,
pVy (S3) + (1 —p),

1pVy (S3) + (1 —p),

(B.5)

(B.6)

from which the advantage function can be easily computed by taking the difference between

the Q functions and the value functions. We also know 7y(s, a) of the policy for which

we would like to evaluate the gradient. Therefore, we can compute all the quantities in

the gradient expression Equation B.2. Now we go through all three parameterizations and

calculate the gradient and the cumulative return.

We first consider the policy 7, under the parameterization g, ;, = 1,0g, r = o0, which

implies 71 (L | S3) = 0 and m;(R | S3) = 1. First, we can easily see that the transition

113

probability matrices are

_11—p0 0 0| B p 0 0 0|
0 0 0 0 0 0 0 0 0 0
Pl=10 p 01-p 0|, and P'=|01-p 0 p 0
0 0 1 0 0 0 0 1 0 0
(00 0 p 1| (0 0 0 1-p 1|

Computing D] according to Equation B.4 using Gaussian elimination, we can derive

1 ~(1-p) 0 0 0
0 1—7v 0 0 0
T yp(1—7) 1—y 71— (1—p)
Dy 0 Gopminy THpae1 Enrel ’
0 rrd-—) (1) 1—y 0
(Pp=*+1) ¥p—v*+1 Pp—yi+1
0 3p? ¥’p p 1
| (VPp=?+1) Pp—7P+1 Pp—yiHl i
1 Yp 0 0 0
0 1—7 0 0 0
Dit=1 0 M o o
1=y)(1-p) 2(1-7) 1-
0 = 1—“1/229 - 1—7;;3 l—vzp 0
0 2r0-p? ¥A-p) 20=p) 4
B 1-y2p 1-v?p 1-9%p i

As explained in Equation B.5 and Equation B.6, we can compute the advantage functions

.
AP (L) = 0,0 V(=P A=) =+ D 4p)

1)] ’)/2]7 . 72 + 1 Y)
A71T1(_7 R) = [07 07 07 Oa O]T)

o B Y(v*(1—p)? +p(y?’p — 1) — (1 —p)) !
A3 L) = [0, 0, e , 0, 0] ,

114

Recall Equation B.2, which implies

(? T T1 1
sz (V" (p1) + V5" (p2)) = T d1 3 (S3)mi (L] S3) AT (S5, L)
1
+ 1—d2 p2 (53)7'('1 (L’Sg)Agl (Sg, L)
=0,
since (L | S3) = 0. Similarly, we have
a T T1 ™1
205 R(V1 (p1) + V5 (p2)) = 1—d1 L1 (S3)m1(R[S3) AT (53, R)

1
+ 1—d2 L, (S3)m1(R[S3) A3 (S5, R)

since AT (55, R) = A7'(S3, R) = 0. The cumulative return under this policy is

Y(=2v*p+~* +2p—1)

Vit (p1) + V5 (p2) = Vi (S3) + V5™ (S3) = V2 —ytp + 42— 1

By symmetry, the second policy 7 under parameterization fg, ;, = %0, s, p = 1 is also

a stationary point and has a cumulative return

)ZVP%%+f+%—D

Vi V)
12 (p1) + V3= (p2 VAP —ip £ A2 — 1

Finally, we look at the policy 73 under parameterization 6s, ;, = 1,0g, g = 1, which

implies m3(L | S3) = m3(R | S3) = 0.5. We can see that the transition probability matrices

115

are

E 1-p 0 0 0| B p 0 0 0|
0 0 05 0 0 0 0 05 0 0
PP=l0 p 0 1-p 0|, ad B°=]101-p 0 p 0
0 0 05 0 0 0 0 05 0 0
(0 0 0 p 1| (0 0 0 1-p 1|

Computing D] according to Equation B.4 using Gaussian elimination, we can derive

At e s) R o €) R G €)
2—~2 2—~2 2—~2
0 (1= (*p—*+2) 1-7) 20=N0=p)
2—72 2—72 2—72
T 2y(1—y)(1—=p) 2(1—) 29(1=)(1—p)
Dj 0 HlLa(op) (1) nlalden) g |,
0 Y2(1—)p 11— (1=1(2—?p) 0
2—~2 2—~2 2—~2
| 0 . A
[1 vp(2—~p) v?p Y2(1—y)p 0 |
2—~2 2—~2 272
0 1-2—%) ~(1—) Y2(1—y)p 0
2—~2 2—~2 2—~2
™ 2y(1—y)(1-p) 2(0—) 2y(1—)
D2 0 = 2_772 P 2_7; ’YQ_,Y’JP 0
0 Y(1—y)(1-p) ~(1—y) (1-7(2—*++p) 0
2—~2 2—v2 2—v2
0 Y3 (1-p)? 1(=p) 2R’ +20%p—2=2) 4
| 2—2 2—~2 2—~2]

The advantage functions are

B 9202 1920 A2 1] T
ap(n) = o0, 2RI AL 0] ,

i 2y

[29%p% — 29%p + 72 — 1 !
ap(my = o, o, MR 2D)

i 2—y

29%p% — 29%p + 7% — 1 !

ap(.n) = |o, o, 122 e), o],

I —7

116

Y(=272p* + 2v%p — * + 1) 0 OT
2_,}/2 b b b)

From Equation B.2, we have

a s m3 1 T3 UE T3 3
m(‘ﬁ (o) + V5P (p2)) = T 7W3(L|53) (d7%, (S5)AT*(Ss, L) + d32,,(S3) A5 (S5, L))
05 2(1—19) (=29 +29p -7+ 1)
S l—y 272 2 — 2
L 05 20-9) (27 -2 97— 1)
l—y 2—172 2—~2
= 0.
Similarly,
a 3 T3
—— (V™ (p1) + V5% (p2)) = 0.
00s, r

The cumulative return under this policy is

s s s s 2 — 4p
Vo) + V() = V(S0 + V() = 150
For computational simplicity, we choose v = +/0.5. Then,
Y(=2v*p+1*+2p—1) 2p -1

V7 (o1) + Vi (p2) = -

PP -+ -1 82 —-2)(p+1)

2—-4 4—-38
and V(o) + V7 (pa) = V(80 + V() = Lo - A2

Ifp > 0.5,

VT (p1) + V5™ (p2) = V™ (p1) + V5™ (p2)
B 29— 1 A8
8v2(p —2)(p + 1) 3

= Vi"(p1) + V5" (p2).

117

B.2 Lipschitz, Gradient Lipschitz, and Hessian Lipschitz Constants

In this section, we show that the value function and the relative entropy regularizer are
Lipschitz and have Lipschitz continuous gradients and Hessians. We present the result in

two lemmas as well as their proofs.

Lemma B.1. Under the tabular softmax policy, V" (1) is Lipschitz, has a Lipschitz gradient

and a Lipschtz Hessian for all i and 1, i.e.

47!‘9/ o ‘7T9// < 9/ _ 0//
Vi () = Vi ()l —<1_%)2l| 1,
ot T ot 8
Vo Vi (1) — Vo Vi (0] < WH@/ —0"||, and
2 ot 2 T 48 / "
Ve Vi (1) — ViV (u)l|<—(1_7,)4||9 — 0"},

Lemma B.2. The cross entropy regularizer is Lipschitz, has a Lipschitz gradient and a

Lipschtz Hessian, i.e.

/ " 1 / 14
IARE(mg) — ARE(m)|| < A(\/I—TI + 1)[|6" — 6"},
IV ARE(mg) — Vor ARE(mg) || < ‘ 3| H0’ 0"||, and
||V&ARE(7) — Vi, ARE(13)|| < ‘ S|\|9’ 0"||. (B.7)

B.2.1 Proof of Lemma B.1

The proof of Lemma B.1 employs an intermediate result, which we state below.

Lemma B.3. Let 7, = Tg au Where u is a unit vector and f/i(a) = V7 (s;). If

dre (also)
do

d?7 (alsg)

dao?

d®7 (alsg)

"
do? <7

2

aeA

<C').

aeA

< C”, Z

aeA

a=0 a=0 a=0

118

then we have

df/i(a) '
max <—
lull2=1| do e (1— ;)2

d*Vi() " 27,0
max < + :
fallz=1 | da? | P (T=)? 0 (L=)®

d3‘~/@'(04) ok 6%6«/61// 6%26,,3
max 3 < 5 + 5 .
lulla=1] - da a=0 (1 =) (1 =) (1—%)

To show a function is Lipschitz, we show the derivative of the Hessian with respect to 6

is bounded. Under the softmax parameterization, we have

Vo.mo(als) = ma(als) (e, — m(-|s)), (B.8)

Vi,mo(als) = mo(als) (aeq — €am([s)" —m(-|s)eq +2m([s)m(-|s)" — diag(n(s))),
(B.9)

0

o 75— Va,m(als) = mo(als)(1(a = a) — me(d'[s)) (eaes — €am([s)" —7(|s)e,

+27(-[s)m(-|s)" — diag((-]s)))
+ mo(als)(—eqamg(a’|s)el, + eqmo(d'|s)mo(+|8)T — ewmg(a’|s)el
+mo(:[8))m(a|s)eq + dmo(+[s)m(a’|s)eq — 4mo(-|s)momo(-]s)"

+ diag(mg(d’|s)eq) — diag(my(a’|s)ma(-|5)T)) (B.10)

where e, is a vector with all 0 and 1 at action a. Then, for any s,

dre(als
Z % < Z ’uTVGJrauﬂ-Oé(a‘S)‘a:O’
(6%
wed a=0 aceA
< 2, molals) [ule — uln(|s)|
acA

119

< max (Juled| + |ulnm(]s)]) <2, (B.11)

d*7q,
5| Tl | 2§ [ol
acA a=0 acA
< max (|ul eel uy| + [ul e m(|s) uy| + [ul7(-|s)el u,]
acA
+2ulw(-|s)m(-[s) Tus| + |u] diag(7(:|s))us|)
< 6. (B.12)
Similarly,
7,
RS RS o S I TN e
acA a=0 acAa’eA
<26 (B.13)

Then we can use Lemma B.3 with ¢’ = 2, C" = 6,C" = 26, and get

dVi(a) 2
max)
lulle=t] doc | | (1=)2
. ?Vi(a) 6 . 8 _ 8
fl=t| da? | 1T (1=y)? 0 (L=)P T (=)
PVi(a) 26 727 48~? 48
max L < B.14
M| Tdes | ST A T S aay B
This is equivalent to
V7 () = VI | < — 1 —],
(1 =)
Tl Tl 8
IVV (1) = VI ()] < m“gl — 0|, and
27 T/ 27 7 Ton 48 / /"
IVZV " (1) = V7V, (#)||<m|’9 —6"]. (B.15)

120

B.2.2 Proof of Lemma B.2

Define

C(h) = —ARE(my) = |S||A|Zlog7r9 als). (B.16)

We have

A1
Vo, ((0) = E(Wl —me(+[$)),

Ve.0(0) = ,§|(diag(mo(:|s)) + mo(:|s)ma(-]5)"),

0 oA .
3 V.C(0) = g7 (=mo(als)ewe) + mofal|s)ding(mo(1)

OUs o

+ 27y (a’|s)mo(-|s)el, — 2mg(a’|s)mo(-|s)ma(+|5)T). (B.17)

Now we can bound the norm of the gradient, the norm of the Hessian, and the norm of

the third level gradient.

IVoC(0)]] = D 1IVo.C(6)
< Eﬂzﬁl—mus)u
mz (leu ' Hm(-rsm)
A 1
< Ezg: (\/‘—7’ + 1)

< A—— 1 1), (B.18)

VI

For any vector u € RISIM| with ||u||, = 1,

lu"V5¢(Tvi

121

A .
< EE | diag(mo(-|s))us — ug mo(-]s)ma(+]5)" us|

< o 2
2\

<75 (B.19)

where the first equality follows since Vg , Vg ,((0) = 0, Vs’ # s”. Using this method, we

can further get

U veC Tve)

Zus ol mg(a|s)eqelug
+Zu5a/u o (a'|s)diag(mo(-|s))us
+ 22 s ul To(d'|8)mo(-|s) et ug
_2Zusa,u mo(a'|s)me(-|s)mo (-] 5) T

< 5 Sl

6
< Tol

S|

where the last inequality follows from ||u||, < ||u|ls = 1. This implies that {(0) is

A(—— + 1)-Lipschitz, 2-smooth, and has 2 5] S‘ -Lipschitz Hessian.

IS\

VAl

122

B.3 Proof of Theorems

In this section, we provide complete analysis for the results stated in the main paper. We

first introduce the following notations.

Vi (p1)
vy (p

0 = [0{,95,...,95]T e RNISIMI V(0;p) = 2 (p2) e RV, (B.20)
V'™ (pw)

p= [p?vpgv "'710%]T7 n= [:U{nugv ""MZJCI]T’ VV 0; P ZVQ z

B.3.1 Proof of Theorem 3.1

Define D = 2N\ + Z —). In the proof, we will need the following lemmas. The

=1 (1

proof of Lemma B.4 is in Subsection B.5.2. Lemma B.5 is a standard result and its proof

can be found in the existing literature such as [21].

Lemma B.4. For all k and p, ||VL(6"; pu)|| < D.

Lemma B.5. Let 0F = % ZN OF. If each agent starts with the same initialization, i.e.

i=1"17"

00 =09 = ... = 0%, then

~ D
\|ef—ek||<lo‘ . Vi k.

We made the assumption in Theorem 3.1 that the agents start with the same initialization.
We denote 0° = 67, Vi.

We define the Lyapunov function
1
€an(0;) = —1TLAO;) + (167w (B.21)

123

where ||0]2_,, = 67 ((I — W) ®1)6.
Note that the sequence {Ok} generated by the distributed policy gradient algorithm is the
same as the sequence generated by applying gradient descent on &, (8), if both algorithms

use fixed step size «v. This can be observed by re-writing the update equation Equation 3.6.

0" = (W I8 + aVL 0")
= 0" + aVLNO" pu) — (I -W)RI)6*
1
= 0" —a(-VLNO";) + JI-we 1)6")

= 6" — V¢, (6% 1) (B.22)

We have to establish the smoothness constant of £, , (8;). Combining Lemma B.1 and

Lemma B.2, L}(6;) is 3}*-smooth with

8 2\

Bo— 2
- '8

which implies >V | L}(6;) is 4*-smooth, where

N 8 22
A _
B => (—(1 7 + |S) . (B.23)

i=1

In addition, we know &, ,(6; p) is f%*-smooth, with
1
ﬁﬁa,,\ — 5)‘ + —Omax(I = W) = ﬁ’\ + ofl(l —on). (B.24)
a
By the 3%2-smoothness of &, ,(6), we have

/85(17/\
£a,)\(0k+1; l’l’) < scx,)\(ek; I’l’) + <v£a,)\(0k; l'l')v 0k+1 - 9k> + THekJrl - ekHQ

0i11 — 0y Ean

B
= €05 1) + (— 0 =65+ (10" — 6"

124

5&” 1
= €02 (0%) + (- — 20" — 0¥

2
1
= Ea,x(ek;u) - 5((1_1(1 +oy) — N0 — 6|2
Since @ < e ¥ gy = S5t we know (a7} (1 + ow) — §%) > 0, Vk. This
=N (1=y)

implies £, A(0%; 1) is a non-increasing sequence. Let @ = ming &, ,(0; 11). We have

K-1 K-1
DO =67 < D 200 L+ on) = BY) (€0 1) — £,,(65)
k=0 k=0

=0 <£a7>\<00; ”’) - ga,/\(gK_l; l'l’))

where we define ¢; = 2(a"}(1 + on) —)7L

This implies

C1 ~

(SQ,A(HO; m) — £a,,\(0§).

min ||@F! — 6%])2 <

k<K K
From Equation B.22, |[a V€, ,(6";)| = ||0*"" — 6"||%. Thus,

8]

(fa,,\(eo; p) — €a,A(9§).

(B.25)

1
: k. 2 _ & k+1 _ gk||2 <
min[[VE, ,(0% p)||” = — min ||§°7 — 07" <

Taking derivative of Equation B.21,
1
Véa,/\<07 l'l’) = _VL)\(Gu /'l’) + E((I - W) ®])07
Observe that 17(1 — W) = 0 due to the double stochasticity of VW, which leads to

VE.(0:1) = VL' (6:0) + (171 = W) ®)6 = ~VL'(6:).

125

Now we can bound the gradient VL (8*;).

2
min [V (6%;)|

— minlINVE k. 2
= min [[VE, (6% p)|

< 3 k. 2
min [|VE, (6% p|

C1 ~

< K—az(éa AO0%) — €,,(0;)

1 -
- ZLA) + S 018+ LX) — -lIBIE)

= i=1

LS ENO; i) — LNO% 1)
Ka

=1

N
C1 o, g0
< () = Vit (pe) + ARE(mgc
s 2V 0n) = V7) + ARB(rg)
o 1
< K;22(1_7. + ARE(mg0)). (B.26)
i=1 v

The third line comes from Equation B.25. The fifth line uses our assumption that all agents
start with the same parameter initialization, making ||8°||?_,;; = 0.The second last inequality
is from the fact that relative entropy is non-negative. The last inequality comes from the
bounded value function in Equation 3.3.

This implies

min |[VV/(6* >y|2—mmy|VL(+—ZVRE moe) |2

1=1

2m1n||VL (6")||2+—Z|waE(7r6k)|\ .

The second term depends on the smoothness of the regularizer, which we establish in

Lemma B.2. The first term is bounded in Equation B.26. Therefore,

I (k. 2 2, 2
min [[VV(0% p)||” < 2mlnHVL(I + ZHWRE(Wek)H

i=1

126

2
2 &1 9 A
< + ARE(7q0)) + — + A
Ko? 27—, * ARE(T) («/w)

1 82
< ARE —

Using the smoothness of V;, which we show in Lemma B.1, we have

. 2
min | - EVV Sl

—mlnH—ZVV i) — (VViO5: 1) — VV;0F 1) |1

k<K

igllg?H—ZVV bop)|IP + ZHVV ¥o 1) — V308)| P

N
S 2
< . 2, ~ k k2
\2£gllr<ll|VV(I+ NZ ||9 — 05]|
From Lemma B.5, we have

165 = 6511 = 1105 — 6%) — (6" — 6}

< |16} — %[+ 1|6} — 6"|]
2aD
<

~ .
1—0’2

Plugging this inequality and Equation B.27 into Equation B.28, we get

mmH—ZVV i)l

k<K
4e; & 16)\2 N 402 D?
+)\RE(?T@O)
KaZ; 1—7]]:1 1—7] (1 —0y)?
16 & <) 16x2 Y 5120202
—_— + ARE (7m0
K Z _,Y] (9 ;]_—0'2 (1—7])

The proof is completed by recognizing p; = p;, Vi.

127

(B.27)

(B.28)

B.3.2 Proof of Theorem 3.2

When condition in Equation 3.8 is observed, we can establish the global optimality condition

under the tabular policy.

Proposition B.1. Let 6* = maxy V (6; p). For policy parameter 0, if || S~ | VL)(6; 1;)|| <

AN
==, we have
2|S]|A]

V(0% p) —V(0;p) <2AN max {—de* (s)
’ s€8,i:s€S; (1 — "}/Z)[Ll(S)

}

if the environment and the initial state distributions p and p jointly satisfies the discounted

visitation match assumption.

The proof of this proposition is in Subsection B.4.1. Using the proposition, we

can guarantee that 6% is an e-optimal solution in the objective function by setting ¢ =
7T6* (

2N\ max; 5{(1%—} and ensuring || 332 | VL 0F; p))|| < 55|y Denoting

and solving for A in terms of €, we get

\ — € o €Cy
a "), 2N
2N max; ¢{ T S)}

Now we bound the norm of the gradient.

M=

mln | Z VL)‘ 0F; ;)| = mln I Z VL”\ ,u]) + (VL)‘(QI“, i) — VL?(@?)) |

1

=

. A
< min [NV (0")| + Y VL (OF 1) — VL0 5)|

j=1

128

N
ST k. Xpk _ pk
< Nmin [VEX(0" w)l + 3, B10F = 0311, (B.29)

where the last inequality uses the smoothness property of L. Combining Lemma B.1 and
Lemma B.2, 3} =) —— | SI We have a bound on the first term in Equation B.26, and

now we bound the second term using Lemma B.5.

165 = 6511 = 1105 — 6%) — (6" — 6}

< |16} — %[+ 1|6} — 6]
2aD

~
1—0’2

Plug this into Equation B.29,

N

. A - ST/ nk. Aok k

igl;gl\ZVL Pyl < Nmin |[VE (9,u)!\+2@\l9i—9ﬂl
P

2aD
— 02

+ ARE(mg0)) + Z ﬁj

j=1

e

1—7]

N
C1 1 QOéﬁAD
<N + ARE +
\ Ka2 ;(1_% (7g0)) 1— oy

To ensure ming || 3, VLI (0F; 15)] < sjs]ap We make
cy N 1 208D AN
N ARE <
Ka? ;(1 =, PARE(me)) + T < SSTA

Solving for K, we get

N (S0 (7 + ARE(my)))

o2 (AN _ 208*D 2
2AS[A] ~ T-o»

=

129

N (S (7 + ARE(m)))

27
a2 eco _ 2aD N 8 + €2
AS[JA] — 1—0p &j=1 \ (1—y;)3 T NIS]

where we used the fact that % — % > 0,ifa < %I;\flﬁl'
O
B.3.3 Proof of Theorem 3.3
We denote
N Nk+1
_ 1 B exp (0"%1(s,a))
g+l — — 95“, gkl _\P : ok = [ﬂ.k7 o 7ﬂ.k]7
N ; Sweaexp (05+1(s, a’)) ! N
7Tk Y[y 7rk
Qr = [QT,..., QW] V& =V, VI, (B.30)
QL,k:Z(N—’_/\i_Vi)QiZ: VL,k:Z(ﬁ—i_/\i_Vi)V;l'
i=1 1=1

Our analysis relies on the lemmas below. The first lemma establishes the Lipschitz
continuity of the value function and Q function. The second lemma bounds the consensus

error. The last three lemmas establish some technical immediate convergence results.

Lemma B.6 (Lemma 8 of [156]). For any policy mi,moandi =1,..., N

T T2 S|lA 7r1 e SliA
0 - @71 < ol =l IV =V < (0 L~
Q™ (s, a) — Q™(s,a)| < M Vi (s) = ViP(s)] < —|f||A|

(1 7)2 (1 7)2 Hﬂ-l - 7T2H'

H7T1—7T2H7

Lemma B.7. The policy iterates {r¥} generated by Algorithm Algorithm 3.2 satisfy

VNa

Tk k| <
ot - wtl < 0 (2

), forallk =0,.... K—1andiv=1,...,N.

130

Lemma B.8. The iterates of Algorithm 3.2 satisfy forallk =0,... K — 1

gk+1

VI (Q) = VE(Q)

S| A(BA+1/N N e
ZHW — 7|

N (6] 7k
= EESNC [log Zi(s) — NVL,?(S)] = 2

Lemma B.9. The iterates of Algorithm 3.2 satisfy forallk =0,... K — 1

K—
] Nlog|A| 2NB, AN,
Vi (p) = Vin(p)) <
k; (VEw(o) = Vir(o)) I—7)Ka (1-72K (0=7°K

3v/ISI[A[(By + 1/N) & &
R
k=0 1=1

(=)

Lemma B.10 (Theorem 6 of [112]). Suppose that Assumption 3.3 holds. Let the constant C'
obey C = 2|*| o, and C' = 2|v*| .. Then, given a policy T, if there exists a constant 6 > 0

such that

*

Vo (p) = V' (p) + CZ ([6: = Vi (p)]+ + Vi (p) —wily) <6,

then we have

N
2 ([= V()]s + Vi (p) = wls) <
i=1

We have from Equation 3.17

exp(2 IV (£ + M — 1h)QT (s, a))
Z*(s) |

7t (a | s) =7 (a | s)

(B.31)

k

where Z4(s) = 3, 7 (@ | 8) exp(& YV (& + A — U)QT (s,).

131

Objective function convergence. From the dual update Equation 3.18, we have

K-1

< AT = Z (I = A%1%)

-y (n (A —n(Zp) diag(n(a | $)QF" (s, a>—f))

2
- A“)

2

<K< —n(Zp)ding(w(a |) <sa>—£> e
:_277];21 (0T (Zp) ding(m(a | £))QF" (s.a) - é)

+ nKZ 3) dina((0|)3 2
- zu’f (v o)~ ¢)

+n2 3 te) ding (|)@ 5,0 o ®32

Since the value function and constant /; are within [0, = 'y] the second term of Equa-

tion B.32 obeys

" 1S p(s) ding(m* (a | £)QT (5,a) — ¢
k=0 || s,a
-y Z(Zp@)ﬁ(am@ (5,0) e)

(B.33)

132

Equation B.32 and Equation B.33 imply

0<-27 2 (AT (Vq”k(p) - f) + (41[(_J\;77)2
<2 Y 097 (V7 () - V() + 20 Z 0T (V0= 0) +
k=0
<2 - (9T (Vgﬂ*(ﬂ) B Vgﬁk<p)> QWB,\U 2 2 |7 — ¥ + <4K_N;7)27

>
Il
o

where the second inequality follows from the fact that the optimal policy satisfies the

constraints, i.e. V™ (p) = /; forall i = 1,---, N, and the third inequality is applies

Lemma B.6.
Re-arranging this inequality and dividing by 2K lead to

e S0 (570 -1 0) > ~HER S S -

k=0
(B.34)

==

A similar analysis on v* implies

1K1 «/8 ABy, "G & IN
< Vﬂ'())> ‘ H)\ZZHk_ﬂ-kH_(Tl)'
k::() k=0 i=1
(B.35)

Combining Equation B.34, Equation B.35, and Lemma B.9, we have

R "
=2 (V) =" ()

k=0
2N B, 4Nn . 3v/|S||A(BA+1/N Kzl N I

Nlog|A|
<1 o k=0 1=1

SU-y)Ka (1-2K 0-27K

2«/|S!|ABAK21§:’ . ANT7)
(1=7)?

k=0 =1

133

N1 ONB 8N «/SAB+1NK1N
< Og|"4| + ;\ + 773 + | || A / ZZHﬁ_k_ﬂ_icH
(I-7Ka (1-72K (1-79) (1—=7) = c

By the bound on consensus error in Lemma B.7 and the Lipschitz continuity of the value

function in Lemma B.6, this implies for any agent j = 1,--- | N

1S (e o N N*2q
S (V7)) -V (0) <O+ Ny ——2).
K4 (%0 -%) <0 <Ka A (W))

Constraint violation convergence. For any \ € [0, B)]", since the projection operator

I}, 5,] is non-expansive, we have

ﬂ.k
A = A2 = 0,5,y (A = n(V™ () — 0) = AJ?

< A =n(V5(p) —) = Al?

= [\ = X2 —2n(\ = X) (Vi (p) — 0) + 1y Z”ZP Q (p) — 4

4Nn?

<IN = AP =20 =)TV (0) = 0) + 1=

where the last inequality bounds the quadratic term using an approach similar to Equa-
tion B.33.

Re-arranging the terms and summing up from k = Oto k = K — 1, we get

K—
o 2N7
5 (p) = b) < = (A" = AP = A = AP) +
TS 7 T
1 2Nn
A = A2
Kn” | 1)

which implies

DT () -)
K

k=0

134

K-1

2 00 DOV) V)

2«/|S||A 1B, "
< — X = X2 + |I7* — 7k (B.36)
2K77 H H (1 - 7)2 (1- ,;] Z;
Similarly, we can show for any v € [0, B)]"
1 & i
e Z (A=) (u =V ()
1 0 2 2 ’SHA B)\ o =k k
< _ £ B.37
il v+ s+ 2 I (B.37)

Since *, ¥ are non-negative, we have from Equation B.36, Equation B.37, and Lemma

B.9

%k_()(w*() V(o) + AT =V (o) + TV ())
1K1 =k k - T T
?k=0< Ve (p) + (N T (VI (p) =€) + X (L =V (p))

K-

,_.

(V" (0) = V& () + O =) (V7 (o) = V" (o)

NIH

k=

=TT () = 0+ (0F =) (= V()

o

N1 3v/[S[[A[(By + 1/N) 5 & ONB 4N
< Og|“4" + ‘ H ’(A /) Z Z ||7_Tk B ﬂ—zkH + ;\ + 773
(I -7)Ka (I =7)*K P (I=7)PK (1-7)K
Ll 2V 'S"ABA KE%\ 7 — |
2K (1_7)2 k=0 i=1
2«/|S||A BAK 'Y
+ O — v+ T — k (B.38)
_ Nlog | A| 2N B, N 8N77 H)\O—)\H2+HV —v?
SU—9)EKa (@T-2K (T-qp 2K
7v/IS|JA[(By + 1/N) "&' &
LW £|1— A+ /) ZZ\ — f). (B.39)
k=0 i=1

135

Now, choosing A and v such that

By, if6i—V™(p)=0 By, ifV™(p)—u; >0

Ai = Vi =

0, else 0, else

Then, Equation B.39 leads to

1 K=l L | K1 N B B
=2 (0= 0) + = DB (6= VW, + [) - il
k=0 k=0 i=1
- Nlog | A 2N B, N 8Nn N N B3
T (l-vKa (1-92K (1-9) Ky
V|S||A‘(B/\+1/N> ST
|7 — 7. (B.40)
EEIE P
Note that there always exists a policy 7% such that al7r = K f 01 al7r which implies

1S
L VT Vi=01 N
k=0

As a result, Equation B.40 becomes

(V7 ()= V&) + B Y. ([t~ VP 0], + [V () —).

i=1

Nlog | A| 2NB, . 8Ny | NB
S (l-y)Ka (1-9)2K (7?2 Kn
72/|S||A[(Bxy + 1/N) &' &
n |SI[A[(Bx + / Z Z — . (B.41)

(1-9)

Recall that Lemma 3.1 states that 2| *|, < B, and 2|v*|,, < B,. Applying Lemma

B.10 with C' = B, and ¢ being the terms on the left hand side of Equation B.41, we have

lK li@ —V(n]. +[Vj’k(p)—ui]+)

k=0 i=1

136

= > ([6 =V 0], + [V ()~ wi],)

1=

—_

>Ka+<1— >2K § —7)3+ Kn

(1—

2 (Nlog|.A| 2N B, 8Ny~ NB?
B\(1

k=0 i=1

By the bound on consensus error in Lemma B.7 and the Lipschitz continuity of the value

function in Lemma B.6, this implies for any agent j = 1,--- | N
1 K .] K1 . .
max{— > (V7" (0) = V" ()= 23 2 ([=V)], + [V (o) =il)}
K= K =4
N N N32q
<O|—+Nn+ —+ ——=
(Koz+ 77—1_1(7]—’_1—02(1/{/)

\/1=o02(W)

Choosing the step sizes as « = O (W) and 7 = O(1/v/K) leads to the claimed

result.

B.4 Proof of Propositions

B.4.1 Proof of Proposition B.1

From Assumption 3.2, we define

dTo* (S) B d”e* (S)

i,pi J,P;

dij (s) — djj, (s)

(] Jobt

éd(s)’ VS:SESZ'ﬁSj, VZ,]

Our analysis uses the following performance difference lemma introduced in [157].

Lemma B.11. For any policy m and 7 operating in environment © under the initial state

distribution p;,

1

Vit (pi) — ‘/iﬁ (pi) = 1,

ESNdw an [A“ (s, a)]

137

By Lemma B.11,

V(0" p) — Z . Z Z d; o (s)mge(a] s) A7 (s, a)

i=1- Vi seS; ae A
7o+ (a Z —_— f‘/’) s)AT (s, a)

s€S ae A 1:5€S;
Zmax Z d; (s)Ar (s, a)
seS acA i:S€S, T Z "
2 Z dﬂ'g*(dﬂe ()Aﬂe()

S seS (

ZZK) ymo
= Z) max AT(s,a)
seS acA i'SESZ‘ —
71'0* dﬂ'g

sz ZUZ 71'9
S SESZSGS dﬂ—e (}2 ae.A Z;g A)
d; " (s)
R e
() | |
d; o (s)
_ i.pi
= 2N _max {dﬂe (s L
dﬁeﬂf(s)

= 2N WP
seglii)eisi{ (1 — 71)/%(5)

max
= €S, i:S€S; { dﬂe

}

;e

The sixth line follows since max,e4 Y ;. cs, 1 17 A’TO(a) = 0, Vs. The last inequality

uses the fact that df , (s) = (1 — v;)jui(s), element-wise, ¥, which simply follows from

the definition of df , (s). The seventh line uses

e (s) AN
LAM < o B.42
N -

which we now prove To show this, we only have to prove this is true for those (s, a)
7r9

where)|

iseS; 1o A”" (s,a) = 0. The gradient of § under the softmax parameterization in

environment ¢ is

NGp) 1 6 o
0o 1_%di,ui(8)7re(a]s)Ai (s,a) + \8| (|A] 7T9(Q|s)>, (B.43)

138

From our assumption ISV, VLG)| < 2|§]\\\[A\ , we know that for all (s, a) such that

d0

> s A”e(s a) =0,

i:5€S; 11—

Z 5[/\ 0; llll
Q\SHA\ - 06;.4

L g mo(a (s,a A — —mp(als
- 3 el AT s + Y i (- el

i:SES; i=1

20+ Z /S| s (- 9“"5))

Rearranging the terms,

=2

1 AN 1
mo(als) = ‘ 5 > (B.44)

[A] AN 2IS]JA] ~ 2A]

Re-writing Equation B.43 and summing over environments,

d;;, (s) 1 L0) 5 A ()
LAWH S,CL — 7 AN _1
; L=y (5.a) ZS mo(als) 00s.a ;m (a|s) A
1 ALMO; 1) | A
X —|— -
mo(als) ZS 005 4 ;|3|
AN AN
<214 —— + —
st 78]
IAN
<—7
S|

where the second last line uses inequality Equation B.44.

139

B.5 Proof of Additional Lemmas

B.5.1 Proof of Lemma B.3

The proof uses a similar technique to Lemma E.2 of [12], which proves the second derivative

is bounded. Here we also show the first and the third derivative is bounded. We use é(a) to

denote the state-action transition matrix in environment .

[Pi<a)](8,a)—>(8’,a’) = Tq (a/|3,) P; (S/|37 a)

Differentiating with respect to o, we get

dP(a)

do

a=0] (s,a)—(s',a’)

which implies that for any «,

drme (d'|$)
» a:] B Z do

a,s’

dbi(a)
do

a=0

w]
a=0 s,a

Z drm, (d']8))
do

We can bound the /., norm of this as

dP;(a)
da

X
lull=1| d 5,0 ||ulla=1

En

= ImaxX Imnax [

= Imax max
5.0 |ull2=1

a,s’
drme (a'|$))

do

a=0

< max E
s,a
(ll,.S/ a=0

drme (d'|))

do

< max Y | P, (s']s, a) |||)
s,a v

a/

< |zl

140

Pi (sl‘3> a) Tg s

P, (8'|s,a) Ty o

P (s']s,a) |Ta]

a=0

(B.45)

(B.46)

(B.47)

(B.48)

Using the same approach, we can bound

-
P
d z<a)m

d*P;()
da? *

das?

<O"lle. (B.49)

o0]

< C"|2|] o0, and||rr|1|ax

[[ul[2=1

0

With M (a) := (I —~;P;(a))", we re-writing the Bellman equation in the matrix form,

Q%(s0, a9) = ez;oﬂo)(I —yiPi(a)tr = eﬂﬂ’aO)M(a)r. (B.50)

Taking the first, second, and third derivative of Q*(so, ag) with respect to «,

dQ (50’) T

M(a)r, (B.51)

dQQa (807 ao)

oy~ 2 ChonanM (@)

(s0,a0)

2P(a)

d*Fi(a)
do?

dbi(a)
do

dP;(a
M(a)—d((x)
d*Py(a)
da?
d*Py(a)
dao?

+377 yM (o) M(a)r

6(50 ag

M(«a)

+37@ (s0, ao)M(a) M(O{)T

el oy M (@) M(a)r (B.53)

Using M ()1 = (I — v, P(a))"'1 = X2 4'Pi(a)"1 = ﬁl, Equation B.48, and

Equation B.49, we have

141

0

dea (50, ao)
do’

|lufl2=1

dFi(a)

+ 397 | M () o

P*Py(e) , dPy()
da? M(a) do

+ 397 | M (a)

B Py(a)
do? .
_ 620" 3y2C'C" 3yECIC” v C"
STt T T T
6;C" 6ypCCer oyl
(T=m)* (=) (1-—m%)

+ i | M () M (a)r

By the definition of V;(c),
Vi(a) = D ma (als0) @ (s0,a).

Taking the first derivative of V;(a) with respect to «,

dV; dmg, dQ5 (so,
= 3 G () 4 Y) T)

142

Taking the second derivative of V;(a) with respect to a,

PVi(e) < o (als) dmy (also) dQS (o, a)
o = g O)+‘2§3 do do

d2
+ Zﬂ'a (also) —Qd(izo’)

a

Taking the third derivative of V;(a) with respect to a,

T s el g s+ 32 o (3'80) e

32 d7Ta CL|50> d2 So, Z’]Ta CL|SO d3 (807)

Finally, we have

e df/;-(a) _ C’ N ~;C" C’
X X =
falo=t| da |) 1=y (T=%) (1=7)?
d2‘~/i (a) _ C" . 20”2 (2%0/2 rYiC” >
fllo=t| da? | 1T Ll—y o (L= \(L=m) (L)
C// 2’7/1'0/2
- 5 T 3
(1= (11—
, and
dS‘;i (a) ok 37‘010// 2720/2 7'0”
max : < + +3C" (- + —
M| T || ST T P T T

6’7? 0/3 673 C/ Cl/ ’72 C///
(I=m)t (=7%)? Q=)
C/// ,yi(GC/C// + C«///) 6’73(6”3 + C/C//) 6’)/130/3

.I
L= (1 —7)? (1 =) (=)
C/// N 6 Vs Cl C” 6 7@2 Cl3
(1=7%)? Q=72 @-m)

143

B.5.2 Proof of Lemma B.4

By Equation B.43,

aLk(ek; Ni)
00k

1 8,a

Td@() mo(a]s) AT (s, a)+%(ﬁ—m(als))'

ar (s)mola
<2 Z \SHA! *Z 5™

L=

VL0)l < D

s,a

where the second last inequality follows from Equation 3.3. By the triangular inequality,

N
1
VL6 VLMOF:)] < 2NA+) ———.
| ZH | < ;“_%)2

B.5.3 Proof of Lemma B.7

We denote gF = (£ + A — o)Q" e RISIMI and g% = [(g5)T,... ()77 € RNISIAI_ 1t

is easy to see

(Bx + 7)V/IS[IA]

I—»

k
igh

1
i<

1
— N\
NN

lgil <

)

which implies |¢*| <

. Then, using an argument similar to the one

(Ba+)4/ NIS|IA|
Nlﬂ for all k&

n [21][Lemma 1], we can get

oy~ (Brt)VNIS|[Ale
[6% =07l < 1)1 oV (B.54)

144

The softmax function is Lipschitz with constant 1, i.e.

Hﬂ-9 - 7T9’H < H@ - 0,”’ VQ, 0/’

Recall the definition of 7* in Equation B.30. The Lipschitz continuity and Equation B.54

imply the claimed result.

B.5.4 Proof of Lemma B.8

The performance difference lemma states that for any policies 7, 79, initial distribution ¢,

and:=0,---, N

! 2 1 m
‘/; (C) - ‘/; (C) = mEs~d2*,a~7r*(~|s) [AOk(sa CL)] : (B.55)

By this lemma,

k1 =k
Voo Q) =V (¢)
1 Tk
= T ety [(8’“)]
_1 [7k 1 =k
T 1_ 7E3~d?k+l,a~7’rk+1(-|s) _Qo (Sa@)] - :Es~d§k+1 [Vo (s)]
ok
- 1 — ,}/Es~d?k+l,a~7’rk+1(-|s) | L,k(Sva):l
1 k k
+ 1-— nySNd?k+1,a~7’rk+1('|S) [QLJC(S’ CL) - QL,k(S7 CL)]
(b — M)T L) .
_ —1 — ES“d?k+17a~ﬁk+1("S) [Qg (S, Cl)] — SES\’d?kﬁ—l [Vb (5)] .

Note that the update rule in Equation B.31 implies
N T (a | s
Qﬁk(&a) = Elog (ﬁzk(s)) :

m(a] s)

145

Combining the two equalities above, we have

N k+1(a | S)
= —E g1 ~ l —Z
a(l —7) s~dZ"angk i]s) log (7 (a | s) k(s))}

ok
+ 1— /YEs~d’CT +1 ,a~mht1(. [QL k(s CL) QL,k(87 a):l
(/\k Vk)T 7(1 i,
 1—x Es~d’gk ~EHL(]s) [Q (s, a)] 1 _’_YESNerk+1 [VO (S)]
N

KL\ Rk | s L
mES d,,k+1 [DKL((’)H (‘)>]+

~VISTAIBY +1/N) §

_ (AF—)T i
(1—7)? D e T B el [Ag (s, a)]
i=1

1 0
— :Es~dgk+1 I:VLJ?(S)]

N VS| A|(BA+1/N o i
S0 E, gz [log Zi(s)] — . Z — 7|

ST (VO V) - ﬁE [viis)].

WV

where the last inequality applies the performance difference lemma. Rearranging this

inequality leads to

k+1 =k 8 A B N N
Vi) = Vi) = ﬁEMgm [log Zi(s)] — Vi II(A+1/ Z |

_ ﬁEs o [va()] (B.56)

From the definition of Z* and Jensen’s inequality,

log Z"(s) = log (Z 7| 5) xS Y + M - @R s, a/)))
a’eA i

i=1
« ol 1 k
> 2 7 (d" | s)log <exp(ﬁ Z(N + AT (s,a')))
a’eA i=1
! 1
= § I 9 Yy e)

a’eA =1 N
N
PO 9 D5+ N @ (5,0) — QF (5,0)
a’eA i=1
. S[IA[(By + 1/N)a &
/% Lx(s) = | ||N|((1_A:)2/)QZIITT’“]l
=1

This bound on log Zj(s) implies

N 1 o
mE3~d§k+l [10g Zk(S)] — :ESNCI?I@-H [VL,k(s)]

= iy D) (1820~ VL))

Sy S) ton 2l — Vb + VLI S
B \SI\A!(BA+1/N) =k
e Z;lﬂ i |
> 5 5300 o5 2409) 300) ~ AT S gty

where the inequality follows from the fact that df > (1 —)¢ elementwise for any policy 7.

Plugging this bound into Equation B.56, we have

gk+1

V(O = VE(Q)

N o IS[|A(BA+1/N N i
> VB, [los Zuls) ~ SViMs)] - - LI =il

B.5.5 Proof of Lemma B.9

By the performance difference lemma in Equation B.55,

* —k

Vo (p) = Vo (p)

147

S Y GHCRGTIES SYURDE AT
R ” VISIAl &
N =7 ; s~dm* a~r* (-]s) [Ai (37a)] + m; |7* —xf|
. - .
ZEs~d” a~(-]s) [Qz (37@)] - m;Es~d”* [V; ' (5)]

V !S HAL S ek k
+ WZHW — 7 -
Plugging in the update rule of the policy,

Vo' (p) = Vi (p)

< ﬁ 2 Es~d;;* a~(-]s) [Q?(s, a)] — ﬁ é Es~dg* [Viwf (s)]

v =1
VISIA] &
+ VSIS 7 —

N1 -~y <

1 o K
—Es~dg*,a~ﬂ' -|s) [Z + Ak - V Q?’Z (87 a)]

1_7 =1

(A —vf)T o
- ?Es~d2*,a~w*(-|s) |:Qg (87 CL):|

1 & |S||A Y
- mé%w;ﬁ [V})|+] Z -7l

_ ﬁESNd;amws) llog (%Zk(s)ﬂ

)\k — U T T)\k —V)T ok
- %Eww*,mws) [Agk<57a)] - %Es~d” [Vg (8)]

ZEM[i]+NV'S"““32’f |
—_VEM;* [Da (- [I | 5)) = D | I |)]

+ —'YESng* [log Z¥(s)]

148

()\k _ yk)T i ()\k I/k)T i}
e inlatioo] S e i)
1 N ! S A N -
W e [O]+ R S
= =1

Re-grouping the terms,

Ve (p) = Vi (p)

< i Eear [P [P 8) = Dalr 97| 5)]
o 1]\1 By 08 24(5)] - %Ewgnmws) 47" (s,a)
. %Ew i [45 (5:0) = A7 (5.0)| = T V)]
n Nf@i I7* — ¥
< e Eear [P [P 8) = Dar* (| 97|)]
n ﬁEMg* [log Z"(s)] — % (v (5) = v ()
- [t + LRV 5 (B.57)

where the second inequality follows from the performance difference lemma and the Lips-
chitz continuity of the advantage.

Applying Lemma B.8 with (= d™",

N Q _ —k k+1 7 *
—E, g5 |log Zu(s) = LVi(s) | < VI (d)) - VL)
2./IS]|A|(B +1 N) &
e ”(2+ /N) Z — ¥ (B.58)

Combining Equation B.57 and Equation B.58,

*

Ve (p) = Vi (p)

149

< oy Bt [P C LG 9)) = Dia ()|)]
1 k1 W B)\ + 1/N N .
+:(£ (0 = VA)) * (1— Z — 77|
N —)T " IS[|A[(B +1/N L
O (v - vt)+ YD) § o,

which implies

Vi(p) = ViL(p)
Eogr [Dxn(m* (- [)|[T(- [5)) = Do (7 (- | s)|[7*(- |)]

3/ |S||A|(Bx + 1/N) i H7_Tk B ﬂ_(gH.

(1 =) ~

a(l—7)

1 k1

by (VT - Vi) +

Taking the average from k = 0 to k = K — 1, we have

%KZ (Vir(o) — Viro)

N 1 Kl k+1 —k *
< Gy B D CL)llml | e X5 (VIR ()~ Vi)
k=0
37/ISI[A[(By + 1/N) &' &
1 SSSAB V) 5 St~ .59
k=0 1=1

o o (Vi) - Vi)
k=0
e —17)K K_l <V°ﬁk+l(d)=V))
i KKI AV) - v)
k=0
Vs (dr)

L5
Z ((}\k-i-l _ yk-i-l) V7T (d

"=k -k & D= =T E)

P g \%p

150

1 k1
+ ()\k o Vk o /\kJrl kJrl) VTI' (d)
(1-7K & g
Vi (dy) R
_ ¥ O — Y
1)K (1—7)K; @)
P Kf 3 O Y e | Vi (B.60)
A=K 55" . '
k=0 i=1
We know that the value functions are bounded between [0, =] The projection in the up-

date of the dual variable in Equation 3.18 guarantees \¥ € [0, B,]. It is also straightforward

to see that for all 7 and k

Aik — Nigr1] < 1L + B0, vig — Vig1| < T + Bn.
-7 1 -7

Using these bounds in Equation B.60, we get

TR Kg(v;;“ 7 - Vi)

1 NB, 2Nn 2N Bn
< + + +
(I-92K " (1-92K (1—9)PK " (1—9)?K
2N B, 4Nn

SR IR Bob

Finally, combining Equation B.59 and Equation B.61 yields

1K1

<VL k(P VEZ(P))
K=

< Tyt DSl | 9)]

3v/|S[JA|(By + 1/N) &' & INB
i |SI]A[(Bx ‘|‘ / Z Z 7 —] + ;\ N 4Nn3 |
(1—=7) ~ (1=7)2K (1-7)3K

which leads to the claimed result by recognizing the fact that for Dy (p1||p2) < log |.A| for

p1, P2 € A4 if py is a uniform distribution.

151

APPENDIX C
SUPPLEMENTARY MATERIAL FOR RESULTS IN CHAPTER 4

C.1 Proof of Theorems and Corollaries

We frequently use the following inequalities which hold for all 7 > 0, 7 € A%, and ¢ € A5,

JT(T[_? ¢T(7T)) < JT(ﬂ—7 ¢)7 JT<,/TT(¢)7 ¢) > JT(T(7 ¢)

We use H (-) to denote the entropy of a distribution. For example,

H(n(-|s)) = =Y m(a|s)logm(a|s), H(G(-|s)) =~ ¢(b]s)logeb]s).

a

(C.1)

Due to the uniqueness of ¢, (-), Danskin’s Theorem guarantees that g, () defined in

Equation 4.2 is differentiable with respect to 6 [158]
Vogr(ms) = VoJr(m,0), ¢ = r(mo), V0 € RIEHHL (C2)

We also introduce a few lemmas that will be applied regularly in the rest of the paper.

Lemma C.1. Let Ly = ﬁ. The value function J is Ly -Lipschitz continuous and has

Ly -Lipschitz gradients, i.e. we have for all 0,05 € RISl and o), 1py € RISI*IBI

HVGJ(TQU(b%) - VQJ(W927¢%D2)” < LV(Hel - 92” + H¢1 - ¢2H)7
va‘](ﬂ-ﬁ?gbwl) - ij(ﬂez,ﬁb«/a)ﬂ < LV(Hel - 02“ + ”@Z)l - wQH)’

| (7o, i) = J (a5, Pu) | < Ly (161 = Ol + 1 = 4ha]).

152

Lemma C.2. Let Ly = 4???5)'3“4'. The regularization functions H, and H, are Ly-Lipschitz

continuous and has Ly-Lipschitz gradients.

Lemmas C.1 and C.2 imply that V7 > 0, Vy.J; is Lipschitz continuous, i.e. for any

01,05 € RISKIAL 4 4hy € RISIXIB

Voo (Ta,, byy) — Voo (Toy, dyo)|| < [Vod (o, ppy) — Vo (o, by,)|
+ THVGHﬂ’<S7 7T€17¢w1) - VOHTF(S7 0y, ¢w2)H
+ THV9H¢>(8> o, s ¢¢1) - VG,H¢<S7 0, ¢¢2)H

< (Lv + 27L3)([62 = 02 + [0 = ¢2]). (C3)

Lemma C.3. For any 0 < a < 1 and integer k > 0, we have

1 1 8

< :
(k+h)e (k+1+h)* = 3(k+ h)*H!

C.1.1 Proof of Theorem 4.1

The definition of the constant L and Equation C.3 imply for any 6;, 6, € RISIXIAI 4y 4h, €

RISIx|5]

Vo= (70, @) = Vor(may, du)| < L([62 = Oaf| + [lihr = 42]). (C4)

We will use an induction argument to prove the convergence of 307 + 5,‘?. The base case

is 367 + 05 < 307 + 65, which obviously holds. Now, suppose

Ca(l =)TPpc
32[S]|

307 + 607 < (1)* (367 + 67 (C.5)

153

holds. We aim to show

T CY(l B V)Tp?ninCQ T
36k+1 + 6;f+1 < (]' - 32|S|)k+1(360 + 5g)

We introduce the following technical lemmas.

Lemma C.4. Suppose Equation C.5 holds. Then, we have

, 2 3c?
— | minmg, (a]s)] < — g

3c?

2
~(minon]9) <%

(C.6)

(C.7)

Lemma C.5. Suppose Equation C.5 holds. Under Assumption 4.1 and the step size oy, <

2,4/|S|L?

(L + —ﬁﬂ)pmmc)_l, we have

gT(ek‘) - gT(9k+1)
= J‘r('/TQm ¢T(7r0k)) - JT(T‘-ek+]_7 ¢T(7T9k+1>>

= % (IVoJr (70, b7 (m0,)) — Voo (Ta, du)|> — Vo Tr (7o, b (70,))|?) -

By the lemma above, we have

01 — O
= JT(WBIN (bT (Wek)) - J: (W9k+17 Or (7-‘-919+1))

< % (HVQJT(T(-QIC7 (b’r(ﬂ-@k)) - VQJT(WQI@’ ¢¢k>”2 - HVGJT(W919?¢T<7T91€))”2> '

Similarly, we consider the decay of 5,?.

61?—&-1 - 51? = ‘]T(W9k+17 ¢wk+1) - gT(ﬂ-Gk+1) - JT(ng, ¢¢k> + gr<770k)

= (‘]T(WekJrl? ¢¢k+1) - JT<7T9k+17 gb?/’k))

154

(C.8)

+ (JT(WGIH—l’ ¢¢k) - J7'<7T9k7 qblbk)) + (97(7791@) - gT(W0k+1)> : (C.9)

Using the L-smoothness of the value function derived in Equation C.4

JT(ﬂ-Gk+17 ¢¢k+1) - JT(W6k+1’ ¢¢k)

L
<AV (T, ys Pu), Y — V) + §||¢k+1 — g|)?

L

= _ﬂkHvlﬂJT(ﬂ-@kﬂ’ ¢¢k)”2 + 9

va JT(W9k+1) ¢¢k) H2

B
< —?"ijf(ﬂek+17 (bwk)HQ

< 7|>sﬁ|k o (“3},n¢wk<b|s>> (Jr (70, $0) = T (o, - (m5,)))

1 —)BT Pwin (. i
_ y)3|k min oy, (0] 3)) o7,

where the second inequality uses [< % and the third inequality follows from Lemma 4.4
and the fact that dzv‘z’(s) < 1 forall s € § and policies 7, ¢.
Using Equation C.7 of Lemma C.4 to further simplify this inequality,

3(1 —) BeTp2inC
8|S

2
Jr (Mo s Gunr) = T (o) < — 5. (C.10)

For the second term of Equation C.9, we have from the L-smoothness of the value

function derived in Equation C.4

L
J‘F(Wé’kH’ ¢¢k> - JT(W%? ¢wk) < <V9JT(7r9k7 ¢¢k)’ 9k+1 - 9k> + §||9k+1 - ekHz
Lao?

= [V T (mo,, Py)P + Tk\|V6Jr(7fek7¢wk)H2
3a
< =5 Voo (mo, 60|, (C.11)

where in the last inequality we use o, L < 1.

155

Similarly to Equation C.8, the last term of Equation C.9 is bounded as

ar (ﬂ-ek) _gT(ﬂ-Gk-H) = 0r (71—91@) — gr (7T9k+1) + g’T(ﬂ-GIHJ) - gT(ﬂ-Gk+1)
< % (HV9JT(7T91€> ¢T(7T9k))_v9JT(7T9k’ ¢¢k)H2— HVQQJT(TFGIW ¢7'(7T9k))“2)

(C.12)

Using Equation C.10-Equation C.12 in Equation C.9, we have

61?—&-1 = (JT(WGJCH? ¢¢k+1) - JT(W%HJ ¢wk))
+ (‘]7'<7T9k+17 ¢¢k> - ‘]T(ﬂ-%? ¢¢k)) + (gT<7T9k) - gT(ﬂ-9k+1))

3(1 =) BrT pin 3a
(1 - 250 1 K[(a0

N

+ % (HVHJT(WOM ¢T(7T9k)) - V9J7(7r9k7¢1/)k>H2 - HVQJT(WQM¢T<7T€;C))”2) .

(C.13)
Combining Equation C.8 and Equation C.13,

3a
3517cr+1+51?+1 = 357r+ _k (HVQ‘] (ﬂ'gk, ng(ﬂ-@k)) _VG‘]T(WGM ¢¢k)”2_ HVQJT(WQM ng(ﬂ-@k))”Q)

3ak

3 .
+(1— (- g@frpmm)60 +260)00 + =2

+%UWNW%ﬁwmn—WLW%%QWﬂWMW%ﬁW%Ma

3(1 —) BeTpainc? 150 + 30%
8|S|

+ 200 | Vo T (g, , 67 (w0,) = VoI (g, by)| =20 | VoI (g, , 7 (76,)) |-

Vo (70, D)

< 30; + (1 - ||V9J (7T'9k7 ¢¢k)”2

Simplifying this inequality with

IVo T (mo,, by)|° = Vo Tr(m, , dr(m6,)) — (Voo (m, , dr(m0,)) — Vo (ma,,) I
< | VoJ:(mo,, o= (w9)I* + | VoJr (o, o-(70,)) — VoI (7o, by,)|

+ 2<V9J’7'(7T9k’ QST(TFGIC))? VGJT(WGk’ ¢T(W9k)) - ve‘]’F(ﬂ-Qk? ¢¢k)>

156

5)
< ZHVGJT(WGM ¢ (m0,))I” + 5| Vo dr (7o, o7 (ma,)) — Vodr(mo,, by)|,

we have

3(1 _ V)BkTpIQninc2
8|S|

(67
301 + 0y <307+ (1—)0 = 5 Vo (mo,. 6 (0,))

190%

+
2

||V9JT(7T9k7 ¢T(7T9k)) - VGJT(TQM ¢wk)“2 (C14)

2

)

Using Lemma 4.4 to bound — |V J- (7, , (70,))

— [V Jr (7o, 6-(m,))|*

< _2(1 _|:;>‘Tpr2nin <H517ian oy, (a | S)) (JT<7TT(¢T(7T9k))7 ¢T<ﬂ-9k)) - ‘]7'(77-9167 ¢T(7T9k)))
21 —)72 (. PN
< e <r2{ln7rak(a | S)) (Jr (77, 07) — T (mey,, 07 (7o,))) (C.15)

where the second inequality follows from

T (64(70,)), 6 (o)) = max J (. 6 (m,)) > mavcmin Jo(w,6) = Jo (5,67,

From Lemma C.4 Equation C.6, — (min, , 7, (a | 5))* < —%, which further simplifies

Equation C.15

2 1 - 2 H . 2 * *
_HVOJT(,/TGIC>¢T(W91@)>”2 S (|g)‘7—pm1n (Irsllan’irgk(a ‘ S)) (JT(’H—T?¢T)_JT(7T9k7¢T(7r9k))>
201 — Nrp2e [I R L
- retel) ot < e

For |V J; (7, ¢-(70,)) — VaJr(ma,, by,)|?, we have from the L-smoothness of the

value function derived in Equation C.4

Vo T (7o, ¢+ (ma,)) — Vodr(ma,, Dy)|* < L2 (m9,) — by, |2

157

2log(2)L?
< 2L () (m,000) — T 61 (7))

:210‘%—(2)[’25¢
T Pmin b
Using the bound on —|VyJ.(m,,d-(m,))|* and |VeJ (7, ¢r(m0,))
Vo J- (7o, , by,)|? in Equation C.14,

3(1 —) BrT o€
8|S]

(0%
3071 + Oy < 307 + (1 -)6 — ngveJr(Wem ¢-(70,))|

19«
= 2| Vo e (7o, 6-(70,)) = Vo (wa,, by,)|

3(1 =) BkPainc® oo (1l —)T poinc? 191og(2) L ay,

< 3571' 1 _ min 6 _ min 671' 5
£ S 21 FT T tpum

ar(l —9)7pRnc” 3(1 =)BT paine® | 19log(2)L2ay,

— 3 1 _ min 57'(' 1 . min 5 .

(32|S|) k * (8|8| T Pmin) F

V2,3 o2
With the step sizes a, = «, By = (3 such that § < min{ 515 7 Pyin

152]S[log(2) L2’ 8}, we can simplify

the inequality above

ap(l =) Tpmmc 3(1 =)BT Ppine | 1910g(2) L,
367, + 0%, <3(1— min)Ty (] — min -~)
k+1 k+1 (32’8‘) k (8’S| T Pumin) k
a(l —)Tplic? (1=)BTPEn o
< 3 1 _ min 57‘(‘ 1 o min 6

Ct(l));pm2' 62 o)
< (11— m O + 6

Oé(l 7)‘ p?ninc2 k+1 @
< (1-— T+ .
(32|S|)7(305 +0p)

C.1.2 Proof of Corollary 4.1

As aresult of Lemma 4.3, it is easy to verify

(30¢4 10 + 5?+1,0) — (307, + 5??1(,5)

158

= BJrii (77,15 07 y) = 3Tm (To,41. 0 Prigd (Tor410))
+ e (T0r1.00 Pvesro) = s (Tor1.00 Pris (Tor110))
— (3 (77, 07,) — 35, (70, x,» D7 (T0, i,)
+ S (T, ke, » Py,) — T (o, 1, s Pr (7o, 1,)
= (3Jri (77,1, 07,11) = 3Jrt (Mo 00 Priss (To1110))
+ s (0100 Pesro) = Jrews (Toi1.00 Prigs (To,010)))
— (3Jn (77, 97,) — 3T (To,41.05 O (To1110))
+ Jr(Tori1.05 Pvrine) = Jre(Tor100 Or(To1410)))
= 3(Jr (7715 07,) — I (77, 93,)
= 451 (T2 05 Ori (Tor110)) — T (Tor11.05 D (To1110)))

+ (J‘Ft+1 (7T9t+1,07 ¢¢t+1,0) - JTt(ﬂ-etJrl,O? ¢¢t+1,0)>

< L(;(Tt - Tt+1). (C16)
We can choose 7, large enough that
307 + 050 < Ci7o

holds. For any ¢ > 0, if we run the inner loop for K iterations such that

1 Ch,
¢ T ¢ 17t

30k, T 0y, < 5(3515,0 +040) < —5—,

then we have
7 é 7 é Gy
301110+ 0f10 < 300k, T 0p g, + Lo — Ti41) < 7 + Ls(7e — Tt41)
_ (Cl + La)ClT ClL(g - —Cr
Ot 2L, YT e ar, 1Tt415

where the first equality plugs in 7; = QCCI 1;’22&5 Tt+1. This means that the initial condition

159

Equation 4.12 is observed at the beginning of the every outer loop iteration.

Applying the inequality recursively,
307 + 03, < Ch7r.
With an argument similar to the one in Equation C.16, we can show

(3(J<7T*7 ¢*> - ‘]<7T9T,07 ¢0<7T9T,0>>)

+ (J(Tr9T,07 ¢7/1T,0> - ‘](ﬂ-@T,O7 gbO(W@T,o)))) - (35;0 + 5?,0) < LsTr.

In order to achieve Equation 4.13, it suffices to guarantee 35{,5’0 + 5%0 + Lstr < €, or
(Cy + Ls)mr < e. This implies that we need 7 = O(e), or equivalently, T = O(log(e™))

T
. _ Ci1+2Ls
sSIce 7 = <201+2L5> 70-

Ultimately we are interested in bounding ZtT:o K;. Note that K; needs to be at most

log(3) 0

ot (1=7)Tep2,. ¢
log(1 — 02

K, <|

To apply Theorem 4.1, we need to select the step sizes that satisfy the required condition.
Since {7;} is a decaying sequence, the smoothness constant L = 3L, max {7y, 1} is valid
across all outer loop iterations .

We use L; = 3Ly, max{r, 1} to denote the smoothness constant of the regularized value
function in outer loop iteration ¢ and use 77 to denote the index of the outer loop iteration
such that 7, > 1 and 71,11 < 1. Note that 7} is an absolute constant that only depends on
the structure of the Markov game. From iterations ¢ = 0 to ¢ = 77, the smoothness constant
is proportional to regularization weight L, = 3Ly max{r;, 1} = 3Ly7,. We need to choose

oy, B¢ such that

. 3 2.2
Bt < i 1 Qi < : {(1 ’7)pm1nc T

L. 3Luyr B 1521og(2)|S| L2’

(]‘ B 7)p?nin02
13681log(2)|S|L2,’

8} = min{

8},

160

2VISILY 16/S] |

(1 - 7)pmin7—tc ’ (]‘ - V)pIZninCQTt
184/|S|L3 16|S
= min{(3Ly7; + ST) 5]

V (- 7>pm1nc ’ (1 - V)pIZninCQTt }

Then it is obvious that we can choose o; = O(7; 1), implying a;7; = O(1). Therefore, for

a; < min{(L; +

allOétéTl,

log(3) 1= 0(). (C.17)

at(1—=y)1ep2 . ¢
log(1 — 2l Pin ;Q)éfmm)

K, <

From iterations ¢ = T} until ¢ = T', the smoothness constant is L; = 3Ly max{r, 1} =
3L4. Note that there is an upper and lower bound on ;. In order for the upper bound to be

no smaller than the lower bound, we need

1521og(2)|S|L?ay _ 1

(1=7y)pdmct? L

This means that we should choose oy = O(7?), implying a7y = O(7). Plugging it in

Equation C.17,

log(3) 1
K= | = O) < O(7,7),
log(1 — %) log(1 — 73%) !

where the last inequality follows from the fact that 1 + x < exp(x) for any scalar x.

2C1+2Lg)T—t
b

Since 7 = Tr(G5

T T T T
! _ 201 +2Ls\ 501,
=Y K, + K, <) O3 = O (73 (22 =3(1-1)
Z ZO t—z:Tl ;} tZTl Cl * 2L5
Ol + 2L5 () -3 4 Cl + 2L5 3t
< —_— — —
0 (5o L2 170 - 0ty 2
_ 1 _
- (201+2L5)

161

Since 7 = O(e),

C.1.3 Proof of Theorem 4.2

Define Ly = Ly (27 + 1). The exact conditions on the initial step sizes, regularization

weight, and h are

55 + 86 < —Chlfo, (C.18)
3

65536 log(2)(log |.A| + log |B|) + 96(1 —) pminc?

g — g(2)(log |A| le, I)4 (1= 7)pmine” (C.19)
3(1 = 7)%pgmc o

L2,Cyhs

D < 2Ly + 4L2,00) 1% 4 (Lyy + 4L2,0y) + —220 (C.20)
h3 h3 70
1 o (L =9)1508.C°

<—, X< 1. C.21
bos 700 5, = mindig log(2)[S| L2 } 21

In Remark C.1 at the end of this section, we show that there always exist «y, 3y, 79, and h
that observe the conditions.

Equation C.3 implies that for any 6,, 6, € RISIXMAL 4y | Wy € RISXIBI “and k > 0,

IVoTr, (T, Py,) — Vodr (Toy, dyy) | < (Lv + 27 Lyg) (01 — Oa] + [1h1 — 12])

< Lo([|0h — 02 + 11 — 92]), (C.22)

where the last inequality follows from 7, < 7.
Convergence of 367 + 07

We will first use an induction argument to prove

367 + 67 < PrinToc” Vk =0
PR 641og(2)(k + h)Y3 e

162

The base case is 307 + (53’ < ﬁ, which holds by the initial condition. Now, suppose
og 3

2
PminT0C

o7 + 07 <
30k + 641log(2)(k + h)1/3

(C.23)

holds. We aim to show

367, 4+ 00 < PrinToC”
BRI 6410g(2) (K + 1+ R)V3T

We introduce the following technical lemmas.

Lemma C.6. Suppose Equation C.23 holds. Then, we have

2 3c?
. <min ro.(a s)) < (C.24)

2
— (mlbn Gy, (D | S)) < ——. (C.25)

Lemma C.7. Suppose Equation C.23 holds. Under Assumption 4.1 and Assumption 4.2

and the step sizes of Theorem 4.2, we have

97 (9k> — 97y, (9k+1)
= Jr, (7T91w Or (7r9k)) — Jr, (W9k+1v P, (7T9k+1))

o (‘|V6‘]Tk<7r€k7¢7k(7r9k>) - v9‘]‘l’k(7r9k’ ¢¢k)“2 - HVG‘]Tk(ﬂ-ek?¢Tk(7r9k>)“2) :

< —
2

We perform the following decomposition

Or+1 — Of
= JTk (7T9k7 (ka (7T9k)) - JTk+1(7T9k+17 ¢Tk+1(ﬂ-9k+1)) + JTIH»l(ﬂ-;;H,l? ¢:—k+1> - JTk (W;ka (b:'k)
= ']Tk (7T9k7 ¢Tk (Tr@k)) - JTk (7T9k+17 ¢Tk <W9k+1))

+ JTk (W9k+17 ¢Tk (7T9k+1)> - JTk (7-‘-91@“7 ¢Tk+1(ﬂ-9k+1))

163

+ ‘]Tk (7T9k+1’ ¢Tk+1 (71—91@4.1)) - J’Tk+1 (77—91@4.17 ¢7'k+1 (ﬂ-gk+1))
+ JTk+1(7T;k+17 ¢:k+1) - JTk (Ti-;k’ QS:']C)

T —
< JTk(ﬂ-ek’ ¢Tk<7r9k)) - J7k<ﬂ-9k+17¢7'k(ﬂ-9k+1)) + b

.
T@H log | A| + (7% — T41) log | B

(0
< 7k (||v9JTk(7T9k’ ¢Tk(7r9k)) - v9‘]7k(7r9k7¢wk)”2 - ||v9JTk(7T9k’ ¢Tk(7rek))”2)

+ %Ti“(log IA| + log |B]) (C.26)

where the first inequality comes from J;, (7, ., 7, (70,.,)) — Jr (Mo, 1, Prpr (To,,1)) < O
by the definition of ¢,(-) and the bound on J, (7., s, (7o)

‘]Tk+1(ﬂ-9k+17¢Tk+1(ﬂ-6k+1)) and ‘]Tk+1<7r;k+17¢:—k+1) - ‘]Tk(ﬁ;wgb:—k) from Lemma 4.3

Equation 4.8 and Equation 4.6. The second inequality uses Lemma C.7.

Similarly, we consider the decay of 6.

(Slf+1 - (Sl(f = ‘]Tk+1<7T9k+17 ¢"/}k+1) - ng+1(7T9k+1> - JTk (7r9ka ¢¢k) + 97, (WGk)
= (‘]Tk+1 (7T9k+17 ¢¢k+1)_‘]7'k (7r9k+1> ¢wk+1)) + (JTk (7T9k+17 ¢wk+1)— JTk (7r9k+1’ G%))

+ (JTk (7T9k+17 (bllik) - JTk (7T9k7 (bdﬂk)) + (ng (7T9k> - ng+1(7T9k+1>) - (C.27)
By Lemma 4.3 Equation 4.8,

Tk — Thtl oo |B]

1 (C.28)

’]Tk+1<7T9k+17 ¢¢k+1) - JTk (7T9k+17 ¢¢k+1) <

Using the Ly-smoothness of the value function derived in Equation C.22

JTk (ﬂ-ekﬂ? (bwarl) - JTk (ﬂ-ek+17 (bwk)
L
< <V¢Jﬁc (W9k+17¢wk)7 wk—k—l - ¢k> + 70H¢k+1 - ¢k”2

LoB?
02 k vajﬂ'k (W9k+17 %JHQ

= _5k‘|v¢°]7'k <7T9k+1’ ¢wk>“2 +

B
< _?k”v’(/)‘]ﬂc (7T9k+17 ¢wk;)H2

164

< - (1 /yTgTTkpmm <H81,ibn ¢1/Jk (b | 5>> (JTk (7T9k7 ¢wk) - JTk <7T9k7 (,ka (W@k))>

1_ ﬁT I2Ilil’l : ?
_ ! V?ST kP <@72n¢wk(b|8)) 57,

1

where the second inequality uses [; < i

and the third inequality follows from Lemma 4.4.

Using Equation C.25 of Lemma C.6 to further simplify this inequality,

3(1 - V)Bk’Tkp?ninC2 6¢
k'

SIS| (C.29)

‘]Tk (W9k+17 ¢¢k+1) - ‘]Tk (Trek+17 ¢¢k) < -

For the third term of Equation C.27, we have from the Ly-smoothness of the value

function derived in Equation C.22

L
JTk (779k+17 ¢¢k) - JTk (7T9k> %k) < <V9J‘Fk (71—9k7 (bwk)v 0k+1 - 9k> + 70H9k+1 - ekH2

L()Oé2
9 g Hvﬁ"]ﬂg (7T9k7 ¢’¢'k)H2

Vo e, (7o, D) |17 (C.30)

— | Vods, (T, , du) |* +

30ék

< —
2

where in the last inequality we use oy Lo < 1.

Using Lemma C.7 and Lemma 4.3 Equation 4.7, we bound the last term of Equation C.27

9r(To,) = Griss (To,1,)
= 9. (70,) = 97 (Mo 1) + 9 (W0, 1) — Greir (To,)
< % (IVoJr, (7o, , b7, (m0,)) = Voo (ma,., by)| — Vo T (ma, , br (ma,)) %)
+ (Tk — Try1) log | A (C.31)

Using Equation C.28-Equation C.31 in Equation C.27, we have

51?—&-1 = 51? + (J7k+1(7T9k+17 ¢wk+1)_‘]‘rk (71—919“7 ¢wk+1>) + (JTk (7"91@“7 ¢¢k+1)_JTk (7T9k+1>¢1/1k))

+ (JTk (7‘-9k+1> %k) - J‘Fk <7T9k7 %k)) + (ng (71'6%) - ng+1<7T9k+1>)

165

Te — T 3(1— TP 3a
<74 P g] - S g ST, (00,

+ = (IVoJr (mo,., b2, (m0,)) — Voo (ma,., by,)|* — Voo (o, , dr (ma,)) %)

Ak
2
+ (Tk — Tk+1) log ’A|

3(1 - 7)5k7'k;0?n1n02)5¢ 3Oék
8|S

(6%
+ ?k (HVG'J‘% (7‘-9197 ¢Tk (7T9k)) - V9JTk (7T9k7 (bll’k)HQ - HVGJ‘% (7‘-9197 ¢Tk (77'91@))“2)

< (1 - HV@ (7T9k7¢¢k)u2

+ %(bg Al + log |B)). (C.32)

Combining Equation C.26 and Equation C.32,

3071 + Oty

3
<307 + 3"“

3(Th — Th+1) 3(1— 7)5k7kp2' c? é
NN R 1 1 1 _ min

+ 7k HVGJTk(ﬂ-ek’ (b’rk(ﬂ-@k)) - v9‘]’rk(ﬂ-9k7¢¢k)”2 - HVGJTJQ(TFGM ¢Tk(7rek))”2)

3o T — T
+ =5 VT (o, 60,) + %@“aog Al + log |B])

<HV9JTk (W9k7 quk (71—91@)) - VGJTk (7T9k’ ¢¢k)”2 - HVQJTk (ﬂ-em Cka (71—91@))H2)

1

- 3(1 —) Brrrp’ i, 3a
<307 + (1 -)5t 4 319, (00,

+ 2ak||V9‘]Tk (ﬂ-9k7 ¢Tk (ﬂ-ek)) - VGJTIC (ﬂ-ek’ ¢¢k)”2 - 2ak||v9JTk (7T9k’ ¢7—k (7T9k))||2
4(Tk

2T g 4+ 105 5.

Simplifying this inequality with

Hve‘]’f'k(ﬂ—gk7¢wk)H2: Hve‘]’rk<ﬂ-9k7¢7k(7r0k)) - (Ve‘]m(ﬂ—ek?gbﬁc(ﬂ-@k)) - v9JTk(7T9k7 ¢¢k)) H2
< “VQ‘]Tk(W@k? quk(ﬂ—@k))‘P + Hve‘]m(ﬂ-@k? quk(ﬂ—@k)) - VQJTk(Wgw ¢¢k)H2
+ 2<V0J7k (7T9k7 ¢7'k (ﬂ-@k))7 VG‘]Tk (791@’ ¢7’k (ﬂ-ek)) - VGJTk (ﬂ-ek’ ¢¢k)>

ZHVGJM <7T9k7 ¢7'k (ﬂ-ek))HZ—’_E)HVGJTk (7T9k7 ¢7'k (ng)) _VGJTk (7T9k7 ¢¢k)”2

OT

166

we have

3(1 = 7) BTk PiinC”
8|S

«
352—&-1 + 5l(f+1 < 352 + (1 -)51(? - §k||v9‘]7'k(7rek’ ngk(ﬂ-ek))”Q

19CMk

||v9‘]7'k (7T9k’ ¢7'k <7T9k)) - V9J7'k (7T9k7 ¢'¢'k)||2

4(Tk - 7-l<:+1) (

- log | A| + log |BJ) (C.33)

Using Lemma 4.4 to bound —|VJ,, (7, , -, (70,)) %

- HVQJTk <7T9k7 ¢7'k (71—91@))H2

21— 2t [2
< — S| (n;uan o, (a | 8)) (Jor. (70, (07, (T0,,)), &r, (0,.)) — Jry, (0., Dr, (T00,,)))
2(1 — V)Tkprznin . 2 N .
< — S| (rrsnan o, (a | 8)) (JTk (7er, ngk) — Jr (T, s Or, (wek))) , (C.34)

where the second inequality follows from

Ir, (ﬂ-Tk <¢7k (ﬂ-ek))7 b, (7T9k)) = mfx I <7T7 Pr, (7T9k)) = mfxm;n Ir, (77? ¢) = Jn, (ﬂ-;k’ ¢7*'k)

From Equation C.24 of Lemma C.6 , — (min, , 7, (a | 5))° < —%, which further

simplifies Equation C.34

- Hve‘]ﬂc (7T9k7 ¢7'k (ng))HQ

2(1 — Y)Ti p?nin . ? * *
S - (“5?’ : (Hsllanﬂ'gk (CL | S)) (‘]Tk (WTk,(;STk) - JTk(ﬂ-ek’ ¢Tk(ﬂ9k)))
2(1 B ’Y)T pr2nin : ? T 3(1 — 7)7- pIQninC2 0
_ e k minm,(a | 5) | OF < - i ST or. (C.35)

For |VyJ,, (e, s, (Ta,)) — Voo, (7o, , D,) |?, we have from the Lo-smoothness of the

value function derived in Equation C.22

Hve‘]‘rk (7T9k-7 QST]C (ﬂ-gk))_VG‘]Tk (Wek-v ¢wk)||2 < L(Q)quﬁc (7r9k) - ¢¢%H2

167

2log(2)L3
< TO (JTk (,ﬁek? ¢Tﬂk) _J‘f'k (7T9k7 ¢7'k: (ﬂ-ek)))

Tk Pmin

(C.36)

where the second inequality follows from Lemma Equation 4.4 of 4.1 .

Using Equation C.35 and Equation C.36 in Equation C.33,

30541 + 5lf+1
3(1 —) BrTupiinC®

T Qg
< 36k + (1 - 8‘S|)51(? - g”vi‘)‘]ﬂc(ﬁeka ¢Tk<7rek))”2
19« A(1e — T
O |y (7o 2, 70) — Vo (7,) P+) g | 4]+ g)
3(1 =) BrTipainC \ oo 3ou(l — 7)ThpiminC®
< 367’(’ + 1 _ min 5 _ min 571'
bt 8|S) 32|S| F
191og(2) L2 A(y, —
+ 1108 @ Lo g | ATk = The1) 41 1 10g|5)
Tk Pmin 1-
(1 = 7)ok ThPpin € 3(1 = 7)BrThPmine | 1910g(2)Liay,
— 3 1 _ min 57[' _ min 5
| ss 0 S/s] Tepuin
AT, —
+ (T’“T:““)(log |A| + log |B]). (C.37)
With the step size rule mln{@&%, 1}, we can simplify Equation C.37,
0

1-— 2. 3(1 — 2.c2 19log(2) L2
35k+1 +5k+1 (1 _ (V)Qkapmmc)52 + (1_ (7)6k7kpmmc + Og() O@k)élf

32|S| 8|S| Tk Pmin
4 —
#2070 g A+ 1og)
1 —)Tk PinC” | o
<301\ 0S|)0
. 3(1 = 7)BrThPainC” 1910g(2)L2 (1- 7>pmmc Tkﬁk) 50
4 —
20 27 (10g 4]+ 1o B)
(1 — V)QkaIO?ninc2 T (1 — fy)ﬁkapIQninc2
<3(1-— 73])6 + (1 — 13)67
4 _
2070 g A+ 10g)

168

(1 — 7)o Tk prinC? 47 — 1)
32|S] 1-—
(1 —7)p2,.CaoTo C, 3279
DSk +7) s B T 3T =)k =)

< (1-)(36F + 67) +

(log |A| + log |B])

<(1- (log | A] + log | B]),

where the last inequality follows from Equation C.23 and Lemma C.3.

Letting D, = =% and D, = sz (log | Al + log |B]),

32|5] (1=)
Do Chim Do
- é 1070 170 270
30441 +5k+1 < (1 k+h) (k + h)l/s + (k + 1)4/3

D
- (k +h— Diagr + —2) Gio

C1) (k+ h)¥3
By requiring
__ 655361og(2)(log | A| + log |B) +96(1 = 7)pminc® _ 1 1+ 22y
0~ 3(1 = 7)2ppimc e ~ Diag G
we have
Dg 017'0
01 + 0 < (k+h—D = s
3 k+1 + k+1 (+ 13070 + Cl) (k + h)4/3
D, D,y Ci1o
=|k+h—(O0+)+= | 57—
(thd Jrcl)jLCH) (k + h)"/®
. Ol’]’o(k' — 1 + h)
(ke h)37

Since (k —1+h)*(k+1+h) < (k+h)*forallk > 0and h > 1, we have

k—1+h_(k—1+h)(k+1+h)1/3< (k +)43 1

(E+h)43 (E+ 13k +1+n)13 = (E+h)4Bk+1+h)Y3 (k+14h)1/3
which leads to

Cﬂ'o(k? -1+ h) < ClTO ,OrninTOC2

. o -
301+ 0y < (k+h)43 = (k+1+h)13 64log(2)(k + 1+ h)V3’

169

This finishes our induction and implies that for all £ > 0

. Ci7o
JTk(TFTk, ¢Tk) - JTk(ﬂ-ngka(ﬂ-@k)) < 3(k + h)l/i’)’
Ci7o
Jfrk(ﬂ-9m¢dlk) - JTk(ﬂ—Gmngk(ﬂ-@k)) < (k 4 h)l/?)'

Bounding the difference between value functions with and without the regulariza-
tion:

Ultimately, we are interested in J(7*,¢*) — J(mg,, Po(mp,)) and J(mg,, Py,) —
J (7, ¢o(mp,)), which measure the performance of m,, and ¢, in the original un-
regularized Markov game.

By Equation 4.6, Equation 4.7, and Equation 4.8,

Jr (77, 07,) — J(7%,¢7) = =7 log | B
S (0> Pric(70,)) = T (o do(7ay.)) < T log | A]

-
JTk(Wek’Qka) - J(W&wqﬁ%) = 1 u

log |B|.

Therefore,

J(@*,6%) = J(mo,, do(ma,)) = T, &%) = T (7, 0%,) + T (w5, %,) = T (70, 6, ()
+ Jr (7o, 7, (m0,)) — J (e, Po(T0,))

017'0
< 7l —
Tk Og|B| + 3(]{? + h)1/3
_ Cimo + 3(log | A| + log |B])7o

3(k + h)1/3 ’

+ 71, log | A|

and

J(ﬂ-9k7 ¢¢k) - ‘](71—91@7 ¢0(7T9k)) = J(ﬂ-ek7 ¢wk) - JTk (ﬂ-ek? QM)

+ JTk (Wﬁk’ ¢¢k) - JTk <7T9k7 gb’fk (Tr@k))

170

+ I (7o, Ory (Trﬁk)) - J(ﬂ—gk’ Po(70,))

Tk
< 17710g|8|+m+m10g|,’4|
_ (1 —~)C17 + (log |A| + log |B|)mo
b (L=7)(k+ h)V/3

Remark C.1. To select o, [y, T, and h, we first make 1o = A\h'/? for some \ > 0 large
enough. This choice guarantees the validity of Equation C.18 (we just need 0f + 58’ < CL).

Viewing Equation C.19, it means

65536 10g(2)(log |A| + log |B|) + 96(1 —) prminc>
3(1 —)22 AR '

Qp =

Now that) is fixed, to ensure Equation C.20, we choose h large enough to observe

65536 log(2)(log | A| + log [B]) + 96(1 — 7)pminc® _ o
3(1 —7)2p3 ..t h Chi

< (2Ly + 4L35,C9)\ + (Ly + 4L3,Cy) +

13,0,
=2

(1=y)71303 ;¢ <1,

Once)\ and h are chosen, «, Ty, and h are determined. Finally, since T52log@)ISIZ S

we just need to select [y € [W, L—] Recall that Ly = Ly (279 + 1), it can be
1521log(2)|S|L3ao

easily seen that the lower bound o
1 A/)TO Prin©

= O(Wll/?,), which is much smaller than

the upper bound + Ic = O(£) = O(57.175) since X\ was large enough.

70

C.2 Proof of Lemmas

C.2.1 Proof of Lemma 4.1

For a given ¢, let 7 € 7, (¢) (which is a possibly non-unique maximizer).

171

According to [13][Lemma 26],

Jr<ﬁ-a gb) - JT(W7¢) = S)DKL(W(' | S)Hﬁ—(| S))

_’yses

The Pinsker’s inequality states that for any two probability distributions p; and p-

1
D =z —— — 2,
KL(Pl | |p2) 5 log(2) le p2||1

Using this inequality,

I6.6) = Jo(r6) = T D&)Pt 9| 5)
seS

> e DGR~ |9
seS

> S) S0 DIt |9~ |
seS

_ T minges p(s) T MiNges

- 210g(

p(s
2) ZHW [5) = 7(| 9)F
p

where the second inequality follows from the fact that dg";s(s) > (1 — v)p(s) entry-wise.

This inequality means that 7 € 7, (¢) has to be unique, as no other policy can achieve the

same value function.

The same argument can be used to show Equation 4.4.

172

C.2.2 Proof of Lemma 4.2

Let (71, ¢1), (72, ¢2) be optimal solution pairs to the maximin and minimax problem,

respectively,

(71, ¢1) € argmax argmin J(m,¢) and (m, ¢2) € argmin argmax J, (7, ¢). (C.38)

TeAS PEAG PEAG neAS
Since the policy simplex is a compact set, (71, ¢1) and (72, ¢2) exist and are well-defined.

The following minimax inequality always holds

Jr (71, ¢1) = max min J. (7, ¢) < min max J.(m, @) = J, (72, ¢2). (C.39)

neAS peAg peAE meAG

We first want to show that m; = 7.(¢1) and ¢ = ¢, (). Since

Jr (1, ¢1) = max min J (7, ¢) = min J, (7, ¢) = J, (71, - (m1)),

TEAS peAF PEAS

we have ¢; € ¢, (m;), and Lemma 4.1 further implies ¢; = ¢, () is unique. In addition, we
know that 7 is the optimizer of g, defined in Equation 4.2. Let #; be an softmax parameter
for my (e.g. 61(s,a) = logm(a | s) for all s,a). Since 7, is an optimizer of g, in policy
space, f; must also be an (not necessarily unique) optimizer of g,(¢) = min, J, (7, ¢) in

the parameter space. Therefore, we have V6 € RS*A

0= (Vg (mg,),0 — 01) = (VoJ (7, 01),0 — b1), (C.40)

where the first equality follows from Danskin’s Theorem in Equation C.2. Since ¢ is not

constrained, Equation C.40 means that

v9J7'<7T€17 ¢1) = O:

173

implying that ¢, is a stationary point of
max J. (7, 1)

By Lemma 4.4, every stationary point is also globally optimal. Therefore, we have m; =
T, = Tr(¢1).

A consequence of m; = 7, (¢1) and ¢; = ¢, () is that (71, ¢1) is the unique optimal
solution pair to the maximin problem, i.e. there does not exist (7, ngbl) # (71, ¢1) such that
(71, $1) € argmax,as argmingeas J-(m, ¢). To see this, let us suppose that such a pair
(71, ngﬁl) does exist. Then, the only possibility is 77; # m; and b1 # 1 by Lemma 4.1. Since

71 # m-(¢1) and ¢y # ¢ (71), we have

T (71, 01) < Jo(m1, 1) = Jr (R, 1) < Jo (1,),

which creates a contradiction.

Similarly, it can be shown that

o = ¢T(¢2)7 and ¢2 = ¢T(7T2>7

and that (7o, ¢9) is the unique optimal solution pair to the minimax problem.

We now aim prove that (71, ¢1) = (72, ¢2), i.e. the minimax and maximin problem have
the same solution. Suppose (71, ¢1) # (ma, ¢2), which means that ; # 7 and ¢1 # ¢
have to hold due to Lemma 4.1. Since my # m,.(¢1) and ¢y # ¢.(m2), we have from

Equation C.39

Jr (Mo, 1) < Jr(m, 1) < Jp(ma, ¢2) < Jr (72, ¢1).

This is again a contradiction. Therefore, (71, ¢1) = (72, ¢2) has to be true. Then, Equa-

174

tion C.39 leads to

max min J- (7, ¢) = max min J, (7, ¢).
TEAS ¢eAF TEAS ¢eAF

We also know that the Nash equilibrium has to be unique in this case, as the maximin

and minimax problems both have a unique solution pair that agrees with each other.

C.2.3 Proof of Lemma 4.3

By the definition of the value function,

Jr(ﬂ-v ¢) - JT’<7Ta)

—E| >4 (r (sk, ar, by) — Tlog w(ay | s) + 7log ¢(by | sk)> | 50 ~ ,0]

o4 <7“ (Sk, ag, by) — 7' log w(ay | si) + 7' log P(by, | 5k)) | s0 ~ ,0]

k=0
0
-E 7k<(7 —7")1logm(ax | sk) + (7 — 7') log d(by | sk)> | s0 ~ p]
k=0
T—7 / /
= T Bvndptamntiy ot [T 108 7(@ [) +log 60|)]
T—7
TR e H) = o])]

where H denotes the entropy and is defined in Equation C.1.

We have the following upper and lower bound on the entropy
0< H(n(-|s)) <log|A|, 0<H(o(-]5")) <log|B|.

Therefore, if 7 > 7/ > 0,

T — T —

/ /
T Lo B] < Jo (7, 0) — Jp(m, 0) < T log Al

175

Forany 7 > 7/ > 0,

T 6) — Tt 62
= s min (7, 6) — min Jo (5,)

> win (%, 6) — min T, 6)

= i (T (20 6) 4 (= 7V, 720, 0) — (7~ 7 Mo, 73, 6)) — min (3,0

> i T (2, 6) + (7 min B, 73, 6) + (7 — 7') min—Hyp, 72, 6)—min Jos (7,0
= () (i e 72 0) (. 72,0)

> (1 —7)(0—log|B|)

- —~(r =)o 8]

where the second inequality comes from the fact that min,, f(z) + fo(z) = min, fi(x) +
min, fo(x) for any functions f;, f> of the same domain.

It can be shown by a similar argument
Jo (7, 67) = Jo (7w, ¢7) < (7 —7) log | Al
In addition, for any 7 > 7’ > 0 and any policy 7,
Jo (1, () = Jor (70, G0 (7))
= qun Jr(m, ¢) — m(gn I (T, @)

= i (o (7 6) + (7 = 7)Halp,,0) = (7 = 7 Holp. 7, 6)) — min Jo(r,)

< (m(;n ‘]T/(ﬂ-v ¢) + (T - T/) mq;aX,HTF(pv T, ¢) + (7_ - T/) m(?X(_H¢(p7 T, ¢))) - m(gn J‘F’(ﬂ-’ ¢)

= (7=) (. 0) - min Mol 7,0)

< (1 —1")1og|A|

176

It can be shown by a similar argument

Jo(m, (7)) — T (m, o(m)) = —(7 — 7') log | B|.

C.2.4 Proof of Lemma 4.4

Adapting [13][Lemma 15], we have for any § € RS*4 and 1 € RS*5

7o () o
2Tpmin . ? d
|‘V9JT(7T9,¢¢)H2 = ‘S| (Hsl’%lnﬂ'e(& | S)) pdn9,¢¢
P
27’p 2 7T97¢7—(7T9)
2 min . P
G ar) P

-1

(o (77 (D), Pyp) — J7 (0, By))

o0
—1

(S (70,) = J= (o, 97 (m9))) -

Then, the first inequality follows from dj” """ (s) < 1 and d}*”*(s) = (1 —)p(s) =

(1 — %) pmin for all s € S, and the second inequality from d,

(1 =) pmin forall s € S.

C.2.5 Proof of Lemma C.1

7,07 (o) < 1 and dge@w >

Lemma 7 and 14 of [13] establish the smoothness condition of the value function and the

regularization entropy with respect to one player’s policy, i.e.

HV@J(TF@N ¢7¢)1) - V9J(7T¢927 ¢¢1>H < LVHQI - 92H7

HV,/,J(?T@U d)?ﬁl) - V¢J(F91, ¢¢2>H < LV||1/}1 - ¢2H

Therefore, we only need to show

||V9J(7T91, ¢¢1) - VGJ(WGU ¢¢2)H < LVH¢1 - ¢2H7

177

IV (7, 9i) — VI (ma,,)| < L [[01 — 62

Given a fixed ¢ and v, with arbitrary vectors u and v such that |[u]s = |v]s = 1, we

define the shorthand notation

Tau = To4au, (bﬁ,v = Ty+pu-

According to [35][Lemma B.5],

Sjtmels) y gjntld)
draa | 5) 50| 5) dra(a] 5) an
aZb do g < (; do > (; dp > <4

Let P(«, 5,u,v) € RISIAIBIXISIIAIIBI denote the state-action transition matrix induced

by the policy pair (74,4, ¢p.)

P(aaﬁvuaU)(s,a,b)a(s’,a’,b’) = P(Sl | S,G,b)Wmu(a, | Sl)qbﬁ,v(b, | S/)'

Differentiating with respect to o and /3,

P(s" | s,a,b),

d*P(a, 8,u,v) drau(a |) dog (V|)
dadﬁ (s,a,b)—(s’,a’,b") - dox dﬁ

which implies for any vector x

2P / / / /
[d (a’ B? U, U) d?Ta(CL ‘ 5) d¢6’v(b ‘ i)P(S/ | S, a, b)$517a/7b/.

dodp x] TR~ dp
The /., norm of this quantity can be upper bounded

d*P(a, B,u,v)
dadf

[u2=llv]2=1 0

178

= max max
s$,ab [ul2=[v]2=1

d*P(a, B,u,v)
l dﬂldﬁ x]sab

dma(a | 8') dgs(V' | 8')
= Imax max
sab [ula=[v]2=1 do dp

s'al b

P(s'" | s,a,b)xs oy

drald | ') g,V | &)

< maiiZ P(s" | s,a,b)|x|, max Z
sa:b

= =1
Jule=lvl2=1 £

do dg

<Az oo

Using an identical argument, we can show that

dp(a7 /87 u’ U)
do

dP(a, B, u,v)
B

drgu(a] s)
do

dmg (b | s)
ds

x |70 < 2f]cc,

)

o8] a

<Y

@0 b

max
lullz=[v]2=1

[#]e0 < 2] o

X
lullz=[v]2=1

With M(«, 5, u,v) = (I — ~P(o,B,u,v))”" and
[7(s0,@0,b0), -~ ,7(815], @), bys))]

Q“a*“’d’ﬁv“(s, a,b) = el

s,a,b

M (a, B, u,v)r.

Taking the derivatives,

dP(oz,ﬂ,u,v)M
da
dP(a, B,u,v)

dp

d ﬂ'a,u7¢,8,v b
@ (s, ,)zfyeT M(a, 5, u,v)

da s,a,b

d Wa,u7¢ﬁ,v b
Q dﬁ (57 a?) _ /YelaJ)M(Oé, /8, U,, U)

Taking the second-order derivative,

d?Q w50 (s, a,b)
dadp

= e 0 pM(, B,u,0)

s,a,b

dP(a, B, u,v)
dov

dP(a, B, u,v)
dp

dP(«, 5, u,v)
dp
dP(a,ﬁ,u,v)M

M(«, B, u,v)

+ P)/QesT,a,bM(a7 B> U, U)

179

(C.41)

(C.42)

(C.43)

T =

(a7 /67 u7 U)r7

M(«, B, u,v)r.

M(a, B, u,v)r

M(@,ﬂ,u,v)T (o, B, u,v)r

d*P(a, B,u,v)

+765T7a,bM(Oé757u7 U) dOédﬁ

M(a, B, u,v)r

Using M (a, B,u,v)1 = (I—vP(a, B,u,v)) 11 = ﬁl and inequalities Equation C.41

and Equation C.43, we have

dQmew%5 (s, a,b) ' dP(a, B, u,v) 2y
<YM (a, B, u,v) —————M (o, B, u, 0)7 |0 < ,
[ull2=[v[2=1 da ”’Y (8) do (b) HOO (1 - 7)2
dQmew . (s, a,b) ’ dP(a, 3,u,v) 2y
max <|vM(a, B,u,v)————=M(a, B, u, 0)r|pn < ,
ullz=lv]2=1 g (e, B, v) dg (@ 81, 0)r o (1—9)?
and
max dQ@“ﬂ’”’%vv(s,a,b)’
Jufla=[v]2=1 dadf
dP(a, B, u,v dP(a, B, u,v
< H’}/QM(Oé, ﬁ? Uu, U)%M(Oﬁ 67 u, U)%M(O&, Ba Uu, U)THOO
dP(a, B,u,v dP(a, B, u,v
+ ‘|72M(057 67 u, U)%M(aa 67 u, U)%M(Oz, ﬁa u, U)T”OO
d*P(a, B,u,v
+rar(a) 2SR D ar oy

272 4ry

SA—p T

Since V™ewsv(s) = Z%b Tau(a | 8)ds.(b | 5)QTw (s, a,b),

A2V e P60 (5) _ Z dmau(a| s) deg,(b] s)

Ta,u 7¢B,v b
dadf da R (s,,)

a,b

Qe+ (s,a,b)

+ D Taula] 8)dsu(b] 5)
a,b

dodf

dgu(a | s dQ™ew (s, a,b
3 dreata o), () o2 (0D

~ da dpg
ddg.e(b | s) dQm?5v (s, a,b)
+ Z Taula | §)— :
) dpg da

180

Therefore,

dvﬂ'a,u 7¢B,v (8)
dodpB

4 2+2 4~y) 4~y 8
< + + +2 < ,
1—~ (a—w3 (1—=7)° (I=7)? (1—9)?

max
lullz=[v]2=1

which implies

8
IVoJ (o, dyy) — Vo (g, dy,)|| < WHM — 1o

Similarly, it follows by the same argument that

8
||V¢J(7T91a gbtb) - vl/)J(TrOQa wa)H < Wuel - 02“

[35][Lemma B.5] implies

2
(1—7)?

[(791, P) = I (705, Pus)| < (161 = b2 + 1 — 2], (C.44)

and we simply use ﬁ < Ly.

C.2.6 Proof of Lemma C.2

We will prove the first two inequalities on the Lipschitz gradient of H,. The next two
inequalities are completely symmetric and can be derived using an identical argument.

[13][Lemma 14] implies

HVGHW(Sa 79, 4 ¢1/11) - VGHW(Sa 794, ¢1/11)H < LH”91 - 02“7

181

so we just need to show

||v9H7r(Sv7T91’ ¢¢1) - VGHW(Svﬂ-@u gbiﬁz)H < LHH@M - Q102”’

IVyHr (s, To,, Py) — VoHar(s, To,, Op)|| < Lyg|0h — 02, (C.45)

HVT/}HW(S? 15 ¢¢1) - VwHW(Sv Ty 5 qblﬁz)H < LHHd)l - d}?”

Given a fixed ¢ and v, with arbitrary vectors u and v such that |[u]s = |v]s = 1, we

define the shorthand notation

Tau = To+aus (bﬁ,v = Ty+pu-

Note that to show Equation C.435, it suffices to show for any u, v

dQHﬂ (S; To,us ¢5,U)
dadp

d27‘[7r(57 Taus ¢ﬁ,v)
dg?

< Ly, < Ly.

We define the state transition matrix P € RISI*ISI such that

P(a, B,u,v) s g = ZP(S’ |'s,a,b)Tau(a] $)opu(b]s).

a,b

Let M («, B, u,v) = (I —yP(c, B,u,v))"". Then, we can re-write H.. (s, 7, ¢) in the matrix

form
Hﬂ'(sa T, ¢) = 6;—M<Oé, 67 u, /U)hoz,ua
where hg .y = [Rau(50), s hau(sis))] € RIS is a vector with

hau(s) = =Y au(a| s)log mau(a| s).

182

According to [13][Lemma 14],

< 2log |Alful2 = 21log | Al

oe]

dha
do

Taking the derivatives of H, (s, 7, ¢),

dHﬂ(S) Taus (bﬂ,v)
da

= 7€IM(047 Ba u, U)

dp(a7 /87 u7 U)
do

dha,
da '’

M (o, B,u,0)heq + e;rM(a, B,u,v)

and taking second order derivative

d2H7‘r (57 Ty ¢B,v)
dadp

=yl M(a, B, u, U)WM(O&,ﬁ,U,U)%WM(O&, By, v)hey
+~%el M(a, B, u, v)%g’u’v)M(a, B,u, ’U)WM(Q, B, 1, v)he
+74wﬂm5MHM¥PSZ%%UMﬂaﬂJQ@mw
+ el M(a, B,u, v)%g’u’v)M(a,ﬁ,u,v)dZ;’“.

Using a similar line of argument to [13][Eq. (192)-(195)] and analysis in Lemma C.1 of

our work, we can show that for any vector x

d*P(a, B, u,v)
dodp

dP(a, B, u,v)
dp

< 2[aor, < 2[a]oo,

oe]

< 42l
0

H dP(a, 3, u,v)
—'Z‘
do

o0]

From the fact that | M («, B, u,v)x| s < ﬁ”x“oo, we have for any vectors u, v

B*H (S, Ty Ppv)
dadf

dP(a, B, u,v)

dP(a, B, u, U)M
dp

M(a, By, 0) =

< ’72 (a,ﬁ,u,v) M(a,ﬁ,u, 'U)hoz,u

183

dP dP
+72 M(Q,B,U,U)MM<O&,6,U,U)MM(O(,B,U,’U)hQU
dp do ’
d’P(a, B,u,v
3 |arta o) TG R a0, 6,0
dP(a, B,u,v) dhe
“!‘”}/IM(O[,B,U,U)TM(OC,ﬁ,U,U) do
4421 4421 4~1 2
_ 4 og\«;ll v Oglgll voglv‘;l T gl
(1—9) (1—7) (I-=7?% (1-7)
- 810g]¢4\.
(1—=7)°
Now it remains to be shown
d2%71’<377ra,u7¢,3,v) \LH-

2

From the eye of the second player, H.(s, 7y, ¢,,) is simply the value function of a regular
MDP with itself as the only agent (the first player’s policy combines with P) with the reward
function r(s,b) = — >, .+ mg(a | s)logm(a | s) € [0,log|.A|]. Therefore, by Lemma C.1

which is derived with reward bounded between 0 and 1, we know

PHr (8, T Dpo)
dp?

To show the Lipschitz continuity, we note that

dHTI’(S7 Taus ¢5,'U)
da

dP(a,ﬁ,u,v)M
da

dP(a, B, u,v
< PYM(Oé?B?uaU)%M

4vlog|A|l 2log|Al < L.,
(1—7)? 1—~

dhe

(o, B, u,v)hq + eSTM(a, Bu,v)———
da

dhe

o |

fye;rM(a’ /87 u? U)

(o, B, u, v)hou| + [|M (e, B,u,v)

To show the Lipschitz continuity of H, with respect to 1, we use the same argument

as above and note that from the eye of the second player, H (s, 7y, ¢y) is simply the value

184

function of a regular MDP with itself as the only agent (the first player’s policy combines
with P) with the reward function 7(s,b) = — > _,m(a | s)logm(a | s) € [0,1og |A|].

Adapting Equation C.44, we have

dHW(Su Tous ¢ﬁ,v) < 2

< log|A| < L
dp (1=7) A
]
C.2.7 Proof of Lemma C.3
1 8
We first show that for any k& > 0, we have T T Gne < =
Since the integer k is positive, it can be lower bound by = ki1
I 1
ke (k+1)e
(lz/,_}_l)a_l’%a<2((l~€+1)a_1’%a)_2(<k’+11a+k1 a>
ka(k + 1) (k +1)2 (k + 1) ((1)1 4 i)
2(k + 1) = ko) ((k+ 1)1+ B70) 4R+ 1)2 = ko) (B +)12 4 F1)
< — — - = -
(k + 1)2a <(k +1)1-e 4+ Lk + 1)1—a) 3(k + 1)att
4 ((l?; +1) = k4 (k4 1)+ ke (k 4 1) — l?;)
- 3(k + 1)a+1
4 (1 — Rk + 1)+ Rk + 1)a) .
= - S —= ;
3(k + 1)a+t 3(k + 1)a+t

where the last inequality follows from

Bk +1) =k k+ D) < k+ D)k + 1) — k% O =k +1—k = 1.

185

Choosing k = k + h yields

1 1 8 8

< < .
(k+h) (k+1+h)* " 3(k+1+h)+t = 3(k+ h)et!

C.2.8 Proof of Lemma C.4

The property of the min and max function implies that
max(m}(a | s) —mp,(a | s)) + minmy, (a | s) = min7 (a | s).
s,a s,a s,a
Since the three terms are all non-negative, the inequality holds after taking the square

(min77(a | 5))* < (max(r7(a | s) = 7g.(a | s)) + minm, (a] 5))"

s,a

< S(ming,(a] 5))? + Amax(etla | 5) — 7o, (0] 5)))

Re-arranging the terms,

2

2 2
3
— <min7T9k(CL | S)) < 1 (minwi(a | 3)) +3 (maxwi(a |s) = 7o (a] S))
2
3 . * * 2
< -3 (minmilal 9)) + 3l — o
From Lemma 4.1,
2 3 2
— (minwek(a \ s)) < —1 <min7r;(a | S)> + 3|y — g, |
3/ . . > 6log(2 . .
<3 (mlm(a | s>) 4 S8 (1 (e) (e, 60)
S,a T Pmin
3/ . . > 6log(2 -
<=3 (el 9) + BB 02) —)

186

2
= —Z <min 7 (a | s)> + 610g(2)5’: (C.46)

$,a T Pmin

1 ™ 1—9)7 r2nin ? ™ ™ minC
Since 307 + &7 < (1 — %)%350 +60) < 307 + 60 < ﬁilog@), we have

oF < GZT;;? 57- Then, Equation C.46 implies

-y <2

2 2
3 6log(2 3¢t 3c? 3c?
- (minﬂgk(a | s)) < 1 <minﬂ;(a | s)) + 6los(2) <20l e

Similarly, the property of the min and max function implies that
max(62(b |) = b, (0] 5)) + min by, (b | 5) > min 620 | 5).

Again, all three terms are non-negative, which means that the inequality is preserved after

taking the square

—~

(min 630 |)7 < (min 6, (6] 5) + max($2(b] 5) — 6, (| 5)))

<

C»Jlrlk

(min ¢y, (b | 5))* +4(12%X(¢2(b|8)—¢¢k(b|8)))2,

which leads to

3
~(anin @, (b | 9))* <~ (min g2 (b | £)* + 3max(63(b | 5) — b, (b | 5)))°
3
< —2(min i | 5)) + 3167 - 6
3
< —(ming? (b | 5))* + 616, (mo,) — G| + 6167 — & (o,)|

(C.47)

From Lemma 4.1,

21082) (1 (maer bon) — (15, 6 (7)) = 2B

Pmin min

|- (m9,) = by, | < 57, (C.48)

187

and

21log(2)

T Pmin

21log(2)

T Pmin
2 log(2
_ 2loe2) 5 (C.49)

T Pmin

|67 — (o,)]* (J=(m,., 97) = J=(ma,, ¢+ (70,.)))

N

(Jo (7%, %) — Jo(ma,., ¢ (mq,)))

N

Using Equation C.48 and Equation C.49 in Equation C.47,

| 3. . .
—(min gy, (b] 5)* < =S (min @} (b | 5)) + 616 (wa,) — Sy |* + 665 — 6. (w0,)|
3, .. o 12l0g(2) oy 1210g(2) o
< —qlmpn(o) 4 = =
3 12log(2
:gmﬁmﬂbu»2%—3§l®?+$’

min

367 4+ 00 < (1— %)k(wg +67) < 307 + 00 < L2 ouarantees 0] + 6f <

32|S| 641og(2)
32‘11;;?;). Using this in the inequality above, we have
_ 3. .. 1210g(2) , .. 32 3¢ 3c?
—(Hsl’lbn%k(b |5))* < —Z(Hsl’lbn@(b [5))* + W(% +0}) < 7 T ST
0

C.2.9 Proof of Lemma C.5

From Lemma 4.4, for any ¢ € RIS/xIBl

|S| d7p"02»¢7(7r92))
Je(moy, Oy) — J7 (9, 0= (Ta,)) < : p IV (Tay, by |
’ ’ ’ 27—IOmin (mlns,a (bw(a ‘ S>)2 dp02,¢zp . ’
S|

<

2
S 5r 1 =) (minga guta [T 0O

188

where the second inequality follows by an argument similar to Equation C.34. Letting v be

the parameter that parameterizes ¢, (my,), we have

JT(W927 (;57.(71',91)) - JT(7T,92, ¢T<7T92>)

S| :
= 21—) (ming (a7)
_ |S| * o * 2
" 201 =) Gtin o) (a |)7 VT) = e .)
2
< 2 Ly — ol

27(1 =) (ming o ¢-(7e,)(a | 5))

where the last inequality follows from the fact that for any 64, 05 € RISl Wy, € RISIxIB|

IV Jr(mo,, Dp) — Vo (Tay, du,) | < [V (T, byy) — Vi d (Te,, G,)|
+ T|‘V¢HW(3’ T0y 5 ¢¢1) - vaW(S’ oy, ¢¢2)H
+ 7| VyHe(s, Moy, dpy) — VHe(s, Toy, Gy,)|

< L(16: — 6a] + v — val), (C.50)

which is a result of Lemmas C.1 and C.2.

By Lemma 4.1, we also have

7-pmin

ooy 16-(70) = 0r).

I (moy, & (T6,)) — Jr(7o,, b7 (7e,)) =

Combining the two inequalities and re-arranging the terms, we have

A/ |S|log(2)L
151 log(2) 10, — 6. (€51

(1 =) PminT (min&a b7 (70,)(a ’ s))

|6 (m6,) — & (o,)| <

Therefore, by Equation C.3,

IVoJr (7o, o7 (70,)) — Voo (7o, r s Pr(Tor,r)) |

189

< LOk = Ok sl + Llior(ma,) — ¢r(ma,.) |

VS| log(2) L
[0k — Okl

<L
= (1 ! (1 - ,}/)pmiHT (mins,a ¢T(7T0k)(a | 8))

Due to the Danskin’s Theorem Equation C.2, this implies that we can perform the

expansion

JT(,/TGIN ¢T(7r9k)> - JT(ﬂ-ek+17 ¢T(7r9k:+1))

< —(VoJ (7o, &+ (m0,)), Ok 41 — k)
L S[log(2) L o
+ 2 (1 + (1 —) pminT (ming 4 ¢ (7,) (a | S))> 10k+1 — Ok |

< —aiVoJr(mg,, 67(70,)), Voo (o, , Py,)

Sllog(2)L
V15| log(2))|veJT<m,¢wk>|2. (©52)

e ,
2 (1 =) pminT (mins o ¢~ (70,) (a | 5))

Note that by the property of the min function

min ¢, (g,)(a | s) > mingz(a | s) —max(¢r(a] s) — dr(m,)(a | 5))

> windi(a | 5) = 6% — ér(m,)|

> \/ 2108(2) 5 1 59, (C.53)

T Pmin

where the last inequality uses the same argument as in Equation C.58. Since Equation C.23

. . . 02
implies 07 + 67 < W, we further have

21log(2) (. c«/log(2).

min¢7(ﬂ9k)(a’ S) 26_\/—(52—’—62) 26(1_ @) = 9

min

Using this bound in Equation C.52,

JT (7T9k7 ¢T<7T9k)) - JT (Trek+17 ¢T (W‘gk+1)>

190

< —Oék<V9JT (7T0k7 ¢r(7ﬂ9k))a Vo, (7T9k7 ¢¢k>>

Q [S[1og(2)) Vo (To,, b))

“% (4
T (i (1 =) pminT (ming o ¢7 (4,)(a | 5))

< —ak<v9<]7 (7T6k> ¢7’(7T0k))? VOJT (7T9k7 ¢?/Jk)>

Lag 24/|S|L
+—" |1+ Vo (76, by) I (C.54)
2 ((1 —=7)pminTe

—1
. . . 24/|S|L?
With the step size choice o, < (L + ——— , we get
P g (m) &

J7'<7T9k7 ¢T (7T9k)> —Jr (7T9k+17 qu- (W0k+1>)

< —ak<VgJ7—(7T0k, ¢7—<7T9k))7 VQJT (70k7 ¢¢k)>
2
+ Lak <1 + (QML) HVHJT<7T0]€7 @%)”2

2 1 —7)pminTC

<~V (9, 07(79,)), Vo Jr (o, , Dy,.))
a
+ 7k||v9<]7'(7r9k7 ¢wk)”2

@
= f\\VeJT(Wek, ¢-(70,)) = Vo =(mo,, ¢) |* — [Vo= (7o, &7 (m0,)) |

C.2.10 Proof of Lemma C.6

The property of the min and max function implies that

max(n’ (a | s) — 7, (a | s)) +minmg, (a | s) = min7} (a | s).
s,a s,a s,a

Since the three terms are all non-negative, the inequality holds after taking the square

(min?, (@ | $))° < (max(w, (@ | 3) — my,(a|)) + miny, (a | 5))?

191

W

< 3(minm, (a] 5))” + 4(max(r, (a | 5) =7, (a | 5)))".

Re-arranging the terms,

2

2 2
3

- (minmk(a | 3)) < ~1 (minﬂk(a | 3)) +3 (maxﬂk(a | 8) — 7y, (a | s))
3
4

2
(minm o 6)) 31, = w2

From Lemma 4.1,

~(mmrnta 1) =2 (winwsa19) +8i, ol
< —% (Irsuan m (a | s))2 + 67_1’::0gni) (o (77,5 97,) — i (7o, 07,))
< —z (rman 7 (a | 8)) + 67_1:515?((770 07) — T (o, O, (T0,.)))
— —z (rrsuan m (a | s))2 + 67_1]:?0gnin) or, (C.55)
Since 347 + 5k < 5 f{kgc(Q), we have §] < 62’%6() which along with Equation C.55

implies

2 2
3 61 3 3c? 3c?
~(amatel) <=3 (ol) + S <55 5y <

Similarly, the property of the min and max function implies that
max(, (0| 5) = 60, (0| 9)) + min o, (b 5) = min 5, (0|).

Again, all three terms are non-negative, which means that the inequality is preserved after

taking the square

(min ¢7, (b | 5))* < (nin ¢y, (b | 5) +max(¢r, (b [5) — Gy, (0| 5)))”

192

4 .
< S(mindy, (0] 5))* + 4(max(8;, (]) = 60, (b)
which leads to

3
~(amin s, (b | 9)* < =S min 67, (b 5))? + 3(max(65, (0| 5) — 60, (b)°
3
<~ (min g7, (0]) + 367, — b,
3
<~ (ming?, (0|)2 + 6167, (7a,) — G, [* + 6165, — 6r,(ma,) P

(C.56)

From Lemma 4.1,

2108(2) (1 (0 Bun) — T (s o (m5))) = 2B

Tk Pmin Tk Pmin

7, (C.57)

H(ﬁ‘r;@ (7T9k) - ¢1/JkH2 <

and

|47, = én(mo,)|”

I
< 21083 (1 (00, 65) = T (a0 6 (70,))
7_kpmin
< 210g(2) ((JTIc (7T9k7 ¢:—k> - JTk (7T‘9k7 ¢¢k)) + (JTk (Wekv %k) - JTIc (7T9k7 ¢Tk (7919))) >
Tk Pmin - ~)
5%
= 2B (5 08) T 0 (30)) + (s ()T 60,) + 57
I
< QTkongfl? <JTk (7T9k’ ¢;k) - JTk (Wé’m ¢7'k (ﬂ—ek)) + 51?)
< 2D (5 (51 00) — S (s) +)
_ 210g(2) (o o
v (5k + 5k> , (C.58)

where the third inequality follows from J;, (7, , ¢r, (79,)) — Jr, (T, Py,.) < 0.

193

Using Equation C.57 and Equation C.58 in Equation C.56,

3
~(mnin g, (b | 5))* < =5 (min 67, (b | 5))* + 61, (m0,) = G |* + 665, — br ()|

121og(2 121og(2
2 12l0g(2) 5% + 0g(2)
Tk Pmin Tk Pmin

>y 12108(2) (5 o5e)

kFPmin

N

3
~ming:, (b)) (57 +)

3, . .
= —1(r§7in¢7k(b | 5))

307 + 5,‘? < 65@“52) implies that 67 + 25,? < 5 lT:gcé). Using this in the inequality above,

_ 3, . 12log(2) , .. 3¢ 12¢2 3c?
—(H;}bnmk(b |5))? < —Z(Tglbn@k(b |5))* + m(ék +267) < Tt s
]

C.2.11 Proof of Lemma C.7

From Lemma 4.4, for any ¢ € RIS|*IBl

JTk <7T92’ ¢¢) - JTk (7?92, ¢T}c (7T92))

U 7¢T (ﬂ'g)
‘S’ dp92 k\TT02 9
< IV (s, d) |
. 2 Too ;P k 27
27—kpmin (mlns,a gbw(a | S)) dpg2 v 0
S|
< 2‘|V¢JT;€(7T927¢¢)H27

h 2Tk(1 — ’7) (min&a ¢1/)<a | 5))

where the second inequality follows by an argument similar to Equation C.34. Letting v be

the parameter that parameterizes ¢, (g,) and defining Ly, = Ly (27, + 1), we have

JTk (792) (bﬂ'k (791)) - JTk (71—92) ¢Tk (71-92))
S|

<
27,(1 =) (ming,q ¢7, (70,) (a | 5))
S|

" 27(1 —) (min, , ér, (g,) (a | 5))

D) va‘]ﬂc (7T92a ¢7—k (7T91))||2

2 H v¢ JTk (7T927 ¢;,Tk (71—91)) - vd) ‘]Tk (71—91) ¢;,Tk (7T91)) H2

194

L;|S|
<
27,(1 =) (ming o 7, (m0,) (@ | 5))

561 — 62,

where the last inequality uses the same argument as Equation C.50.

By Lemma 4.1, we also have

Tk Pmin
21og(2)

J’fk (71—927 ¢7'k (71—91)) - J’T'k (7T927 ¢7'k (77—92)) = qum (7T91) - ¢Tk (7T92)||2'

Combining the two inequalities and re-arranging the terms, we have

’S‘log(?)Lk
o (78,) — 6 (70,)] < V1215 0, — 0. (C59
| s, (To,) — @ry (o) || < =)y (m0ins e 0 (7)@ | 5)) |61 — 65 ()

Therefore, by Equation C.3,

HvoJm (7T9k.a ¢7—k (ng)) - VQJTk (ﬂ-@k+1’ ¢Tk (7T9k+l>)H

< Lk”‘gk - 9k+1H + LkH¢7k (7T9k> - ¢Tk (7r9k+1)”

V/|S]log(2) Ly,

O — 6
(1 - V)PminTk (minsya ¢Tk (7r9k>(a ’ S))) H k k+1H

<Lk(1+

Due to the Danskin’s Theorem Equation C.2, this implies that we can perform the

expansion

JTk (7T9k7 ¢Tk <7T9k)) - JTk <7T9k+17 ¢Tk (71-91@“))

< _<V9JTk <7T0k7 ¢Tk (ng)), 9k+1 - 9k>

Ly V|S[1og(2) Ly

=11) - -
+ 2 (+ (]. - 7)pmin7—k (minsﬂ ngk (770k>(a | 8))) H k+1 kH
< —Ozk;<V9J7—k (779k7 gbrk (W@k))’ veJTk: <7T9k7 ¢¢k)>

Lo V|5 1log(2) Ly

2 <1 (1 - ’7)pmin7_k: (mins,a ¢Tk (7T9k)<CL | 8))

) Hve‘]ﬂc (71—9k7 ¢¢k>H2

(C.60)

195

Note that by the property of the min function

min b (7o,)(a | 5) > min g3, (a | 5) = max(¢7, (a | 5) = 6, ()@ | 5)

= Hsliall Qﬁk(a ‘ S) - H(b:-k - quk(ﬂ-@k)H

>c— \/21°g(2) (67 + 69), (C.61)

Tk Pmin

where the last inequality uses the same argument as in Equation C.58. Since Equation C.23

3 1 ™ ¢ Eminc27—0
implies 07 + 0y’ < Griocts) ey s> We further have

min -, (g,) (a | 5) > ¢ - \/QIOg@) 67 458) > el — o | 2y 5 V108

Tk Prnin 327 7 2

Using this bound in Equation C.60,

o b7 (7r)
JTk <7r9k7 ¢Tk (7r9k)) - JT:kJrl &\ 041 (p)

< _C“k<v9‘]7'k (7T9k> ¢7k (T‘-Hk))? VHJTk (7T9k7 ¢¢k>>

N Liyad - v/ |S|log(2) Ly,
(1 =)p

2 min Tk (mins,a (ka (7‘['91)((1 ’ S))

) HVGJTIC <7T9k7 ¢¢'k)||2

< —Oék<V0JTk (7T19k7 ¢Tk (F@k», VGJTk (7T9k; ¢wk>>
Lka’% szk ,
e —
2 ((1 - ’V)Pminch H 0 k(ﬂgk ¢'¢’k)H

o? C, L2
< (Vo (T, I (70)) Vo, (7o) + (Lw : k)veJmk,%)r?

7 Tk

(C.62)

The condition on /o, which is 2% < (2Ly, + 413,Ca) 2 + (Ly, + 413,Cy) + B2,

2
can be equivalently expressed as ay (LO + %) < 1. Since o, decays faster than 7, this

196

guarantees for all £ > 0

<1

CyL?
O (Lk-f- 2 k)

Tk

Using this inequality in Equation C.62, we get

JTk (7T9k’ QSTIQ (7T9k)) - ‘]Tlc (7T9k+17 quk (7T9k+1))

(0
< _ak’<v9‘]7k (71—91& ¢Tk (ﬂ_Gk’)>? VGJTIC (7T9k7 ¢wk)> + %HV@JW (7T9k7 fbwk)HQ

73

= ? (“VGJTk(W0k7¢Tk<7T9k)> - v9J7k<7T9k7 ¢¢k)”2 - HVGJTk(ﬂ—@k?¢Tk(ﬂ-9k))H2) :

C.3 Experiment Details

We first discuss the design of the completely mixed Markov game. The dimension of state
space is 2, and so is the dimension of the action spaces of both players. Using s, s, to denote
the two states, we can essentially describe P as a 2 x 2 x 2 x 2 tensor where P (s’ | s, -,) is
a 2 x 2 matrix for any s, s’ € S with rows corresponding to the action of the first player and

columns corresponding to the second player

0.2 0.5 0.8 0.5
P(si|s1,7) = , P(sa]s1,-,:) =)

0.5 0.1 0.5 0.9

0.3 0.2 0.7 0.8
P(Sl | 52,) =) P(SQ | 52,) =

0.6 0.2 04 0.8

Similarly, the reward function can be described by a 2 x 2 x 2 tensor where r (s, -,) is

a 2 x 2 matrix for any s € S with rows corresponding to the action of the first player and

197

columns corresponding to the second player

1 2 6 4
T(Sla'a') = > 7’(82,',') =
2 1 3 10

Under the initial distribution p = [0.5,0.5] " and discount factor v = 0.9, the (approxi-

mate) Nash equilibrium of this Markov game is

(- | s1) = [0.812,0.188], 7*(- | s2) = [0.837,0.163],

¢* (| s1) = [0.880,0.120], *(- | s5) = [0.597,0.403].

To design the Markov game that does not observe Assumption 4.2, we use the same
transition probability matrices as in the completely mixed Markov game case. The reward

function is

7"(81, .) = , 7”(82,',) =

Under the initial distribution p = [0.5,0.5]" and discount factor v = 0.9, it can be easily

seen that the Nash equilibrium of this Markov game is unique and is

77-*(' ‘ 51) = [07 1]7 7T*(' ‘ 52) = [07 1]7

¢*(' | 31) = [170]7 925*(‘ 52) = [170]

Since the Nash equilibrium consists of a pair of deterministic policies, Assumption 4.2 is

not satisfied in this case.

198

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, 2015.

D. Silver, A. Huang, C. J. Maddison, ef al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

OpenAl, C. Berner, G. Brockman, B. Chan, et al., “Dota 2 with large scale deep
reinforcement learning,” 2019. arXiv: 1912.06680.

C. Yu, J. Liu, and S. Nemati, “Reinforcement learning in healthcare: A survey,’
arXiv preprint arXiv:1908.08796, 2019.

A. Esteva et al., “A guide to deep learning in healthcare,” Nature medicine, vol. 25,
no. 1, pp. 24-29, 2019.

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238-1274,
2013.

T. Haarnoja et al., Soft actor-critic algorithms and applications, available at: https:
/larxiv.org/abs/1812.05905, 2019.

H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile
robot navigation via inverse reinforcement learning,” The International Journal of
Robotics Research, vol. 35, no. 11, pp. 1289-1307, 2016.

Y. Zhu et al., “Target-driven visual navigation in indoor scenes using deep reinforce-
ment learning,” in 2017 IEEFE international conference on robotics and automation
(ICRA), 1IEEE, 2017, pp. 3357-3364.

A. Anwar and A. Raychowdhury, “Autonomous navigation via deep reinforcement
learning for resource constraint edge nodes using transfer learning,” IEEE Access,
vol. 8, pp. 26 549-26 560, 2020.

J. Bhandari and D. Russo, “Global optimality guarantees for policy gradient meth-
ods,” arXiv preprint arXiv:1906.01786, 2019.

A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Optimality and approxima-
tion with policy gradient methods in markov decision processes,” ser. Proceedings
of Machine Learning Research, vol. 125, 2020, pp. 64—66.

199

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans, “On the global convergence
rates of softmax policy gradient methods,” in International Conference on Machine
Learning, PMLR, 2020, pp. 6820-6829.

L. Espeholt et al., “IMPALA: Scalable distributed deep-RL with importance
weighted actor-learner architectures,” ser. Proceedings of Machine Learning Re-
search, vol. 80, 2018, pp. 1407-1416.

M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van Hasselt,
“Multi-task deep reinforcement learning with popart,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 3796-3803.

J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated reinforcement learning: Techniques,
applications, and open challenges,” arXiv preprint arXiv:2108.11887, 2021.

K. Ovchinnikov, A. Semakova, and A. Matveev, “Decentralized multi-agent tracking
of unknown environmental level sets by a team of nonholonomic robots,” in 2014 6th
International Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT), IEEE, 2014, pp. 352-359.

A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent op-
timization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48-61,
2009.

K. I. Tsianos and M. G. Rabbat, “Distributed strongly convex optimization,” in
2012 50th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), IEEE, 2012, pp. 593-600.

D. Jakovetié, J. Xavier, and J. M. Moura, “Fast distributed gradient methods,” IEEE
Transactions on Automatic Control, vol. 59, no. 5, pp. 1131-1146, 2014.

K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient
descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835-1854, 2016.

T. Lin, C. Jin, and M. Jordan, “On gradient descent ascent for nonconvex-concave
minimax problems,” in International Conference on Machine Learning, PMLR,

2020, pp. 6083-6093.

T. Lin, C. Jin, and M. 1. Jordan, “Near-optimal algorithms for minimax optimization,”
in Conference on Learning Theory, PMLR, 2020, pp. 2738-2779.

Y. Wang and J. Li, “Improved algorithms for convex-concave minimax optimization,”
Advances in Neural Information Processing Systems, vol. 33, pp. 4800—4810, 2020.

200

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

D. M. Ostrovskii, A. Lowy, and M. Razaviyayn, “Efficient search of first-order nash
equilibria in nonconvex-concave smooth min-max problems,” SIAM Journal on
Optimization, vol. 31, no. 4, pp. 2508-2538, 2021.

C. Jin, P. Netrapalli, and M. Jordan, “What is local optimality in nonconvex-
nonconcave minimax optimization?” In International Conference on Machine Learn-
ing, PMLR, 2020, pp. 4880—4889.

M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn, “Solving a class
of non-convex min-max games using iterative first order methods,” arXiv preprint
arXiv:1902.08297, 2019.

J. Yang, N. Kiyavash, and N. He, “Global convergence and variance-reduced opti-
mization for a class of nonconvex-nonconcave minimax problems,” arXiv preprint
arXiv:2002.09621, 2020.

C. Daskalakis, D. J. Foster, and N. Golowich, “Independent policy gradient methods
for competitive reinforcement learning,” Advances in neural information processing
systems, vol. 33, pp. 5527-5540, 2020.

H. H. Zhuo, W. Feng, Y. Lin, Q. Xu, and Q. Yang, “Federated deep reinforcement
learning,” arXiv preprint arXiv:1901.08277, 2019.

C. Nadiger, A. Kumar, and S. Abdelhak, “Federated reinforcement learning for
fast personalization,” in 2019 IEEE Second International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE), IEEE, 2019, pp. 123-127.

L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial reinforce-
ment learning,” in International Conference on Machine Learning, PMLR, 2017,
pp- 2817-2826.

S. Li, Y. Wu, X. Cui, H. Dong, F. Fang, and S. Russell, “Robust multi-agent rein-
forcement learning via minimax deep deterministic policy gradient,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 4213-4220.

S. Zeng, T. T. Doan, and J. Romberg, “A two-time-scale stochastic optimization
framework with applications in control and reinforcement learning,” arXiv preprint
arXiv:2109.14756, 2021.

S. Zeng, M. A. Anwar, T. T. Doan, A. Raychowdhury, and J. Romberg, “A decentral-

ized policy gradient approach to multi-task reinforcement learning,” in Uncertainty
in Artificial Intelligence, PMLR, 2021, pp. 1002—-1012.

201

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. Zeng, T. T. Doan, and J. Romberg, “Finite-time analysis of decentralized stochas-
tic approximation with applications in multi-agent and multi-task learning,” in I[EEE
Conference on Decision and Control (CDC), IEEE, 2021, pp. 2641-2646.

S. Zeng, T. T. Doan, and J. Romberg, “Finite-time convergence rates of decentralized
stochastic approximation with applications in multi-agent and multi-task learning,”
IEEE Transactions on Automatic Control, 2022.

S. Zeng, T. T. Doan, and J. Romberg, “Finite-time complexity of online primal-dual
natural actor-critic algorithm for constrained markov decision processes,” in 2022
IEEE 615t Conference on Decision and Control (CDC), IEEE, 2022, pp. 4028-4033.

S. Zeng, T. T. Doan, and J. Romberg, “Regularized gradient descent ascent for
two-player zero-sum markov games,” in Advances in Neural Information Processing
Systems, 2022.

S. Zeng, A. Kody, Y. Kim, K. Kim, and D. K. Molzahn, “A reinforcement learning
approach to parameter selection for distributed optimal power flow,” Electric Power
Systems Research, vol. 212, p. 108 546, 2022.

V. S. Borkar and S. P. Meyn, “The ODE method for convergence of stochastic
approximation and reinforcement learning,” SIAM Journal on Control and Optimiza-
tion, vol. 38, no. 2, pp. 447-469, 2000.

V. R. Konda and J. N. Tsitsiklis, “Convergence rate of linear two-time-scale stochas-
tic approximation,” The Annals of Applied Probability, vol. 14, no. 2, pp. 796819,
2004.

G. Dalal, G. Thoppe, B. Szorényi, and S. Mannor, “Finite sample analysis of two-
timescale stochastic approximation with applications to reinforcement learning,” in
COLT, 2018.

G. Dalal, B. Szorenyi, and G. Thoppe, “A tale of two-timescale reinforcement
learning with the tightest finite-time bound,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, pp. 3701-3708, Apr. 2020.

T. T. Doan and J. Romberg, “Linear two-time-scale stochastic approximation a
finite-time analysis,” in 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2019, pp. 399—-406.

H. Gupta, R. Srikant, and L. Ying, “Finite-time performance bounds and adaptive

learning rate selection for two time-scale reinforcement learning,” in Advances in
Neural Information Processing Systems, 2019.

202

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai, “Finite time analysis
of linear two-timescale stochastic approximation with Markovian noise,” in Pro-
ceedings of Thirty Third Conference on Learning Theory, vol. 125, 2020, pp. 2144—
2203.

A. Mokkadem and M. Pelletier, “Convergence rate and averaging of nonlinear two-
time-scale stochastic approximation algorithms,” The Annals of Applied Probability,
vol. 16, no. 3, pp. 1671-1702, 2006.

T. T. Doan, “Finite-time convergence rates of nonlinear two-time-scale stochastic
approximation under Markovian noise,” arXiv:2104.01627, 2021.

B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Annals
of operations research, vol. 153, no. 1, pp. 235-256, 2007.

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-critic,”
arXiv:2007.05170, 2020.

T. Chen, Y. Sun, Q. Xiao, and W. Yin, “A single-timescale method for stochastic
bilevel optimization,” in International Conference on Artificial Intelligence and
Statistics, PMLR, 2022, pp. 2466-2488.

M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient descent: Al-
gorithms for minimizing compositions of expected-value functions,” Mathematical
Programming, vol. 161, no. 1, pp. 419-449, 2017.

T. Chen, Y. Sun, and W. Yin, “Solving stochastic compositional optimization is
nearly as easy as solving stochastic optimization,” IEEE Transactions on Signal
Processing, vol. 69, pp. 4937-4948, 2021.

S. Qiu, Z. Yang, J. Ye, and Z. Wang, “On finite-time convergence of actor-critic
algorithm,” IEEE Journal on Selected Areas in Information Theory, 2021.

H. Kumar, A. Koppel, and A. Ribeiro, “On the sample complexity of actor-critic
method for reinforcement learning with function approximation,” Machine Learning,

pp. 1-35, 2023.

T. Xu, Z. Wang, and Y. Liang, “Non-asymptotic convergence analysis of two time-
scale (natural) actor-critic algorithms,” arXiv:2005.03557, 2020.

Y. Wu, W. Zhang, P. Xu, and Q. Gu, “A finite time analysis of two time-scale actor
critic methods,” arXiv preprint arXiv:2005.01350, 2020.

203

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

S.-1. Amari, “Backpropagation and stochastic gradient descent method,” Neurocom-
puting, vol. 5, no. 4-5, pp. 185-196, 1993.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtarik,
“Sgd: General analysis and improved rates,” in International Conference on Machine
Learning, PMLR, 2019, pp. 5200-5209.

A. Khaled, K. Mishchenko, and P. Richtarik, “Tighter theory for local sgd on identi-
cal and heterogeneous data,” in International Conference on Artificial Intelligence
and Statistics, PMLR, 2020, pp. 4519-4529.

A. Ruszczynski, “A linearization method for nonsmooth stochastic programming
problems,” Mathematics of Operations Research, vol. 12, no. 1, pp. 32-49, 1987.

S. Boyd and A. Mutapcic, “Stochastic subgradient methods,” Lecture Notes for
EE364b, Stanford University, 2008.

A. Ruszczynski, “Convergence of a stochastic subgradient method with averaging
for nonsmooth nonconvex constrained optimization,” Optimization Letters, vol. 14,
no. 7, pp. 1615-1625, 2020.

Z. Chen, S. Zhang, T. T. Doan, J.-P. Clarke, and S. Theja Maguluri, “Finite-sample
analysis of nonlinear stochastic approximation with applications in reinforcement
learning,” arXiv e-prints, arXiv—1905, 2019.

T. Sun, Y. Sun, and W. Yin, “On markov chain gradient descent,” Advances in neural
information processing systems, vol. 31, 2018.

S.Zou, T. Xu, and Y. Liang, “Finite-sample analysis for sarsa with linear function
approximation,” Advances in neural information processing systems, vol. 32, 2019.

D. Bertsekas, Dynamic programming and optimal control: Volume I. Athena scien-
tific, 2012, vol. 1.

B. Gravell, P. M. Esfahani, and T. Summers, “Learning optimal controllers for
linear systems with multiplicative noise via policy gradient,” IEEE Transactions on
Automatic Control, vol. 66, no. 11, pp. 5283-5298, 2020.

Z. Yang, Y. Chen, M. Hong, and Z. Wang, “On the global convergence of actor-
critic: A case for linear quadratic regulator with ergodic cost,” arXiv preprint
arXiv:1907.06246, 2019.

V. R. Konda, “Actor-critic algorithms,” Ph.D. dissertation, Massachusetts Institute

of Technology, 2002.

204

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

A. Barakat, P. Bianchi, and J. Lehmann, “Analysis of a target-based actor-critic
algorithm with linear function approximation,” in International Conference on
Artificial Intelligence and Statistics, PMLR, 2022, pp. 991-1040.

S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, “Fast global convergence of natural
policy gradient methods with entropy regularization,” Operations Research, 2021.

R. S. Sutton, C. Szepesviri, and H. R. Maei, “A convergent o (n) algorithm for off-
policy temporal-difference learning with linear function approximation,” Advances
in neural information processing systems, vol. 21, no. 21, pp. 1609-1616, 2008.

R. S. Sutton e al., “Fast gradient-descent methods for temporal-difference learning
with linear function approximation,” in Proceedings of the 26th Annual International
Conference on Machine Learning, 2009, pp. 993—1000.

T. Xu, S. Zou, and Y. Liang, “Two time-scale off-policy td learning: Non-asymptotic
analysis over markovian samples,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

P. Karmakar and S. Bhatnagar, “Two time-scale stochastic approximation with
controlled markov noise and off-policy temporal-difference learning,” Mathematics
of Operations Research, vol. 43, no. 1, pp. 130-151, 2018.

D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times. American
Mathematical Society, 2006.

S. Zeng, T. T. Doan, and J. Romberg, “Connected superlevel set in (deep) re-
inforcement learning and its application to minimax theorems,” arXiv preprint
arXiv:2303.12981, 2023.

B. T. Polyak, “Introduction to optimization. translations series in mathematics and
engineering.,” Optimization Software, Inc, New York, 1987.

S. Lojasiewicz, “A topological property of real analytic subsets,” Coll. du CNRS,
Les équations aux dérivées partielles, vol. 117, pp. 87-89, 1963.

H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient and proximal-
gradient methods under the polyak-tojasiewicz condition,” in Joint European Con-

ference on Machine Learning and Knowledge Discovery in Databases, Springer,
2016, pp. 795-811.

C. Liu, L. Zhu, and M. Belkin, “Toward a theory of optimization for over-
parameterized systems of non-linear equations: The lessons of deep learning,”
arXiv:2003.00307, 2020.

205

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, “Global convergence of policy gra-
dient methods for the linear quadratic regulator,” arXiv preprint arXiv:1801.05039,
2018.

T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, Gradient surgery
for multi-task learning, available at: https://arxiv.org/abs/2001.06782, 2020.

A. A. Rusu et al., “Policy distillation,” arXiv preprint arXiv:1511.06295, 2015.

R. Traoré et al., “Discorl: Continual reinforcement learning via policy distillation,”
arXiv preprint arXiv:1907.05855, 2019.

L. T. Liu, U. Dogan, and K. Hofmann, “Decoding multitask dgqn in the world of
minecraft,” in The 13th European Workshop on Reinforcement Learning (EWRL)
2016, 2016.

A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant
feature spaces to transfer skills with reinforcement learning,” arXiv preprint
arXiv:1703.02949, 2017.

C. DEramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters, “Sharing knowledge
in multi-task deep reinforcement learning,” in Eighth International Conference on
Learning Representations (ICLR 2020), 2020.

V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in Inter-
national conference on machine learning, 2016, pp. 1928-1937.

A. Nair, P. Srinivasan, S. Blackwell, et al., “Massively parallel methods for deep
reinforcement learning,” Jul. 2015.

M. Assran, J. Romoff, N. Ballas, J. Pineau, and M. Rabbat, “Gossip-based actor-
learner architectures for deep reinforcement learning,” in Advances in Neural Infor-
mation Processing Systems, 2019, pp. 13 320-13 330.

J. X. Wang et al., “Learning to reinforcement learn,” arXiv preprint
arXiv:1611.05763, 2016.

A. Nagabandi et al., “Learning to adapt in dynamic, real-world environments through
meta-reinforcement learning,” arXiv preprint arXiv:1803.11347, 2018.

K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized multi-

agent reinforcement learning with networked agents,” ser. Proceedings of Machine
Learning Research, vol. 80, 2018, pp. 5872-5881.

206

https://arxiv.org/abs/2001.06782

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

K. Zhang, Z. Yang, and T. Basar, Multi-agent reinforcement learning: A selective
overview of theories and algorithms, available at: https://arxiv.org/abs/1911.10635,
2019.

T. Chu, S. Chinchali, and S. Katti, “Multi-agent reinforcement learning for net-
worked system control,” in International Conference on Learning Representations

(ICLR), 2020.

G. Qu and N. L. A. Wierman, Scalable reinforcement learning of localized policies
Jor multi-agent networked systems, available at: https://arxiv.org/abs/1912.02906,
2019.

T. T. Doan, S. T. Maguluri, and J. Romberg, “Finite-time performance of distributed
temporal-difference learning with linear function approximation,” SIAM Journal on
Mathematics of Data Science, vol. 3, no. 1, pp. 298-320, 2021.

D. Ding, X. Wei, Z. Yang, Z. Wang, and M. Jovanovic, Fast multi-agent temporal-
difference learning via homotopy stochastic primal-dual optimization, available at:
https://arxiv.org/abs/1908.02805, 2019.

W. Li, B. Jin, X. Wang, J. Yan, and H. Zha, F2a2: Flexible fully-decentralized ap-
proximate actor-critic for cooperative multi-agent reinforcement learning, available

at: https://arxiv.org/abs/2004.11145, 2020.

H.-T. Wai, Z. Yang, Z. Wang, and M. Hong, “Multi-agent reinforcement learning
via double averaging primal-dual optimization,” in Annual Conference on Neural
Information Processing Systems, 2018, pp. 9672-9683.

S. Kar, J. M. F. Moura, and H. V. Poor, “Qd-learning: A collaborative distributed
strategy for multi-agent reinforcement learning through consensus + innovations,”
IEEE Trans. Signal Processing, vol. 61, pp. 1848—1862, 2013.

D. Lee, N. He, P. Kamalaruban, and V. Cevher, Optimization for reinforcement
learning: From single agent to cooperative agents, available at: https://arxiv.org/

abs/1912.00498, 2019.

M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st. USA: John Wiley & Sons, Inc., 1994.

A. Olshevsky, “Linear time average consensus on fixed graphs,” IFAC-PapersOnlLine,
vol. 48, no. 22, pp. 94-99, 2015.

“Hittps://icsrl.ece.gatech.edu/pedra,”

207

https://arxiv.org/abs/1911.10635
https://arxiv.org/abs/1912.02906
https://arxiv.org/abs/1908.02805
https://arxiv.org/abs/2004.11145
https://arxiv.org/abs/1912.00498
https://arxiv.org/abs/1912.00498

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real
image,” arXiv preprint arXiv:1611.04201, 2016.

E. Altman, Constrained Markov decision processes. Chapman and Hall/CRC Press,
1999, vol. 7.

S. Paternain, L. F. Chamon, M. Calvo-Fullana, and A. Ribeiro, “Constrained rein-
forcement learning has zero duality gap,” arXiv preprint arXiv:1910.13393, 2019.

D. Ding, K. Zhang, T. Basar, and M. Jovanovic, ‘“Natural policy gradient primal-dual
method for constrained markov decision processes,” Advances in Neural Information
Processing Systems, vol. 33, pp. 8378-8390, 2020.

A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Optimality and approxima-
tion with policy gradient methods in markov decision processes,” in Conference on
Learning Theory, PMLR, 2020, pp. 64-66.

M. Lanctot et al., “Openspiel: A framework for reinforcement learning in games,”
arXiv preprint arXiv:1908.09453, 2019.

O. Vinyals et al., “Grandmaster level in StarCraft II using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350-354, 2019.

M. Riedmiller and T. Gabel, “On experiences in a complex and competitive gaming
domain: Reinforcement learning meets RoboCup,” in 2007 IEEE Symposium on
Computational Intelligence and Games, IEEE, 2007, pp. 17-23.

S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, reinforcement
learning for autonomous driving,” arXiv preprint arXiv:1610.03295, 2016.

C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng, “Training gans with optimism,”
arXiv preprint arXiv:1711.00141, 2017.

O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the gap between
value and policy based reinforcement learning,” Advances in neural information
processing systems, vol. 30, 2017.

G. Neu, A. Jonsson, and V. Gémez, “A unified view of entropy-regularized markov
decision processes,” arXiv preprint arXiv:1705.07798, 2017.

G. Lan, “Policy mirror descent for reinforcement learning: Linear convergence, new

sampling complexity, and generalized problem classes,” Mathematical programming,
pp- 1-48, 2022.

208

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

S. Cen, Y. Wel, and Y. Chi, “Fast policy extragradient methods for competitive
games with entropy regularization,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

J. Perolat, B. Scherrer, B. Piot, and O. Pietquin, “Approximate dynamic program-
ming for two-player zero-sum markov games,” in International Conference on
Machine Learning, PMLR, 2015, pp. 1321-1329.

Y. Bai and C. Jin, “Provable self-play algorithms for competitive reinforcement
learning,” in International Conference on Machine Learning, PMLR, 2020, pp. 551-
560.

Q. Xie, Y. Chen, Z. Wang, and Z. Yang, “Learning zero-sum simultaneous-move
markov games using function approximation and correlated equilibrium,” in Confer-
ence on Learning Theory, PMLR, 2020, pp. 3674-3682.

M. O. Sayin, F. Parise, and A. Ozdaglar, “Fictitious play in zero-sum stochastic
games,” SIAM Journal on Control and Optimization, vol. 60, no. 4, pp. 2095-2114,
2022.

T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien, “Reducing noise in
gan training with variance reduced extragradient,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

A. Mokhtari, A. Ozdaglar, and S. Pattathil, “A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach,”
in International Conference on Artificial Intelligence and Statistics, PMLR, 2020,
pp. 1497-1507.

C.J. Li et al., “On the convergence of stochastic extragradient for bilinear games

using restarted iteration averaging,” in International Conference on Artificial Intelli-
gence and Statistics, PMLR, 2022, pp. 9793-9826.

C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo, “Last-iterate convergence of decen-
tralized optimistic gradient descent/ascent in infinite-horizon competitive markov
games,” in Conference on Learning Theory, PMLR, 2021, pp. 4259-4299.

Y. Zhao, Y. Tian, J. D. Lee, and S. S. Du, “Provably efficient policy gradient methods
for two-player zero-sum markov games,” arXiv preprint arXiv:2102.08903, 2021.

Z. Chen, S. Ma, and Y. Zhou, “Sample efficient stochastic policy extragradient

algorithm for zero-sum markov game,” in International Conference on Learning
Representations, 2021.

209

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

L. S. Shapley, “Stochastic games,” Proceedings of the national academy of sciences,
vol. 39, no. 10, pp. 1095-1100, 1953.

D. Ying, Y. Ding, and J. Lavaei, “A dual approach to constrained markov decision
processes with entropy regularization,” in International Conference on Artificial
Intelligence and Statistics, PMLR, 2022, pp. 1887-1909.

R. D. McKelvey and T. R. Palfrey, “Quantal response equilibria for normal form
games,” Games and economic behavior, vol. 10, no. 1, pp. 6-38, 1995.

T. Raghavan, “Completely mixed games and M-matrices,” Linear Algebra and its
Applications, vol. 21, no. 1, pp. 3545, 1978.

I. Kaplansky, “A contribution to von neumann’s theory of games. ii,” Linear algebra
and its applications, vol. 226, pp. 371-373, 1995.

P. Das, T. Parthasarathy, and G. Ravindran, “On completely mixed stochastic games,”
arXiv preprint arXiv:1703.04619, 2017.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1-122, 2011.

S. Mhanna, A. C. Chapman, and G. Verbic, “Component-based dual decomposition
methods for the OPF problem,” Sustainable Energy, Grids and Networks, vol. 16,
pp- 91-110, 2018.

B. He, H. Yang, and S. Wang, “Alternating direction method with self-adaptive
penalty parameters for monotone variational inequalities,” Journal of Optimization
Theory and Applications, vol. 106, no. 2, pp. 337-356, 2000.

Z. Xu, M. Figueiredo, and T. Goldstein, “Adaptive ADMM with spectral penalty
parameter selection,” in 20th International Conference on Artificial Intelligence and
Statistics, PMLR, 2017, pp. 718-727.

S. Mhanna, G. Verbic, and A. C. Chapman, “Adaptive ADMM for distributed AC
optimal power flow,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2025-
2035, 2019.

X. Chen, G. Qu, Y. Tang, S. Low, and N. Li, “Reinforcement learning for
decision-making and control in power systems: Tutorial, review, and vision,”

arXiv:2102.01168, 2021.

T. Chen et al., “Learning to optimize: A primer and a benchmark,” Journal of
Machine Learning Research, vol. 23, no. 189, pp. 1-59, 2022.

210

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

M. Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,”
in Advances in Neural Information Processing Systems (NIPS), 2016, pp. 3981—
3989.

D. Biagioni, P. Graf, X. Zhang, A. S. Zamzam, K. Baker, and J. King, “Learning-
accelerated ADMM for distributed DC optimal power flow,” IEEE Control Systems
Letters, vol. 6, pp. 1-6, 2022.

P. Graf et al., “Distributed reinforcement learning with ADMM-RL,” in American
Control Conference (ACC), 2019, pp. 4159-4166.

X. Xie, J. Wu, G. Liu, Z. Zhong, and Z. Lin, “Differentiable linearized ADMM,” in
International Conference on Machine Learning (ICML), PMLR, 2019, pp. 6902—
6911.

J. Ichnowski et al., “Accelerating quadratic optimization with reinforcement learn-
ing,” Advances in Neural Information Processing Systems (NIPS), 2021.

F. Li and Y. Du, “From AlphaGo to power system Al: What engineers can learn
from solving the most complex board game,” IEEE Power and Energy Magazine,
vol. 16, no. 2, pp. 76-84, 2018.

L. Duchesne, E. Karangelos, and L. Wehenkel, “Recent developments in machine
learning for energy systems reliability management,” Proceedings of the IEEE,
vol. 108, no. 9, pp. 1656-1676, 2020.

J. Giesen and S. Laue, “Distributed convex optimization with many convex con-
straints,” arXiv preprint arXiv:1610.02967, 2016.

Y. Tang and S. Agrawal, “Discretizing continuous action space for on-policy opti-
mization,” in Proceedings of the aaai conference on artificial intelligence, vol. 34,

2020, pp. 5981-5988.

R. Zimmerman, C. Murillo-Sénchez, and R. Thomas, “MATPOWER: Steady-state
operations, planning, and analysis tools for power systems research and education,”
IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12-19, Feb. 2011.

S. Khodadadian, T. T. Doan, J. Romberg, and S. T. Maguluri, “Finite sample analysis
of two-time-scale natural actor-critic algorithm,” IEEE Transactions on Automatic

Control, 2022.

S. Kakade and J. Langford, “Approximately optimal approximate reinforcement
learning,” in ICML, vol. 2, 2002, pp. 267-274.

211

[158] P. Bernhard and A. Rapaport, “On a theorem of danskin with an application to a the-
orem of von neumann-sion,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 24, no. 8, pp. 1163—-1181, 1995.

212

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction and Background
	Introduction
	Related Literature
	Contribution

	2 | Two-Time-Scale Stochastic Optimization and Its Applications in Actor-Critic Algorithms
	Introduction
	Related Works
	Two-Time-Scale Stochastic Gradient Descent Algorithm
	Applications to Actor-Critic Algorithms
	Technical Assumptions
	Finite-Time and Finite-Sample Complexity of Two-Time-Scale SGD
	Conclusion

	3 | Multi-Agent Multi-Task Reinforcement Learning
	Related Works
	Average-Performance Multi-Task Reinforcement Learning Formulation
	Structure in Multi-Task Reinforcement Learning
	Decentralized Policy Gradient Algorithm
	Convergence Analysis
	Achieving Global Optimality
	Experimental Results
	Constrained Multi-Task Reinforcement Learning
	Conclusion & Future Directions

	4 | A Direct Policy Optimization Approach to Two-Player Zero-Sum Markov Games
	Introduction
	Related Works
	Preliminaries
	Solving Regularized Markov Games
	Main Results - Solving the Original Markov Game
	Numerical Simulations
	Future Directions

	5 | Accelerating Power System Optimization with Reinforcement Learning
	Related Works
	Preliminaries
	Reinforcement Learning Algorithm Design
	Numerical Experiments
	Future Directions

	6 | Conclusion
	A | Supplementary Material for Results in Chapter 2
	Analysis Decomposition and Proof of Main Theorem
	Proof of Additional Lemmas

	B | Supplementary Material for Results in Chapter 3
	Computation Details of Examples in 3.3
	Lipschitz, Gradient Lipschitz, and Hessian Lipschitz Constants
	Proof of Theorems
	Proof of Propositions
	Proof of Additional Lemmas

	C | Supplementary Material for Results in Chapter 4
	Proof of Theorems and Corollaries
	Proof of Lemmas
	Experiment Details

	References

