
DESIGNING POLICY OPTIMIZATION ALGORITHMS FOR MULTI-AGENT
REINFORCEMENT LEARNING

A Dissertation
Presented to

The Academic Faculty

By

Sihan Zeng

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2023

© Sihan Zeng 2023

DESIGNING POLICY OPTIMIZATION ALGORITHMS FOR MULTI-AGENT
REINFORCEMENT LEARNING

Thesis committee:

Dr. Justin Romberg, Advisor
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Siva Theja Maguluri
Industrial and Systems Engineering
Georgia Institute of Technology

Dr. Guanghui Lan
Industrial and Systems Engineering
Georgia Institute of Technology

Dr. Daniel K. Molzahn
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Thinh T. Doan
The Harry Lynde Bradley Department of
Electrical and Computer Engineering
Virginia Polytechnic Institute and State
University

Date approved: May 1, 2023

ACKNOWLEDGMENTS

Over my time as a graduate student at Georgia Tech, I am extremely fortunate to have

worked and interacted with a wonderful group of mentors, friends, and colleagues, who

have profoundly shaped how I conduct research and how I live my life.

First and foremost, I express my deepest gratitude to my advisor, Dr. Justin Romberg.

Without his continuous support, encouragement, and intellectual guidance, the completion

of this dissertation would have never been possible. It is a privilege to have known and

worked with Justin. His empathy, kindness, dedication, and integrity have set an example

that I will forever strive to follow.

I would like to thank Drs. Thinh Doan and Kyle Xu for their collaboration and men-

torship in academic research, professional growth, and life in general. Enlightening con-

versations with Thinh sparked my interest in reinforcement learning research and opened

up a new world to me. His strong hands-on research guidance in my early graduate school

years helped me quickly get into the field. Kyle is one of the first few people I met upon my

arrival at Rice University and has been a close friend and tremendous mentor ever since. The

collaboration with Kyle on compressive sensing and generative models is a great pleasure.

My internships are truly fun and rewarding experiences. I am grateful to have collab-

orated with and been advised by Drs. Alyssa Kody, Daniel Molzahn, Kibaek Kim, and

Youngdae Kim at Argonne National Lab, Drs. Parisa Hassanzadeh and Sumitra Ganesh at

JPMorgan AI Research, and David Kawashima and Dr. Yukikazu Hidaka at Tinder.

I would also like to extend my gratitude to the rest of my thesis proposal and defense

committee members Drs. Siva Maguluri, Guanghui Lan, and Ashwin Pananjady, who

have provided insightful feedback and discussions throughout the proposal and defense

process and whose research in optimization and reinforcement learning has been a source of

inspiration for my own works.

I have had many thoughtful discussions and enjoyable chats with Rakshith, Tomer, Jihui,

iii

Cole, Brighton, Namrata, Liangbei, Nauman, Peimeng, Greg, Andrew, and the rest of the

Children-of-the-Norm community. I thank my friends, classmates, and collaborators at

Georgia Tech, especially Aqeel Anwar, whose work inspired my initial research on multi-

task reinforcement learning. The drone simulation platform developed by Aqeel provides a

great testbed for my reinforcement learning experiments.

Special thanks go to my friends outside of Georgia Tech, many of whom I have known

since childhood, Dan Zhou, Hanwen Zheng, Zhenzhen Qu, Caleb Lu, Tony Chen, Yuqiang

Heng, and others, for their prolonged companionship and emotional support.

Finally, words cannot express how grateful I am to my parents, to whom I owe everything.

I am also deeply indebted to my partner, Hanqing Sun, who moved multiple times with me

and sometimes put her own goals on hold to ensure that I can focus on my research. Their

unconditional love and unwavering support have always been my source of strength.

iv

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . xi

List of Figures . xii

Summary . xiii

Chapter 1: Introduction and Background . 1

1.1 Introduction . 1

1.2 Related Literature . 3

1.3 Contribution . 4

Chapter 2: Two-Time-Scale Stochastic Optimization and Its Applications in
Actor-Critic Algorithms . 7

2.1 Introduction . 8

2.2 Related Works . 9

2.3 Two-Time-Scale Stochastic Gradient Descent Algorithm 12

2.4 Applications to Actor-Critic Algorithms 14

2.4.1 Online Actor-Critic Method for Infinite-Horizon Average-Reward
MDPs . 14

2.4.2 Online Natural Actor-Critic Algorithm for LQR 16

v

2.4.3 Online Actor-Critic Method for Regularized MDPs 19

2.4.4 Two-Time-Scale Policy Evaluation Algorithms 21

2.5 Technical Assumptions . 21

2.6 Finite-Time and Finite-Sample Complexity of Two-Time-Scale SGD 24

2.6.1 Strong Convexity . 26

2.6.2 Non-Convexity under PŁ Condition 27

2.6.3 Non-Convexity . 28

2.7 Conclusion . 29

Chapter 3: Multi-Agent Multi-Task Reinforcement Learning 30

3.1 Related Works . 31

3.2 Average-Performance Multi-Task Reinforcement Learning Formulation . . 32

3.3 Structure in Multi-Task Reinforcement Learning 34

3.4 Decentralized Policy Gradient Algorithm 37

3.5 Convergence Analysis . 38

3.6 Achieving Global Optimality . 39

3.7 Experimental Results . 41

3.7.1 GridWorld Problems . 41

3.7.2 Drone Navigation . 43

3.8 Constrained Multi-Task Reinforcement Learning 46

3.8.1 Algorithm Design . 47

3.8.2 Finite-Time Convergence . 49

3.9 Conclusion & Future Directions . 50

vi

Chapter 4: A Direct Policy Optimization Approach to Two-Player Zero-Sum
Markov Games . 52

4.1 Introduction . 52

4.2 Related Works . 54

4.3 Preliminaries . 56

4.3.1 Entropy-Regularized Two-Player Zero-Sum Markov Games 58

4.3.2 Softmax Parameterization . 60

4.4 Solving Regularized Markov Games . 62

4.5 Main Results - Solving the Original Markov Game 64

4.6 Numerical Simulations . 68

4.7 Future Directions . 70

Chapter 5: Accelerating Power System Optimization with Reinforcement Learning 71

5.1 Related Works . 72

5.2 Preliminaries . 73

5.2.1 Alternating Direction Method of Multipliers 73

5.2.2 Alternating Current Optimal Power Flow 74

5.2.3 ACOPF Solved via ADMM . 76

5.3 Reinforcement Learning Algorithm Design 77

5.3.1 Factorized Entry-wise Policy & Multi-Agent Interpretation 81

5.3.2 Q Learning Algorithm in ADMM Solver 83

5.4 Numerical Experiments . 83

5.4.1 Performance on Training Scheme 85

5.4.2 Generalization of RL Policy to Varying Loads 85

vii

5.4.3 Generalization of RL Policy to Generator and Line Outages 86

5.4.4 Generalization of RL Policy to Unseen Network Structures 87

5.5 Future Directions . 88

Chapter 6: Conclusion . 90

Chapter A: Supplementary Material for Results in Chapter 2 92

A.1 Analysis Decomposition and Proof of Main Theorem 92

A.1.1 Decision Variable Convergence . 93

A.1.2 Auxiliary Variable Convergence 95

A.1.3 Two-Time-Scale Lemma . 98

A.1.4 Proof of Main Results . 102

A.2 Proof of Additional Lemmas . 104

A.2.1 Proof of Lemma A.1 . 104

A.2.2 Proof of Lemma A.3 . 108

Chapter B: Supplementary Material for Results in Chapter 3 110

B.1 Computation Details of Examples in Section 3.3 110

B.2 Lipschitz, Gradient Lipschitz, and Hessian Lipschitz Constants 118

B.2.1 Proof of Lemma B.1 . 118

B.2.2 Proof of Lemma B.2 . 121

B.3 Proof of Theorems . 123

B.3.1 Proof of Theorem 3.1 . 123

B.3.2 Proof of Theorem 3.2 . 128

viii

B.3.3 Proof of Theorem 3.3 . 130

B.4 Proof of Propositions . 137

B.4.1 Proof of Proposition B.1 . 137

B.5 Proof of Additional Lemmas . 140

B.5.1 Proof of Lemma B.3 . 140

B.5.2 Proof of Lemma B.4 . 144

B.5.3 Proof of Lemma B.7 . 144

B.5.4 Proof of Lemma B.8 . 145

B.5.5 Proof of Lemma B.9 . 147

Chapter C: Supplementary Material for Results in Chapter 4 152

C.1 Proof of Theorems and Corollaries . 152

C.1.1 Proof of Theorem 4.1 . 153

C.1.2 Proof of Corollary 4.1 . 158

C.1.3 Proof of Theorem 4.2 . 162

C.2 Proof of Lemmas . 171

C.2.1 Proof of Lemma 4.1 . 171

C.2.2 Proof of Lemma 4.2 . 173

C.2.3 Proof of Lemma 4.3 . 175

C.2.4 Proof of Lemma 4.4 . 177

C.2.5 Proof of Lemma C.1 . 177

C.2.6 Proof of Lemma C.2 . 181

C.2.7 Proof of Lemma C.3 . 185

ix

C.2.8 Proof of Lemma C.4 . 186

C.2.9 Proof of Lemma C.5 . 188

C.2.10 Proof of Lemma C.6 . 191

C.2.11 Proof of Lemma C.7 . 194

C.3 Experiment Details . 197

References . 199

x

LIST OF TABLES

2.1 Summary of Main Results - Time and Sample Complexity. 13

3.1 MSF of Learned Policy . 45

5.1 RL Action Space & Initial ρ Values . 79

5.2 Performance of RL Policy Under Training Loads (ADMM Iterations) 85

5.3 Performance of RL Policy Under Varying Loads (ADMM Iterations) 86

5.4 Performance of RL Policy Under Generator Outages (ADMM Iterations) . . 87

5.5 Performance of RL Policy Under Line Outages (ADMM Iterations) 87

xi

LIST OF FIGURES

3.1 Two-Task GridWorld Problem Without a Deterministic Optimal Policy . . . 35

3.2 Evaluate Learned Policy in Multi-task GridWorld 42

3.3 Environments used in drone navigation. 44

3.4 MSF During Training (REINFORCE) . 44

4.1 Convergence of GDA for a Completely Mixed Markov game 68

4.2 Convergence of GDA for a Deterministic Markov game 69

5.1 Environment (ADMM Solver) and RL Agent Interaction 77

5.2 Primal and Dual Residuals under RL Policy for 9-bus System 86

5.3 ADMM Convergence with RL Policy for the 9-bus System with Generator
and Line Outages . 88

xii

SUMMARY

Multi-agent reinforcement learning (RL) studies the sequential decision-making problem

in the setting where multiple agents exist in an environment and jointly determine the

environment transition. The relationship between the agents can be cooperative, competitive,

or mixed depending on how the rewards of the agents are aligned. Compared to single-agent

RL, multi-agent RL has unique and complicated structure that has not been fully recognized.

The overall objective of the thesis is to enhance the understanding of structure in multi-agent

RL in various settings and to build reliable and efficient algorithms that exploit and/or

respect the structure.

First, we observe that many data-driven algorithms in RL such as the gradient temporal

difference learning and actor-critic algorithms essentially solve a bi-level optimization

problem by tracking an artificial auxiliary variable in addition to the decision variable and

updating them at different rates. We propose a two-time-scale stochastic gradient descent

method under a special type of gradient oracle which abstracts these algorithms and their

analysis in a unified framework. We characterize the convergence rates of the two-time-scale

gradient algorithm under several structural properties of the objective functions common in

RL problems. Targeting single-agent RL problems, this framework builds the mathematical

foundation for designing and studying data-driven multi-agent RL algorithms that we will

later deal with.

Second, we consider multi-agent RL in the fully cooperative setting where a connected,

decentralized network of agents collaborates to solve multiple RL tasks. Our first problem

formulation deploys one agent to each task and considers learning a single policy that

maximizes the average cumulative return over all tasks. We characterize the key structural

differences between multi-task RL and its single-task counterpart, which make multi-task RL

a fundamentally more challenging problem. We then extend our formulation by considering

maximizing the average return subject to constraints on the return of each task, which forms

xiii

a more flexible framework and is potentially more practical for modeling multi-task RL

applications in real life. We propose and study decentralized (constrained) policy gradient

algorithms for optimizing the objectives in these two formulations and validate our analysis

with enlightening numerical simulations.

While the previous chapter studies cooperative agents, we now shift our focus to the case

where the agents compete with each other. We study the two-player zero-sum Markov game,

which is a special case of competitive multi-agent RL naturally formulated as a nonconvex-

nonconcave minimax optimization program, and consider solving it with the simple gradient

descent ascent (GDA) algorithm. The non-convexity/non-concavity of the underlying

objective function poses significant challenges to the analysis of the GDA algorithm. We

introduce strong structure to the Markov game with an entropy regularization. We apply

GDA to the regularized objective and propose schemes of adjusting the regularization weight

to make the GDA algorithm efficiently converge to the global Nash equilibrium.

The works we have discussed so far treat RL from the perspective of optimization. In

the final chapter, we apply RL to solve optimization problems themselves. Specifically, we

develop a multi-agent RL based penalty parameter selection method for the alternating cur-

rent optimal power flow (ACOPF) problem solved via ADMM, with the goal of minimizing

the number of iterations until convergence. Our method leads to significantly accelerated

ADMM convergence compared to the state-of-the-art hand-designed parameter selection

schemes and exhibits superior generalizability.

xiv

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Fueled by powerful function approximations such as large-scale deep neural networks,

reinforcement learning (RL) has been successfully applied to solve real-life problems in a

range of applications including game playing [1–3], healthcare [4, 5], robotics [6, 7], and

autonomous navigation [8–10]. From a mathematical standpoint, recent advances have shed

light on the structure of various RL problems and facilitated the design of more reliable and

efficient algorithms. These achievements, however, are primarily made only in the single

agent setting. Our understanding remains inadequate for multi-agent RL systems where

the agents exhibit complex interactions driven by different rewards. Depending on whether

the rewards of the agents are identical, opposite, or mixed, multi-agent RL problems can

be categorized into cooperative, competitive, or more complicated settings, each of which

has its own unique characteristics. The main thrust of this dissertation is to develop better

insight into the structure of some of these multi-agent RL settings, to design multi-agent

RL algorithms that leverage/respect the structure, and to apply multi-agent RL to solve

meaningful problems in real life.

On the theoretical perspective, we start by proposing a stochastic optimization framework

for single-agent RL that lays the mathematical foundation for data-driven multi-agent RL

algorithms. This framework unifies a range of existing methods in RL including the actor-

critic algorithm and gradient-based temporal difference learning. Providing an abstraction

at a higher level of generality also allows us to discover previous unknown algorithms with

state-of-the-art convergence rates. In the multi-agent setting, we study the structure and

limitations of two specific problems. In the first problem, we consider a group of the agents

1

connected in a network that have aligned interests. Specifically, each agent is assigned a

local RL task and needs to cooperative with each other to learn a unified policy that performs

well across all tasks. The second scenario is the two-player zero-sum Markov game, which is

a completely competitive setting with one agent maximizing the same discounted cumulative

reward that the other agent seeks to minimize. This problem connects to game theory and

lays the foundation for understanding more complicated games involving more than two

players or general-sum rewards. By taking advantage of the structure and obeying the

limitations, we design reliable and efficient algorithms for the two settings and characterize

their convergence properties.

On the side of application, we apply RL to enhance the solution of optimization problems.

We focus on solving the alternating current optimal power flow (ACOPF) problem with the

alternating direction method of multipliers (ADMM) algorithm. Usually formulated as a

non-convex quadratically constraint quadratic program (QCQP), the ACOPF problem studies

optimally generating power to satisfy network demands subject to constraints dictated by

the power system structure. For large power systems, it is known that the convergence of

the ADMM algorithm depends heavily on the choice of penalty parameters, and poorly

selected penalty parameters can even lead to divergence. As the current practice of choosing

these important parameters is usually based on heuristics, we are motivated to develop

a RL parameter selection policy with the aim of accelerating the ADMM convergence.

We start our problem formulation and algorithm design from a single-agent perspective,

but as we leverage the problem structure to simplify the policy our solution exhibits an

interesting multi-agent interpretation. Through extensive numerical simulations, we find that

our RL-selected penalty parameters result in significantly accelerated ADMM convergence

over state-of-the-art human designed methods.

2

1.2 Related Literature

In the multi-agent RL setting where the agents live in the same environment and jointly

determine the state transition, the problem can be viewed as a single-agent RL for each agent

if the policies of the other agents are fixed. This is an important observation that allows

our work to take advantage of the recent advances in the understanding of single-agent RL.

In particular, [11, 12] find that the value function in RL observes the gradient domination

condition that upper bounds the optimality gap (measured in objective function value) by

a metric on the norm of the gradient. The authors in [13] show that a stronger structure

resembling the Polyak-Łojasiewicz (PŁ) condition exists when the value function is properly

regularized by the entropy of the policy.

We briefly give the reference to some fundamental results in multi-task multi-agent RL

and two-player competitive RL below and note that each individual chapter will have its

detailed discussion on related works.

Cooperative Multi-task Multi-Agent RL. Our aim in multi-task multi-agent RL is to find a

single policy that maximize the sum of the cumulative rewards across multiple environments.

Most existing works on this problem [14, 15] propose sharing the local trajectories/data

collected by the agents in each environment to a centralized server where learning takes place.

When the data dimension is large, the amount of information required to be communicated

could be enormous. In contrast, we propose what is referred to as the federated reinforcement

learning later in the literature [16], where the agents exchange the policy parameters in a

decentralized communication graph. In applications with a large state representation but a

much smaller policy representation, exchanging the policy parameters can be a much more

compact and efficient form of communication. Moreover, we observe that a wide range of

practical problems do not allow for a centralized communication topology and the agents

may only communicate locally with their neighbors [17].

Our work can be considered as a special case of distributed optimization where the local

3

objective function is the cumulative reward in each environment. In distributed optimization

problems where the objective function has strong structural properties like convexity or

strong convexity, decentralized gradient descent methods have been shown to enjoy the

same complexity as their centralized counterpart up to a factor that captures the connectivity

of the agents [18–21].

Two-Player Zero-Sum Markov Game. The two-player zero-sum Markov game can be

naturally formulated a non-convex non-concave minimax optimization program. Mini-

max optimization has been extensively studied in the case where the objective function is

convex/concave with respect to at least one variable [22–25]. In the general non-convex

non-concave setting, the problem becomes much more challenging due to the lack of strong

structure, and the notion of stationarity is even unclear [26]. In [27, 28], non-convex non-

concave objective functions obeying a one-sided or two-sided PŁ condition are considered,

which the authors utilize to show the last-iterate convergence of GDA.

By exploiting the gradient domination condition of a Markov game with respect to

each player, [29] is the first to show that the GDA algorithm provably converges to a Nash

equilibrium of the Markov game. However, the convergence of the algorithm is guaranteed

only on the averaged iterate rather than the more preferable last iterate. In addition, no

explicit convergence rate has been given. Our work fills in this gap by designing a efficient

GDA algorithm whose last iterate converges with explicit finite-time worst-case performance

guarantees.

1.3 Contribution

As the first main contribution of the thesis, we present a two-time-scale stochastic optimiza-

tion framework that unifies the analysis of various actor-critic algorithms in RL. Though

it is originally proposed for the single-agent setting, the framework and the mathematical

tools introduced therein lay the mathematical foundation for understanding and analyzing

online sampled-based multi-agent RL algorithms

4

Second, we discuss structure of multi-agent RL in the cooperative multi-task setting

and the two-player competitive setting that is previously unknown. Specifically, we show

that many favorable properties of single-agent RL are violated when multiple agents are

involved, including the aforementioned gradient domination condition and the existence of a

deterministic optimal policy. We observe that there is an abundance of heuristic multi-agent

RL algorithms built by intuitively extending single-agent RL methods (such as federated

Q learning [30, 31] for the multi-task setting and gradient-descent ascent for two-player

Markov games [32, 33]), and we discuss how these algorithms designed without being aware

of the multi-agent RL structure can fail to achieve their desired performance.

Our third contribution is to propose and study algorithms that obey and/or exploit the

special characteristics of multi-agent RL. In the cooperative multi-task setting, our work

draws inspiration from distributed optimization and federated learning but combines them

with RL in a way that has not been considered in the previous literature. In the two-player

competitive setting, our work introduces a structured regularization that allows the GDA

algorithm to provably find the optimal solution with a convergence rate that vastly improves

over the best known existing result.

Finally, we use RL to develop an adaptive parameter selection mechanism for the ACOPF

problem solved via ADMM, with the goal of minimizing the number of iterations until

convergence. As a main contribution, our work is the first to formulate this problem in

the language of RL and to develop a novel Q-learning algorithm for training the penalty

parameter selection policy. Through extensive numerical simulations, we show that the

RL policy can result in significantly accelerated convergence (up to a 59% reduction in the

number of iterations compared to existing, curvature-informed penalty parameter selection

methods). Furthermore, we show that the policy demonstrates promise for generalizability,

performing well under unseen loading schemes as well as under unseen losses of lines

and generators (up to a 50% reduction in iterations). Our work thus provides a successful

proof-of-concept for using RL for parameter selection in power systems applications.

5

Organization. This dissertation is based on the published works [34–40]. The organization

of the chapters is as follows. In Chapter 2, we discuss the two-time-scale stochastic

optimization framework which models single-agent sample-based RL algorithms. In Chapter

3, we study the multi-task multi-agent RL problem. Chapter 4 presents a regularization-

based GDA approach to two-player zero-sum Markov games. Chapter 5 applies RL to

improve the solution of a power system optimization problem. We conclude and make a few

remarks on possible future works in Chapter 6. As the works are mathematical in nature, we

present the problem formulation, algorithms, assumptions, and main theoretical results in

the main text and defer the analysis to the appendix in Chapters A-C.

6

CHAPTER 2

TWO-TIME-SCALE STOCHASTIC OPTIMIZATION AND ITS APPLICATIONS

IN ACTOR-CRITIC ALGORITHMS

Actor-critic algorithms are an important class of data-driven techniques for policy optimiza-

tion in reinforcement learning. They can be cast as optimization programs with a special type

of stochastic oracle for gradient evaluations. Specifically, the gradient of the optimization

variable is computed with the aid of an auxiliary variable under samples generated by a

time-varying Markov chain. In this chapter, we present an abstraction of the actor-critic

framework for solving general optimization programs with the same type of stochastic

oracle. This optimization framework focuses on the single-agent RL setting but builds the

mathematical foundation for studying and analyzing data-driven multi-agent RL algorithms.

The main contribution of this work is to characterize the finite-time and finite-sample

complexity of the proposed two-time-scale stochastic gradient method under different struc-

tural properties of the objective function, namely, strong convexity, the Polyak-Lojasiewicz

(PŁ) condition, and general non-convexity. Our abstraction unifies the analysis of actor-critic

methods in reinforcement learning; we show how our main results can be specialized to

recover the best-known convergence rate for policy optimization under an infinite-horizon

average-reward Markov decision process (MDP) and to derive state-of-the-art rates for the

online linear-quadratic regulator (LQR) controller and policy optimization using entropy

regularization1.

1The presentation in this chapter is partly adapted from [34].

7

2.1 Introduction

The overall goal of our optimization framework is to solve the program

θ‹
“ argmin

θPRd
fpθq, (2.1)

where the gradient of f is accessed through a stochastic oracle Hpθ, ω,Xq. The three

arguments to H are the decision variable θ, an auxiliary variable ω P Rr, and a random

variable X drawn over a compact sample space X . For a fixed θ, there is a single setting of

the auxiliary variable, which we will denote ω‹pθq, such that H returns an unbiased estimate

of the gradient ∇fpθq when X is drawn from a particular distribution µθ,

∇fpθq “ EX„µθrHpθ, ω‹
pθq, Xqs. (2.2)

For other settings of ω ‰ ω‹pθq or X drawn from a distribution other than µθ, Hpθ, ω,Xq

will be (perhaps severely) biased. The mapping from θ to the “optimal” setting of the

auxiliary variable ω‹pθq is implicit; it is determined by solving a nonlinear system of

equations defined by another stochastic sampling operator G : Rd ˆ Rr ˆ X Ñ Rr. Given θ,

ω‹pθq is the (we will assume unique) solution to

EX„µθrGpθ, ω‹
pθq, Xqs “ 0. (2.3)

Combining Equation 2.2 and Equation 2.3, solving Equation 2.1 is equivalent to finding

pθ‹, ω‹pθ‹qq that satisfies

$

’

&

’

%

EX„µθ‹ rHpθ‹, ω‹pθ‹q, Xqs “ 0,

EX„µθ‹ rGpθ‹, ω‹pθ‹q, Xqs “ 0.

(2.4)

In the applications we are interested in, we only have indirect access to the distribution

8

µθ. Instead of parameterizing a distribution directly, θ parameterizes a set of probability

transition kernels on X ˆX through a mapping P : X ˆ Rd Ñ distpX q. Given θ and X , we

will assume that we can generate a sample X 1 „ Pp¨|X, θq using one of these kernels. Each

of these Pp¨|¨, θq induces a different Markov chain and a different stationary distribution µθ,

which is what is used in Equation 2.2 and Equation 2.3 above.

This problem structure is motivated by online algorithms for reinforcement learning. In

this class of problems, three of which we describe in details in Section 2.4, we are searching

for a control policy parameterized by θ that minimizes a long term cost captured by the

function f . The gradient for this cost depends on the value function under the policy indexed

by θ, which is specified implicitly through the Bellman equation, the analog to Equation 2.3

above. These problems often also have a mechanism for generating samples, either through

experiments or simulations, that makes only implicit use of the transition kernel P .

2.2 Related Works

Our work is closely related to the existing literature on two-time-scale stochastic approxi-

mation (SA), bi-level and composite optimization, actor-critic algorithms in reinforcement

learning, and single-time-scale stochastic optimization algorithms under unbiased or biased

(sub)gradients. In this section, we discuss the recent advances in these domains to give

context to our contributions.

Two-Time-Scale SA. Two-time-scale SA solves a system of equations similar in form to

Equation 2.4, but typically considers the setting where µθ “ µ is independent of the decision

variable θ. The convergence of two-time-scale SA is traditionally established by analyzing

an associated ordinary differential equation [41]. Finite-time convergence of two-time-scale

SA has been studied in the case where H and G are linear [42–47] and in more general

nonlinear settings [48, 49], under either i.i.d. or Markovian samples. In these previous

works, the analysis for the nonlinear setting is restricted to the case where H and G are both

strongly monotone, while our work studies a wide range of function structures including

9

strong convexity, the PŁ condition, and general non-convexity.

Bi-Level and Composite Optimization. The optimization objective in our work is closely

connected to the bi-level optimization framework [50–52] which solves programs structured

as

min
x
f1px, y

‹
pxqq subject to y‹

pxq P argmin
y

f2px, yq. (2.5)

From the first-order optimality condition, it is clear that Equation 2.5 is equivalent to finding

a stationary point px1, y1q that observes

∇xf1px
1, y1

q “ 0, ∇yf2px
1, y1

q “ 0.

This is a special case of our objective in Equation 2.4 where G is a gradient mapping.

However, in RL applications G usually abstracts the Bellman backup operator which is

associated with the estimation of the value function. It is well-known that the Bellman

backup operator is not the gradient of any function. In this sense, our framework is more

general and suitable for modeling algorithms in RL. In addition, and similar to the works

in two-time-scale SA discussed above, the analysis in [51] uses a stochastic oracle with a

fixed distribution µ, while we solve Equation 2.4 with the distribution of the samples also

depending on the decision variable. This is another important generalization as many realistic

problems in control and reinforcement learning can only be abstracted as Equation 2.4 with

µθ being a function of the control variable θ. Making this generalization requires generating

decision-variable-dependent samples from a Markov chain whose stationary distribution

shifts over iterations, which creates additional challenges in the analysis.

We also note the connection of our objective to stochastic composite optimization [53,

54], which solves optimization problems of the form

min
x
g1pg2pxqq. (2.6)

10

At a first glance, Equation 2.6 reduces to Equation 2.5 by choosing g1 “ f1 and g2pxq “

px, y‹pxqq where y‹pxq is the minimizer of f2px, ¨q and therefore seems more general.

However, the key assumption in stochastic composite optimization is the differentiability

of g2 (and g1) and the access to an oracle that returns the stochastic gradient ∇g2, which is

highly unrealistic in reinforcement learning applications where only indirect information

about g2 is available.

Actor-Critic Algorithms. In the RL literature the aim of actor-critic algorithms is also to

solve a problem similar to Equation 2.4, where θ and ω‹pθq are referred to as the actor and

critic, respectively; see for example [55–58]. Among these works, only [58] considers an

online setting similar to the one studied in this paper. In fact, the algorithm studied in [58] is

a special case of our framework with a non-convex objective function. Our analysis recovers

the result of [58] while slightly loosening the assumptions — we are able to remove the

projection operator used by [58] to limit the growth of the critic parameter.

Single-Time-Scale Stochastic Optimization. When the samples are i.i.d., stochastic

gradient/subgradient algorithms are fairly well-understood for smooth (see [59–61] and

the references therein) and non-smooth [62–64] functions. In the smooth setting, [36, 65,

66] study various SGD/SA algorithms under samples generated from time-invariant state

transition probabilities (we will later refer to this as a time-invariant Markov chain) and show

that the convergence rates are only different from that under i.i.d. samples by a logarithmic

factor. The key argument used in these works is that the Markovian samples behave similarly

to i.i.d. samples on a mildly dilated time scale.

In many policy optimization algorithms in RL, the samples are drawn under the control

of the current policy. As the policy gets updated, the transition probabilities shift, resulting

in a Markov chain with a time-varying stationary distribution (we will refer to this as

the time-varying Markov chain). This setting requires more sophisticated mathematical

treatment. The single-variable SA algorithm under time-varying Markovian samples is first

analyzed by [67], while our paper is among the first works to extend the analysis to the

11

scenario where two coupled variables are updated simultaneously.

2.3 Two-Time-Scale Stochastic Gradient Descent Algorithm

In this section, we present our two-time-scale SGD method (formally stated in Algorithm 2.1)

for solving Equation 2.4 under the gradient oracle discussed in Section 2.1. In the algorithm,

θk and ωk are estimates of θ‹ and ω‹pθ‹q. The random variables tXku are generated by a

Markov process parameterized by tθku under the transition kernel P , i.e.,

X0
θ1

ÝÑ X1
θ2

ÝÑ X2
θ3

ÝÑ ¨ ¨ ¨
θk´1
ÝÑ Xk´1

θk
ÝÑ Xk. (2.7)

As θk changes in every iteration, so do the dynamics of this Markov process that generates the

data. At a finite step k, Xk is in general not an i.i.d. sample from the stationary distribution

µθk , implying that Hpθk, ωk, Xkq employed in the update Equation 2.8 is not an unbiased

estimate of ∇fpθkq even if ωk tracks ω‹pθkq perfectly. This sample bias, along with the

gap between ωk and ω‹pθkq, affects the variables θk`1 and ωk`1 of the next iteration and

accumulates inaccuracy over time which needs a careful treatment.

The updates use two different step sizes, αk and βk. We choose αk ! βk as a way to

approximate, very roughly, the nested-loop algorithm that runs multiple auxiliary variable

updates for each decision variable update. Many small critic updates get replace with a

single large one. In other words, the auxiliary variable ωk is updated at a faster time scale

(larger step size) as compared to θk (smaller step size).

The ratio βk{αk can be interpreted as the time-scale difference. We will see that this

ratio needs to be carefully selected based on the structural properties of the function f

for the algorithm to achieve the best possible convergence. Table 2.1 provides a brief

summary of our main theoretical results, which characterizes the finite-time complexity of

Algorithm 2.1 and the corresponding optimal choice of step sizes under different function

structures. Table 2.1 also contrasts the convergence of Algorithm 2.1 with the rates of

12

Algorithm 2.1: Two-Time-Scale Stochastic Gradient Descent
Initialization: the decision variable θ0, auxiliary variable ω0, step size sequences tαku

for the decision variable update, tβku for the auxiliary variable update
Observe a initial sample X0

for k “ 1, 2, 3, ... do
Decision variable update:

θk`1 “ θk ´ αkHpθk, ωk, Xkq (2.8)

Auxiliary variable update:

ωk`1 “ ωk ´ βkGpθk`1, ωk, Xkq (2.9)

Draw sample

Xk`1 „ Pp¨ | Xk, θk`1q (2.10)

end for

standard SGD (which in our context means that the samples are i.i.d. and the auxiliary

variable is always exactly accurate). The PŁ condition and general non-convexity cases are

particularly interesting as they abstract actor-critic algorithms in RL which we now discuss.

Table 2.1: Summary of Main Results - Time and Sample Complexity.

Structural
Property Metric Rate

Order of
αk, βk

Standard
SGD Rate Applications

Strong Convexity }θk ´ θ‹}2 rOpk´ 2
3 q k´1, k´ 2

3 Opk´1q Gradient TD Learning

PŁ Condition fpθkq ´ fpθ‹q rOpk´ 2
3 q k´1, k´ 2

3 Opk´1q

Policy Optimization
for LQR, Entropy
Regularized MDP

Non-convexity }∇fpθkq}2 rOpk´ 2
5 q k´ 3

5 , k´ 2
5 Opk´ 1

2 q

Policy Optimization
for Infinite-Horizon

Average-Reward MDP

13

2.4 Applications to Actor-Critic Algorithms

In this section, we show how our results on two-time-scale optimization apply to a variety

of policy evaluation and optimization algorithms in RL. The first three applications can be

categorized as actor-critic algorithms for policy optimization. The objectives are non-convex

in these applications, but the second and third problems are more structured and observe the

PŁ condition. In Subsection 2.4.4, we briefly discuss an application of the framework to

two-time-scale gradient-based policy evaluation algorithms where the objective function is

strongly convex.

2.4.1 Online Actor-Critic Method for Infinite-Horizon Average-Reward MDPs

We consider the standard infinite-horizon average-reward MDP model M “ pS,A,P , rq,

where S is the state space, A is the action space, P : S ˆ A Ñ ∆S denotes the transition

probabilities, and r : S ˆ A Ñ r´1, 1s is the reward. Our aim is to find the policy πθ P ∆S
A,

parameterized by θ P Rd (where d may be much smaller than |S|ˆ|A|), that maximizes the

average cumulative reward

θ‹
“ argmax

θPRd
Jpθq fi lim

KÑ8

1

K
E

”

K
ÿ

k“0

r psk, akq

ı

“ Es„µθ,a„πθrrps, aqs, (2.11)

where µθ denotes the stationary distribution of the states induced by the policy πθ. Defining

the (differential) value function of the policy πθ

V πθp¨q “ E
”

8
ÿ

k“0

pr psk, akq ´ Jpθqq | s0 “ ¨

ı

,

we can use the well-known policy gradient theorem to express the gradient of the objective

function in Equation 2.11 as

∇Jpθq“Es„µθp¨q,a„πθp¨|sq,s1„Pp¨|s,aq

”

prps, aq´Jpθq`V πθps1
q´V πθpsqq∇log πθpa | sq

ı

.

14

Optimizing Equation 2.11 with (stochastic) gradient ascent methods requires evaluating

V πθ and Jpθq at the current iterate of θ, which are usually unknown and/or expensive to

compute exactly. “Actor-critic” algorithms attack this problem on two scales as discussed in

the sections above: an actor keeps a running estimate of the policy parameters θk, while a

critic approximately tracks the differential value function for θk to aid the evaluation of the

policy gradient.

For problems with large state spaces, it is often necessary to use a low-dimensional

parameter ω P Rm to approximate V πθ where m ! |S|. In this work, we consider the linear

function approximation setting where each state s is encoded by a feature vector ϕpsq P Rm

and the approximate value function is pV πθ,ψpsq “ ϕpsqJψ. Under the assumptions that the

Markov chain of the states induced by any policy is uniformly ergodic (equivalent of As-

sumption 2.5 in this context) and that the feature vectors tϕpsqusPS are linearly independent,

it can be shown that a unique optimal pair pJpθq, ψ‹pθqq exists that solves the projected

Bellman equation

Es„µθp¨q,a„πθp¨|sq,s1„Pp¨|s,aq

»

—

–

Jpθq ´ rps, aq

`

rps, aq ´ Jpθq ` ϕps1qJψ‹pθq ´ ϕpsqJψ‹pθq
˘

ϕpsq

fi

ffi

fl

“ 0.

We use an auxiliary variable ω “ pĴ , ψq to track the solution to this Bellman equation.

Due to the limit in the representational power of the function approximation, there is an

approximation error between V πθ and V̂ πθ,ψ
‹pθq as a function of θ, which we define over the

stationary distribution

ϵapproxpθq “

b

Es„µθ rpϕpsqJψ‹pθq ´ V πθpsqq2s.

We assume the existence of a constant ϵmax
approx such that ϵapproxpθqďϵmax

approx for all θ P Rd.

Comparing this problem with Equation 2.2 and Equation 2.3, it is clear that this is a

15

special case of our optimization framework with X “ ps, a, s1q, ω‹pθq “ pJpθq, ψ‹pθqq and

fpθq “ ´Jpθq, Gpθ, ω,Xq “ rĴ ´ rps, aq, prps, aq ´ Ĵ ` ϕps1
q

Jψ ´ ϕpsqJψqϕpsqJ
s

J,

Hpθ, ω,Xq “ ´prps, aq ´ Ĵ ` ϕps1
q

Jψ ´ ϕpsqJψ ` εapproxpθqq∇ log πθpa | sq,

where εapproxpθq is an error in the gradient of the actor carried over from the approximation

error of the critic which can be upper bounded by 2ϵmax
approx in expectation. In this case, the

function ´Jpθq is non-convex and our two-time-scale SGD algorithm is guaranteed to find

a stationary point of the objective function with rate rOpk´2{5q, up to errors proportional to

ϵmax
approx. This rate matches the state-of-the-art result derived in [58]. A subtle improvement of

our analysis is that we do not need to perform the projection of the critic parameter onto a

compact set that [58] requires in every iteration of the algorithm to guarantee the stability of

the critic.

2.4.2 Online Natural Actor-Critic Algorithm for LQR

In this section, we consider the infinite-horizon average-cost LQR problem

minimize
tuku

lim
TÑ8

1

T
E

”

T
ÿ

k“0

`

xJ
kQxk ` uJ

kRuk
˘

| x0

ı

subject to xk`1 “ Axk ` Buk ` wk,

(2.12)

where xk P Rd1 , uk P Rd2 are the state and the control variables, wk „ Np0,Ψq P Rd1 is

time-invariant system noise, A P Rd1ˆd1 and B P Rd1ˆd2 are the system transition matrices,

and Q P Rd1ˆd1 , R P Rd2ˆd2 are positive-definite cost matrices. It is well-known (see, for

example, [68, Chap. 3.1]) that the optimal control sequence tuku that solves Equation 2.12

is a time-invariant linear function of the state

u‹
k “ ´K‹xk, (2.13)

16

where K‹ P Rd2ˆd1 is a matrix that depends on the problem parameters A,B,Q,R. This

fact will allow us to reformulate the LQR as an optimization program over the feedback

gain matrix K. It is also true that optimizing over the set of stochastic controllers

uk “ ´Kxk ` σϵk, ϵk „ Np0, σ2Iq,

with σ ě 0 fixed will in the end yield the same optimalK‹ [69]. In the RL setting considered

below, we will optimize over this class of stochastic controller as it encourages exploration.

Defining Ψσ “ Ψ ` σ2BBJ, we can re-express the LQR problem as

minimize
K

JpKq fi tracepPKΨσq ` σ2 tracepRq

s.t. PK “ Q ` KJRK ` pA ´ BKq
JPKpA ´ BKq.

(2.14)

Our goal is to solve Equation 2.14 when the system transition matrices A and B are

unknown2 and we take online samples from a single trajectory of states txku and control

inputs tuku. This problem has been considered recently in [70], and in fact much of our

formulation is modeled on this work. The essential difference is that while [70] works in the

“batch” setting, where multiple trajectories are drawn for a fixed feedback gain estimate, our

algorithm is entirely online.

Given a feedback gain K, we define

EK fi 2
`

R ` BJPKB
˘

K ´ 2BJPKA.

It turns out that the natural policy gradient of the objective function in Equation 2.14, which

we denote by r∇J , is r∇JpKq “ EK .

To track EK when A and B are unknown it suffices to estimate R ` BJPKB and

BJPKA. We define
2We do assume, however, that we know the cost matrices Q and R or at least we can compute xJQx`uJRu

for any x and u.

17

ΩK “

¨

˚

˝

Ω11
K Ω12

K

Ω21
K Ω22

K

˛

‹

‚

“

¨

˚

˝

Q ` AJPKA AJPKB

BJPKA R ` BJPKB

˛

‹

‚

, (2.15)

of which R ` BJPKB and BJPKA are sub-matrices. We define the operator svecp¨q

as the vectorization of the upper triangular sub-matrix of a symmetric matrix with off-

diagonal entries weighted by
?
2, and define smatp¨q as the inverse of svecp¨q. We also define

ϕpx, uq “ svecp
“

xJ, uJ
‰J “

xJ, uJ
‰

q for any x P Rd1 , u P Rd2 . Then, it can be shown that

ΩK and JpKq jointly satisfy the Bellman equation

Ex„µK ,u„Np´Kx,σ2Iq rMx,u,x1,u1s

»

—

–

JpKq

svecpΩKq

fi

ffi

fl

“ Ex„µK ,u„Np´Kx,σ2Iq rcx,us , (2.16)

where the matrix Mx,u,x1,u1 and vector cx,u are

Mx,u,x1,u1 “

»

—

–

1 0

ϕpx, uq ϕpx, uq rϕpx, uq ´ ϕ px1, u1qs
J

fi

ffi

fl

, cx,u“

»

—

–

xJQx ` uJRu

`

xJQx ` uJRu
˘

ϕpx, uq

fi

ffi

fl

.

The solution to Equation 2.16 is unique if K is stable with respect to A and B [70]. An

auxiliary variable Ω̂ can be introduced to track ΩK for the decision variable K.

We connect this to our optimization framework by noting that Equation 2.16 corresponds

to Equation 2.3 with K, px, u, x1, u1q, and rJpKq, svecpΩKqJsJ mirroring θ, X , and ω‹pθq,

respectively. The natural gradient oracle in this case is Hpθ, ω,Xq “ 2Ω̂22K ´ 2Ω̂21,

which does not depend on the samples X directly, and the operator G is Gpθ, ω,Xq “

´Mx,u,x1,u1ω ` cx,u. A key structure of Equation 2.12 is that the objective function is non-

convex but observes the PŁ condition [70], which we formally define later in Assumption 2.8.

As a result, applying Algorithm 2.1 to this problem leads to an online actor-critic flavored

algorithm that converges with rate rOpk´2{3q under proper assumptions. To our best knowl-

edge, our work is the first to study the online actor-critic method for solving the LQR, and

our result vastly improves over the rate rOpk´1{5q of the nested-loop actor-critic algorithm

18

derived in [70] which also operates under more restrictive assumptions (e.g. sampling from

the stationary distribution, boundedness of the iterates).

2.4.3 Online Actor-Critic Method for Regularized MDPs

As a third application of our framework, we study the policy optimization problem for the

infinite-horizon discounted-reward MDP M “ pS,A,P , r, γq where γ P p0, 1q is the dis-

count factor and the rest are defined in the same manner as above in Section Subsection 2.4.1.

We restrict our attention to the tabular setting where the parameter θ encodes the policy

through the softmax function

πθpa | sq “
exp pθs,aq

ř

a1PA exp pθs,a1q
.

To accelerate the convergence of the actor-critic algorithm, we regularize the objective

with the policy entropy as proposed by [13]. Specifically, with regularization weight τ ą 0,

the regularized value function of a policy π is

V π
τ psq “ Eak„πp¨|skq,sk`1„Pp¨|sk,akq

”

8
ÿ

k“0

γk
`

rpsk, akq ´ τ log πpak | skq
˘

| s0 “ s
ı

.

Under the initial state distribution ρ P ∆S , the expected cumulative reward collected by

policy π is Jτ pπq “ Es„ρrV
π
τ psqs. We consider solving the policy optimization problem

max
π

Jτ pπq.

Expressing the gradient of the objective with the policy gradient theorem, we have

∇θJτ pπθq “
1

1 ´ γ
E

“

prps, aq ´ τ log πθpa | sq ` γV πθ
τ ps1

q ´ V πθ
τ psqq∇θ log πθpa | sq

‰

,

where the expectation is taken over s „ dπθρ , a „ πθp¨ | sq, s1 „ Pp¨ | s, aq, and the the

19

discounted visitation distribution dπρ P ∆S is defined as

dπρpsq “ p1 ´ γqEak„πp¨|skq,sk`1„Pp¨|sk,akqr
ÿ8

k“0
γk1psk “ sq | s0 „ ρs.

To evaluate the gradient, we need to compute the regularized value function V πθ
τ , which

is the solution to the following Bellman equation

Es„d
πθ
ρ ,a„πθp¨|sq,s1„Pp¨|s,aq

”

rps, aq ´ τ log πθpa | sq ` γV πθ
τ ps1

q ´ V πθ
τ psq

ı

“ 0.

Interestingly, [71] shows that we can regard dπρ as the stationary distribution under π in an

environment with the modified transition probability

rP p¨ | s, aq “ γP p¨ | s, aq ` p1 ´ γqρp¨q.

This observation allows us to generate Markovian samples ps, a, s1q with dπθρ b πθ b P as

the stationary distribution, in an online manner that resembles [72][Algorithm 1].

In the actor-critic framework, we introduce a critic (auxiliary variable) pV P R|S| to esti-

mate the solution of the Bellman equation under the current policy iterate. Our optimization

framework abstracts this problem by choosing

X “ ps, a, s1
q, ω “ pV , fpθq “ ´Jτ pπθq,

Hpθ, ω,Xq “
1

1 ´ γ
prps, aq ´ τ log πθpa | sq ` γ pV ps1

q ´ pV psqq∇ log πθpa | sq,

Gpθ, ω,Xq “ rps, aq ´ τ log πθpa | sq ` γ pV ps1
q ´ pV psq.

The objective function is non-convex but satisfies the PŁ condition under standard as-

sumptions (see [13][Lemma 15]). Our two-time-scale SGD framework specializes to an

online actor-critic algorithm, which by our analysis to be discussed later in Subsection 2.6.2

is guaranteed to find the globally optimal solution of the regularized objective with rate

20

rOpk´2{3q. To our best knowledge, this is the first time such data-driven algorithms are

studied for solving an entropy-regularized MDP in the tabular setting. Compared with the

result presented in Subsection 2.4.1, the introduction of the entropy regularization leads to an

accelerated convergence rate. We note that the gap between the solutions to the regularized

and original MDP is proportional to the regularization weight τ [39, 73]. By carefully

choosing τ , solving the regularized MDP provides a reliable and efficient way to find the

approximate solution of the original unregularized MDP.

2.4.4 Two-Time-Scale Policy Evaluation Algorithms

Our framework also abstracts GTD (gradient temporal-difference), GTD2 , and TDC

(temporal difference learning with gradient correction) algorithms [74, 75], which are

gradient-based two-time-scale policy evaluation algorithms in RL. They can be viewed as

degenerate special cases of our framework where the expectation in Equation 2.4 is taken

over a fixed distribution µ that does not depend on θ, and therefore do not require the full

capacity of our framework. The objective function in this problem is strongly convex, and

our framework under proper assumptions guarantees a convergence rate of rOpk´2{3q, which

matches the analysis in [76]. As this subject is well-studied, we skip the detailed discussion

of the problem formulation and algorithm statement and refer interested readers to [74–76].

2.5 Technical Assumptions

In this section, we present the main technical assumptions important in our later analysis.

We first consider the Lipschitz continuity of H and G.

Assumption 2.1. There exists a constant L ą 0 such that for all θ1, θ2 P Rd, ω1, ω2 P Rr,

and X P X

}Hpθ1, ω1, Xq ´ Hpθ2, ω2, Xq} ď L p}θ1 ´ θ2} ` }ω1 ´ ω2}q ,

}Gpθ1, ω1, Xq ´ Gpθ2, ω2, Xq} ď L p}θ1 ´ θ2} ` }ω1 ´ ω2}q . (2.17)

21

We also assume that the objective function f is L-smooth.

Assumption 2.2. There exists a constant L ą 0 such that for all θ1, θ2 P Rd

}∇fpθ1q ´ ∇fpθ2q} ď L}θ1 ´ θ2}. (2.18)

Assumption 2.1 and Assumption 2.2 are common in the literature of stochastic approx-

imation [49, 77] and hold in the actor-critic methods discussed in Section 2.4. Next, we

assume that the operator Gpθ, ¨, Xq is strongly monotone in expectation at ω‹pθq (which we

have assumed is unique).

Assumption 2.3. There exists a constant λ ą 0 such that

xEX„µθrGpθ, ω,Xqs, ω ´ ω‹
pθqy ď ´λ}ω ´ ω‹

pθq}
2, @θ P Rd, ω P Rr.

This assumption is often made in the existing literature on two-time-scale stochastic

approximation [49, 51] and is a sufficient condition to guarantee the fast convergence of the

auxiliary variable iterate. This assumption essentially states that G behaves similarly to the

gradient of a strongly convex function in expectation, though it may not even be a gradient

mapping. It can be verified that Assumption 2.3 holds in the actor-critic methods discussed

in Section 2.4.

In addition, we assume that ω‹p¨q is Lipschitz continuous with respect to θ.

Assumption 2.4. There exists a constant L,B ą 0 such that

}ω‹
pθq ´ ω‹

pθ1
q} ď L}θ ´ θ1

}, }ω‹
pθq} ď B, @θ, θ1

P Rd.

Given two probability distributions µ1 and µ2 over the space X , their total variation (TV)

22

distance is defined as

dTVpµ1, µ2q “
1

2
sup

ν:XÑr´1,1s

ˇ

ˇ

ˇ

ˇ

ż

νdµ1 ´

ż

νdµ2

ˇ

ˇ

ˇ

ˇ

. (2.19)

The definition of the mixing time of a Markov chain tXku is given as follows.

Definition 2.1. Consider the Markov chain tXθ
ku generated according to Xθ

k „ Pp¨ |

Xθ
k´1, θq, and let µθ be its stationary distribution. For any α ą 0, the mixing time of the

chain tXθ
ku corresponding to α is defined as

τθpαq “ mintk P N : sup
XPX

dTVpP pXθ
k “ ¨ | Xθ

0 “ Xq, µθp¨qq ď αu.

The mixing time τθpαq essentially measures the time needed for the Markov chain

tXθ
ku to approach its stationary distribution [78]. We next consider the following impor-

tant assumption that guarantees that the Markov chain induced by any static θ “mixes”

geometrically.

Assumption 2.5. Given any θ, the Markov chain tXku generated by Pp¨ | ¨, θq has a unique

stationary distribution µθ and is uniformly geometrically ergodic. In other words, there exist

constants m ą 0 and ρ P p0, 1q independent of θ such that

sup
XPX

dTVpP pXk “ ¨ |X0 “ X, θq, µθp¨qq ď mρk for all θ P Rd and k ě 0.

Denoting τpαq fi supθPRd τθpαq, this assumption implies that there exists a positive

constant C depending only on ρ and m such that

τpαq ď C log p1{αq . (2.20)

Assumption 2.5 is again standard in the existing literature [58, 67, 79].

We also consider the following assumption on the ensemble of transition kernels.

23

Assumption 2.6. Given two distributions d, d̂ over X and parameters θ, θ̂ P Rd, we draw

the samples according to X „ d,X 1 „ Pp¨ | X, θq and X̂ „ d̂, X̂ 1 „ Pp¨ | X̂, θ̂q. We

assume that there exists a constant L ą 0 such that

dTVpP pX 1
“ ¨q, P pX̂ 1

“ ¨qq ď dTVpd, d̂q ` L}θ ´ θ̂}. (2.21)

In addition, we assume that the stationary distribution is Lipschitz in θ

dTVpµθ, µθ̂q ď L}θ ´ θ̂}. (2.22)

This assumption amounts to a regularity condition on the transition probability matrix

Pp¨ | ¨, θq as a function of θ, and has been shown to hold in the reinforcement learning

setting (see, for example, [58, Lemma A1]). Without any loss of generality, we use the same

constant L in Assumption 2.1–Assumption 2.6 and assume B ě 1. We define

D “ maxtL ` max
XPX

}Gp0, 0, Xq}, }ω˚
p0q}, Bu, (2.23)

which is a finite constant since X is compact. A simple consequence of Assumption 2.1 is

that for all θ P Rd, ω P Rr, X P X

}Gpθ, ω,Xq} ď Dp}θ} ` }ω} ` 1q, and }ω‹
pθq} ď Dp}θ} ` 1q. (2.24)

Finally, we assume the optimal solution set tθ‹ : fpθ‹q ď fpθq, @θ P Rdu is non-empty.

2.6 Finite-Time and Finite-Sample Complexity of Two-Time-Scale SGD

This section presents the main results of this paper, which are the finite-time and finite-

sample convergence of Algorithm 2.1 under three structural properties of the objective

function, namely, strong convexity, non-convexity with the PŁ condition, and general non-

24

convexity. Our results are derived under the assumptions introduced in Section 2.5, which

we assume always hold in the rest of this paper.

The convergence of Algorithm 2.1 relies on αk, βk Ñ 0 with reasonable rates. As

mentioned in Section 2.3, αk needs to be much smaller than βk to approximate the nested-

loop algorithm where multiples auxiliary variable updates are performed for each decision

variable update. Therefore, we consider the following choices of step sizes

αk “
α0

pk ` 1qa
, βk “

β0
pk ` 1qb

, @k ě 0, (2.25)

where a, b, α0, β0 are some constants satisfying 0 ă b ď a ď 1 and 0 ă α0 ď β0. Given αk,

recall from Definition 2.1 that τpαkq is the mixing time associated with αk. In the sequel, for

convenience we denote τk fi τpαkq. Since τk ď C logppk ` 1qa{α0q (from Equation 2.20),

we have limkÑ8 αkτ
2
k “ limkÑ8 βkτ

2
k “ 0. This implies that there exists a positive integer

K such that

βk´τkτ
2
k ď min

!

1,
1

6LB
,

λ

22C1 ` 32D2
,
λ

2C2

,
λ3

32L2C2

)

, @k ě K, (2.26)

where C1 and C2 are positive constants defined as

C1 “ 18D2
` 20LDB, C2 “ p4D2

` 1qp4C1 ` 32D2
q `

2L2B2

λ
` 2L2B2. (2.27)

In addition, there exists a constant cτ P p0, 1q such that for any k ą τk we have

τk ď p1 ´ cτ qk ` p1 ´ cτ q, and cτ pk ` 1q ď k ´ τk ` 1 ď k ` 1. (2.28)

We carefully come up with the constants and conditions in Equation 2.26 and Equa-

tion 2.27 to prevent an excessively large step size from destroying the stability of the updates.

We stress that K is a constant that only depends on the quantities involved in the step sizes

25

in Equation 2.25.

2.6.1 Strong Convexity

We consider the following assumption on function f .

Assumption 2.7. The function f is strongly convex with constant λ3

fpyq ě fpxq ` x∇fpxq, y ´ xy `
λ

2
}y ´ x}

2, @x, y P Rd. (2.29)

Theorem 2.1 (Strongly Convex). Suppose that Assumption 2.7 holds. Let the step size

sequences tαku and tβku satisfy Equation 2.25 with

a “ 1, b “ 2{3, α0 ě
4

λ
, and

α0

β0
ď

1

2
¨

Then for all k ě K where K is defined in Equation 2.26, we have

E
“

}θk ´ θ‹
}
2
‰

ď
K ` 1

k ` 1

ˆ

E
“

}θK ´ θ‹
}
2
‰

`
4L2α0

λ2β0
Er}ωK ´ ω‹

pθKq}
2
s

˙

`
C2 log2ppk ` 1q{α0q

3pk ` 1q2{3

ˆ

p6C2 ` 2B2
`

8L2C2

λ2
p2}θ‹

}
2

` 1qq
α0β0
cτ

`
16L4B2α3

0

λ3β2
0

˙

.

Our theorem states that when f is strongly convex the iterates of Algorithm Algorithm 2.1

converge to the optimal solution with rate rOpk´2{3q. Comparing with the deterministic

gradient descent setting where the convergence rate is linear and the standard SGD setting

where the convergence rate is Opk´1q, our result reflects the compromise in the convergence

rate due to the gradient noise and inaccurate auxiliary variable. Compared with the con-

vergence rate of the two-time-scale SA algorithm for bi-level optimization [51] under i.i.d.

3Without any loss of generality, we slightly overload λ, the strong monotonicity constant of the operator G
in Assumption 2.3, to denote the strong convexity constant here.

26

samples, our rate is the same up to a logarithmic factor which naturally arises from the bias

caused by the time-varying Markovian samples.

2.6.2 Non-Convexity under PŁ Condition

We also study the convergence of Algorithm 2.1 under the following condition.

Assumption 2.8. There exists a constant λ ą 0 such that

1

2
}∇fpxq}

2
ě λ pfpxq ´ f ‹

q , @x P Rd.

This is known as the PŁ condition and is introduced in [80, 81]. The PŁ condition does

not imply convexity, but guarantees the linear convergence of the objective function value

when gradient descent is applied to solve a non-convex optimization problem [82], which

resembles the convergence rate of gradient descent for strongly convex functions. Recently,

this condition has been observed to hold in many important practical problems such as

supervised learning with an over-parametrized neural network [83] and the linear quadratic

regulator in optimal control [70, 84].

Theorem 2.2 (PŁ Condition). Suppose the function f satisfies Assumption 2.8. In addition,

we assume that the stochastic gradient is bounded, i.e. there exists a constant B ą 0 such

that 4

}Hpθ, ω,Xq} ď B, @θ P Rd, ω P Rr, X P X . (2.30)

Let the step size sequences tαku and tβku satisfy Equation 2.25 with

a “ 1, b “ 2{3, α0 ě maxt1,
2

λ
u, and

α0

β0
ď

1

4
.

4Again, for the convenience of notation, we use the same constant B as in Assumption 2.4.

27

Then for all k ě K where K is defined in Equation 2.26, we have

E rfpθkq´f ‹
sď

K ` 1

k ` 1

ˆ

E rfpθKq´f ‹
s`

2L2α0

λβ0
Er}ωK ´ ω‹

pθKq}
2
s

˙

`
2C2C3 log

4
pk`1q

3pk ` 1q2{3
,

where C3 “
150L2B3α2

0

cτ
` 48L2C2

λ
p}θ0}

2 ` B2α2
0 ` 1q

α0β0
cτ

`
48L4B2α3

0

λ2β2
0

.

Under the PŁ condition, we show that fpθkq converges to the optimal function value

f ‹ with rate rOpk´2{3q. This is the same rate as if f is strongly convex. However, in this

case the convergence is measured in the function value, whereas under strong convexity the

iterates θk converge to the unique global minimizer. The convergence rates of deterministic

gradient descent and standard SGD under the PŁ condition also match those in the strongly

convex case. To our best knowledge, functions exhibiting the PŁ condition have not been

studied in the bi-level optimization framework.

2.6.3 Non-Convexity

Finally, we study the case where the objective function f is non-convex and smooth. In

general, we cannot find an optimal solution and may only reach a stationary point. Analyzing

the convergence without any convexity or PŁ condition is more challenging, and we need to

make an additional assumption to ensure stability.

Assumption 2.9. There exists a constant L ą 0 such that

}Gpθ1, ω1, Xq ´ Gpθ2, ω2, Xq} ď Lp}ω1 ´ ω2} ` 1q, @θ1, θ2 P Rd, ω1, ω2 P Rr, X P X .

We note that this assumption holds in the actor-critic algorithm discussed in Subsec-

tion 2.4.1 where G does not depend on θ, as well as in problems where G is bounded in

θ.

Theorem 2.3 (Non-convex). Let the step size tαku and tβku satisfy Equation 2.25 with

28

a “ 3{5, and b “ 2{5. Under Assumption 2.9, we have for all k ě K

min
tďk

Er}∇fpθtq}
2
s ď

4

α0pk ` 1q2{5
ErfpθKq ´ f ‹

s `
4L2

β0λpk ` 1q2{5
Er}ωK ´ ω‹

pθKq}
2
s

`

ˆ

25L2B3α2
0

2cτ
`

2L4B2α3
0

λβ2
0

`
L2α0β0C2

cτλ

˙

8τ 2k logpk ` 1q

5 logp2qcτ pk ` 1q2{5
.

Our theorem in the non-convex case shows the convergence of the two-time-scale SGD

algorithm to a stationary point of the objective function (measured by the squared norm

of the gradient) with rate rOpk´2{5q. One may contrast this with the convergence rate of

deterministic gradient descent Opk´1q and standard SGD Opk´1{2q to see the cost of the

gradient noise and auxiliary variable inaccuracy. Compared with the bi-level optimization

algorithm under i.i.d. samples [51], our rate is again the same up to a logarithmic factor due

to the time-varying Markovian samples.

2.7 Conclusion

The main contribution of our work in this chapter is to introduce a novel stochastic op-

timization framework, which allows us to plug-and-play various data-driven algorithms,

especially actor-critic algorithms, in RL and control. Specialized to certain RL settings,

our two-time-scale SGD algorithm and its analysis recover existing algorithms with their

state-of-the-art convergence rates. In some other settings, our two-time-scale SGD algo-

rithm translates to new algorithms that were previously unknown and/or enjoy superior

convergence properties. This framework mainly targets single-agent RL problems but lays

the mathematical foundation for understanding and analyzing algorithms in the multi-agent

settings.

29

CHAPTER 3

MULTI-AGENT MULTI-TASK REINFORCEMENT LEARNING

The aim of our work in this chapter is to solve a multi-task RL problem using a network of

agents. Each task, characterized by a different MDP, is assigned to one agent. Although each

agent only makes observations and acts in its own environment, their goal is to collectively

learn a policy that performs well across all environments by sharing information with each

other. We do not require the state spaces to be the same in each of the environments. In

general, the learned policy is a mapping from the union of state spaces to the action space.

Existing approaches to the multi-task RL problem [14, 15, 85] are mostly heuristic

in nature and typically use a specific “master/worker” model for agent interaction where

worker agents independently collect observations in their respective environments, which are

then summarized (perhaps through a gradient computation) and reported to a central master.

We are interested in understanding multi-task RL under a more flexible, decentralized

communication model where the agents only share information with a small subset of other

agents and in developing algorithms with provable convergence guarantees.

To this end, we first present a clean mathematical formulation for multi-task RL over

a network of agents. We study the structure of the underlying optimization objective and

show how multi-task RL is fundamentally more challenging to solve than its single-task

counterpart through two simple yet illustrative examples.

Despite the challenges, framing the problem in the language of distributed optimization

allows us to develop a decentralized policy gradient algorithm that finds a single policy

effective for each of the tasks. We provide theoretical guarantees for the performance of our

decentralized policy gradient algorithm. Specifically, we show that in the tabular setting, the

algorithm converges to a stationary point of the global (non-concave) objective. Under a

further assumption on the structure of environments’ dynamics, the algorithm is guaranteed

30

to find the global optimality.

We demonstrate the effectiveness of the proposed method using numerical experiments

on challenging multi-task RL problems. Our small-scale “Grid World” problems, which

can be reliably solved using a complete tabular representation for the policy, demonstrate

how the decentralized policy gradient algorithm balances the interests of the agents in

different environments. Our experiments for learning to navigate airborne drones in multiple

(simulated) environments show that the algorithm can be scaled to real-life problems that

require a significant amount of training data and use complicated function approximations

(such as neural networks) to parameterize the policy.

Inspired by the numerical simulations, we propose any formulation of multi-task RL

under the constrained MDP framework, to control the performance of the policy in a

more fine-grained manner. Under the assumption that the MDPs behind environments

operate under the same dynamics, we propose a natural policy gradient based algorithm that

efficiently and provably converges to the globally optimal policy, both in objective function

and in constraint violation. We then extend this algorithm to the sample-based setting where

we do not know the transition probability kernel of the environments, by introducing local

“critic” variables that track the local value functions. We present the finite-sample complexity

of this algorithm1.

3.1 Related Works

In recent years, multi-task RL has become an emerging topic as a way to scale up RL

solutions. This topic has received a surge of interests, and a number of solutions have been

proposed for solving this problem, including policy distillation [86, 87], distributed RL

algorithms over actors/learner networks [14, 15, 85, 88], and transfer learning [89, 90].

Distributed parallel computing has also been applied to speed up RL algorithms for solving

single task problems [91–93].

1The presentation in this chapter is partly adapted from [35–38].

31

Similar to our work, [14, 15] also aim to solve MTRL with policy gradient algorithms

in a distributed manner. These works propose sharing the local trajectories/data collected

by workers in each environment to a centralized server where learning takes place. When

the data dimension is large, the amount of information required to be exchanged could

be enormous. In contrast, exchanging the policy parameters could be a more compact

and efficient form of communication in applications with a large state representation but a

much smaller policy representation. Moreover, we observe that a wide range of practical

problems do not allow for a centralized communication topology [17]. Motivated by these

observations, we consider a decentralized policy gradient method where the agents only

exchange their policy parameters according to a decentralized communication graph. This

makes our work fundamentally different from the existing literature. Indeed, our work can

be considered as a decentralized and multi-task variant of the policy gradient method studied

in [12], where the authors consider a single-task RL.

Other works in meta-learning and transfer learning also essentially aim to achieve MTRL,

where these two methods essentially attempt to reduce the resources required to learn a

new task by utilizing related existing information; see for example [10, 94, 95]. Our work

is fundamentally different from these papers, where we address MTRL by leveraging the

collaboration between a number of agents.

We also note some relevant works on decentralized algorithms in multi-agent reinforce-

ment learning (MARL), where a group of agents operate in a common environment and aim

to solve a single task [96–105]. The setting in these work is different from ours since we

consider multi-task RL, which is more challenging than solving a single task.

3.2 Average-Performance Multi-Task Reinforcement Learning Formulation

A natural formulation for multi-task RL is to find a single policy that “on average” collects

the highest cumulative rewards from all environments. Mathematically, we characterize

the MDP at agent i by Mi “ pSi,A,Pi, ri, γiq where Si is the set of states, A is the set of

32

possible actions which has to be common across tasks, Pi is the transition probabilities that

specify the distribution of the next state given the current state and an action, ri : SiˆA Ñ R

is the reward function, and γi P p0, 1q is the discount factor. We denote by S “ YiSi, where

Si can share common states. Each agent i maintains a policy πi : S Ñ ∆A with πipa | sq

denoting the probability of selecting action a in state s.

Given a policy π, let V π
i be its value function in the i-th environment

V π
i psiq “ Eak„πp¨|skq,sk`1„Pip¨|sk,akq

«

8
ÿ

k“0

γki rips
k
i , a

k
i q | s0i “ si

ff

. (3.1)

Similarly, we define the Q function and advantage function in the ith environment

Qπ
i psi, aiq “ Eak„πp¨|skq,sk`1„Pip¨|sk,akq

«

8
ÿ

k“0

γki rps
k
i , a

k
i q | s0i “ si, a

0
i “ ai

ff

,

Aπi psi, aiq “ Qπ
i psi, aiq ´ V π

i psiq. (3.2)

Without loss of generality, we assume that rips, aq P r0, 1s, implying for any policy π and

@s P Si, a P A

0 ď V π
i psq ď

1

1 ´ γi
, ´

1

1 ´ γi
ď Aπi ps, aq ď

1

1 ´ γi
¨ (3.3)

Let ρi be an initial state distribution over Si. With some abuse of notation we denote the

expected cumulative reward associated with this distribution as V π
i pρiq “ Esi„ρi rV π

i psiqs.

To represent the policy, we consider the scenario where each agent maintains θi P R|S|ˆ|A|

and uses the popular softmax parameterization, i.e.

πθipa | sq “
exp pθi ; s,aq

ř

a1PA exppθi ; s,a1q
. (3.4)

The goal of the agents is to cooperatively find a parameter θ‹ that maximizes the total

33

cumulative discounted rewards

θ‹
P argmax
θPR|S|ˆ|A|

V πθpρq fi

N
ÿ

i“1

V πθ
i pρiq, ρ “ rρ1; . . . ; ρN s. (3.5)

Treating each environment as an independent RL problem would produce different

policies, each maximizing their respective value function, while our focus is to find a single

θ‹ that balances the performance across all environments.

3.3 Structure in Multi-Task Reinforcement Learning

While single task RL is relatively well understood at least in the tabular setting, multi-task

RL is more challenging than it appears from Equation 3.5. We discuss two fundamental

challenges of multi-task RL that make this problem much more difficult than its single-task

counterpart.

Deterministic vs stochastic policies. Under mild assumptions there always exists a deter-

ministic policy that maximizes the objective in single task RL [106]. The value function of

the optimal deterministic policy observes the Bellman optimality equation, which motivates

the development of value-based methods for policy optimization. In multi-task RL where the

tasks operate under different transition probability kernels, there need not be a deterministic

optimal policy in general, and hence there may not be a natural analog of the Bellman

optimality equation. We illustrate this with a simple GridWorld example.

In the two-task GridWorld problem shown in Figure 3.1, there are two environments

with the same state and action spaces. The dynamics and reward functions, however, are

different. The two actions, labeled L and R, deterministically move the agents to the left

and right, respectively, in all states in Task 1. In Task 2, the effect of L and R is reversed for

states S2 and S4: applying L (resp. R) in S2 transitions to S3 (resp. S1q, while applying L

(resp. R) in S4 transitions to S5 (resp. S3). In both environments, the agents stay in states

S1 and S5 when they reach them. In Task 1 there is a reward of `1 for reaching S1 and a

34

Figure 3.1: Two-Task GridWorld Problem Without a Deterministic Optimal Policy

penalty of ´1 for reaching S5; these rewards are reversed for Task 2.

To find a single policy that maximizes the sum of the cumulative rewards of the two

tasks, it is obvious that the optimal policy for state S2 and S4 is to always take action L

in order to reach the positive reward or to stay away from the negative reward. The only

state whose optimal policy remains unclear is S3. With the detailed computation deferred to

Section B.1, we find that the optimal (stochastic) policy π‹ is

π‹
pa|S3q “

$

’

&

’

%

0.5, a “ L,

0.5, a “ R,

which yields V π‹

pS3q “
2γ

2´γ2
. By symmetry, the two possible deterministic policies

πlpa|S3q “

$

’

&

’

%

1, a “ L

0, a “ R

and πrpa|S3q “

$

’

&

’

%

0, a “ L

1, a “ R

produce the same value for state S3, with V πlpS3q “ V πrpS3q “ γ ă V π‹

pS3q when γ ą 0.

This implies that any deterministic policy is sub-optimal.

As a consequence, RL methods that implicitly rely on the existence of a deterministic

optimal policy (e.g., Q learning) cannot solve this type of problems in general. This

observation provides motivation for us to study randomized policies and take on a policy

35

gradient approach.

Gradient domination condition. In single task RL, [12] shows that the objective function,

despite being non-concave, satisfies a “gradient domination” condition under the softmax

parameterization, which implies that every stationary point is globally optimal. This is

important as it guarantees that the policy gradient algorithm can find the globally optimal

policy by converging to a stationary point. In the multi-task problem we cannot expect to

have this condition in the general setting. The landscape of the multi-task RL objective is so

irregular that there could exist multiple stationary points which are not global optima. We

illustrate this issue with another simple example.

Let us consider again the 2-task GridWorld problem in Fig.Figure 3.1. Here we make a

slight modification to the dynamics of the tasks. In task 1 and task 2, regardless of the action

taken in state S2 and S4, the transition probability is

P1ps|S2q “

$

’

&

’

%

1 ´ p, s “ S1

p, s “ S3

P1ps|S4q “

$

’

&

’

%

1 ´ p, s “ S3

p, s “ S5

P2ps|S2q “

$

’

&

’

%

p, s “ S1

1 ´ p, s “ S3

P2ps|S4q “

$

’

&

’

%

p, s “ S3

1 ´ p, s “ S5

for some 0.5 ă p ď 1.

It is obvious that the policy gradients for S2 and S4 are always zero as the value function

is independent of the policy at these two states. We only have to optimize the policy at S3.

Under the softmax parameterization, we maintain parameters θS3,L and θS3,R such that

πθpL|S3q “
eθS3,L

eθS3,L ` eθS3,R
and πθpR|S3q “

eθS3,R

eθS3,L ` eθS3,R
¨

We consider the case where the agents always start from state S3. It can be shown that

θS3,L “ 1, θS3,R “ 8 (always taking action R) and θS3,L “ 8, θS3,R “ 1 (always taking

action L) are both stationary points and achieve the global maximum of the objective in

36

Equation 3.5, while θS3,L “ 1, θS3,R “ 1 (taking action L and R each with probability

0.5) is a sub-optimal stationary point. When gradient based methods are used to optimize

Equation 3.5, it could be trapped at the stationary points without finding the global optimality.

Later in this chapter, we will dive deeper into the problem and show that the gradient

domination condition can be recovered under a restrictive structural assumption.

3.4 Decentralized Policy Gradient Algorithm

In this section, we propose a decentralized variant of the policy gradient algorithm that

solves Equation 3.5 in consideration of the aforementioned challenges. Similar to what is

observed in the single agent case, the softmax parameterization poises a challenge due to its

exponential scaling. To handle the challenge, we use the relative-entropy as a regularization

for the objective in Equation 3.5 inspired by [12]. We consider optimizing the modified

objective function

Lλpθ;ρq “

N
ÿ

i“1

Lλi pθ; ρiq “

N
ÿ

i“1

pV πθ
i pρiq ´ λRE pπθqq ,

where λ ą 0 is a regularization parameter, and REpπθq denotes the relative entropy between

UA, which is the uniform distribution over A, and πθ

REpπθq fi Es„UnifS rDKL pUA, πθp¨|sqqs “ ´
1

|S||A|

ÿ

aPA
log πθpa | sq ´ log |A|.

We apply gradient ascent to optimize Lλ in a decentralized manner, with the updates

formally stated in Algorithm 3.1. Each agent can communicate with each other through an

undirected and connected graph G “ pV , Eq, where agents i and j can exchange messages if

and only if they are connected in G. We denote by Ni “ tj : pi, jq P Eu the set of agent i’s

neighbors.

At any time k ě 0, agent i first exchanges its iterates with its neighbors j P Ni and

compute the gradient gki of Lλi pθki ; ρiq only using information from its environment. Agent

37

Algorithm 3.1: Decentralized Policy Gradient Algorithm (DCPG)
Initialization: Each agent i initializes θ0i P Rd, an initial distribution ρi, and step
sizes tαkukPN.

for k=1,2,3,... do
Each agent i simultaneously implements:

1) Exchange θki with neighbors j P Ni

2) Compute the gradient gki of Lλi pθki ; ρiq
3) Policy update:

θk`1
i “

ÿ

jPNi

Wijθ
k
j ` αkgki . (3.6)

end

i updates θi by implementing Equation 3.6, where it takes a weighted average of θki with

θkj received from its neighbors j P Ni, following by a local gradient step. The goal of this

weighted average is to achieve a consensus among the agents’ parameters, i.e., θi “ θj ,

while the local gradient steps are to push this consensus point toward the optimal θ‹. Here,

Wij is some non-negative weight that agent i assigns for θkj . The conditions on Wij to

guarantee the convergence of Algorithm Algorithm 3.1 will be specified shortly.

3.5 Convergence Analysis

In this section, our focus is to study the performance of Algorithm 3.1 under the tabular

setting, i.e., θ P R|S||A|. It is worth recalling that each function V π
i in Equation 3.5 is in

general non-concave. To show the convergence of our algorithm, we first study the case

when gi is exactly ∇Lλi , and consider the following assumption on the weight matrix W .

Assumption 3.1. Let W “ rWijs P RNˆN be a doubly stochastic matrix, i.e.,
ř

iWij “

ř

jWij “ 1, with Wii ą 0. Moreover, Wij ą 0 iff i and j are connected, otherwise Wij “ 0.

Assumption 3.1 is fairly standard in the literature of decentralized consensus-based

optimization [96, 100]. Given an undirected communication graph, the matrix W satisfying

the assumption can be easily generated using the lazy Metropolis method [107]. We denote

by σ2 and σN the second largest and the smallest singular values of W . Our first main

38

result shows that the algorithm converges to a stationary point of Equation 3.5 at the rate

Op1{
?
Kq when µi “ ρi.

Theorem 3.1. We choose the step size of Algorithm 3.1 to be αk “ α with α ď

1`σN
řN
i“1

16
p1´γiq3

` 4Nλ
|S|

. Then under Assumption 3.1, the iterates θki satisfy @i “ 1, 2, ¨ ¨ ¨ , N

min
kăK

›

›

›

1

N

N
ÿ

j“1

∇Vjpθki ; ρjq
›

›

›

2

ď O
´ 1

Kα
`

α2

Np1 ´ σ2q
řN
j“1p1 ´ γjq6

`
λ2

N

¯

. (3.7)

First, our upper bound in Equation 3.7 depends quadratically on the inverse of the

spectral gap 1 ´ σ2, which shows the impact of the graph G on the convergence of the

algorithm. Second, this bound states that under a constant step size the norm of the gradient

converges to a ball with radius Opαq at a rate Op1{
?
Kq. As the step size is reduced, we

get closer to a stationary point of Equation 3.5. This rate matches the one for single task

RL in [12]. However, while we only show the convergence to a stationary point, a global

optimality is achieved there. As we have illustrated in Section 3.3, first-order methods can

converge to a stationary point which does not have to be globally optimal due to the lack of

a gradient domination condition in multi-task RL.

3.6 Achieving Global Optimality

Despite the difficulty of the MTRL problem, we provide a sufficient condition on the

structure of the MDPs, under which the gradient domination condition can be recovered and

Algorithm 3.1 can find the globally optimal policy.

Assumption 3.2. Let πθ˚ be an optimal policy solving Equation 3.5. Then for any πθ and µ

we have
d
πθ˚

i,ρi
psq

dπθi,µipsq
“
d
πθ˚

j,ρj
psq

dπθj,µjpsq
, @s : s P Si X Sj, @i, j P rN s. (3.8)

39

We know that dπθi,ρipsiq (similarly, dπθi,µipsiq) is the discounted fraction of time that agent i

visits state si P Si when using ρi (similarly, µi) as the initial distribution. Qualitatively, this

assumption can be interpreted as enforcing that the joint states between the environments

are equally explored. Mathematically, this assumption guarantees the objective function

Equation 3.5 obeys a kind of gradient domination when each function V π
i pρiq satisfies this

condition. We note that Assumption 3.2 holds in the important case where the component

tasks share the same state space and transition probability, but differ in their reward functions.

For simplicity, we assume without loss of generality that θ0i “ θ0j , @ i, j. Let αk “ α

satisfying

α ă
1

řN
i“1

´

8
p1´γiq3

` 2λ
|S|

¯ min
!

1 ` σN ;
λNp1 ´ σ2q

4|S||A|

´

2Nλ `
řN
i“1

1
p1´γiq2

¯

)

. (3.9)

Theorem 3.2. Suppose that Assumption 3.1 and Assumption 3.2 hold. Given an ϵ ą 0, let

λ “ ϵ { 2N}d
πθ˚

ρ {µ}8 and αk satisfy Equation 3.9. Let θ˚ be a solution of Equation 3.5.

Then @i, θki returned by Algorithm 3.1 satisfies

min
kăK

tV pθ˚;ρq ´ V pθki ;ρqu ď ϵ

if K ě O

˜

|S|2|A|2
řN
j“1

1
p1´γjq6

p1 ´ σ2qϵ2

›

›

›

›

d
πθ˚

ρ

µ

›

›

›

›

2

8

¸

,

(3.10)

where we denote
›

›

›

d
π
θ˚

ρ

µ

›

›

›

8
“ max

sPS
j:sPSj

d
πθ‹

j,ρj
psq

p1´γjqµjpsq
¨

Under Assumption 3.2, Algorithm 3.1 achieves the globally optimal value function with

the same rates as the ones in [12], except for a factor 1{p1 ´ σ2q
2 which captures the impact

of communication graph G. Equation 3.10 also shows the impact of the initial distribution µ

on the convergence of the algorithm through the distribution mismatch coefficient. A bad

choice of µ may result in a local optimum (or stationary point) convergence by breaking

Assumption 3.2, as we will illustrate by simulation in Subsection 3.7.1.

40

3.7 Experimental Results

We evaluate the performance of our proposed algorithm on two platforms: GridWorld and

drone navigation. We first verify the correctness of our theoretical results by applying

the decentralized policy gradient (DCPG) algorithm for solving small-scale GridWorld

problems, where each agent uses a tabular policy. We next apply the proposed method

to solve the more challenging problem of large-scale drone navigation in simulated 3D

environments, where the policy is approximated by neural networks.

General setup. In each simulation, the agents runs a number of episodes of DCPG. In

each episode, each agent computes its local gradient by using the Monte-Carlo method.

Each agent then communicates with its neighbors over a fixed ring graph (i.e. agent i

communicates with agent i´ 1 and i` 1 for i “ 2, 3, ..., N ´ 1; agent 1 communicates with

agent 2 and N ; agent N communicates with agent N ´ 1 and 1) and updates its iterates

using Equation 3.6. Given the communication graph G, we generate the weight matrix W

using the lazy Metropolis method.

3.7.1 GridWorld Problems

We first consider a GridWorld problem in tabular settings, i.e., θ P R|S||A|. This is a notable

small-scale RL problem, where the agent is placed in a grid of cells. Each cell can be labeled

either by the desired goal, an obstacle, or empty. The agent selects an action from the set of

4 actions {up, down, left, right} to move to the next cell. It then receives a reward of `1 if

it reaches the desired goal, ´1 if it gets into an obstacle, and 0 otherwise. The goal of the

agent is to reach a desired position from an arbitrary initial location in a minimum number

of steps (or maximize its cumulative rewards).

For multi-task RL settings, we consider a number of different single GridWorld environ-

ments of size 10 ˆ 10, where they are different in the obstacle and goal positions. We assign

one agent to each environment, which implements Algorithm 3.1 with the local gradients

41

a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j
0 0 0 0 3,4 0 3,4

1 1 1 1 3 1 3

2 2 2 0,3 0 0,1 2 0,3 0,1 2 0,1 2 0,1

3 3 3 3 3
4 1 4 1,2,3 4 1,2 4 4 1 4 4 1

5 5 5 5 1,2 5 1,2

6 0 6 6 6 5 5 6 5 5

7 7 2 1 7 0 1 7 2 0,4 7 2 0,4

8 8 8 8 8
9 3 9 9 9 5 9 5

(d) Start position top-left(c) Unresolvable conflicts(a) No conflicts (b) Resolvable conflicts (e) Start position top-right

2, 3

2, 3

2, 3
2, 3
0 2, 3

2, 3
0

Figure 3.2: Evaluate Learned Policy in Multi-task GridWorld

estimated using a Monte-Carlo approach. The state is the agent’s location in the grid. After

1000 training episodes, the agents agree on a unified policy, whose performance is tested

in parallel in all environments. The results are presented in Figure 3.2, where we combine

all the environments into one grid. In addition, yellow and red cells represent the goal and

obstacle, respectively. For each environment, we terminate the test when the agent reaches

the goal or hits an obstacle. The light green path is the route which the agent visits in these

environments. Since we have a randomized policy, we put the path mostly followed by the

agents. Figure 3.2 (a)–(c) consider experiments on four environments, while (d) and (e) are

on six environments.

In Figure 3.2(a), we illustrate the performance of the policy when there is no conflict

between the environments, i.e., the block of one environment is not the goal of the others and

vice versa. In this case, we can see that the algorithm returns an optimal policy which finds

all the goals at the environments. Next, we consider the conflict setting in Figure 3.2(b),

where one obstacle of environment 2 is the goal of environment 3. Here, the i number in

white and black represents the goal and the obstacles of the i-th environment, respectively.

Although in this case there is a conflict between the tasks, it is solvable, that is, there is still

an optimal path, which the agents eventually find.

We next consider an unsolvable conflict in Figure 3.2(c), where the goal of agent 2 is

the obstacle of agent 3 and vice versa. In this case, there does not exists a policy that can

always visit all goal positions without running into an obstacle. Instead, the agents need to

make a compromise, where they finish three out of the four tasks.

To summarize, the experiments with no conflict and resolvable conflict have dynamics

42

that allow the optimal value of Equation 3.5 to be the sum of the optimal values of the

individual tasks, while the experiment with unresolvable conflict does not. Nevertheless, in

all three cases, DCPG successfully finds the optimality of the global objective function in

Equation 3.5.

Finally, we illustrate the impact of the initial conditions with the simulations in Fig-

ure 3.2(d) and (e). In (d), if the agents start from the top left corner they cannot find the

optimal solution. However, when the agents start from the top right corner the algorithms

return the gobal optimality as shown in (e). This empirical evidence hints that to achieve the

global optimality with the DCPG algorithm, conditions on the initial state distribution like

Assumption 3.2 may be necessary.

3.7.2 Drone Navigation

For the drone experiment we use PEDRA, a 3D stimulated drone navigation platform [108].

In this platform, a drone agent is equipped with a front-facing camera, and takes actions

to control its flight. The reward received by the drone agent is designed to encourage

the drone to stay away from obstacles. We select 4 indoor environments on the PEDRA

platform (denoted as Env 0-3), which contain widely different lighting conditions, wall

colors, furniture objects, and hallway structures, as shown in Figure 3.3. The performance

of a policy is quantified by the mean safe flight (MSF), the average distance travelled by

the agent before it collides with any obstacle. This is a standard criterion in evaluating the

performance of flying autonomous vehicles [109].

To evaluate the policy learned using Algorithm 3.1 (DCPG), we compare it with the

single agent trained independently in each environment. For brevity, we denote by SA-i

the single agent trained in environment i. We note that the SAs can be considered as the

solutions to the local objective functions, while DCPG optimizes the sum of the local

objective functions. Therefore, if trained to the global optimum, each SA provides an upper

bound on the performance of the DCPG policy in the respective environment. The aim of

43

Indoor_long Indoor_cloud Indoor_frogeyes Indoor_pyramid

Figure 3.3: Environments used in drone navigation.

Figure 3.4: MSF During Training (REINFORCE)

the experiments is to show in practical problems where the tasks are highly related, the

DCPG policy often performs close to this bound.

To demonstrate the compatibility of our algorithm with a wide range of policy gradient

44

Table 3.1: MSF of Learned Policy

REINFORCE Env0 Env1 Env2 Env3 Sum

SA-0 15.9 ˘ 5.3 4.5 ˘ 1.2 4.1 ˘ 1.3 3.6 ˘ 3.0 28.1

SA-1 3.0 ˘ 0.2 55.4 ˘ 29.3 9.7 ˘ 2.8 8.1 ˘ 3.8 76.2
SA-2 1.5 ˘ 0.5 0.8 ˘ 0.2 21.1 ˘ 18.3 2.0 ˘ 0.6 25.4
SA-3 2.3 ˘ 0.5 0.8 ˘ 0.2 8.6 ˘ 2.0 40.1 ˘ 17.4 51.8

DCPG 25.2 ˘ 20.1 67.9 ˘ 35.5 40.5 ˘ 18.0 61.8 ˘ 39.2 195.4
A2C Env0 Env1 Env2 Env3 Sum

SA-0 21.8 ˘ 6.5 7.0 ˘ 0.8 15.1 ˘ 5.4 14.9 ˘ 8.2 58.8

SA-1 1.3 ˘ 0.4 54.1 ˘ 20.1 2.8 ˘ 0.9 6.4 ˘ 1.2 59.4
SA-2 1.8 ˘ 0.7 3.9 ˘ 0.3 105.2 ˘ 38.5 9.9 ˘ 1.3 120.8
SA-3 1.1 ˘ 0.2 1.4 ˘ 0.2 15.8 ˘ 5.0 78.6 ˘ 25.9 96.9

DCPG 25.2 ˘ 7.5 50.1 ˘ 24.6 165.8 ˘ 64.6 159.6 ˘ 61.0 380.7
PPO Env0 Env1 Env2 Env3 Sum

SA-0 28.3 ˘ 15.5 11.2 ˘ 6.3 8.7 ˘ 5.9 13.5 ˘ 5.7 61.7
SA-1 1.1 ˘ 0.6 75.3 ˘ 43.2 1.6 ˘ 0.4 1.6 ˘ 0.8 79.6
SA-2 2.5 ˘ 1.8 3.0 ˘ 1.1 63.2 ˘ 36.4 15.6 ˘ 10.6 84.3
SA-3 1.9 ˘ 1.6 1.2 ˘ 0.5 14.3 ˘ 8.7 139.0 ˘ 72.5 156.4

DCPG 26.3 ˘ 10.9 66.7 ˘ 30.8 144.0 ˘ 82.4 195.2 ˘ 92.4 432.2

methods, we conduct three sets of experiments, where we run Algorithm 3.1 with the

gradient gki estimated by three popular variants of policy gradient algorithms: REINFORCE,

advantage actor-critic (A2C), and proximal policy optimization (PPO). In each case, a

5-layer neural network is used to approximate the policy. We stress that in each set of the

experiments, the SAs and DCPG are trained identically, with the only difference being

whether the agents communicate their policies.

In Figure 3.4, we show MSF of the DCPG and SA policies in the training phase with the

REINFORCE algorithm. In the testing phase, we deploy the policies learned by DCPG and

SAs in the four environments and present the results in Table Table 3.1. Across the three

sets of experiments, we consistently see the performance difference between DCPG and the

SAs. As expected, SA-i only performs well in i-th environment but does not generalize to

environment it has not seen. On the other hand, the policy returned by DCPG performs very

45

well in all environments. Surprisingly, DCPG often performs even better than each SA-i in

the i-th environment, which we speculate is due to the benefits of learning common features

and representation among the agents.

3.8 Constrained Multi-Task Reinforcement Learning

We observe from Table 3.1 that the DCPG policy, while performing better than the SAs,

does not achieve balanced cumulative rewards across the environments. Motivated to control

the policy in a more fine-grained manner, we consider another formulation of multi-task

RL that allows us to specify the performance upper and lower bounds of the policy in each

environment. In the rest of the section, we will focus on the case where all environments

have identical state spaces and transition kernels and only differ in the reward functions.

This setting satisfies Assumption 3.2 and recovers the gradient domination condition. Under

notations introduced in Section 3.2, we denote

V π
0 pρq “

1

N

N
ÿ

i“1

V π
i pρq

for simplicity. Given local performance upper and lower bounds tℓi P R, ui P RuNi“1, our

constrained multi-task RL objective is to solve the following optimization problem

π‹
“ argmax

π
V π
0 pρq

subject to ℓi ď V π
i pρq ď ui @i “ 1, 2, ..., N. (3.11)

It is worth noting that Equation 3.11 obviously recovers the constraint-less formulation

in Equation 3.5 by properly choosing ℓi, ui. Again, we considers the tabular setting under

the softmax parameterization (Equation 3.4).

Although neither the objective nor the constraint set of Equation 3.11 is convex, it

is known from [110][Theorem 3.6] that strong duality holds under the following Slater’s

46

condition.

Assumption 3.3 (Slater’s Condition). There exists a constant 0 ă ξ ď 1 and a policy π

such that ℓi ` ξ ď V π
i pρq ď ui ´ ξ for all i “ 1, ¨ ¨ ¨ , N .

This is a mild and standard assumption in the study of constrained MDPs [38, 111, 112],

and states that the constraint set must have at least one interior point.

3.8.1 Algorithm Design

In this section, we develop an algorithm for solving Equation 3.11 and formally present the

updates in Algorithm 3.2. As a first step, we form the Lagrangian of Equation 3.11

V π,λ,ν
L pρq “ V π

0 pρq `

N
ÿ

i“1

pλi pV π
i pρq ´ ℓiq ´ νi pV π

i pρq ´ uiqq , (3.12)

where λ “ rλ1, . . . , λN s P RN` and ν “ rν1, . . . , νN s P RN` are the dual variables associated

with the lower and upper bound constraints.

The dual function V λ,ν
D is defined as

V λ,ν
D pρq “ max

π
V π,λ,ν
L pρq, (3.13)

and the dual problem is

λ‹, ν‹
“ argmin

λ,ν P RN`

V λ,ν
D pρq. (3.14)

A consequence of Slater’s condition is the boundedness of λ‹, ν‹.

Lemma 3.1. Under Assumption 3.3, we have

}λ‹
}8 ď

Bλ

2
and }ν‹

}8 ď
Bλ

2
,

where Bλ “ 1
ξp1´γq

47

The strong duality states

V λ‹,ν‹

D pρq “ V π‹

0 pρq, and π‹, pλ‹, ν‹
q “ argmax

π
argmin

λ,ν
V π,λ,ν
L , (3.15)

where π‹, λ‹, and ν‹ are the (not necessarily unique) optimal solutions to Equation 3.11

and Equation 3.14. Motivated by the existence of the strong duality, we take a primal-dual

approach to find the saddle point of the minimax objective in Equation 3.15. Specifically,

we use λk “ rλk1, . . . , λ
k
N s P RN and νk “ rνk1 , . . . , ν

k
N s P RN to estimate λ‹ and ν‹ and

maintain local variables θki P R|S||A| such that πθki tracks π‹ at each agent i. We update the

variables with gradient descent ascent.

Primal Variable. Carrying out gradient descent ascent requires computing the (natural)

gradients of the Lagrangian with respect to the primal and dual variables, which both have

closed form expressions. On one side, it is known that the natural gradient of the value

function under reward ri with respect to θ, denoted by r∇θV
π
i pρq, is the advantage function

scaled by 1{p1 ´ γq [113]. This means that for any distribution ρ, we have

r∇θs,aV
πθ,λ,ν
i pρq “

1

1 ´ γ

`

Aπθ0 ps, aq `

N
ÿ

i“1

pλi ´ νiqA
πθ
i ps, aq

˘

“

N
ÿ

i“1

p
1

N
` λi ´ νiqA

πθ
i ps, aq. (3.16)

In our decentralized primal variable update in Equation 3.17, each agent essentially

moves in the direction of a locally available component of this natural policy gradient,

followed by an averaging step that mixes the agents’ policy parameters to achieve consensus.

Dual Variable. On the other hand, the gradient of the Lagrangian with respect to the dual

variable is

∇λiV
π,λ,ν
L pρq “ V π

i pρq ´ ℓi “
ÿ

s:ρpsqą0,a

ρpsqπpa | sqQπ
i ps, aq ´ ℓi,

48

∇νiV
π,λ,ν
L pρq “ ´V π

i pρq ` ui “ ´
ÿ

s:ρpsqą0,a

ρpsqπpa | sqQπ
i ps, aq ` ui.

This naturally leads to the update in Equation 3.18, in which the operator Πr0,Bλs : RN Ñ RN

denotes the element-wise projection of a vector to the interval r0, Bλs. We use the projection

to guarantee the stability of the dual variables and note that the optimal dual variables are in

the span of Πr0,Bλs according to Lemma 3.1.

Algorithm 3.2: Decentralized Primal-Dual Natural Policy Gradient Algorithm in
Tabular Setting

Initialization: Each agent i initializes θ0i P R|S||A| “ 0 and dual variables
λ0i , ν

0
i P R` “ 0

for k “ 0, 1, ¨ ¨ ¨ , K ´ 1 do
for Each agent i “ 1, ¨ ¨ ¨ , N do

1) Exchange θki with neighbors j P Ni

2) Policy update:

θk`1
i “

ÿ

jPNi

Wijθ
k
j ` αp

1

N
` λki ´ νki qQ

π
θk
i

i

πk`1
i pa | sq “

exp
`

θk`1
i ps, aq

˘

ř

a1PA exp
`

θk`1
i ps, a1q

˘

(3.17)

3) Local dual variable update:

λk`1
i “Πr0,Bλs

´

λki ´η
`

V
π
θk
i

i pρq ´ ℓi
˘

¯

νk`1
i “Πr0,Bλs

´

νki `η
`

V
π
θk
i

i pρq ´ui
˘

¯ (3.18)

end
end

3.8.2 Finite-Time Convergence

With the detailed proof deferred to the appendix, we now present the finite-time complexity

of Algorithm 3.2 in the following theorem, which essentially states that the policy at every

local agent converges to the globally optimal policy both in objective function value and

constraint violation with rate OpK´1{2q.

49

Theorem 3.3. Consider the iterates tπki u obtained from K iterations of Algorithm Algo-

rithm 3.2. Let the step size sequences be

α “
α0

K1{2
, η “

η0
K1{2

, (3.19)

with α0 “ Op
a

1 ´ σ2pW qq. Then, under Assumption 3.3, we have for any j “ 1, ¨ ¨ ¨ , N

max
! 1

K

K´1
ÿ

k“0

pV π‹

0 pρq´V
πkj
0 pρqq,

1

K

K´1
ÿ

k“0

N
ÿ

i“1

´

“

ℓi ´ V
πkj
i pρq

‰

`
`

“

V
πkj
i pρq ´ ui

‰

`

¯)

ď O
´ N5{4

?
1 ´ σ2K1{2

¯

.

We omit the dependency of the bound on structural constants including |S|, |A|, 1 ´ γ

and note that it is the same as in the centralized single-task constrained MDP setting with a

single constraint [112]. The convergence rate scales up with N , which shows the difficulty

of the problem as the number of tasks increases. The dependency on p1 ´ σ2q´1{2 captures

the effect of the network connectivity, which becomes smaller as the communication graph

gets denser.

3.9 Conclusion & Future Directions

To conclude and summarize our main contribution in this chapter, we studied two multi-

task agent RL formulations and proposed provably convergent algorithms for solving

the formulations, under the assumption that the local environments have the same state

space and transition probability kernel. In the drone navigation experiments presented in

Subsection 3.7.2, we observed that the learned multi-task policy performs even better than

each single agent trained in its own environment under a moderate number of training

episodes. Conceptually, we attribute this phenomenon to the existence of a common

representation which facilitates learning, which is not completely surprising. In the extreme

case where all local tasks are exactly identical, learning a joint policy effectively reduces

50

the noise in the gradient estimates, which could mathematically justify our observation.

However, in the drone navigation experiments, the local tasks are related but not identical,

and explaining the observation becomes a much more challenging, but still interesting,

possible future work. Another future direction from the experimental perspective is to

investigate whether the constrained multi-task RL formulation can actually lead to more

desirable performance of the learned policy in practical problems.

51

CHAPTER 4

A DIRECT POLICY OPTIMIZATION APPROACH TO TWO-PLAYER

ZERO-SUM MARKOV GAMES

In this chapter, we study the structure in the two-player zero-sum Markov game and leverage

it to design a gradient descent ascent (GDA) algorithm that provably and efficiently finds

the Nash equilibrium. Despite the fact that Markov games observe a “gradient domination”

condition with respect to each player, strong structure such as the convexity does not exist

that can be exploited to guarantee the fast convergence of GDA.

Our approach to this challenge is to introduce a structured entropy regularization. The

regularized Markov game enjoys a series of favorable properties including the existence

and uniqueness of the Nash equilibrium (whose distance from the Nash equilibrium of the

unregularized problem can be upper bounded by the regularization weight) and a Polyak-

Łojasiewicz (PŁ) flavored condition. Exploiting these properties, we show that the the GDA

algorithm can find the unique Nash equilibrium of the regularized Markov game linearly

fast. We propose schemes of adjusting the regularization weight properly over time that

allows the last iterates of the GDA algorithm to converge to the Nash equilibrium of the

original Markov game1.

4.1 Introduction

The two-player zero-sum Markov game is a special case of competitive multi-agent rein-

forcement learning where two agents driven by opposite reward functions jointly determine

the state transition in an environment. Usually cast as a non-convex non-concave mini-

max optimization program, this framework finds applications in many practical problems

including game playing [114, 115], robotics [116, 117], and robust policy optimization [32].

1The presentation in this chapter is partly adapted from [39].

52

A convenient class of algorithms frequently used to solve multi-agent reinforcement

learning problems is the independent learning approach. Independent learning algorithms

proceed iteratively with each player taking turns to optimize its own objective while pre-

tending that the policies of the other players are fixed to their current iterates. In the context

of two-player zero-sum Markov games, the independent learning algorithm performs GDA,

which alternates between the gradient updates of the two agents that seek to maximize and

minimize the same value function. Despite the popularity of such algorithms in practice,

their theoretical understandings are sparse and do not follow from those in the single-agent

case as the environment is not stationary from the eye of any agent. [118] shows that iterates

of GDA can possibly diverge or be trapped in limit cycles even in the simplest single-state

case when the two players learn with the same rate.

It may be tempting to analyze the two-player zero-sum Markov game by applying the

existing theoretical results on minimax optimization. However, as the objective function in

a Markov game is not convex or concave, current analytical tools in minimax optimization

that require the objective function to be convex/concave at least on one side are inapplicable.

Fortunately, the Markov game has its own structure: it exhibits a “gradient domination”

condition with respect to each player, which essentially guarantees that every stationary

point of the value function is globally optimal. Exploiting this property, [29] builds on

the theory of [22] and shows that a two-time-scale GDA algorithm converges to the Nash

equilibrium of the Markov game with a complexity that depends polynomially on the

specified precision. However, deriving an explicit finite-time convergence rate is still an

open problem. In addition, the analysis in [29] does not guarantee the convergence of the

last iterate; convergence is shown on the average of all past iterates.

In this chapter, we show that introducing an entropy regularizer into the value function

significantly accelerates the convergence of GDA to the Nash equilibrium. By dynamicially

adjusting the regularization weight towards zero, we are able to give a finite-time last-iterate

convergence guarantee to the Nash equilibrium of the original Markov game. The main

53

contribution of the work in this chapter is twofold.

First, we show that the entropy-regularized Markov game is highly structured; in par-

ticular, it obeys a condition similar to the well-known PŁ condition, which allows linear

convergence of GDA to the (unique) equilibrium point of the regularized game with fixed

regularization weight. We also show that the distance of the equilibrium point of the regu-

larized game to the equilibrium point of the original game can be bounded in terms of the

regularizing weight.

Furthermore, we show that by dynamically driving the regularization weight towards

zero, we can solve the original Markov game. We propose two approaches to reduce the

regularization weight and study their finite-time convergence. The first approach uses a

piecewise constant weight that decays geometrically fast, and its analysis follows as a

straightforward consequence of our analysis for the case of fixed regularization weight. To

reach a Nash equilibrium of the Markov game up to error ϵ, we find that this approach

requires at most Opϵ´3q gradient updates, where O only hides structural constants. The

second approach reduces the regularization weight online along with the gradient updates.

Through a multi-time-scale analysis, we optimize the regularization weight sequence along

with the step size as polynomial functions of k, where k is the iteration index. We show

that the last iterate of the GDA algorithm converges to the Nash equilibrium of the original

Markov game at a rate of Opk´1{3q. Compared with the state-of-the-art analysis of the GDA

algorithm without regularization which shows that the convergence rate of the averaged

iterates is polynomial in the desired precision and all related parameters, our algorithms

enjoy faster last-iterate convergence guarantees.

4.2 Related Works

A Markov game reduces to a standard MDP with respect to one player if the policy of

the other player is fixed. This is an important observation that allows our work to exploit

the recent advances in the analysis of policy gradient methods for MDPs [13, 113, 119–

54

121]. Various entropy-based regularizers are introduced in these works that inspire the

regularization of this paper. Our particular regularization is also considered by [122], but we

discuss and leverage structure in the regularized Markov game that was previously unknown.

As the two-player zero-sum Markov game can be formulated a minimax optimization

problem, our work relates to the vast volume of literature in this domain. Minimax optimiza-

tion has been extensively studied in the case where the objective function is convex/concave

with respect to at least one variable [22–25]. In the general non-convex non-concave setting,

the problem becomes much more challenging as even the notion of stationarity is unclear

[26]. In [27], non-convex non-concave objective functions obeying a one–sided PŁ condition

are considered, which the authors use to show the convergence of GDA. [28] analyzes GDA

under a two-sided PŁ condition and has a tight connection to our work as the value function

of our regularized Markov game also has structure that is similar to, but weaker than, the

PŁ condition on two sides.

By exploiting the gradient domination condition of a Markov game with respect to

each player, [29] is the first to show that the GDA algorithm provably converges to a Nash

equilibrium of a Markov game. A finite-time complexity is not derived in [29], but their

analysis and choice of step sizes indicate that the convergence rate is at least worse than

Opk´1{10.5q. Additionally, [29] does not guarantee the convergence of the last iterate, but

rather analyzes the average of all iterates. In contrast, our work provides a finite-time

convergence analysis on the last iterate of the GDA algorithm.

While our work treats the Markov game purely from the optimization perspective, we

would like to point out another related line of works that consider value-based methods

[122–126]. In particular, [123] is among the first works to extend value-based methods

from single-agent MDP to two-player Markov games. Since then, the basic techniques for

analyzing value-based methods for Markov games are relatively well-known. [124] considers

a value iteration algorithm with confidence bounds. In [122], a nested-loop algorithm is

designed where the outer loop employs value iteration and the inner loop runs a gradient-

55

descent-ascent-flavored algorithm to solve a regularized bimatrix game. In comparison, pure

policy optimization algorithms are much less understood for Markov games, but this is an

important subject to study due to their wide use in practice. In single-agent MDPs, value-

based methods and policy optimization methods enjoy comparable convergence guarantees

today, and our work aims to narrow the gap between the understanding of these two classes

of algorithms in two-player Markov games.

Finally, we note the recent surge of interest in solving two-player games and minimax

optimization programs with extragradient or optimistic gradient methods in the cases where

vanilla gradient algorithms often cannot be shown to converge [122, 127–132]. These

methods typically require multiple gradient evaluations at each iteration and are more

complicated to implement. Most related to our work, [122] shows the linear convergence of

an extragradient algorithm for solving regularized bilinear matrix games. They also show

that a regularized Markov game can be decomposed into a series of regularized matrix games

and present a nested-loop extragradient algorithm which solves these games successively

and eventually converges to the Nash equilibrium of the regularized Markov game. The

regularization weight can then be selected based on the desired precision of the unregularized

problem. Although our overall goal of finding the Nash equilibrium of a general Markov

game is the same, the manner in which we decompose and analyze the problem is different.

Our analysis here is based on GDA applied directly to a general regularized Markov game.

We show that for a fixed regularization parameter for a general Markov game, GDA has

linear convergence to the modified equilibrium point. We also give a scheduling scheme for

adjusting the regularization parameter as the GDA iterations proceed, making them converge

to the solution to the original problem.

4.3 Preliminaries

We consider a two-player Markov game characterized by M “ pS,A,B,P , γ, rq. Here, S

is the finite state space, A and B are the finite action spaces of the two players, γ P p0, 1q is

56

the discount factor, and r : S ˆ A ˆ B Ñ r0, 1s is the reward function. Let ∆F denote the

probability simplex over a set F , and P : S ˆ A ˆ B Ñ ∆S be the transition probability

kernel, with Pps1 | s, a, bq specifying the probability of the game transitioning from state

s to s1 when the first player selects action a P A and the second player selects b P B. The

policies of the two players are denoted by π P ∆S
A and ϕ P ∆S

B, with πpa | sq, ϕpb | sq

denoting the probability of selecting action a, b in state s according to π, ϕ. Given a policy

pair pπ, ϕq, we measure its performance in state s P S by the value function

V π,ϕ
psq “ Eak„πp¨|skq,bk„ϕp¨|skq,sk`1„Pp¨|sk,ak,bkq

”

ÿ8

k“0
γkr psk, ak, bkq | s0 “ s

ı

.

Under a fixed initial distribution ρ P ∆S , we define the discounted cumulative reward under

pπ, ϕq

Jpπ, ϕq fi Es0„ρrV
π,ϕ

ps0qs,

where the dependence on ρ is dropped for simplicity. It is known that the Nash equilibrium

always exists in two-player zero-sum Markov games [133], i.e. there exists an optimal

policy pair pπ‹, ϕ‹q such that

max
πP∆S

A

min
ϕP∆S

B

Jpπ, ϕq “ min
ϕP∆S

B

max
πP∆S

A

Jpπ, ϕq “ Jpπ‹, ϕ‹
q. (4.1)

However, as J is generally non-concave with respect to the policy of the first player and

non-convex with respect to that of the second player, direct GDA updates may not find

pπ‹, ϕ‹q and usually exhibit an oscillation behavior, which we illustrate through numerical

simulations in Section 4.6. Our approach to address this issue is to enhance the structure of

the Markov game through regularization.

57

4.3.1 Entropy-Regularized Two-Player Zero-Sum Markov Games

In this section we define the entropy regularization and discuss structure of the regularized

objective function and its connection to the original problem. Let the regularizers be

Hπps, π, ϕq fi Eak„πp¨|skq,bk„ϕp¨|skq,sk`1„Pp¨|sk,ak,bkq

”

ÿ8

k“0
´γk log π pak | skq | s0 “ s

ı

,

Hϕps, π, ϕq fi Eak„πp¨|skq,bk„ϕp¨|skq,sk`1„Pp¨|sk,ak,bkq

”

ÿ8

k“0
´γk log ϕ pbk | skq | s0 “ s

ı

.

We define the regularized value function

V π,ϕ
τ psq fi V π,ϕ

psq ` τHπps, π, ϕq ´ τHϕps, π, ϕq

“ Eπ,ϕ,P
”

ÿ8

k“0
γk

´

r psk, ak, bkq ´ τ log πpak | skq ` τ log ϕpbk | skq

¯

| s0 “ s
ı

,

where τ ě 0 is a weight parameter. Again under a fixed initial distribution ρ P ∆S we

denote Jτ pπ, ϕq fi Es„ρrV
π,ϕ
τ psqs. The regularized advantage function is

Aπ,ϕτ ps, a, bq fi rps, a, bq ´ τ log πpa | sq ` τ log ϕpb | sq ` γEs1„Pp¨|s,a,bq

“

V π,ϕ
τ ps1

q
‰

´ V π,ϕ
τ psq,

which later helps us to express the policy gradient.

We use dπ,ϕρ P ∆S to denote the discounted visitation distribution under any policy pair

pπ, ϕq and the initial state distribution ρ

dπ,ϕρ psq fi p1 ´ γqEπ,ϕ,P
”

ÿ8

k“0
γk1psk “ sq | s0 „ ρ

ı

For sufficient state visitation, we assume that the initial state distribution is bounded away

from zero. This is a standard assumption in the entropy-regularized MDP literature [13,

134].

Assumption 4.1. The initial state distribution ρ is strictly positive for any state, and we

58

denote ρmin “ minsPS ρpsq ą 0.

When the policy of the first player is fixed to π P ∆S
A, the Markov game reduces to an

MDP for the second player with state transition probability rPϕps1 | s, bq “
ř

aPAPps1 |

s, a, bqπpa | sq and reward function rrϕps, bq “
ř

aPA rps, a, bqπpa | sq. A similar argument

holds for the first player if the second player’s policy is fixed. To denote the operators that

map one player’s policy to the best response of the other player and the corresponding value

function, we define

πτ pϕq fi argmax
πP∆S

A

Jτ pπ, ϕq, ϕτ pπq fi argmin
ϕP∆S

B

Jτ pπ, ϕq,

gτ pπq fi min
ϕP∆S

B

Jτ pπ, ϕq “ Jτ pπ, ϕτ pπqq. (4.2)

For any τ ą 0, the following lemma bounds the performance difference between optimal

and sub-optimal policies and establishes the uniqueness of πτ pϕq and ϕτ pπq. When τ “ 0,

we use π0pϕq and ϕ0pπq to denote one of the maximizers and minimizers since they may not

be unique.

Lemma 4.1 (Performance Difference). Under Assumption 4.1 and given τ ą 0, πτ pϕq is

unique for any ϕ P ∆S
B, and ϕτ pπq is unique for any π P ∆S

A. Given any min player policy

ϕ P ∆S
B,

Jτ pπτ pϕq, ϕq ´ Jτ pπ, ϕq ě
τρmin

2 logp2q
}πτ pϕq ´ π}

2, @π P ∆S
A. (4.3)

Given any max player policy π P ∆S
A,

Jτ pπ, ϕτ pπqq ´ Jτ pπ, ϕq ď ´
τρmin

2 logp2q
}ϕτ pπq ´ ϕ}

2, @ϕ P ∆S
B. (4.4)

The Nash equilibrium of the regularized problem is sometimes referred to as the quantal

response equilibrium [135] and is known to exist under any τ . Leveraging Lemma 4.1, we

59

formally state the conditions guaranteeing its existence and affirm that it is unique.

Lemma 4.2 (Minimax Theorem for Entropy-Regularized Markov Game). Under

Assumption 4.1, for any regularization weight τ ą 0, there exists a unique Nash equilibrium

policy pair pπ‹
τ , ϕ

‹
τ q such that

max
πP∆S

A

min
ϕP∆S

B

Jτ pπ, ϕq “ min
ϕP∆S

B

max
πP∆S

A

Jτ pπ, ϕq “ Jτ pπ‹
τ , ϕ

‹
τ q. (4.5)

We are only interested in the solution of the regularized Markov game if it gives us

knowledge of the original problem in Equation 4.1. In the following lemma, we show that

the distance between the Nash equilibrium of the regularized game and that of the original

one is bounded by the regularization weight. This is an important condition guaranteeing that

we can find an approximate solution to the original Markov game by solving the regularized

problem. In addition, this lemma also shows that the same policy pair produces value

functions with bounded distance under two regularization weights.

Lemma 4.3. For any τ ě τ 1 ě 0 and policy π,

´pτ ´ τ 1
q log |B| ď Jτ pπ‹

τ , ϕ
‹
τ q ´ Jτ 1pπ‹

τ 1 , ϕ‹
τ 1q ď pτ ´ τ 1

q log |A|. (4.6)

´pτ ´ τ 1
q log |B| ď gτ pπq ´ gτ 1pπq “ Jτ pπ, ϕτ pπqq ´ Jτ 1pπ, ϕτ 1pπqq ď pτ ´ τ 1

q log |A|.

(4.7)

´
τ ´ τ 1

1 ´ γ
log |B| ď Jτ pπ, ϕq ´ Jτ 1pπ, ϕq ď

τ ´ τ 1

1 ´ γ
log |A|. (4.8)

4.3.2 Softmax Parameterization

In this work we use a tabular softmax policy parameterization and maintain two tables

θ P RSˆA, ψ P RSˆB that parameterize the policies of the two players according to

πθpa | sq “
exp pθps, aqq

ř

a1PA exp pθps, a1qq
, and ϕψpb | sq “

exp pψps, bqq
ř

b1PA exp pψps, b1qq
.

60

The gradients of the regularized value function with respect to the policy parameters admit

closed-form expressions

BJτ pπθ, ϕψq

Bθps, aq
“

1

1 ´ γ
d
πθ,ϕψ
ρ psqπθpa | sq

ÿ

bPB
ϕψpb | sqA

πθ,ϕψ
τ ps, a, bq,

BJτ pπθ, ϕψq

Bψps, bq
“

1

1 ´ γ
d
πθ,ϕψ
ρ psqϕψpb | sq

ÿ

aPA
πθpa | sqA

πθ,ϕψ
τ ps, a, bq,

(4.9)

and computing them exactly requires knowledge of the dynamics of the environment. Note

that the gradients of value function and the regularizer are Lipschitz with respect to the

policy parameters with constants LV “ 8
p1´γq3

and LH “
4`8 log |A|

p1´γq3
. This property is more

formally stated and proved in Lemmas C.1 and C.2 of the appendix.

We next present an important property that we will later exploit to study the convergence

of the GDA updates to the solution of the regularized Markov game. Under the softmax

parameterization, the regularized value function enjoys a gradient domination condition

with respect to the policy parameter that resembles the PŁ condition.

Lemma 4.4 (PL-Type Condition). Under Assumption 4.1, we have for any θ P RSˆA and

ψ P RSˆB

}∇θJτ pπθ, ϕψq}
2

ě
2p1 ´ γqτρ2min

|S|

ˆ

min
s,a

πθpa | sq

˙2

pJτ pπτ pϕψq, ϕψq ´ Jτ pπθ, ϕψqq ,

}∇ψJτ pπθ, ϕψq}
2

ě
2p1 ´ γqτρ2min

|S|

ˆ

min
s,b

ϕψpb | sq

˙2

pJτ pπθ, ϕψq ´ Jτ pπθ, ϕτ pπθqqq .

The PŁ condition is a tool commonly used in the optimization community to show the

linear convergence of the gradient descent algorithm [34, 82]. The condition in Lemma 4.4

is weaker than the common PŁ condition in two aspects. First, our PŁ coefficient is a

function of the smallest policy entry. When we seek to bound the gradient of the iterates

}∇θJτ pπθk , ϕψkq}2 and }∇ψJτ pπθk , ϕψkq}2 later in the analysis, the PŁ coefficients will

depend on mins,a πθkpa | sq and mins,b ϕψkpb | sq, which may not be lower bounded by any

positive constant. Second, the coefficients involve τ , which is not a constant but needs to be

61

carefully chosen to control the error between the regularized problem and the original one.

4.4 Solving Regularized Markov Games

Leveraging the structure introduced in Section 4.3, our first aim is to establish the finite-time

convergence of the GDA algorithm to the Nash equilibrium of the regularized Markov game

under a fixed regularization weight τ ą 0. The GDA algorithm executes the updates

θk`1 “ θk ` αk∇θJτ pπθk , ϕψkq, ψk`1 “ ψk ´ βk∇ψJτ pπθk`1
, ϕψkq. (4.10)

The convergence bound we will derive reflects a trade-off for the regularization weight

τ : when τ is large, we get faster convergence to the Nash equilibrium of the regularized

problem, but it is farther away from the Nash equilibrium of the original one. The result

in this section will inspire the τ adjustment schemes designed later in the paper to achieve

the best possible convergence to the Nash equilibrium of the original unregularized Markov

game.

It can be shown that the Nash equilibrium of the regularized Markov game is a pair of

completely mixed policies, i.e. @τ ą0 there exists cτ ą0 such that mins,aπ
‹
τ pa | sqěcτ , and

mins,bϕ
‹
τ pb | sqěcτ [119]. In this work, we further assume the existence of a uniform lower

bound on the entries of pπ‹
τ , ϕ

‹
τ q across τ .

Assumption 4.2. There exists a positive constant c (independent of τ) such that for any

τ ą 0

min
s,a

π‹
τ pa | sq ě c, min

s,b
ϕ‹
τ pb | sq ě c.

To measure the convergence of the iterates to the Nash equilibrium of the regularized

Markov game, we recall the definition of gτ in Equation 4.2 and define

δπk “ Jτ pπ‹
τ , ϕ

‹
τ q ´ gτ pπθkq, δϕk “ Jτ pπθk , ϕψkq ´ gτ pπθkq. (4.11)

62

The convergence metric is asymmetric for two players: the first player is quantified by its

performance when the second player takes the most adversarial policy, while the second

player is evaluated under the current policy iterate of the first player. We note that δπk and δϕk

are non-negative, and δπk “ δϕk “ 0 implies that pπθk , ϕψkq is the Nash equilibrium. Under

this convergence metric, the following theorem states that the GDA updates in Equation 4.10

solve the regularized Markov game linearly fast. The proofs of the theoretical results of this

paper are presented in Section C.1 of the appendix.

Theorem 4.1. We define L “ 3LH maxtτ, 1u, C1 “
ρminc

2

64 logp2q
, and C2 “

2
?

|S|
?

p1´γqρminc
, and

choose the initial policy parameters to be θ0 “ 0 P R|S|ˆ|A| and ψ0 “ 0 P R|S|ˆ|B| (the

initial policies πθ0 and ϕψ0 are uniform). Let the step sizes of Equation 4.10 be

αk “ α, βk “ β,

with α, β satisfying

maxtα, βu ď
1

L
,
α

β
ď mint

p1 ´ γqρ3minc
2τ 2

152 logp2q|S|L2
, 8u, α ď mintpL `

C2L
2

τ
q

´1,
16|S|

p1 ´ γqρ2minc
2τ

u.

If Assumption 4.1 holds and

3δπ0 ` δϕ0 ď C1τ, (4.12)

then the iterates of Equation 4.10 satisfy for all k ě 0

3δπk ` δϕk ď p1 ´
p1 ´ γqατρ2minc

2

32|S|
q
k
p3δπ0 ` δϕ0 q.

Theorem4.1 establishes the linear convergence of the iterates of Equation 4.10 to the

Nash equilibrium of Equation 4.5, provided that the initial condition Equation 4.12 is

satisfied. The convergence is faster when τ is large and slower when τ is small. Choosing

63

τ to be large enough guarantees the initial condition but causes the Nash equilibrium of

the regularized Markov game to be distant from that of the original Markov game. This

motivates us to make the regularization weight a decaying sequence that starts off large

enough to meet the initial condition and becomes smaller over time to narrow the gap

between the regularized Markov game and the original one. We discuss two such schemes

of reducing the regularization weight in the next section.

4.5 Main Results - Solving the Original Markov Game

This section presents two approaches to adjust the regularization weight that allow the

GDA algorithm to converge to the Nash equilibrium of the original Markov game. The first

approach uses a piecewise constant weight and results in the nested-loop updates stated

in Algorithm 4.1. In the inner loop the regularization weight and step sizes are fixed, and

the two players update their policy iterates towards the Nash equilibrium of the regularized

Markov game. The outer loop iteration reduces the regularization weight to make the

regularized Markov game approach the original one. The regularization weight decays

geometrically in the outer loop, i.e. τt`1 “ ητt, where η P p0, 1q must be carefully balanced.

On the one hand, recalling the definition of gτ in Equation 4.2 and defining

δπt,k “ Jτtpπ
‹
τt , ϕ

‹
τtq ´ gτtpπθt,kq, δϕt,k “ Jτtpπθt,k , ϕψt,kq ´ gτtpπθt,kq,

we need η to be large enough that if θt,0 and ψt,0 observe the initial condition 3δπt,0 ` δϕt,0 ď

C1τt, then so do θt`1,0 and ψt`1,0 in the worst case. On the other hand, an η selected

excessively large makes the reduction of τt too slow to achieve the best possible convergence

rate. Our next theoretical result, as a corollary of Theorem4.1, properly chooses η and Kt

and establishes the convergence of Algorithm 4.1 to the Nash equilibrium of the original

original problem.

Corollary 4.1. Suppose that Assumption 4.1-Assumption 4.2 hold and τ0 is chosen such

64

Algorithm 4.1: Nested-Loop Policy Gradient Descent Ascent Algorithm with
Piecewise Constant Regularization Weight

Initialize: Policy parameters θ0,0 “ 0 P RSˆA and ψ0,0 “ 0 P RSˆB, step size
sequences tαtu and tβtu, an initial regularization parameter τ0

for t “ 0, 1, ¨ ¨ ¨ , T do
for k “ 0, 1, ¨ ¨ ¨ , Kt ´ 1 do

1) Max player update:

θt,k`1 “ θt,k ` αt∇θJτ pπθt,k , ϕψt,kq

2) Min player update:

ψt,k`1 “ ψt,k ´ βt∇ψJτ pπθt,k`1
, ϕψt,kq

end
Set initial policies for next outer loop iteration θt`1,0 “ θt,Kt , ψt`1,0 “ ψt,Kt
Reduce regularization weight τt`1 “ ητt and properly adjust αt, βt

end

that 3δπ0,0 ` δϕ0,0 ď C1τ0
2. We choose η “

C1`2Lδ
2C1`2Lδ

, where Lδ “ 4 log |A| ` 3 log |B| `
log |B|

1´γ

and C1 is defined in Theorem4.1. Then, under proper choices of αt and βt, the iterates of

Algorithm 4.1 converge to a point such that

Jpπ‹, ϕ‹
q ´ g0pπθT,0q ď ϵ and JpπθT,0 , ϕψT,0q ´ g0pπθT,0q ď ϵ (4.13)

in at most T “ Oplogpϵ´1qq outer loop iterations. The total number of gradient updates

required is
řT
t“0Kt “ Opϵ´3q.

Corollary 4.1 guarantees that pπθT , ϕψT q converge to an ϵ-approximate Nash equilibrium

of the original Markov game in T “ Opϵ´3q gradient steps. In order to achieve this rate,

Kt has to be adjusted along with τt: we need Kt “ Opτ´3
t q when τt becomes smaller

than 1. The varying number of inner loop iterations may cause inconvenience for practical

implementation. To address this issue, we next propose another scheme of adjusting the

regularization weight that is carried out online along with the update of the policy iterates.

Presented in Algorithm 4.2, the second approach is a single-loop algorithm that reduces
2This inequality is guaranteed to hold with a large enough τ0 if πθ0 and ϕψ0

are initialized to be uniform.

65

Algorithm 4.2: Policy Gradient Descent Ascent Algorithm with Diminishing
Regularization Weight

Initialize: Policy parameters θ0 “ 0 P RSˆA and ψ0 “ 0 P RSˆB, step size
sequences tαku and tβku, regularization parameter sequence tτku

for k “ 0, 1, ¨ ¨ ¨ , K do
1) Max player update:

θk`1 “ θk ` αk∇θJτkpπθk , ϕψkq

2) Min player update:

ψk`1 “ ψk ´ βk∇ψJτkpπθk`1
, ϕψkq

end

the regularization weight as a polynomial function of the iteration k. We define the auxiliary

convergence metrics

δπk “ Jτkpπ‹
τk
, ϕ‹

τk
q ´ gτkpπθkq, δϕk “ Jτkpπθk , ϕψkq ´ gτkpπθkq,

which measure the convergence of pπθk , ϕψkq to the Nash equilibrium of the Markov game

regularized with weight τk. To judge the performance of the iterates in the original Markov

game, we are ultimately interested in bounding Jpπ‹, ϕ‹q´g0pπθkq and Jpπθk , ϕψkq´g0pπθkq.

Thanks to Lemma 4.3, we can quantify how fast δπk and δϕk approach these desired quantities

as τk decays to 0. Under an initial condition on δπk and δϕk , we now establish the convergence

rate of Algorithm 4.2 to pπ‹, ϕ‹q of Equation 4.1 through a multi-time-scale analysis.

Theorem 4.2. Let the step sizes and regularization parameter be

αk “
α0

pk ` hq2{3
, βk “ β0, τk “

τ0
pk ` hq1{3

,

with α0, β0, τ0, and h ě 1 satisfying a system of inequalities discussed in details in the

analysis. Under Assumption 4.1-Assumption 4.2, the iterates of Algorithm 4.2 satisfy for all

66

k ě 0

Jpπ‹, ϕ‹
q ´ g0pπθkq ď

C1τ0 ` 3plog |A| ` log |B|qτ0
3pk ` hq1{3

, (4.14)

Jpπθk , ϕψkq ´ g0pπθkq ď
p1 ´ γqC1τ0 ` plog |A| ` log |B|qτ0

p1 ´ γqpk ` hq1{3
, (4.15)

where the constant C1 is defined in Theorem4.1.

Theorem4.2 states that the last iterate of Algorithm 4.2 converges to an Opk´1{3q-

approximate Nash equilibrium of the original Markov game in k iterations. This translates

to the same sample complexity as Algorithm 4.1 derived in Corollary 4.1. Compared with

Algorithm 4.1, reducing τk online along with the gradient updates in a single loop simplifies

the algorithm and makes tracking the regularization weight, step sizes, and policy iterates

simpler and more convenient. We note that the techniques in [29] may be used to analyze

the finite-time performance of GDA for Markov games and lead to a convergence rate at

least worse than Opk´1{10.5q, which we improve over.

Remark 4.1. Assumption 4.2 is a restrictive assumption that does not seem necessary

but rather arises as an artifact of the current analysis. When we apply the weaker PL-

type condition (Lemma 4.4) in the analysis, the entries of the iterates πθk , ϕψk need to be

uniformly lower bounded, which is difficult to establish using the game structure. We come

up with an innovative induction approach to quantify the connection between mins,a πθkpa |

sq,mins,b ϕψkpb | sq and the optimal gap δπk , δ
ϕ
k . This approach allows us to transform the

uniform lower bound requirement on πθk , ϕψk to that on the Nash equilibrium, leading to

Assumption 4.2.

A Markov game is said to be completely mixed if every Nash equilibrium of the game

consists of a pair of completely mixed policies, i.e. mins,a π
‹pa | sq ą 0,mins,b ϕ

‹pb |

sq ą 0 for any Nash equilibrium pπ‹, ϕ‹q of the Markov game (if more than one exists).

Assumption 4.2 intuitively seems no stronger than requiring the original Markov game

to be completely mixed. If the original Markov game has at least one completely mixed

67

Nash equilibrium, the Nash equilibrium of the regularized Markov game should also be

completely mixed even when the regularization weight is small, since the regularization

encourages the solution to be more uniform. The reward function that results in completely

mixed Markov games is well studied in [136–138].

4.6 Numerical Simulations

In this section, we numerically verify the convergence of Algorithm 4.2 on small-scale

synthetic Markov games. Our aim is to confirm that the algorithm indeed converges rather

than to visualize the exact convergence rate, as achieving the theoretical rate derived in

Theorem4.2 requires very careful selection of all involved parameters. Considering an

environment with |S| “ 2 and |A| “ |B| “ 2, we first choose the reward and transition

probability kernel such that the Markov game is completely mixed3.

Figure 4.1: Convergence of GDA for a Completely Mixed Markov game

We run Algorithm 4.2 for 50000 iterations with αk “ 10´3, βk “ 10´2, τk “ pk`1q´1{3,

and measure the convergence of πk and ϕk by metrics considered in Equation 4.14 and

Equation 4.15 of Theorem4.2. As shown in the first plot of Figure 4.1, the last iterate

exhibits an initial oscillation behavior but converge smoothly after 10000 iterations. In

comparison, we visualize the convergence of the last iterate and averaged iterate of the

3To create a completely mixed game with |A| “ |B| “ 2, we simply need to choose the reward function
such that rps, ¨, ¨q as a 2x2 matrix is diagonal dominant or sub-diagonal dominant for any state s P S , and we
can use an arbitrary transition probability kernel. The exact choice of the reward function and transition kernel
as well as the Nash equilibrium of this Markov game are presented in Section C.3 of the appendix.

68

GDA algorithm without any regularization (second and third plots of Figure 4.1), where

the average is computed with equal weights as π̄k “ 1
k`1

řk
t“0 πθt , ϕ̄k “ 1

k`1

řk
t“0 ϕψt . The

existing theoretical results in this case guarantee the convergence of the averaged iterate

but not the last iterate [29]. According to our simulations, the last iterate indeed does not

converge, while the averaged iterate does, but at a slower rate than the convergence of the

last iterate of the GDA algorithm under the decaying regularization.

The theoretical results derived in this paper rely on Assumption 4.2. To investigate

whether this assumption is truly necessary, we also apply Algorithm 4.2 to a Markov game

that has a deterministic Nash equilibrium and does not observe Assumption 4.24. As

illustrated in Figure 4.2, the experiment shows that Algorithm Algorithm 4.2 still converges

correctly to pπ‹, ϕ‹q of Equation 4.1. This observation suggests that Assumption 4.2 may be

an artifact of the current analysis and motivates for us to investigate ways to remove/relax

this assumption in the future. We note that the pure GDA approach without regularization

also has a last-iterate convergence and does not exhibit the oscillation behavior observed in

Figure 4.1, since the gradients of both players never change signs regardless of the policy of

the opponent in this Markov game.

Figure 4.2: Convergence of GDA for a Deterministic Markov game

4The detailed description of the game is again deferred to Section C.3 of the appendix.

69

4.7 Future Directions

Our current work on Markov games relies on the Nash equilibrium being a pair of completely

mixed policies. Numerical simulations suggest that our proposed algorithm converges

efficiently in Markov games that do not satisfy this assumption. However, significant

challenges are present in removing or relaxing this assumption, and we leave it as a possible

future direction.

It is also interesting to investigate the extension of the work to the sample-based

setting. The gradient of the policy optimization objective in Equation 4.9 depends

on the value functions, which can be estimated with a critic variable updated on a

faster timescale. Our current analysis for the deterministic gradient setting relies on

a connection between the optimality gap pδπk , δϕk q and difference in smallest policy en-

try pmins,a π
‹pa | sq ´ mins,a πkpa | sq,mins,a ϕ

‹pb | sq ´ mins,a ϕkpb | sqq established in

Lemma C.4 and its proof. Showing a similar connection under stochastic errors is the

biggest challenge of this extension. It is possible that a convergence with high probabil-

ity (rather than in expectation) is the correct metric to use to control the aforementioned

difference in smallest policy entry in the stochastic setting.

70

CHAPTER 5

ACCELERATING POWER SYSTEM OPTIMIZATION WITH REINFORCEMENT

LEARNING

In this chapter, we apply reinforcement learning to solve a parameter selection problem in

power system optimization. In particular, we consider the alternating current optimal power

flow (ACOPF) problem, which studies minimizing the cost of generating and transmitting

electrical power while satisfying the network demands and obeying physical transmission

laws. Formulated as a complicated and highly non-convex optimization program, the

ACOPF problem is crucial for the efficient operation of modern power networks and needs

to be solved at a high frequency in real time as the network demands and topology change.

One of the most successful approaches of solving large-scale ACOPF problems leverages

the alternating direction method of multipliers (ADMM) algorithm [139], which efficiently

distributes the computation and accelerates the solution.

However, it is known that the convergence behavior of ADMM in this context is highly

dependent on the selection of penalty parameters, which are usually chosen heuristically.

[140] shows that poorly selected parameters can severely slow down the algorithm conver-

gence or even lead to divergence.

Motivated to develop a more reliable penalty parameter selection scheme, we view

the ADMM solving process as stochastic environment and propose learning a parameter

selection policy using RL, with the goal of minimizing the number of iterations until

convergence. We train our RL policy using deep Q-learning, and show that this policy can

result in significantly accelerated convergence (up to a 59% reduction in the number of

iterations compared to existing, curvature-informed penalty parameter selection methods).

We also show the superior generalizability of our policy, which performs well under unseen

loading schemes as well as under unseen losses of lines and generators (up to a 50%

71

reduction in iterations). Though initially formulated as a single agent RL problem, our

solution interestingly turns out to have a multi-agent interpretation1.

5.1 Related Works

To speed up convergence and reduce the effort of penalty parameter tuning in ADMM, adap-

tive penalty parameter algorithms have been studied in order to update penalty parameters

during the optimization using feedback from the previous iteration. Examples include resid-

ual balancing [141], which increases or decreases penalty parameters based on the relative

magnitudes of the primal and dual residuals, and methods that use estimates of the local

curvature of the dual function to inform updates [142]. Mhanna et al. in [143] demonstrate

significantly improved convergence performance for the ACOPF problem using adaptive

penalty parameter algorithms over vanilla ADMM with static penalty parameters. However,

the techniques in [143] still rely on tuned parameters within the adaptive algorithm, and also

require additional logic steps and the computation and storage of gradient information.

Ultimately, these existing adaptive penalty parameter algorithms rely on heuristics,

presenting an opportunity for their replacement with machine learning techniques that may

have superior performance. In this work, we develop a reinforcement learning (RL) [144]

method to train a policy for selecting penalty parameters to accelerate the convergence

of an ADMM algorithm for solving ACOPF problems. The ADMM parameter selection

task has a sequential decision making structure, as penalty parameters are updated based

on feedback from past iterations. RL, as a convenient framework for sequential decision

making problems, is a natural fit for this task.

Machine learning techniques have been used to design optimization methods [145, 146].

There are fewer works that develop embedded-ML methods specifically for distributed

optimization algorithms. In [147], a recurrent neural network is trained to predict the

converged values of variables in ADMM subproblems for DC-OPF. In [148], the authors

1The presentation in this chapter is partly adapted from [40].

72

replace ADMM subproblems with an RL policy that predicts solutions. In [149], the authors

learn to solve ADMM subproblems by recasting them as deep neural networks. Recent

contemporaneous work [150] trains an RL policy to tune parameters to accelerate ADMM

convergence using policy gradient methods; however, they focus on convex QP problems

with convergence guarantees and do not specifically consider power systems problems.

Moreover, RL methods have shown promise in other power systems applications [151, 152].

5.2 Preliminaries

In this section, we provide a brief overview of the ADMM algorithm, present the ACOPF

problem formulation, and describe how the underlying objective for ACOPF can be re-

formulated to fit into the ADMM framework and to be solved with ADMM.

5.2.1 Alternating Direction Method of Multipliers

ADMM is designed to solve problems of the form

min
xPRn1 ,x̄PRn2

fpxq ` gpx̄q

s.t. Ax ` Bx̄ “ c,

(5.1)

where A P Rn3ˆn1 , B P Rn3ˆn2 , and c P Rn3 , and where f : Rn1 Ñ R and g : Rn2 Ñ R are

closed functions. Only linear equality constraints are present in this formulation, but we note

that non-linear and/or inequality constraints can be easily modeled by properly introducing

slack variables [153].

Let y P Rn3 be the vector of Lagrange multipliers used to enforce the constraints. We

form the augmented Lagrangian as

Lρpx, x̄, yq “ fpxq ` gpx̄q ` yT pAx ` Bx̄ ´ cq `
1

2
pAx ` Bx̄ ´ cqJΩpAx ` Bx̄ ´ cq.

The matrix Ω P Rn3ˆn3 is a diagonal matrix with the diagonal entry defined as Ωii “ ρi for

73

some scalar ρi ą 0. We refer to ρi as the i-th penalty parameter.

The ADMM algorithm essentially uses a blend of dual descent and method of multi-

pliers to find the saddle point of the Lagrangian. Let k be the ADMM iteration counter,

where iterates are marked via square brackets in superscript. In each iteration of ADMM,

we sequentially update variable x according to Equation 5.2a , variable x̄ according to

Equation 5.2b, and the Lagrange multipliers y via Equation 5.2c.

xrk`1s
“ argmin

x
Lρpx, x̄

rks, yrks
q (5.2a)

x̄rk`1s
“ argmin

x̄
Lρpx

rk`1s, x̄, yrks
q (5.2b)

yrk`1s
“ yrks

` ΩpAxrk`1s
` Bx̄rk`1s

´ cq (5.2c)

The primal residual rrks
p and dual residual rrks

d , defined as follows, provide a metric of

convergence.

rrks
p “ Axrks

` Bx̄rks
´ c (5.3)

r
rks

d “ 2ΩATB
`

x̄rks
´ x̄rk´1s

˘

. (5.4)

The ADMM iterations proceed until the l2 norms of the primal and dual residuals, which

represent the feasibility of the primal and dual problems, meet their convergence thresholds

ϵp ą 0 and ϵd ą 0, respectively:

›

›rrks
p

›

›

2
ď ϵp and

›

›

›
r

rks

d

›

›

›

2
ď ϵd, (5.5)

5.2.2 Alternating Current Optimal Power Flow

Consider a power system represented by an undirected graph pB,Lq, where B and L denote

the collection of nodes and edges. Each node i P B, also referred to as a bus, has a complex

power demand denoted as di “ pdi `j ˚qdi for some pdi , q
d
i P R. The voltage of bus i is vi P C,

74

and we use ei and fi to denote the real and imaginary parts, i.e. vi “ ei ` j ˚ fi. We can

alternatively represent the voltage in a polar form with wi “ e2i ` f 2
i and θi “ arctanpfi{eiq.

A subset of the buses may have a power generator attached, and we use G Ď B to denote the

collection of generators2. Each generator bus i P G can generate a complex power with a

real part pgi P R and imaginary part qgi P R.

An edge of the graph, also referred to as a branch, represents a transmission line. For a

branch from bus i to j, pij and qij denote the real and imaginary power flow through the

branch in the nominal direction, and pji and qji denote the real and imaginary power flow in

the reverse direction. We note that pji and qji are not simply the negative of pij and qij; these

quantities are determined from the voltage at bus i and j by solving a system of power flow

equations, which corresponds to Equation 5.6d-Equation 5.6g in the optimization problem

below.

The objective of the ACOPF problem, presented in Equation 5.6, is to find the most

economic operating point of the generators that obeys the physical laws and satisfies the

power demand pdi , q
d
i at every node i. The generation cost ci is a quadratic function in

the real power output. Equation 5.6b-Equation 5.6c are known as power balance equa-

tions and represent the power transmission laws along with Equation 5.6d-Equation 5.6j.

Equation 5.6k-Equation 5.6l restrict the magnitude of the power flow between bus i and j.

Equation 5.6m-Equation 5.6n represent the limit of the power generators.

min
pgi ,qgi ,wi,θi,w

R
ij ,w

I
ij

ÿ

iPG
cipp

g
i q (5.6a)

s.t. pgi ´ pdi “ gSi wi `
ÿ

jPNi

pij, @i P B (5.6b)

qgi ´ qdi “ ´bSi wi `
ÿ

jPNi

qij, @i P B (5.6c)

pij “ giiwi ` gijw
R
ij ` bijw

I
ij, @pi, jq P L (5.6d)

2We assume that there is at most one generator at each bus to simplify the discussion. In general, multiple
generators can be on a bus, and our problem formulation easily extends to such scenarios.

75

qij “ ´biiwi ´ bijw
R
ij ` gijw

I
ij, @pi, jq P L (5.6e)

pji “ gjjwj ` gjiw
R
ij ´ bjiw

I
ij, @pi, jq P L (5.6f)

qji “ ´bjjwj ´ bjiw
R
ij ´ gjiw

I
ij, @pi, jq P L (5.6g)

´ 2π ď θi ď 2π, @i P B (5.6h)

pwRijq
2

` pwIijq
2

“ wiwj, @pi, jq P L (5.6i)

θi ´ θj “ arctanpwIij{w
R
ijq, @pi, jq P L (5.6j)

b

p2ij ` q2ij ď r̄ij, @pi, jq P L (5.6k)
b

p2ji ` q2ji ď r̄ij, @pi, jq P L (5.6l)

pg
i

ď pgi ď pgi , @gi P G (5.6m)

qg
i

ď qgi ď qgi , @gi P G (5.6n)

We use Ni to denote the neighbors of bus i, i.e. Ni “ tj P B : pi, jq P Lu. The decision

variables of this optimization program include pgi , q
g
i , wi, θi and auxiliary variables wRij and

wIij , which are defined to be ?
wiwj cospθi´θjq and ?

wiwj sinpθi´θjq. The other quantities

in Equation 5.6 are parameters that depend on the structure and physical properties of the

power network (see [143] for details).

5.2.3 ACOPF Solved via ADMM

The authors in [143] propose a method to decompose the ACOPF problem Equation 5.6

based on the observation that certain variables can be decoupled by properly duplicating these

variables and enforcing a consensus through coupling constraints. Ultimately, Equation 5.6

can be reformulated as the composition of small sub-problems and written in the form

of Equation 5.1 with suitable choices of A,B, c, and (non-convex) loss functions f and g.

Recall that the i-th coupling constraint in the ADMM formulation is associated with

penalty parameter ρi. In [140], improved convergence performance is observed for ACOPF

when ρi values are assigned based on the type of coupling constraint they are penalizing.

76

Figure 5.1: Environment (ADMM Solver) and RL Agent Interaction

They categorize the coupling constraints into two different types: constraints that correspond

to the real (p) and reactive (q) power flows, and constraints that correspond to voltages (v)

and angles (θ). We use npq and nvθ to denote the number of the two types of constraints,

and define Cpq and Cvθ to be the index set of power related and voltage related constraints,

respectively. We use ρpq P Rnpq for the penalty parameters for the p or q coupling constraints

and ρvθ P Rnvθ for the penalty parameters for the v, w, or θ coupling constraints.

5.3 Reinforcement Learning Algorithm Design

While we seek to reduce the number of ADMM iterations until convergence by properly

choosing penalty parameters, the goal of an RL agent is to maximize the discounted

cumulative reward it collects from the environment. To translate our objective to that of

the RL agent, we have to model our ADMM parameter selection problem as a suitable RL

problem, which includes identifying the environment and dynamics and making the proper

choice of the state space, action space, and reward function.

We regard the ADMM solution process as the RL environment in the following sense.

Each iteration of the ADMM algorithm corresponds to one RL iteration. In iteration

k “ 0, 1, . . ., the agent observes the current state of the ADMM solver srks. Based on srks,

the agent selects an action arks, which is simply a choice of ρrks, the penalty parameter of

77

the k-th iteration, and receives a reward Rpsrks, arksq, which we will design to reflect the

value of the current state to the ADMM convergence. The parameter ρrks is then fed back

to the ADMM solver for another ADMM iteration. This process is repeated until both the

primal and dual residuals from the ADMM solve drop below the thresholds in Equation 5.5.

The interaction of the environment and the agent in ADMM solving process is shown in

Figure 5.1.

State space S: The state provides an important source of information that should summarize

the progress of the ADMM algorithm and include key factors necessary for the agent to

make decisions about ρ. In this problem, we naturally expect the primal and dual residuals to

contain information about the optimal choice of ρ. To ensure that srks sufficiently represents

the state of the ADMM solving process, we include the past n-point history of the residuals

in srks, i.e.

srks
“rprrk´n`1s

p , r
rk´n`1s

d q, ¨ ¨ ¨ , prrks
p , r

rks

d qsP R2nˆpnpq`nvθq.

Action space A: As ρ values are continuous variables, the action space for this problem

is continuous, which dictates the use of RL algorithms compatible with continuous action

spaces. Nevertheless, in this work we discretize the action space into the collection of 10

values, motivated by the observation that the effective discretization of a continuous action

space can sometimes lead to better trained policies [154].

The existing literature suggests that ρ values picked from a certain range result in superior

convergence speed. Specifically, [143] considers using two different ρ for the two types of

constraints: for constraints related to real and reactive power, ρpq “ 400 is used for IEEE

9-bus, 30-bus, and 118-bus systems; for constraints related to voltage, ρvθ “ 40000 is used

for IEEE 9-bus and 30-bus systems and ρvθ “ 4000 is used for the 118-bus system. Though

this particular choice of the parameters may not be optimal, it suggests a reasonable interval

for ρ to provide to the RL agent. We select r100, 1000s as the range of ρpq, and r500, 70000s

78

for ρvθ in the 9-bus and 30-bus systems and r500, 7000s in the 118-bus system, discretized

as shown in Table 5.1.

Table 5.1: RL Action Space & Initial ρ Values

ρ Category Initial Value Action Space

ρpq 400 {100, 200, 300, 400, 500, 600, 700,
800, 900, 1000}

ρvθ (9-, 30-bus) 40000 {500, 2000, 5000, 10000, 20000,
30000, 40000, 50000, 60000, 70000}

ρvθ (118-bus) 4000 {500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 5500, 7000}

Reward function R: The reward function is a crucial signal that affects the behavior of the

agent. We have to carefully design the reward function to translate our objective, which is to

accelerate ADMM convergence, correctly to the agent. The reward function R should be

chosen such that Rps, aq is large if taking action a while in state s leads to fast convergence

and small if taking action a while in state s leads to slow convergence. With this in mind, a

natural choice of the reward function is a large bonus given only to the convergence state;

for instance,

Rconvpsrks, arks
q “

$

’

’

&

’

’

%

200, if
›

›

›
r

rk`1s
p

›

›

›

2
ďϵpand

›

›

›
r

rk`1s

d

›

›

›

2
ďϵd,

0, else.

Due to the presence of the discount factor γ P p0, 1q, the reward received further in the future

becomes less valuable. Therefore, to maximize the discounted cumulative reward under this

reward function, the agent will aim to reach the convergence state in as few iterations as

possible.

Though this design of the reward function encodes our objective, it causes the agent

to receive extremely sparse reward signals in the training process. Until the very last

iteration, the agent will not receive any useful signal throughout the hundreds or thousands

79

of iterations that are typically required for ADMM algorithms to converge for moderately

sized ACOPF problems. Sparse rewards commonly cause exploration and credit assignment

issues in RL and significantly slow down the learning process.

To offer a denser signal to the RL agent, we add the residuals to the reward function.

Specifically, the reward received by the agent in state srks is proportional to the reduction in

}r
rk`1s
p }2 and }r

rk`1s

d }2 from }r
rks
p }2 and }r

rks

d }2:

Rresps
rks, arks

q “
1

Zp
p}rrks

p }2 ´ }rrk`1s
p }2q `

1

Zd
p}r

rks

d }2 ´ }r
rk`1s

d }2q,

where Zp and Zd are normalizing factors that balance the magnitude difference between the

primal and dual residuals. This reward function makes sense, as achieving fast convergence

is equivalent to quickly driving the residuals to the thresholds. This reward is non-zero in

every ADMM iteration.

While we observe that the combination of Rconv and Rres works well in this problem, we

further innovate the reward function design by taking advantage of the non-counterfactual

nature of the environment. We note that in most RL problems, the environment transition

is irreversible, that is, once an action arks is deployed in state srks, the environment moves

forward to the next state srk`1s, and the consequence of selecting a different action in srks

is never observable. However, in this problem, the progress of every ADMM iteration can

be saved and we can therefore try different actions in the same state and compare their

outcomes. This feature of the environment affords more flexibility in the reward design.

In this work, we use a reward function computed with the help of a baseline policy π̃.

In state srks, we select the baseline action ãrks „ π̃p¨ | srksq and observe the resulting next

state s̃rk`1s including primal and dual residuals r̃rk`1s
p and r̃rk`1s

d . We note that this baseline

action is only used to compute the residuals. We roll back to state srks once the residuals are

collected. From state srks, we then deploy the RL policy, making the environment transition

to srk`1s and reveal rrk`1s
p and rrk`1s

d . The reward is defined as the relative advantage of the

80

RL policy over the baseline:

Rbps
rks, arks

q “
}r̃

rk`1s
p }2 ´ }r

rk`1s
p }2

}r̃
rk`1s
p }2

`
}r̃

rk`1s

d }2 ´ }r
rk`1s

d }2

}r̃
rk`1s

d }2

.

This reward function essentially aims to achieve the same goal as Rres, but can have much

smaller variance. We note that }r
rk`1s
p }2 ´ }r

rks
p }2 and }r

rk`1s

d }2 ´ }r
rks

d }2 can fluctuate across

several orders of magnitude through ADMM iterations regardless of the choice of ρ. The

reward function Rb effectively removes the impact of the natural fluctuation of the residuals

and makes the variance of Rb significantly smaller than that of Rres. We emphasize that the

sole purpose of the baseline policy is to offset the fluctuation in the norm of the residuals

over iterations. Therefore, the baseline policy can be very simple. In the experiments of

this work, the baseline policy is to always use ρpq “ 500 and ρvθ “ 500. Accordingly, the

reward function we choose in this work combines rconv and rb:

Rpsrks, arks
q “ Rconvpsrks, arks

q ` Rbps
rks, arks

q.

5.3.1 Factorized Entry-wise Policy & Multi-Agent Interpretation

We have discussed the transformation of the ADMM parameter selection problem into

a RL problem where the policy selects a vector ρ given the state vector. With the ten

possible choices of ρ values for each constraint, the total cardinality of the action space is

10npq`nvθ , which grows exponentially in the number of constraints and quickly becomes

computationally intractable. To address this issue, we reduce the action space by simplifying

the policy using the structure of ACOPF.

First, we find that the existing heuristic methods of adjusting ρ, which determine ρi in an

element-wise manner only using the residuals of constraint i, lead to reasonably accelerated

convergence rate. This observation suggests that the local information may provide sufficient

knowledge for us to (almost) optimally determine the local penalty parameter ρi. As a result,

81

we are motivated to factorize the policy into the product of local policies with significantly

reduced action spaces. Specifically, let πi denote the policy for updating parameter ρi and si

denotes the portion of the state vector s associated with constraint i. We assume that the

optimal policy π‹ can be factorized as

π‹
pρ | sq “

npq`nvθ
ź

i“1

π‹
i pρi | siq,

which means that we can equivalently train smaller policies πi for each i “ 1, . . . , pnpq `

nvθq.

Learning the set of small policies with its size scaling up linearly with the number of

constraints, however, can still be prohibitive in computation and memory usage. Therefore,

we make one more simplification by restricting all power related constraints to employ the

the same policy, i.e. π‹
i “ π‹

pq for all i P Cpq, and all voltage and angle related constraints

to employ the same policy, i.e. π‹
i “ π‹

vθ for all i P Cvθ. This means that the policy can be

represented as

π‹
pa | sq “

˜

ź

iPCpq

π‹
pqpai | siq

¸ ˜

ź

iPCvθ

π‹
vθpai | siq

¸

. (5.7)

As a result of this factorization, we only need two small entry-wise policies, each mapping

the local state vector si P R2n to an action from 10 possible choices. The cost of maintaining

and updating such policies is fairly small.

Along with advantages in computational tractability, another important benefit of the

factorized entry-wise policy lies in its ability to be deployed to ACOPF ADMM problems

with different numbers of constraints from the one seen by the RL agent in training. This

means that the entry-wise policy pair trained under one power network can be flexibly

applied to various other network structures. Later in Section 5.4, we will discuss an

important generalization of the learned policy to minor system modifications, where it is

necessary for the policy to adapt to a change in the number of constraints.

82

Interestingly, another interpretation of this factorized policy is that there exist two

cooperative agents in the environment with aligned reward functions. In the current learning

paradigm, the agents do not communicate with each other and can only learn individually.

Suppose we use an iterative learning algorithm to find π‹
pq and π‹

pq, where we use πrks
pq , πrks

vθ

to denote the policy iterates in the k-th iteration. Then, when πrks
pq (resp. πrks

vθ) is updated, it

essentially seeks to find the optimal policy in the environment with the state transition and

reward function marginalized over πrk´1s

vθ (resp. πrk´1s
pq).

5.3.2 Q Learning Algorithm in ADMM Solver

In Algorithm 5.1, we formally present how we incorporate the RL agent to the ADMM

solver. We use deep Q learning to find π‹
pq, π

‹
vθ. Specifically, we maintain and update two

neural networks parameterized by ψpq and ψvθ to approximate the Q function of π‹
pq and π‹

vθ,

updated as shown in line 12-14. The behavior policy used to generate the samples is the

ϵ-greedy policy based on ψpq and ψvθ (line 15), where we select ϵ to be a small constant.

The ADMM solver employs a prescribed ρ vector initially and starts sampling ρ from

the behavior policy after n iterations.

5.4 Numerical Experiments

We demonstrate the performance of our RL policy on the 9-bus, 30-bus, and 118-bus IEEE

networks in the MATPOWER format [155]. Two additional evaluation tasks are carried out

to validate the generalization of the learning performance to the practical scenarios in power

system operations. In the first task, the RL policy is evaluated for its effectiveness in unseen

load profiles in the original network. This is an important task as the loads of a power system

frequently change, requiring the ACOPF problem to be solved repeatedly in an efficient

way. The second task tests the RL policy on a slightly modified version of the system by

removing generators and/or disconnecting transmission lines. This task is more challenging

and also important in practice since we may need to solve ACOPF problems under generator

83

Algorithm 5.1: Parameter Learning Through Q-Learning in ADMM ACOPF
Solver

1: ADMM initialization: Initial parameters xr0s P Rn1 , x̄r0s P Rn1 , yr0s P Rn3 , ρ̄ P Rn3

2: RL initialization: Initial Q function parameters ψr0s
pq for pq agent and ψr0s

vθ for vθ agent,
step size sequence αrks, exploration parameter ϵ, state vector length n

3: for k “ 0, 1, 2, ... do
4: if k ě n then
5: Compute residuals rrks

d , rrks
p from xrks, x̄rks and form state vector

srks “ rpr
rk´n`1s
p , r

rk´n`1s

d q, ¨ ¨ ¨ , pr
rks
p , r

rks

d qs

6: Sample action arks

i in an element-wise manner and translate to ρrks

a
rks

i „

#

pπ
rks
pq p¨ | s

rks

i q, for i P Cpq
pπ

rks

vθ p¨ | s
rks

i q, for i P Cvθ
7: else
8: Use the initial ρ value: ρrks “ ρ̄
9: end if

10: Perform an ADMM update Equation 5.2 with penalty parameter ρrks

11: if k ě n then
12: Observe Rpsrks, arksq and srk`1s and compute the vector Qtarget such that

Qtarget
i “

#

Rpsrks, arksq ` maxaQ
ψ

rks
pq ps

rk`1s

i , aq, for i P Cpq
Rpsrks, arksq ` maxaQ

ψ
rks

vθ ps
rk`1s

i , aq, for i P Cvθ

13: Compute loss

ℓpψrks
pq , ψ

rks

vθ q“
ÿ

iPCpq

´

Qψ
rks
pq ps

rks

i , arks
q´Qtarget

i

¯2

`
ÿ

iPCvθ

´

Qψ
rks

vθ ps
rks

i , arks
q´Qtarget

i

¯2

14: Update the Q function parameter
ψrk`1s
pq “ ψrks

pq ´ αrks∇ψpqℓpψ
rks
pq , ψ

rks

vθ q

ψ
rk`1s

vθ “ ψ
rks

vθ ´ αrks∇ψvθℓpψ
rks
pq , ψ

rks

vθ q

15: Set the behavior policy to be ϵ-greedy for all s

pπrk`1s
pq pa | sq “

#

1 ´
p|A|´1qϵrks

|A|
, if a “ â

rk`1s
pq psq

ϵrks

|A|
, otherwise

,

pπ
rk`1s

vθ pa | sq “

"

1 ´
p|A|´1qϵrks

|A|
, if a “ â

rk`1s

vθ psq
ϵrks

|A|
, otherwise

,

where ârk`1s
pq psq “ argmaxaQ

ψ
rk`1s
pq ps, aq, ârk`1s

vθ psq “ argmaxaQ
ψ

rk`1s

vθ ps, aq.
16: end if
17: Terminate if ADMM has converged
18: end for

84

and line outages.

Two small-sized neural networks of identical structure (4 fully-connected layers with

hidden dimension 256) are used to approximate Qpq and Qvθ. The action space has dimen-

sion 10, and we choose the number of residual history points n “ 20. This makes the input

and output dimension of the neural network 40 and 10, respectively. We take the initial ρpq

and ρva to be the values suggested by [143] (provided in Table 5.1). Each test instance is

solved from a cold-start in ADMM.

Table 5.2: Performance of RL Policy Under Training Loads (ADMM Iterations)

[Mhanna 2019] RL policy Iteration Reduction
9-bus 879 358 59.3%
30-bus 1400 738 47.3%
118-bus 525 343 34.7%

5.4.1 Performance on Training Scheme

The RL policy is trained under the default loading for 1000 RL episodes, where one episode

is a complete ADMM solving process. Compared with the state-of-the-art ρ adjustment

scheme in [143] that results in ADMM convergence in 879, 1400, and 525 iterations for

9-bus, 30-bus, and 118-bus systems, the RL policy reduces the number of ADMM iterations

by at least 30% (see Table 5.2). To understand the mechanism behind the fast convergence

under the RL policy, we show the primal and dual residuals over ADMM iterations under

the RL policy and the scheme in [143] for the 9-bus system. While the scheme in [143] leads

to frequent fluctuations of the residuals which prolong the ADMM solving process, the RL

policy avoids these fluctuations. Although this trend is not as obvious in 30-bus and 118-bus

systems, we still observe that the RL policy allows the residuals to drop more smoothly.

5.4.2 Generalization of RL Policy to Varying Loads

We also test the generalization of the RL policy to varying loads. Note that the RL policy has

only been trained on the default loads from MATPOWER, not on any other loading schemes.

85

Figure 5.2: Primal and Dual Residuals under RL Policy for 9-bus System

We create a dataset of 50 test instances by randomly perturbing the default loads in the range

r´10%, 10%s at each bus. We summarize the number of ADMM iterations to convergence

in Table 5.3. The RL policy reduces the ADMM iterations by 28% to 50% across test cases

compared with the scheme in [143].

Table 5.3: Performance of RL Policy Under Varying Loads (ADMM Iterations)

ρ selection method
[Mhanna 2019] RL policy
mean std mean std Iteration Reduction

9-bus 813.4 20.4 407 9.9 50.0%
30-bus 1414.3 43.6 772.5 18.9 45.4%
118-bus 486.6 8 346 7.2 28.9%

5.4.3 Generalization of RL Policy to Generator and Line Outages

In practical situations, we may need to solve the ACOPF problem after generator and line

outages. It is therefore of interest to investigate the performance of the RL policy in a

modified network. In this section, we evaluate the ADMM convergence speed when applied

to systems with 1) one generator removed and 2) one line disconnected.3 Again, we note

that the RL policies were trained on the original MATPOWER networks, without considering
3We consider all possible generator outage scenarios. Line outages are sampled in a uniformly random

manner such that they do not island the network. We exclude line outages that lead to infeasible solutions
under the method in [143].

86

line or generator losses. Table 5.4 and Table 5.5 summarize the performance of the RL

policy and its comparison with the state-of-the-art method in [143].

Table 5.4: Performance of RL Policy Under Generator Outages (ADMM Iterations)

ρ selection method
[Mhanna 2019] RL policy

No.
of instances

mean std mean std
Iteration

Reduction
9-bus 3 856.0 221.4 654.0 119.9 23.6%
30-bus 6 1325.8 404.3 695.8 78.9 47.5%
118-bus 54 483.8 17.7 340.0 8.8 29.7%

Table 5.5: Performance of RL Policy Under Line Outages (ADMM Iterations)

ρ selection method
[Mhanna 2019] RL policy

No.
of instances

mean std mean std
Iteration

Reduction
9-bus 6 698.7 218.5 367.3 31.1 47.4%
30-bus 10 1455.5 225.6 800.4 93.2 45.0%
118-bus 50 486.5 6.0 346.1 6.1 28.9%

In the 9-bus system, there are three generator buses and six lines that can be disconnected

while avoiding islands. In Figure 5.3, we detail the ADMM convergence under the RL

policy for each outage scenario, and note that the proposed method always outperforms

[143] by a large margin.

5.4.4 Generalization of RL Policy to Unseen Network Structures

We also performed experiments on the generalization of the RL policy to networks that were

not seen during training. For example, one may be interested in training a RL policy for a

9-bus system and deploying it to a 30-bus system. Though our policy factorization described

in Subsection 5.3.1 makes it possible to apply the RL policy to an ACOPF problem with a

different number of constraints, we experimentally found that policies trained in one network

perform poorly in a completely different network. This observation strengthens our belief

87

Figure 5.3: ADMM Convergence with RL Policy for the 9-bus System with Generator and
Line Outages

that there may not exist a universally optimal strategy that works for any ADMM problem,

and thus supports the need for specialized approaches like the RL policy in this work.

5.5 Future Directions

We conclude by pointing out a few ways to further improve the performance of the RL

trained penalty parameter selection method. First, we can improve the training of πpq and

πvθ through communications. The current learning paradigm outlined in Algorithm 5.1

updates each of the two policies independently assuming that the other policy is fixed to

its previous iterate. As we discussed in Subsection 5.3.1, the two policies can be regarded

as two agents that have aligned interest but would like to achieve their interest without

explicit cooperation. In multi-agent RL, it is known that in general independent learning

does not lead to the optimal policies and communication between the agents may be required.

Properly designing the communication between the agents as well as the overall algorithm

under the communication is a natural next step of this work.

Another interesting direction is to use information beyond what is available at the local

constraint. To factorize the policy according to Equation 5.7, we made the assumption that

the optimal choice of ρi can be determined solely from residuals available at constraint i,

which likely does not hold. The fact that local information is insufficient is reflected in our

88

observation that the advantage of the RL policy over [143] shrinks as the size of the power

network scales up (since the local residuals make up a smaller percentage of the overall

information as the network becomes larger). A more reasonable assumption may be that

we can determine ρi from residuals at constraint i and its one-hop neighboring constraints

(constraints that share at least one variable), which leads to a policy factorization of the form

π‹
pa | sq “

˜

ź

iPCpq

π‹
pq pai | tsjujPNiq

¸ ˜

ź

iPCvθ

π‹
vθ pai | tsjujPNiq

¸

,

where Ni denotes the collection of one-hop neighbors of constraint i. A significant challenge

of this approach lies in modelling the variable input dimension of the policy as the cardinality

of Ni can be different across i.

89

CHAPTER 6

CONCLUSION

In this dissertation, we presented a collections of results on single-agent and multi-agent RL

from both theory and application perspectives. To summarize, in the first aim, we recognized

that a range of data-driven algorithms in RL can be regarded as using two-time-scale

stochastic gradient descent to solve a optimization problem with a special type of gradient

oracle. We proposed a mathematical algorithmic framework that unifies these algorithms

and present the convergence rates of the algorithm for strongly convex, nonconvex, and

PŁ objective functions.

In the second aim, we considered multi-agent multi-task RL in the average cumulative

reward formulation. We discussed two properties of this multi-task RL problem which make

it significantly harder to solve than its single-task counterpart, followed by the introduction

and analysis of a decentralized policy gradient algorithm that converges in local and global

senses under different assumptions. We then shifted focus to a constrained multi-task RL

formulation which allows for the specification of the performance of the policy in each task.

We presented a decentralized primal-dual algorithm that provably converges the globally

optimally policy, both in objective function value and in constraint violation.

In the third aim, we studied using GDA to find the Nash equilibrium of the two-player

zero-sum Markov game, which is notoriously hard to solve with direct optimization methods

due to its nonconvex-nonconcave objective function. To bypass the issue and introduce

stronger structure into the problem, we regularize the reward function by the policy entropy.

The regularized value function exhibits a property that resembles the PŁ condition, which

guarantees that GDA converges linearly fast to the Nash equilibrium of the regularized

objective. We then designed methods to properly reduce the regularization weight that

allows GDA to efficiently converge to the Nash equilibrium of the original unmodified

90

Markov game.

Finally, in the third aim we applied RL to design a penalty parameter selection policy

with the aim of improving the convergence of the ADMM algorithm applied to a power

system optimization problem. We showed that the RL policy significantly accelerates the

ADMM convergence compared with the state-of-the-art human designed penalty parameter

adjustment scheme. In addition, the RL policy exhibits strong promise for generalizability,

performing well under unseen loading schemes as well as under unseen line and generator

outages.

91

APPENDIX A

SUPPLEMENTARY MATERIAL FOR RESULTS IN CHAPTER 2

A.1 Analysis Decomposition and Proof of Main Theorem

In this section, we briefly explain the main technical challenge in analyzing Algorithm 2.1,

which is the coupling between θ, ω, and the time-varying Markovian samples. Our approach

to the challenge is to properly “decouple” the variable updates so that we can handle them

individually. Specifically, we first show under time-varying Markovian samples the conver-

gence of the decision variable up to an error in the auxiliary variable (Subsection A.1.1)

and the reduction of the auxiliary variable error which hinges on the decision variable

convergence (Subsection A.1.2), which essentially form a coupled dynamical system. In

Subsection A.1.3, we introduce an important lemma that performs Lyapunov analysis on

a coupled dynamical system of two inequalities. This lemma is a unified tool to analyze

our algorithm under different function structures and may be of independent interest in the

study of the finite-time performance of multiple-time-scale dynamical systems apart from

those considered in this paper. Finally, we prove the theorem under the PŁ condition in

Subsection A.1.4. Strongly convex and general non-convex functions can be treated with

similar analytical techniques, and the full details of their analyses can be found in [34].

When f observes the PŁ condition, we show }fpθkq ´ f ‹}2 Ñ 0. We frequently employ

a few quantities for which we introduce the following shorthand notations

zk fi ωk ´ ω‹
pθkq,

Ę∆Hk fi Hpθk, ωk, Xkq ´ Hpθk, ω
‹
pθkq, Xkq,

∆Hk fi Hpθk, ω
‹
pθkq, Xkq ´ EX̂„µθk

rHpθk, ω
‹
pθkq, X̂qs,

∆Gk fi Gpθk, ωk, Xkq ´ EX̂„µθk
rGpθk, ωk, X̂qs.

(A.1)

92

We can think of Ę∆Hk as the bias in the stochastic gradient due to the inaccurate auxiliary

variable and ∆Hk and ∆Gk as the errors that the Markovian samples cause to H and G.

A.1.1 Decision Variable Convergence

We derive a recursive formula for the iteration-wise decision variable convergence measured

in Erfpθkq ´ f ‹s. As a first step, we have from the update rule Equation 2.8 and the

L-smoothness of f

fpθk`1q ď fpθkq ` x∇fpθkq, θk`1 ´ θky `
L

2
}θk`1 ´ θk}

2

“ fpθkq ´ αkx∇fpθkq, Hpθk, ωk, Xkqy `
Lα2

k

2
}Hpθk, ωk, Xkq}

2

“ fpθkq ´ αkx∇fpθkq,EX̂„µθk
rHpθk, ω

‹
pθkq, X̂qsy

´ αk
@

∇fpθkq,∆Hk` Ę∆Hk

D

`
Lα2

k

2
}Hpθk, ωk, Xkq}

2

“ fpθkq´αk}∇fpθkq}
2
´αk

@

∇fpθkq,∆Hk` Ę∆Hk

D

`
Lα2

k

2
}Hpθk, ωk, Xkq}

2, (A.2)

where the last equality follows from Equation 2.2, i.e. ∇fpθkq “ EX̂„µθk
rHpθk, ω

‹pθkq, X̂qs.

A key challenge to overcome is the time-varying Markovian randomness. If the samples were

i.i.d. and the auxiliary variables were always solved perfectly, we would have Er∆Hks “

ErĘ∆Hks “ 0, reducing the problem to the one studied in the standard SGD. In the following

lemma, we carefully treat the Markovian noise by leveraging the uniform geometric mixing

time of the time-varying Markov chain and the Lipschitz condition of the state transition

kernel.

Lemma A.1. For any k ě τk, we have

E r´ x∇fpθkq,∆Hkys ď 12L2B3τ 2kαk´τk .

We can use the Lipschitz continuity of H to study the error caused by Ę∆Hk and show

that it can be bounded by the sum of }θk ´ θ‹}2 and }zk}2. The bound on Ę∆Hk together with

93

the result established in Lemma A.1 leads to the following proposition, which states that

Erfpθkq ´ f ‹s is sufficiently reduced in every iteration if the auxiliary variable error zk is

controlled.

Proposition A.1. Under Assumption 2.1-Assumption 2.6, we have for all k ě K

Erfpθk`1q ´ f ‹
s ď p1´λαkqErfpθkq ´ f ‹

s `
L2αk
2

E
“

}zk}
2
‰

`
25L2B3

2
τ 2kαkαk´τk .

Proof. By the Lipschitz condition of the operator H ,

´Erx∇fpθkq, Ę∆Hkys ď
1

2
Er}∇fpθkq}

2
` }Hpθk, ωk, Xkq ´ Hpθk, ω

‹
pθkq, Xkq}

2
s

ď
1

2
Er}∇fpθkq}

2
s `

L2

2
E

“

}zk}
2
‰

.

Using this inequality along with Lemma A.1 in Equation A.2, we have for all k ě τk

Erfpθk`1qs ď Erfpθkqs ´ αk x∇fpθkq,∆Hky ´ αkEr}∇fpθkq}
2
s

´ αkE
“@

∇fpθkq, Ę∆Hk

D‰

`
LB2α2

k

2

ď Erfpθkqs ` 12L2B3τ 2kαkαk´τk ´ αkEr}∇fpθkq}
2
s

`
αk
2

Er}∇fpθkq}
2
s `

L2αk
2

E
“

}zk}
2
‰

`
LB2α2

k

2

ď Erfpθkqs ´
αk
2

Er}∇fpθkq}
2
s `

L2αk
2

E
“

}zk}
2
‰

`
25L2B3

2
τ 2kαkαk´τk

ď Erfpθkqs ´ λαkE rfpθkq ´ f ‹
s `

L2αk
2

E
“

}zk}
2
‰

`
25L2B3

2
τ 2kαkαk´τk ,

where the last inequality is due to the PŁ condition. Subtracting f ‹ from both sides of the

inequality leads to the claimed result.

94

A.1.2 Auxiliary Variable Convergence

In this section, we present and analyze the convergence of the auxiliary variable, summarized

in the proposition below.

Proposition A.2. Under Assumption 2.1-Assumption 2.6, we have for all k ě K

Er}zk`1}
2
s ď p1´

λβk
2

qEr}zk}
2
s`C2τ

2
kβk´τkβkE

“

}θk}
2
‰

`
2L2B2α2

k

λβk
` C2τ

2
kβk´τkβk.

Recall the auxiliary variable error zk defined in Equation A.1. Proposition A.2 establishes

an iteration-wise reduction of this error in expectation in face of the drift of θk. To prove

this proposition, we introduce Lemma A.2 that bounds the error in the auxiliary variable

caused by the Markovian samples. We skip the proof of this lemma due to its similarity to

Lemma A.1 and refer interested readers to [34] for the full proof details.

Lemma A.2. Recall the definition of C1 in Equation 2.27. For any k ě τk, we have

Erxzk,∆Gkys ď C1τ
2
kβk´τkE

“

}zk´τk}
2

` }θk}
2

` }ωk}
2

` 1
‰

.

Analyzing Proposition A.2 requires properly controlling }ωk ´ ωk´τk}, which we handle

in the following lemma.

Lemma A.3. For all k ě τk, we have

}ωk ´ ωk´τk} ď 3Dβk´τkτk p}ωk} ` }θk} ` 1q .

Proof. Recall that zk “ ωk ´ ω‹pθkq. We have from Equation 2.9

}zk`1}
2

“ }ωk ` βkGpθk`1, ωk, Xkq ´ ω‹
pθk`1q}

2

“ } pωk ´ ω‹
pθkqq ` βkGpθk`1, ωk, Xkq ` pω‹

pθkq ´ ω‹
pθk`1qq }

2

ď }zk}
2

` 2βkxzk, Gpθk`1, ωk, Xkqy ` 2xzk, ω
‹
pθkq ´ ω‹

pθk`1qy

95

` 2β2
k }Gpθk`1, ωk, Xkq}

2
` 2}ω‹

pθkq ´ ω‹
pθk`1

q}
2.

From the definition of ∆Gk in Equation A.1,

}zk`1}
2

ď }zk}
2

` 2βkxzk, Gpθk`1, ωk, Xkq ´ Gpθk, ωk, Xkqy ` 2βkxzk, Gpθk, ωk, Xkqy

` 2xzk, ω
‹
pθkq´ω‹

pθk`1qy`2β2
k }Gpθk`1, ωk, Xkq}

2
`2}ω‹

pθkq ´ ω‹
pθk`1q}

2

ď }zk}
2

` 2βkxzk, Gpθk`1, ωk, Xkq ´ Gpθk, ωk, Xkqyy

` 2βkxzk,EX̂„µθk
rGpθk, ωk, X̂qsy`2βkxzk,∆Gky ` 2xzk, ω

‹
pθkq´ω‹

pθk`1qy

` 2β2
k }Gpθk`1, ωk, Xkq}

2
` 2L2B2α2

k, (A.3)

where the second inequality applies Assumption 2.1 and Equation 2.8, i.e.,

}ω‹
pθkq ´ ω‹

pθk`1q}
2

ď L2
}θk ´ θk`1}

2
“ L2

}αkHpθk, ωk, Xkq}
2

ď L2B2α2
k. (A.4)

We next analyze each term on the right-hand side of Equation A.3. First, using the relation

x2v1, v2y ď c}v1}2 ` 1
c
}v2}2 for any vectors v1, v2 and scalar c ą 0, we bound the second

term of Equation A.3

xzk,Gpθk`1, ωk,Xkq´Gpθk, ωk,Xkqyď
λ

4
}zk}

2
`
1

λ
}Gpθk`1, ωk,Xkq´Gpθk, ωk,Xkq}

2

ď
λ

4
}zk}

2
`
L2

λ
}θk`1 ´ θk}

2
ď
λ

4
}zk}

2
`
L2B2α2

k

λ
, (A.5)

where the second inequality follows from the Lipschitz continuity ofG and the last inequality

is due to Equation A.4. Similarly, we consider the fifth term of Equation A.3

2xzk, ω
‹
pθkq ´ ω‹

pθk`1qy ď
βkλ

2
}zk}

2
`

2

λβk
}ω‹

pθkq ´ ω‹
pθk`1q}

2

ď
βkλ

2
}zk}

2
`

2L2

λβk
}θk ´ θk`1}

2
ď
βkλ

2
}zk}

2
`

2L2B2α2
k

λβk
. (A.6)

96

Next, using Assumption 2.3 and zk “ ωk ´ ω‹pθkq we treat the third term of Equation A.3

2βkxzk,EX̂„µθk
rGpθk, ωk, X̂qsy ď ´2λβk}zk}

2. (A.7)

By Equation 2.24 and Equation 2.8 we have

}Gpθk`1, ωk, Xkq}
2

ď2D2
`

}θk`1}`}ωk} ` 1
˘2

ď2D2
`

}θk}`Bαk ` }ωk}`1
˘2
. (A.8)

Taking the expectation on both sides of Equation A.3 and using Equation A.5–Equation A.8

and Lemma A.2

Er}zk`1}
2
s ď Er}zk}

2
s `

βkλ

2
Er}zk}

2
s `

2L2B2βkα
2
k

λ
`
βkλ

2
Er}zk}

2
s `

2L2B2α2
k

λβk

´ 2λβkEr}zk}
2
s ` C1τ

2
kβk´τkβkE

“

}zk´τk}
2

` }θk}
2

` }ωk}
2

` 1
‰

` 2D2β2
k

`

}θk} ` Bαk ` }ωk} ` 1
˘2

` 2L2B2α2
k

ď p1 ´ λβkqEr}zk}
2
s ` C1τ

2
kβk´τkβkE

“

}zk´τk}
2
‰

` pC1 ` 8D2
qτ 2kβk´τkβkE

“

}θk}
2

` }ωk}
2
‰

`
2L2B2α2

k

λβk
` pC1 ` 32D2

`
2L2B2

λ
` 2L2B2

qτ 2kβk´τkβk, (A.9)

where the last inequality uses αk ď βk and Bαk ď 1. Note that }zk´τk}2 obeys

}zk´τk}
2

“ }zk ´ pωk ´ ωk´τkq ` pω‹
pθkq ´ ω‹

pθk´τkqq}
2

ď 3
`

}zk}
2

` }ωk ´ ωk´τk}
2

` }ω‹
pθkq ´ ω‹

pθk´τkq}
2
˘

ď 3}zk}
2

`
9

4

`

}ωk}
2

` }θk}
2

` 1
˘

` L2
}θk ´ θk´τk}

2

ď 3
`

}zk}
2

` }ωk}
2

` }θk}
2
˘

` L2B2τ 2kα
2
k´τk

`
9

4

ď 3
`

}zk}
2

` }ωk}
2

` }θk}
2

` 1
˘

,

where the second inequality is due to Lemma A.3 and the Lipschitz continuity of ω‹, and

97

the last inequality follows from the step size condition LBτkαk´τk ď 1
6
. Substituting the

preceding relation into Equation A.9, we have for all k ě τk

Er}zk`1}
2
s ď p1 ´ λβkqEr}zk}

2
s ` 3C1τ

2
kβk´τkβkE

“

}zk}
2
‰

` p4C1 ` 8D2
qτ 2kβk´τkβkE

“

}θk}
2

` }ωk}
2
‰

`
2L2B2α2

k

λβk
` p4C1 ` 32D2

`
2L2B2

λ
` 2L2B2

qτ 2kβk´τkβk

ď p1 ´ λβkqEr}zk}
2
s ` p11C1 ` 16D2

qτ 2kβk´τkβkE
“

}zk}
2
‰

` p4D2
` 1qp4C1 ` 8D2

qτ 2kβk´τkβkE
“

}θk}
2
‰

`
2L2B2α2

k

λβk

` pp4D2
` 1qp4C1 ` 32D2

q `
2L2B2

λ
` 2L2B2

qτ 2kβk´τkβk, (A.10)

where in the last inequality we use Equation 2.24 to derive

}ωk}
2

ď2}ωk´ω‹
pθkq}

2
`2}ω‹

pθkq}
2

ď2}zk}
2
`2D2

p}θk}`1q
2

ď2}zk}
2
`4D2

p}θk}
2
`1q.

By the choice of the step size we have p11C1 `16D2qτ 2kβk´τk ď λ
2
. Thus, using the constant

C2 defined in Equation 2.27, we know that Equation A.10 implies

Er}zk`1}
2
s ď p1 ´

λβk
2

qEr}zk}
2
s ` C2τ

2
kβk´τkβkE

“

}θk}
2

` 1
‰

`
2L2B2α2

k

λβk
.

Propositions A.1 and A.2 show that the convergence of the decision variable and the

auxiliary variable forms a coupled dynamical system that evolves under two different rates.

In the next section, we introduce a two-time-scale lemma that solves the system.

A.1.3 Two-Time-Scale Lemma

Although we analyze the performance of our algorithm for different types of objective

functions and with different convergence metrics, these analyses eventually reduce to the

98

study of two coupled inequalities. The dynamics of these two inequalities happen on

different time scales determined by the two step sizes used in our algorithm. In this section

we present a general result, which we call the two-time-scale lemma, that characterizes the

behavior of these coupled inequalities.

Lemma A.4. Let tak, bk, ck, dk, ek, fku be non-negative sequences satisfying ak`1

dk`1
ď

ak
dk

ă

1, for all k ě 0. Let txku, tyku be two non-negative sequences. We consider two settings on

their dynamics.

1. Suppose that xk, yk satisfy the following coupled inequalities

xk`1 ď p1 ´ akqxk ` bkyk ` ck, yk`1 ď p1 ´ dkqyk ` ekxk ` fk. (A.11)

In addition, assume that there exists a constant A P R such that

Aak ´ bk ´
Aa2k
dk

ě 0 and
Aek
dk

ď
1

2
, for all k ě 0. (A.12)

Then we have for all 0 ď τ ď k

xk ď pxτ `
Aaτ
dτ

yτ q

k´1
ź

t“τ

p1 ´
at
2

q `

k´1
ÿ

ℓ“τ

´

cℓ `
Aaℓfℓ
dℓ

¯

k´1
ź

t“ℓ`1

p1 ´
at
2

q.

2. Suppose that txk, yku satisfy the following coupled inequalities

xk`1 ď p1 ` akqxk ` bkyk ` ck, yk`1 ď p1 ´ dkqyk ` ekxk ` fk. (A.13)

tuku is a non-negative sequence such that

uk ď p1 ` akqxk ´ xk`1 ` bkyk ` ck, (A.14)

99

then we have for any 0 ď τ ď k

k
ÿ

t“τ

ut ď

´

1 `

k
ÿ

t“τ

pat `
btet
dt

qe
řk
t“τ pat`

btet
dt

q
¯´

xτ `
bτyτ
dτ

`

k
ÿ

t“τ

pct `
btft
dt

q

¯

.

Proof. Case 1) Consider Vk “ xk `
Aak
dk
yk. From the second equation in Equation A.11,

Aak`1

dk`1

yk`1 ď
Aak
dk

yk`1 ď
Aak
dk

pp1 ´ dkqyk ` ekxk ` fkq

“ p1 ´ akq
Aak
dk

yk ` pak ´ dkq
Aak
dk

yk `
Aakekxk

dk
`
Aakfk
dk

.

Combining this with the first inequality of Equation A.11 yields

Vk`1 “ xk`1 `
Aak`1

dk`1

yk`1

ď p1´akqxk`bkyk`ck`p1´akq
Aak
dk

yk`pak´dkq
Aak
dk

yk`
Aakekxk

dk
`
Aakfk
dk

“ p1 ´ akq

ˆ

xk `
Aakyk
dk

˙

`

ˆ

Aa2k
dk

´ Aak ` bk

˙

yk ` ck `
Aakekxk

dk
`
Aakfk
dk

ď p1 ´ akqVk `
ak
2
xk ` ck `

Aakfk
dk

ď p1 ´
ak
2

qVk ` ck `
Aakfk
dk

,

where the second inequality follows from Equation A.12. Applying this relation recursively,

xk ď Vk ď Vτ

k´1
ź

t“τ

p1 ´
at
2

q `

k´1
ÿ

ℓ“τ

ˆ

cℓ `
Aaℓfℓ
dℓ

˙ k´1
ź

t“ℓ`1

p1 ´
at
2

q

ď pxτ `
Aaτ
dτ

yτ q

k´1
ź

t“τ

p1 ´
at
2

q `

k´1
ÿ

ℓ“τ

ˆ

cℓ `
Aaℓfℓ
dℓ

˙ k´1
ź

t“ℓ`1

p1 ´
at
2

q.

Case 2) Re-arranging the second inequality of Equation A.13 and multiplying by bk
dk

,

bkyk ď
bk
dk
yk ´

bk
dk
yk`1 `

bkekxk
dk

`
bkfk
dk

.

100

Plugging this inequality into the first inequality of Equation A.13 yields

xk`1 ď p1 ` akqxk ` ck `
bk
dk
yk ´

bk
dk
yk`1 `

bkekxk
dk

`
bkfk
dk

ď p1 ` gkqxk `
bk
dk
yk ´

bk
dk
yk`1 ` ck `

bkfk
dk

, (A.15)

where we define gk “ ak `
bkek
dk

. Since 1 ` c ď exppcq for any scalar c ą 0, we have

xk`1 ď exppgkqxk `
bk
dk
yk ´

bk
dk
yk`1 ` ck `

bkfk
dk

ď expp

k
ÿ

t“τ

gtqxτ ` exp
`

k
ÿ

t“τ

gt
˘

k
ÿ

t“τ

ˆ

bt
dt

pyt ´ yt`1q ` ct `
btft
dt

˙

ď expp

k
ÿ

t“τ

gtq
´

xτ `
bτyτ
dτ

`

k
ÿ

t“τ

pct `
btft
dt

q

¯

, (A.16)

where the second inequality applies the first inequality recursively. The inequalities Equa-

tion A.15, Equation A.16, and Equation A.14 together imply

k
ÿ

t“τ

ut ď

k
ÿ

t“τ

pxt ´ xt`1q `
`

max
τďtďk

xt
˘

k
ÿ

t“τ

gt `

k
ÿ

t“τ

ˆ

bt
dt

pyt ´ yt`1q ` ct `
btft
dt

˙

ď xτ `

k
ÿ

t“τ

gt exp
`

k
ÿ

t“τ

gt
˘

´

xτ `
bτyτ
dτ

`

k
ÿ

t“τ

pct `
btft
dt

q

¯

`
bτ
dτ
yτ `

k
ÿ

t“τ

pct `
btft
dt

q

“

˜

1 `

k
ÿ

t“τ

pat `
btet
dt

q expp

k
ÿ

t“τ

pat `
btet
dt

qq

¸ ˜

xτ `
bτyτ
dτ

`

k
ÿ

t“τ

pct `
btft
dt

q

¸

.

Lemma A.4 studies the behavior of the two interacting sequences txku and tyku that

have generic structure. In our analysis, properly selected convergence metrics on θk and

ωk evolve as xk and yk above, respectively, according to Equation A.11 for strongly con-

vex and PŁ functions and Equation A.13 for non-convex functions, while the sequences

tak, bk, ck, dk, ek, fku are ratios and products of the step sizes tαku and tβku.

101

A.1.4 Proof of Main Results

In this section, we present the proof of Theorem 2.2 which considers functions observing the

PŁ condition. The analyses of strongly convex and general non-convex functions use similar

techniques: one needs to properly select a convergence metric according to the function

structure, set up a step-wise decay of the convergence metric like Proposition A.1 which

forms a coupled dynamical system with Proposition A.2, and apply the two-time-scale

lemma introduced in Subsection A.1.3 to the coupled system.

From the analysis of the auxiliary variable in Proposition A.2, we have for all k ě K

Er}zk`1}
2
s ď p1´

λβk
2

qEr}zk}
2
s`C2τ

2
kβk´τkβkE

“

}θk}
2
‰

`
2L2B2α2

k

λβk
` C2τ

2
kβk´τkβk.

Due to the boundedness of the operator H ,

}θk} ď }θ0} `

k´1
ÿ

t“0

}θt`1 ´ θt} ď }θ0} `

k´1
ÿ

t“0

Bα

t ` 1
ď }θ0} `

Bα logpk ` 1q

logp2q
,

where the last inequality follows from
řt1

t“0
1

pt`1qu
ď

logpt1`2q

logp2q
for any t1 ě 0. This relation

implies for any k ě 0

}θk}
2

ď 2}θ0}
2

`
2B2α2 log2pk ` 1q

log2p2q
ď 24p}θ0}

2
` B2α2

q log2pk ` 1q.

Using this inequality in the bound on Er}zk`1}
2s, we have

Er}zk`1}
2
s ď p1´

λβk
2

qEr}zk}
2
s`C2τ

2
kβk´τkβkE

“

}θk}
2
‰

`
2L2B2α2

k

λβk
`C2τ

2
kβk´τkβk

ďp1´
λβk
2

qEr}zk}
2
s`24C2p}θ0}

2
`B2α2

`1qτ 2kβk´τkβk log
2
pk`1q`

2L2B2α2
k

λβk
.

We can apply Lemma A.4 case 1) to the result of Proposition A.1 and the inequality

102

above with τ “ K and

xk“Erfpθkq´f ‹
s, yk“E

“

}zk}
2
‰

, ak“λαk, bk“
L2αk
2

, ck“
25L2B3

2
τ 2kαkαk´τk ,

dk “
λβk
2
, ek “ 0, fk “ 24C2p}θ0}

2
`B2α2

`1qτ 2kβk´τkβk log
2
pk`1q `

2L2B2α2
k

λβk
.

In this case, one can verify that we can choose A “ L2

λ
if the step size sequences satisfy

αk
βk

ď 1
4
. As a result of Lemma A.4 case 1), we have for all k ě K

E rfpθkq´f ‹
sď

`

E
“

fpθKq ´ f ‹
‰

`
2L2αK

λβK
Er}zK}

2
s
˘

k´1
ź

t“K
p1´

λαt
2

q`

k´1
ÿ

ℓ“K

k´1
ź

t“ℓ`1

p1´
λαt
2

q

ˆ

´25L2B3

2
τ 2kαℓαℓ´τk`

48C2L
2

λ
p}θ0}

2
`B2α2

`1qτ 2kβk´τkαk log
2
pk`1q`

4L4B2α3
k

λ2β2
k

¯

.

Plugging in the step sizes to the second term, we have

E rfpθkq ´ f ‹
s ď

ˆ

E rfpθKq ´ f ‹
s `

2L2ατk
λβτk

Er}zK}
2
s

˙ k´1
ź

t“K
p1 ´

λαt
2

q

` τ 2k

k´1
ÿ

ℓ“K

´ 25L2B3α2
0

2cτ pℓ ` 1q2
`

4L4B2α3
0

λ2β2
0pℓ ` 1q5{3

`
48C2L

2

λ
p}θ0}

2
`B2α2

0`1q
α0β0

cτ pℓ ` 1q5{3
log2pk`1q

¯

k´1
ź

t“ℓ`1

p1´
λαt
2

q

ď

ˆ

E rfpθKq ´ f ‹
s `

2L2αK

λβK
Er}zK}

2
s

˙ k´1
ź

t“K
p1 ´

λαt
2

q

` τ 2k log
2
pk ` 1q

k´1
ÿ

ℓ“K

C3

pℓ ` 1q5{3

k´1
ź

t“ℓ`1

p1 ´
λαt
2

q, (A.17)

where we use the fact that 1
log2pk`1q

ď 12 for all k ą 0 and the definition of C3.

Since 1 ` c ď exppcq for any scalar c, we have

k´1
ź

t“K
p1 ´

λαt
2

q ď

k´1
ź

t“K
expp´

λαt
2

q “ expp´

k´1
ÿ

t“K

λαt
2

q ď expp´
λα0

2

k´1
ÿ

t“K

1

t ` 1
q

ď expp´
λα0

2
logp

k ` 1

K ` 1
qq ď p

K ` 1

k ` 1
q
λα0
2 ď

K ` 1

k ` 1
, (A.18)

103

where the last inequality results from α0 ě 2
λ

, and the third inequality follows from
řk2
t“k1

1
t`1

ě logpk2`2
k1`1

q. Similarly, we have

k´1
ź

t“ℓ`1

p1 ´
λαt
2

q ď
2ℓ ` 1

k ` 1
ď

2pℓ ` 1q

k ` 1
. (A.19)

Using Equation A.18 and Equation A.19 in Equation A.17,

E rfpθkq ´ f ‹
s ď

ˆ

E rfpθKq´f ‹
s`

2L2αK

λβK
Er}zK}

2
s

˙

K
k`1

`
log2pk`1qτ 2k

k ` 1

k´1
ÿ

ℓ“K

2C3

pℓ`1q2{3

ď
K ` 1

k ` 1

ˆ

E rfpθKq ´ f ‹
s `

2L2α0

λβ0
Er}zK}

2
s

˙

`
2C3 log

2
pk ` 1qτ 2k

3pk ` 1q2{3
,

where the second inequality is a result of the relation
řt1

t“0
1

pt`1q2{3 ď
pt1`1q1{3

3
for any t1 ě 0.

The claimed result follows from this and Equation 2.20.

A.2 Proof of Additional Lemmas

A.2.1 Proof of Lemma A.1

Our Markov process is a time-varying one (they depend on the iterates θ). Therefore, one

cannot directly utilize Assumption 2.5 to analyze the bias of G in Algorithm 2.1 since the

mixing time is defined for a fixed Markov chain (see Definition 2.1). To handle this difficulty,

we introduce an auxiliary Markov chain t rXku generated under the decision variable θk´τk

starting from Xk´τk as follows

Xk´τk

θk´τk
ÝÑ rXk´τk`1

θk´τk
ÝÑ ¨ ¨ ¨ rXk´1

θk´τk
ÝÑ rXk. (A.20)

104

For clarity, we recall original the time-varying Markov processes tXku generated by Algo-

rithm Algorithm 2.1

Xk´τk

θk´τk`1

ÝÑ Xk´τk`1

θk´τk`2

ÝÑ ¨ ¨ ¨
θk´1
ÝÑ Xk´1

θk
ÝÑ Xk.

Using the shorthand notation yk “ ∇fpθkq, we define the following quantities

T1 “ Erxyk ´ yk´τk ,EX̂„µθk
rHpθk, ω

‹
pθkq, X̂qs ´ Hpθk, ω

‹
pθkq, Xkqys

T2 “ Erxyk´τk , Hpθk´τk , ω
‹
pθk´τkq, Xkq ´ Hpθk, ω

‹
pθkq, Xkqys

T3 “ Erxyk´τk , Hpθk´τk , ω
‹
pθk´τkq, rXkq ´ Hpθk´τk , ω

‹
pθk´τkq, Xkqys

T4 “ Erxyk´τk ,EX̄„µθk´τk

rHpθk´τk , ω
‹
pθk´τkq, X̄qs ´ Hpθk´τk , ω

‹
pθk´τkq, rXkqys

T5 “ Erxyk´τk ,EX̂„µθk
rHpθk´τk ,ω

‹
pθk´τkq,X̂qs´EX̄„µθk´τk

rHpθk´τk ,ω
‹
pθk´τkq,X̄qsys

T6 “ Erxyk´τk ,EX̂„µθk
rHpθk, ω

‹
pθkq, X̂qs ´ EX̂„µθk

rHpθk´τk , ω
‹
pθk´τkq, X̂sys.

It is easy to see that

´E rx∇fpθkq,∆Hkys “ T1 ` T2 ` T3 ` T4 ` T5 ` T6. (A.21)

We analyze the terms of Equation A.21 individually. First, we treat T1 using the boundedness

of H and the Lipschitz continuity of ∇f

T1 ď E
“

}yk ´ yk´τk}

›

›

›
Hpθk, ω

‹
pθkq, Xkq ´ EX̂„µθk

rHpθk, ω
‹
pθkq, X̂qs

›

›

›

‰

ď LE
“

}θk ´ θk´τk}
‰

s ¨ 2B ď 2B2Lτkαk´τk , (A.22)

where the last inequality follows from

}θk ´ θk´τk} ď

k
ÿ

t“k´τk

}αtHpθt, ωt, Xtq} ď Bτkαk´τk .

105

Similarly, for T2 we have

T2 ď E
“

}yk´τk}}Hpθk, ω
‹
pθkq, Xkq ´ Hpθk´τk , ω

‹
pθk´τkq, Xkq}

‰

ď BE
“

}Hpθk, ω
‹
pθkq, Xkq ´ Hpθk´τk , ω

‹
pθk´τkq, Xkq}

‰

ď BLE
“

}θk ´ θk´τk} ` }ω‹
pθkq ´ ω‹

pθk´τkq}
‰

ď BLpL ` 1qE
“

}θk ´ θk´τk}
‰

ď B2LpL ` 1qτkαk´τk . (A.23)

To analyze T3, we utilize the law of total expectation: given F Ď F 1 and a random variable

X we have ErX | Fs “ ErErX | F 1s | Fs.

Let Fk be Fk “ tX0, . . . , Xk, θ0, . . . , θk, ω0, ..., ωku, and for convenience we denote

pkpxq “ P pXk “ x | Fk´1q and p̃kpxq “ P p rXk “ x | Fk´1q.

Then, we have

E
“

A

yk´τk , Hpθk´τk , ω
‹
pθk´τkq, rXkq ´ Hpθk´τk , ω

‹
pθk´τkq, Xkq

E

| Fk´τk

‰

ď }yk´τk} }ErHpθk´τk , ω
‹
pθk´τkq, Xkq ´ Hpθk´τk , ω

‹
pθk´τkq, rXkq | Fk´τks}

“ }yk´τk}
›

›E
“

E
“

Hpθk´τk , ω
‹
pθk´τkq, Xkq ´ Hpθk´τk , ω

‹
pθk´τkq, rXkq |Fk´1

‰

| Fk´τk

‰
›

›

ď BEr

ż

X
Hpθk´τk , ω

‹
pθk´τkq, xqppkpxq ´ rpkpxqqdx | Fk´τks

ď 2B2ErdTV ppkp¨q, rpkp¨qq | Fk´τks

ď 2B2E
“

dTV ppk´1p¨q, rpk´1p¨qq ` L}θk ´ θk´τk} | Fk´τk

‰

,

where the second inequality uses the definition of the TV distance in Equation 2.19, and the

last inequality is a result of Assumption 2.6. Recursively applying this inequality and taking

the expectation, we get

T3 ď 2B2L
k´1
ÿ

t“k´τk`1

Er}θt ´ θk´τk}s ď 2B3Lτ 2kαk´τk . (A.24)

106

Similarly, to bound T4, we again use the definition of TV distance

Erxyk´τk ,EX̄„µθk´τk

rHpθk´τk , ω
‹
pθk´τkq, X̄qs ´ Hpθk´τk , ω

‹
pθk´τkq, rXkqy | Fk´τks

ď }yk´τk}
›

›ErHpθk´τk , ω
‹
pθk´τkq, rXkq ´ EX̄„µθk´τk

rHpθk´τk , ω
‹
pθk´τkq, X̄qs |Fk´τks

›

›

ď B ¨ 2BErdTV prpkp¨q, µθk´τk
q | Fk´τks.

Taking the expectation and using the definition of the mixing time 2.1,

T4 ď 2B2ErdTV pP p rXk “ ¨q, µθk´τk
qs ď 2B2αk. (A.25)

We next consider T5

Erxyk´τk ,EX̂„µθk
rHpθk´τk ,ω

‹
pθk´τkq,X̂qs´EX̄„µθk´τk

rHpθk´τk ,ω
‹
pθk´τkq,X̄qsy |Fk´τks

ď B}ErEX̄„µθk´τk

rHpθk´τk , ω
‹
pθk´τkq,X̄qs´EX̂„µθk

rHpθk´τk , ω
‹
pθk´τkq,X̂qs |Fk´τks}

ď 2B2ErdTV pµθk´τk
, µθkq | Fk´τks,

where the last inequality again comes from the definition of the TV distance in Equation 2.19.

By Equation 2.22 in Assumption 2.6, we have

T5 ď 2B2ErdTV pµθk´τk
, µθkqs ď 2B2LEr}θk ´ θk´τk}s ď 2B3Lτkαk. (A.26)

Finally, we bound T6 using the boundedness of ∇f and the Lipschitz continuity of H

T6 ď E
“

}yk´τk}}EX̂„µθk

“

Hpθk´τk , ω
‹
pθk´τkq, X̂q

‰

´ EX̂„µθk

“

Hpθk, ω
‹
pθkq, X̂q

‰‰

}

ď BLEr}θk´τk´θk}`}ω‹
pθk´τkq´ω‹

pθkq}s ď 2L2BEr}θk´τk´θk}s ď 2L2B2τkαk´τk .

The claimed result follows from plugging the bounds on T1-T6 into Equation A.21.

107

A.2.2 Proof of Lemma A.3

As a result of Equation 2.24, for any k ě 0

}ωk`1}´}ωk} ď }ωk`1´ωk}“}βkGpθk`1, ωk, Xkq}ďDβk p}θk`1}`}ωk}`1q . (A.27)

Define hk “ }ωk} ` }θk`1}. We have for all k ě 1

hk “ }ωk´1 ` βk´1Gpθk, ωk´1, Xk´1q} ` }θk ` αkHpθk, ωk, Xkq}

ď }ωk´1} ` Dβk´1p}θk} ` }ωk´1} ` 1q ` }θk} ` Bαk

ď p1 ` Dβk´1qhk´1 ` pB ` Dqβk´1

where the second inequality follows from Equation 2.24 and Assumption 2.1, and the last

inequality is due to αk ď βk and the fact that tβku is a decaying sequence.

Since 1 ` x ď ex for all x ě 0, we have for all k ě τk and k ´ τk ď t ď k

ht ď p1 ` Dβt´1qht´1 ` pB ` Dqβt´1

ď p1 ` Dβk´τkq
τk`t´khk´τk ` pB ` Dqβk´τk

t´1
ÿ

t1“k´τk

p1 ` Dβk´τkq
t´t1´1

ď p1 ` Dβk´τkq
τkhk´τk ` pB ` Dqβk´τkτkp1 ` Dβk´τkq

τk

ď eDβk´τk
τkhk´τk ` pB ` Dqβk´τkτke

Dβk´τk
τk ď 2hk´τk `

1

3
,

where the last inequality follows from the step size 2pB ` Dqβk´τkτk ď 1
3

ď logp2q.

Combining this inequality with Equation A.27, we have for all k ě τk

}ωk ´ ωk´τk} ď

k´1
ÿ

t“k´τk

}ωt`1 ´ ωt} ď D
k´1
ÿ

t“k´τk

βt pht ` 1q ď Dβk´τk

k´1
ÿ

t“k´τk

`

2hk´τk `
4

3

˘

ď2Dβk´τkτkp}ωk´τk}`}θk´τk`1}`
2

3
qď2Dβk´τkτkp}ωk´τk}`}θk}`Bβk´τkpτk´1q`

2

3
q

ď 2Dβk´τkτk p}ωk ´ ωk´τk} ` }ωk} ` }θk} ` 1q .

108

Re-arranging terms and again using the step size condition 2Dβk´τkτk ď 1
3
, we get

}ωk ´ ωk´τk} ď 3Dβk´τkτk p}ωk} ` }θk} ` 1q .

109

APPENDIX B

SUPPLEMENTARY MATERIAL FOR RESULTS IN CHAPTER 3

B.1 Computation Details of Examples in Section 3.3

First, we look at the example in Section 3.3 which illustrates that deterministic optimal

policy may not exist in multi-task RL. As we discussed, it is easy to see that the optimal

policy in state S2 and S4 is to always take action L in order to reach the positive reward or

to stay away from the negative reward, and all that is left to be figured out is the policy at

state S3.

There are 2 possible deterministic policies in state S3, to always take action L or to

always take action R. First, consider one policy πd,l, which is to always take L.

We have V πd,l
1 pS3q “ γ as the agent reaches S1 in 2 steps under πd,l and claims the `1

reward. However, this policy produces a zero value in environment 2, V πd
2 pS3q “ 0, since

an agent will move back and forth between S3 and S4 forever. Therefore, this deterministic

policy achieves

V
πd,l
1 pS3q ` V

πd,l
2 pS3q “ γ ` 0 “ γ.

By symmetry, the value of the policy πd,r, which is to always take action R in state S3, is

V
πd,r
1 pS3q ` V

πd,r
2 pS3q “ 0 ` γ “ γ.

Now, let’s consider a stochastic policy πs, which we will show performs better than the

two deterministic policies. This policy πs takes the same deterministic actions as πd,l and

110

πd,r in state S2, S4, and is defined as follows for state S3.

πspa|S3q “

$

’

&

’

%

p, a “ left

1 ´ p, a “ right

We compute cumulative rewards under πs.

V πs
1 pS3q “ pγ ` pp1 ´ pqγ3 ` pp1 ´ pq

2γ5 ` ...

“ pγ
8
ÿ

k“0

`

p1 ´ pqγ2
˘k

“
pγ

1 ´ p1 ´ pqγ2
.

Similarly,

V πs
2 pS3q “ p1 ´ pqγ ` p1 ´ pqpγ3 ` p1 ´ pqp2γ5 ` ...

“ p1 ´ pqγ
8
ÿ

k“0

`

pγ2
˘k

“
p1 ´ pqγ

1 ´ pγ2
.

Then,

V πs
1 pS3q ` V πs

2 pS3q “
pγ

1 ´ p1 ´ pqγ2
`

p1 ´ pqγ

1 ´ pγ2
.

Taking the derivative with respect to p and setting it to 0, we get

1

p1 ´ p1 ´ pqγ2q2
“

1

p1 ´ pγ2q2
, (B.1)

which leads to p “ 0.5.

111

The value of policy πs at state S3 is

V πs
1 pS3q ` V πs

2 pS3q “
pγ

1 ´ p1 ´ pqγ2
`

p1 ´ pqγ

1 ´ pγ2

“
2γ

2 ´ γ2
.

Then, we explain how the three stationary points are computed in the second example in

Section 3.3. Note that the gradient of the value function can be expressed as

B

Bθs,a
V πθ
i pρiq “

1

1 ´ γi
dπθi,ρipsqπθpa|sqAπθi ps, aq. (B.2)

We define Dπθ
i to be the |Si| ˆ |Si| matrix where the entry pi, jq is dπθi psi|sjq. It can be

easily seen that

dπθi,ρipsq “ Dπθ
i ρi. (B.3)

Given P πθ
i the transition probability matrix of task i under policy πθ (whose entry pj, kq

denotes Pipj | kq), the matrix Dπθ
i can be computed as

Dπ
i “ p1 ´ γP π

i q
´1. (B.4)

Given the small scale and the known dynamics of the problem, we can also compute the

value function and the Q function of the policy πθ in the two tasks by solving the Bellman

equation, from which we get Aπθi ps, aq. Specifically, under a policy π, the value functions

112

associated with the first and second tasks are

V π
1 “ pI ´ γpP π

1 q
J

q
´1

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0

1 ´ p

0

´p

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, and V π
2 “ pI ´ γpP π

2 q
J

q
´1

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0

´p

0

1 ´ p

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (B.5)

In addition, we can compute the Q functions

Qπ
1 p¨, Lq “ r0, p1 ´ pq ` γpV π

1 pS3q, γV π
1 pS2q, γp1 ´ pqV π

1 pS3q ´ p, 0s
J ,

Qπ
1 p¨, Rq “ r0, p1 ´ pq ` γpV π

1 pS3q, γV π
1 pS4q, γp1 ´ pqV π

1 pS3q ´ p, 0s
J ,

Qπ
2 p¨, Lq “ r0, γp1 ´ pqV π

2 pS3q ´ p, γV π
2 pS2q, γpV π

2 pS3q ` p1 ´ pq, 0s
J ,

Qπ
2 p¨, Rq “ r0, γp1 ´ pqV π

2 pS3q ´ p, γV π
2 pS4q, γpV π

2 pS3q ` p1 ´ pq, 0s
J ,

(B.6)

from which the advantage function can be easily computed by taking the difference between

the Q functions and the value functions. We also know πθps, aq of the policy for which

we would like to evaluate the gradient. Therefore, we can compute all the quantities in

the gradient expression Equation B.2. Now we go through all three parameterizations and

calculate the gradient and the cumulative return.

We first consider the policy π1 under the parameterization θS3,L “ 1, θS3,R “ 8, which

implies π1pL | S3q “ 0 and π1pR | S3q “ 1. First, we can easily see that the transition

113

probability matrices are

P π1
1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 ´ p 0 0 0

0 0 0 0 0

0 p 0 1 ´ p 0

0 0 1 0 0

0 0 0 p 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, and P π1
2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 p 0 0 0

0 0 0 0 0

0 1 ´ p 0 p 0

0 0 1 0 0

0 0 0 1 ´ p 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Computing Dπ1
i according to Equation B.4 using Gaussian elimination, we can derive

Dπ1
1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 γp1 ´ pq 0 0 0

0 1 ´ γ 0 0 0

0 γpp1´γq

pγ2p´γ2`1q

1´γ
γ2p´γ2`1

γp1´γqp1´pq

γ2p´γ2`1
0

0 γ2pp1´γq

pγ2p´γ2`1q

γp1´γq

γ2p´γ2`1
1´γ

γ2p´γ2`1
0

0 γ3p2

pγ2p´γ2`1q

γ2p
γ2p´γ2`1

γp
γ2p´γ2`1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Dπ1
2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 γp 0 0 0

0 1 ´ γ 0 0 0

0 γp1´γqp1´pq

1´γ2p
1´γ

1´γ2p
γp1´γqp
1´γ2p

0

0 γ2p1´γqp1´pq

1´γ2p
γp1´γq

1´γ2p
1´γ

1´γ2p
0

0 γ3p1´pq2

1´γ2p
γ2p1´pq

1´γ2p
γp1´pq

1´γ2p
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

As explained in Equation B.5 and Equation B.6, we can compute the advantage functions

Aπ11 p¨, Lq “

„

0, 0,
γp´γ2p2 ` p1 ´ pqpγ2p ´ γ2 ` 1q ` pq

γ2p ´ γ2 ` 1
, 0, 0

ȷJ

,

Aπ11 p¨, Rq “ r0, 0, 0, 0, 0s
J ,

Aπ12 p¨, Lq “

„

0, 0,
γpγ2p1 ´ pq2 ` ppγ2p ´ 1q ´ p1 ´ pqq

1 ´ γ2p
, 0, 0

ȷJ

,

114

Aπ12 p¨, Rq “ r0, 0, 0, 0, 0s
J .

Recall Equation B.2, which implies

B

BθS3,L

pV π1
1 pρ1q ` V π1

2 pρ2qq “
1

1 ´ γ
dπ11,ρ1pS3qπ1pL|S3qA

π1
1 pS3, Lq

`
1

1 ´ γ
dπ12,ρ2pS3qπ1pL|S3qA

π1
2 pS3, Lq

“ 0,

since π1pL | S3q “ 0. Similarly, we have

B

BθS3,R

pV π1
1 pρ1q ` V π1

2 pρ2qq “
1

1 ´ γ
dπ11,ρ1pS3qπ1pR|S3qA

π1
1 pS3, Rq

`
1

1 ´ γ
dπ12,ρ2pS3qπ1pR|S3qA

π1
2 pS3, Rq

“ 0,

since Aπ11 pS3, Rq “ Aπ12 pS3, Rq “ 0. The cumulative return under this policy is

V π1
1 pρ1q ` V π1

2 pρ2q “ V π1
1 pS3q ` V π1

2 pS3q “
γp´2γ2p ` γ2 ` 2p ´ 1q

γ4p2 ´ γ4p ` γ2 ´ 1
.

By symmetry, the second policy π2 under parameterization θS3,L “ 8, θS3,R “ 1 is also

a stationary point and has a cumulative return

V π2
1 pρ1q ` V π2

2 pρ2q “
γp´2γ2p ` γ2 ` 2p ´ 1q

γ4p2 ´ γ4p ` γ2 ´ 1
.

Finally, we look at the policy π3 under parameterization θS3,L “ 1, θS3,R “ 1, which

implies π3pL | S3q “ π3pR | S3q “ 0.5. We can see that the transition probability matrices

115

are

P π3
1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 ´ p 0 0 0

0 0 0.5 0 0

0 p 0 1 ´ p 0

0 0 0.5 0 0

0 0 0 p 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, and P π3
2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 p 0 0 0

0 0 0.5 0 0

0 1 ´ p 0 p 0

0 0 0.5 0 0

0 0 0 1 ´ p 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Computing Dπ3
i according to Equation B.4 using Gaussian elimination, we can derive

Dπ3
1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 γp´γ2p2`2γ2p´γ2´2p`2q

2´γ2
γ2p1´pq

2´γ2
γ3p1´pq2

2´γ2
0

0 p1´γqpγ2p´γ2`2q

2´γ2
γp1´γq

2´γ2
γ2p1´γqp1´pq

2´γ2
0

0 2γp1´γqp1´pq

2´γ2
2p1´γq

2´γ2
2γp1´γqp1´pq

2´γ2
0

0 γ2p1´γqp
2´γ2

γp1´γq

2´γ2
p1´γqp2´γ2pq

2´γ2
0

0 γ3p2

2´γ2
γ2p
2´γ2

γpp2´γ2pq

2´γ2
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Dπ3
2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 γpp2´γ2pq

2´γ2
γ2p
2´γ2

γ2p1´γqp
2´γ2

0

0 p1´γqp2´γ2pq

2´γ2
γp1´γq

2´γ2
γ2p1´γqp
2´γ2

0

0 2γp1´γqp1´pq

2´γ2
2p1´γq

2´γ2
2γp1´γqp
2´γ2

0

0 γ2p1´γqp1´pq

2´γ2
γp1´γq

2´γ2
p1´γqp2´γ2`γ2pq

2´γ2
0

0 γ3p1´pq2

2´γ2
γ2p1´pq

2´γ2
γp2´γ2p2`2γ2p´γ2´2pq

2´γ2
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The advantage functions are

Aπ31 p¨, Lq “

„

0, 0,
γp´2γ2p2 ` 2γ2p ´ γ2 ` 1q

2 ´ γ2
, 0, 0

ȷJ

,

Aπ31 p¨, Rq “

„

0, 0,
γp2γ2p2 ´ 2γ2p ` γ2 ´ 1q

2 ´ γ2
, 0, 0

ȷJ

,

Aπ32 p¨, Lq “

„

0, 0,
γp2γ2p2 ´ 2γ2p ` γ2 ´ 1q

2 ´ γ2
, 0, 0

ȷJ

,

116

Aπ32 p¨, Rq “

„

0, 0,
γp´2γ2p2 ` 2γ2p ´ γ2 ` 1q

2 ´ γ2
, 0, 0

ȷJ

,

From Equation B.2, we have

B

BθS3,L

pV π3
1 pρ1q ` V π3

2 pρ2qq “
1

1 ´ γ
π3pL|S3q

`

dπ31,ρ1pS3qAπ31 pS3, Lq ` dπ32,ρ2pS3qA
π3
2 pS3, Lq

˘

“
0.5

1 ´ γ
¨
2p1 ´ γq

2 ´ γ2
¨
γp´2γ2p2 ` 2γ2p ´ γ2 ` 1q

2 ´ γ2

`
0.5

1 ´ γ
¨
2p1 ´ γq

2 ´ γ2
¨
γp2γ2p2 ´ 2γ2p ` γ2 ´ 1q

2 ´ γ2

“ 0.

Similarly,

B

BθS3,R

pV π3
1 pρ1q ` V π3

2 pρ2qq “ 0.

The cumulative return under this policy is

V π3
1 pρ1q ` V π3

2 pρ2q “ V π1
1 pS3q ` V π1

2 pS3q “
γp2 ´ 4pq

2 ´ γ2
.

For computational simplicity, we choose γ “
?
0.5. Then,

V π1
1 pρ1q ` V π1

2 pρ2q “
γp´2γ2p ` γ2 ` 2p ´ 1q

γ4p2 ´ γ4p ` γ2 ´ 1
“

2p ´ 1

8
?
2pp ´ 2qpp ` 1q

,

and V π3
1 pρ1q ` V π3

2 pρ2q “ V π1
1 pS3q ` V π1

2 pS3q “
γp2 ´ 4pq

2 ´ γ2
“

4 ´ 8p

3
.

If p ą 0.5,

V π1
1 pρ1q ` V π1

2 pρ2q “ V π2
1 pρ1q ` V π2

2 pρ2q

“
2p ´ 1

8
?
2pp ´ 2qpp ` 1q

ą
4 ´ 8p

3
“ V π3

1 pρ1q ` V π3
2 pρ2q.

117

B.2 Lipschitz, Gradient Lipschitz, and Hessian Lipschitz Constants

In this section, we show that the value function and the relative entropy regularizer are

Lipschitz and have Lipschitz continuous gradients and Hessians. We present the result in

two lemmas as well as their proofs.

Lemma B.1. Under the tabular softmax policy, V πθ
i pµq is Lipschitz, has a Lipschitz gradient

and a Lipschtz Hessian for all i and µ, i.e.

||V
πθ1

i pµq ´ V
πθ2

i pµq|| ď
2

p1 ´ γiq2
||θ1

´ θ2
||,

||∇θ1V
πθ1

i pµq ´ ∇θ2V
πθ2

i pµq|| ď
8

p1 ´ γiq3
||θ1

´ θ2
||, and

||∇2
θ1V

πθ1

i pµq ´ ∇2
θ2V

πθ2

i pµq|| ď
48

p1 ´ γiq4
||θ1

´ θ2
||.

Lemma B.2. The cross entropy regularizer is Lipschitz, has a Lipschitz gradient and a

Lipschtz Hessian, i.e.

||λREpπ1
θq ´ λREpπ2

θq|| ď λp
1

a

|A|
` 1q||θ1

´ θ2
||,

||∇θ1λREpπ1
θq ´ ∇θ2λREpπ2

θq|| ď
2λ

|S|
||θ1

´ θ2
||, and

||∇2
θ1λREpπ1

θq ´ ∇2
θ2λREpπ2

θq|| ď
6λ

|S|
||θ1

´ θ2
||. (B.7)

B.2.1 Proof of Lemma B.1

The proof of Lemma B.1 employs an intermediate result, which we state below.

Lemma B.3. Let πα fi πθ`αu, where u is a unit vector and Ṽipαq fi V πα
i psiq. If

ÿ

aPA

ˇ

ˇ

ˇ

ˇ

dπα pa|s0q

dα

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ď C 1,
ÿ

aPA

ˇ

ˇ

ˇ

ˇ

d2πα pa|s0q

dα2

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ď C2,
ÿ

aPA

ˇ

ˇ

ˇ

ˇ

d3πα pa|s0q

dα3

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ď C3,

118

then we have

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

dṼipαq

dα

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C 1

p1 ´ γiq2
,

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

d2Ṽipαq

dα2

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C2

p1 ´ γiq2
`

2γiC
12

p1 ´ γiq3
,

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

d3Ṽipαq

dα3

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C3

p1 ´ γiq2
`

6γiC
1C2

p1 ´ γiq3
`

6γ2iC
13

p1 ´ γiq4

To show a function is Lipschitz, we show the derivative of the Hessian with respect to θ

is bounded. Under the softmax parameterization, we have

∇θsπθpa|sq “ πθpa|sq pea ´ πp¨|sqq , (B.8)

∇2
θsπθpa|sq “ πθpa|sq

`

eae
J
a ´ eaπp¨|sqJ

´ πp¨|sqeJ
a ` 2πp¨|sqπp¨|sqJ

´ diagpπp¨|sqq
˘

,

(B.9)

B

Bθs,a1

∇2
θsπθpa|sq “ πθpa|sqp1pa “ a1

q ´ πθpa
1
|sqq

`

eae
J
a ´ eaπp¨|sqJ

´ πp¨|sqeJ
a

`2πp¨|sqπp¨|sqJ
´ diagpπp¨|sqq

˘

` πθpa|sqp´eaπθpa
1
|sqeTa1 ` eaπθpa

1
|sqπθp¨|sqT ´ ea1πθpa

1
|sqeTa

` πθp¨|sqqπθpa
1
|sqeTa ` 4πθp¨|sqπθpa

1
|sqeTa1 ´ 4πθp¨|sqπθπθp¨|sqT

` diagpπθpa
1
|sqeaq ´ diagpπθpa

1
|sqπθp¨|sqT qq (B.10)

where ea is a vector with all 0 and 1 at action a. Then, for any s,

ÿ

aPA

ˇ

ˇ

ˇ

ˇ

dπαpa|sq

dα

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ď
ÿ

aPA

ˇ

ˇuT∇θ`αuπαpa|sq
ˇ

ˇ

α“0

ˇ

ˇ

ď
ÿ

aPA
πθpa|sq

ˇ

ˇuTs ea ´ uTs πp¨|sq
ˇ

ˇ

119

ď max
aPA

`
ˇ

ˇuTs ea
ˇ

ˇ `
ˇ

ˇuTs πp¨|sq
ˇ

ˇ

˘

ď 2, (B.11)

ÿ

aPA

ˇ

ˇ

ˇ

ˇ

d2παpa|sq

dα2

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ď
ÿ

aPA

ˇ

ˇuT∇2
θ`αuπαpa|sq

ˇ

ˇ

α“0
u

ˇ

ˇ

ď max
aPA

`
ˇ

ˇuTs eae
T
aus

ˇ

ˇ `
ˇ

ˇuTs eaπp¨|sqTus
ˇ

ˇ `
ˇ

ˇuTs πp¨|sqeTaus
ˇ

ˇ

`2
ˇ

ˇuJ
s πp¨|sqπp¨|sqJus

ˇ

ˇ `
ˇ

ˇuJ
s diagpπp¨|sqqus

ˇ

ˇ

˘

ď 6. (B.12)

Similarly,

ÿ

aPA

ˇ

ˇ

ˇ

ˇ

d3παpa|sq

dα3

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ď
ÿ

aPA

ÿ

a1PA

ˇ

ˇua1uT∇3
θ`αuπαpa|sq

ˇ

ˇ

α“0
u

ˇ

ˇ

ď 26 (B.13)

Then we can use Lemma B.3 with C 1 “ 2, C2 “ 6, C3 “ 26, and get

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

dṼipαq

dα

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2

p1 ´ γiq2
,

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

d2Ṽipαq

dα2

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

ď
6

p1 ´ γiq2
`

8γi
p1 ´ γiq3

ď
8

p1 ´ γiq3
,

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

d3Ṽipαq

dα3

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

.

ˇ

ˇ

ˇ

ˇ

ˇ

ď
26

p1 ´ γiq2
`

72γi
p1 ´ γiq3

`
48γ2i

p1 ´ γiq4
ď

48

p1 ´ γiq4
(B.14)

This is equivalent to

||V
πθ1

i pµq ´ V
πθ2

i pµq|| ď
2

p1 ´ γiq2
||θ1

´ θ2
||,

||∇V πθ1

i pµq ´ ∇V πθ2

i pµq|| ď
8

p1 ´ γiq3
||θ1

´ θ2
||, and

||∇2V
πθ1

i pµq ´ ∇2V
πθ2

i pµq|| ď
48

p1 ´ γiq4
||θ1

´ θ2
||. (B.15)

120

B.2.2 Proof of Lemma B.2

Define

ζpθq fi ´λREpπθq “
λ

|S||A|

ÿ

s,a

log πθpa|sq. (B.16)

We have

∇θsζpθq “
λ

|S|
p
1

|A|
1 ´ πθp¨|sqq,

∇2
θsζpθq “

λ

|S|
p´diagpπθp¨|sqq ` πθp¨|sqπθp¨|sqT q,

B

Bθs,a1

∇2
θsζpθq “

λ

|S|
p´πθpa

1
|sqea1eTa1 ` πθpa

1
|sqdiagpπθp¨|sqq

` 2πθpa
1
|sqπθp¨|sqeTa1 ´ 2πθpa

1
|sqπθp¨|sqπθp¨|sqT q. (B.17)

Now we can bound the norm of the gradient, the norm of the Hessian, and the norm of

the third level gradient.

||∇θζpθq|| “
ÿ

s

||∇θsζpθq||

ď
λ

|S|

ÿ

s

||
1

|A|
1 ´ πθp¨|sq||

ď
λ

|S|

ÿ

s

ˆ

||
1

|A|
1|| ` ||πθp¨|sq||

˙

ď
λ

|S|

ÿ

s

˜

1
a

|A|
` 1

¸

ď λp
1

a

|A|
` 1q. (B.18)

For any vector u P R|S||A| with ||u||2 “ 1,

ˇ

ˇuT∇2
θζpθqu

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s

uTs∇2
θsζpθqus

ˇ

ˇ

ˇ

ˇ

ˇ

121

ď
λ

|S|

ÿ

s

ˇ

ˇuTs diagpπθp¨|sqqus ´ uTs πθp¨|sqπθp¨|sqTus
ˇ

ˇ

ď
2λ

|S|

ÿ

s

||us||
2
8

ď
2λ

|S|
||u||

2
2

ď
2λ

|S|
, (B.19)

where the first equality follows since ∇θs1∇θs2ζpθq “ 0, @s1 ‰ s2. Using this method, we

can further get

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1,a1

us1,a1uT∇2
θζpθqu

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s

ÿ

a1

us,a1uTs∇2
θsζpθqus

ˇ

ˇ

ˇ

ˇ

ˇ

ď
λ

|S|

ÿ

s

ˇ

ˇ

ˇ

ˇ

ˇ

´
ÿ

a1

us,a1uTs πθpa
1
|sqea1eTa1us

`
ÿ

a1

us,a1uTs πθpa
1
|sqdiagpπθp¨|sqqus

` 2
ÿ

a1

us,a1uTs πθpa
1
|sqπθp¨|sqeTa1us

´2
ÿ

a1

us,a1uTs πθpa
1
|sqπθp¨|sqπθp¨|sqTus

ˇ

ˇ

ˇ

ˇ

ˇ

ď
6λ

|S|

ÿ

s

||us||
3
8

ď
6λ

|S|
,

where the last inequality follows from ||u||8 ď ||u||2 “ 1. This implies that ζpθq is

λp 1?
|A|

` 1q-Lipschitz, 2λ
|S|

-smooth, and has 6λ
|S|

-Lipschitz Hessian.

122

B.3 Proof of Theorems

In this section, we provide complete analysis for the results stated in the main paper. We

first introduce the following notations.

θ fi
“

θT1 , θ
T
2 , ..., θ

T
N

‰T
P RN |S||A|, V pθ;ρq fi

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

V
πθ1
1 pρ1q

V
πθ2
2 pρ2q

...

V
πθN
N pρNq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

P RN , (B.20)

ρ “ rρT1 , ρ
T
2 , ..., ρ

T
N s

T , µ “ rµT1 , µ
T
2 , ..., µ

T
N s

T , ∇V pθ;ρq “
1

N

N
ÿ

i“1

∇θiV
πθi
i pρiq.

B.3.1 Proof of Theorem 3.1

Define D “ 2Nλ `
řN
i“1

1
p1´γiq2

. In the proof, we will need the following lemmas. The

proof of Lemma B.4 is in Subsection B.5.2. Lemma B.5 is a standard result and its proof

can be found in the existing literature such as [21].

Lemma B.4. For all k and µ, ||∇Lλ
pθk;µq|| ď D.

Lemma B.5. Let θ̄k “ 1
N

řN
i“1 θ

k
i . If each agent starts with the same initialization, i.e.

θ01 “ θ02 “ ... “ θ0N , then

||θki ´ θ̄k|| ď
αD

1 ´ σ2
, @i, k.

We made the assumption in Theorem 3.1 that the agents start with the same initialization.

We denote θ0 “ θ0i , @i.

We define the Lyapunov function

ξα,λpθ;µq fi ´1TLλ
pθ;µq `

1

2α
||θ||

2
I´W , (B.21)

123

where ||θ||2I´W fi θT ppI ´ W q b Iqθ.

Note that the sequence tθku generated by the distributed policy gradient algorithm is the

same as the sequence generated by applying gradient descent on ξα,λpθq, if both algorithms

use fixed step size α. This can be observed by re-writing the update equation Equation 3.6.

θk`1
“ pW b Iqθk ` α∇Lλ

pθk;µq

“ θk ` α∇Lλ
pθk;µq ´ ppI ´ W q b Iqθk

“ θk ´ αp´∇Lλ
pθk;µq `

1

α
ppI ´ W q b Iqθkq

“ θk ´ α∇ξα,λpθk;µq (B.22)

We have to establish the smoothness constant of ξα,λpθ;µq. Combining Lemma B.1 and

Lemma B.2, Lλi pθiq is βλi -smooth with

βλi “
8

p1 ´ γiq3
`

2λ

|S|
,

which implies
řN
i“1 L

λ
i pθiq is βλ-smooth, where

βλ “

N
ÿ

i“1

ˆ

8

p1 ´ γiq3
`

2λ

|S|

˙

. (B.23)

In addition, we know ξα,λpθ;µq is βξα,λ-smooth, with

βξα,λ “ βλ `
1

α
σmaxpI ´ W q “ βλ ` α´1

p1 ´ σNq. (B.24)

By the βξα,λ-smoothness of ξα,λpθq, we have

ξα,λpθk`1;µq ď ξα,λpθk;µq ` x∇ξα,λpθk;µq,θk`1
´ θky `

βξα,λ

2
||θk`1

´ θk||
2

“ ξα,λpθk;µq ` x´
θk`1 ´ θk

α
,θk`1

´ θky `
βξα,λ

2
||θk`1

´ θk||
2

124

“ ξα,λpθk;µq ` p
βξα,λ

2
´

1

α
q||θk`1

´ θk||
2

“ ξα,λpθk;µq ´
1

2
pα´1

p1 ` σNq ´ βλq||θk`1
´ θk||

2

Since α ď
1`σN

2
řN
i“1p 8

p1´γiq3
` 2λ

|S|
q

“
1`σN
2βλ

, we know 1
2
pα´1p1 ` σNq ´ βλq ě 0, @k. This

implies ξα,λpθk;µq is a non-increasing sequence. Let θ̃ “ minθ ξα,λpθ;µq. We have

K´1
ÿ

k“0

||θk`1
´ θk||

2
ď

K´1
ÿ

k“0

2pα´1
p1 ` σNq ´ βλq

´1
pξα,λpθk;µq ´ ξα,λpθk`1;µqq

“ c1pξα,λpθ0;µq ´ ξα,λpθK´1;µqq

ď c1pξα,λpθ0;µq ´ ξα,λpθ̃;µqq,

where we define c1 “ 2pα´1p1 ` σNq ´ βλq´1.

This implies

min
kăK

||θk`1
´ θk||

2
ď
c1
K

pξα,λpθ0;µq ´ ξα,λpθ̃;µqq.

From Equation B.22, ||α∇ξα,λpθk;µq||2 “ ||θk`1
´ θk||2. Thus,

min
kăK

||∇ξα,λpθk;µq||
2

“
1

α2
min
kăK

||θk`1
´ θk||

2
ď

c1
Kα2

pξα,λpθ0;µq ´ ξα,λpθ̃;µqq.

(B.25)

Taking derivative of Equation B.21,

∇ξα,λpθ;µq “ ´∇Lλ
pθ;µq `

1

α
ppI ´ W q b Iqθ,

Observe that 1T pI ´ W q “ 0 due to the double stochasticity of W , which leads to

∇ξα,λpθ;µq “ ´∇L
λ
pθ;µq `

1

Nα
p1T pI ´ W q b Iqθ “ ´∇L

λ
pθ;µq.

125

Now we can bound the gradient ∇L
λ
pθk;µq.

min
kăK

||∇L
λ
pθk;µq||

2

“ min
kăK

||∇ξα,λpθk;µq||
2

ď min
kăK

||∇ξα,λpθk;µq||
2

ď
c1
Kα2

pξα,λpθ0;µq ´ ξα,λpθ̃;µqq

“
c1
Kα2

p´

N
ÿ

i“1

Lλi pθ0;µiq `
1

2α
||θ0

||
2
I´W `

N
ÿ

i“1

Lλi pθ̃;µiq ´
1

2α
||θ̃||

2
I´W q

ď
c1
Kα2

N
ÿ

i“1

pLλi pθ̃;µiq ´ Lλi pθ0;µiqq

ď
c1
Kα2

N
ÿ

i“1

pV
πθ̃i
i pµiq ´ V

π
θ0
i

i pµiq ` λREpπθ0i qq

ď
c1
Kα2

N
ÿ

i“1

p
1

1 ´ γi
` λREpπθ0qq. (B.26)

The third line comes from Equation B.25. The fifth line uses our assumption that all agents

start with the same parameter initialization, making ||θ0
||2I´W “ 0.The second last inequality

is from the fact that relative entropy is non-negative. The last inequality comes from the

bounded value function in Equation 3.3.

This implies

min
kăK

||∇V pθk;µq||
2

“ min
kăK

||∇L
λ
pθk;µq `

λ

N

N
ÿ

i“1

∇REpπθki q||
2

ď 2min
kăK

||∇L
λ
pθk;µq||

2
`

2

N

N
ÿ

i“1

||∇λREpπθki q||
2.

The second term depends on the smoothness of the regularizer, which we establish in

Lemma B.2. The first term is bounded in Equation B.26. Therefore,

min
kăK

||∇V pθk;µq||
2

ď 2min
kăK

||∇L
λ
pθk;µq||

2
`

2

N

N
ÿ

i“1

||∇λREpπθki q||
2

126

ď
2c1
Kα2

N
ÿ

i“1

p
1

1 ´ γi
` λREpπθ0qq `

2

N

˜

λ
a

|A|
` λ

¸2

ď
2c1
Kα2

N
ÿ

i“1

p
1

1 ´ γi
` λREpπθ0qq `

8λ2

N
(B.27)

Using the smoothness of Vi, which we show in Lemma B.1, we have

min
kăK

||
1

N

N
ÿ

j“1

∇Vjpθki ;µjq||
2

“ min
kăK

||
1

N

N
ÿ

j“1

∇Vjpθkj ;µjq ´
`

∇Vjpθkj ;µjq ´ ∇Vjpθki ;µjq
˘

||
2

ď min
kăK

2||
1

N

N
ÿ

j“1

∇Vjpθkj ;µjq||
2

`
2

N

N
ÿ

j“1

||∇Vjpθkj ;µjq ´ ∇Vjpθki ;µjq||
2

ď 2min
kăK

||∇V pθk;µq||
2

`
2

N

N
ÿ

j“1

64

p1 ´ γjq6
||θki ´ θkj ||

2. (B.28)

From Lemma B.5, we have

||θki ´ θkj || “ ||pθki ´ θ̄kq ´ pθ̄k ´ θkj q||

ď ||θki ´ θ̄k|| ` ||θkj ´ θ̄k||

ď
2αD

1 ´ σ2
.

Plugging this inequality and Equation B.27 into Equation B.28, we get

min
kăK

||
1

N

N
ÿ

j“1

∇Vjpθki ;µjq||
2

ď
4c1
Kα2

N
ÿ

j“1

p
1

1 ´ γj
` λREpπθ0qq `

16λ2

N
`

2

N

N
ÿ

j“1

64

p1 ´ γjq6
4α2D2

p1 ´ σ2q2

ď
16

Kα

N
ÿ

j“1

ˆ

1

1 ´ γj
` λREpπθ0q

˙

`
16λ2

N
`

N
ÿ

j“1

512D2α2

Np1 ´ σ2qp1 ´ γjq6
.

The proof is completed by recognizing ρi “ µi, @i.

127

B.3.2 Proof of Theorem 3.2

When condition in Equation 3.8 is observed, we can establish the global optimality condition

under the tabular policy.

Proposition B.1. Let θ˚ “ maxθ V pθ;ρq. For policy parameter θ, if ||
řN
i“1∇Lλi pθ;µiq|| ď

λN
2|S||A|

, we have

V pθ˚;ρq ´ V pθ;ρq ď 2λN max
sPS,i:sPSi

t
dπθ‹

ρi
psq

p1 ´ γiqµipsq
u

if the environment and the initial state distributions ρ and µ jointly satisfies the discounted

visitation match assumption.

The proof of this proposition is in Subsection B.4.1. Using the proposition, we

can guarantee that θki is an ϵ-optimal solution in the objective function by setting ϵ “

2Nλmaxj,st
d
πθ‹
ρj

psq

p1´γjqµjpsq
u and ensuring ||

řN
j“1∇Lλj pθki ;µjq|| ď λN

2|S||A|
. Denoting

c2 “
1

maxj,st
d
πθ‹
ρj

psq

p1´γjqµjpsq
u

and solving for λ in terms of ϵ, we get

λ “
ϵ

2N maxj,st
d
πθ‹
ρj

psq

p1´γjqµjpsq
u

“
ϵc2
2N

.

Now we bound the norm of the gradient.

min
kăK

||

N
ÿ

j“1

∇Lλj pθki ;µjq|| “ min
kăK

||

N
ÿ

j“1

∇Lλj pθkj ;µjq `

N
ÿ

j“1

`

∇Lλj pθki ;µjq ´ ∇Lλj pθkj q
˘

||

ď min
kăK

||N∇L
λ
pθk;µq|| `

N
ÿ

j“1

||∇Lλj pθki ;µjq ´ ∇Lλj pθkj ;µjq||

128

ď N min
kăK

||∇L
λ
pθk;µq|| `

N
ÿ

j“1

βλi ||θki ´ θkj ||, (B.29)

where the last inequality uses the smoothness property of Lλi . Combining Lemma B.1 and

Lemma B.2, βλi “ 8
p1´γiq3

` 2λ
|S|

. We have a bound on the first term in Equation B.26, and

now we bound the second term using Lemma B.5.

||θki ´ θkj || “ ||pθki ´ θ̄kq ´ pθ̄k ´ θkj q||

ď ||θki ´ θ̄k|| ` ||θkj ´ θ̄k||

ď
2αD

1 ´ σ2

Plug this into Equation B.29,

min
kăK

||

N
ÿ

j“1

∇Lλj pθki ;µjq|| ď N min
kăK

||∇L
λ
pθk;µq|| `

N
ÿ

j“1

βλi ||θki ´ θkj ||

ď N

g

f

f

e

c1
Kα2

N
ÿ

j“1

p
1

1 ´ γj
` λREpπθ0qq `

N
ÿ

j“1

βλi
2αD

1 ´ σ2

ď N

g

f

f

e

c1
Kα2

N
ÿ

j“1

p
1

1 ´ γj
` λREpπθ0qq `

2αβλD

1 ´ σ2

To ensure minkăK ||
řN
j“1∇Lλj pθki ;µjq|| ď λN

2|S||A|
, we make

N

g

f

f

e

c1
Kα2

N
ÿ

j“1

p
1

1 ´ γj
` λREpπθ0qq `

2αβλD

1 ´ σ2
ď

λN

2|S||A|

Solving for K, we get

K ě

c1N
2

´

řN
j“1p 1

1´γj
` λREpπθ0qq

¯

α2
´

λN
2|S||A|

´
2αβλD
1´σ2

¯2

129

“

c1N
2

´

řN
j“1p

1
1´γj

` λREpπθ0qq

¯

α2
´

ϵc2
4|S||A|

´ 2αD
1´σ2

řN
j“1

´

8
p1´γjq3

` ϵc2
N |S|

¯¯2 ,

where we used the fact that λN
2|S||A|

´
2αβλD
1´σ2

ą 0, if α ă
λNp1´σ2q

4βλD|S||A|
.

B.3.3 Proof of Theorem 3.3

We denote

sθk`1
“

1

N

N
ÿ

i“1

θk`1
i , sπk`1

“
exp

`

sθk`1ps, aq
˘

ř

a1PA exp
`

sθk`1ps, a1q
˘ , πk

“ rπk1 , . . . , π
k
N s,

Qπk

g “ rQ
πk1
1 , . . . , Q

πkN
N s, V πk

g “ rV
πk1
1 , . . . , V

πkN
N s,

Qπk

L,k “

N
ÿ

i“1

p
1

N
` λki ´ νki qQ

πki
i , V πk

L,k “

N
ÿ

i“1

p
1

N
` λki ´ νki qV

πki
i .

(B.30)

Our analysis relies on the lemmas below. The first lemma establishes the Lipschitz

continuity of the value function and Q function. The second lemma bounds the consensus

error. The last three lemmas establish some technical immediate convergence results.

Lemma B.6 (Lemma 8 of [156]). For any policy π1, π2 and i “ 1, . . . , N

}Qπ1
i ´ Qπ2

i } ď
|S||A|

p1 ´ γq2
}π1 ´ π2}, }V π1

i ´ V π2
i } ď

|S||A|

p1 ´ γq2
}π1 ´ π2},

|Qπ1
i ps, aq ´ Qπ2

i ps, aq| ď

a

|S||A|

p1 ´ γq2
}π1 ´ π2}, |V π1

i psq ´ V π2
i psq| ď

a

|S||A|

p1 ´ γq2
}π1 ´ π2}.

Lemma B.7. The policy iterates tπki u generated by Algorithm Algorithm 3.2 satisfy

}sπk ´ πki } ď O
ˆ

?
Nα

1 ´ σ2pW q

˙

, for all k “ 0, . . . , K ´ 1 and i “ 1, . . . , N.

130

Lemma B.8. The iterates of Algorithm 3.2 satisfy for all k “ 0, . . . , K ´ 1

V sπk`1

L,k pζq ´ V sπk

L,kpζq

ě
N

α
Es„ζ

”

logZkpsq ´
α

N
V sπk

L,kpsq
ı

´
2
a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }.

Lemma B.9. The iterates of Algorithm 3.2 satisfy for all k “ 0, . . . , K ´ 1

1

K

K´1
ÿ

k“0

´

V π‹

L,kpρq ´ V sπk

L,kpρq

¯

ď
N log |A|

p1 ´ γqKα
`

2NBλ

p1 ´ γq2K
`

4Nη

p1 ´ γq3K

`
3
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }.

Lemma B.10 (Theorem 6 of [112]). Suppose that Assumption 3.3 holds. Let the constant C

obey C ě 2}λ‹}8 and C ě 2}ν‹}8. Then, given a policy π, if there exists a constant δ ą 0

such that

V π‹

0 pρq ´ V π
0 pρq ` C

N
ÿ

i“1

prℓi ´ V π
i pρqs` ` rV π

i pρq ´ uis`q ď δ,

then we have

N
ÿ

i“1

prℓi ´ V π
i pρqs` ` rV π

i pρq ´ uis`q ď
2δ

C
.

We have from Equation 3.17

sπk`1
pa | sq “ sπkpa | sq

expp α
N

řN
i“1p

1
N

` λki ´ νki qQ
πki
i ps, aqq

Zkpsq
, (B.31)

where Zkpsq “
ř

a1PA sπkpa1 | sq expp α
N

řN
i“1p

1
N

` λki ´ νki qQ
πki
i ps, a1qq.

131

Objective function convergence. From the dual update Equation 3.18, we have

0 ď }λK}
2

“

K´1
ÿ

k“0

`

}λk`1
}
2

´ }λk}
2
˘

“

K´1
ÿ

k“0

¨

˝

›

›

›

›

›

Πr0,Bλs

˜

λk ´ η

˜

ÿ

s,a

ρpsq diagpπk
pa | sqqQπk

g ps, aq ´ ℓ

¸¸
›

›

›

›

›

2

´ }λk}
2

˛

‚

ď

K´1
ÿ

k“0

¨

˝

›

›

›

›

›

λk ´ η

˜

ÿ

s,a

ρpsq diagpπk
pa | sqqQπk

g ps, aq ´ ℓ

¸
›

›

›

›

›

2

´ }λk}
2

˛

‚

“ ´2η
K´1
ÿ

k“0

pλkq
J

˜

ÿ

s,a

ρpsq diagpπk
pa | sqqQπk

g ps, aq ´ ℓ

¸

` η2
K´1
ÿ

k“0

›

›

›

›

›

ÿ

s,a

ρpsq diagpπk
pa | sqqQπk

g ps, aq ´ ℓ

›

›

›

›

›

2

“ ´2η
K´1
ÿ

k“0

pλkq
J

´

V πk

g pρq ´ ℓ
¯

` η2
K´1
ÿ

k“0

›

›

›

›

›

ÿ

s,a

ρpsq diagpπk
pa | sqqQπk

g ps, aq ´ ℓ

›

›

›

›

›

2

. (B.32)

Since the value function and constant ℓi are within r0, 1
1´γ

s, the second term of Equa-

tion B.32 obeys

K´1
ÿ

k“0

›

›

›

›

›

ÿ

s,a

ρpsq diagpπk
pa | sqqQπk

g ps, aq ´ ℓ

›

›

›

›

›

2

“

K´1
ÿ

k“0

N
ÿ

i“1

˜

ÿ

s,a

ρpsqπki pa | sqQ
πki
i ps, aq ´ ℓi

¸2

ď 2
K´1
ÿ

k“0

N
ÿ

i“1

¨

˝

˜

ÿ

s,a

ρpsqπki pa | sqQ
πki
i ps, aq

¸2

` pℓiq
2

˛

‚

ď
4KN

p1 ´ γq2
. (B.33)

132

Equation B.32 and Equation B.33 imply

0 ď ´2η
K´1
ÿ

k“0

pλkq
J

´

V πk

g pρq ´ ℓ
¯

`
4KNη2

p1 ´ γq2

ď 2η
K´1
ÿ

k“0

pλkq
J

´

V π‹

g pρq ´ V sπk

g pρq

¯

` 2η
K´1
ÿ

k“0

pλkq
J

´

V sπk

g pρq ´ V πk

g pρq

¯

`
4KNη2

p1 ´ γq2

ď 2η
K´1
ÿ

k“0

pλkq
J

´

V π‹

g pρq ´ V sπk

g pρq

¯

`
2
a

|S||A|Bλη

p1 ´ γq2

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki } `
4KNη2

p1 ´ γq2
,

where the second inequality follows from the fact that the optimal policy satisfies the

constraints, i.e. V π‹

i pρq ě ℓi for all i “ 1, ¨ ¨ ¨ , N , and the third inequality is applies

Lemma B.6.

Re-arranging this inequality and dividing by 2Kη lead to

1

K

K´1
ÿ

k“0

pλkq
J

´

V π‹

g pρq ´ V sπk

g pρq

¯

ě ´

a

|S||A|Bλ

p1 ´ γq2K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki } ´
2Nη

p1 ´ γq2
.

(B.34)

A similar analysis on νk implies

´
1

K

K´1
ÿ

k“0

pνkq
J

´

V π‹

g pρq ´ V sπk

g pρq

¯

ě ´

a

|S||A|Bλ

p1 ´ γq2K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki } ´
2Nη

p1 ´ γq2
.

(B.35)

Combining Equation B.34, Equation B.35, and Lemma B.9, we have

1

K

K´1
ÿ

k“0

´

V π‹

0 pρq ´ V sπk

0 pρq

¯

ď
N log |A|

p1 ´ γqKα
`

2NBλ

p1 ´ γq2K
`

4Nη

p1 ´ γq3K
`

3
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }

`
2
a

|S||A|Bλ

p1 ´ γq2K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki } `
4Nη

p1 ´ γq2

133

ď
N log |A|

p1 ´ γqKα
`

2NBλ

p1 ´ γq2K
`

8Nη

p1 ´ γq3
`

5
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }.

By the bound on consensus error in Lemma B.7 and the Lipschitz continuity of the value

function in Lemma B.6, this implies for any agent j “ 1, ¨ ¨ ¨ , N

1

K

K´1
ÿ

k“0

´

V π‹

0 pρq ´ V
πkj
0 pρq

¯

ď O
ˆ

N

Kα
` Nη `

N3{2α

1 ´ σ2pW q

˙

.

Constraint violation convergence. For any λ P r0, BλsN , since the projection operator

Πr0,Bλs is non-expansive, we have

}λk`1
´ λ}

2
“ }Πr0,Bλspλ

k
´ ηpV πk

g pρq ´ ℓqq ´ λ}
2

ď }λk ´ ηpV k
g pρq ´ ℓq ´ λ}

2

“ }λk ´ λ}
2

´ 2ηpλk ´ λq
J

pV πk

g pρq ´ ℓq ` η2
N
ÿ

i“1

}
ÿ

s,a

ρpsqπki pa | sqQ
πki
i pρq ´ ℓi}

2

ď }λk ´ λ}
2

´ 2ηpλk ´ λq
J

pV πk

g pρq ´ ℓq `
4Nη2

p1 ´ γq2
,

where the last inequality bounds the quadratic term using an approach similar to Equa-

tion B.33.

Re-arranging the terms and summing up from k “ 0 to k “ K ´ 1, we get

1

K

K´1
ÿ

k“0

pλk ´ λq
J

pV πk

g pρq ´ bq ď
1

K

`

}λ0 ´ λ}
2

´ }λK ´ λ}
2
˘

`
2Nη

p1 ´ γq2

ď
1

2Kη
}λ0 ´ λ}

2
`

2Nη

p1 ´ γq2
,

which implies

1

K

K´1
ÿ

k“0

pλk ´ λq
J

pV sπk

g pρq ´ ℓq

134

“
1

K

K´1
ÿ

k“0

pλk ´ λq
J

pV πk

g pρq ´ ℓq `
1

K

K´1
ÿ

k“0

pλk ´ λq
J

pV sπk

g pρq ´ V πk
g pρqq

ď
1

2Kη
}λ0 ´ λ}

2
`

2Nη

p1 ´ γq2
`

2
a

|S||A|Bλ

p1 ´ γq2K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }. (B.36)

Similarly, we can show for any ν P r0, BλsN

1

K

K´1
ÿ

k“0

pλk ´ λq
J

pu ´ V sπk

g pρqq

ď
1

2Kη
}ν0 ´ ν}

2
`

2Nη

p1 ´ γq2
`

2
a

|S||A|Bλ

p1 ´ γq2K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }. (B.37)

Since λk, νk are non-negative, we have from Equation B.36, Equation B.37, and Lemma

B.9

1

K

K´1
ÿ

k“0

´

V π‹

0 pρq ´ V sπk

0 pρq ` λJ
pℓ ´ V sπk

g pρqq ` νJ
pV sπk

g pρq ´ uq

¯

ď
1

K

K´1
ÿ

k“0

´

V π‹

0 pρq ´ V sπk

0 pρq ` pλkq
J

`

V π‹

g pρq ´ ℓ
˘

` λJ
pℓ ´ V sπk

g pρqq

` pνkq
J

`

u ´ V π‹

g pρq
˘

` νJ
pV sπk

g pρq ´ uq

¯

“
1

K

K´1
ÿ

k“0

´

V π‹

0 pρq ´ V sπk

0 pρq ` pλk ´ νkq
J

´

V π‹

g pρq ´ V sπk

g pρq

¯

` pλk ´ λq
J

pV sπk

g pρq ´ ℓq ` pνk ´ νq
J

pu ´ V sπk

g pρqq

¯

ď
N log |A|

p1 ´ γqKα
`

3
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki } `
2NBλ

p1 ´ γq2K
`

4Nη

p1 ´ γq3K

`
1

2Kη
}λ0 ´ λ}

2
`

2Nη

p1 ´ γq2
`

2
a

|S||A|Bλ

p1 ´ γq2K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }

`
1

2Kη
}ν0 ´ ν}

2
`

2Nη

p1 ´ γq2
`

2
a

|S||A|Bλ

p1 ´ γq2K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki } (B.38)

ď
N log |A|

p1 ´ γqKα
`

2NBλ

p1 ´ γq2K
`

8Nη

p1 ´ γq3
`

}λ0 ´ λ}2 ` }ν0 ´ ν}2

2Kη

`
7
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }. (B.39)

135

Now, choosing λ and ν such that

λi “

$

’

’

&

’

’

%

Bλ, if ℓi ´ V πk
i pρq ě 0

0, else
νi “

$

’

’

&

’

’

%

Bλ, if V πk
i pρq ´ ui ě 0

0, else

Then, Equation B.39 leads to

1

K

K´1
ÿ

k“0

´

V π‹

0 pρq ´ V sπk

0 pρq

¯

`
1

K

K´1
ÿ

k“0

N
ÿ

i“1

Bλ

´

“

ℓi ´ V sπk

i pρq
‰

`
`

“

V sπk

i pρq ´ ui
‰

`

¯

ď
N log |A|

p1 ´ γqKα
`

2NBλ

p1 ´ γq2K
`

8Nη

p1 ´ γq3
`
NB2

λ

Kη

`
7
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }. (B.40)

Note that there always exists a policy rπK such that drπK

ρ “ 1
K

řK´1
k“0 d

sπk

ρ , which implies

V rπK

i “
1

K

K´1
ÿ

k“0

V sπk

i @i “ 0, 1, ¨ ¨ ¨ , N.

As a result, Equation B.40 becomes

´

V π‹

0 pρq ´ V rπK

0 pρq

¯

` Bλ

N
ÿ

i“1

´

“

ℓi ´ V rπK

i pρq
‰

`
`

“

V rπK

i pρq ´ ui
‰

`

¯

ď
N log |A|

p1 ´ γqKα
`

2NBλ

p1 ´ γq2K
`

8Nη

p1 ´ γq3
`
NB2

λ

Kη

`
7
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }. (B.41)

Recall that Lemma 3.1 states that 2}λ‹}8 ď Bλ and 2}ν‹}8 ď Bλ. Applying Lemma

B.10 with C “ Bλ and δ being the terms on the left hand side of Equation B.41, we have

1

K

K´1
ÿ

k“0

N
ÿ

i“1

´

“

ℓi ´ V sπk

i pρq
‰

`
`

“

V sπk
i pρq ´ ui

‰

`

¯

136

“

N
ÿ

i“1

´

“

ℓi ´ V rπK

i pρq
‰

`
`

“

V rπK

i pρq ´ ui
‰

`

¯

ď
2

Bλ

´ N log |A|

p1 ´ γqKα
`

2NBλ

p1 ´ γq2K
`

8Nη

p1 ´ γq3
`
NB2

λ

Kη

`
7
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }

¯

.

By the bound on consensus error in Lemma B.7 and the Lipschitz continuity of the value

function in Lemma B.6, this implies for any agent j “ 1, ¨ ¨ ¨ , N

maxt
1

K

K´1
ÿ

k“0

´

V π‹

0 pρq ´ V
πkj
0 pρq

¯

,
1

K

K´1
ÿ

k“0

N
ÿ

i“1

´

“

ℓi ´ V
πkj
i pρq

‰

`
`

“

V
πkj
i pρq ´ ui

‰

`

¯

u

ď O
ˆ

N

Kα
` Nη `

N

Kη
`

N3{2α

1 ´ σ2pW q

˙

.

Choosing the step sizes as α “ Op

?
1´σ2pW q

N1{4
?
K

q and η “ Op1{
?
Kq leads to the claimed

result.

B.4 Proof of Propositions

B.4.1 Proof of Proposition B.1

From Assumption 3.2, we define

d
πθ˚

i,ρi
psq

dπθi,µipsq
“
d
πθ˚

j,ρj
psq

dπθj,µjpsq
fi d̃psq, @s : s P Si X Sj, @i, j.

Our analysis uses the following performance difference lemma introduced in [157].

Lemma B.11. For any policy π and π̃ operating in environment i under the initial state

distribution ρi,

V π
i pρiq ´ V π̃

i pρiq “
1

1 ´ γi
Es„dπi,ρi

Ea„πp¨|sq

”

Aπ
1

ps, aq

ı

.

137

By Lemma B.11,

V pθ˚;ρq ´ V pθ;ρq “

N
ÿ

i“1

1

1 ´ γi

ÿ

sPSi

ÿ

aPA
dπθ‹

i,ρi
psqπθ‹pa | sqAπθi ps, aq

“
ÿ

sPS

ÿ

aPA
πθ‹pa | sq

ÿ

i:sPSi

1

1 ´ γi
dπθ‹

i,ρi
psqAπθi ps, aq

ď
ÿ

sPS
max
aPA

ÿ

i:sPSi

1

1 ´ γi
dπθ‹

i,ρi
psqAπθi ps, aq

“
ÿ

sPS
max
aPA

ÿ

i:sPSi

dπθ‹

i,ρi
psq

dπθi,µipsq

dπθi,µipsq

1 ´ γi
Aπθi ps, aq

“
ÿ

sPS
d̃psqmax

aPA

ÿ

i:sPSi

dπθi,µipsq

1 ´ γi
Aπθi ps, aq

ď max
sPS,i:sPSi

t
d
πθ˚

i,ρi
psq

dπθi,µipsq
u

ÿ

sPS
max
aPA

ÿ

i:sPSi

dπθi,µipsq

1 ´ γi
Aπθi ps, aq

ď max
sPS,i:sPSi

t
d
πθ˚

i,ρi
psq

dπθi,µipsq
u|S|

2λN

|S|

“ 2λN max
sPS,i:sPSi

t
d
πθ˚

i,ρi
psq

dπθi,µipsq
u

“ 2λN max
sPS,i:sPSi

t
d
πθ˚

i,ρi
psq

p1 ´ γiqµipsq
u

The sixth line follows since maxaPA
ř

i:sPSi
d
πθ
i,µi

psq

1´γi
Aπθi ps, aq ě 0, @s. The last inequality

uses the fact that dπi,µipsq ě p1 ´ γiqµipsq, element-wise, @π, which simply follows from

the definition of dπi,µipsq. The seventh line uses

max
aPA

ÿ

i:sPSi

dπθi,µipsq

1 ´ γi
Aπθi ps, aq ď

2λN

|S|
, (B.42)

which we now prove. To show this, we only have to prove this is true for those ps, aq

where
ř

i:sPSi
d
πθ
i,µi

psq

1´γi
Aπθi ps, aq ě 0. The gradient of θ under the softmax parameterization in

environment i is

BLλi pθ;µiq

Bθs,a
“

1

1 ´ γi
dπθi,µipsqπθpa | sqAπθi ps, aq `

λ

|S|

ˆ

1

|A|
´ πθpa|sq

˙

. (B.43)

138

From our assumption ||
řN
i“1∇Lλi pθ;µiq|| ď λN

2|S||A|
, we know that for all ps, aq such that

ř

i:sPSi
d
πθ
i,µi

psq

1´γi
Aπθi ps, aq ě 0,

λN

2|S||A|
ě

N
ÿ

i“1

BLλi pθ;µiq

Bθs,a

“
ÿ

i:sPSi

1

1 ´ γi
dπθi,µipsqπθpa|sqAπθi ps, aq `

N
ÿ

i“1

λ

|S|

ˆ

1

|A|
´ πθpa|sq

˙

ě 0 `

N
ÿ

i“1

λ

|S|

ˆ

1

|A|
´ πθpa|sq

˙

ě
λN

|S|

ˆ

1

|A|
´ πθpa|sq

˙

.

Rearranging the terms,

πθpa | sq ě
1

|A|
´

|S|

λN

λN

2|S||A|
ě

1

2|A|
. (B.44)

Re-writing Equation B.43 and summing over environments,

N
ÿ

i“1

dπθi,µipsq

1 ´ γi
Aπθi ps, aq “

ÿ

i:sPSi

1

πθpa|sq

BLλi pθ;µiq

Bθs,a
´

N
ÿ

i“1

λ

|S|

ˆ

1

πθpa | sq|A|
´ 1

˙

ď
1

πθpa|sq

ÿ

i:sPSi

BLλi pθ;µiq

Bθs,a
`

N
ÿ

i“1

λ

|S|

ď 2|A|
λN

2|S||A|
`
λN

|S|

ď
2λN

|S|
,

where the second last line uses inequality Equation B.44.

139

B.5 Proof of Additional Lemmas

B.5.1 Proof of Lemma B.3

The proof uses a similar technique to Lemma E.2 of [12], which proves the second derivative

is bounded. Here we also show the first and the third derivative is bounded. We use P̃ipαq to

denote the state-action transition matrix in environment i.

rP̃ipαqsps,aqÑps1,a1q “ πα pa1
|s1

qPi ps1
|s, aq (B.45)

Differentiating with respect to α, we get

«

dP̃ipαq

dα

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ff

ps,aqÑps1,a1q

“
dπα pa1|s1q

dα

ˇ

ˇ

ˇ

ˇ

α“0

Pi ps1
|s, aq , (B.46)

which implies that for any x,

«

dP̃ipαq

dα

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

x

ff

s,a

“
ÿ

a1,s1

dπα pa1|s1q

dα

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

Pi ps1
|s, aqxa1,s1 (B.47)

We can bound the ℓ8 norm of this as

max
||u||2“1

›

›

›

›

›

dP̃ipαq

dα
x

›

›

›

›

›

8

“ max
s,a

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

«

dP̃ipαq

dα

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

x

ff

s,a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ max
s,a

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a1,s1

dπα pa1|s1q

dα

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

Pi ps1
|s, aqxa1,s1

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
s,a

ÿ

a1,s1

ˇ

ˇ

ˇ

ˇ

dπα pa1|s1q

dα

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

Pi ps1
|s, aq |xa1,s1 |

ď max
s,a

ÿ

s1

Pi ps1
|s, aq ||x||8

ÿ

a1

ˇ

ˇ

ˇ

ˇ

dπα pa1|s1q

dα

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ď C 1
||x||8 (B.48)

140

Using the same approach, we can bound

max
||u||2“1

›

›

›

›

›

d2P̃ipαq

dα2
x

›

›

›

›

›

8

ď C2
||x||8, and max

||u||2“1

›

›

›

›

›

d3P̃ipαq

dα3
x

›

›

›

›

›

8

ď C3
||x||8. (B.49)

With Mpαq :“ pI ´ γiP̃ipαqq´1, we re-writing the Bellman equation in the matrix form,

Qα
ps0, a0q “ eTps0,a0qpI ´ γiP̃ipαqq

´1r “ eTps0,a0qMpαqr. (B.50)

Taking the first, second, and third derivative of Qαps0, a0q with respect to α,

dQα ps0, aq

dα
“ γie

T
ps0,aqMpαq

dP̃ipαq

dα
Mpαqr, (B.51)

d2Qα ps0, a0q

pdαq2
“ 2γ2i e

T
ps0,a0qMpαq

dP̃ipαq

dα
Mpαq

dP̃ipαq

dα
Mpαqr

`γie
T
ps0,a0qMpαq

d2P̃ipαq

dα2
Mpαqr, (B.52)

d3Qα ps0, a0q

pdαq3
“ 6γ3i e

T
ps0,a0qMpαq

dP̃ipαq

dα
Mpαq

dP̃ipαq

dα
Mpαq

dP̃ipαq

dα
Mpαqr

`3γ2i e
T
ps0,a0qMpαq

d2P̃ipαq

dα2
Mpαq

dP̃ipαq

dα
Mpαqr

`3γ2i e
T
ps0,a0qMpαq

dP̃ipαq

dα
Mpαq

d2P̃ipαq

dα2
Mpαqr

`γie
T
ps0,a0qMpαq

d3P̃ipαq

dα3
Mpαqr (B.53)

Using Mpαq1 “ pI ´ γiP̃ipαqq´11 “
ř8

n“0 γ
n
i P̃ipαqn1 “ 1

1´γ
1, Equation B.48, and

Equation B.49, we have

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

dQα ps0, aq

dα

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

›

γiMpαq
dP̃ipαq

dα
Mpαqr

›

›

›

›

›

8

141

ď
γiC

1

p1 ´ γiq2
,

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

d2Qα ps0, a0q

dα2

ˇ

ˇ

ˇ

ˇ

α“0

| ď 2γ2i

›

›

›

›

›

Mpαq
dP̃ipαq

dα
Mpαq

dP̃ipαq

dα
Mpαqr

›

›

›

›

›

8

` γi

›

›

›

›

›

Mpαq
d2P̃ipαq

dα2
Mpαqr

›

›

›

›

›

8

ď
2γ2iC

12

p1 ´ γiq3
`

γiC
2

p1 ´ γiq2

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

d3Qα ps0, a0q

dα3

ˇ

ˇ

ˇ

ˇ

α“0

| ď 6γ3i

›

›

›

›

›

Mpαq
dP̃ipαq

dα
Mpαq

dP̃ipαq

dα
Mpαq

dP̃ipαq

dα
Mpαqr

›

›

›

›

›

8

` 3γ2i

›

›

›

›

›

Mpαq
dP̃ipαq

dα
Mpαq

d2P̃ipαq

dα2
Mpαqr

›

›

›

›

›

8

` 3γ2i

›

›

›

›

›

Mpαq
d2P̃ipαq

dα2
Mpαq

dP̃ipαq

dα
Mpαqr

›

›

›

›

›

8

` γi

›

›

›

›

›

Mpαq
d3P̃ipαq

dα3
Mpαqr

›

›

›

›

›

8

ď
6γ3iC

13

p1 ´ γiq4
`

3γ2iC
1C2

p1 ´ γiq3
`

3γ2iC
1C2

p1 ´ γiq3
`

γiC
3

p1 ´ γiq2

“
6γ3iC

13

p1 ´ γiq4
`

6γ2iC
1C2

p1 ´ γiq3
`

γiC
3

p1 ´ γiq2

By the definition of Ṽipαq,

Ṽipαq “
ÿ

a

πα pa|s0qQ
α

ps0, aq .

Taking the first derivative of Ṽipαq with respect to α,

dṼipαq

dα
“

ÿ

a

dπα pa|s0q

dα
Qα
i ps0, aq `

ÿ

a

πα pa|s0q
dQα

i ps0, aq

dα
.

142

Taking the second derivative of Ṽipαq with respect to α,

d2Ṽipαq

dα2
“

ÿ

a

d2πα pa|s0q

dα2
Qα
i ps0, aq ` 2

ÿ

a

dπα pa|s0q

dα

dQα
i ps0, aq

dα

`
ÿ

a

πα pa|s0q
d2Qα

i ps0, aq

dα2
.

Taking the third derivative of Ṽipαq with respect to α,

d3Ṽipαq

dα3
“

ÿ

a

d3πα pa|s0q

dα3
Qα

ps0, aq ` 3
ÿ

a

d2πα pa|s0q

dα2

dQα ps0, aq

dα

` 3
ÿ

a

dπα pa|s0q

dα

d2Qα ps0, aq

dα2
`

ÿ

a

πα pa|s0q
d3Qα ps0, aq

dα3
.

Finally, we have

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

dṼipαq

dα

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C 1

1 ´ γi
`

γiC
1

p1 ´ γiq2
“

C 1

p1 ´ γiq2

,

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

d2Ṽipαq

dα2

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C2

1 ´ γi
`

2C 12

p1 ´ γiq2
`

ˆ

2γiC
12

p1 ´ γiq3
`

γiC
2

p1 ´ γiq2

˙

“
C2

p1 ´ γiq2
`

2γiC
12

p1 ´ γiq3

, and

max
||u||2“1

ˇ

ˇ

ˇ

ˇ

ˇ

d3Ṽipαq

dα3

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C3

1 ´ γi
`

3γiC
1C2

p1 ´ γiq2
` 3C 1

p
2γ2iC

12

p1 ´ γiq3
`

γiC
2

p1 ´ γiq2
q

`
6γ3iC

13

p1 ´ γiq4
`

6γ2iC
1C2

p1 ´ γiq3
`

γiC
3

p1 ´ γiq2

“
C3

1 ´ γi
`
γip6C

1C2 ` C3q

p1 ´ γiq2
`

6γ2i pC 13 ` C 1C2q

p1 ´ γiq3
`

6γ3iC
13

p1 ´ γiq4

“
C3

p1 ´ γiq2
`

6γiC
1C2

p1 ´ γiq3
`

6γ2iC
13

p1 ´ γiq4

143

B.5.2 Proof of Lemma B.4

By Equation B.43,

||∇Lλi pθki ;µiq|| ď
ÿ

s,a

ˇ

ˇ

ˇ

ˇ

ˇ

BLλi pθki ;µiq

Bθki s,a

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

s,a

ˇ

ˇ

ˇ

ˇ

1

1 ´ γi
dπθµj psqπθpa | sqAπθi ps, aq `

λ

|S|

ˆ

1

|A|
´ πθpa|sq

˙
ˇ

ˇ

ˇ

ˇ

ď
ÿ

s,a

dπθµj psqπθpa | sq

1 ´ γi

1

1 ´ γi
`

ÿ

s,a

λ

|S||A|
`

ÿ

s,a

λ

|S|
πθpa | sq

ď
1

p1 ´ γiq2
` 2λ,

where the second last inequality follows from Equation 3.3. By the triangular inequality,

||∇Lλ
pθk;µq|| ď

N
ÿ

i“1

||∇Lλi pθki ;µiq|| ď 2Nλ `

N
ÿ

i“1

1

p1 ´ γiq2
.

B.5.3 Proof of Lemma B.7

We denote gki “ p 1
N

` λki ´ νki qQ
πki
i P R|S||A| and gk “ rpgk1qJ, . . . , pgkNqJsJ P RN |S||A|. It

is easy to see

}gki } ď

ˇ

ˇ

ˇ

ˇ

1

N
` λki ´ νki

ˇ

ˇ

ˇ

ˇ

}Q
πki
i } ď

pBλ ` 1
N

q
a

|S||A|

1 ´ γ
,

which implies }gk} ď
pBλ` 1

N
q
?
N |S||A|

1´γ
for all k. Then, using an argument similar to the one

in [21][Lemma 1], we can get

}sθk ´ θki } ď
pBλ ` 1

N
q
a

N |S||A|α

p1 ´ γqp1 ´ σ2pW qq
. (B.54)

144

The softmax function is Lipschitz with constant 1, i.e.

}πθ ´ πθ1} ď }θ ´ θ1
}, @θ, θ1,

Recall the definition of sπk in Equation B.30. The Lipschitz continuity and Equation B.54

imply the claimed result.

B.5.4 Proof of Lemma B.8

The performance difference lemma states that for any policies π1, π2, initial distribution ζ ,

and i “ 0, ¨ ¨ ¨ , N

V π1
i pζq ´ V π2

i pζq “
1

1 ´ γ
Es„dπ

‹

ζ ,a„π‹p¨|sq rAπk0 ps, aqs . (B.55)

By this lemma,

V sπk`1

0 pζq ´ V sπk

0 pζq

“
1

1 ´ γ
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

”

Asπk

0 ps, aq

ı

“
1

1 ´ γ
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

”

Qsπk

0 ps, aq

ı

´
1

1 ´ γ
E
s„dsπk`1

ζ

”

V sπk

0 psq
ı

“
1

1 ´ γ
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

”

Qπk

L,kps, aq

ı

`
1

1 ´ γ
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

”

Qsπk

L,kps, aq ´ Qπk

L,kps, aq

ı

´
pλk ´ νkqJ

1 ´ γ
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

”

Qsπk

g ps, aq

ı

´
1

1 ´ γ
E
s„dsπk`1

ζ

”

V sπk

0 psq
ı

.

Note that the update rule in Equation B.31 implies

Qπk

L,kps, aq “
N

α
log

ˆ

sπk`1pa | sq

sπkpa | sq
Zkpsq

˙

.

145

Combining the two equalities above, we have

V sπk`1

0 pζq ´ V sπk

0 pζq

“
N

αp1 ´ γq
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

„

log

ˆ

sπk`1pa | sq

sπkpa | sq
Zkpsq

˙ȷ

`
1

1 ´ γ
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

”

Qsπk

L,kps, aq ´ Qπk

L,kps, aq

ı

´
pλk ´ νkqJ

1 ´ γ
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

”

Qsπk

g ps, aq

ı

´
1

1 ´ γ
E
s„dsπk`1

ζ

”

V sπk

0 psq
ı

ě
N

αp1 ´ γq
E
s„dsπk`1

ζ

“

DKLpsπk`1
p¨ | sq||sπkp¨ | sqq

‰

`
N

αp1 ´ γq
E
s„dsπk`1

ζ
rlogZkpsqs

´

a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki } ´
pλk ´ νkqJ

1 ´ γ
E
s„dsπk`1

ζ ,a„sπk`1p¨|sq

”

Asπk

g ps, aq

ı

´
1

1 ´ γ
E
s„dsπk`1

ζ

”

V sπk

L,kpsq
ı

ě
N

αp1 ´ γq
E
s„dsπk`1

ζ
rlogZkpsqs ´

a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }

´ pλk ´ νkq
J

´

V sπk`1

g pζq ´ V sπk

g pζq

¯

´
1

1 ´ γ
E
s„dsπk`1

ζ

”

V sπk

L,kpsq
ı

,

where the last inequality applies the performance difference lemma. Rearranging this

inequality leads to

V sπk`1

L,k pζq ´ V sπk

L,kpζq ě
N

αp1 ´ γq
E
s„dsπk`1

ζ
rlogZkpsqs ´

a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }

´
1

1 ´ γ
E
s„dsπk`1

ζ

”

V sπk

L,kpsq
ı

. (B.56)

From the definition of Zk and Jensen’s inequality,

logZk
psq “ log

˜

ÿ

a1PA
sπkpa1

| sq expp
α

N

N
ÿ

i“1

p
1

N
` λki ´ νki qQ

πki
i ps, a1

qq

¸

ě
ÿ

a1PA
sπkpa1

| sq log

˜

expp
α

N

N
ÿ

i“1

p
1

N
` λki ´ νki qQ

πki
i ps, a1

qq

¸

“
α

N

ÿ

a1PA
sπkpa1

| sq
N
ÿ

i“1

p
1

N
` λki ´ νki qQ

πki
i ps, a1

q

146

“
α

N

ÿ

a1PA
sπkpa1

| sq
N
ÿ

i“1

p
1

N
` λki ´ νki qQsπk

i ps, a1
q

`
α

N

ÿ

a1PA
sπkpa1

| sq
N
ÿ

i“1

p
1

N
` λki ´ νki qpQ

πki
i ps, a1

q ´ Qsπk

i ps, a1
qq

ě
α

N
V sπk

L,kpsq ´

a

|S||A|pBλ ` 1{Nqα

Np1 ´ γq2

N
ÿ

i“1

}sπk ´ πki }.

This bound on logZkpsq implies

N

αp1 ´ γq
E
s„dsπk`1

ζ
rlogZkpsqs ´

1

1 ´ γ
E
s„dsπk`1

ζ

”

V sπk

L,kpsq
ı

“
N

αp1 ´ γq

ÿ

s

dsπk`1

ζ psq
´

logZkpsq ´
α

N
V sπk

L,kpsq
¯

“
N

αp1 ´ γq

ÿ

s

dsπk`1

ζ psq
`

logZkpsq ´
α

N
V sπk

L,kpsq `

a

|S||A|pBλ ` 1{Nqα

Np1 ´ γq2

N
ÿ

i“1

}sπk ´ πki }
˘

´

a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }

ě
N

α

ÿ

s

ζpsq
´

logZkpsq ´
α

N
V sπk

L,kpsq
¯

´

a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki },

where the inequality follows from the fact that dπζ ě p1 ´ γqζ elementwise for any policy π.

Plugging this bound into Equation B.56, we have

V sπk`1

L,k pζq ´ V sπk

L,kpζq

ě
N

α
Es„ζ

”

logZkpsq ´
α

N
V sπk

L,kpsq
ı

´
2
a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }.

B.5.5 Proof of Lemma B.9

By the performance difference lemma in Equation B.55,

V π‹

0 pρq ´ V sπk

0 pρq

147

“
1

N

N
ÿ

i“1

pV π‹

i pρq ´ V sπk

i pρqq

“
1

N

N
ÿ

i“1

pV π‹

i pρq ´ V
πki
i pρqq `

1

N

N
ÿ

i“1

pV
πki
i pρq ´ V sπk

i pρqq

ď
1

Np1 ´ γq

N
ÿ

i“1

Es„dπ‹
ρ ,a„π‹p¨|sq

”

A
πki
i ps, aq

ı

`

a

|S||A|

Np1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }

“
1

Np1 ´ γq

N
ÿ

i“1

Es„dπ‹
ρ ,a„π‹p¨|sq

”

Q
πki
i ps, aq

ı

´
1

Np1 ´ γq

N
ÿ

i“1

Es„dπ‹
ρ

”

V
πki
i psq

ı

`

a

|S||A|

Np1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }.

Plugging in the update rule of the policy,

V π‹

0 pρq ´ V sπk

0 pρq

ď
1

Np1 ´ γq

N
ÿ

i“1

Es„dπ‹
ρ ,a„π‹p¨|sq

”

Q
πki
i ps, aq

ı

´
1

Np1 ´ γq

N
ÿ

i“1

Es„dπ‹
ρ

”

V
πki
i psq

ı

`

a

|S||A|

Np1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }

“
1

1 ´ γ
Es„dπ‹

ρ ,a„π‹p¨|sq

«

N
ÿ

i“1

p
1

N
` λki ´ νki qQ

πki
i ps, aq

ff

´
pλk ´ νkqJ

1 ´ γ
Es„dπ‹

ρ ,a„π‹p¨|sq

”

Qπk

g ps, aq

ı

´
1

Np1 ´ γq

N
ÿ

i“1

Es„dπ‹
ρ

”

V
πki
i psq

ı

`

a

|S||A|

Np1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }

“
N

αp1 ´ γq
Es„dπ‹

ρ ,a„π‹p¨|sq

„

log

ˆ

sπk`1pa | sq

sπkpa | sq
Zkpsq

˙ȷ

´
pλk ´ νkqJ

1 ´ γ
Es„dπ

‹
ρ ,a„π‹p¨|sq

”

Aπk

g ps, aq

ı

´
pλk ´ νkqJ

1 ´ γ
Es„dπ

‹
ρ

”

V πk

g psq
ı

´
1

Np1 ´ γq

N
ÿ

i“1

Es„dπ‹
ρ

”

V
πki
i psq

ı

`

a

|S||A|

Np1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }

ď
N

αp1 ´ γq
Es„dπ‹

ρ

“

DKLpπ‹
p¨ | sq||sπkp¨ | sqq ´ DKLpπ‹

p¨ | sq||sπk`1
p¨ | sqq

‰

`
N

αp1 ´ γq
Es„dπ‹

ρ

“

logZk
psq

‰

148

´
pλk ´ νkqJ

1 ´ γ
Es„dπ‹

ρ ,a„π‹p¨|sq

”

Aπk

g ps, aq

ı

´
pλk ´ νkqJ

1 ´ γ
Es„dπ‹

ρ

”

V πk

g psq
ı

´
1

Np1 ´ γq

N
ÿ

i“1

Es„dπ‹
ρ

”

V
πki
i psq

ı

`

a

|S||A|

Np1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }.

Re-grouping the terms,

V π‹

0 pρq ´ V sπk

0 pρq

ď
N

αp1 ´ γq
Es„dπ‹

ρ

“

DKLpπ‹
p¨ | sq||sπkp¨ | sqq ´ DKLpπ‹

p¨ | sq||sπk`1
p¨ | sqq

‰

`
N

αp1 ´ γq
Es„dπ‹

ρ

“

logZk
psq

‰

´
pλk ´ νkqJ

1 ´ γ
Es„dπ‹

ρ ,a„π‹p¨|sq

”

Asπk

g ps, aq

ı

`
pλk ´ νkqJ

1 ´ γ
Es„dπ‹

ρ ,a„π‹p¨|sq

”

Asπk

g ps, aq ´ Aπk

g ps, aq

ı

´
1

1 ´ γ
Es„dπ‹

ρ

”

V πk

L,kpsq
ı

`

a

|S||A|

Np1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }

ď
N

αp1 ´ γq
Es„dπ‹

ρ

“

DKLpπ‹
p¨ | sq||sπkp¨ | sqq ´ DKLpπ‹

p¨ | sq||sπk`1
p¨ | sqq

‰

`
N

αp1 ´ γq
Es„dπ‹

ρ

“

logZk
psq

‰

´
pλk ´ νkqJ

1 ´ γ

´

V π‹

g psq ´ V sπk

g psq
¯

´
1

1 ´ γ
Es„dπ‹

ρ

”

V πk

L,kpsq
ı

`

a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }, (B.57)

where the second inequality follows from the performance difference lemma and the Lips-

chitz continuity of the advantage.

Applying Lemma B.8 with ζ “ dπ
‹

ρ ,

N

α
Es„dπ‹

ρ

”

logZkpsq ´
α

N
V sπk

L,kpsq
ı

ď V sπk`1

L,k pdπ
‹

ρ q ´ V sπk

L,kpdπ
‹

ρ q

`
2
a

|S||A|pBλ ` 1{Nq

p1 ´ γq3

N
ÿ

i“1

}sπk ´ πki }. (B.58)

Combining Equation B.57 and Equation B.58,

V π‹

0 pρq ´ V sπk

0 pρq

149

ď
N

αp1 ´ γq
Es„dπ‹

ρ

“

DKLpπ‹
p¨ | sq||sπkp¨ | sqq ´ DKLpπ‹

p¨ | sq||sπk`1
p¨ | sqq

‰

`
1

1 ´ γ

´

V sπk`1

L,k pdπ
‹

ρ q ´ V sπk

L,kpdπ
‹

ρ q

¯

`
2
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4

N
ÿ

i“1

}sπk ´ πki }

´
pλk ´ νkqJ

1 ´ γ

´

V π‹

g psq ´ V sπk

g psq
¯

`

a

|S||A|pBλ ` 1{Nq

Np1 ´ γq3

N
ÿ

i“1

}sπk ´ πki },

which implies

V π‹

L,kpρq ´ V sπk

L,kpρq

ď
N

αp1 ´ γq
Es„dπ‹

ρ

“

DKLpπ‹
p¨ | sq||sπkp¨ | sqq ´ DKLpπ‹

p¨ | sq||sπk`1
p¨ | sqq

‰

`
1

1 ´ γ

´

V sπk`1

L,k pdπ
‹

ρ q ´ V sπk

L,kpdπ
‹

ρ q

¯

`
3
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4

N
ÿ

i“1

}sπk ´ πki }.

Taking the average from k “ 0 to k “ K ´ 1, we have

1

K

K´1
ÿ

k“0

´

V π‹

L,kpρq ´ V sπk

L,kpρq

¯

ď
N

p1 ´ γqKα
Es„dπ‹

ρ
rDKLpπ‹

p¨ | sq||π0p¨ | sqqs`
1

p1 ´ γqK

K´1
ÿ

k“0

´

V sπk`1

L,k pdπ
‹

ρ q´V sπk

L,kpdπ
‹

ρ q

¯

`
3
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki }. (B.59)

The second term on the right hand side can be decomposed as follows

1

p1 ´ γqK

K´1
ÿ

k“0

´

V sπk`1

L,k pdπ
‹

ρ q ´ V sπk

L,kpdπ
‹

ρ q

¯

ď
1

p1 ´ γqK

K´1
ÿ

k“0

´

V sπk`1

0 pdπ
‹

ρ q ´ V sπk

0 pdπ
‹

ρ q

¯

`
1

p1 ´ γqK

K´1
ÿ

k“0

pλk ´ νkq
J

´

V sπk`1

g pdπ
‹

ρ q ´ V sπk

g pdπ
‹

ρ q

¯

“
V sπK

0 pdπ
‹

ρ q

p1 ´ γqK
`

1

p1 ´ γqK

K´1
ÿ

k“0

´

pλk`1
´ νk`1

q
JV sπk`1

g pdπ
‹

ρ q ´ pλk ´ νkq
JV sπk

g pdπ
‹

ρ q

¯

150

`
1

p1 ´ γqK

K´1
ÿ

k“0

`

λk ´ νk ´ λk`1
` νk`1

˘J
V sπk`1

g pdπ
‹

ρ q

“
V sπK

0 pdπ
‹

ρ q

p1 ´ γqK
`

1

p1 ´ γqK

N
ÿ

i“1

pλKi ´ νKi qV sπK

i pdπ
‹

ρ q

`
1

p1 ´ γqK

K´1
ÿ

k“0

N
ÿ

i“1

pλki ´ νki ´ λk`1
i ` νk`1

i qV sπk`1

i pdπ
‹

ρ q. (B.60)

We know that the value functions are bounded between r0, 1
1´γ

s. The projection in the up-

date of the dual variable in Equation 3.18 guarantees λki P r0, Bλs. It is also straightforward

to see that for all i and k

|λi,k ´ λi,k`1| ď
η

1 ´ γ
` Bη, |νi,k ´ νi,k`1| ď

η

1 ´ γ
` Bη.

Using these bounds in Equation B.60, we get

1

p1 ´ γqK

K´1
ÿ

k“0

´

V sπk`1

L,k pdπ
‹

ρ q ´ V sπk

L,kpdπ
‹

ρ q

¯

ď
1

p1 ´ γq2K
`

NBλ

p1 ´ γq2K
`

2Nη

p1 ´ γq3K
`

2NBη

p1 ´ γq2K

ď
2NBλ

p1 ´ γq2K
`

4Nη

p1 ´ γq3K
. (B.61)

Finally, combining Equation B.59 and Equation B.61 yields

1

K

K´1
ÿ

k“0

´

V π‹

L,kpρq ´ V sπk

L,kpρq

¯

ď
N

p1 ´ γqKα
Es„dπ‹

ρ
rDKLpπ‹

p¨ | sq||π0p¨ | sqqs

`
3
a

|S||A|pBλ ` 1{Nq

p1 ´ γq4K

K´1
ÿ

k“0

N
ÿ

i“1

}sπk ´ πki } `
2NBλ

p1 ´ γq2K
`

4Nη

p1 ´ γq3K
,

which leads to the claimed result by recognizing the fact that for DKLpp1||p2q ď log |A| for

p1, p2 P ∆A if p2 is a uniform distribution.

151

APPENDIX C

SUPPLEMENTARY MATERIAL FOR RESULTS IN CHAPTER 4

C.1 Proof of Theorems and Corollaries

We frequently use the following inequalities which hold for all τ ě 0, π P ∆A
S , and ϕ P ∆B

S ,

Jτ pπ, ϕτ pπqq ď Jτ pπ, ϕq, Jτ pπτ pϕq, ϕq ě Jτ pπ, ϕq.

We use Hp¨q to denote the entropy of a distribution. For example,

Hpπp¨ | sqq “ ´
ÿ

a

πpa | sq log πpa | sq, Hpϕp¨ | sqq “ ´
ÿ

b

ϕpb | sq log ϕpb | sq.

(C.1)

Due to the uniqueness of ϕτ p¨q, Danskin’s Theorem guarantees that gτ pπθq defined in

Equation 4.2 is differentiable with respect to θ [158]

∇θgτ pπθq “ ∇θJτ pπθ, ϕq, ϕ “ ϕτ pπθq, @θ P R|S|ˆ|A|. (C.2)

We also introduce a few lemmas that will be applied regularly in the rest of the paper.

Lemma C.1. Let LV “ 8
p1´γq3

. The value function J is LV -Lipschitz continuous and has

LV -Lipschitz gradients, i.e. we have for all θ1, θ2 P R|S|ˆ|A| and ψ1, ψ2 P R|S|ˆ|B|

}∇θJpπθ1 , ϕψ1q ´ ∇θJpπθ2 , ϕψ2q} ď LV p}θ1 ´ θ2} ` }ψ1 ´ ψ2}q,

}∇ψJpπθ1 , ϕψ1q ´ ∇ψJpπθ2 , ϕψ2q} ď LV p}θ1 ´ θ2} ` }ψ1 ´ ψ2}q,

}Jpπθ1 , ϕψ1q ´ Jpπθ2 , ϕψ2q} ď LV p}θ1 ´ θ2} ` }ψ1 ´ ψ2}q.

152

Lemma C.2. LetLH “
4`8 log |A|

p1´γq3
. The regularization functions Hπ and Hϕ areLH-Lipschitz

continuous and has LH-Lipschitz gradients.

Lemmas C.1 and C.2 imply that @τ ě 0, ∇θJτ is Lipschitz continuous, i.e. for any

θ1, θ2 P R|S|ˆ|A|, ψ1, ψ2 P R|S|ˆ|B|

}∇θJτ pπθ1 , ϕψ1q ´ ∇θJτ pπθ2 , ϕψ2q} ď }∇θJpπθ1 , ϕψ1q ´ ∇θJpπθ2 , ϕψ2q}

` τ}∇θHπps, πθ1 , ϕψ1q ´ ∇θHπps, πθ2 , ϕψ2q}

` τ}∇θHϕps, πθ1 , ϕψ1q ´ ∇θHϕps, πθ2 , ϕψ2q}

ď pLV ` 2τLHqp}θ1 ´ θ2} ` }ψ1 ´ ψ2}q. (C.3)

Lemma C.3. For any 0 ď a ď 1 and integer k ą 0, we have

1

pk ` hqa
´

1

pk ` 1 ` hqa
ď

8

3pk ` hqa`1
.

C.1.1 Proof of Theorem 4.1

The definition of the constant L and Equation C.3 imply for any θ1, θ2 P R|S|ˆ|A|, ψ1, ψ2 P

R|S|ˆ|B|

}∇θJτ pπθ1 , ϕψ1q ´ ∇θJτ pπθ2 , ϕψ2q} ď Lp}θ1 ´ θ2} ` }ψ1 ´ ψ2}q. (C.4)

We will use an induction argument to prove the convergence of 3δπk ` δϕk . The base case

is 3δπ0 ` δϕ0 ď 3δπ0 ` δϕ0 , which obviously holds. Now, suppose

3δπk ` δϕk ď p1 ´
αp1 ´ γqτρ2minc

2

32|S|
q
k
p3δπ0 ` δϕ0 q (C.5)

153

holds. We aim to show

3δπk`1 ` δϕk`1 ď p1 ´
αp1 ´ γqτρ2minc

2

32|S|
q
k`1

p3δπ0 ` δϕ0 q.

We introduce the following technical lemmas.

Lemma C.4. Suppose Equation C.5 holds. Then, we have

´

ˆ

min
s,a

πθkpa | sq

˙2

ď ´
3c2

8
, (C.6)

´

ˆ

min
s,b

ϕψkpb | sq

˙2

ď ´
3c2

8
. (C.7)

Lemma C.5. Suppose Equation C.5 holds. Under Assumption 4.1 and the step size αk ď

pL `
2
?

|S|L2

?
p1´γqρminτc

q´1, we have

gτ pθkq ´ gτ pθk`1q

“ Jτ pπθk , ϕτ pπθkqq ´ Jτ pπθk`1
, ϕτ pπθk`1

qq

“
αk
2

`

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2

´ }∇θJτ pπθk , ϕτ pπθkqq}
2
˘

.

By the lemma above, we have

δπk`1 ´ δπk

“ Jτ pπθk , ϕτ pπθkqq ´ Jτ pπθk`1
, ϕτ pπθk`1

qq

ď
αk
2

`

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2

´ }∇θJτ pπθk , ϕτ pπθkqq}
2
˘

. (C.8)

Similarly, we consider the decay of δϕk .

δϕk`1 ´ δϕk “ Jτ pπθk`1
, ϕψk`1

q ´ gτ pπθk`1
q ´ Jτ pπθk , ϕψkq ` gτ pπθkq

“
`

Jτ pπθk`1
, ϕψk`1

q ´ Jτ pπθk`1
, ϕψkq

˘

154

`
`

Jτ pπθk`1
, ϕψkq ´ Jτ pπθk , ϕψkq

˘

`
`

gτ pπθkq ´ gτ pπθk`1
q
˘

. (C.9)

Using the L-smoothness of the value function derived in Equation C.4

Jτ pπθk`1
, ϕψk`1

q ´ Jτ pπθk`1
, ϕψkq

ď x∇ψJτ pπθk`1
, ϕψkq, ψk`1 ´ ψky `

L

2
}ψk`1 ´ ψk}

2

“ ´βk}∇ψJτ pπθk`1
, ϕψkq}

2
`
Lβ2

k

2
}∇ψJτ pπθk`1

, ϕψkq}
2

ď ´
βk
2

}∇ψJτ pπθk`1
, ϕψkq}

2

ď ´
p1 ´ γqβkτρ

2
min

|S|

ˆ

min
s,b

ϕψkpb | sq

˙2

pJτ pπθk , ϕψkq ´ Jτ pπθk , ϕτ pπθkqqq

“ ´
p1 ´ γqβkτρ

2
min

|S|

ˆ

min
s,b

ϕψkpb | sq

˙2

δϕk ,

where the second inequality uses βk ď 1
L

and the third inequality follows from Lemma 4.4

and the fact that dπ,ϕρ psq ď 1 for all s P S and policies π, ϕ.

Using Equation C.7 of Lemma C.4 to further simplify this inequality,

Jτ pπθk`1
, ϕψk`1

q ´ Jτ pπθk`1
, ϕψkq ď ´

3p1 ´ γqβkτρ
2
minc

2

8|S|
δϕk . (C.10)

For the second term of Equation C.9, we have from the L-smoothness of the value

function derived in Equation C.4

Jτ pπθk`1
, ϕψkq ´ Jτ pπθk , ϕψkq ď x∇θJτ pπθk , ϕψkq, θk`1 ´ θky `

L

2
}θk`1 ´ θk}

2

“ αk}∇θJτ pπθk , ϕψkq}
2

`
Lα2

k

2
}∇θJτ pπθk , ϕψkq}

2

ď
3αk
2

}∇θJτ pπθk , ϕψkq}
2, (C.11)

where in the last inequality we use αkL ď 1.

155

Similarly to Equation C.8, the last term of Equation C.9 is bounded as

gτ pπθkq´gτ pπθk`1
q “ gτ pπθkq ´ gτ pπθk`1

q ` gτ pπθk`1
q ´ gτ pπθk`1

q

ď
αk
2

`

}∇θJτ pπθk , ϕτ pπθkqq´∇θJτ pπθk , ϕψkq}
2
´}∇θJτ pπθk , ϕτ pπθkqq}

2
˘

(C.12)

Using Equation C.10-Equation C.12 in Equation C.9, we have

δϕk`1 “
`

Jτ pπθk`1
, ϕψk`1

q ´ Jτ pπθk`1
, ϕψkq

˘

`
`

Jτ pπθk`1
, ϕψkq ´ Jτ pπθk , ϕψkq

˘

`
`

gτ pπθkq ´ gτ pπθk`1
q
˘

ď p1 ´
3p1 ´ γqβkτρ

2
minc

2

8|S|
qδϕk `

3αk
2

}∇θJτ pπθk , ϕψkq}
2

`
αk
2

`

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2

´ }∇θJτ pπθk , ϕτ pπθkqq}
2
˘

.

(C.13)

Combining Equation C.8 and Equation C.13,

3δπk`1`δϕk`1 ď 3δπk `
3αk
2

`

}∇θJτ pπθk , ϕτ pπθkqq´∇θJτ pπθk , ϕψkq}
2
´}∇θJτ pπθk , ϕτ pπθkqq}

2
˘

` p1 ´
3p1 ´ γqβkτρ

2
minc

2

8|S|
qδϕk ` 2δϕk qδϕk `

3αk
2

}∇θJτ pπθk , ϕψkq}
2

`
αk
2

`

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2

´ }∇θJτ pπθk , ϕτ pπθkqq}
2
˘

ď 3δπk ` p1 ´
3p1 ´ γqβkτρ

2
minc

2

8|S|
qδϕk `

3αk
2

}∇θJτ pπθk , ϕψkq}
2

` 2αk}∇θJτ pπθk , ϕτ pπθkqq´∇θJτ pπθk , ϕψkq}
2
´2αk}∇θJτ pπθk , ϕτ pπθkqq}

2.

Simplifying this inequality with

}∇θJτ pπθk , ϕψkq}
2

“ }∇θJτ pπθk , ϕτ pπθkqq ´ p∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkqq }
2

ď }∇θJτ pπθk , ϕτ pπθkqq}
2

` }∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2

` 2x∇θJτ pπθk , ϕτ pπθkqq,∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkqy

156

ď
5

4
}∇θJτ pπθk , ϕτ pπθkqq}

2
` 5}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}

2,

we have

3δπk`1 ` δϕk`1 ď 3δπk ` p1 ´
3p1 ´ γqβkτρ

2
minc

2

8|S|
qδϕk ´

αk
8

}∇θJτ pπθk , ϕτ pπθkqq}
2

`
19αk
2

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2. (C.14)

Using Lemma 4.4 to bound ´}∇θJτ pπθk , ϕτ pπθkqq}2,

´ }∇θJτ pπθk , ϕτ pπθkqq}
2

ď ´
2p1 ´ γqτρ2min

|S|

ˆ

min
s,a

πθkpa | sq

˙2

pJτ pπτ pϕτ pπθkqq, ϕτ pπθkqq ´ Jτ pπθk , ϕτ pπθkqqq

ď ´
2p1 ´ γqτρ2min

|S|

ˆ

min
s,a

πθkpa | sq

˙2

pJτ pπ‹
τ , ϕ

‹
τ q ´ Jτ pπθk , ϕτ pπθkqqq , (C.15)

where the second inequality follows from

Jτ pπτ pϕτ pπθkqq, ϕτ pπθkqq “ max
π

Jτ pπ, ϕτ pπθkqq ě max
π

min
ϕ
Jτ pπ, ϕq “ Jτ pπ‹

τ , ϕ
‹
τ q.

From Lemma C.4 Equation C.6, ´ pmins,a πθkpa | sqq
2

ď ´3c2

8
, which further simplifies

Equation C.15

´}∇θJτ pπθk , ϕτ pπθkqq}
2

ď ´
2p1 ´ γqτρ2min

|S|

ˆ

min
s,a

πθkpa | sq

˙2

pJτ pπ‹
τ , ϕ

‹
τ q´Jτ pπθk , ϕτ pπθkqqq

“ ´
2p1 ´ γqτρ2min

|S|

ˆ

min
s,a

πθkpa | sq

˙2

δπk ď ´
3p1 ´ γqτρ2minc

2

4|S|
δπk .

For }∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}2, we have from the L-smoothness of the

value function derived in Equation C.4

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2

ď L2
}ϕτ pπθkq ´ ϕψk}

2

157

ď
2 logp2qL2

τρmin

pJτ pπθk , ϕψkq ´ Jτ pπθk , ϕτ pπθkqqq

“
2 logp2qL2

τρmin

δϕk

Using the bound on ´}∇θJτ pπθk , ϕτ pπθkqq}2 and }∇θJτ pπθk , ϕτ pπθkqq ´

∇θJτ pπθk , ϕψkq}2 in Equation C.14,

3δπk`1 ` δϕk`1 ď 3δπk ` p1 ´
3p1 ´ γqβkτρ

2
minc

2

8|S|
qδϕk ´

αk
8

}∇θJτ pπθk , ϕτ pπθkqq}
2

`
19αk
2

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2

ď 3δπk ` p1´
3p1 ´ γqβkτρ

2
minc

2

8|S|
qδϕk ´

3αkp1 ´ γqτρ2minc
2

32|S|
δπk `

19 logp2qL2αk
τρmin

δϕk

“ 3p1 ´
αkp1 ´ γqτρ2minc

2

32|S|
qδπk ` p1 ´

3p1 ´ γqβkτρ
2
minc

2

8|S|
`

19 logp2qL2αk
τρmin

qδϕk .

With the step sizes αk “ α, βk “ β such that α
β

ď mint
p1´γqτ2ρ3minc

2

152|S| logp2qL2 , 8u, we can simplify

the inequality above

3δπk`1 ` δϕk`1 ď 3p1 ´
αkp1 ´ γqτρ2minc

2

32|S|
qδπk ` p1 ´

3p1 ´ γqβkτρ
2
minc

2

8|S|
`

19 logp2qL2αk
τρmin

qδϕk

ď 3p1 ´
αp1 ´ γqτρ2minc

2

32|S|
qδπk ` p1 ´

p1 ´ γqβτρ2minc
2

4|S|
qδϕk

ď p1 ´
αp1 ´ γqτρ2minc

2

32|S|
qp3δπk ` δϕk q

ď p1 ´
αp1 ´ γqτρ2minc

2

32|S|
q
k`1

p3δπ0 ` δϕ0 q.

C.1.2 Proof of Corollary 4.1

As a result of Lemma 4.3, it is easy to verify

p3δπt`1,0 ` δϕt`1,0q ´ p3δπt,Kt ` δϕt,Ktq

158

“ p3Jτt`1pπ‹
τt`1

, ϕ‹
τt`1

q ´ 3Jτt`1pπθt`1,0 , ϕτt`1pπθt`1,0qq

` Jτt`1pπθt`1,0 , ϕψt`1,0q ´ Jτt`1pπθt`1,0 , ϕτt`1pπθt`1,0qqq

´ p3Jτtpπ
‹
τt , ϕ

‹
τtq ´ 3Jτtpπθt,Kt , ϕτtpπθt,Kt qq

` Jτtpπθt,Kt , ϕψt,Kt q ´ Jτtpπθt,Kt , ϕτtpπθt,Kt qq

“ p3Jτt`1pπ‹
τt`1

, ϕ‹
τt`1

q ´ 3Jτt`1pπθt`1,0 , ϕτt`1pπθt`1,0qq

` Jτt`1pπθt`1,0 , ϕψt`1,0q ´ Jτt`1pπθt`1,0 , ϕτt`1pπθt`1,0qqq

´ p3Jτtpπ
‹
τt , ϕ

‹
τtq ´ 3Jτtpπθt`1,0 , ϕτtpπθt`1,0qq

` Jτtpπθt`1,0 , ϕψt`1,0q ´ Jτtpπθt`1,0 , ϕτtpπθt`1,0qqq

“ 3pJτt`1pπ‹
τt`1

, ϕ‹
τt`1

q ´ Jτtpπ
‹
τt , ϕ

‹
τtqq

´ 4pJτt`1pπθt`1,0 , ϕτt`1pπθt`1,0qq ´ Jτtpπθt`1,0 , ϕτtpπθt`1,0qqq

` pJτt`1pπθt`1,0 , ϕψt`1,0q ´ Jτtpπθt`1,0 , ϕψt`1,0qq

ď Lδpτt ´ τt`1q. (C.16)

We can choose τ0 large enough that

3δπ0,0 ` δϕ0,0 ď C1τ0

holds. For any t ě 0, if we run the inner loop for Kt iterations such that

3δπt,Kt ` δϕt,Kt ď
1

2
p3δπt,0 ` δϕt,0q ď

C1τt
2
,

then we have

3δπt`1,0 ` δϕt`1,0 ď 3δπt,Kt ` δϕt,Kt ` Lδpτt ´ τt`1q ď
C1τt
2

` Lδpτt ´ τt`1q

“
pC1 ` LδqC1

C1 ` 2Lδ
τt`1 `

C1Lδ
C1 ` 2Lδ

τt`1 “ C1τt`1,

where the first equality plugs in τt “
2C1`2Lδ
C1`2Lδ

τt`1. This means that the initial condition

159

Equation 4.12 is observed at the beginning of the every outer loop iteration.

Applying the inequality recursively,

3δπT,0 ` δϕT,0 ď C1τT .

With an argument similar to the one in Equation C.16, we can show

p3pJpπ‹, ϕ‹
q ´ JpπθT,0 , ϕ0pπθT,0qqq

` pJpπθT,0 , ϕψT,0q ´ JpπθT,0 , ϕ0pπθT,0qqqq ´ p3δπT,0 ` δϕT,0q ď LδτT .

In order to achieve Equation 4.13, it suffices to guarantee 3δπT,0 ` δϕT,0 ` LδτT ď ϵ, or

pC1 ` LδqτT ď ϵ. This implies that we need τT “ Opϵq, or equivalently, T “ Oplogpϵ´1qq

since τT “

´

C1`2Lδ
2C1`2Lδ

¯T

τ0.

Ultimately we are interested in bounding
řT
t“0Kt. Note that Kt needs to be at most

Kt ď r
logp1

2
q

logp1 ´
αtp1´γqτtρ2minc

2

32|S|
q
s.

To apply Theorem 4.1, we need to select the step sizes that satisfy the required condition.

Since tτtu is a decaying sequence, the smoothness constant L “ 3LH maxtτ0, 1u is valid

across all outer loop iterations t.

We use Lt “ 3LH maxtτt, 1u to denote the smoothness constant of the regularized value

function in outer loop iteration t and use T1 to denote the index of the outer loop iteration

such that τT1 ě 1 and τT1`1 ă 1. Note that T1 is an absolute constant that only depends on

the structure of the Markov game. From iterations t “ 0 to t “ T1, the smoothness constant

is proportional to regularization weight Lt “ 3LH maxtτt, 1u “ 3LHτt. We need to choose

αt, βt such that

βt ď
1

Lt
“

1

3LHτt
,

αt
βt

ď mint
p1 ´ γqρ3minc

2τ 2t
152 logp2q|S|L2

t

, 8u “ mint
p1 ´ γqρ3minc

2

1368 logp2q|S|L2
H
, 8u,

160

αt ď mintpLt `
2
a

|S|L2
t

a

p1 ´ γqρminτtc
q

´1,
16|S|

p1 ´ γqρ2minc
2τt

u

“ mintp3LHτt `
18

a

|S|L2
Hτt

a

p1 ´ γqρminc
q

´1,
16|S|

p1 ´ γqρ2minc
2τt

u.

Then it is obvious that we can choose αt “ Opτ´1
t q, implying αtτt “ Op1q. Therefore, for

all 0 ď t ď T1,

Kt ď r
logp1

2
q

logp1 ´
αtp1´γqτtρ2minc

2

32|S|
q
s “ Op1q. (C.17)

From iterations t “ T1 until t “ T , the smoothness constant is Lt “ 3LH maxtτt, 1u “

3LH. Note that there is an upper and lower bound on βt. In order for the upper bound to be

no smaller than the lower bound, we need

152 logp2q|S|L2αt
p1 ´ γqρ3minc

2τ 2t
ď

1

L
.

This means that we should choose αt “ Opτ 2t q, implying αtτt “ Opτ 3t q. Plugging it in

Equation C.17,

Kt “ r
logp1

2
q

logp1 ´
αtp1´γqτtρ2minc

2

32|S|
q
s “ Op

1

logp1 ´ τ 3t q
q ď Opτ´3

t q,

where the last inequality follows from the fact that 1 ` x ď exppxq for any scalar x.

Since τt “ τT p
2C1`2Lδ
C1`2Lδ

qT´t,

T
ÿ

t“0

Kt “

T1
ÿ

t“0

Kt `

T
ÿ

t“T1

Kt ď

T
ÿ

t“0

Opτ´3
t q “ Op1q `

T
ÿ

t“T1

Opτ´3
T p

2C1 ` 2Lδ
C1 ` 2Lδ

q
´3pT´tq

q

ď Opτ´3
T

T
ÿ

t“0

p
C1 ` 2Lδ
2C1 ` 2Lδ

q
3pT´tq

q “ Opτ´3
T

T
ÿ

t“0

p
C1 ` 2Lδ
2C1 ` 2Lδ

q
3t

q

ď Opτ´3
T

1

1 ´ p
C1`2Lδ
2C1`2Lδ

q3
q “ Opτ´3

T q.

161

Since τT “ Opϵq,

T
ÿ

t“0

Kt ď Opτ´3
T q “ Opϵ´3

q.

C.1.3 Proof of Theorem 4.2

Define L0 “ LHp2τ0 ` 1q. The exact conditions on the initial step sizes, regularization

weight, and h are

δπ0 ` δϕ0 ď
C1τ0

h
1
3

, (C.18)

α0 “
65536 logp2qplog |A| ` log |B|q ` 96p1 ´ γqρminc

2

3p1 ´ γq2ρ3minc
4τ0

, (C.19)

α0

h
2
3

ď p2LH ` 4L2
HC2q

τ0

h
1
3

` pLH ` 4L2
HC2q `

L2
HC2h

1
3

τ0
, (C.20)

β0 ď
1

L0

,
α0

β0
ď mint

p1 ´ γqτ 20 ρ
3
minc

2

152 logp2q|S|L2
0

, 1u. (C.21)

In Remark C.1 at the end of this section, we show that there always exist α0, β0, τ0, and h

that observe the conditions.

Equation C.3 implies that for any θ1, θ2 P R|S|ˆ|A|, ψ1, ψ2 P R|S|ˆ|B|, and k ě 0,

}∇θJτkpπθ1 , ϕψ1q ´ ∇θJτkpπθ2 , ϕψ2q} ď pLV ` 2τkLHqp}θ1 ´ θ2} ` }ψ1 ´ ψ2}q

ď L0p}θ1 ´ θ2} ` }ψ1 ´ ψ2}q, (C.22)

where the last inequality follows from τk ď τ0.

Convergence of 3δπk ` δϕk :

We will first use an induction argument to prove

3δπk ` δϕk ď
ρminτ0c

2

64 logp2qpk ` hq1{3
, @k ě 0.

162

The base case is 3δπ0 ` δϕ0 ď
ρminc

2τ0

64 logp2qh
1
3

, which holds by the initial condition. Now, suppose

3δπk ` δϕk ď
ρminτ0c

2

64 logp2qpk ` hq1{3
(C.23)

holds. We aim to show

3δπk`1 ` δϕk`1 ď
ρminτ0c

2

64 logp2qpk ` 1 ` hq1{3
.

We introduce the following technical lemmas.

Lemma C.6. Suppose Equation C.23 holds. Then, we have

´

ˆ

min
s,a

πθkpa | sq

˙2

ď ´
3c2

8
, (C.24)

´

ˆ

min
s,b

ϕψkpb | sq

˙2

ď ´
3c2

8
. (C.25)

Lemma C.7. Suppose Equation C.23 holds. Under Assumption 4.1 and Assumption 4.2

and the step sizes of Theorem 4.2, we have

gτkpθkq ´ gτkpθk`1q

“ Jτkpπθk , ϕτkpπθkqq ´ Jτkpπθk`1
, ϕτkpπθk`1

qq

ď
αk
2

`

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ }∇θJτkpπθk , ϕτkpπθkqq}
2
˘

.

We perform the following decomposition

δπk`1 ´ δπk

“ Jτkpπθk , ϕτkpπθkqq ´ Jτk`1
pπθk`1

, ϕτk`1
pπθk`1

qq ` Jτk`1
pπ‹

τk`1
, ϕ‹

τk`1
q ´ Jτkpπ‹

τk
, ϕ‹

τk
q

“ Jτkpπθk , ϕτkpπθkqq ´ Jτkpπθk`1
, ϕτkpπθk`1

qq

` Jτkpπθk`1
, ϕτkpπθk`1

qq ´ Jτkpπθk`1
, ϕτk`1

pπθk`1
qq

163

` Jτkpπθk`1
, ϕτk`1

pπθk`1
qq ´ Jτk`1

pπθk`1
, ϕτk`1

pπθk`1
qq

` Jτk`1
pπ‹

τk`1
, ϕ‹

τk`1
q ´ Jτkpπ‹

τk
, ϕ‹

τk
q

ď Jτkpπθk , ϕτkpπθkqq ´ Jτkpπθk`1
, ϕτkpπθk`1

qq `
τk ´ τk`1

1 ´ γ
log |A| ` pτk ´ τk`1q log |B|

ď
αk
2

`

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ }∇θJτkpπθk , ϕτkpπθkqq}
2
˘

`
τk ´ τk`1

1 ´ γ
plog |A| ` log |B|q (C.26)

where the first inequality comes from Jτkpπθk`1
, ϕτkpπθk`1

qq ´ Jτkpπθk`1
, ϕτk`1

pπθk`1
qq ď 0

by the definition of ϕτ p¨q and the bound on Jτkpπθk`1
, ϕτk`1

pπθk`1
qq ´

Jτk`1
pπθk`1

, ϕτk`1
pπθk`1

qq and Jτk`1
pπ‹

τk`1
, ϕ‹

τk`1
q ´ Jτkpπ‹

τk
, ϕ‹

τk
q from Lemma 4.3

Equation 4.8 and Equation 4.6. The second inequality uses Lemma C.7.

Similarly, we consider the decay of δϕk .

δϕk`1 ´ δϕk “ Jτk`1
pπθk`1

, ϕψk`1
q ´ gτk`1

pπθk`1
q ´ Jτkpπθk , ϕψkq ` gτkpπθkq

“
`

Jτk`1
pπθk`1

, ϕψk`1
q´Jτkpπθk`1

, ϕψk`1
q
˘

`
`

Jτkpπθk`1
, ϕψk`1

q´Jτkpπθk`1
, ϕψkq

˘

`
`

Jτkpπθk`1
, ϕψkq ´ Jτkpπθk , ϕψkq

˘

`
`

gτkpπθkq ´ gτk`1
pπθk`1

q
˘

. (C.27)

By Lemma 4.3 Equation 4.8,

Jτk`1
pπθk`1

, ϕψk`1
q ´ Jτkpπθk`1

, ϕψk`1
q ď

τk ´ τk`1

1 ´ γ
log |B|. (C.28)

Using the L0-smoothness of the value function derived in Equation C.22

Jτkpπθk`1
, ϕψk`1

q ´ Jτkpπθk`1
, ϕψkq

ď x∇ψJτkpπθk`1
, ϕψkq, ψk`1 ´ ψky `

L0

2
}ψk`1 ´ ψk}

2

“ ´βk}∇ψJτkpπθk`1
, ϕψkq}

2
`
L0β

2
k

2
}∇ψJτkpπθk`1

, ϕψkq}
2

ď ´
βk
2

}∇ψJτkpπθk`1
, ϕψkq}

2

164

ď ´
p1 ´ γqβkτkρ

2
min

|S|

ˆ

min
s,b

ϕψkpb | sq

˙2

pJτkpπθk , ϕψkq ´ Jτkpπθk , ϕτkpπθkqqq

“ ´
p1 ´ γqβkτkρ

2
min

|S|

ˆ

min
s,b

ϕψkpb | sq

˙2

δϕk ,

where the second inequality uses βk ď 1
L0

and the third inequality follows from Lemma 4.4.

Using Equation C.25 of Lemma C.6 to further simplify this inequality,

Jτkpπθk`1
, ϕψk`1

q ´ Jτkpπθk`1
, ϕψkq ď ´

3p1 ´ γqβkτkρ
2
minc

2

8|S|
δϕk . (C.29)

For the third term of Equation C.27, we have from the L0-smoothness of the value

function derived in Equation C.22

Jτkpπθk`1
, ϕψkq ´ Jτkpπθk , ϕψkq ď x∇θJτkpπθk , ϕψkq, θk`1 ´ θky `

L0

2
}θk`1 ´ θk}

2

“ αk}∇θJτkpπθk , ϕψkq}
2

`
L0α

2
k

2
}∇θJτkpπθk , ϕψkq}

2

ď
3αk
2

}∇θJτkpπθk , ϕψkq}
2, (C.30)

where in the last inequality we use αkL0 ď 1.

Using Lemma C.7 and Lemma 4.3 Equation 4.7, we bound the last term of Equation C.27

gτkpπθkq ´ gτk`1
pπθk`1

q

“ gτkpπθkq ´ gτkpπθk`1
q ` gτkpπθk`1

q ´ gτk`1
pπθk`1

q

ď
αk
2

`

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ }∇θJτkpπθk , ϕτkpπθkqq}
2
˘

` pτk ´ τk`1q log |A| (C.31)

Using Equation C.28-Equation C.31 in Equation C.27, we have

δϕk`1 “ δϕk `
`

Jτk`1
pπθk`1

, ϕψk`1
q´Jτkpπθk`1

, ϕψk`1
q
˘

`
`

Jτkpπθk`1
, ϕψk`1

q´Jτkpπθk`1
, ϕψkq

˘

`
`

Jτkpπθk`1
, ϕψkq ´ Jτkpπθk , ϕψkq

˘

`
`

gτkpπθkq ´ gτk`1
pπθk`1

q
˘

165

ď δϕk `
τk ´ τk`1

1 ´ γ
log |B| ´

3p1 ´ γqβkτkρ
2
minc

2

8|S|
δϕk `

3αk
2

}∇θJτkpπθk , ϕψkq}
2

`
αk
2

`

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ }∇θJτkpπθk , ϕτkpπθkqq}
2
˘

` pτk ´ τk`1q log |A|

ď p1 ´
3p1 ´ γqβkτkρ

2
minc

2

8|S|
qδϕk `

3αk
2

}∇θJτkpπθk , ϕψkq}
2

`
αk
2

`

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ }∇θJτkpπθk , ϕτkpπθkqq}
2
˘

`
τk ´ τk`1

1 ´ γ
plog |A| ` log |B|q. (C.32)

Combining Equation C.26 and Equation C.32,

3δπk`1 ` δϕk`1

ď 3δπk `
3αk
2

`

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ }∇θJτkpπθk , ϕτkpπθkqq}
2
˘

`
3pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q ` p1 ´

3p1 ´ γqβkτkρ
2
minc

2

8|S|
qδϕk

`
αk
2

`

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ }∇θJτkpπθk , ϕτkpπθkqq}
2
˘

`
3αk
2

}∇θJτkpπθk , ϕψkq}
2

`
τk ´ τk`1

1 ´ γ
plog |A| ` log |B|q

ď 3δπk ` p1 ´
3p1 ´ γqβkτkρ

2
minc

2

8|S|
qδϕk `

3αk
2

}∇θJτkpπθk , ϕψkq}
2

` 2αk}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ 2αk}∇θJτkpπθk , ϕτkpπθkqq}
2

`
4pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q.

Simplifying this inequality with

}∇θJτkpπθk , ϕψkq}
2

“}∇θJτkpπθk , ϕτkpπθkqq ´ p∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkqq }
2

ď}∇θJτkpπθk , ϕτkpπθkqq}
2

` }∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

` 2x∇θJτkpπθk , ϕτkpπθkqq,∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkqy

ď
5

4
}∇θJτkpπθk , ϕτkpπθkqq}

2
`5}∇θJτkpπθk , ϕτkpπθkqq´∇θJτkpπθk , ϕψkq}

2

166

we have

3δπk`1 ` δϕk`1 ď 3δπk ` p1 ´
3p1 ´ γqβkτkρ

2
minc

2

8|S|
qδϕk ´

αk
8

}∇θJτkpπθk , ϕτkpπθkqq}
2

`
19αk
2

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

`
4pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q (C.33)

Using Lemma 4.4 to bound ´}∇θJτkpπθk , ϕτkpπθkqq}2,

´ }∇θJτkpπθk , ϕτkpπθkqq}
2

ď ´
2p1 ´ γqτkρ

2
min

|S|

ˆ

min
s,a

πθkpa | sq

˙2

pJτkpπτkpϕτkpπθkqq, ϕτkpπθkqq ´ Jτkpπθk , ϕτkpπθkqqq

ď ´
2p1 ´ γqτkρ

2
min

|S|

ˆ

min
s,a

πθkpa | sq

˙2
`

Jτkpπ‹
τk
, ϕ‹

τk
q ´ Jτkpπθk , ϕτkpπθkqq

˘

, (C.34)

where the second inequality follows from

Jτkpπτkpϕτkpπθkqq, ϕτkpπθkqq “ max
π

Jτkpπ, ϕτkpπθkqq ě max
π

min
ϕ
Jτkpπ, ϕq “ Jτkpπ‹

τk
, ϕ‹

τk
q.

From Equation C.24 of Lemma C.6 , ´ pmins,a πθkpa | sqq
2

ď ´3c2

8
, which further

simplifies Equation C.34

´ }∇θJτkpπθk , ϕτkpπθkqq}
2

ď ´
2p1 ´ γqτkρ

2
min

|S|

ˆ

min
s,a

πθkpa | sq

˙2
`

Jτkpπ‹
τk
, ϕ‹

τk
q ´ Jτkpπθk , ϕτkpπθkqq

˘

“ ´
2p1 ´ γqτkρ

2
min

|S|

ˆ

min
s,a

πθkpa | sq

˙2

δπk ď ´
3p1 ´ γqτkρ

2
minc

2

4|S|
δπk . (C.35)

For }∇θJτkpπθk , ϕτkpπθkqq ´∇θJτkpπθk , ϕψkq}2, we have from the L0-smoothness of the

value function derived in Equation C.22

}∇θJτkpπθk , ϕτkpπθkqq´∇θJτkpπθk , ϕψkq}
2

ď L2
0}ϕτkpπθkq ´ ϕψk}

2

167

ď
2 logp2qL2

0

τkρmin

pJτkpπθk , ϕψkq´Jτkpπθk , ϕτkpπθkqqq

“
2 logp2qL2

0

τkρmin

δϕk , (C.36)

where the second inequality follows from Lemma Equation 4.4 of 4.1 .

Using Equation C.35 and Equation C.36 in Equation C.33,

3δπk`1 ` δϕk`1

ď 3δπk ` p1 ´
3p1 ´ γqβkτkρ

2
minc

2

8|S|
qδϕk ´

αk
8

}∇θJτkpπθk , ϕτkpπθkqq}
2

`
19αk
2

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

`
4pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q

ď 3δπk ` p1 ´
3p1 ´ γqβkτkρ

2
minc

2

8|S|
qδϕk ´

3αkp1 ´ γqτkρ
2
minc

2

32|S|
δπk

`
19 logp2qL2

0αk
τkρmin

δϕk `
4pτk ´ τk`1qq

1 ´ γ
plog |A| ` log |B|q

“ 3p1 ´
p1 ´ γqαkτkρ

2
minc

2

32|S|
qδπk ` p1 ´

3p1 ´ γqβkτkρ
2
minc

2

8|S|
`

19 logp2qL2
0αk

τkρmin

qδϕk

`
4pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q. (C.37)

With the step size rule α0

β0
ď mint

p1´γqτ20 ρ
3
minc

2

152 logp2qL2
0|S|

, 1u, we can simplify Equation C.37,

3δπk`1 ` δϕk`1 ď 3p1 ´
p1 ´ γqαkτkρ

2
minc

2

32|S|
qδπk ` p1´

3p1 ´ γqβkτkρ
2
minc

2

8|S|
`

19 logp2qL2
0αk

τkρmin

qδϕk

`
4pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q

ď 3p1 ´
p1 ´ γqαkτkρ

2
minc

2

32|S|
qδπk

` p1 ´
3p1 ´ γqβkτkρ

2
minc

2

8|S|
`

19 logp2qL2
0

τkρmin

p1 ´ γqρ3minc
2τ 2kβk

152 logp2qL2
0|S|

qδϕk

`
4pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q

ď 3p1 ´
p1 ´ γqαkτkρ

2
minc

2

32|S|
qδπk ` p1 ´

p1 ´ γqβkτkρ
2
minc

2

4|S|
qδϕk

`
4pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q

168

ď p1 ´
p1 ´ γqαkτkρ

2
minc

2

32|S|
qp3δπk ` δϕk q `

4pτk ´ τk`1q

1 ´ γ
plog |A| ` log |B|q

ď p1 ´
p1 ´ γqρ2minc

2α0τ0
32|S|pk ` hq

q
C1

pk ` hq1{3
`

32τ0
3p1 ´ γqpk ` hq4{3

plog |A| ` log |B|q,

where the last inequality follows from Equation C.23 and Lemma C.3.

Letting D1 “
p1´γqρ2minc

2

32|S|
and D2 “ 32

3p1´γq
plog |A| ` log |B|q,

3δπk`1 ` δϕk`1 ď

ˆ

1 ´
D1α0τ0
k ` h

˙

C1τ0
pk ` hq1{3

`
D2τ0

pk ` 1q4{3

“

ˆ

k ` h ´ D1α0τ0 `
D2

C1

˙

C1τ0
pk ` hq4{3

.

By requiring

τ0 “
65536 logp2qplog |A| ` log |B|q ` 96p1 ´ γqρminc

2

3p1 ´ γq2ρ3minc
4α0

“
1

D1α0

p1 `
D2

C1

q,

we have

3δπk`1 ` δϕk`1 ď

ˆ

k ` h ´ D1α0τ0 `
D2

C1

˙

¨
C1τ0

pk ` hq4{3

“

ˆ

k ` h ´ p1 `
D2

C1

q `
D2

C1

˙

¨
C1τ0

pk ` hq4{3

“
C1τ0pk ´ 1 ` hq

pk ` hq4{3
,

Since pk ´ 1 ` hq3pk ` 1 ` hq ď pk ` hq4 for all k ě 0 and h ě 1, we have

k ´ 1 ` h

pk ` hq4{3
“

pk ´ 1 ` hqpk ` 1 ` hq1{3

pk ` 1q4{3pk ` 1 ` hq1{3
ď

pk ` hq4{3

pk ` hq4{3pk ` 1 ` hq1{3
“

1

pk ` 1 ` hq1{3
,

which leads to

3δπk`1 ` δϕk`1 ď
C1τ0pk ´ 1 ` hq

pk ` hq4{3
ď

C1τ0
pk ` 1 ` hq1{3

“
ρminτ0c

2

64 logp2qpk ` 1 ` hq1{3
.

169

This finishes our induction and implies that for all k ě 0

Jτkpπ‹
τk
, ϕ‹

τk
q ´ Jτkpπθk , ϕτkpπθkqq ď

C1τ0
3pk ` hq1{3

,

Jτkpπθk , ϕψkq ´ Jτkpπθk , ϕτkpπθkqq ď
C1τ0

pk ` hq1{3
.

Bounding the difference between value functions with and without the regulariza-

tion:

Ultimately, we are interested in Jpπ‹, ϕ‹q ´ Jpπθk , ϕ0pπθkqq and Jpπθk , ϕψkq ´

Jpπθk , ϕ0pπθkqq, which measure the performance of πθk and ϕψk in the original un-

regularized Markov game.

By Equation 4.6, Equation 4.7, and Equation 4.8,

Jτkpπ‹
τk
, ϕ‹

τk
q ´ Jpπ‹, ϕ‹

q ě ´τk log |B|

Jτkpπθk , ϕτkpπθkqq ´ Jpπθk , ϕ0pπθkqq ď τk log |A|

Jτkpπθk , ϕψkq ´ Jpπθk , ϕψkq ě ´
τk

1 ´ γ
log |B|.

Therefore,

Jpπ‹, ϕ‹
q ´ Jpπθk , ϕ0pπθkqq “ Jpπ‹, ϕ‹

q ´ Jτkpπ‹
τk
, ϕ‹

τk
q ` Jτkpπ‹

τk
, ϕ‹

τk
q ´ Jτkpπθk , ϕτkpπθkqq

` Jτkpπθk , ϕτkpπθkqq ´ Jpπθk , ϕ0pπθkqq

ď τk log |B| `
C1τ0

3pk ` hq1{3
` τk log |A|

“
C1τ0 ` 3plog |A| ` log |B|qτ0

3pk ` hq1{3
,

and

Jpπθk , ϕψkq ´ Jpπθk , ϕ0pπθkqq “ Jpπθk , ϕψkq ´ Jτkpπθk , ϕψkq

` Jτkpπθk , ϕψkq ´ Jτkpπθk , ϕτkpπθkqq

170

` Jτkpπθk , ϕτkpπθkqq ´ Jpπθk , ϕ0pπθkqq

ď
τk

1 ´ γ
log |B| `

C1τ0
pk ` hq1{3

` τk log |A|

ď
p1 ´ γqC1τ0 ` plog |A| ` log |B|qτ0

p1 ´ γqpk ` hq1{3
.

Remark C.1. To select α0, β0, τ0, and h, we first make τ0 “ λh1{3 for some λ ą 0 large

enough. This choice guarantees the validity of Equation C.18 (we just need δπ0 ` δϕ0 ď C1λ).

Viewing Equation C.19, it means

α0 “
65536 logp2qplog |A| ` log |B|q ` 96p1 ´ γqρminc

2

3p1 ´ γq2ρ3minc
4λh

1
3

.

Now that λ is fixed, to ensure Equation C.20, we choose h large enough to observe

65536 logp2qplog |A| ` log |B|q ` 96p1 ´ γqρminc
2

3p1 ´ γq2ρ3minc
4λh

“
α0

h
2
3

ď p2LH ` 4L2
HC2qλ ` pLH ` 4L2

HC2q `
L2
HC2

λ
.

Once λ and h are chosen, α0, τ0, and h are determined. Finally, since p1´γqτ20 ρ
3
minc

2

152 logp2q|S|L2
0

ď 1,

we just need to select β0 P r
152 logp2q|S|L2

0α0

p1´γqτ20 ρ
3
minc

2 , 1
L0

s. Recall that L0 “ LHp2τ0 ` 1q, it can be

easily seen that the lower bound 152 logp2q|S|L2
0α0

p1´γqτ20 ρ
3
minc

2 “ Op 1
λ3h1{3 q, which is much smaller than

the upper bound 1
L0

“ Op 1
τ0

q “ Op 1
λh1{3 q since λ was large enough.

C.2 Proof of Lemmas

C.2.1 Proof of Lemma 4.1

For a given ϕ, let π̂ P πτ pϕq (which is a possibly non-unique maximizer).

171

According to [13][Lemma 26],

Jτ pπ̂, ϕq ´ Jτ pπ, ϕq “
τ

1 ´ γ

ÿ

sPS
dπ,ϕρ psqDKLpπp¨ | sq||π̂p¨ | sqq.

The Pinsker’s inequality states that for any two probability distributions p1 and p2

DKLpp1||p2q ě
1

2 logp2q
}p1 ´ p2}

2
1.

Using this inequality,

Jτ pπ̂, ϕq ´ Jτ pπ, ϕq “
τ

1 ´ γ

ÿ

sPS
dπ,ϕρ psqDKLpπp¨ | sq||π̂p¨ | sqq

ě
τ

2 logp2qp1 ´ γq

ÿ

sPS
dπ,ϕρ psq}πp¨ | sq ´ π̂p¨ | sq}

2
1

ě
τ

2 logp2qp1 ´ γq

ÿ

sPS
p1 ´ γqρpsq}πp¨ | sq ´ π̂p¨ | sq}

2
1

ě
τ minsPS ρpsq

2 logp2q

ÿ

sPS
}πp¨ | sq ´ π̂p¨ | sq}

2
1

ě
τ minsPS ρpsq

2 logp2q
}π ´ π̂}

2,

where the second inequality follows from the fact that dπ,ϕ̂ρ psq ě p1 ´ γqρpsq entry-wise.

This inequality means that π̂ P πτ pϕq has to be unique, as no other policy can achieve the

same value function.

The same argument can be used to show Equation 4.4.

172

C.2.2 Proof of Lemma 4.2

Let pπ1, ϕ1q, pπ2, ϕ2q be optimal solution pairs to the maximin and minimax problem,

respectively,

pπ1, ϕ1q P argmax
πP∆S

A

argmin
ϕP∆S

B

Jτ pπ, ϕq and pπ2, ϕ2q P argmin
ϕP∆S

B

argmax
πP∆S

A

Jτ pπ, ϕq. (C.38)

Since the policy simplex is a compact set, pπ1, ϕ1q and pπ2, ϕ2q exist and are well-defined.

The following minimax inequality always holds

Jτ pπ1, ϕ1q “ max
πP∆S

A

min
ϕP∆S

B

Jτ pπ, ϕq ď min
ϕP∆S

B

max
πP∆S

A

Jτ pπ, ϕq “ Jτ pπ2, ϕ2q. (C.39)

We first want to show that π1 “ πτ pϕ1q and ϕ1 “ ϕτ pπ1q. Since

Jτ pπ1, ϕ1q “ max
πP∆S

A

min
ϕP∆S

B

Jτ pπ, ϕq “ min
ϕP∆S

B

Jτ pπ1, ϕq “ Jτ pπ1, ϕτ pπ1qq,

we have ϕ1 P ϕτ pπ1q, and Lemma 4.1 further implies ϕ1 “ ϕτ pπ1q is unique. In addition, we

know that π1 is the optimizer of gτ defined in Equation 4.2. Let θ1 be an softmax parameter

for π1 (e.g. θ1ps, aq “ log πpa | sq for all s, a). Since π1 is an optimizer of gτ in policy

space, θ1 must also be an (not necessarily unique) optimizer of g̃τ pθq “ minϕ Jτ pπθ, ϕq in

the parameter space. Therefore, we have @θ P RSˆA

0 ě x∇θgτ pπθ1q, θ ´ θ1y “ x∇θJτ pπθ1 , ϕ1q, θ ´ θ1y, (C.40)

where the first equality follows from Danskin’s Theorem in Equation C.2. Since θ is not

constrained, Equation C.40 means that

∇θJτ pπθ1 , ϕ1q “ 0,

173

implying that θ1 is a stationary point of

max
θ
Jτ pπθ, ϕ1q.

By Lemma 4.4, every stationary point is also globally optimal. Therefore, we have π1 “

πθ1 “ πτ pϕ1q.

A consequence of π1 “ πτ pϕ1q and ϕ1 “ ϕτ pπ1q is that pπ1, ϕ1q is the unique optimal

solution pair to the maximin problem, i.e. there does not exist ppπ1, pϕ1q ‰ pπ1, ϕ1q such that

ppπ1, pϕ1q P argmaxπP∆S
A
argminϕP∆S

B
Jτ pπ, ϕq. To see this, let us suppose that such a pair

ppπ1, pϕ1q does exist. Then, the only possibility is pπ1 ‰ π1 and pϕ1 ‰ ϕ1 by Lemma 4.1. Since

pπ1 ‰ πτ pϕ1q and ϕ1 ‰ ϕτ ppπ1q, we have

Jτ ppπ1, ϕ1q ă Jτ pπ1, ϕ1q “ Jτ ppπ1, pϕ1q ă Jτ ppπ1, ϕ1q,

which creates a contradiction.

Similarly, it can be shown that

π2 “ ϕτ pϕ2q, and ϕ2 “ ϕτ pπ2q,

and that pπ2, ϕ2q is the unique optimal solution pair to the minimax problem.

We now aim prove that pπ1, ϕ1q “ pπ2, ϕ2q, i.e. the minimax and maximin problem have

the same solution. Suppose pπ1, ϕ1q ‰ pπ2, ϕ2q, which means that π1 ‰ π2 and ϕ1 ‰ ϕ2

have to hold due to Lemma 4.1. Since π2 ‰ πτ pϕ1q and ϕ1 ‰ ϕτ pπ2q, we have from

Equation C.39

Jτ pπ2, ϕ1q ă Jτ pπ1, ϕ1q ď Jτ pπ2, ϕ2q ă Jτ pπ2, ϕ1q.

This is again a contradiction. Therefore, pπ1, ϕ1q “ pπ2, ϕ2q has to be true. Then, Equa-

174

tion C.39 leads to

max
πP∆S

A

min
ϕP∆S

B

Jτ pπ, ϕq “ max
πP∆S

A

min
ϕP∆S

B

Jτ pπ, ϕq.

We also know that the Nash equilibrium has to be unique in this case, as the maximin

and minimax problems both have a unique solution pair that agrees with each other.

C.2.3 Proof of Lemma 4.3

By the definition of the value function,

Jτ pπ, ϕq ´ Jτ 1pπ, ϕq

“ E

«

8
ÿ

k“0

γk
´

r psk, ak, bkq ´ τ log πpak | skq ` τ log ϕpbk | skq

¯

| s0 „ ρ

ff

´ E

«

8
ÿ

k“0

γk
´

r psk, ak, bkq ´ τ 1 log πpak | skq ` τ 1 log ϕpbk | skq

¯

| s0 „ ρ

ff

“ E

«

8
ÿ

k“0

γk
´

pτ ´ τ 1
q log πpak | skq ` pτ ´ τ 1

q log ϕpbk | skq

¯

| s0 „ ρ

ff

“
τ ´ τ 1

1 ´ γ
Es1„dπ,ϕρ ,a„πp¨|s1q,b„ϕp¨|s1q

r´ log πpa | s1
q ` log ϕpb | s1

qs

“
τ ´ τ 1

1 ´ γ
Es1„dπ,ϕρ

rHpπp¨ | s1
qq ´ Hpϕp¨ | s1

qqs,

where H denotes the entropy and is defined in Equation C.1.

We have the following upper and lower bound on the entropy

0 ď Hpπp¨ | s1
qq ď log |A|, 0 ď Hpϕp¨ | s1

qq ď log |B|.

Therefore, if τ ě τ 1 ě 0,

´
τ ´ τ 1

1 ´ γ
log |B| ď Jτ pπ, ϕq ´ Jτ 1pπ, ϕq ď

τ ´ τ 1

1 ´ γ
log |A|.

175

For any τ ě τ 1 ě 0,

Jτ pπ‹
τ , ϕ

‹
τ q ´ Jτ 1pπ‹

τ 1 , ϕ‹
τ 1q

“ max
π

min
ϕ
Jτ pπ, ϕq ´ min

ϕ
Jτ 1pπ‹

τ 1 , ϕq

ě min
ϕ
Jτ pπ‹

τ 1 , ϕq ´ min
ϕ
Jτ 1pπ‹

τ 1 , ϕq

“ min
ϕ

´

Jτ 1pπ‹
τ 1 , ϕq ` pτ ´ τ 1

qHπpρ, π‹
τ 1 , ϕq ´ pτ ´ τ 1

qHϕpρ, π‹
τ 1 , ϕq

¯

´ min
ϕ
Jτ 1pπ‹

τ 1 , ϕq

ě min
ϕ
Jτ 1pπ‹

τ 1 , ϕq ` pτ´τ 1
qmin

ϕ
Hπpρ, π‹

τ 1 , ϕq ` pτ ´ τ 1
qmin

ϕ
´Hϕpρ, π‹

τ 1 , ϕq´min
ϕ
Jτ 1pπ‹

τ 1 , ϕq

“ pτ ´ τ 1
q

ˆ

min
ϕ

Hπpρ, π‹
τ 1 , ϕq ´ max

ϕ
Hϕpρ, π‹

τ 1 , ϕq

˙

ě pτ ´ τ 1
qp0 ´ log |B|q

“ ´pτ ´ τ 1
q log |B|,

where the second inequality comes from the fact that minx f1pxq ` f2pxq ě minx f1pxq `

minx f2pxq for any functions f1, f2 of the same domain.

It can be shown by a similar argument

Jτ pπ‹
τ , ϕ

‹
τ q ´ Jτ 1pπ‹

τ 1 , ϕ‹
τ 1q ď pτ ´ τ 1

q log |A|.

In addition, for any τ ě τ 1 ě 0 and any policy π,

Jτ pπ, ϕτ pπqq ´ Jτ 1pπ, ϕ0pπqq

“ min
ϕ
Jτ pπ, ϕq ´ min

ϕ
Jτ 1pπ, ϕq

“ min
ϕ

pJτ 1pπ, ϕq ` pτ ´ τ 1
qHπpρ, π, ϕq ´ pτ ´ τ 1

qHϕpρ, π, ϕqq ´ min
ϕ
Jτ 1pπ, ϕq

ď

ˆ

min
ϕ
Jτ 1pπ, ϕq ` pτ ´ τ 1

qmax
ϕ

Hπpρ, π, ϕq ` pτ ´ τ 1
qmax

ϕ
p´Hϕpρ, π, ϕqq

˙

´ min
ϕ
Jτ 1pπ, ϕq

“ pτ ´ τ 1
q

ˆ

max
ϕ

Hπpρ, π, ϕq ´ min
ϕ

Hϕpρ, π, ϕq

˙

ď pτ ´ τ 1
q log |A|.

176

It can be shown by a similar argument

Jτ pπ, ϕτ pπqq ´ Jτ 1pπ, ϕ0pπqq ě ´pτ ´ τ 1
q log |B|.

C.2.4 Proof of Lemma 4.4

Adapting [13][Lemma 15], we have for any θ P RSˆA and ψ P RSˆB

}∇θJτ pπθ, ϕψq}
2

ě
2τρmin

|S|

ˆ

min
s,a

πθpa | sq

˙2
›

›

›

›

›

d
πτ pϕψq,ϕψ
ρ

d
πθ,ϕψ
ρ

›

›

›

›

›

´1

8

pJτ pπτ pϕψq, ϕψq´Jτ pπθ, ϕψqq ,

}∇ψJτ pπθ, ϕψq}
2

ě
2τρmin

|S|

ˆ

min
s,b

ϕψpb | sq

˙2
›

›

›

›

›

d
πθ,ϕτ pπθq
ρ

d
πθ,ϕψ
ρ

›

›

›

›

›

´1

8

pJτ pπθ, ϕψq ´ Jτ pπθ, ϕτ pπθqqq .

Then, the first inequality follows from d
πτ pϕψq,ϕψ
ρ psq ď 1 and dπθ,ϕψρ psq ě p1 ´ γqρpsq ě

p1 ´ γqρmin for all s P S, and the second inequality from d
πθ,ϕτ pπθq
ρ ď 1 and dπθ,ϕψρ ě

p1 ´ γqρmin for all s P S.

C.2.5 Proof of Lemma C.1

Lemma 7 and 14 of [13] establish the smoothness condition of the value function and the

regularization entropy with respect to one player’s policy, i.e.

}∇θJpπθ1 , ϕψ1q ´ ∇θJpπθ2 , ϕψ1q} ď LV }θ1 ´ θ2},

}∇ψJpπθ1 , ϕψ1q ´ ∇ψJpπθ1 , ϕψ2q} ď LV }ψ1 ´ ψ2}.

Therefore, we only need to show

}∇θJpπθ1 , ϕψ1q ´ ∇θJpπθ1 , ϕψ2q} ď LV }ψ1 ´ ψ2},

177

}∇ψJpπθ1 , ϕψq ´ ∇ψJpπθ2 , ϕψq} ď LV }θ1 ´ θ2}.

Given a fixed θ and ψ, with arbitrary vectors u and v such that }u}2 “ }v}2 “ 1, we

define the shorthand notation

πα,u “ πθ`αu, ϕβ,v “ πψ`βv.

According to [35][Lemma B.5],

ÿ

a

ˇ

ˇ

ˇ

ˇ

dπα,upa | sq

dα

ˇ

ˇ

ˇ

ˇ

ď 2,
ÿ

b

ˇ

ˇ

ˇ

ˇ

dϕβ,vpb | sq

dβ

ˇ

ˇ

ˇ

ˇ

ď 2,

ÿ

a,b

ˇ

ˇ

ˇ

ˇ

dπαpa | sq

dα

dϕβ,vpb | sq

dβ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

a

ˇ

ˇ

ˇ

ˇ

dπαpa | sq

dα

ˇ

ˇ

ˇ

ˇ

¸ ˜

ÿ

b

ˇ

ˇ

ˇ

ˇ

dϕβpb | sq

dβ

ˇ

ˇ

ˇ

ˇ

¸

ď 4.

Let P pα, β, u, vq P R|S||A||B|ˆ|S||A||B| denote the state-action transition matrix induced

by the policy pair pπα,u, ϕβ,vq

P pα, β, u, vqps,a,bqÑps1,a1,b1q “ Pps1
| s, a, bqπα,upa1

| s1
qϕβ,vpb

1
| s1

q.

Differentiating with respect to α and β,

„

d2P pα, β, u, vq

dαdβ

ȷ

ps,a,bqÑps1,a1,b1q

“
dπα,upa1 | s1q

dα

dϕβ,vpb
1 | s1q

dβ
Pps1

| s, a, bq,

which implies for any vector x

„

d2P pα, β, u, vq

dαdβ
x

ȷ

s,a,b

“
ÿ

s1,a1,b1

dπαpa1 | s1q

dα

dϕβ,vpb
1 | s1q

dβ
Pps1

| s, a, bqxs1,a1,b1 .

The ℓ8 norm of this quantity can be upper bounded

max
}u}2“}v}2“1

›

›

›

›

d2P pα, β, u, vq

dαdβ
x

›

›

›

›

8

178

“ max
s,a,b

max
}u}2“}v}2“1

ˇ

ˇ

ˇ

ˇ

ˇ

„

d2P pα, β, u, vq

dαdβ
x

ȷ

s,a,b

ˇ

ˇ

ˇ

ˇ

ˇ

“ max
s,a,b

max
}u}2“}v}2“1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1,a1,b1

dπαpa1 | s1q

dα

dϕβ,vpb
1 | s1q

dβ
Pps1

| s, a, bqxs1,a1,b1

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
s,a,b

ÿ

s1

Pps1
| s, a, bq}x}8 max

}u}2“}v}2“1

ÿ

a1,b1

ˇ

ˇ

ˇ

ˇ

dπαpa1 | s1q

dα

dϕβ,vpb
1 | s1q

dβ

ˇ

ˇ

ˇ

ˇ

ď 4}x}8. (C.41)

Using an identical argument, we can show that

max
}u}2“}v}2“1

›

›

›

›

dP pα, β, u, vq

dα
x

›

›

›

›

8

ď
ÿ

a

ˇ

ˇ

ˇ

ˇ

dπα,upa | sq

dα

ˇ

ˇ

ˇ

ˇ

}x}8 ď 2}x}8, (C.42)

max
}u}2“}v}2“1

›

›

›

›

dP pα, β, u, vq

dβ
x

›

›

›

›

8

ď
ÿ

b

ˇ

ˇ

ˇ

ˇ

dπβ,vpb | sq

dβ

ˇ

ˇ

ˇ

ˇ

}x}8 ď 2}x}8. (C.43)

With Mpα, β, u, vq “ pI ´ γP pα, β, u, vqq´1 and r “

rrps0, a0, b0q, ¨ ¨ ¨ , rps|S|, a|A|, b|B|qs,

Qπα,u,ϕβ,vps, a, bq “ eJ
s,a,bMpα, β, u, vqr.

Taking the derivatives,

dQπα,u,ϕβ,vps, a, bq

dα
“ γeJ

s,a,bMpα, β, u, vq
dP pα, β, u, vq

dα
Mpα, β, u, vqr,

dQπα,u,ϕβ,vps, a, bq

dβ
“ γeJ

s,a,bMpα, β, u, vq
dP pα, β, u, vq

dβ
Mpα, β, u, vqr.

Taking the second-order derivative,

d2Qπα,u,ϕβ,vps, a, bq

dαdβ

“ γ2eJ
s,a,bMpα, β, u, vq

dP pα, β, u, vq

dα
Mpα, β, u, vq

dP pα, β, u, vq

dβ
Mpα, β, u, vqr

` γ2eJ
s,a,bMpα, β, u, vq

dP pα, β, u, vq

dβ
Mpα, β, u, vq

dP pα, β, u, vq

dα
Mpα, β, u, vqr

179

` γeJ
s,a,bMpα, β, u, vq

d2P pα, β, u, vq

dαdβ
Mpα, β, u, vqr

UsingMpα, β, u, vq1 “ pI´γP pα, β, u, vqq´11 “ 1
1´γ

1 and inequalities Equation C.41

and Equation C.43, we have

max
}u}2“}v}2“1

ˇ

ˇ

ˇ

ˇ

dQπα,u,ϕβ,vps, a, bq

dα

ˇ

ˇ

ˇ

ˇ

ď}γMpα, β, u, vq
dP pα, β, u, vq

dα
Mpα, β, u, vqr}8 ď

2γ

p1 ´ γq2
,

max
}u}2“}v}2“1

ˇ

ˇ

ˇ

ˇ

dQπα,u,ϕβ,vps, a, bq

dβ

ˇ

ˇ

ˇ

ˇ

ď}γMpα, β, u, vq
dP pα, β, u, vq

dβ
Mpα, β, u, vqr}8 ď

2γ

p1 ´ γq2
,

and

max
}u}2“}v}2“1

ˇ

ˇ

ˇ

ˇ

d2Qπα,u,ϕβ,vps, a, bq

dαdβ

ˇ

ˇ

ˇ

ˇ

ď }γ2Mpα, β, u, vq
dP pα, β, u, vq

dα
Mpα, β, u, vq

dP pα, β, u, vq

dβ
Mpα, β, u, vqr}8

` }γ2Mpα, β, u, vq
dP pα, β, u, vq

dβ
Mpα, β, u, vq

dP pα, β, u, vq

dα
Mpα, β, u, vqr}8

` }γMpα, β, u, vq
d2P pα, β, u, vq

dαdβ
Mpα, β, u, vqr}8

ď
2γ2

p1 ´ γq3
`

4γ

p1 ´ γq2
.

Since V πα,u,ϕβ,vpsq “
ř

a,b πα,upa | sqϕβ,vpb | sqQπα,u,ϕβ,vps, a, bq,

d2V πα,u,ϕβ,vpsq

dαdβ
“

ÿ

a,b

dπα,upa | sq

dα

dϕβ,vpb | sq

dβ
Qπα,u,ϕβ,vps, a, bq

`
ÿ

a,b

πα,upa | sqϕβ,vpb | sq
d2Qπα,u,ϕβ,vps, a, bq

dαdβ

`
ÿ

a,b

dπα,upa | sq

dα
ϕβ,vpb | sq

dQπα,u,ϕβ,vps, a, bq

dβ

`
ÿ

a,b

πα,upa | sq
dϕβ,vpb | sq

dβ

dQπα,u,ϕβ,vps, a, bq

dα
.

180

Therefore,

max
}u}2“}v}2“1

ˇ

ˇ

ˇ

ˇ

dV πα,u,ϕβ,vpsq

dαdβ

ˇ

ˇ

ˇ

ˇ

ď
4

1 ´ γ
`

ˆ

2γ2

p1 ´ γq3
`

4γ

p1 ´ γq2

˙

` 2
4γ

p1 ´ γq2
ď

8

p1 ´ γq3
,

which implies

}∇θJpπθ, ϕψ1q ´ ∇θJpπθ, ϕψ2q} ď
8

p1 ´ γq3
}ψ1 ´ ψ2}.

Similarly, it follows by the same argument that

}∇ψJpπθ1 , ϕψq ´ ∇ψJpπθ2 , ϕψq} ď
8

p1 ´ γq3
}θ1 ´ θ2}.

[35][Lemma B.5] implies

}Jpπθ1 , ϕψ1q ´ Jpπθ2 , ϕψ2q} ď
2

p1 ´ γq2
p}θ1 ´ θ2} ` }ψ1 ´ ψ2}q, (C.44)

and we simply use 2
p1´γq2

ď LV .

C.2.6 Proof of Lemma C.2

We will prove the first two inequalities on the Lipschitz gradient of Hπ. The next two

inequalities are completely symmetric and can be derived using an identical argument.

[13][Lemma 14] implies

}∇θHπps, πθ1 , ϕψ1q ´ ∇θHπps, πθ2 , ϕψ1q} ď LH}θ1 ´ θ2},

181

so we just need to show

}∇θHπps, πθ1 , ϕψ1q ´ ∇θHπps, πθ1 , ϕψ2q} ď LH}ψ1 ´ ψ2},

}∇ψHπps, πθ1 , ϕψ1q ´ ∇ψHπps, πθ2 , ϕψ1q} ď LH}θ1 ´ θ2},

}∇ψHπps, πθ1 , ϕψ1q ´ ∇ψHπps, πθ1 , ϕψ2q} ď LH}ψ1 ´ ψ2}.

(C.45)

Given a fixed θ and ψ, with arbitrary vectors u and v such that }u}2 “ }v}2 “ 1, we

define the shorthand notation

πα,u “ πθ`αu, ϕβ,v “ πψ`βv.

Note that to show Equation C.45, it suffices to show for any u, v

ˇ

ˇ

ˇ

ˇ

d2Hπps, πα,u, ϕβ,vq

dαdβ

ˇ

ˇ

ˇ

ˇ

ď LH,

ˇ

ˇ

ˇ

ˇ

d2Hπps, πα,u, ϕβ,vq

dβ2

ˇ

ˇ

ˇ

ˇ

ď LH.

We define the state transition matrix P P R|S|ˆ|S| such that

P pα, β, u, vqsÑs1 “
ÿ

a,b

Pps1
| s, a, bqπα,upa | sqϕβ,vpb | sq.

LetMpα, β, u, vq “ pI´γP pα, β, u, vqq´1. Then, we can re-write Hπps, π, ϕq in the matrix

form

Hπps, π, ϕq “ eJ
sMpα, β, u, vqhα,u,

where hα,u “ rhα,ups0q, ¨ ¨ ¨ , hα,ups|S|qs P R|S| is a vector with

hα,upsq “ ´
ÿ

a

πα,upa | sq log πα,upa | sq.

182

According to [13][Lemma 14],

›

›

›

›

dhα,u
dα

›

›

›

›

8

ď 2 log |A|}u}2 “ 2 log |A|.

Taking the derivatives of Hπps, π, ϕq,

dHπps, πα,u, ϕβ,vq

dα

“ γeJ
sMpα, β, u, vq

dP pα, β, u, vq

dα
Mpα, β, u, vqhα,u ` eJ

sMpα, β, u, vq
dhα,u
dα

,

and taking second order derivative

d2Hπps, πα,u, ϕβ,vq

dαdβ

“ γ2eJ
sMpα, β, u, vq

dP pα, β, u, vq

dα
Mpα, β, u, vq

dP pα, β, u, vq

dβ
Mpα, β, u, vqhα,u

` γ2eJ
sMpα, β, u, vq

dP pα, β, u, vq

dβ
Mpα, β, u, vq

dP pα, β, u, vq

dα
Mpα, β, u, vqhα,u

` γeJ
sMpα, β, u, vq

d2P pα, β, u, vq

dαdβ
Mpα, β, u, vqhα,u

` γeJ
sMpα, β, u, vq

dP pα, β, u, vq

dβ
Mpα, β, u, vq

dhα,u
dα

.

Using a similar line of argument to [13][Eq. (192)-(195)] and analysis in Lemma C.1 of

our work, we can show that for any vector x

›

›

›

›

dP pα, β, u, vq

dα
x

›

›

›

›

8

ď 2}x}8,

›

›

›

›

dP pα, β, u, vq

dβ

›

›

›

›

8

ď 2}x}8,

›

›

›

›

d2P pα, β, u, vq

dαdβ

›

›

›

›

8

ď 4}x}8.

From the fact that }Mpα, β, u, vqx}8 ď 1
1´γ

}x}8, we have for any vectors u, v

ˇ

ˇ

ˇ

ˇ

d2Hπps, πα,u, ϕβ,vq

dαdβ

ˇ

ˇ

ˇ

ˇ

ď γ2
›

›

›

›

Mpα, β, u, vq
dP pα, β, u, vq

dα
Mpα, β, u, vq

dP pα, β, u, vq

dβ
Mpα, β, u, vqhα,u

›

›

›

›

183

` γ2
›

›

›

›

Mpα, β, u, vq
dP pα, β, u, vq

dβ
Mpα, β, u, vq

dP pα, β, u, vq

dα
Mpα, β, u, vqhα,u

›

›

›

›

` γ

›

›

›

›

Mpα, β, u, vq
d2P pα, β, u, vq

dαdβ
Mpα, β, u, vqhα,u

›

›

›

›

` γ

›

›

›

›

Mpα, β, u, vq
dP pα, β, u, vq

dβ
Mpα, β, u, vq

dhα,u
dα

›

›

›

›

ď
4γ2 log |A|

p1 ´ γq3
`

4γ2 log |A|

p1 ´ γq3
`

4γ log |A|

p1 ´ γq2
`

2γ

p1 ´ γq2
¨ 2 log |A|

ď
8 log |A|

p1 ´ γq3
.

Now it remains to be shown

ˇ

ˇ

ˇ

ˇ

d2Hπps, πα,u, ϕβ,vq

dβ2

ˇ

ˇ

ˇ

ˇ

ď LH.

From the eye of the second player, Hπps, πθ, ϕψq is simply the value function of a regular

MDP with itself as the only agent (the first player’s policy combines with P) with the reward

function rps, bq “ ´
ř

aPA πθpa | sq log πθpa | sq P r0, log |A|s. Therefore, by Lemma C.1

which is derived with reward bounded between 0 and 1, we know

ˇ

ˇ

ˇ

ˇ

d2Hπps, πα,u, ϕβ,vq

dβ2

ˇ

ˇ

ˇ

ˇ

ď log |A|LV ď LH.

To show the Lipschitz continuity, we note that

ˇ

ˇ

ˇ

ˇ

dHπps, πα,u, ϕβ,vq

dα

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

γeJ
sMpα, β, u, vq

dP pα, β, u, vq

dα
Mpα, β, u, vqhα,u ` eJ

sMpα, β, u, vq
dhα,u
dα

ˇ

ˇ

ˇ

ˇ

ď γ}Mpα, β, u, vq
dP pα, β, u, vq

dα
Mpα, β, u, vqhα,u} ` }Mpα, β, u, vq

dhα,u
dα

}

ď
4γ log |A|

p1 ´ γq2
`

2 log |A|

1 ´ γ
ď LH.

To show the Lipschitz continuity of Hπ with respect to ψ, we use the same argument

as above and note that from the eye of the second player, Hπps, πθ, ϕψq is simply the value

184

function of a regular MDP with itself as the only agent (the first player’s policy combines

with P) with the reward function rps, bq “ ´
ř

aPA πθpa | sq log πθpa | sq P r0, log |A|s.

Adapting Equation C.44, we have

ˇ

ˇ

ˇ

ˇ

dHπps, πα,u, ϕβ,vq

dβ

ˇ

ˇ

ˇ

ˇ

ď
2

p1 ´ γq2
¨ log |A| ď LH.

C.2.7 Proof of Lemma C.3

We first show that for any k̃ ą 0, we have 1
k̃a

´ 1
pk̃`1qa

ď 8
3pk̃`1qa`1 .

Since the integer k̃ is positive, it can be lower bound by k̃`1
2

.

1

k̃a
´

1

pk̃ ` 1qa

“
pk̃ ` 1qa ´ k̃a

k̃apk̃ ` 1qa
ď

2ppk̃ ` 1qa ´ k̃aq

pk̃ ` 1q2a
“

2ppk̃ ` 1qa ´ k̃aq
´

pk̃ ` 1q1´a ` k̃1´a
¯

pk̃ ` 1q2a
´

pk̃ ` 1q1´a ` k̃1´a
¯

ď

2ppk̃ ` 1qa ´ k̃aq
´

pk̃ ` 1q1´a ` k̃1´a
¯

pk̃ ` 1q2a
´

pk̃ ` 1q1´a ` 1
2
pk̃ ` 1q1´a

¯ “

4ppk̃ ` 1qa ´ k̃aq
´

pk̃ ` 1q1´a ` k̃1´a
¯

3pk̃ ` 1qa`1

“

4
´

pk̃ ` 1q ´ k̃apk̃ ` 1q1´a ` k̃1´apk̃ ` 1qa ´ k̃
¯

3pk̃ ` 1qa`1

“

4
´

1 ´ k̃apk̃ ` 1q1´a ` k̃1´apk̃ ` 1qa
¯

3pk̃ ` 1qa`1
ď

8

3pk̃ ` 1qa`1
,

where the last inequality follows from

k̃1´a
pk̃ ` 1q

a
´ k̃apk̃ ` 1q

1´a
ď pk̃ ` 1q

1´a
pk̃ ` 1q

a
´ k̃ak̃1´a

“ k̃ ` 1 ´ k̃ “ 1.

185

Choosing k̃ “ k ` h yields

1

pk ` hqa
´

1

pk ` 1 ` hqa
ď

8

3pk ` 1 ` hqa`1
ď

8

3pk ` hqa`1
.

C.2.8 Proof of Lemma C.4

The property of the min and max function implies that

max
s,a

pπ‹
τ pa | sq ´ πθkpa | sqq ` min

s,a
πθkpa | sq ě min

s,a
π‹
τ pa | sq.

Since the three terms are all non-negative, the inequality holds after taking the square

pmin
s,a

π‹
τ pa | sqq

2
ď pmax

s,a
pπ‹

τ pa | sq ´ πθkpa | sqq ` min
s,a

πθkpa | sqq
2

ď
4

3
pmin
s,a

πθkpa | sqq
2

` 4pmax
s,a

pπ‹
τ pa | sq ´ πθkpa | sqqq

2.

Re-arranging the terms,

´

ˆ

min
s,a

πθkpa | sq

˙2

ď ´
3

4

ˆ

min
s,a

π‹
τ pa | sq

˙2

` 3

ˆ

max
s,a

π‹
τ pa | sq ´ πϕkpa | sq

˙2

ď ´
3

4

ˆ

min
s,a

π‹
τ pa | sq

˙2

` 3}π‹
τ ´ πϕk}

2

From Lemma 4.1,

´

ˆ

min
s,a

πθkpa | sq

˙2

ď ´
3

4

ˆ

min
s,a

π‹
τ pa | sq

˙2

` 3}π‹
τ ´ πϕk}

2

ď ´
3

4

ˆ

min
s,a

π‹
τ pa | sq

˙2

`
6 logp2q

τρmin

pJτ pπ‹
τ , ϕ

‹
τ q ´ Jτ pπθk , ϕ

‹
τ qq

ď ´
3

4

ˆ

min
s,a

π‹
τ pa | sq

˙2

`
6 logp2q

τρmin

pJτ pπ‹
τ , ϕ

‹
τ q ´ Jτ pπθk , ϕτ pπθkqqq

186

“ ´
3

4

ˆ

min
s,a

π‹
τ pa | sq

˙2

`
6 logp2q

τρmin

δπk (C.46)

Since 3δπk ` δϕk ď p1 ´
αp1´γqτρ2minc

2

32|S|
qkp3δπ0 ` δϕ0 q ď 3δπ0 ` δϕ0 ď

ρminc
2

64 logp2q
, we have

δπk ď
ρminc

2

64 logp2q
. Then, Equation C.46 implies

´

ˆ

min
s,a

πθkpa | sq

˙2

ď ´
3

4

ˆ

min
s,a

π‹
τ pa | sq

˙2

`
6 logp2q

τρmin

δπk ď ´
3c2

4
`

3c2

32
ď ´

3c2

8
.

Similarly, the property of the min and max function implies that

max
s,b

pϕ‹
τ pb | sq ´ ϕψkpb | sqq ` min

s,b
ϕψkpb | sq ě min

s,b
ϕ‹
τ pb | sq.

Again, all three terms are non-negative, which means that the inequality is preserved after

taking the square

pmin
s,b

ϕ‹
τ pb | sqq

2
ď pmin

s,b
ϕψkpb | sq ` max

s,b
pϕ‹

τ pb | sq ´ ϕψkpb | sqqq
2

ď
4

3
pmin
s,b

ϕψkpb | sqq
2

` 4pmax
s,b

pϕ‹
τ pb | sq ´ ϕψkpb | sqqq

2,

which leads to

´pmin
s,b

ϕψkpb | sqq
2

ď ´
3

4
pmin
s,b

ϕ‹
τ pb | sqq

2
` 3pmax

s,b
pϕ‹

τ pb | sq ´ ϕψkpb | sqqq
2

ď ´
3

4
pmin
s,b

ϕ‹
τ pb | sqq

2
` 3}ϕ‹

τ ´ ϕψk}
2

ď ´
3

4
pmin
s,b

ϕ‹
τ pb | sqq

2
` 6}ϕτ pπθkq ´ ϕψk}

2
` 6}ϕ‹

τ ´ ϕτ pπθkq}
2.

(C.47)

From Lemma 4.1,

}ϕτ pπθkq ´ ϕψk}
2

ď
2 logp2q

τρmin

pJτ pπθk , ϕψkq ´ Jτ pπθk , ϕτ pπθkqqq “
2 logp2q

τρmin

δϕk , (C.48)

187

and

}ϕ‹
τ ´ ϕτ pπθkq}

2
ď

2 logp2q

τρmin

pJτ pπθk , ϕ
‹
τ q ´ Jτ pπθk , ϕτ pπθkqqq

ď
2 logp2q

τρmin

pJτ pπ‹
τ , ϕ

‹
τ q ´ Jτ pπθk , ϕτ pπθkqqq

“
2 logp2q

τρmin

δπk , (C.49)

Using Equation C.48 and Equation C.49 in Equation C.47,

´pmin
s,b

ϕψkpb | sqq
2

ď ´
3

4
pmin
s,b

ϕ‹
τ pb | sqq

2
` 6}ϕτ pπθkq ´ ϕψk}

2
` 6}ϕ‹

τ ´ ϕτ pπθkq}
2

ď ´
3

4
pmin
s,b

ϕ‹
τ pb | sqq

2
`

12 logp2q

τρmin

δϕk `
12 logp2q

τρmin

δπk

“ ´
3

4
pmin
s,b

ϕ‹
τ pb | sqq

2
`

12 logp2q

τρmin

pδπk ` δϕk q.

3δπk ` δϕk ď p1 ´
αp1´γqτρ2minc

2

32|S|
qkp3δπ0 ` δϕ0 q ď 3δπ0 ` δϕ0 ď

ρminc
2

64 logp2q
guarantees δπk ` δϕk ď

ρminc
2

32 logp2q
. Using this in the inequality above, we have

´pmin
s,b

ϕψkpb | sqq
2

ď ´
3

4
pmin
s,b

ϕ‹
τ pb | sqq

2
`

12 logp2q

τρmin

pδπk ` δϕk q ď ´
3c2

4
`

3c2

8
ď ´

3c2

8
.

C.2.9 Proof of Lemma C.5

From Lemma 4.4, for any ψ P R|S|ˆ|B|

Jτ pπθ2 , ϕψq´Jτ pπθ2 , ϕτ pπθ2qqď
|S|

2τρmin pmins,a ϕψpa | sqq
2

›

›

›

›

›

d
πθ2 ,ϕτ pπθ2 q

ρ

d
πθ2 ,ϕψ
ρ

›

›

›

›

›

8

}∇ψJτ pπθ2 , ϕψq}
2

ď
|S|

2τp1 ´ γq pmins,a ϕψpa | sqq
2 }∇ψJτ pπθ2 , ϕψq}

2,

188

where the second inequality follows by an argument similar to Equation C.34. Letting ψ be

the parameter that parameterizes ϕτ pπθ1q, we have

Jτ pπθ2 , ϕτ pπθ1qq ´ Jτ pπθ2 , ϕτ pπθ2qq

ď
|S|

2τp1 ´ γq pmins,a ϕτ pπθ1qpa | sqq
2 }∇ψJτ pπθ2 , ϕτ pπθ1qq}

2

“
|S|

2τp1 ´ γq pmins,a ϕτ pπθ1qpa | sqq
2 }∇ψJτ pπθ2 , ψ

‹
ρ,τ pπθ1qq ´ ∇ψJτ pπθ1 , ψ

‹
ρ,τ pπθ1qq}

2

ď
L2|S|

2τp1 ´ γq pmins,a ϕτ pπθ1qpa | sqq
2 }θ1 ´ θ2}

2,

where the last inequality follows from the fact that for any θ1, θ2 P R|S|ˆ|A|, ψ1, ψ2 P R|S|ˆ|B|

}∇ψJτ pπθ1 , ϕψ1q ´ ∇ψJτ pπθ2 , ϕψ2q} ď }∇ψJpπθ1 , ϕψ1q ´ ∇ψJpπθ2 , ϕψ2q}

` τ}∇ψHπps, πθ1 , ϕψ1q ´ ∇ψHπps, πθ2 , ϕψ2q}

` τ}∇ψHϕps, πθ1 , ϕψ1q ´ ∇ψHϕps, πθ2 , ϕψ2q}

ď Lp}θ1 ´ θ2} ` }ψ1 ´ ψ2}q, (C.50)

which is a result of Lemmas C.1 and C.2.

By Lemma 4.1, we also have

Jτ pπθ2 , ϕτ pπθ1qq ´ Jτ pπθ2 , ϕτ pπθ2qq ě
τρmin

2 logp2q
}ϕτ pπθ1q ´ ϕτ pπθ2q}

2.

Combining the two inequalities and re-arranging the terms, we have

}ϕτ pπθ1q ´ ϕτ pπθ2q} ď

a

|S| logp2qL
a

p1 ´ γqρminτ pmins,a ϕτ pπθ1qpa | sqq
}θ1 ´ θ2}. (C.51)

Therefore, by Equation C.3,

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk`1
, ϕτ pπθk`1

qq}

189

ď L}θk ´ θk`1} ` L}ϕτ pπθkq ´ ϕτ pπθk`1
q}

ď L

˜

1 `

a

|S| logp2qL
a

p1 ´ γqρminτ pmins,a ϕτ pπθkqpa | sqq

¸

}θk ´ θk`1}

Due to the Danskin’s Theorem Equation C.2, this implies that we can perform the

expansion

Jτ pπθk , ϕτ pπθkqq ´ Jτ pπθk`1
, ϕτ pπθk`1

qq

ď ´x∇θJτ pπθk , ϕτ pπθkqq, θk`1 ´ θky

`
L

2

˜

1 `

a

|S| logp2qL
a

p1 ´ γqρminτ pmins,a ϕτ pπθkqpa | sqq

¸

}θk`1 ´ θk}
2

ď ´αkx∇θJτ pπθk , ϕτ pπθkqq,∇θJτ pπθk , ϕψkqy

`
Lα2

k

2

˜

1 `

a

|S| logp2qL
a

p1 ´ γqρminτ pmins,a ϕτ pπθkqpa | sqq

¸

}∇θJτ pπθk , ϕψkq}
2. (C.52)

Note that by the property of the min function

min
s,a

ϕτ pπθkqpa | sq ě min
s,a

ϕ‹
τ pa | sq ´ max

s,a
pϕ‹

τ pa | sq ´ ϕτ pπθkqpa | sqq

ě min
s,a

ϕ‹
τ pa | sq ´ }ϕ‹

τ ´ ϕτ pπθkq}

ě c ´

d

2 logp2q

τρmin

pδπk ` δϕk q, (C.53)

where the last inequality uses the same argument as in Equation C.58. Since Equation C.23

implies δπk ` δϕk ď
ρminc

2τ
64 logp2qpk`1q1{3 , we further have

min
s,a

ϕτ pπθkqpa | sq ě c ´

d

2 logp2q

τρmin

pδπk ` δϕk q ě cp1 ´

c

1

32
q ě

c
a

logp2q

2
.

Using this bound in Equation C.52,

Jτ pπθk , ϕτ pπθkqq ´ Jτ pπθk`1
, ϕτ pπθk`1

qq

190

ď ´αkx∇θJτ pπθk , ϕτ pπθkqq,∇θJτ pπθk , ϕψkqy

`
Lα2

k

2

˜

1 `

a

|S| logp2qL
a

p1 ´ γqρminτ pmins,a ϕτ pπθ1qpa | sqq

¸

}∇θJτ pπθk , ϕψkq}
2

ď ´αkx∇θJτ pπθk , ϕτ pπθkqq,∇θJτ pπθk , ϕψkqy

`
Lα2

k

2

˜

1 `
2
a

|S|L
a

p1 ´ γqρminτc

¸

}∇θJτ pπθk , ϕψkq}
2, (C.54)

With the step size choice αk ď

ˆ

L `
2
?

|S|L2

?
p1´γqρminτc

˙´1

, we get

Jτ pπθk , ϕτ pπθkqq ´ Jτ pπθk`1
, ϕτ pπθk`1

qq

ď ´αkx∇θJτ pπθk , ϕτ pπθkqq,∇θJτ pπθk , ϕψkqy

`
Lα2

k

2

˜

1 `
2
a

|S|L
a

p1 ´ γqρminτc

¸

}∇θJτ pπθk , ϕψkq}
2

ď ´αkx∇θJτ pπθk , ϕτ pπθkqq,∇θJτ pπθk , ϕψkqy

`
αk
2

}∇θJτ pπθk , ϕψkq}
2

“
αk
2

}∇θJτ pπθk , ϕτ pπθkqq ´ ∇θJτ pπθk , ϕψkq}
2

´ }∇θJτ pπθk , ϕτ pπθkqq}
2.

C.2.10 Proof of Lemma C.6

The property of the min and max function implies that

max
s,a

pπ‹
τk

pa | sq ´ πθkpa | sqq ` min
s,a

πθkpa | sq ě min
s,a

π‹
τk

pa | sq.

Since the three terms are all non-negative, the inequality holds after taking the square

pmin
s,a

π‹
τk

pa | sqq
2

ď pmax
s,a

pπ‹
τk

pa | sq ´ πθkpa | sqq ` min
s,a

πθkpa | sqq
2

191

ď
4

3
pmin
s,a

πθkpa | sqq
2

` 4pmax
s,a

pπ‹
τk

pa | sq ´ πθkpa | sqqq
2.

Re-arranging the terms,

´

ˆ

min
s,a

πθkpa | sq

˙2

ď ´
3

4

ˆ

min
s,a

π‹
τk

pa | sq

˙2

` 3

ˆ

max
s,a

π‹
τk

pa | sq ´ πϕkpa | sq

˙2

ď ´
3

4

ˆ

min
s,a

π‹
τk

pa | sq

˙2

` 3}π‹
τk

´ πϕk}
2

From Lemma 4.1,

´

ˆ

min
s,a

πθkpa | sq

˙2

ď ´
3

4

ˆ

min
s,a

π‹
τk

pa | sq

˙2

` 3}π‹
τk

´ πϕk}
2

ď ´
3

4

ˆ

min
s,a

π‹
τk

pa | sq

˙2

`
6 logp2q

τkρmin

pJτkpπ‹
τk
, ϕ‹

τk
q ´ Jτkpπθk , ϕ

‹
τk

qq

ď ´
3

4

ˆ

min
s,a

π‹
τk

pa | sq

˙2

`
6 logp2q

τkρmin

pJτkpπ‹
τk
, ϕ‹

τk
q ´ Jτkpπθk , ϕτkpπθkqqq

“ ´
3

4

ˆ

min
s,a

π‹
τk

pa | sq

˙2

`
6 logp2q

τkρmin

δπk , (C.55)

Since 3δπk ` δϕk ď
ρτkc

2

64 logp2q
, we have δπk ď

ρτkc
2

64 logp2q
, which along with Equation C.55

implies

´

ˆ

min
s,a

πθkpa | sq

˙2

ď ´
3

4

ˆ

min
s,a

π‹
τk

pa | sq

˙2

`
6 logp2q

τkρmin

δπk ď ´
3c2

4
`

3c2

32
ď ´

3c2

8
.

Similarly, the property of the min and max function implies that

max
s,b

pϕ‹
τk

pb | sq ´ ϕψkpb | sqq ` min
s,b

ϕψkpb | sq ě min
s,b

ϕ‹
τk

pb | sq.

Again, all three terms are non-negative, which means that the inequality is preserved after

taking the square

pmin
s,b

ϕ‹
τk

pb | sqq
2

ď pmin
s,b

ϕψkpb | sq ` max
s,b

pϕ‹
τk

pb | sq ´ ϕψkpb | sqqq
2

192

ď
4

3
pmin
s,b

ϕψkpb | sqq
2

` 4pmax
s,b

pϕ‹
τk

pb | sq ´ ϕψkpb | sqqq
2,

which leads to

´pmin
s,b

ϕψkpb | sqq
2

ď ´
3

4
pmin
s,b

ϕ‹
τk

pb | sqq
2

` 3pmax
s,b

pϕ‹
τk

pb | sq ´ ϕψkpb | sqqq
2

ď ´
3

4
pmin
s,b

ϕ‹
τk

pb | sqq
2

` 3}ϕ‹
τk

´ ϕψk}
2

ď ´
3

4
pmin
s,b

ϕ‹
τk

pb | sqq
2

` 6}ϕτkpπθkq ´ ϕψk}
2

` 6}ϕ‹
τk

´ ϕτkpπθkq}
2.

(C.56)

From Lemma 4.1,

}ϕτkpπθkq ´ ϕψk}
2

ď
2 logp2q

τkρmin

pJτkpπθk , ϕψkq ´ Jτkpπθk , ϕτkpπθkqqq “
2 logp2q

τkρmin

δϕk , (C.57)

and

}ϕ‹
τk

´ ϕτkpπθkq}
2

ď
2 logp2q

τkρmin

`

Jτkpπθk , ϕ
‹
τk

q ´ Jτkpπθk , ϕτkpπθkqq
˘

ď
2 logp2q

τkρmin

´

`

Jτkpπθk , ϕ
‹
τk

q ´ Jτkpπθk , ϕψkq
˘

`
`

Jτkpπθk , ϕψkq ´ Jτkpπθk , ϕτkpπθkqq
˘

looooooooooooooooooooomooooooooooooooooooooon

δϕk

¯

“
2 logp2q

τkρmin

´

`

Jτkpπθk , ϕ
‹
τk

q´Jτkpπθk , ϕτkpπθkqq
˘

` pJτkpπθk , ϕτkpπθkqq´Jτkpπθk , ϕψkqq ` δϕk

¯

ď
2 logp2q

τkρmin

´

Jτkpπθk , ϕ
‹
τk

q ´ Jτkpπθk , ϕτkpπθkqq ` δϕk

¯

ď
2 logp2q

τkρmin

´

Jτkpπ‹
τk
, ϕ‹

τk
q ´ Jτkpπθk , ϕτkpπθkqq ` δϕk

¯

“
2 logp2q

τkρmin

´

δπk ` δϕk

¯

, (C.58)

where the third inequality follows from Jτkpπθk , ϕτkpπθkqq ´ Jτkpπθk , ϕψkq ď 0.

193

Using Equation C.57 and Equation C.58 in Equation C.56,

´pmin
s,b

ϕψkpb | sqq
2

ď ´
3

4
pmin
s,b

ϕ‹
τk

pb | sqq
2

` 6}ϕτkpπθkq ´ ϕψk}
2

` 6}ϕ‹
τk

´ ϕτkpπθkq}
2

ď ´
3

4
pmin
s,b

ϕ‹
τk

pb | sqq
2

`
12 logp2q

τkρmin

δϕk `
12 logp2q

τkρmin

pδπk ` δϕk q

“ ´
3

4
pmin
s,b

ϕ‹
τk

pb | sqq
2

`
12 logp2q

τkρmin

pδπk ` 2δϕk q.

3δπk ` δϕk ď
ρτkc

2

64 logp2q
implies that δπk ` 2δϕk ď

ρτkc
2

32 logp2q
. Using this in the inequality above,

´pmin
s,b

ϕψkpb | sqq
2

ď ´
3

4
pmin
s,b

ϕ‹
τk

pb | sqq
2

`
12 logp2q

τkρmin

pδπk ` 2δϕk q ď ´
3c2

4
`

12c2

32
ď ´

3c2

8
.

C.2.11 Proof of Lemma C.7

From Lemma 4.4, for any ψ P R|S|ˆ|B|

Jτkpπθ2 , ϕψq ´ Jτkpπθ2 , ϕτkpπθ2qq

ď
|S|

2τkρmin pmins,a ϕψpa | sqq
2

›

›

›

›

›

d
πθ2 ,ϕτk pπθ2 q

ρ

d
πθ2 ,ϕψ
ρ

›

›

›

›

›

8

}∇ψJτkpπθ2 , ϕψq}
2

ď
|S|

2τkp1 ´ γq pmins,a ϕψpa | sqq
2 }∇ψJτkpπθ2 , ϕψq}

2,

where the second inequality follows by an argument similar to Equation C.34. Letting ψ be

the parameter that parameterizes ϕτkpπθ1q and defining Lk “ LHp2τk ` 1q, we have

Jτkpπθ2 , ϕτkpπθ1qq ´ Jτkpπθ2 , ϕτkpπθ2qq

ď
|S|

2τkp1 ´ γq pmins,a ϕτkpπθ1qpa | sqq
2 }∇ψJτkpπθ2 , ϕτkpπθ1qq}

2

“
|S|

2τkp1 ´ γq pmins,a ϕτkpπθ1qpa | sqq
2 }∇ψJτkpπθ2 , ψ

‹
ρ,τk

pπθ1qq ´ ∇ψJτkpπθ1 , ψ
‹
ρ,τk

pπθ1qq}
2

194

ď
L2
k|S|

2τkp1 ´ γq pmins,a ϕτkpπθ1qpa | sqq
2 }θ1 ´ θ2}

2,

where the last inequality uses the same argument as Equation C.50.

By Lemma 4.1, we also have

Jτkpπθ2 , ϕτkpπθ1qq ´ Jτkpπθ2 , ϕτkpπθ2qq ě
τkρmin

2 logp2q
}ϕτkpπθ1q ´ ϕτkpπθ2q}

2.

Combining the two inequalities and re-arranging the terms, we have

}ϕτkpπθ1q ´ ϕτkpπθ2q} ď

a

|S| logp2qLk
a

p1 ´ γqρminτk pmins,a ϕτkpπθ1qpa | sqq
}θ1 ´ θ2}. (C.59)

Therefore, by Equation C.3,

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk`1
, ϕτkpπθk`1

qq}

ď Lk}θk ´ θk`1} ` Lk}ϕτkpπθkq ´ ϕτkpπθk`1
q}

ď Lk

˜

1 `

a

|S| logp2qLk
a

p1 ´ γqρminτk pmins,a ϕτkpπθkqpa | sqq

¸

}θk ´ θk`1}

Due to the Danskin’s Theorem Equation C.2, this implies that we can perform the

expansion

Jτkpπθk , ϕτkpπθkqq ´ Jτkpπθk`1
, ϕτkpπθk`1

qq

ď ´x∇θJτkpπθk , ϕτkpπθkqq, θk`1 ´ θky

`
Lk
2

˜

1 `

a

|S| logp2qLk
a

p1 ´ γqρminτk pmins,a ϕτkpπθkqpa | sqq

¸

}θk`1 ´ θk}
2

ď ´αkx∇θJτkpπθk , ϕτkpπθkqq,∇θJτkpπθk , ϕψkqy

`
Lkα

2
k

2

˜

1 `

a

|S| logp2qLk
a

p1 ´ γqρminτk pmins,a ϕτkpπθkqpa | sqq

¸

}∇θJτkpπθk , ϕψkq}
2.

(C.60)

195

Note that by the property of the min function

min
s,a

ϕτkpπθkqpa | sq ě min
s,a

ϕ‹
τk

pa | sq ´ max
s,a

pϕ‹
τk

pa | sq ´ ϕτkpπθkqpa | sqq

ě min
s,a

ϕ‹
τk

pa | sq ´ }ϕ‹
τk

´ ϕτkpπθkq}

ě c ´

d

2 logp2q

τkρmin

pδπk ` δϕk q, (C.61)

where the last inequality uses the same argument as in Equation C.58. Since Equation C.23

implies δπk ` δϕk ď
ρminc

2τ0
64 logp2qpk`1q1{3 , we further have

min
s,a

ϕτkpπθkqpa | sq ě c ´

d

2 logp2q

τkρmin

pδπk ` δϕk q ě cp1 ´

c

1

32
q ě

c
a

logp2q

2
.

Using this bound in Equation C.60,

Jτkpπθk , ϕτkpπθkqq ´ J
πθk`1

,ϕτk pπθk`1
q

τk pρq

ď ´αkx∇θJτkpπθk , ϕτkpπθkqq,∇θJτkpπθk , ϕψkqy

`
Lkα

2
k

2

˜

1 `

a

|S| logp2qLk
a

p1 ´ γqρminτk pmins,a ϕτkpπθ1qpa | sqq

¸

}∇θJτkpπθk , ϕψkq}
2

ď ´αkx∇θJτkpπθk , ϕτkpπθkqq,∇θJτkpπθk , ϕψkqy

`
Lkα

2
k

2

˜

1 `
2
a

|S|Lk
a

p1 ´ γqρminτkc

¸

}∇θJτkpπθk , ϕψkq}
2

ď ´αkx∇θJτkpπθk , ϕτkpπθkqq,∇θJτkpπθk , ϕψkqy `
α2
k

2

ˆ

Lk `
C2L

2
k

τk

˙

}∇θJτkpπθk , ϕψkq}
2.

(C.62)

The condition on h, which is α0

h2{3 ď p2LH ` 4L2
HC2q τ0

h1{3 ` pLH ` 4L2
HC2q `

L2
HC2h1{3

τ0
,

can be equivalently expressed as α0

´

L0 `
C2L2

0

τ0

¯

ď 1. Since αk decays faster than τk, this

196

guarantees for all k ě 0

αk

ˆ

Lk `
C2L

2
k

τk

˙

ď 1.

Using this inequality in Equation C.62, we get

Jτkpπθk , ϕτkpπθkqq ´ Jτkpπθk`1
, ϕτkpπθk`1

qq

ď ´αkx∇θJτkpπθk , ϕτkpπθkqq,∇θJτkpπθk , ϕψkqy `
αk
2

}∇θJτkpπθk , ϕψkq}
2

“
αk
2

`

}∇θJτkpπθk , ϕτkpπθkqq ´ ∇θJτkpπθk , ϕψkq}
2

´ }∇θJτkpπθk , ϕτkpπθkqq}
2
˘

.

C.3 Experiment Details

We first discuss the design of the completely mixed Markov game. The dimension of state

space is 2, and so is the dimension of the action spaces of both players. Using s1, s2 to denote

the two states, we can essentially describe P as a 2ˆ 2ˆ 2ˆ 2 tensor where Pps1 | s, ¨, ¨q is

a 2 ˆ 2 matrix for any s, s1 P S with rows corresponding to the action of the first player and

columns corresponding to the second player

Pps1 | s1, ¨, ¨q “

»

—

–

0.2 0.5

0.5 0.1

fi

ffi

fl

, Pps2 | s1, ¨, ¨q “

»

—

–

0.8 0.5

0.5 0.9

fi

ffi

fl

,

Pps1 | s2, ¨, ¨q “

»

—

–

0.3 0.2

0.6 0.2

fi

ffi

fl

, Pps2 | s2, ¨, ¨q “

»

—

–

0.7 0.8

0.4 0.8

fi

ffi

fl

.

Similarly, the reward function can be described by a 2 ˆ 2 ˆ 2 tensor where rps, ¨, ¨q is

a 2 ˆ 2 matrix for any s P S with rows corresponding to the action of the first player and

197

columns corresponding to the second player

rps1, ¨, ¨q “

»

—

–

1 2

2 1

fi

ffi

fl

, rps2, ¨, ¨q “

»

—

–

6 4

3 10

fi

ffi

fl

.

Under the initial distribution ρ “ r0.5, 0.5sJ and discount factor γ “ 0.9, the (approxi-

mate) Nash equilibrium of this Markov game is

π‹
p¨ | s1q “ r0.812, 0.188s, π‹

p¨ | s2q “ r0.837, 0.163s,

ϕ‹
p¨ | s1q “ r0.880, 0.120s, ϕ‹

p¨ | s2q “ r0.597, 0.403s.

To design the Markov game that does not observe Assumption 4.2, we use the same

transition probability matrices as in the completely mixed Markov game case. The reward

function is

rps1, ¨, ¨q “

»

—

–

1 2

3 4

fi

ffi

fl

, rps2, ¨, ¨q “

»

—

–

1 2

3 4

fi

ffi

fl

.

Under the initial distribution ρ “ r0.5, 0.5sJ and discount factor γ “ 0.9, it can be easily

seen that the Nash equilibrium of this Markov game is unique and is

π‹
p¨ | s1q “ r0, 1s, π‹

p¨ | s2q “ r0, 1s,

ϕ‹
p¨ | s1q “ r1, 0s, ϕ‹

p¨ | s2q “ r1, 0s.

Since the Nash equilibrium consists of a pair of deterministic policies, Assumption 4.2 is

not satisfied in this case.

198

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[3] OpenAI, C. Berner, G. Brockman, B. Chan, et al., “Dota 2 with large scale deep
reinforcement learning,” 2019. arXiv: 1912.06680.

[4] C. Yu, J. Liu, and S. Nemati, “Reinforcement learning in healthcare: A survey,”
arXiv preprint arXiv:1908.08796, 2019.

[5] A. Esteva et al., “A guide to deep learning in healthcare,” Nature medicine, vol. 25,
no. 1, pp. 24–29, 2019.

[6] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274,
2013.

[7] T. Haarnoja et al., Soft actor-critic algorithms and applications, available at: https:
//arxiv.org/abs/1812.05905, 2019.

[8] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile
robot navigation via inverse reinforcement learning,” The International Journal of
Robotics Research, vol. 35, no. 11, pp. 1289–1307, 2016.

[9] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using deep reinforce-
ment learning,” in 2017 IEEE international conference on robotics and automation
(ICRA), IEEE, 2017, pp. 3357–3364.

[10] A. Anwar and A. Raychowdhury, “Autonomous navigation via deep reinforcement
learning for resource constraint edge nodes using transfer learning,” IEEE Access,
vol. 8, pp. 26 549–26 560, 2020.

[11] J. Bhandari and D. Russo, “Global optimality guarantees for policy gradient meth-
ods,” arXiv preprint arXiv:1906.01786, 2019.

[12] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Optimality and approxima-
tion with policy gradient methods in markov decision processes,” ser. Proceedings
of Machine Learning Research, vol. 125, 2020, pp. 64–66.

199

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905

[13] J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans, “On the global convergence
rates of softmax policy gradient methods,” in International Conference on Machine
Learning, PMLR, 2020, pp. 6820–6829.

[14] L. Espeholt et al., “IMPALA: Scalable distributed deep-RL with importance
weighted actor-learner architectures,” ser. Proceedings of Machine Learning Re-
search, vol. 80, 2018, pp. 1407–1416.

[15] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van Hasselt,
“Multi-task deep reinforcement learning with popart,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 3796–3803.

[16] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated reinforcement learning: Techniques,
applications, and open challenges,” arXiv preprint arXiv:2108.11887, 2021.

[17] K. Ovchinnikov, A. Semakova, and A. Matveev, “Decentralized multi-agent tracking
of unknown environmental level sets by a team of nonholonomic robots,” in 2014 6th
International Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT), IEEE, 2014, pp. 352–359.

[18] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent op-
timization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
2009.

[19] K. I. Tsianos and M. G. Rabbat, “Distributed strongly convex optimization,” in
2012 50th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), IEEE, 2012, pp. 593–600.

[20] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient methods,” IEEE
Transactions on Automatic Control, vol. 59, no. 5, pp. 1131–1146, 2014.

[21] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient
descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[22] T. Lin, C. Jin, and M. Jordan, “On gradient descent ascent for nonconvex-concave
minimax problems,” in International Conference on Machine Learning, PMLR,
2020, pp. 6083–6093.

[23] T. Lin, C. Jin, and M. I. Jordan, “Near-optimal algorithms for minimax optimization,”
in Conference on Learning Theory, PMLR, 2020, pp. 2738–2779.

[24] Y. Wang and J. Li, “Improved algorithms for convex-concave minimax optimization,”
Advances in Neural Information Processing Systems, vol. 33, pp. 4800–4810, 2020.

200

[25] D. M. Ostrovskii, A. Lowy, and M. Razaviyayn, “Efficient search of first-order nash
equilibria in nonconvex-concave smooth min-max problems,” SIAM Journal on
Optimization, vol. 31, no. 4, pp. 2508–2538, 2021.

[26] C. Jin, P. Netrapalli, and M. Jordan, “What is local optimality in nonconvex-
nonconcave minimax optimization?” In International Conference on Machine Learn-
ing, PMLR, 2020, pp. 4880–4889.

[27] M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn, “Solving a class
of non-convex min-max games using iterative first order methods,” arXiv preprint
arXiv:1902.08297, 2019.

[28] J. Yang, N. Kiyavash, and N. He, “Global convergence and variance-reduced opti-
mization for a class of nonconvex-nonconcave minimax problems,” arXiv preprint
arXiv:2002.09621, 2020.

[29] C. Daskalakis, D. J. Foster, and N. Golowich, “Independent policy gradient methods
for competitive reinforcement learning,” Advances in neural information processing
systems, vol. 33, pp. 5527–5540, 2020.

[30] H. H. Zhuo, W. Feng, Y. Lin, Q. Xu, and Q. Yang, “Federated deep reinforcement
learning,” arXiv preprint arXiv:1901.08277, 2019.

[31] C. Nadiger, A. Kumar, and S. Abdelhak, “Federated reinforcement learning for
fast personalization,” in 2019 IEEE Second International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE), IEEE, 2019, pp. 123–127.

[32] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial reinforce-
ment learning,” in International Conference on Machine Learning, PMLR, 2017,
pp. 2817–2826.

[33] S. Li, Y. Wu, X. Cui, H. Dong, F. Fang, and S. Russell, “Robust multi-agent rein-
forcement learning via minimax deep deterministic policy gradient,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 4213–4220.

[34] S. Zeng, T. T. Doan, and J. Romberg, “A two-time-scale stochastic optimization
framework with applications in control and reinforcement learning,” arXiv preprint
arXiv:2109.14756, 2021.

[35] S. Zeng, M. A. Anwar, T. T. Doan, A. Raychowdhury, and J. Romberg, “A decentral-
ized policy gradient approach to multi-task reinforcement learning,” in Uncertainty
in Artificial Intelligence, PMLR, 2021, pp. 1002–1012.

201

[36] S. Zeng, T. T. Doan, and J. Romberg, “Finite-time analysis of decentralized stochas-
tic approximation with applications in multi-agent and multi-task learning,” in IEEE
Conference on Decision and Control (CDC), IEEE, 2021, pp. 2641–2646.

[37] S. Zeng, T. T. Doan, and J. Romberg, “Finite-time convergence rates of decentralized
stochastic approximation with applications in multi-agent and multi-task learning,”
IEEE Transactions on Automatic Control, 2022.

[38] S. Zeng, T. T. Doan, and J. Romberg, “Finite-time complexity of online primal-dual
natural actor-critic algorithm for constrained markov decision processes,” in 2022
IEEE 61st Conference on Decision and Control (CDC), IEEE, 2022, pp. 4028–4033.

[39] S. Zeng, T. T. Doan, and J. Romberg, “Regularized gradient descent ascent for
two-player zero-sum markov games,” in Advances in Neural Information Processing
Systems, 2022.

[40] S. Zeng, A. Kody, Y. Kim, K. Kim, and D. K. Molzahn, “A reinforcement learning
approach to parameter selection for distributed optimal power flow,” Electric Power
Systems Research, vol. 212, p. 108 546, 2022.

[41] V. S. Borkar and S. P. Meyn, “The ODE method for convergence of stochastic
approximation and reinforcement learning,” SIAM Journal on Control and Optimiza-
tion, vol. 38, no. 2, pp. 447–469, 2000.

[42] V. R. Konda and J. N. Tsitsiklis, “Convergence rate of linear two-time-scale stochas-
tic approximation,” The Annals of Applied Probability, vol. 14, no. 2, pp. 796–819,
2004.

[43] G. Dalal, G. Thoppe, B. Szörényi, and S. Mannor, “Finite sample analysis of two-
timescale stochastic approximation with applications to reinforcement learning,” in
COLT, 2018.

[44] G. Dalal, B. Szorenyi, and G. Thoppe, “A tale of two-timescale reinforcement
learning with the tightest finite-time bound,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, pp. 3701–3708, Apr. 2020.

[45] T. T. Doan and J. Romberg, “Linear two-time-scale stochastic approximation a
finite-time analysis,” in 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2019, pp. 399–406.

[46] H. Gupta, R. Srikant, and L. Ying, “Finite-time performance bounds and adaptive
learning rate selection for two time-scale reinforcement learning,” in Advances in
Neural Information Processing Systems, 2019.

202

[47] M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai, “Finite time analysis
of linear two-timescale stochastic approximation with Markovian noise,” in Pro-
ceedings of Thirty Third Conference on Learning Theory, vol. 125, 2020, pp. 2144–
2203.

[48] A. Mokkadem and M. Pelletier, “Convergence rate and averaging of nonlinear two-
time-scale stochastic approximation algorithms,” The Annals of Applied Probability,
vol. 16, no. 3, pp. 1671–1702, 2006.

[49] T. T. Doan, “Finite-time convergence rates of nonlinear two-time-scale stochastic
approximation under Markovian noise,” arXiv:2104.01627, 2021.

[50] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Annals
of operations research, vol. 153, no. 1, pp. 235–256, 2007.

[51] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-critic,”
arXiv:2007.05170, 2020.

[52] T. Chen, Y. Sun, Q. Xiao, and W. Yin, “A single-timescale method for stochastic
bilevel optimization,” in International Conference on Artificial Intelligence and
Statistics, PMLR, 2022, pp. 2466–2488.

[53] M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient descent: Al-
gorithms for minimizing compositions of expected-value functions,” Mathematical
Programming, vol. 161, no. 1, pp. 419–449, 2017.

[54] T. Chen, Y. Sun, and W. Yin, “Solving stochastic compositional optimization is
nearly as easy as solving stochastic optimization,” IEEE Transactions on Signal
Processing, vol. 69, pp. 4937–4948, 2021.

[55] S. Qiu, Z. Yang, J. Ye, and Z. Wang, “On finite-time convergence of actor-critic
algorithm,” IEEE Journal on Selected Areas in Information Theory, 2021.

[56] H. Kumar, A. Koppel, and A. Ribeiro, “On the sample complexity of actor-critic
method for reinforcement learning with function approximation,” Machine Learning,
pp. 1–35, 2023.

[57] T. Xu, Z. Wang, and Y. Liang, “Non-asymptotic convergence analysis of two time-
scale (natural) actor-critic algorithms,” arXiv:2005.03557, 2020.

[58] Y. Wu, W. Zhang, P. Xu, and Q. Gu, “A finite time analysis of two time-scale actor
critic methods,” arXiv preprint arXiv:2005.01350, 2020.

203

[59] S.-i. Amari, “Backpropagation and stochastic gradient descent method,” Neurocom-
puting, vol. 5, no. 4-5, pp. 185–196, 1993.

[60] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik,
“Sgd: General analysis and improved rates,” in International Conference on Machine
Learning, PMLR, 2019, pp. 5200–5209.

[61] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local sgd on identi-
cal and heterogeneous data,” in International Conference on Artificial Intelligence
and Statistics, PMLR, 2020, pp. 4519–4529.

[62] A. Ruszczyński, “A linearization method for nonsmooth stochastic programming
problems,” Mathematics of Operations Research, vol. 12, no. 1, pp. 32–49, 1987.

[63] S. Boyd and A. Mutapcic, “Stochastic subgradient methods,” Lecture Notes for
EE364b, Stanford University, 2008.

[64] A. Ruszczyński, “Convergence of a stochastic subgradient method with averaging
for nonsmooth nonconvex constrained optimization,” Optimization Letters, vol. 14,
no. 7, pp. 1615–1625, 2020.

[65] Z. Chen, S. Zhang, T. T. Doan, J.-P. Clarke, and S. Theja Maguluri, “Finite-sample
analysis of nonlinear stochastic approximation with applications in reinforcement
learning,” arXiv e-prints, arXiv–1905, 2019.

[66] T. Sun, Y. Sun, and W. Yin, “On markov chain gradient descent,” Advances in neural
information processing systems, vol. 31, 2018.

[67] S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for sarsa with linear function
approximation,” Advances in neural information processing systems, vol. 32, 2019.

[68] D. Bertsekas, Dynamic programming and optimal control: Volume I. Athena scien-
tific, 2012, vol. 1.

[69] B. Gravell, P. M. Esfahani, and T. Summers, “Learning optimal controllers for
linear systems with multiplicative noise via policy gradient,” IEEE Transactions on
Automatic Control, vol. 66, no. 11, pp. 5283–5298, 2020.

[70] Z. Yang, Y. Chen, M. Hong, and Z. Wang, “On the global convergence of actor-
critic: A case for linear quadratic regulator with ergodic cost,” arXiv preprint
arXiv:1907.06246, 2019.

[71] V. R. Konda, “Actor-critic algorithms,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2002.

204

[72] A. Barakat, P. Bianchi, and J. Lehmann, “Analysis of a target-based actor-critic
algorithm with linear function approximation,” in International Conference on
Artificial Intelligence and Statistics, PMLR, 2022, pp. 991–1040.

[73] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, “Fast global convergence of natural
policy gradient methods with entropy regularization,” Operations Research, 2021.

[74] R. S. Sutton, C. Szepesvári, and H. R. Maei, “A convergent o (n) algorithm for off-
policy temporal-difference learning with linear function approximation,” Advances
in neural information processing systems, vol. 21, no. 21, pp. 1609–1616, 2008.

[75] R. S. Sutton et al., “Fast gradient-descent methods for temporal-difference learning
with linear function approximation,” in Proceedings of the 26th Annual International
Conference on Machine Learning, 2009, pp. 993–1000.

[76] T. Xu, S. Zou, and Y. Liang, “Two time-scale off-policy td learning: Non-asymptotic
analysis over markovian samples,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[77] P. Karmakar and S. Bhatnagar, “Two time-scale stochastic approximation with
controlled markov noise and off-policy temporal-difference learning,” Mathematics
of Operations Research, vol. 43, no. 1, pp. 130–151, 2018.

[78] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times. American
Mathematical Society, 2006.

[79] S. Zeng, T. T. Doan, and J. Romberg, “Connected superlevel set in (deep) re-
inforcement learning and its application to minimax theorems,” arXiv preprint
arXiv:2303.12981, 2023.

[80] B. T. Polyak, “Introduction to optimization. translations series in mathematics and
engineering.,” Optimization Software, Inc, New York, 1987.

[81] S. Lojasiewicz, “A topological property of real analytic subsets,” Coll. du CNRS,
Les équations aux dérivées partielles, vol. 117, pp. 87–89, 1963.

[82] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition,” in Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases, Springer,
2016, pp. 795–811.

[83] C. Liu, L. Zhu, and M. Belkin, “Toward a theory of optimization for over-
parameterized systems of non-linear equations: The lessons of deep learning,”
arXiv:2003.00307, 2020.

205

[84] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, “Global convergence of policy gra-
dient methods for the linear quadratic regulator,” arXiv preprint arXiv:1801.05039,
2018.

[85] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, Gradient surgery
for multi-task learning, available at: https://arxiv.org/abs/2001.06782, 2020.

[86] A. A. Rusu et al., “Policy distillation,” arXiv preprint arXiv:1511.06295, 2015.

[87] R. Traoré et al., “Discorl: Continual reinforcement learning via policy distillation,”
arXiv preprint arXiv:1907.05855, 2019.

[88] L. T. Liu, U. Dogan, and K. Hofmann, “Decoding multitask dqn in the world of
minecraft,” in The 13th European Workshop on Reinforcement Learning (EWRL)
2016, 2016.

[89] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant
feature spaces to transfer skills with reinforcement learning,” arXiv preprint
arXiv:1703.02949, 2017.

[90] C. DEramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters, “Sharing knowledge
in multi-task deep reinforcement learning,” in Eighth International Conference on
Learning Representations (ICLR 2020), 2020.

[91] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in Inter-
national conference on machine learning, 2016, pp. 1928–1937.

[92] A. Nair, P. Srinivasan, S. Blackwell, et al., “Massively parallel methods for deep
reinforcement learning,” Jul. 2015.

[93] M. Assran, J. Romoff, N. Ballas, J. Pineau, and M. Rabbat, “Gossip-based actor-
learner architectures for deep reinforcement learning,” in Advances in Neural Infor-
mation Processing Systems, 2019, pp. 13 320–13 330.

[94] J. X. Wang et al., “Learning to reinforcement learn,” arXiv preprint
arXiv:1611.05763, 2016.

[95] A. Nagabandi et al., “Learning to adapt in dynamic, real-world environments through
meta-reinforcement learning,” arXiv preprint arXiv:1803.11347, 2018.

[96] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized multi-
agent reinforcement learning with networked agents,” ser. Proceedings of Machine
Learning Research, vol. 80, 2018, pp. 5872–5881.

206

https://arxiv.org/abs/2001.06782

[97] K. Zhang, Z. Yang, and T. Başar, Multi-agent reinforcement learning: A selective
overview of theories and algorithms, available at: https://arxiv.org/abs/1911.10635,
2019.

[98] T. Chu, S. Chinchali, and S. Katti, “Multi-agent reinforcement learning for net-
worked system control,” in International Conference on Learning Representations
(ICLR), 2020.

[99] G. Qu and N. L. A. Wierman, Scalable reinforcement learning of localized policies
for multi-agent networked systems, available at: https://arxiv.org/abs/1912.02906,
2019.

[100] T. T. Doan, S. T. Maguluri, and J. Romberg, “Finite-time performance of distributed
temporal-difference learning with linear function approximation,” SIAM Journal on
Mathematics of Data Science, vol. 3, no. 1, pp. 298–320, 2021.

[101] D. Ding, X. Wei, Z. Yang, Z. Wang, and M. Jovanović, Fast multi-agent temporal-
difference learning via homotopy stochastic primal-dual optimization, available at:
https://arxiv.org/abs/1908.02805, 2019.

[102] W. Li, B. Jin, X. Wang, J. Yan, and H. Zha, F2a2: Flexible fully-decentralized ap-
proximate actor-critic for cooperative multi-agent reinforcement learning, available
at: https://arxiv.org/abs/2004.11145, 2020.

[103] H.-T. Wai, Z. Yang, Z. Wang, and M. Hong, “Multi-agent reinforcement learning
via double averaging primal-dual optimization,” in Annual Conference on Neural
Information Processing Systems, 2018, pp. 9672–9683.

[104] S. Kar, J. M. F. Moura, and H. V. Poor, “Qd-learning: A collaborative distributed
strategy for multi-agent reinforcement learning through consensus + innovations,”
IEEE Trans. Signal Processing, vol. 61, pp. 1848–1862, 2013.

[105] D. Lee, N. He, P. Kamalaruban, and V. Cevher, Optimization for reinforcement
learning: From single agent to cooperative agents, available at: https://arxiv.org/
abs/1912.00498, 2019.

[106] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st. USA: John Wiley & Sons, Inc., 1994.

[107] A. Olshevsky, “Linear time average consensus on fixed graphs,” IFAC-PapersOnLine,
vol. 48, no. 22, pp. 94–99, 2015.

[108] “Https://icsrl.ece.gatech.edu/pedra,”

207

https://arxiv.org/abs/1911.10635
https://arxiv.org/abs/1912.02906
https://arxiv.org/abs/1908.02805
https://arxiv.org/abs/2004.11145
https://arxiv.org/abs/1912.00498
https://arxiv.org/abs/1912.00498

[109] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real
image,” arXiv preprint arXiv:1611.04201, 2016.

[110] E. Altman, Constrained Markov decision processes. Chapman and Hall/CRC Press,
1999, vol. 7.

[111] S. Paternain, L. F. Chamon, M. Calvo-Fullana, and A. Ribeiro, “Constrained rein-
forcement learning has zero duality gap,” arXiv preprint arXiv:1910.13393, 2019.

[112] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, “Natural policy gradient primal-dual
method for constrained markov decision processes,” Advances in Neural Information
Processing Systems, vol. 33, pp. 8378–8390, 2020.

[113] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Optimality and approxima-
tion with policy gradient methods in markov decision processes,” in Conference on
Learning Theory, PMLR, 2020, pp. 64–66.

[114] M. Lanctot et al., “Openspiel: A framework for reinforcement learning in games,”
arXiv preprint arXiv:1908.09453, 2019.

[115] O. Vinyals et al., “Grandmaster level in StarCraft II using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[116] M. Riedmiller and T. Gabel, “On experiences in a complex and competitive gaming
domain: Reinforcement learning meets RoboCup,” in 2007 IEEE Symposium on
Computational Intelligence and Games, IEEE, 2007, pp. 17–23.

[117] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, reinforcement
learning for autonomous driving,” arXiv preprint arXiv:1610.03295, 2016.

[118] C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng, “Training gans with optimism,”
arXiv preprint arXiv:1711.00141, 2017.

[119] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the gap between
value and policy based reinforcement learning,” Advances in neural information
processing systems, vol. 30, 2017.

[120] G. Neu, A. Jonsson, and V. Gómez, “A unified view of entropy-regularized markov
decision processes,” arXiv preprint arXiv:1705.07798, 2017.

[121] G. Lan, “Policy mirror descent for reinforcement learning: Linear convergence, new
sampling complexity, and generalized problem classes,” Mathematical programming,
pp. 1–48, 2022.

208

[122] S. Cen, Y. Wei, and Y. Chi, “Fast policy extragradient methods for competitive
games with entropy regularization,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

[123] J. Perolat, B. Scherrer, B. Piot, and O. Pietquin, “Approximate dynamic program-
ming for two-player zero-sum markov games,” in International Conference on
Machine Learning, PMLR, 2015, pp. 1321–1329.

[124] Y. Bai and C. Jin, “Provable self-play algorithms for competitive reinforcement
learning,” in International Conference on Machine Learning, PMLR, 2020, pp. 551–
560.

[125] Q. Xie, Y. Chen, Z. Wang, and Z. Yang, “Learning zero-sum simultaneous-move
markov games using function approximation and correlated equilibrium,” in Confer-
ence on Learning Theory, PMLR, 2020, pp. 3674–3682.

[126] M. O. Sayin, F. Parise, and A. Ozdaglar, “Fictitious play in zero-sum stochastic
games,” SIAM Journal on Control and Optimization, vol. 60, no. 4, pp. 2095–2114,
2022.

[127] T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien, “Reducing noise in
gan training with variance reduced extragradient,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[128] A. Mokhtari, A. Ozdaglar, and S. Pattathil, “A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach,”
in International Conference on Artificial Intelligence and Statistics, PMLR, 2020,
pp. 1497–1507.

[129] C. J. Li et al., “On the convergence of stochastic extragradient for bilinear games
using restarted iteration averaging,” in International Conference on Artificial Intelli-
gence and Statistics, PMLR, 2022, pp. 9793–9826.

[130] C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo, “Last-iterate convergence of decen-
tralized optimistic gradient descent/ascent in infinite-horizon competitive markov
games,” in Conference on Learning Theory, PMLR, 2021, pp. 4259–4299.

[131] Y. Zhao, Y. Tian, J. D. Lee, and S. S. Du, “Provably efficient policy gradient methods
for two-player zero-sum markov games,” arXiv preprint arXiv:2102.08903, 2021.

[132] Z. Chen, S. Ma, and Y. Zhou, “Sample efficient stochastic policy extragradient
algorithm for zero-sum markov game,” in International Conference on Learning
Representations, 2021.

209

[133] L. S. Shapley, “Stochastic games,” Proceedings of the national academy of sciences,
vol. 39, no. 10, pp. 1095–1100, 1953.

[134] D. Ying, Y. Ding, and J. Lavaei, “A dual approach to constrained markov decision
processes with entropy regularization,” in International Conference on Artificial
Intelligence and Statistics, PMLR, 2022, pp. 1887–1909.

[135] R. D. McKelvey and T. R. Palfrey, “Quantal response equilibria for normal form
games,” Games and economic behavior, vol. 10, no. 1, pp. 6–38, 1995.

[136] T. Raghavan, “Completely mixed games and M-matrices,” Linear Algebra and its
Applications, vol. 21, no. 1, pp. 35–45, 1978.

[137] I. Kaplansky, “A contribution to von neumann’s theory of games. ii,” Linear algebra
and its applications, vol. 226, pp. 371–373, 1995.

[138] P. Das, T. Parthasarathy, and G. Ravindran, “On completely mixed stochastic games,”
arXiv preprint arXiv:1703.04619, 2017.

[139] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[140] S. Mhanna, A. C. Chapman, and G. Verbic, “Component-based dual decomposition
methods for the OPF problem,” Sustainable Energy, Grids and Networks, vol. 16,
pp. 91–110, 2018.

[141] B. He, H. Yang, and S. Wang, “Alternating direction method with self-adaptive
penalty parameters for monotone variational inequalities,” Journal of Optimization
Theory and Applications, vol. 106, no. 2, pp. 337–356, 2000.

[142] Z. Xu, M. Figueiredo, and T. Goldstein, “Adaptive ADMM with spectral penalty
parameter selection,” in 20th International Conference on Artificial Intelligence and
Statistics, PMLR, 2017, pp. 718–727.

[143] S. Mhanna, G. Verbic, and A. C. Chapman, “Adaptive ADMM for distributed AC
optimal power flow,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2025–
2035, 2019.

[144] X. Chen, G. Qu, Y. Tang, S. Low, and N. Li, “Reinforcement learning for
decision-making and control in power systems: Tutorial, review, and vision,”
arXiv:2102.01168, 2021.

[145] T. Chen et al., “Learning to optimize: A primer and a benchmark,” Journal of
Machine Learning Research, vol. 23, no. 189, pp. 1–59, 2022.

210

[146] M. Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,”
in Advances in Neural Information Processing Systems (NIPS), 2016, pp. 3981–
3989.

[147] D. Biagioni, P. Graf, X. Zhang, A. S. Zamzam, K. Baker, and J. King, “Learning-
accelerated ADMM for distributed DC optimal power flow,” IEEE Control Systems
Letters, vol. 6, pp. 1–6, 2022.

[148] P. Graf et al., “Distributed reinforcement learning with ADMM-RL,” in American
Control Conference (ACC), 2019, pp. 4159–4166.

[149] X. Xie, J. Wu, G. Liu, Z. Zhong, and Z. Lin, “Differentiable linearized ADMM,” in
International Conference on Machine Learning (ICML), PMLR, 2019, pp. 6902–
6911.

[150] J. Ichnowski et al., “Accelerating quadratic optimization with reinforcement learn-
ing,” Advances in Neural Information Processing Systems (NIPS), 2021.

[151] F. Li and Y. Du, “From AlphaGo to power system AI: What engineers can learn
from solving the most complex board game,” IEEE Power and Energy Magazine,
vol. 16, no. 2, pp. 76–84, 2018.

[152] L. Duchesne, E. Karangelos, and L. Wehenkel, “Recent developments in machine
learning for energy systems reliability management,” Proceedings of the IEEE,
vol. 108, no. 9, pp. 1656–1676, 2020.

[153] J. Giesen and S. Laue, “Distributed convex optimization with many convex con-
straints,” arXiv preprint arXiv:1610.02967, 2016.

[154] Y. Tang and S. Agrawal, “Discretizing continuous action space for on-policy opti-
mization,” in Proceedings of the aaai conference on artificial intelligence, vol. 34,
2020, pp. 5981–5988.

[155] R. Zimmerman, C. Murillo-Sánchez, and R. Thomas, “MATPOWER: Steady-state
operations, planning, and analysis tools for power systems research and education,”
IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, Feb. 2011.

[156] S. Khodadadian, T. T. Doan, J. Romberg, and S. T. Maguluri, “Finite sample analysis
of two-time-scale natural actor-critic algorithm,” IEEE Transactions on Automatic
Control, 2022.

[157] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement
learning,” in ICML, vol. 2, 2002, pp. 267–274.

211

[158] P. Bernhard and A. Rapaport, “On a theorem of danskin with an application to a the-
orem of von neumann-sion,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 24, no. 8, pp. 1163–1181, 1995.

212

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction and Background
	Introduction
	Related Literature
	Contribution

	2 | Two-Time-Scale Stochastic Optimization and Its Applications in Actor-Critic Algorithms
	Introduction
	Related Works
	Two-Time-Scale Stochastic Gradient Descent Algorithm
	Applications to Actor-Critic Algorithms
	Technical Assumptions
	Finite-Time and Finite-Sample Complexity of Two-Time-Scale SGD
	Conclusion

	3 | Multi-Agent Multi-Task Reinforcement Learning
	Related Works
	Average-Performance Multi-Task Reinforcement Learning Formulation
	Structure in Multi-Task Reinforcement Learning
	Decentralized Policy Gradient Algorithm
	Convergence Analysis
	Achieving Global Optimality
	Experimental Results
	Constrained Multi-Task Reinforcement Learning
	Conclusion & Future Directions

	4 | A Direct Policy Optimization Approach to Two-Player Zero-Sum Markov Games
	Introduction
	Related Works
	Preliminaries
	Solving Regularized Markov Games
	Main Results - Solving the Original Markov Game
	Numerical Simulations
	Future Directions

	5 | Accelerating Power System Optimization with Reinforcement Learning
	Related Works
	Preliminaries
	Reinforcement Learning Algorithm Design
	Numerical Experiments
	Future Directions

	6 | Conclusion
	A | Supplementary Material for Results in Chapter 2
	Analysis Decomposition and Proof of Main Theorem
	Proof of Additional Lemmas

	B | Supplementary Material for Results in Chapter 3
	Computation Details of Examples in 3.3
	Lipschitz, Gradient Lipschitz, and Hessian Lipschitz Constants
	Proof of Theorems
	Proof of Propositions
	Proof of Additional Lemmas

	C | Supplementary Material for Results in Chapter 4
	Proof of Theorems and Corollaries
	Proof of Lemmas
	Experiment Details

	References

