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ABSTRACT 
         In this paper we report on the fabrication, 
characterization and analysis of high efficiency planar 
screen-printed solar cells with high sheet resistance 

emitter ~ 100 Ω/square. Three single crystalline materials 
were used in this study including; boron doped 
magnetically stabilized Cz (MCz), gallium-doped Cz 
(GaCz) and float zone (FZ). For these three materials, a 
wide range of resistivities was investigated including Fz - 

0.6-4.1 Ω-cm, MCz - 1.2-5.3 Ω-cm and Ga-Cz 2.6-33 Ω-
cm. Energy conversion efficiencies of 17.7% were 

achieved on both Fz (0.6-Ω-cm) and MCz (1.2-Ω-cm) 
while 16.9% was obtained on GaCz silicon material. The 
17.7% efficiency achieved on these two materials is the 
highest energy conversion efficiency reported on a planar 
screen-printed silicon solar cell. These results 
demonstrate the importance of high sheet resistance 
emitter in achieving high efficiency manufacturable solar 
cells.

INTRODUCTION

        Screen-printing is a simple, rapid, and cost-effective 
method for forming contacts for solar cells. The majority of 
commercial silicon solar cells today are made by screen-

printed contacts on 30-55 Ω/sq. emitters, rather than on 

90-100 Ω/sq. shallow emitters, to avoid high contact 
resistance and junction shunting. Heavy doping in the 
emitter results in reduced short-wavelength response and 
higher emitter saturation current density (Joe), which 
reduces the cell performance. However, the cell 
performance can be enhanced by the use of a higher 
sheet-resistance emitter, provided an effective emitter-
surface-passivation is achieved. PC1D model calculations 
reveal that high sheet resistance emitter induced 
performance enhancement is a function of base resistivity, 
front and back surface recombination velocities, and bulk 
lifetime. For example, if the front surface recombination 
velocity (FSRV) is very high (>1x10

5
 cm/s), then the high 

sheet resistance emitter under-performs the conventional 
low sheet resistance homogeneous emitter cell. 

         The use of high sheet resistance emitter for high-
efficiency cells can be performed in two ways; the 
selective emitter with heavy doping only beneath the grid 

and 70-100 Ω/sq sheet resistance between the grid, and 
the homogeneously diffused high sheet resistance (70-100 

Ω/sq) emitter. The former decouples the recombination 
under the metal contacts and results in a reduction of the 
overall saturation current density (Jo) of the cell. This can 
be implemented by (i) selectively printing a phosphorus 
diffusion paste [1, 2], (ii) self-aligned plasma-etch back 

using screen-printed gridlines as masks [3] and (iii) self-
aligned screen printed gridlines using self-doping Ag paste 
[4-5].

         The use of homogeneously diffused high sheet 

resistance emitter (70 -100 Ω/sq) requires the modification 
of the front contact paste composition and fast firing of the 
screen-printed contacts in IR or RTP furnaces. Hilali et al. 
[6-8], demonstrated, for the first time a 4 cm

2
, textured 

screen-printed solar cells with efficiency >18% on 

homogeneously diffused 100 Ω/sq. emitter. The >16% 
EFG reported by Rohatgi et al [9] and >17% on Ga-doped 

Cz, textured, [10] screen-printed solar cells with 100 Ω/sq
emitter used the optimized firing scheme as in [6].  In this 
study we (i) investigate the impact of base resistivity on 
the performance of screen-printed planar solar cells in 
conjunction with high and low sheet resistance emitters, 
and  (ii) quantify the contribution of high sheet resistance 
emitter to efficiency enhancement through analysis of light 
and dark I-V, and internal quantum efficiency.  

EXPERIMENTS

          In this study, the screen-printed n
+
-p-p

+
 cells (4 cm

2
)

were fabricated on single-crystalline silicon using Ag paste 
(CN33-455 from Ferro Corporation) and optimized firing 

condition [5] on 100 Ω/sq. emitters as well as 45 Ω/sq

emitters widely used. P-type 0.6 - 33 Ω-cm, 300-µm-thick 
(100) float-zone, B-doped magnetic Cz and Ga-doped Cz 
substrates were used for all the experiments. The wafers 
were chemically cleaned followed by POCl3 diffusion to 

form the n
+
 (100 Ω/sq) emitters. The diffusion temperature 

used for the 45 Ω/sq emitter was 877
o
C while that for the 

100 Ω/sq emitter was 842
o
C. After the phosphorus glass 

removal and post diffusion clean, the low frequency (50 
KHz) PECVD SiNx AR coating was deposited on the 
emitters. Next, the Al paste was screen-printed on the 
backside and dried at 200

o
C.  The Ag grid was then 

screen-printed on top of the SiNx film and Ag and Al 
contacts were co-fired in a lamp-heated belt furnace. The 
cells were then isolated using a dicing saw and annealed 
in forming gas at 400

o
C for ~20 min. No surface texturing 

was used in these cells. In addition to the 100 Ω/sq emitter 

cells, conventional cells with 45 Ω/sq emitter were also 
fabricated using the same co-firing scheme for the Ag and 
Al contacts.

RESULTS AND DISCUSSION 

Efficiency dependence on sheet resistance emitter 
and material resistivity 
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Fig. 2: The short circuit current density on cells with 
high and low sheet resistance emitters versus 
material and resistivity.

35.5

36.8

35.9
36.1

36.4

35.4
35.6

35.5

34.5

35.3

34.8

35.6

36.2

34.0

34.9
35.2

33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

0.6 4.1 1.2 4.8 5.25 2.6 4.2 33

Material and Resistivity (Ω-cm)

S
h

o
rt

 c
ir

c
u

it
 c

u
rr

e
n

t 
d

e
n

s
it

y
 (

m
A

/c
m

2
)

High sheet resistance emitters

Low sheet resistance emitters

B-doped B-doped MCZ Ga-doped CZ

645

636

641

635

626

622
624

627

636

628

634

628

617
619 619

625

616

621

626

631

636

641

646

651

0.6 4.1 1.2 4.8 5.25 2.6 4.2 33

Material and Resistivity (Ω-cm)

O
p

e
n

 C
ir

c
u

it
 V

o
lt

a
g

e
 (

m
V

)

High sheet resistance emitters

Low sheet resistance emitters

B-doped B-doped MCZ Ga-doped CZ

Fig. 3: The open circuit voltage on cells with high 
and low sheet resistance emitters versus material 
and resistivity.
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Fig. 1: Comparison of efficiency on cells with 
high and low sheet resistance emitters as a 
function of material and resistivity

        Fig. 1 shows the efficiencies of solar cells fabricated 
with high and low sheet resistance emitters on the three 
(Fz, MCz and GaCz) single crystalline silicon materials. 
For these three materials, a wide range of resistivities was 
used including Fz, MCz and GaCz. On all the three 
materials, the cell efficiencies with high sheet resistance 
emitters out perform those cells fabricated with low sheet 
resistance emitters. This efficiency advantage for the cells 
fabricated with high sheet resistance emitters is due to 
0.2-1.6 mA/cm

2
 boosts in Jsc, which is due to better blue 

response and improved surface passivation on the 100 

Ω/sq.

         

PC1D model calculations reveal that high sheet resistance 
emitter induced performance enhancement is a function of 
base resistivity, front and back surface recombination 
velocities, and bulk lifetime. For example, if the front 
surface recombination velocity (FSRV) is very high 
(>1x10

5
 cm/s), then the high sheet resistance emitter 

under-performs the conventional low sheet resistance 
homogeneous emitter cell. However, if the FSRV is 
approximately 10000 cm/s the high sheet resistance 
emitter gives at least a 0.6% (absolute) increase in cell 
efficiency. The efficiency difference of 0.6-0.9% between 
the high and low sheet resistance emitter cells fabricated 

on Fz (0.6 Ω-cm) and MCz (1.2-Ω-cm) very well match this 
theoretical prediction.  

Short circuit current density as a function of emitter 
sheet resistance and resistivity 

         Fig. 2 shows the short circuit current density as a 
function of the materials resistivity with respect to emitter 
sheet resistance. The short circuit current density in each 
group of materials depends on the base resistivity as well 
as the emitter sheet resistance. The higher the base 
resistivity and emitter sheet resistance, the higher the 
short-circuit current density. This dependence can be 
attributed to lower FSRV (recombination in the emitter or 
Joe) values as the emitter sheet resistance increases. 

Open circuit voltage as a function of sheet resistance 
emitter and material resistivity. 

       The open circuit voltage is lower in higher resistivity 
(Fig. 3) materials than in materials with lower resistivity. 
This trend, however, is reversed in GaCz material. From 
PC1D calculation, the Job (base leakage current density) 

for the 2.6 and 4.2 Ω-cm Ga-doped materials should be 

about the same and higher for resistivities >10 Ω-cm. 
Furthermore, there is a 5-9 mV difference in open circuit 
voltage difference between cells with high and low sheet 
resistance emitters. This Voc improvement on is attributed 
to the lower values of the saturation current density in the 
cells with high sheet resistance emitters.  

Fill factor dependence on material resistivity and 
emitter sheet resistance. 

       Fig. 4 compares the fill factors on the cells with low 
sheet high sheet resistance emitters. Cells with low sheet 
resistance emitters give higher fill factors than cells with 
high sheet resistance emitters. This indicates that the 
silver paste used to fabricate these two set of cells 
requires further optimization in order to obtain low contact 
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resistance on both set of sheet resistance emitters with a 
single firing step. Also, the fill factor decreases as the 
emitter sheet resistance and the material resistivity 
increase.

Internal Quantum efficiency analysis  

        Fig. 5 shows the internal quantum efficiency (IQE) for 
the best cell, one each, from the three groups of materials. 
The high sheet resistance emitter cells give better short 

wavelength response compared to the 45 Ω/sq emitter 
cells. At short wavelength (370 nm) the IQE value of 82% 

for MCz (1.2-Ω-cm), 84% for FZ (0.6-Ω-cm) and 87% for 

GaCz (33-Ω-cm) are measured. The long wavelength 

response at 990 nm is 89% for the MCz (1.2-Ω-cm), 84% 

for Fz (0.6-Ω-cm) and GaCz (33-Ω-cm) cells with high 
sheet resistance emitters.  

       FSRV and BSRV values, for the three cells, were 
extracted by matching the measured short and long 
wavelength response with the PC1D calculated response. 
From this calculation, the front surface recombination 
velocity (FSRV) and the bulk lifetime are found to be quite 
similar. However, the back surface recombination velocity 

was different according to material resistivity. BSRV 
values of 135 cm/s, 200 cm/s and 640 cm/s were 
extracted, respectively, for the GaCz, MCz and Fz cells. 

Although the BSRV for the Fz (0.6-Ω-cm) material is about 

three times that of the MCz (1.2-Ω-cm) cell, the 
efficiencies are the same because of the 4 mV Voc and 1% 
FF advantages. 

        To ensure that the emitter sheet resistance is not too 
high, we carried out a PC1D calculation for emitter sheet 

resistance ranging from 70-100 Ω/sq. Fig. 6 is the results 
of PC1D model calculation. According to the calculation, 

going from emitter sheet resistance of 70 Ω/sq to 100 Ω/sq
improves the cell efficiency by only 0.1%.  This calculation, 
however, did not take into account the change in FSRV as 
the emitter sheet resistance changes. More work is 
required in the emitter sheet resistance optimization where 
the spreading resistance of the actual emitters is used in 
PC1D calculation.  

CONCLUSION

         We have modeled, fabricated and analyzed planar 
screen-printed solar cells on three single crystalline silicon 
materials. These three materials include; boron doped 
magnetically-stabilized Cz (MCz), gallium doped Cz 
(GaCz) and FZ. A wide range of resistivities was 

investigated including; Fz with resistivity of 0.6-4.1 Ω-cm,

MCz with resistivity of 1.2-5.3 Ω-cm and GaCz with 

resistivity of 2.6-33 Ω-cm. A simple cell process sequence 
involving emitter formation using POCl3, Al BSF, PECVD 
SiNx AR coating, and belt furnace co-firing of front and 
back screen-printed contacts. This resulted in very high 

post process lifetimes (>500 µs at 1E15 cm
3
 injection 

level). Both high and low sheet emitter resistance cells 
were fabricated and their performance compared and 
contrasted.

         The cells fabricated on low resistivity (0.6 Ω-cm) Fz 
exhibited the highest open circuit voltage of 645 mV while 
the high resistivity GaCz showed the lowest Voc (627 mV). 
The fill factors and short-circuit current densities, 
respectively, ranged from 75.7 to 77.4% and 35.6 to 35.9 

Fig. 4: Comparison of FF on cells with high and low 
sheet resistance emitters as a function of material 
and resistivity.

Fig 6: PC1D modeling of the cell for different emitter 
sheet resistance for a fixed FSRV. 

Fig. 5: Internal quantum efficiency of the three highest
efficiency planar screen-printed solar cells with high 
sheet resistance emitters.
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mA/cm
2
 for the GaCz with resistivity of 33 Ω-cm and MCz 

with resistivity of 1.2 Ω-cm. Independently confirmed 
energy conversion efficiencies of 17.7% were achieved on 

both Fz (0.6-Ω-cm) and MCz (1.2-Ω-cm) while 16.9% was 
obtained on GaCz silicon material. The 17.7% efficiency, 
to the best of our knowledge, achieved on these two 
materials is the highest energy conversion efficiency ever 
reported on a planar screen-printed silicon solar cell with 
only single antireflection coating.  

         IQE data coupled with PC-1D analysis showed a 
marked difference in the back surface recombination 
velocity (BSRV) for the three cells: 135 cm/s, 200 cm/s 
and 640 cm/s, respectively, for GaCz, MCz and Fz.  The 
FSRV values are comparable in all the three cells despite 
the different base resistivity. This is the evidence of high 
quality surface passivation which led to short circuit 
current density of >35 mA/cm

2
 on the three cells with high 

sheet resistance emitters.  The results presented in this 
work demonstrate the importance of high sheet resistance 
emitter in achieving high efficiency manufacturable solar 
cells.  It should be noted that surface texturing in 
conjunction with high sheet resistance emitter could 
enhance this efficiency. The efficiency value as high as 
18.8%, independently confirmed by NREL, has been 

achieved on textured 0.6 and 1.2 Ω-cm float zone silicon. 
The full report on this is presented in this conference [11].  
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