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Value is a peculiar construct.  It can be defined subjectively, or defined by markets.  Its 

meaning bends to context when invoked to define risk, personal belief, or monetary 

worth.  One uniquely insightful way to define value is to consider that which is sacrificed 

to acquire a resource: The opportunities missed, the assets traded, the old goods discarded 

to make room for the new.  This dissertation is dedicated to all that lay in the wake of this 

document that may better characterize the value of the following pages than the words 

that fill them. 

  



 v 

ACKNOWLEDGEMENTS 

I am grateful for the experiences I have gathered working with a diverse and 

talented array of scholars on this and other related projects.  I would especially like to 

thank Dr. Rick Thomas, the chair of my committee.  This work would not have been 

possible without his guidance or the investment he has made in my development as a 

scientific thinker.  I want to express my gratitude to my committee members, Dr. Jamie 

Gorman, Dr. Christopher Hertzog, Dr. Dobromir Rahnev, and Dr. Karen Feigh, for the 

patience and insight they have afforded me throughout every stage of this project. 

I would like to offer special thanks to Dr. William Shadish, who, although no 

longer with us, inspired and encouraged me to pursue my current path.  



 vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS v 

LIST OF TABLES viii 

LIST OF FIGURES ix 

SUMMARY x 

CHAPTER 1. INTRODUCTION 1 
1.1 Statement of the Problem 1 
1.2 Research questions 2 

1.2.1 What is the nature of the relation between hypothesis generation and test 

preferences? 3 
1.2.2 Are decisions to terminate testing behavior related to belief states? 3 

1.2.3 Are decisions to terminate hypothesis testing sensitive to the same ecological 

factors that influence general cognitive search? 4 

1.3 Significance of the study 5 

CHAPTER 2. LITERATURE REVIEW 7 
2.1 Hypothesis Testing 7 

2.2 Information Utility 9 
2.3 General Cognitive Search 14 

2.3.1 Animal Foraging. 15 

2.3.2 Memory search. 19 

2.4 Hypothesis Generation 26 
2.5 Hypothesis-Guided Search 30 

CHAPTER 3. EMPIRICAL STUDIES 38 

3.1 Medical Diagnosis Game 38 
3.2 Experiment 1 - Hypothesis Generation and Test Preference 40 

3.2.1 Method. 42 
3.2.2 Results. 46 
3.2.3 Discussion. 54 

3.3 Experiment 2 - Time Pressure, Generation, and Test Preference 58 
3.3.1 Method. 59 

3.3.2 Results. 62 
3.3.3 Discussion. 73 

3.4 Experiment 3 - Metacognition and Terminating Testing Behavior 76 
3.4.1 Method. 78 
3.4.2 Results. 80 
3.4.3 Discussion 93 
3.5 Experiment 4 - General Search Tradeoffs and Hypothesis Testing 96 

3.5.1 Method. 101 
3.5.2 Results. 103 

3.5.3 Discussion. 111 



 vii 

CHAPTER 4. SUMMARY AND IMPLICATIONS 115 
4.1 Summary 115 

4.1.1 General discussion. 116 
4.2 Implications 123 

APPENDIX A. Fit statistics for Experiment 1 125 

APPENDIX B. Fit statistics for Experiment 2 126 

REFERENCES 129 

 



 viii 

LIST OF TABLES 

Table 1 Notable advancements in hypothesis testing theory. 6 

Table 2 Presenting sign ecology for Experiment 1. 43 

Table 3 Test outcome ecology for Experiment 1. 44 

Table 4 Experiment 1 aggregate fit statistics for all models. 54 

Table 5 Presenting sign ecology for Experiment 2. 60 

Table 6 Test outcome ecology for Experiment 2. 61 

Table 7 Experiment 2 aggregate fit statistics for all models. 72 

Table 8 Experiment 2 proportion of participants fitting each 

model. 

72 

Table 9 Presenting sign ecology for Experiment 3. 79 

Table 10 Test outcome ecology for Experiment 3. 79 

Table 11 Experiment 3 test selection analyses including Phase 1 

learning. 

87 

Table 12 Experiment 3 test preference analyses including Phase 1 

learning. 

89 

Table 13 Experiment 3 aggregate fit statistics (BIC) for all 

possible parameter combinations. 

90 

Table 14 Experiment 3 proportion of participants fitting to 

parameter combinations. 

91 

Table 15 Environmental ecology for Experiment 4 102 

 

 

  



 ix 

LIST OF FIGURES 

Figure 1 The hypothesis-driven valuation model of hypothesis testing. 31 

Figure 2 Illustration of a learning trial for the MDG experimental paradigm. 39 

Figure 3 Experiment 1 learning. 46 

Figure 4 Experiment 1 total testing. 48 

Figure 5 Experiment 1 test selection. 50 

Figure 6 Experiment 1 test preference. 51 

Figure 7 Experiment 2 learning. 63 

Figure 8 Experiment 2 total testing. 64 

Figure 9 Experiment 2 test selection. 66 

Figure 10 Experiment 2 test preference. 69 

Figure 11 Experiment 3 learning. 81 

Figure 12 Experiment 3 JOK magnitude across trials. 83 

Figure 13 Experiment 3 final JOK magnitude. 85 

Figure 14 Experiment 3 test selection. 86 

Figure 15 Experiment 3 test preference. 88 

Figure 16 Experiment 3 JOK difference. 92 

Figure 17 Experiment 4 learning. 104 

Figure 18 Experiment 4 total testing. 106 

Figure 19 Experiment 4 test selection. 107 

Figure 20 Experiment 4 test preference. 110 

 

 

  



 x 

SUMMARY 

Hypothesis testing is the act of acquiring information to challenge or promote a 

decision-maker’s beliefs (i.e., hypotheses) in diagnostic tasks.  To date, theorists have 

conceptualized this behavior as a consequence of implementing one of many possible 

heuristics for selecting tests, each tailored to optimize some task-relevant goal (e.g., reduce 

the likelihood of an erroneous diagnosis).  Heuristics can account for a number of observed 

testing phenomena (e.g., pseudo-diagnostic search), but have difficulty explaining more 

nuanced testing behavior such as decisions to terminate data acquisition.  Moreover, 

current theory has yet to address how updating a decision-maker’s beliefs influences test 

preference, as hypothesis testing is often studied independent of other events inherent to 

hypothesis evaluation (e.g., hypothesis generation).   

The theoretical perspective evaluated in this dissertation incorporated both 

environmental factors and cognitive mechanisms into the evaluation of information 

sources.  That is, test selection was conceptualized as a consequence of a decision-maker’s 

experience and the limitations of their cognitive abilities, as well as contextual constraints 

such as the cost to access data and incentives for performing a task accurately.  I cast 

hypothesis testing as a special case of generalized cognitive search.  Thus, selection of a 

test occurs because of the perceived tradeoffs between the value of available information 

depositories and costs associated with exploiting those depositories.  The key facet of this 

theoretical perspective was the hypothesis-guided testing hypothesis, which posited that 

the state of one’s beliefs is critical to changes in testing behavior over time. 

The empirical testbed outlined in this document implemented a wide range of 

manipulations that initiated three adjacent, yet independent, lines of inquiry into nuanced 
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hypothesis testing behavior.  Experiments 1 and 2 bridged the gap between hypothesis 

generation and test selection.  Alternative accounts of information valuation assume that 

subjective estimates manifest independent of belief states and, as such, are static over time.  

Experiment 1 pitted that perspective against a hypothesis-guided valuation process by 

systematically manipulating cues to prompt the consideration of differential sets of 

hypotheses in a simulated diagnostic task.  Although no relation was found between this 

manipulated and test selection, simulations showed that a measurement-level 

representation of memory (a core feature of the HyGene architecture) could account for the 

recorded behavior.  To further evaluate the relation between generation dynamics and test 

selection, Experiment 2 manipulated the presence of time pressure in a diagnostic task—a 

factor known to truncate hypothesis generation.  Once more, hypothesis set cuing had no 

effect on patterns of hypothesis testing.  No effect emerged for time pressure, nor was one 

detected via simulation of the task. 

Experiments 3 and 4 explored the role of beliefs in decisions to terminate testing 

behavior.  The field lacked a comprehensive account of termination decisions in sequential 

data acquisition.  Moreover, current theory has invoked untenable psychological 

mechanisms to explain how people valuate information and terminate information 

acquisition (e.g., Ficic & Buckman, 2015; Nelson, 2005; Nelson, McKenzie, Cotrell, & 

Sejnowski, 2010).  Related work in metacognition has shown that self-monitoring 

judgments predict task switching and latencies to terminate information acquisition 

(Glucksbert & McCloskey, 1981; Klin, Guzman, & Levine, 1997; Kolers & Palef, 1976; 

Singer, 1984).  Experiment 3 investigated metacognitive self-monitoring within the context 

of hypothesis testing and termination decisions.  Specifically, self-monitoring judgments 
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were elicited and test outcome diagnosticity was manipulated to test the hypothesis that 

beliefs, as measured by judgments of knowing, play a crucial role in decisions to terminate 

testing behavior.  A strong relation between metacognitive self-assessment and the duration 

of testing was found.  Model fitting suggested that participants adopted a conservative 

threshold for terminating testing in Experiment 3 and were sensitive to the information 

inherent to the task.  Experiment 4 exposed hypothesis testing to ecological factors 

ubiquitous in search environments to evaluate test selection and termination decisions 

within a general cognitive search perspective.  Specifically, frame, acquisition cost, and 

cost experience were manipulated to explore if and how these ecological factors influence 

termination decisions and subsequent diagnostic decisions.  Participants’ sensitivity to cost 

was such that testing behavior was abbreviated as the environment imposed higher 

expenses for acquiring data.  Moreover, the impact of the cost manipulation was dependent 

on experience.  Participants who experienced low costs early in the study generally 

engaged in more testing behavior than those who experienced high costs in the early stages 

of the experiment. 

The reported studies provided limited evidence in support of the hypothesis-guided 

testing hypothesis.  No statistical model found an effect related to manipulations of 

hypothesis set cuing.  However, simulations of the task suggest that participants were 

sensitive to the diagnostic properties of tests—an indication that memory was playing a 

role in their test selection process.  Experiments 3 and 4 provided insight regarding the 

stopping rule used to terminate testing behavior.  Both internal and external factors were 

shown to be related to termination decisions. 
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Taken together, the reported work advanced the nature of empirical evaluations of 

hypothesis testing theory by imposing complex environmental structures and recording 

patterns in decisions to terminate testing.  The experiments initiated three lines of research 

that necessitate further inquiry into the role of memory, metacognitive self-assessment, and 

ecological factors in hypothesis testing.   
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CHAPTER 1. INTRODUCTION 

Many instances of human judgment occur in environments that are high in 

uncertainty, such that multiple hypotheses or beliefs are initially considered as candidate 

explanations for a set of observations.  Decision-makers will often engage in data 

acquisition under such circumstances for the purpose of informing and improving the 

accuracy of their judgments.  Thus, the process by which people decide to engage their 

environment to test how well their mental representations match reality is critical to 

understanding the outcomes and dynamics of judgment and decision-making behavior.  

Birthed in philosophy of science to describe strategies for empirical inquiry, hypothesis 

testing has emerged as an important psychological construct—a ubiquitous cognitive 

mechanism invoked in a wide array of human behaviors.   

The study of hypothesis testing has taken many forms since it first appeared in the 

psychological literature in the 1960s.  Poletiek (2001), for instance, conceptualized 

hypothesis testing as a number of stages, beginning with the generation of hypotheses and 

culminating in the integration of information and revision of beliefs.  The focus of this 

dissertation is the intermediary step defined by Poletiek as the selection or design of a test 

“whose outcome is expected to reveal something about the truth status of [a] hypothesis” 

(p. 2). 

1.1 Statement of the Problem 

 Theoretical accounts of information search and hypothesis testing have grown in 

complexity, such that contemporary models of these phenomena address the utility of 

potential answers in addition to the nature of the queries people formulate (e.g., confirming, 

falsifying) prior to making decisions (Johnson-Laird & Byrne, 1991; Nelson, 2005; Nelson, 
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McKenzie, Cottrell, & Sejnowski, 2010).  However, current theory has yet to fully integrate 

the impact of one’s beliefs on the perceived value of tests, ignoring the reason people 

engage in testing at all: To evaluate hypotheses under consideration.  Moreover, those who 

study hypothesis testing typically limit its context to the hypothesis evaluation process 

described by Poletiek (2001), ignoring rich bodies of literature emerging from adjacent 

research programs.  For instance, hypothesis testing has seldom been discussed in relation 

to the information foraging literature, which has ties to generalized accounts of search that 

cover a range of behaviors spanning from the time a squirrel spends searching for nuts in 

a tree to the hyperlinks people click while surfing the web.  In essence, hypothesis testing 

is a special case of information foraging and, as such, can be defined as a strategy for 

information acquisition that reveals new data for the purpose of evaluating one’s beliefs. 

 To date, researchers investigating hypothesis testing continue to conduct their 

science within a narrow scope that limits the knowledge that can be gleaned from 

experimentation and inhibits the development of more holistic explanations for observed 

phenomena.  The empirical work reported here expands and evaluates a memory-based 

perspective of hypothesis evaluation that accounts for the cognitive processes underlying 

observable testing behavior while acknowledging the constraints placed on data acquisition 

in complex decision environments.  Specifically, this work leveraged and expanded upon 

the HyGene cognitive architecture (Thomas, Dougherty, Springer, & Harbison, 2008) to 

evaluate a straightforward thesis: The generation of beliefs during diagnostic tasks, and the 

memory dynamics that govern that process, played a primary role in the formation and 

exploitation of tests, as well as in decisions to terminate testing behavior. 

1.2 Research questions 
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The goal of this dissertation was to address the gap in the hypothesis testing 

literature regarding the role of competing hypotheses by investigating hypothesis 

generation processes within the context of data acquisition.  The work carried out to 

achieve this goal was designed to answer three broad research questions relating generation 

processes to test selection and decisions to terminate testing. 

1.2.1 What is the nature of the relation between hypothesis generation and test 

preferences? 

 Prior research began to tie hypothesis testing behavior to generation processes by 

showing that the number of hypotheses considered by a decision-maker determines 

whether or not diagnostic tests are preferred (Lange, Thomas, & Dougherty, 2010).  Lange 

et al. have argued that a positive test bias occurs when decision-makers generate only a 

single hypothesis.  However, the HyGene architecture (Hypothesis-Generation; Thomas, 

Dougherty, & Buttaccio, 2014; Thomas, Dougherty, Harbison, & Sprenger, 2008) predicts 

that the specific set of hypotheses under consideration by a decision-maker should account 

for test preferences beyond the mere number of hypotheses believed to be in contention—

hypothesis-guided testing.  In other words, the HyGene architecture posits a dynamic, 

hypothesis-guided testing heuristic, where the value or preference exhibited for a test 

changes as a consequence of a decision-maker’s beliefs.  Experiments 1 and 2 

systematically controlled the hypotheses cued by information present in the decision 

environment to test the hypothesis-guided testing hypothesis.   

1.2.2 Are decisions to terminate testing behavior related to belief states? 

 Few have ventured to account for termination decisions within the context of 

information acquisition (c.f., Ficic & Buckman, 2015).  In fact, the bulk of both theoretical 
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and empirical investigations of human search termination has focused on memory retrieval 

(Harbison, Dougherty, Davelaar, & Fayyad, 2009; Hills, Jones, & Todd, 2012; Hills & 

Pachur, 2012; Levy & Baddeley, 1971; Metcalfe & Murdock, 1981; Miller, Weidemann, 

& Kahana, 2012; Murdock & Okada, 1970; Raaijmakers & Shiffrin, 1981).  An analogous 

body of literature investigating processing relevant to stopping decisions suggests that 

mechanisms related to metacognitive self-assessment may play a role in search 

termination, as it has been shown to predict restudy decisions, task switching, and exit 

latencies for general knowledge recollection (Glucksbert & McCloskey, 1981; Klin, 

Guzman, & Levine, 1997; Kolers & Palef, 1976; Singer, 1984).  Experiment 3 is designed 

to initiate inquiry regarding the role metacognitive self-assessment in search termination, 

while simultaneously evaluating the predictions of numerous stopping rules for 

information acquisition (Ficic & Buckman, 2015).  The result of this study should explicate 

the nature of any observed relation between belief states and termination behavior.  

Moreover, results should provide some clarity regarding the validity of existing stopping 

rules and information utility theory. 

1.2.3 Are decisions to terminate hypothesis testing sensitive to the same ecological 

factors that influence general cognitive search? 

One reason for limited theoretical advancement within the field of hypothesis 

testing may be a failure to reconcile understanding of testing behavior with broader 

research programs investigating information foraging and cognitive search.  Few studies 

have explored hypothesis testing behavior within a foraging context, where the perceived 

value of a test is conceptualized as a function of its expected utility and the costs associated 

with acquiring test results.  The goal of Experiment 4 was to address this gap in the 
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literature by investigating how factors ubiquitous in applied decision domains—such as 

costs of gathering information (e.g., time, monetary expenses), risks taken when pursuing 

unreliable sources of information, and changes in task context (i.e., the framing of 

outcomes as gains or losses)—influence decisions to terminate data acquisition.  

1.3 Significance of the study 

The results of the reported empirics were assessed with respect to novel 

computational modeling with the intent of elucidating the mechanisms involved in 

hypothesis testing.  The model components evaluated with respect to the experiments 

reported in this document represent the latest advancement for a psychological construct 

rooted in the historical context that gave rise to cognitive science, building upon a number 

of theoretical accounts and computational models that have shaped the manner in which 

hypothesis testing is studied.  The purpose of this dissertation was to evaluate the 

predictions of the HyGene architecture regarding the role of a decision-makers’ beliefs in 

the formation and selection of hypothesis tests.  The studies reported in this document have 

produced data necessary to explicate nuanced testing behavior, which should serve to 

challenge current accounts of this and related behavior (e.g., resource valuation).  The 

scope of these studies affords an understanding of both internal (e.g., memory) and external 

(e.g., costs) factors that shape hypothesis testing behavior.  In sum, this dissertation has 

evaluated the most holistic account of hypothesis testing to date. 
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Table 1.  Notable advancements in hypothesis testing theory. 

Achievement Model Authors 

Psychology of hypothesis 

testing was first investigated. 

n/a Wason (1960) 

Tradeoff of costs and 

resources determine the rate at 

which resources are acquired. 

Marginal Value Theorem Charnov (1976) 

Formal theory of foraging 

behavior 

Optimal Foraging Theory Stephens & Krebs (1986) 

Subjective utilities should be 

incorporated into study of 

hypothesis testing 

n/a Manktelow & Over (1990) 

The results of tests have value, 

not tests themselves 

n/a Johnson-Laird & Byrne (1991) 

Accounted for multiple goals 

of hypothesis testing: 

accumulating data in the face 

of costs and assessing the 

value of potential information 

Probability Value Model Poletiek (1995) 

Utilized an instantiation of 

animal foraging theory to 

account for human foraging 

behavior 

ACT-IF Pirolli & Card (1999) 

Integrated hypothesis testing 

with the hypothesis generation 

processes 

HyGene-HT Lange, Thomas & Dougherty 

(2010) 

 

Table 1 lists notable achievements in the development of hypothesis testing theory.  

These studies represent a broad body of research that spans six decades and was distributed 

across a number of literatures, including several domains within ecological biology and 

psychology.  This work has been reviewed in the following section, highlighting the 

application of findings from diverse settings to hypothesis testing.  
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CHAPTER 2. LITERATURE REVIEW 

 The seminal work of Wason (1960; 1966) is credited as the first foray into the 

psychology of hypothesis testing.  Although the applicability of his earliest finding to 

contemporary hypothesis testing research is limited, the influence of this work on 

theoretical accounts of testing behavior and the nature of empirical investigations warrants 

a brief discussion.  Wason invented two tasks to investigate the presence of falsification 

strategies in test selection: The rule discovery task and the Wason card task.  These are 

widely regarded as tools better suited for studying reasoning; however, the results of these 

early experiments raised questions for which researchers spent decades in search of 

answers. 

2.1 Hypothesis Testing 

 Popper (1959; 1963) proposed that the best scientific inquiries were those that could 

potentially falsify or refute a theoretical perspective.  Wason (1960) perceived Popper’s 

approach to empiricism and human decision-making as analogous endeavors and treated 

falsification strategies as a normative standard in his decision-making tasks.  In his rule 

discovery task, for example, participants tasked with deciphering the rule that generated 

some number sequence (e.g., 2 – 4 – 6) by generating their own exemplars to be evaluated 

by an experimenter would behave normatively if they attempted to generate sequences that 

failed to adhere to the rule.  He found that very few participants engaged in a falsification 

strategy, which was most frequently observed in those who correctly identified the rule 

early in the experiment.  Most participants generated three-number sequences consistent 

with the rule under consideration, a strategy that came to be known as confirmation bias.  

 This initial discovery was further explored in Wason’s (1966) card selection task, 

where participants were provided a rule to test regarding the stimuli they might find on 

either side of a set of four cards.  Once more, Wason observed evidence of confirmation 

bias, which led him to conclude that people are inclined to adopt confirmatory test 
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strategies.  Simple as they are, Wason’s tasks inspired a large body of work investigating 

circumstances under which people complete such tasks in a manner consistent with 

falsification strategies, and what it is about how the tasks are presented that changes one’s 

approach (for a review, see Poletiek, 2001).  Ultimately, the worth of Wason’s work lies in 

the questions he raised that persist in the literature: What is the nature of confirmation bias? 

If the nature of testing behavior changes in response to the context in which these problems 

are presented, what is the process by which people recognize the need for falsifying 

strategies? 

 Although many investigators began to deviate from Wason’s tasks, evidence of 

confirmation bias or positive testing strategies remained a common finding (Beyth-Marom 

& Fischoff, 1983; Mynatt, Doherty, & Tweney, 1977; Trope, Bassok, & Alon, 1984).  An 

important insight emerged from the work of Klayman and Ha (1987), who pointed out that 

Wason set up his task such that positive testing would mislead a participant since a number 

of reasonable hypotheses (e.g., values increasing by 2) could be embedded within the 

correct rule (e.g., increasing values) provided it was sufficiently broad.  One can envision 

a scenario where a generated hypothesis only overlaps with the true state of the world, 

where any number of positive tests (exemplars that fit within the hypothesized rule) could 

falsify the hypothesis.  Klayman and Ha used equation 1 to compute the probability that a 

positive test will falsify a hypothesis (z+). 

 
𝑧+ =

𝑝(𝑡̅)

𝑝(𝑡)
∗ 𝑧− (1) 

The ratio pits the probability that any exemplar falls within the correct set (𝑝(𝑡)) against 

the probability that any exemplar falls outside of the correct set (𝑝(𝑡)̅).  Without knowing 

anything about the probability that a negative prediction will falsify the hypothesis (z-), 
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one can see that the probability that a positive test will falsify a hypothesis (z+) increases 

as the set of exemplars that fall outside of the correct set is large or the exemplars that fall 

within the set are rare.  Thus, Klayman and Ha demonstrate that the severity of any testing 

strategy depends heavily upon the configuration of the environment, and, in some 

instances, positive test strategies are more advantageous than falsifying strategies. 

2.2 Information Utility 

While Klayman and Ha (1987) demonstrated the importance of the environment in 

hypothesis testing tasks, others have investigated the cognitive processes involved in 

testing. The most influential of these was recognition of the importance of valuation 

judgments related to information.  Manktelow and Over (1990), for instance, were first to 

argue that subjective utilities needed to be accounted for in hypothesis testing tasks in place 

of the objective standards advanced by Wason and others.  That is, normative perspectives 

of hypothesis testing (e.g., falsification or confirmatory strategies) ignored the subjectivity 

involved in evaluating potential tests.   

Kirby (1994) recognized that the set size effect predicted by Klayman and Ha 

(1987) and the utility of tests described by Manktelow and Over (1990) were related 

constructs.  Over four experiments, he demonstrated that an exemplar had less utility and, 

thus, was less likely to be used as a test when the probability of observing that exemplar 

increased.  Kirby found that the frequency with which participants engaged in positive 

testing (as observed in Wason’s selection task) was reduced in environments where the 

hypothesis set was large.  Kirby argued that participants will seek out falsifying tests when 

the probability of observing results inconsistent with a considered hypothesis is greater 

than the probability of a consistent result.  Recent tests of this phenomenon have branched 

outside of Wason’s original selection task.  Conceptualizing hypothesis size by the literal 
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size of a ship in a game of Battleship, Hendrickson, Navarro, and Perfors (2016) showed 

that people perceived misses or negative information (i.e., data indicating where ships are 

not located) as having greater utility for the purpose of locating large ships than hits.  

Alternatively, participants preferred positive information when ships were small. 

Mental model theories of human reasoning have also argued against the formal 

rules introduced by Wason.  For instance, Johnson-Laird and colleagues (Johnson-Laird, 

2010; Johnson-Laird & Byrne, 1991) argued that the results of tests—not tests 

themselves—possess value, and it is the decision-maker’s assessment of those values that 

determine their testing behavior.  They reported a number of experiments demonstrating 

that people do not utilize formal rules to draw inferences from observable data.  Instead, 

mental models of possible outcomes appear to drive such judgments.  Johnson-Laird and 

Byrne suggest that null outcomes (i.e., those that may falsify a hypothesis) are fuzzy and, 

thus, are unlikely to be used to drive test selection.   

 Linking test selection to utilities gave rise to a number of models attempting to 

capture the information metric people adopt to estimate the utility of tests, as an increasing 

number of researchers rejected the notion that test selection employs confirming or 

falsifying strategies (Evans & Over, 1996; Kirby, 1994; Over & Evans, 1994; Over & 

Evans, 1996).  Over and Evans (1994; 1996), for example, conceptualized the utility of a 

test as its capacity to make a hypothesis more probable.  The algorithm to compute their 

information metric—probability gain—is given in equation 2. 

 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑔𝑎𝑖𝑛 =  

𝑝(𝐻|𝑑)

𝑝(𝐻)
 (2) 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑔𝑎𝑖𝑛 = 𝑝(𝐻|𝑑) − 𝑝(𝐻) (3) 
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As can be seen in equation 2, tests have greater probability gain as the probability of the 

hypothesis increases after observing the resulting data from the test (d).  This metric is has 

appeared in alternative forms in the literature (Baron, 1985; Savage, 1954), as seen in 

equation 3.  Despite the difference in form, the nature of the metric remains the same: the 

utility of a test increases with its ability to increase the probability of the hypothesis. 

 Oaksford and Chater (1996) suggested that the utility of a test could also be 

represented by its ability to reduce uncertainty.  Equation 4 computes information gain in 

the form of a Kullback-Liebler (KL) distance, which can be conceptualized as the test’s 

ability to change one’s beliefs (Nelson, 2005). 

 
𝐾𝐿 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ 𝑝(𝑑) ∗ ∑ 𝑝(𝐻|𝑑) ∗ 𝑙𝑜𝑔

𝑝(𝐻|𝑑)

𝑝(𝐻)
 (4) 

 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 = ∑ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐻) − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐻|𝑑) (5) 

 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ 𝑝(𝐻) ∗ 𝑙𝑜𝑔

1

𝑝(𝐻)
 (6) 

Oaksford and Chater demonstrated that information gain (Equation 5) and KL distance 

generate equivalent estimates of the utilities of available tests.  

 Some researchers take an alternative perspective, positing that people do not 

explicitly consider the possible outcomes prior to selecting a test (Poletiek, 1996).  The 

degree to which the outcome of a test falsifies or confirms a hypothesis is only considered 

after the new piece of data has been acquired.  Poletiek (2001) also theorized that the 

strategy utilized to select tests may be a function of which stage of hypothesis testing the 

decision-maker has reached.  When decision-makers are early in the process, she believes 

positive testing strategies are used until confidence in their considered hypothesis 

increases.  Decision-makers switch strategies, selecting falsifying tests to further increase 



 12 

their confidence that their considered hypothesis is correct, once they have reached some 

threshold of confidence in their current belief—a pattern observed in Wason’s (1960) early 

work in rule detection. 

 In an attempt to integrate much of the work reviewed thus far, Poletiek (1995; 

Poletiek & Berndsen, 2000; Poletiek, 2001) developed the probability value model of 

hypothesis testing (Equation 7).  Dissatisfied with the psychological implausibility of 

severity and falsification strategies, Poletiek conceptualized hypothesis testing as emerging 

from the management of two unique information acquisition problems that she referred to 

as the symmetric and asymmetric problems.  The symmetric problem supposes that the 

decision-maker is seeking out as much new information about hypotheses as possible, but 

must incur costs to do so.  Thus, optimal decision-makers select the tests that are likely to 

provide the most information for the least costs.  The asymmetric problem concerns the 

decision errors a decision-maker is willing to tolerate.  This is captured with Poletiek’s 

value parameter, which represents the test’s ability to confirm or disconfirm a hypothesis. 

 𝑆𝐸𝑈𝑡 = 𝑝(𝑐) ∗ 𝑣(𝑐) + 𝑝(𝑑) ∗ 𝑣(𝑑) − 𝑐𝑜𝑠𝑡𝑠 (7) 

 To illustrate the probability value model, assume a physician believes that her 

patient is suffering from appendicitis and, consequently, can predict that the patient will 

exhibit an upset digestive system and a mild fever.  She possesses the resources to test 

either of these predictions, but can’t differentiate the tests in terms of utility or costs (i.e., 

the likelihood of either sign is equal given that the patient has appendicitis, as is the effort 

needed to acquire either piece of information).  Suppose that, a priori, an upset digestive 

system is a less probable observation and, thus, would provide greater evidence in support 

of the hypothesis, while a mild fever is more probable and less supportive.  The physician 
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must now make a gamble of sorts, trading off between the probability of acquiring the 

desired information and the value of the information sought.   

Equation 7 computes the subjective expected utility of a test by taking the 

difference between the test’s ability to confirm (c) or disconfirm (d) a hypothesis and the 

costs associated with acquiring the information.  The physician may place greater weight 

on the probability of observing the desired outcome by testing the mild fever prediction or 

place a greater weight on the value of the outcome by testing the upset digestive system 

prediction.   

 Hypothesis testing theory has grown considerably since its inception, transitioning 

from gross scale testing strategies (i.e., falsification, confirmation) to accounting for the 

probabilistic nature of acquired information relative to belief states and attempting to 

integrate goal-related preferences of decision-makers.  However, hypothesis testing is 

analogous to a number of tasks that involve search of some kind, many of which have been 

studied in more varied contexts than hypothesis testing.  Theoretical accounts of 

comparable behaviors, such as animal foraging, consider many more factors that have yet 

to be accounted for in the hypothesis testing literature.   

Test selections are often assumed to occur independent of each other, which ignores 

the iterative nature of hypothesis testing in applied domains.  The state of a decision-

maker’s beliefs is typically treated as the outcome criteria, despite the fact that hypothesis 

testing is always nested within some broader task.  The physician, for example, may 

initially test for a mild fever in her appendicitis patient, but follow that up with a test of the 

upset digestive system before making treatment decisions that could result in surgery.  This 

would suggest that larger-scale task outcomes, such as the accuracy of a diagnosis or 
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effectiveness of a treatment, influence testing decisions.  Hypothesis testing theory should 

account for multiple test selections and sequential data acquisition, and address how the 

ultimate goals of the decision-maker impact testing; thus, hypothesis testing must adapt to 

account for a wider array of environmental variables.  Luckily, this work can draw 

inspiration from much of the foundational work completed within other domains of search. 

2.3 General Cognitive Search 

Hills (2006) makes the bold claim that goal-directed cognition evolved following 

the development of an area restricted search mechanism, such that “what was once 

foraging in a physical space for tangible resources became, over evolutionary time, 

foraging in cognitive space for information related to those resources” (p. 4).  Hills 

theorized that area restricted search emerges in all environments where the location of 

resources is correlated, or where they appear in clusters.  Thus, organisms can exploit the 

presence of clusters by deploying strategies that allow them to maximize consumption of 

resources by optimizing the trade-off between those gains and the losses incurred by the 

act of acquiring said resources. 

Hills (2006) argues that search behavior, and goal-directed behavior more 

generally, appears to be linked to dopaminergic systems important for signaling the 

detection of objects that may be of importance to organisms.  For example, an influx of 

dopamine in the environment of microorganisms results in tumbles (i.e., perseverative 

turning in circular patterns), a behavior typically observed when microorganisms encounter 

a source of food (Stock & Surette, 1996).  Similar mechanisms appear to influence search 

behavior in people.  For instance, increased levels of dopamine cause enhanced control of 

visuomotor focus in visual search tasks as a consequence of perseveration of saccadic 
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movement around targets (Barrett, Bell, Watson, & King, 2004; Dursun, Wright, & 

Reveley, 1999).  Thus, much like non-human animals will move in circular patterns after 

encountering patches of food, discovering important objects in a visual environment 

initiates area restricted search strategies for people.  Dopamine-related pathologies 

corroborate the extension of area restricted search to humans, as overactive production of 

dopamine (e.g., drug addiction, schizophrenia) results in perseveration of thought (i.e., 

obsessions) and too little (e.g., ADD, ADHD) results in failures to control attention.  

Information, berries, websites, and phone numbers can be found clustered in books, 

bushes, hyperlinks, and memories respectively.  Several bodies of literature have been 

devoted to studying processes by which people seek these resources, revealing similar 

patterns of behavior across all domains of search.  I reviewed these findings in the 

following sections, focusing on the computational models that continue to exhibit 

explanatory power as they are generalized to different areas of research. 

2.3.1 Animal Foraging.   

The body of literature investigating foraging behavior in non-human animals has a 

rich history, and is far more developed than the information search literature to be discussed 

later in this review.  Optimal foraging theory (Stephens & Krebs, 1986) has evolved from 

a poorly specified verbal model based on (mostly) observational research to a complicated 

mathematical theory tested in a multitude of environments (Nonacs, 2001).  Models 

spawned in the animal foraging literature now serve an integral role in building generalized 

theory for cognitive search.   

Animal foraging is not unlike human decision-making, as animals must weigh the 

costs and benefits related to the selection of one option available to them relative to its 
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alternatives.  Moreover, the resources that animals seek appear in clusters (e.g., fruit-

bearing tree, berry bushes, herds of prey), which is a necessary property of an environment 

for exploitation via area-restricted search (Hills, 2006).  To behave optimally, animals are 

predicted to choose patches of higher quality over those of poorer quality (Stephens and 

Krebs, 1986).  Moreover, animals must maximize their patch residence time (PRT; or the 

duration of time spent searching for food at one location) for high-quality patches, and 

terminate their search in favor of a new patch once the cost of retrieving another morsel is 

greater than the cost of moving to a new location.  

One of the most prolific and often cited models of optimal foraging is the Marginal 

Value Theorem (MVT; Charnov, 1976).  This seminal work is the foundation of more 

complex models that span a diverse array of scientific domains such as memory research.  

MVT exemplifies how most models implement cost-benefit tradeoffs that occur in search, 

by expressing the utility of foraging as a function that maximizes gains (e.g., energy, 

information) relative to costs endured in the process.  In the case of MVT, this trade-off 

(i.e., the rate of gain; 𝑔𝑖(𝑇𝑖)) is represented as the product of the energy gained from a 

specific patch (net energy; 𝐸𝑛) and the total time spent traveling to and within this patch 

(𝑇𝑖; see Equation 8).  Thus, one may compute the optimal PRT for an animal foraging in 

any given patch (Equation 9). 

 𝑔𝑖(𝑇𝑖) = 𝐸𝑛 ∗ 𝑇𝑖 (8) 

 
𝑇𝑖 =

𝑔𝑖(𝑇𝑖)

𝐸𝑛
 (9) 

MVT has a history of successfully predicting qualitative results from myriad 

foraging behaviors, including patch selection in armadillos and guinea pigs (Cassini et al, 

1990), starlings (Cuthill et al., 1994), and pigeons (Hansen, 1987); reproduction in 
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hummingbirds (Pyke, 1978); and mating behavior in gibbons (Grether et al., 1992).  

However, a review of these and similar studies found that the quantitative patterns 

predicted by MVT are rarely produced empirically and, more often than not, animals in 

these studies spent less time than predicted foraging in patches of good quality and more 

time than predicted foraging in patches of poor quality (Nonacs, 2001).  Such deviations 

from ideal behavior predicted by MVT would suggest that, on average, adopted foraging 

strategies are sub-optimal and potentially maladaptive.  However, Nonacs (2001) proposed 

that MVT’s errorful predictions for PRT were indicative of the model’s failure to 

incorporate incidental fitness costs that appear in foraging tasks that influence rational 

foraging behavior. 

Risk-sensitive foraging models better predict PRT, as they incorporate many of the 

potential fitness costs involved in traversing patches nested in ecological habitats.  

Predation, for example, accounts for much of the variability in PRT, as the best areas for 

foraging are also likely to be the most dangerous provided that predators and prey are 

attracted to the same sources of nourishment (Lima & Dill, 1990).  Thus, in this context, 

optimal foragers must balance the benefit of optimal energy gain with the cost of increased 

predation risk when selecting patches from which to feed.  As predicted by risk-sensitive 

accounts of foraging, various species of animals have been observed engaging in what 

MVT would categorize as sub-optimal foraging strategies in the presence of predators 

(Real & Caraco, 1986; Verdolin, 2006). 

In a comprehensive review of risk-sensitive foraging theory, McNamara and 

Houston (1992) argue that no single model can sufficiently account for the numerous 

scenarios a foraging animal may encounter.  Optimal PRT can fluctuate with respect to 
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available energy resources, quality of food, extrinsic time pressure (e.g., daylight), weather, 

predation, and the biological imperative of the food.  Thus, models ought to be designed 

for specific foraging environments, such that the predictions generated from any given 

model result from those state-dependent parameters.  

A model of overnight survival proposed by Stephens (1981) illustrates the 

argument presented by McNamara and Houston (1992).  If overnight survival depends on 

an animal reaching a critical threshold of nutrients (𝑥𝑐), the optimal time spent at the 

selected patch (𝑋(𝑇)) is a function of the reserves possessed by the animal (𝑥0) at the 

beginning of the foraging period (see Equation 10).  

 
𝑃(𝑋(𝑇) > 𝑥𝑐) = Φ [

𝑥0 + 𝜇𝑖𝑇 − 𝑥𝑐

𝜎𝑖√𝑇
] (10) 

Assuming that all other parameters are kept constant, the quality of the patch and the time 

needed to reach the threshold will decrease as the reserves at the beginning of the foraging 

period increase.  Thus, optimal patch selection and PRT are dependent on the state of the 

animal’s reserves prior to foraging. 

 The important takeaway for decision theorists is that models of optimal behavior 

often omit factors important for, but not specific to, the focal task.  When the study of 

animal foraging is limited in scope—such that the only parameters of importance are 

assumed to relate to the quality of a patch, the time spent traveling between patches, and 

the time spent within a patch—the intricate details of foraging dynamics are likely to be 

overlooked, thus, truncating the predictive strength of models derived from such 

assumptions.  When models such as these are utilized to assess the fitness of strategies 

adopted in ecological habitats, complex patterns of behavior are unfairly labeled as 

maladaptive. 
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 As mentioned previously, animal foraging theory is, by far, the most developed 

literature within the domain of cognitive search.  The sophistication of the models 

accounting for patch selection and switching between patches has impacted a number of 

other scientific fields.  While all of the models discussed here have the potential to be 

highly impactful once adopted into other fields of work, none has been as influential as the 

MVT.  The magnitude of its influence is clear in light of its role in the development of 

models to capture the process by which people retrieve information from memory. 

2.3.2 Memory search.   

Searching for information in memory is yet another analogous task to hypothesis 

testing.  Additionally, search in memory shares environmental properties with animal 

foraging, such as the presence of clustered resources.  Memory, however, has proved to be 

a more challenging environment for examining search processes.  Unlike environments 

that host animal foraging behavior (i.e., wide open spaces wherein movements of the 

specimen indicative of search behavior can be freely observed), memory must be studied 

indirectly.  One useful tool to achieve this end has been paradigms used in the study of 

verbal fluency. 

Verbal fluency is a long established psychological paradigm where subjects must 

generate a series of words that all follow the same rule (Newcombe, 1969).  Typically, 

subjects are given 60 seconds to perform the task and are scored based on the number of 

terms that correctly follow the rule (e.g., all terms must be animals).  However, in a series 

of experiments designed to investigate the underlying cognitive processes that drive 

performance on verbal fluency tasks, Troyer, Moscovitch, and Winocur (1997) found that 

clustering and cluster switching were also important components in navigating semantic 



 20 

memory spaces.  In this context, clustering refers to the act of listing terms that are highly 

associated with one another successively.  For example, when tasked with listing animal 

names, participants are likely to cluster dog, cat, and hamster together given that they can 

be sub-categorized as household pets.  Cluster switching refers to the act of terminating 

search in one sub-category (e.g., household pets) in favor of cuing recall from a new sub-

category (e.g., farm animals).  People who utilize the largest clusters and exhibit more 

cluster switching generate the most correct terms while completing a verbal fluency test 

(Troyer, Moscovitch, & Winocur, 1997), demonstrating the benefits of area restricted 

search. 

 Alternatively, some have argued that this pattern of results reflects the usefulness 

of semantic associates as retrieval cues (Levy & Baddeley, 1971).  While this explanation 

may accurately describe the process by which performance is enhanced on this task, as 

such it may only serve as a proximate reason for why this strategy would be adaptive.  The 

link to area restricted search appears to be a better fit, as knowledge—like food—appears 

to be hierarchically clustered such that large categories of information (patches) consist of 

many sub-categories (clusters).  Thus, optimal memory queries would need to balance the 

use of both global (i.e., categorical) and local (i.e., semantic associate) cues for memory 

search; such dynamics have been implemented in a number of successful computational 

models of memory (Davelaar, 2015; Gronlund & Shiffrin, 1986; Metcalfe & Murdock, 

1981; Raaijmakers & Shiffrin, 1981).   

BEAGLE—a recently developed model of semantic memory search—builds off of 

the MVT to predict cluster switching during free recall from natural categories (Hills, 

Jones, & Todd, 2012).  The optimal time spent in a cluster—as derived from their average 
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resource intake algorithm (Equation 11), which is a ratio between gain per time unit spent 

retrieving within a cluster and the sum of time spent traveling within and between 

clusters—is calculated as the product of average resource intake (R; this is referred to as 

net energy in MVT) and the cumulative gain within a patch (g*; Equation 12).  

 
𝑅 =

𝑔(𝑡𝑤)

𝑡𝑤 + 𝑡𝑏
 (11) 

 𝑡∗ = 𝑅 ∗ 𝑔∗ (12) 

Ultimately, BEAGLE is MVT with a new nomenclature indicative of memory 

research.  Tests of its predictive value have demonstrated that BEAGLE performs better 

than static models that do not make use of both local and global retrieval cues (Hills, Jones, 

& Todd, 2012).  More importantly, BEAGLE accurately predicted that people cluster 

switch once they’ve nearly depleted a cluster.  That is, in the same way that animals will 

move to a new patch once the likelihood of finding more food has diminished, people will 

transition to a new global cue once they have reported nearly all the words related to a 

subcategory.  

The applicability of MVT to recall illustrates the generalized nature of search, and 

showcases the importance of cost-benefit tradeoffs for explaining when it becomes 

preferable to terminate search in one location (e.g., a patch, cluster of memories) and 

transition to search elsewhere.  However, as I pointed out at the start of this section, the 

search environment is constrained to a space that is difficult to observe.  People may very 

well encode items such that they are accessible via overlapping global cues, which could 

proffer explanations for specific global transitions.  Thus, the simplicity of the model that 

explains foraging in semantic space may be superficial, and it would be difficult to explore 

how more contextualized models—such as those deployed in the animal foraging 
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literature—apply to internal processes.  Alternatively, the costs associated with memory 

foraging aren’t likely to be as complex as those encountered by animals while foraging.  

Mating opportunities and predation, for example, aren’t likely to have analogous 

counterparts in recall, where time and opportunity are likely to be the most impactful costs 

associated with continued search.  Moreover, the incentive structures for the two domains 

of search appear to be innately different given that the sought-after resource in animal 

foraging can take any number of forms (e.g., prey, fruit, nuts), each with its own utility 

(e.g., nutritional value).  Memories are all of a kind despite varying with respect to their 

relevance to any given attempt at recollection.  Thus, environmental pressures (e.g., task 

domain) are likely to drive differential utility of memories. 

However, that which differentiates some instantiations of search becomes a source 

of commonality between others, as information is the resource sought in both recollection 

and hypothesis testing.  One obvious, yet critical, difference is the location of the desired 

information: internal (memory) or external (information repositories).  When information 

awaits exploitation in the environment, search resembles animal foraging due to the various 

forms information can take (e.g., books, webpages).  This can be seen in the application of 

MVT-like models to data collected in the information search literature. 

2.2.3 Information search.  Hypothesis testing is, in essence, a special case of 

information search, making information search the most relevant body of literature within 

the domain of general cognitive search.  The distinction between hypothesis testing and 

other forms of information search may be superficial in nature, as one can imagine acquired 

information of all kinds serving the purpose of examining any number of hypotheses (e.g., 

PCs are superior to Apple computers, Natalie Portman has voiced a recurring character on 
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The Simpsons, it will rain in Atlanta tomorrow afternoon).  This issue, however, lies 

outside of the scope of this review, and I assumed that people seek information for reasons 

other than testing hypotheses. 

College students, for example, regularly engage in information search for the 

purpose of acquiring knowledge that will assist them in learning material, performing well 

on exams, and writing term papers.  This information is available in the form of books, 

websites, and academic journals, each of which is linked to costs and benefits that a student 

must weigh to optimize their study practices.  Perhaps the most common and frequent 

human foraging endeavor this century, searching for information via the World Wide Web 

has been studied at length in terms of time costs, resource costs, and opportunity costs 

(Pirolli & Card, 1999).  

Consistent with Hills’ (2006) notion of area restricted search, information on the 

World Wide Web is organized in clusters such that important websites containing search-

relevant information will often provide links to other relevant websites.  Hyperlinks often 

appear as words, phrases, or sentences that some have argued can serve as proximate cues 

that emit “information scent” (i.e., hints), which cues the forager to the existence of distal 

information patches (Pirolli & Card, 1999).  The ACT-IF (information foraging) model, 

developed by Pirolli and Card (1999), is a spread activation model (see Anderson, 1993) 

that predicts how people navigate these information spaces.  Specifically, the ACT-IF 

model anticipates cluster selection behavior, where a cluster is a collection of words or 

links on a computer screen.  The clusters preferred by information foragers are those that 

have the strongest scent, which is essentially the strength of the semantic association of 
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words contained in the information display (e.g., website) and the probe or desired 

information. 

Potential information gains resulting from any cluster of words (𝑔) are a function 

of the expected ratio of information activation (𝐴𝑖) to the time costs of information search 

(𝑇; Equation 13).  Thus, a cluster’s appeal will vary depending on how closely related the 

cluster is to the desired information and the amount of time it would take to filter through 

that cluster.  

 
𝑔(𝑐, 𝑠) = 𝑒𝑥𝑝 (

∑ 𝐴𝑖𝑖∈𝑄

𝑇
) (13) 

Optimal information foraging, therefore, involves strategic allocation of attentional 

resources, such that clusters with the greatest potential ought to be selected most often.  

More importantly, ACT-IF can predict optimal search time with respect to the rate of gain 

in a manner reminiscent of MVT’s capacity to predict optimal PRT.  ACT-IF calculates 

the rate of gain as a function of the ratio of information gain for a specific cluster to the 

time spent finding and filtering through that cluster (Equation 14). 

 
𝑅𝐷 =

∑ 𝑔(𝑖, 𝑠)𝑘
𝑖=1

𝑡𝐵 + 𝑡𝑤
 (14) 

Empirical tests of this model have demonstrated that ACT-IF is capable of accurately 

predicting cluster selection, as well as the amount of time spent foraging within information 

clusters (Pirolli & Card, 1999).  These results suggest that human external search 

mechanisms are sensitive to costs and operate in such a way that mirrors optimal foraging 

strategies adopted by animals. 

Pirolli (2005; see also Wu & Pirolli, 2007) allows ACT-IF to flexibly adapt to 

different searching environments (e.g., variations in web design, difficulty of accessing 
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information), understanding that optimal search strategies are likely to change as the 

human-computer interface changes.  This is an important trait for a model of this nature to 

possess given that information search on the Web is accurately described as an ill-

structured problem that can take on many forms, and it is the first example of an 

information foraging model that addresses ecological complexities in a manner somewhat 

similar to the animal foraging models discussed previously.  This flexibility, however, does 

not address the nature of information in environments with great uncertainty, as is often 

the case in hypothesis testing.  Hypothesis testing more closely resembles diet selection 

(Stephens & Krebs, 1986), where proximate cues are unavailable for assessing what is 

likely to be gleaned from a test (i.e., test results may be related to more than one 

hypothesis).  Moreover, hypothesis testing (or hypothesis evaluation, more broadly) can be 

conceptualized as a well-defined problem, as the goals for such tasks are relatively concrete 

(e.g., accurate diagnosis).   

 The three bodies of literature discussed in this section (animal foraging, memory 

search, information search) share a number of features that make it possible for numerous 

models founded on a singular idea (e.g., maximizing gains per unit cost) to account for a 

wide array of behaviors.  Moreover, the evidence in support of a generalized cognitive 

search mechanism lends credence to the notion that hypothesis testing (an information 

seeking behavior) ought to be conceptualized as a special case of search.  As such, 

hypothesis testing theory should include contextual mechanisms such as those incorporated 

into models of animal foraging, and conceptualized the perceived utility of information 

repositories as a function of their association with a probe or the purpose for search (i.e., a 

hypothesis within this context) as has been done in models of information foraging.   
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 Another necessary mechanism that has yet to be implemented in hypothesis testing 

research are rules for termination testing behavior. That is, we do not yet have a theoretical 

account for when is it no longer worth the effort (or costs, more generally) to continue 

acquiring information and, instead, act on currently held beliefs.  Generally speaking, very 

few accounts of termination rules have been published in all search-related literature.  The 

sparse nature of our understanding of search termination is a critical limitation of the field 

and is especially important in information search as it represents the moment when a 

decision-maker is satisfied with their understanding of the environment and ready to act on 

that understanding. 

2.4 Hypothesis Generation 

Revealing the cognitive mechanisms underlying decision-making has been an 

important advancement in cognitive decision theory, steering the field away from the 

heuristics and biases perspective of human judgment (Kahneman & Tversky, 1996) and 

toward a process-oriented field of study.  The ability to reduce human judgment to 

foundational cognitive processes affords unifying theory of higher order cognitive 

processes, as has been exemplified by the Hypothesis Generation (HyGene) cognitive 

architecture (Dougherty, Thomas, & Lange, 2010; Thomas, Dougherty, & Buttaccio, 2014; 

Thomas, Dougherty, Sprenger, & Harbison, 2008). 

The HyGene cognitive architecture was originally developed for the purpose of 

integrating long-term memory and working memory systems for the purpose of explaining 

variation in probability judgments (Thomas, Dougherty, Springer, & Harbison, 2008).  In 

its present format, HyGene accounts for the generation, maintenance, and testing of 

hypotheses by implementing 3 memory modules: working memory, episodic memory, and 



 27 

semantic memory (Dougherty, Thomas, & Lange, 2010).  HyGene treats the hypothesis 

generation process as a general case of cued recall, such that observed data cue the 

activation of a subset of episodic memories highly associated with the data.  Hypotheses 

are generated from semantic memory when the conditional intensity of activated memories 

exceeds a threshold, and are maintained in a Set of Contenders (SOC) limited in size by 

both cognitive (e.g., individual differences in working memory) and task (e.g., time 

pressure) constraints.  Hypotheses maintained in the SOC are available to be used as input 

for additional tasks (e.g., probability judgment, hypothesis testing).  

Global matching models like HyGene have been used to account for a number of 

memory and probability judgment phenomena (Dougherty, Gettys, & Ogden, 1999; 

Hintzman, 1984; Hintzman, 1988).  However, HyGene accounts for four unique findings 

in the probability judgment literature: subadditivity, strength of alternatives effects, 

working memory capacity effects, and time pressure effects.  HyGene computes 

conditional probabilities by invoking support theory (Equation 15; Tversky & Koehler, 

1994), but transforms it into a process-driven probability estimation by replacing support 

with memory activation (i.e., support for a hypothesis in a subset of activated memory; 

Equation 16).  This is essentially a ratio of the intensity of active memories in support of 

the focal hypothesis to the total intensity of active memories.   

 
𝑃(𝐴, 𝐵) =

𝑠(𝐴)

𝑠(𝐴) + 𝑠(𝐵)
 (15) 

 
𝑃(𝐻𝑖|𝐷𝑜𝑏𝑠) =

𝐼𝐶𝑖

∑ 𝐼𝐶𝑖

𝑤
𝑖=1

 (16) 

According to HyGene simulations, the probability judgment effects listed above 

emerge as a consequence of the number of hypotheses generated in response to the 
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observed data (Thomas et al., 2008).  The magnitude of subadditivity (i.e., the degree to 

which the sum of objective probabilities is less than the sum of judged probabilities), for 

example, was thought to be related to working memory capacity (Dougherty & Hunter, 

2003b), such that those with high working memory capacity exhibited less subadditivity 

than those with low working memory capacity.  HyGene simulations demonstrate that 

when many hypotheses (e.g., 4) are contained in the SOC (as has been observed for high-

span individuals), subadditivity is low because more hypotheses are present to account for 

their share of the activated memories in the episodic store.  Probability estimates increase 

substantially when few hypotheses are contained in the SOC (e.g., 2), resulting in high 

subadditivity.  A similar pattern of behavior emerges from the model when time allowed 

to generate hypotheses is restricted (i.e., simulated time pressure), as fewer hypotheses are 

generated, probability judgments increase, and subadditivity increases. 

The importance of HyGene is its explanatory power regarding higher-order 

cognitive phenomena, such as the probability judgments reviewed above.  Since its initial 

application to probability judgments, HyGene has been extended to both visual search and 

hypothesis testing.  A number of studies have shown that the contents of working memory 

guide saccadic movement in visual search tasks (Beck, Hollingworth, & Luck, 2012; 

Olivers, Peters, Houtkamp, & Roelfsema, 2011; Soto & Humphreys, 2007), which suggests 

HyGene is well suited for modeling visual search given its theoretical account for how 

hypotheses are generated into working memory.  Buttaccio, Lange, Thomas, and 

Dougherty (2015) examined first fixations in a visual search task to examine the potential 

influence of hypotheses generation on visual attention.  A HyGene model that assumed the 

first hypothesis to be generated influenced visual search alone was found to fit the data 
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best, suggesting that generated hypotheses can account for the allocation of overt visual 

attention—a finding consistent with prior research indicating that overt visual attention is 

typically guided by a single item contained in working memory (Olivers et al., 2011). 

In an extension of HyGene intended to capture hypothesis testing behavior 

(HyGene-HT), Dougherty, Thomas, and Lange (2010) implemented a number of memory-

related heuristics for evaluating information depositories and guiding information search.  

These included the memory-strength heuristic (i.e., select the cue associated with the most 

highly activated hypothesis), dissimilarity heuristic (i.e., select the cue that maximizes the 

dissimilarity between the focal hypothesis and the strongest competitor), memory strength 

difference heuristic (i.e., select the cue that maximizes the difference in memory strength 

between the two leading hypotheses), and Bayesian diagnosticity (i.e., select the cue with 

the highest likelihood ratio).  This early attempt to model information search using basic 

memory phenomena proffered a theoretical foundation for bias towards positive-test 

selection (a commonly observed outcome in human reasoning discussed earlier in this 

review; Wason, 1968), suggesting that tendencies to a single hypothesis accounts for the 

observed pattern of positive-test bias. That is, there is no incentive to value information 

depositories that could reveal falsifying data with respect to the hypothesis under 

consideration if a person has failed to generate a competing hypothesis. 

 Thomas, Lange, and Dougherty (as cited in Lange et al., in press) found evidence 

in support of HyGene-HT’s predictions, as people sought diagnostic tests when observed 

data was suggestive of two hypotheses and preferred associative tests when observed data 

was suggestive of one hypothesis.  Thus, self-generated hypotheses were observed to elicit 
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preferences for tests under different ecological conditions, suggesting that hypotheses 

influence the perceived value of tests. 

 The generalizability of HyGene-HT, however, is severely limited given that some 

of the heuristics outlined above are too simplistic to be tenable in complex decision-making 

environments. Additionally, the heuristics only accommodate the value of the available 

tests, thus, ignoring the costs incurred by exploiting each test.  Moreover, HyGene-HT 

shares a number of features with the adaptive toolbox model for stopping rules reported 

previously (Ficic & Buckman, 2013), as it assumes that many information heuristics are 

available to decision-makers and individual differences or some set of contextual properties 

dictate which of these heuristics are used by a decision-maker.  Most notably, HyGene-HT 

lacks a formal stopping rule and, thus, cannot account for termination decisions.   

 Although hypothesis generation models appear to provide a sound foundation for 

hypothesis testing theory, current models are ill-equipped to address hypothesis testing as 

defined in this review.  Visual search models appear to be unique with respect to hypothesis 

generation, as visual constraints limit the number of hypotheses that could potentially 

influence search behavior independent of the additional constraints represented in the 

HyGene architecture (Buttaccio et al., 2015).  Despite incorporating memory processes, 

HyGene-HT exhibits a narrow perspective of hypothesis testing indicative of much of the 

earliest work in the field.  The model lacks much of the infrastructure necessary to 

investigate general search mechanisms, such as a way to estimate the perceived cost of 

exploiting a test. 

2.5 Hypothesis-Guided Search 
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The computational modeling carried out to simulate the empirical studies reported 

in this dissertation implemented components of the conceptual model I described below, 

which aims to advance hypothesis testing theory by incorporating both environmental 

factors and cognitive mechanisms into the evaluation of information sources.  That is, I 

conceptualized test selection as a consequence of a decision-maker’s experience and the 

limitations of their cognitive abilities, as well as contextual limitations like the availability 

of data and the incentives for performing a task accurately.  I accounted for costs associated 

with acquiring data in a manner that was consistent with generalized theories of search.  

The perceived utility of information depositories was subjective, and costs were interpreted 

relative to the contexts in which they arose.  Most importantly, I linked the perceived value 

of tests to the hypotheses entertained by decision-makers. 
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Figure 1. The hypothesis-driven valuation model of hypothesis testing.  Boxes above 

the dashed line represent factors that exist outside of the cognitive system, while boxes 

below the dashed line occur within the mind. 

 

Figure 1 illustrates the hypothesized cognitive account of hypothesis testing 

behavior.  The dashed line in Figure 1 separates information that originates outside of the 

cognitive system (above the line) and the processes theorized to occur within the mind 

(below the line).  Steps 1 through 3 are consistent with previous conceptualizations of 

hypothesis generation proposed by Thomas, Dougherty and their colleagues (Dougherty, 

Thomas, & Lange, 2010; Thomas, Dougherty, & Buttaccio, 2014; Thomas, Dougherty, 

Sprenger & Harbison, 2008).  In essence, hypothesis generation is a special case of cued 

recall, where data present in the environment (step 1) serves as cues to engage in retrieval 

from memory.  I expand on Thomas et al.’s interpretation of a decision environment to 

include information that restricts or frames the nature of a decision.  The environment 

contains the initial cues for diagnosis, contextual limitations (e.g., time constraints), and 

incentive structures (e.g., goal framing).  This enters the cognitive system as observed data 

(Dobs), internalized by the decision-maker. 

In step 2, the observed data activate traces in episodic memory with which they 

share common features.  Hypothesis generation (step 3) includes a number of events 

described in greater detail elsewhere (Thomas et al., 2008).  Information is aggregated from 

the activations in step 2, forming a probe to match against semantic representations of 

known hypotheses.  This process is an iterative one.  The probe is continuously matched 

against the contents of semantic memory until the decision-maker reaches a maximum 

number of failed attempts to sufficiently match a hypothesis (Harbison, Dougherty, 

Davelaar, & Fayyad, 2009).   
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As in Thomas et al.’s (2008) model, generated hypotheses populate the set of 

contending hypotheses (SOC; step 4).  The SOC is, essentially, a representation of working 

memory and, as such, is limited in its capacity to actively maintain information (hypotheses 

in this case).  Thus, hypotheses compete for the limited space available within the SOC, 

such that only those with the strongest activation or the most support remain in the SOC.  

These remaining hypotheses play an important role in judging the value of available tests 

(Step 5) by modifying valuation judgments with respect to posterior belief distribution 

(Gettys & Fisher, 1979).  That is, tests associated with the most activated hypotheses 

maintained in the SOC will be judged as more valuable than those associated with 

hypotheses with weaker activations.   

Valuation judgments are also assumed to be sensitive to information available in 

the environment (arrow from box 2 to box 5 in Figure 1).  For instance, the domain may 

require decision-makers to adhere to specific protocols for selecting tests.  These 

environmental pressures provide additional information for valuating available tests.  

While the tests required by protocol and those suggested by the contents of the SOC may 

overlap, this model provides an explanation for violations of administrative policy without 

invoking insubordination or a failure to recall the protocols.  That is, decision-makers may 

circumvent policy when the hypotheses within the SOC drive up the valuation of tests not 

listed in mandated protocols. 

Decisions regarding the exploitation of sources will emerge from cost-benefit 

assessments of continued search.  In step six, people consider the valuation judgment of a 

test and costs associated with the test relative to a threshold for carrying out tests to 

formulate exploitation decisions.  Thresholds, perceived costs, and valuation judgments are 
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likely to vary by context and by individual, and the nature of thresholds could potentially 

take many different forms (e.g., improve potential gains by some amount, reach a specified 

level of confidence, reduce uncertainty by some amount).  Thus, this model is capable of 

anticipating the conditions under which decision-makers may select tests dominated by 

alternatives with respect to value. 

It is worth noting that this model accounts for associative search (pseudo-diagnostic 

testing) in a manner consistent with prior versions of HyGene, as decision-makers will 

perceive such tests as valuable only when a single hypothesis has been generated (Lange, 

Thomas, & Dougherty, 2010).  Consequently, decision-makers begin to appear as though 

they have adopted diagnostic strategies as a result of considering multiple generated 

hypotheses.  This model, however, expands upon HyGene-HT by accounting for observed 

differences in testing strategies without changing the mechanism by which tests are 

evaluated.   

When threshold is exceeded, this model posits that the most appealing information 

depository will be exploited (Step 7).  The decision to exploit a source of information will 

result in sampling more data from the environment (Step 1), which will initialize another 

iteration of belief revision.  This process illustrates how the HyGene architecture can 

account for nuanced test preference.  Additionally, it formalizes a mechanism by which the 

information sought out by decision-makers results in downstream effects of information 

preference (Smith, Huber, & Vul, 2013), as the information realized by a testing event is 

likely to result in changes in the perceived value of remaining information depositories.   

A critically important contribution of this model is the inclusion of a termination 

rule, which is assumed to be emergent from the cost-benefit assessments of continued 
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search (Step 6).  Simply put, testing is terminated when the gains to be made from 

exploiting the most useful test available fail to exceed the threshold (Step 8).  The process 

itself, however, can be exceedingly complex because what it means for a test to be 

unwarranted varies as a consequence of the environment, individual differences, internal 

processing, or any combination thereof.  For instance, the threshold will differ on an 

individual basis, where conservative testers will require that the perceived utility of future 

states be far more advantageous than their current state (i.e., high threshold) and more 

liberal testers will run tests that provide additional information of any value (i.e., low 

threshold).  Conservative testers will be more likely to terminate quickly after selecting 

few tests, while liberal testers will terminate after many tests have been exploited.  It may 

be the case that thresholds are adaptive in nature, responding either to changes in the 

environment or the decisiveness of the decision-maker (Kruglanski & Webster, 1996).   

As stated previously, just about any factor present in the model can have an impact 

on decisions to terminate.  The generation process itself can exhibit a lot of influence over 

termination decisions, as can the posterior distribution of beliefs over generated 

hypotheses.  Termination is likely to occur early when posterior beliefs are asymmetrical 

(i.e., there are few strong candidate hypotheses) as is the case when a single hypothesis is 

generated, and late when beliefs are symmetrical (hypotheses under consideration have 

similar probabilities) as is more likely when many hypotheses are generated.  Imagine a 

patient arriving at a hospital, presenting with lower-right abdomen pain, high fever, and 

vomiting indicative of an upset digestive system.  The physician’s belief in an appendicitis 

diagnosis may be so strong that no test is valued sufficiently to warrant running any test.   
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The structure placed on the task by the environment can impact termination in a 

number of ways.  Costs, for example, may vary with respect to environmental constraints, 

such as time pressure.  Should the decision-maker perceive that their time is limited for 

any reason (e.g., high workload, patient in critical condition), the time needed to run tests 

would ultimately be too costly to warrant testing.  Goal framing, or changes in the incentive 

structure, can impact the manner in which thresholds are placed or modify the valuation 

process.  Placing an emphasis on accurate diagnoses, for example, can either increase the 

perceived value of tests or reduce the threshold.  Either of these changes will result in an 

increase in the number of tests run, affording the decision-maker more information upon 

which to base their decisions.  Alternatively, placing an arbitrary cut-off on the resources 

available to the decision-maker (e.g., cap on tests run, cap on monetary expense) is likely 

to result in earlier termination either because few tests warrant use of those resources or 

decision-makers will conserve their resources until they are most needed. 

The conceptual model introduced above can account for hypothesis testing 

phenomena (e.g., pseudo-diagnostic search, diagnostic search, early exit) without invoking 

more than a cued memory process that drives resource valuation judgments, and a 

termination rule.  Not only is this a more parsimonious approach to building hypothesis 

testing theory in comparison to much of the work that has been done to date, but it is the 

first theory of hypothesis testing that accounts for the decision-maker’s beliefs for the 

purposing of explaining test preference.   

 The most shocking limitation of current hypothesis testing theory is the inability 

for any contemporary model to account for the manner in which hypotheses under the 

consideration of decision-makers govern observable hypothesis testing behavior.  As 
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defined by Poletiek’s (2001) account of hypothesis evaluation, testing cannot occur until 

hypotheses have been generated by decision-makers.  Thus, hypotheses under 

consideration are, in essence, the motivating factor in engaging the environment for 

information to clarify the decision-maker’s understanding of their surrounding 

environment.    
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CHAPTER 3. EMPIRICAL STUDIES 

3.1 Medical Diagnosis Game 

The array of empirical studies reported in this section utilize a single experimental 

paradigm, adapted to address the various research questions posed previously: The Medical 

Diagnosis Game (MDG; Illingworth & Thomas, 2015).  The MDG is a forced-choice, 

simulated diagnosis task modeled after experience-based category learning paradigms 

(e.g., Hoff & Rehder, 2010; Posner & Keele, 1969).  This paradigm has been validated for 

investigating sequential data acquisition (e.g., hypothesis testing), diagnosis, and tradeoffs 

inherent to foraging tasks (Illingworth & Thomas, 2015; 2016; 2017).   

The MDG typically consists of two phases.  I designed the first phase of the game to 

facilitate internalization of the probabilistic relation between disease states and test 

outcomes, as participants complete numerous blocks of trials diagnosing patients with 

different disease-test outcome configurations.  The number of diseases, tests, and test 

outcomes vary by experiment.  To illustrate the task, assume that there are three diseases, 

four tests, and three possible outcomes per test.  In a learning trial, outcomes from the four 

medical tests associated with a fictitious patient ailed by one of three mutually exclusive 

diseases are presented to participants.  Test results take the form of circular, black and 

white images of familiar medical tests (e.g., computed tomography scans (CAT), chest 

cavity x-rays (X-RAY)).  The pattern of outcomes (images) obtained from medical tests is 

controlled by the statistical relation between diseases and medical tests.  Test labels (e.g., 

CAT, X-RAY) and corresponding images are randomly assigned to each test in the 

experiment for each participant.   
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Figure 2. Illustration of a learning trial for the MDG experimental paradigm. All test 

results appear after 1500ms during learning trials. Test trials differ such that results 

only appear after participants click on the desired test. Diagnoses are issued at the 

participants’ discretion, after which feedback is provided. 

 

Figure 2 illustrates a learning phase trial.  The experimental interface consists of 

four circular widgets located in the four corners of the computer screen where the results 

of medical tests appear, as well as a scale—centered in the display—to submit diagnoses.  

Medical tests are randomly assigned to one of the four widget locations, and remained in 

the same location throughout the experiment, for each participant.  Participants submit their 

diagnoses at their own discretion by selecting one of three fictitious diseases—Metalytis, 

Zymosis, or Gwaronia.  Diagnoses can be changed indefinitely until participants submit 

their response.  Feedback is provided after each diagnosis such that the word “CORRECT!” 

appears after participants diagnose the patient with the appropriate disease and 

“INCORRECT” appears after an erroneous diagnosis.   
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The gamification of the task is implemented in the feedback following completion 

of the diagnostic task, as all participants earn 1000 points ($) for each correct response 

during the learning phase.  The points participants earn accumulate in their “bank” of 

resources that they later use to complete the second phase of the experiment. 

The second phase of the experiment houses all environmental manipulations other 

than the statistical structure of test outcomes.  The most important feature of phase 2 is the 

occlusion of test results until participants explicitly request to view the outcomes of specific 

tests.  This affords measurement of test preference, as well as an opportunity to measure 

relative valuation and tradeoffs via the manipulation of information access costs.  Such 

manipulations can delay the presentation latency of those outcomes (i.e., a time cost) or 

impose a monetary expense (i.e., sacrificing previously earned points to view outcomes).   

 Outcome presentation can also be constrained such that test outcomes can be 

controlled after specific test selections either with respect to the sequence of selection (e.g., 

first test outcome is always positive) or the specific test requested (e.g., CAT outcome is 

always positive).  Such manipulations afford control over objective posterior belief 

distributions following each datum acquired, which may be important in decisions to 

terminate testing.  Finally, the incentive structure of the task can be manipulated via the 

payoff mechanism for diagnostic accuracy.  Participants can continue to earn 1000-point 

payoffs for correct diagnoses, or those points can be deducted from banks after incorrect 

diagnoses to frame the task within a loss context.  Additionally, payoffs can be yoked to 

confidence judgments, affording examination of participants’ calibration to their own 

performance on the task. 

3.2 Experiment 1 - Hypothesis Generation and Test Preference 
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Prior work linking test selection to hypothesis generation has focused on single test 

selection in binary choice tasks (Thomas, Dougherty, & Lange, 2010).   Most testing 

behavior, however, occurs in environments wherein multiple tests are exploited and data is 

accumulated over time.  To date, no study has systematically manipulated the hypothesis 

set cued by information available at the beginning of the hypothesis evaluation process for 

the purpose of investigating sequential testing behavior.  The purpose of Experiment 1 was 

to investigate test preference as it relates to cued hypothesis sets and changes to beliefs 

over time.   

Information utility models often invoke hypotheses when computing test value 

(Manktelow & Over, 1990; Over & Evans, 1994; 1996; Oaksford & Chater, 1996); 

however, such metrics are not suited for sequential data acquisition to evaluate more than 

a single hypothesis.  Probability gain, for example, conceptualizes the utility of a test as its 

capacity to make a hypothesis more probable.  Not only does this definition of utility lose 

clarity in decision environments with greater uncertainty (e.g., more than one hypothesis 

is considered), it presupposes that the goal of testing is to confirm a specific hypothesis or 

that decision-makers are aware of the correct state of the world ahead of testing.   

Alternatively, the HyGene architecture assumes that preference for information 

manifests as a byproduct of belief.  The need to seek diagnostic information manifests 

when more than one hypothesis is considered as a possible account for a dataset (Thomas, 

Dougherty & Lange, 2010).  Otherwise, pseudo-diagnostic or positive search is an adequate 

strategy for informing a decision-maker.  HyGene, however, makes more nuanced 

predictions regarding information preference as it relates to the set of contending 

hypotheses.  Provided that more than one hypothesis is considered by a decision-maker, 
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preference should reflect the contents of working memory such that information 

depositories with a history of differentiating between contending states of the world are 

exploited at a higher rate.   

The purpose of Experiment 1 was to test this prediction by measuring test 

preference in response to cues intended to bias participants towards maintaining differential 

belief distributions.  The statistical structure of the experimental environment detailed 

below was designed to exact control over the hypotheses most strongly considered by 

participants.  The general hypothesis was that presenting cue would predict test preference 

where patterns of testing behavior would appear markedly different depending on which 

presenting cue was presented. 

3.2.1 Method.   

Undergraduate students enrolled at the Georgia Institute of Technology were 

recruited to participate in this study via an online experiment management system (SONA 

Systems).  In total, 31 participants completed the experiment.  All participants received 

partial course credit for their involvement in the study. 

Hypothesis-guided testing behavior assumes that the contents of one’s beliefs (i.e., 

the hypotheses considered by a decision-maker) drive test preference.  Thus, the tests 

selected by participants when decision environments cue differential hypothesis sets should 

vary considerably.  This manipulation was implemented by presenting participants with a 

presenting sign that patients exhibited prior to the selection of any tests.  The ecology that 

defined the relation between disease states and presenting cues is outlined in Table 2.  The 

values presented in Table 2 represent the probability that one of the four possible diseases 

accounted for the emergence of each presenting symptom.  Not only did the presenting 
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symptoms cue different sets of hypotheses, they also differed with respect to the number 

of hypotheses a decision-maker with perfect knowledge of this ecology considered.  

Manipulating the presenting cue in this way afforded an investigation of pseudo-diagnostic 

search (as in Thomas, Dougherty, & Lange, 2010) in addition to the hypothesis-guided 

testing behavior predicted by the HyGene architecture.  That is, pseudo-diagnostic search 

was hypothesized to occur when there is a single strong hypothesis considered, while 

diagnostic search was hypothesized when multiple hypotheses were candidate 

explanations. 

Table 2.  Presenting sign ecology for Experiment 1. 

 Presenting Symptoms 

 Cue 1 Cue 2 Cue 3 Cue 4 

Hyp 1 .65 .32 .14 .07 

Hyp 2 .12 .14 .32 .31 

Hyp 3 .12 .14 .32 .31 

Hyp 4 .12 .32 .14 .31 

  

Table 3 lists the probability that each of four possible diseases (Hyp 1-4) accounts 

for a patient’s ailment conditional on the patient presenting with one of four symptoms 

(Test 1-4).  The tests available to decision-makers are designed to map closely to the cue 

configuration presented in Table 2.  Note that Cue 1 was strongly associated only with 

Hypothesis 1 (Hyp 1 manifests in 65% of cases presenting Cue 1).  The only hypothesis 

for which Test 1 exhibits an informative outcome is Hypothesis 1 (see top left of Table 3).  

Similarly, Cue 2 has strong associations with Hypotheses 1 and 4, while outcomes for Test 

2 are most useful for disambiguating these same two hypotheses.  The critical property of 

the tests listed in Table 3 was the even distribution of diagnosticity across the four tests.  

That is, when a decision-maker believes that all four hypotheses are equally likely, the 

diagnostic values of all tests are approximately equal (diagnosticity ≈ 2).   
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Table 3.  Test outcome ecology for Experiment 1. 

  Diagnostic Tests 

  Test1 Test2 Test3 Test4 

Hypothesis 1 

Outcome 1 .80 .65 .30 .30 

Outcome 2 .10 .20 .40 .40 

Outcome 3 .10 .15 .30 .30 

Hypothesis 2 

Outcome 1 .30 .30 .65 .60 

Outcome 2 .40 .40 .20 .20 

Outcome 3 .30 .30 .15 .20 

Hypothesis 3 

Outcome 1 .30 .30 .15 .20 

Outcome 2 .40 .40 .20 .60 

Outcome 3 .30 .30 .65 .20 

Hypothesis 4 

Outcome 1 .30 .15 .30 .20 

Outcome 2 .40 .20 .40 .20 

Outcome 3 .30 .65 .30 .60 

Diagnosticity 2.09 2.09 2.09 2.03 

 

 However, once data was observed by the decision-maker (e.g., a presenting 

symptom), their belief distribution should change as would the diagnostic value of the tests.  

For instance, assuming Cue 1 is observed at the start of a trial, the diagnostic value of Tests 

1 and 2 become higher relative to Tests 3 and 4.  If we assume that decision-makers will 

select the most diagnostic test, Test 1 is most likely to be selected after Cue 1 is observed.  

The remaining cues and tests possess the same relation. 

 The learning phase of Experiment 1 was completed over 24 blocks of 20 trials (each 

disease hypothesis was equally represented in those 20 trials), resulting in 480 learning 

trials.  Participants were instructed to use Phase 1 trials to internalize the statistical ecology 

that defined the relation between disease states and information available in the world.  

Presenting symptoms were one of four common medical conditions: fever, rash, migraine, 

and ache.  These labels were randomly assigned to the cues detailed in Table 2.  Data from 

4 medical tests derived from a fictitious patient ailed by one of four mutually exclusive 

diseases were presented to participants during each trial.  Stimuli were circular, black and 
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white images of computed tomography scans (CAT), chest cavity x-rays (X-RAY), 

bacterial cultures (LAB), and abdominal magnetic resonance images (MRI).  Test labels 

and corresponding images were randomly assigned to each test appearing in Table 3 for 

each participant.  After 1500ms elapsed following the onset of a learning trial, the outcomes 

of all tests were presented simultaneously.  Participants submitted their diagnoses at their 

own discretion by selecting one of three fictitious diseases—Metalytis, Zymosis, 

Gwaronia, or Descolada.  Diagnoses could be changed indefinitely until the participant 

submitted their response.  Feedback was provided after each diagnosis such that the word 

“CORRECT!” appeared after participants diagnosed the patient with the appropriate 

disease and “INCORRECT” appeared after an erroneous diagnosis.  Accuracy was 

incentivized during the learning phase of Experiment 1, such that participants were 

awarded points ($1000) that were deposited into a bank that grew with each subsequent 

correct diagnosis.  Participants were instructed to make accumulating as many points as 

possible the primary goal of their task. 

 The test phase of Experiment 1 was completed over 4 blocks of 20 trials each, for 

a total of 80 test trials.  The disease hypotheses were equally represented in each block of 

test trials.  Test phase trials differed from those of the learning phase such that test results 

did not automatically appear after a short latency.  Rather, participants had to explicitly 

click on the test widget before the corresponding outcome would appear.  Tests were, thus, 

selected sequentially.  The number of tests viewed was left to the participant’s discretion, 

where termination of search (i.e., submission of their diagnosis) could occur after viewing 

between none and all of the test outcomes. Completion of each test trial was self-paced 

and, as was the case in learning trials, diagnoses could be changed indefinitely until the 
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participant submitted their response.  Feedback was withheld from participants during the 

test phase of the experiment. 

3.2.2 Results.   

Learning.  A logistic regression evaluated how well accuracy was predicted by 

block.  Block was not found to be predictive of learning phase accuracy (χ2 (n=31,23) = 

23.77, p = 0.42), suggesting that performance did not improve over the course of the 24 

blocks.  However, participants were 1.41 times more likely to submit a correct diagnosis 

in the final block as they were in the first (β = -0.01, SE = 0.13, p <.01).  Moreover, there 

was a significant linear trend relating accuracy to block (χ2 (n=31,23) = 8.70, p = 0.003)  

These mixed results imply that knowledge of the task environment was highly variable in 

the sample, and may serve as an important individual difference when considering 

performance across the varied metrics of the task.  
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B 

 

Figure 3.  Experiment 1 learning.  Panel A illustrates Experiment 1 learning phase 

accuracy broken out by block.  The dotted line represents chance performance (25%).  

Error bars represent standard error.  Panel B tracks proportion correct for 5 

participants across all trials of Phase 1, as well as sample average (black, dotted line) 

and chance performance (black, dashed line).  The worst performer exhibited chance 

accuracy, while the best performer approximately doubled the rate of correct 

responses. 

 

Accuracy.  A logistic regression evaluated how well accuracy was predicted by 

block.  Block was not found to be predictive of learning phase accuracy (χ2 (n=31,1) = 

0.94, p = 0.70), suggesting that performance did not improve over the course of the test 

phase.  Participants were nearly equally likely (O = 0.96) to submit a correct diagnosis in 

the final block as they were in the first (β = -0.04, SE = 0.1 , p =.70).  Moreover, accuracy 

in the first block (M = 0.33, SE = 0.02) and the second block (M =0.35, SE = 0.02) were 

nearly identical to learning phase performance. 

Stopping.  A multinomial regression tested for differences in the total number of 

tests selected by presenting cue.  Presenting cue did not predict the total tests selected per 

trial (χ2 (n=31,3) = 3.04, p = 0.38).  As can be seen in Figure 4, the number of tests selected 

appear evenly distributed across all presenting cue conditions.  A follow-up analysis 
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explored the possibility that differences in learning phase performance could shed light on 

what if any sensitivity termination decisions exhibited in response to presenting cue.  A 

second multinomial regression showed that neither presenting cue (χ2 (n=31,3) = 2.61, p = 

0.45) nor learning (χ2 (n=31,1) = 1.22, p = 0.27) predicted the number of tests selected.  

More importantly, the interaction between presenting cue and learning did not predict total 

tests selected (χ2 (n=31,3) = 2.92, p = 0.40).  These analyses fail to provide any evidence 

that either the presenting symptom or the participants’ knowledge of the task environment 

influenced decisions to terminate test selection. 

 

Figure 4.  Experiment 1 total testing.  The figure illustrates mean total tests selected 

by presenting symptom.  The total number of tests selected did not vary by presenting 

symptom.  Error bars illustrate standard errors. 

 

Test selection.  The frequency with which each available test was selected was 

evaluated by running a series of binomial logistic regression analyses.  Presenting cue was 

not found to be predictive of Test 1 selection (χ2 (n=31,3) = 0.83, p = 0.84).  Learning phase 

performance was added to the model to evaluate whether or not knowledge of the task 

environment could elucidate Test 1 selection.  Neither presenting cue (χ2 (n=31,3) = 1.49, 
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p = 0.68) nor learning (χ2 (n=31,1) = 1.10, p = 0.29) predicted Test 1 selection.  Moreover, 

the interaction term exhibited no relation to whether or not Test 1 was selection (χ2 (n=31,3) 

= 0.88, p = 0.83). 

The same pair of analyses were conducted for Tests 2 through 4.  Presenting cue 

was not predictive of Test 2 selection (χ2 (n=31,3) = 6.53, p = 0.09), nor was it a significant 

predictor of Test 2 selection after learning was added to the model (χ2 (n=31,3) = 3.14, p = 

0.37).  Presenting cue was not predictive of Test 3 selection before (χ2 (n=31,3) = 2.62, p 

= 0.45) or after learning was added to the model (χ2 (n=31,3) = 7.21, p = 0.07).  Learning 

did not predict Test 3 selection (χ2 (n=31,1) = 0.16, p = 0.43), and the interaction term did 

not predict selection either (χ2 (n=31,3) = 7.14, p = 0.07).  Test 4 results followed the same 

pattern of results, as presenting cue did not predict Test 4 selection on its own (χ2 (n=31,3) 

= 1.26, p = 0.74), nor after learning was included in the model (χ2 (n=31,3) = 2.56, p = 

0.47).  Neither learning (χ2 (n=31,1) = 1.00, p = 0.32) nor the interaction term (χ2 (n=31,3) 

= 2.24, p = 0.52) predicted Test 4 selection either. 

Figure 5 illustrates the test selection analyses reported above, parsing participants 

into high learning and low learning groups via a median split on their learning phase 

performance.  Low learners exhibited consistency in their test selection behavior across 

nearly all presenting cue conditions.  High learners exhibited much more variability in their 

testing behavior, including predicted higher rates for Tests 2 and 3 after presented with 

Cues 2 and 3 respectively.  Though these results suggest that these patterns fall short of 

statistical significance, these differences hint at the possibility that knowledge of the task 

environment influences sensitivity to presenting cues and test selection. 
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Figure 5.  Experiment 1 test selection.  The figure illustrates mean proportion of trials 

for which each test was selected.  Selection rate is parsed out by presenting cue and 

learning performance.  The total number of tests selected did not vary by presenting 

symptom.  Error bars illustrate standard errors. 

 

Test preference.  Another way to interpret test selection is to consider the order in 

which tests are selected, denoting those tests selected earlier in a sequence as preferred to 

those exploited later.  Presumably, a test selected earlier in a sequence has been prioritized 

by the decision-maker for reasons that reflect the perceived properties of the information 

expected to manifest.  For the following analyses, tests selection has been scored with 

respect to order.  Tests selected first were scored as 4, while those selected second, third, 

or fourth were scored as 3, 2, or 1 respectively.  Tests not selected were scored as 0. 

A multinomial logistic regression evaluated whether or not presenting cue predicted 

preference for Test 1 (see Figure 6).  The result suggests that preference for Test 1 was not 

influenced by the presenting cue (χ2 (n=31,3) = 0.45, p = 0.93).  Consistent with the 

previous set of analyses, learning phase performance was added for an exploratory analysis 

of the influence of task environment knowledge.  Neither presenting cue (χ2 (n=31,3) = 
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1.44, p = 0.70) nor learning (χ2 (n=31,1) = 0.93, p = 0.33) accounted for Test 1 preference.  

The interaction term did not predict Test 1 preference either (χ2 (n=31,3) = 0.98, p = 0.81). 

 

 

Figure 6.  Experiment 1 test preference.  The figure illustrates mean preference score 

for each test broken out by presenting cue.  Test preference was not found to be 

related to presenting cue.  Error bars illustrate standard errors. 

 

The same pair of analyses were conducted for Tests 2 through 4.  Presenting cue was 

not predictive of preference for Test 2 (χ2 (n=31,3) = 5.86, p = 0.12), Test 3 (χ2 (n=31,3) = 

1.48, p = 0.69), or Test 4 (χ2 (n=31,3) = 1.41, p = 0.70).  Test 2 preference was not predicted 

by presenting cue after learning was included in the model (χ2 (n=31,3) = 3.22, p = 0.36).  

Learning did not predict Test 2 preference either (χ2 (n=31,1) = 0.15, p = 0.70), nor did the 

interaction term (χ2 (n=31,3) = 1.88, p = 0.60).  Test 3 preference was not related to 

presenting cue after learning was added to the model (χ2 (n=31,3) = 6.93, p = 0.07).  Phase 

1 learning (χ2 (n=31,1) = 0.04, p = 0.83) and the interaction term (χ2 (n=31,3) = 6.96, p = 
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interaction between presenting cue and learning did not predict Test 4 preference (χ2 

(n=31,3) = 2.46, p = 0.48). 

Model fitting.  The statistical models that evaluated the observed behavior in 

Experiment 1 failed to demonstrate any link between presenting cue and patterns of testing 

behavior.  A link between hypothesis generation and test selection would be equally 

challenging to detect in light of that result, suggesting that full-scale HyGene modeling of 

this experimental task would be of limited value.  Instead, simulation of Experiment 1 was 

carried out to further explore participant sensitivity to the statistical structure of the task 

environment.  Two approaches to test exploitation were formalized in a computational 

model of the experimental task in an effort to better understand the patterns of testing 

behavior observed in Experiment 1. 

An ideal observer model simulated a strategy that reflected perfect knowledge of the 

task environment, where the test with the highest diagnostic value was always selected.  

Bayesian diagnosticity was the information metric capitalized upon by the model and was 

estimated for each test (T) consistent with Equation 17.  The value of a test was computed 

as the average diagnosticity of each possible test outcome (dj).  Posterior belief 

distributions were perfectly calibrated to the result of each selected test, and the diagnostic 

values of remaining tests were computed after each test selection.  Equation 18 was used 

to compute posterior belief.  The random model simulated a strategy for selecting medical 

tests without any consideration of their informative properties.  Model behavior was 

recorded across all possible presenting cue and test result combinations, as well as all 

possible trials where between 1 and 4 tests were selected.   
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𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑖𝑡𝑦(𝑇) =

∑ 𝑃(𝑑𝑗) ∗ max (
𝑝(𝑑𝑗|𝐻1)
𝑝(𝑑𝑗|𝐻0)

,
𝑝(𝑑𝑗|𝐻0)
𝑝(𝑑𝑗|𝐻1)

)𝑑𝑗

𝑑
 

(17) 

 
𝑃(𝐻1|𝑑𝑗) =

𝑝(𝑑𝑗|𝐻1)𝑝(𝐻1)

𝑝(𝑑𝑗|𝐻1)𝑝(𝐻1) + 𝑝(𝑑𝑗|𝐻0)𝑝(𝐻0)
 (18) 

I used the softmax learning rule (Fu & Anderson, 2006; Pleskac, 2012; Sutton & 

Barto, 1998) to introduce noise to the ideal observer model’s perfect sensitivity to test 

diagnosticity.  Equation 19 modified the probability of each possible action the model 

could take—selecting a test (ai).  The model iterated through 3 levels of τ (low, moderate, 

high).  When τ was low, the most diagnostic tests were selected at a rate just short of the 

ideal observer.  When τ was high, test selection approached patterns that mimicked the 

random model.   

 

𝑝(𝑎𝑖) =
𝑒

𝑝(𝑎𝑖)
𝜏⁄

∑ 𝑒
𝑝(𝑎𝑖)

𝜏⁄𝑗
𝑛=1

 (19) 

Likelihoods were computed for each trial of participant behavior across all models.  

Specifically, the order in which participants selected tests were used to evaluate participant 

performance for the purpose of estimating a fit to each model.  Likelihoods were 

aggregated for each participant and used to compute G2 statistics.  The G2 for each model 

was compared against the random model and corrected for parameters to compute a Bayes 

Information Criterion (BIC).  Table 4 lists aggregate BIC statistics for all instantiations of 

the ideal observer model with respect to the random model, where more negative values 

represent better fit.  BICs larger than zero indicate that the random model was a better fit.   
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Table 4.  Experiment 1 aggregate fit statistics for all models. 

  Tau (τ)  

 Ideal 0.2 0.8 1.4 Random 

G2 14419.93 4106.03 1668.49 1400.52 1106.79 

BIC -13319.57 -3011.10 -574.56 -306.58 0.00 

 

The ideal observer model had the best fit as far as the aggregate totals are concerned.  

While the results reported thus far suggest that participant performance was far from ideal, 

the model fitting results suggest that participants were sensitive to information available in 

the decision environment.  This finding was further supported because the ideal observer 

was the best fit for 27 of 31 participants.  The remaining 4 participants were fit by the 

softmax model with a Tau of 0.2.  Thus, all 31 participants were best fit by models with 

high access to the diagnostic value of the tests available in the task.  Fit statistics for each 

participant were tabled in Appendix A. 

3.2.3 Discussion.   

Analysis of the behavior captured in Experiment 1 has failed to detect evidence that 

the presenting cue had any influence on hypothesis testing behavior.  Thus, Experiment 1 

has provided no support for the theoretical model illustrated in Figure 1.  The hypothesis-

guided testing hypothesis explicitly anticipates that pre-testing cueing of differential 

hypothesis sets would result in predictable patterns of testing behavior.  If properly 

encoded, the value of available tests during Phase 2 of the task should shift dramatically, 

as their association with the information activated in response to any presenting cue should 
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vary substantially.  At face value, the results of Experiment 1 cast doubt on the hypothesis-

guided testing hypothesis. 

These results are incompatible with previous work that found evidence to support the 

notion that diagnosticity can be detected and utilized by participants in a sequential 

hypothesis-testing task (Illingworth & Thomas, 2015).  In their study, Illingworth and 

Thomas reported that there was a strong preference for high diagnosticity information 

sources regardless of the shape of cost distributions (symmetric vs. asymmetric) and the 

distinctiveness of the test outcomes.  Nelson (2005; Nelson et al., 2010) has repeatedly 

found evidence in support of informed information acquisition.  Although his argument 

primarily regarded evidence for the probability gain metric of information, a number of his 

participants appeared to engage in diagnosticity-sensitive information acquisition. 

Experiment 1 also failed to replicate findings that demonstrated the conditions under 

which participants engage in pseudo-diagnostic and diagnostic search.  Lange, Thomas, 

and Dougherty (2010) reported evidence suggesting that pseudo-diagnostic search was a 

direct byproduct of the generation process such that it manifested only when a single 

hypothesis was considered during hypothesis testing.  When evidence of multiple 

generated hypotheses was present, participants engaged in more diagnostic testing 

practices.  The presenting cue matrix detailed in Table 2 was designed to elicit such 

behavior by cueing varying numbers of diseases with each presenting symptom.  Not only 

did test selection go unaffected by this manipulation, but the total number of tests selected 

remained constant with respect to presenting cue—a sign that foraging behavior was 

unresponsive to uncertainty inherent to the task.   
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While the results of Experiment 1 nullified the value of extensive HyGene process 

modeling, the task simulation proved to be insightful.  Specifically, the results of the 

simulation provide evidence to suggest that participants exhibited behavior that was 

sensitive to the diagnosticity manipulation.  Clearly, this result must be considered within 

the context of the null results reported in the statistical analyses of Experiment 1 

performance.  Nothing about the behavior recorded in this study indicate that participants 

approached perfect understanding of the statistical ecology implemented in this 

experiment.  If anything, the model fits can be used to conclude that participants were not 

selecting tests entirely at random and had internalized some information available in the 

experimental task. 

It is worth noting that one participant did not engage in any testing behavior at all 

and a few others did so on fewer than 5 trials.  These individuals are included amongst 

those that were best fit by highly informed models.  Additionally, a number of participants 

were recorded as having completed trials in under 2 seconds.  It is highly unlikely that a 

decision-maker carefully considering which of the available tests would best support their 

diagnoses could achieve such a feat, advancing concern that participants were not 

meaningfully engaged in the task. 

Difficulties internalizing the complex task environment is one possible substantive 

cause for the poor performance exhibited by participants during this experiment.  In a 

comparable task, Illingworth and Thomas (2015) reported that participants completed the 

learning phase of their experiment having been correct on approximately 56% of trials—

23 points above chance performance.  Participants in Experiment 1 averaged a rate of 33% 
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correct responses—only 8 points above chance performance—after a learning phase that 

was nearly four times as long in terms of trials.   

Perhaps more troubling is the fact that inclusion of Phase 1 learning in the analyses 

of test selection and test preference also failed to unveil an influence of presenting cue or 

an interaction between presenting cue and learning.  At a minimum, participants at the 

higher end of the learning distribution, who presumably possessed a better understanding 

of the task environment relative to other participants—would be expected to show signs of 

sensitivity to presenting cue if the hypothesized generation processes played any role in 

test selection.  It is worth noting, however, that the best performer completed Phase 1 with 

a 46% accuracy rate—far short of the mean performance exhibited by participants in prior 

experiments. 

Although the findings reported for Experiment 1 provide little support for any of the 

HyGene processes predicted to drive hypothesis-testing behavior, it seems premature to 

conclude that the predictions of the hypothesis-driven valuation model (Figure 2) were 

fallacious.  One specific design modification that would benefit future study of hypothesis-

guided testing is to reduce the demand on participants during Phase 1.  Although 

compelling arguments have been made for avoiding forced-choice tasks with few 

alternatives and binary outcomes for information depositories (Illingworth & Thomas, 

2015; Weber & Milliman, 1997), the complexity implemented in the environmental 

ecology of this experiment is not necessary for rigorous evaluations of depository 

exploitation.  Illingworth and Thomas (2015), for example, implemented an ecology with 

one less hypothesis and tests with higher diagnosticity to investigate sensitivities to 

diagnosticity and cost in a sequential data acquisition task.   
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I argue that additional study of hypothesis set cueing and subsequent hypothesis 

testing patterns is warranted in spite of the outcome of Experiment 1.  The lack of evidence 

in support of the memory mechanisms hypothesized to be foundational to testing behavior 

should not be off-putting when paired with sparse evidence of an effort spared to learn 

task-relevant information or produce a carefully considered diagnosis.  Examining testing 

patterns within the context of hypothesis generation still possesses the potential to elucidate 

the underlying mechanisms of the behavior. 

3.3 Experiment 2 - Time Pressure, Generation, and Test Preference 

A core tenet of the HyGene architecture posits that generated hypotheses are 

maintained and governed by working memory dynamics (Dougherty, Thomas, & Lange, 

2010; Thomas et al., 2008; Thomas, Dougherty, & Buttaccio, 2014).  Numerous studies 

have found support for the relation between working memory and hypothesis generation, 

demonstrating the downstream importance of working memory capacity (Dougherty & 

Hunter, 2003a; Dougherty & Hunter, 2003b), divided attention (Sprenger, et al., 2011), 

time pressure (Dougherty & Hunter, 2003b), and temporal working memory dynamics 

(Lange, Buttaccio, Davelaar, & Thomas, 2014; Lange, Thomas, Buttaccio, Illingworth, & 

Davelaar, 2013; Lange, Thomas, & Davelaar, 2012).  Working memory constraints have 

generally been shown to influence the size and quality of hypothesis sets considered by 

decision-makers, as detected by their effects on diagnosis and probability judgment.  Other 

downstream decision behavior related to belief states, such as hypothesis-guided testing, 

are likely subject to the same working memory processes that influence generation. 

Dougherty and Hunter (2003a) were first to argue that the process of generating 

hypotheses was time-consuming, suggesting that more hypotheses are generated as more 
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time is allowed for generation.  They would subsequently show that probability judgments 

are more subadditive when estimated under time constraints—a sign of judgments being 

derived from an impoverished set of hypotheses.  Dougherty and Hunter concluded that 

time pressure abbreviates the generation process and results in poorly calibrated judgments 

caused by suboptimal sets of hypotheses.  Experiment 2 extended study of working 

memory constraints and hypothesis generation to evaluate the hypothesis-guided testing 

hypothesis by investigating how those dynamics influence testing behavior.  Specifically, 

time pressure was implemented within the MDG to test the relation between truncated 

hypothesis generation and test preference.   

The prediction tested with Experiment 2 is deficient test selection (i.e., greater 

utility loss) under time constraints.  When Cue 4 is presenting, for example, Test 4 would 

be preferred earlier in the testing sequence in trials without time pressure than under time 

constraints.  Once more, data collected for this experiment were evaluated via 

computational modeling.   

Evidence of deficits in testing behavior as a consequence of constraining the time 

allotted for completion of the MDG task would support the hypothesis-guided testing 

hypothesis.  Such a finding would support the claim of a shared cognitive mechanism for 

test selection with probability judgment and diagnosis, as all would exhibit deficits under 

time-limited conditions.  

3.3.1 Method.   

Undergraduate students enrolled at the Georgia Institute of Technology were 

recruited to participate in this study via an online experiment management system (SONA 
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Systems).  In total, 37 participants completed the experiment.  All participants received 

partial course credit for their involvement in the study. 

The learning phase of Experiment 2 was completed over 24 blocks of 20 trials, 

resulting in a total of 480 learning trials.  Learning trails were designed as has been 

described for Experiment 1.  Accurate performance was incentivized by awarding 

correcting responses with points ($1000) that would be deposited in a bank that 

accumulated points over the course of the learning phase. 

The ecological structure of this experiment was designed to exploit the possible 

effects of time pressure on the generation process.  Table 5 lists the hypothesis-presenting 

cue relations that controlled stimuli presentation within the task.  Relative to Experiment 

1, twice as many cues were strongly associated with three hypotheses (Cues 3 and 4).  The 

remaining cues (1 and 2) suggested one strong hypothesis but were also associated with 

one slightly weaker competitor.  The presence of multiple cues associated with many 

hypotheses enhanced the number of opportunities to detect any deficits in testing behavior 

that may have emerged as a consequence of considering incomplete sets of hypotheses. 

Table 5.  Presenting sign ecology for Experiment 2. 

 Presenting Symptoms 

 Cue 1 Cue 2 Cue 3 Cue 4 

Hyp 1 .55 .05 .35 .05 

Hyp 2 .25 .05 .35 .35 

Hyp 3 .05 .25 .35 .35 

Hyp 4 .05 .55 .05 .35 

 

Presentation of test outcomes respected the test-hypothesis ecology outlined in 

Table 6.  As was the case in Experiment 1, the diagnostic properties of the tests were meant 

to mirror the cue-hypothesis table.  For example, Cue 1 was suggestive of Hypotheses 1 

and 2, while Test 1 outcomes differentiated between the same two hypotheses.   
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Table 6.  Test outcome ecology for Experiment 2. 

  Diagnostic Tests 

  Test1 Test2 Test3 Test4 

Hypothesis 1 

Outcome 1 .65 .30 .60 .30 

Outcome 2 .20 .40 .20 .40 

Outcome 3 .15 .30 .20 .30 

Hypothesis 2 

Outcome 1 .15 .30 .20 .60 

Outcome 2 .20 .40 .60 .20 

Outcome 3 .65 .30 .20 .20 

Hypothesis 3 

Outcome 1 .30 .15 .20 .20 

Outcome 2 .40 .20 .20 .60 

Outcome 3 .30 .65 .60 .20 

Hypothesis 4 

Outcome 1 .30 .65 .30 .20 

Outcome 2 .40 .20 .40 .20 

Outcome 3 .30 .15 .30 .60 

Diagnosticity 2.09 2.09 2.03 2.03 

 

The ecology of Experiment 2 was designed to emulate that for Experiment 1 such 

that the diagnosticity for each test was approximately equal when the hypotheses were 

equally likely.  The diagnosticity of each test became disparate after belief distributions 

were altered by the presenting cue and the outcomes of selected tests.  Unlike Experiment 

1, the test outcome ecology for Experiment 2 was uniformly manipulated such that Tests 1 

and 2 possessed the exact same diagnostic properties (i.e., patterns of test outcomes) but 

disambiguated different pairs of hypotheses.  Tests 3 and 4 also shared the exact same 

diagnostic properties but were designed to differentiate separate triads of hypotheses. 

The test phase of Experiment 2 was completed over 4 blocks of 20 trials each, 

resulting in a total of 80 test trials.  Selection of tests during the test phase of the experiment 

occurred as described for Experiment 1, where a presenting cue appeared at the onset of a 

trial and was followed by sequential test selection.  A 2 (time constraint: present, not) x 2 

(cue: 1 hypothesis, 3 hypotheses) x 2 (counter-balanced order of time constraint conditions) 

mixed design was implemented, where both time constraint and cue type was manipulated 
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within-subject.  Time constraint trials were completed in 2 consecutive blocks. The order 

in which pairs of blocks were experienced was manipulated between-subjects.   

In time constraint trials, participants had 2 seconds after the onset of a trial to exploit 

the tests they deemed most informative prior to submitting a diagnosis.  In other words, 

participants observed the presenting symptom, generated hypotheses, and selected tests 

before the 2-second time frame was complete.  Participants were locked out of additional 

testing and diagnoses were elicited after the 2-second time interval was exhausted.  

Alternatively, participants were entirely self-paced in the time constraint absent condition.  

Diagnoses were not submitted under time pressure regardless of condition. 

3.3.2 Results.   

Learning.  A logistic regression evaluated whether accuracy was predicted by 

block.  Block was not found to be predictive of learning phase accuracy (χ2 (n=37,23) = 

25.12, p = 0.34), suggesting that performance did not improve over the course of the 24 

blocks.  However, participants were 1.44 times more likely to submit a correct diagnosis 

in the final block as they were in the first (β = 0.44, SE = 0.12, p <.001).  There was also a 

significant linear trend relating block and accuracy (χ2 (n=37,1) = 6.33, p = 0.01).  These 

results are illustrated in Figure 7.  Once again, mixed learning results imply that knowledge 

of the task environment varied across participants, and can potentially aid in elucidating 

performance during Phase 2. 
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A 

 

B 

 

Figure 7.  Experiment 2 learning.  Panel A illustrates Experiment 2 learning phase 

accuracy broken out by block.  The dotted line represents chance performance (25%).  

Error bars represent standard error. Panel B tracks proportion correct for 5 

participants across all trials of Phase 1, as well as sample average (black, dotted line) 

and chance performance (black, dashed line).  The worst performer scored below 

chance accuracy, while the best performer fell shy of 50% accuracy. 

 

Accuracy.  A logistic regression evaluated how well accuracy was predicted by 

block.  Block was not found to be predictive of learning phase accuracy (χ2 (n=37,1) = 

0.73, p = 0.39), suggesting that performance did not improve over the course of the test 
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phase.  Participants were nearly equally likely (O = 0.93) to submit a correct diagnosis in 

the final block as they were in the first (β = -0.07, SE = 0.08 , p =.39).  Moreover, accuracy 

in the first block (M = 0.37, SE = 0.02) and the second block (M =0.38, SE = 0.02) were 

approximately equal to learning phase performance. 

Stopping.  A multinomial logistic regression tested for the influence of presenting 

cue and time pressure on the number of tests selected during Phase 2.  Neither presenting 

cue (χ2 (n=37,3) = 5.71, p = 0.13) nor time pressure (χ2 (n=37,1) = 0.12, p = 0.73) was 

predictive of the number of tests selected by participants.  The interaction between 

presenting cue and time pressure also failed to predict the number of tests selected (χ2 

(n=37,3) = 0.54, p = 0.91).  As was the case in Experiment 1, the main manipulations of 

the experimental task were not found to have had any effect on the stopping rules adopted 

by participants.  Total testing behavior for Experiment 2 is illustrated in Figure 8. 

 

Figure 8.  Experiment 2 total testing.  Figure illustrates mean total tests selected 

broken out by presenting cue and time pressure.  Participants were consistent in their 

foraging behavior regardless of the experimental conditions.  Error bars represent 

standard errors. 
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 Provided that the analysis of Phase 1 performance illustrated varied knowledge of 

the task environment, another regression was run to explore what if anything can be learned 

by including learning in the analysis.  Total tests selected was regressed on presenting cue, 

time pressure, learning, and all possible interaction terms.  Presenting cue (χ2 (n=37,3) = 

5.10, p = 0.16), time pressure (χ2 (n=37,1) = 1.98, p = 0.16), and learning (χ2 (n=37,1) = 

0.46, p = 0.50) were not found to predict total tests selected.  Moreover, the two-way 

interactions between presenting cue and time pressure (χ2 (n=37,3) = 0.37, p = 0.95), 

learning and presenting cue (χ2 (n=37,3) = 3.43, p = 0.33), and learning and time pressure 

(χ2 (n=37,1) = 0.75, p = 0.39) also failed to predict total tests selected.  The three-way 

interaction between presenting cue, time pressure, and learning did not predict total tests 

selected either (χ2 (n=37,3) = 0.35, p = 0.95).  Thus, inclusion of learning phase 

performance in the model failed to find evidence that said learning interacted with any 

manipulated variable to account for search termination behavior. 

 Test selection.  The frequency with which each test was selected was analyzed in 

a series of binomial regressions to evaluate what influence, if any, presenting cue and time 

pressure exerted on patterns of test selection (see Figure 9).  A binomial regression found 

that neither presenting cue (χ2 (n=37,3) = 1.04, p = 0.79) nor time pressure (χ2 (n=37,1) = 

0.38, p = 0.54) predicted selection of Test 1.  The interaction term also fell short of 

predicting Test 1 selection (χ2 (n=37,3) = 6.46, p = 0.09).  Test 2 selection was regressed 

on presenting cue (χ2 (n=37,3) = 2.93, p = 0.40) and time pressure (χ2 (n=37,1) = 0.29, p = 

0.59), finding that neither variable was a significant predictor of selection.  The interaction 

between presenting cue and time pressure also failed to predict Test 2 selection (χ2 (n=37,3) 

= 2.14, p = 0.54). 
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 Test 3 selection was also regressed on presenting cue and time pressure.  Neither 

manipulated variable was related to Test 3 selection (χ2 (n=37,3) = 2.93, p = 0.40 and χ2 

(n=37,) = 0.29, p = 0.59 respectively). The interaction between presenting cue and time 

pressure was not a significant predictor of Test 3 selection (χ2 (n=37,3) = 2.14, p = 0.54).  

Analysis of Test 4 selection took followed the same pattern as the previous three tests.  

Neither presenting cue (χ2 (n=37,3) = 2.93, p = 0.40) nor time pressure (χ2 (n=37,1) = 0.29, 

p = 0.59) were predictors of Test 4 selection. The interaction of these two variables also 

failed to predict Test 4 selection (χ2 (n=37,3) = 2.14, p = 0.54).   

 

Figure 9.  Experiment 2 test selection.  Figure illustrates mean test selection broken 

out by presenting cue and time pressure.  Participants were consistent in their 

foraging behavior regardless of the experimental conditions.  Error bars represent 

standard errors. 
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(n=37,1) = 0.39, p = 0.53).  None of the interaction terms predicted Test 1 selection, 

including all of the two-way inter actions.  This included that between presenting cue and 

time pressure (χ2 (n=37,3) = 0.10, p = 0.99), presenting cue and learning (χ2 (n=37,3) = 

4.55, p = 0.21), and time pressure and learning (χ2 (n=37,1) = 0.28, p = 0.60), as well as 

the three-way interaction between presenting cue, time pressure, and learning (χ2 (n=37,3) 

= 0.51, p = 0.92).  Similarly, Test 2 selection was not predicted by presenting cue (χ2 

(n=37,3) = 0.11, p = 0.99), time pressure (χ2 (n=37,1) = 0.97, p = 0.32), or learning (χ2 

(n=37,1) = 0.01, p = 0.93).  The two-way interactions, including that between presenting 

cue and time pressure (χ2 (n=37,3) = 1.24, p = 0.74), presenting cue and learning (χ2 

(n=37,3) = 0.47, p = 0.92), and time pressure and learning (χ2 (n=37,1) = 0.37, p = 0.54), 

all failed to predict Test 2 selection.  The same was true for the three-way interaction, which 

was not a significant predictor of Test 2 selection (χ2 (n=37,3) = 1.31, p = 0.73). 

 Test 3 selection found a predictor in time pressure (χ2 (n=37,1) = 3.97, p = 0.046), 

suggesting that Test 3 was selected at a higher rate under time pressure than without.  

However, a follow up analysis showed that the mean proportion of trials was not 

significantly greater in the time pressure condition (z = 1.60, p = 0.11).  Neither presenting 

cue (χ2 (n=37,3) = 0.97, p = 0.81) or learning (χ2 (n=37,1) = 1.75, p = 0.19) predicted Test 

3 selection.  The two-way interactions were not predictive of Test 3 selection: presenting 

cue by time pressure (χ2 (n=37,3) = 1.42, p = 0.70), presenting cue by learning (χ2 (n=37,3) 

= 1.05, p = 0.79), and time pressure by learning (χ2 (n=37,) = 2.55, p = 0.11); neither was 

the three-way interaction between presenting cue, time pressure, and learning (χ2 (n=37,3) 

= 1.88, p = 0.60).  Presenting cue (χ2 (n=37,3) = 4.59, p = 0.20), time pressure (χ2 (n=37,1) 

= 0.24, p = 0.62), and learning (χ2 (n=37,) = 0.08, p = 0.78) did not predict Test 4 selection.  



 68 

None of the interaction terms predicted Test 4 selection, including all two-way 

interactions—including presenting cue by time pressure (χ2 (n=37,3) = 2.82, p = 0.42), 

presenting cue by learning (χ2 (n=37,3) = 4.70, p = 0.20), and time pressure by learning (χ2 

(n=37,1) = 0.05, p = 0.83)—and the three-way interaction between presenting cue, time 

pressure, and learning (χ2 (n=37,3) = 2.79, p = 0.43). 

Test preference.  Consistent with the analyses for Experiment 1, selection behavior 

was transformed into a preference score (e.g., first selected test was scored 4, fourth 

selected test was scored 1, unselected tests were scored 0).  A suite of multinomial logistic 

regression analyses were run to evaluate if the presenting cue and time pressure predicted 

the preference score for each available test.  Test 1 preference was not predicted by 

presenting cue (χ2 (n=37,3) = 0.90, p = 0.82) or time pressure (χ2 (n=37,1) = 1.64, p = 0.20).  

The interaction between presenting cue and time pressure also failed to reach statistical 

significance (χ2 (n=37,3) = 5.42, p = 0.14).  A similar pattern of results emerged for Test 2 

preference.  Neither presenting cue (χ2 (n=37,3) = 0.45, p = 0.93), time pressure (χ2 

(n=37,3) = 0.45, p = 0.93), nor the interaction between the two variables (χ2 (n=37,3) = 

0.45, p = 0.93) predicted Test 2 preference.   

Test 3 preference was not predicted by presenting cue (χ2 (n=37,3) = 2.28, p = 0.52) 

or time pressure (χ2 (n=37,1) = 0.91, p = 0.34).  Neither did the interaction between 

presenting cue and time pressure did not reach statistical significance for predicting Test 3 

preference (χ2 (n=37,3) = 3.00, p = 0.39).  The results for Test 4 preference followed the 

trend established by the previous three tests, as presenting cue (χ2 (n=37,3) = 0.45, p = 

0.93), time pressure (χ2 (n=37,3) = 0.45, p = 0.93), and the interaction term (χ2 (n=37,3) = 

0.45, p = 0.93) all failed to predict the variable.  The manipulated variables for Experiment 
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2 predicted preference for none of the tests available in the task.  These scores were  

illustrated in Figure 10. 

 

Figure 10.  Experiment 2 test preference.  Test preference scores are broken out by 

presenting cue and time pressure.  The manipulated variables did not account for the 

order in which participants selected tests.  Error bars represent standard errors. 

 

A second suite of multinomial regressions were run to evaluate how learning phase 

performance may enlighten test preference.  Test 1 preference was not predicted by 

presenting cue (χ2 (n=37,3) = 2.41, p = 0.49), time pressure (χ2 (n=37,1) = 0.72, p = 0.40), 

or learning (χ2 (n=37,1) = 0.13, p = 0.71). None of the two-way interactions were predictive 

of Test 1 preference, including that between presenting cue and time pressure (χ2 (n=37,3) 

= 0.45, p = 0.93), presenting cue and learning (χ2 (n=37,3) = 3.00, p = 0.39), and time 

pressure and learning (χ2 (n=37,1) = 0.07, p = 0.80).  The three-way interaction between 

presenting cue, time pressure, and learning did not predict Test 1 preference (χ2 (n=37,3) 

= 1.33, p = 0.72). 

 Analysis of Test 2 preference revealed a similar pattern of results.  Presenting cue 

(χ2 (n=37,3) = 0.52, p = 0.91), time pressure (χ2 (n=37,1) = 0.78, p = 0.38), and learning 
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(χ2 (n=37,3) = 0.06, p = 0.81) all fell short of predicting test selection.  None of the 

interaction terms were predictive of Test 2 preference.  These included the two-way 

interactions between presenting cue and time pressure (χ2 (n=37,3) = 1.41, p = 0.70), 

presenting cue and learning (χ2 (n=37,3) = 1.08, p = 0.78), and time pressure and learning 

(χ2 (n=37,1) = 0.15, p = 0.70), and the three-way interaction between presenting cue, time 

pressure, and learning (χ2 (n=37,3) = 1.45, p = 0.69).  Test 3 preference was predicted by 

time pressure (χ2 (n=37,1) = 4.60, p = 0.03), such that Test 3 was preferred at a higher rate 

under time pressure than without (z = 2.25, p = 0.025).  Neither presenting cue (χ2 (n=37,3) 

= 2.88, p = 0.41) nor learning (χ2 (n=37,1) = 1.83, p = 0.18) predicted Test 3 preference.  

None of the two-way interactions predicted Test 3 preference, including that for presenting 

cue and time pressure (χ2 (n=37,3) = 3.50, p = 0.32), presenting cue and learning (χ2 

(n=37,3) = 3.03, p = 0.39), and time pressure and learning (χ2 (n=37,3) = 3.71, p = 0.054)—

though the last of these approached significance.  The three-way interaction between 

presenting cue, time pressure and learning was also found not to predict Test 3 preference 

(χ2 (n=37,3) = 4.36, p = 0.22). 

 Test 4 preference was not predicted by presenting cue (χ2 (n=37,3) = 4.83, p = 0.18), 

time pressure (χ2 (n=37,1) = 0.15, p = 0.70), or learning (χ2 (n=37,1) = 0.06, p = 0.81).  

Neither was it predicted by any of the interaction terms. This included all of the two-way 

interactions—presenting cue by time pressure (χ2 (n=37,3) = 2.79, p = 0.42), presenting 

cue by learning (χ2 (n=37,3) = 5.16, p = 0.16), and presenting cue by learning (χ2 (n=37,1) 

= 0.19, p = 0.66)—and the three-way interaction between presenting cue, time pressure, 

and learning (χ2 (n=37,3) = 2.93, p = 0.40).  Inclusion of learning in this series of analysis 

did nothing to change the outcome of the results.  Generally speaking, none of the 
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manipulated variables were found to have had any impact on testing patterns as measured 

by the selection of the available tests. 

 Model fitting.  As was the case for Experiment 1, statistical evidence for a link 

between presenting cue and testing behavior eluded Experiment 2.  The modeling endeavor 

undertaken to evaluate Experiment 2 mimicked that of Experiment 1 for the purpose of 

exploring participant sensitivity to the experimental task and the influence of time pressure.  

The same two approaches to test exploitation formalized for the Experiment 1 simulation 

were implemented in a computational model Experiment 2.  The ideal observer model was 

perfectly calibrated to the statistical structure of the disease-test result matrix and always 

selected the most diagnostic, available test.  The posterior belief distribution for the ideal 

observer were always perfectly calibrated to the information state reached after selection 

of each test.  Consistent with the simulation for Experiment 1, Equation 17 was used to 

estimate the diagnostic value of each test (T) and Equation 18 was used to update posterior 

belief distributions after each testing event.  A random model was designed to select tests 

without any consideration of their informative properties.  The softmax learning rule 

(Equation 19) was implemented across three levels of τ to interfere with the ideal observer 

model’s perfect sensitivity to diagnosticity.  Again, sensitivity to diagnosticity declined as 

τ increased. 

 Likelihoods were computed for each trial of participant behavior across all models.  

Specifically, the order in which participants selected tests were used to evaluate participant 

performance for the purpose of estimating a fit to each model.  Likelihoods were 

aggregated for each participant and used to compute G2 statistics.  The G2 for each model 

was compared against the random model and corrected for parameters to compute a Bayes 



 72 

Information Criterion (BIC).  Table 7 lists aggregate BIC statistics for all instantiations of 

the ideal observer model with respect to the random model, where more negative values 

represent better fit.  BICs larger than zero indicate that the random model was a better fit. 

Table 7.  Experiment 2 aggregate fit statistics for all models. 

   Tau (τ)  

  Ideal 0.2 0.8 1.4 Random 

No 

Pressure 

G2 14299.06 2908.14 1012.80 841.75 660.50 

BIC -13645.90 -2262.24 -1012.80 -195.85 0.00 

Time 

Pressure 

G2 12959.91 2820.64 1022.32 849.22 660.50 

BIC -12306.70 -2174.73 -376.42 -203.32 0.00 

  

Each participant was fit twice: Once for all behavior exhibited under normal 

conditions and once more for all behavior exhibited under time pressure.  As can be seen 

in Table 7, the ideal observer model exhibited the best aggregate fit in the no time pressure 

condition and the time pressure condition.  If the time pressure manipulation was having 

its predicted effect, models indicative of less sensitivity to the diagnosticity in the 

environment would exhibit better fit under time pressure.   

Table 8.  Experiment 2 proportion of participants fitting each model. 

  Tau (τ)  

 Ideal 0.2 0.8 1.4 Random 

No Pressure 0.84 0.00 0.00 0.11 0.05 

Time Pressure 0.92 0.03 0.0 0.05 0.00 

 

The fits for individual participants mirror the aggregate fits, as the ideal observer 

model best fit the majority of participants.  However, the highest tau model best fit 4 
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participants and the random model best fit an additional 2 participants, indicating there 

were a few participants who were exhibiting near-random test selection behavior.  The time 

pressure model fitting exhibited the same general trend, as even more participants fit the 

ideal observer model under time pressure than without.  Only two participants showed the 

predicted pattern of fitting higher information models without time pressure and lower 

information models under time pressure.  Fit statistics for each participant were reported 

in Appendix B.   

3.3.3 Discussion. 

As was the case in Experiment 1, the behavior reported for Experiment 2 has failed 

to find evidence in support of the hypothesis-guided valuation model—the notion that 

presenting cue elicited the generation of differentially activated hypotheses, which would 

give rise to markedly distinctive patterns in hypothesis testing behavior.  Specifically, the 

patterns in test selection and test preference scores were found to be unrelated to presenting 

cue.   

As was discussed following Experiment 1, a number of studies have reported 

instances when participants were responding to the diagnostic value of information sources 

(Illingworth & Thomas, 2015; Lange, Thomas, & Dougherty, 2010; Nelson, 2005; Nelson 

et al., 2010).  The ecological/statistical structure of the task in Experiment 2 differs from 

previous studies such that all sources of information were equal provided that participants 

believed all diseases were equally likely at the start of a trial.  However, trials were 

structured in a way that would never allow for a flat belief distribution across all diseases, 

as the presenting cue was always available to participants at the start of each trial.  That is, 

any participant who had learned the cue structure detailed in Table 4 should have exhibited 
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differential test preference on a per-trial basis.  Moreover, the total number of tests selected 

remained constant with respect to presenting cue.  Cues 1 and 2 were designed to relate 

strongly to two hypotheses while Cues 3 and 4 were designed to relate strongly to three 

hypotheses.  As uncertainty generally increases with the number of hypotheses under 

consideration, it was predicted that more tests would be exploited in response to Cues 3 

and 4 than Cues 1 and 2.     

The simulation results for Experiment 2 provide some indication that participants 

were responsive to the statistical structure of the task, but should be interpreted cautiously 

given that they are not supported by the statistical analyses reported previously.  The 

majority of participants were best accounted for by models that were highly sensitivity to 

the diagnostic value of the available tests, even when time constraint was present.  Only 2 

participants showed signs of less sensitivity to information under time pressure—the 

pattern of behavior consistent with the time pressure effects reported by Hunter and 

Dougherty (2003a).   

Generation processes remain a possible account for the reported results.  As 

mentioned previously, generating hypotheses is a time-consuming process (Dougherty & 

Hunter, 2003a).  To whatever degree possible—in spite the poor performance exhibited 

during the task—time-constrained hypothesis generation could explain why a couple of 

participants wound up better fit by a random acting model.  Similarly, Kerstholt (1994) 

explains time pressure deficits in decision-making as a result of limits on the time needed 

to internalize and interpret novel data.  In a sequential hypothesis testing task such as that 

deployed in Experiment 2, it may be the case that test selections were poorly mapped to 
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presenting cue because participants were incapable of properly interpreting the 

implications of the presenting symptom (i.e., the correct posterior distribution).   

The diagnostic task in Experiment 2 can be examined with respect to its properties 

as a dynamic task, as beliefs were expected to change over time in response to each novel 

piece of information acquired by the decision-maker.  Framed within the context of risky 

decisions making paradigms—where sequential sampling of information either enhances 

or diminishes the probability of earning the payoff—sequential sampling theories such as 

decision field theory would posit that test selection under time pressure would change as a 

consequence of threshold changes (Dror, Busemeyer, & Basola, 1999). That is, whether or 

not additional testing takes place depends on the risk inherent in the decision environment, 

where high-risk environments lend to increased risk-taking and low-risk environments lead 

to reduced risk-taking.  Ultimately, sequential sapling models should be disregarded as 

potential accounts for the observed data as the rate of testing did not vary with respect to 

time pressure. 

Continued study may be necessary to account fully the behavior measured during 

Experiment 2.  It is questionable, however, what influence these data should impart on 

future research design as the behavior exhibited by participants in this task case doubt on 

the validity of any conclusion drawn from the results.  As was the case in Experiment 1, a 

fair number of participants either engaged in no testing behavior (n =7) or engaged in 

testing for fewer than 5 trials (n = 7).  Once more, several participants were detected having 

completed trials in under 2 seconds (unreported data).  The experiments implemented to 

test the hypothesis-guided testing hypothesis were demanding tasks.  Both the learning 

phase of the task and the subsequent test phase necessitated attention to detail for actions 
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exhibited by participants to result in successful completion of the task as measured by 

diagnostic accuracy.  Evidence of such behavior remained concealed from any analysis 

conducted for this experiment. 

As was true for Experiment 1, poor learning likely played a role in the insensitivity 

to the statistical structure of the task environment.  Participants in Experiment 2 averaged 

a rate of 35% correct responses with the best performer maxing out at about 47% accuracy 

in the learning phase of the study. Though previously unreported, accuracy during the test 

phase did not improve.  The best performer completed the test phase with 55% accuracy, 

while the worst performer finished with 21% accuracy—four points worse than the worst 

performer in the learning phase.   

Any change to the design implemented to address the shortcomings of Experiment 

1 would also facilitate better learning for Experiment 2.  Put simply, it is possible for 

participants to learn in this task, and likely that they will behave in interesting ways when 

they do.  Examining testing patterns within the context of hypothesis generation and time 

pressure retains potential to inform theory development for hypothesis testing. 

3.4 Experiment 3 - Metacognition and Terminating Testing Behavior 

Although there is a body of work evaluating the effects of perceptual and cognitive 

fluency on decision-making (for a review see Schwarz, 2004), virtually no work has 

investigated the influence of explicit self-assessment in behavioral decision-making tasks.  

The one exception is work in overconfidence, but the confidence judgments typically 

concern pre-existing knowledge and there is no experimentally-controlled learning 

component (c.f., Dougherty, 2001; Rich & Gureckis, under review).  Experiment 3 was 

designed to exploit this gap in the literature by investigating the influence of metacognitive 
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assessment on test selection and search termination decisions.  Specifically, the MDG 

paradigm was outfitted with intra-trial self-assessment prompts to track changes in 

confidence for the sake of evaluating its relation to test selection, search termination, and 

retroactive confidence judgments.  

Of particular interest is the relation between judgment-of-knowing (JOK) estimates 

and search behavior, as there is a scarce amount of research investigating the metacognitive 

mechanisms that govern data acquisition strategies.  Only recently have researchers begun 

to elucidate rules for terminating search in memory for cued recall tasks (Dougherty & 

Harbison, 2007; Harbison, Dougherty, Davelaar, & Fayyad, 2009; Hills et al., 2012; Miller, 

Weidemann, & Kahana, 2012).  In a related literature, self-assessment research has shown 

that exit latencies are empirically tied to JOK estimates for general knowledge, such that 

low JOKs come quicker than relatively higher judgments (Glucksbert & MCCloskey, 

1981; Klin, Guzman, & Levine, 1997; Kolers & Palef, 1976; Singer, 1984).  The cross-

section of self-evaluative judgments and search presents a rich area of research considering 

few studies have directly investigated the influence of metacognitive mechanisms on 

search behavior despite how frequently researchers invoke them in the literature 

(Dougherty & Harbison, 2007; Ficic & Buckman, 2015; Harbison, Dougherty, Davelaar, 

& Fayyad, 2009; Illingworth & Thomas, 2015).   

The results of Experiment 3 were intended to evaluate the probabilistic stopping 

rule postulated in the hypothesis-driven valuation model (Harbison, Dougherty, Davelaar, 

& Fayyad, 2009).  Specifically, the stopping rule predicts that termination decisions depend 

on belief states and vary with respect to the information gleaned from test outcomes.  As 

beliefs give rise to expectations regarding the outcome of available tests, they facilitate 
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prediction of the expected value of continued search.  When a decision-maker’s 

expectations do not exceed their threshold for warranting more testing, search would be 

terminated and judgments submitted.  Computational modeling was carried out to evaluate 

this prediction of the model.   

Experiment 3 was designed as a transitional study with the purpose of migrating 

my work on hypothesis testing towards metacognitive processing by testing a general 

hypothesis motivated by threshold stopping rules: That belief states, as measured by JOK 

estimates, would relate to decisions to terminate hypothesis testing. 

3.4.1 Method.   

Undergraduate students enrolled at the Georgia Institute of Technology were 

recruited to participate in this study via an online experiment management system (SONA 

Systems).  In total, 36 participants completed the experiment.  All participants received 

partial course credit for their involvement in the study. 

The learning phase of Experiment 3 was completed over 24 blocks of 16 trials, for 

a total of 384 learning trials.  Otherwise, the learning component of Experiment 3 was 

identical to Experiments 1 and 2, where participants were incentivized for accurate 

responses with points ($1000) that were deposited in a bank that accumulated points over 

the course of Phase 1.  Table 9 lists the environmental ecology that defined cue-hypothesis 

associations.  Unlike previous experiments, all cues were strongly associated with one 

hypothesis and one slightly weaker alternative.  Thus, each Cue should have led 

participants to favor one hypothesis over all others, but maintain a secondary alternative. 
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Table 9.  Presenting sign ecology for Experiment 3. 

 Presenting Symptoms 

 Cue 1 Cue 2 Cue 3 Cue 4 

Hyp 1 .50 .10 .10 .30 

Hyp 2 .30 .50 .10 .10 

Hyp 3 .10 .30 .50 .10 

Hyp 4 .10 .10 .30 .50 

  

The test-hypothesis associations reported in Table 10 controlled the presentation of 

test outcomes.  As was the case for the previous two experiments, the tests were designed 

to map to the cue-hypothesis relations from Table 9.  Hypotheses 1 and 2 are strongly 

associated with Cue 1, for example (see top of Cue 1 column in Table 6); and Test 1 is the 

best available test to disambiguate those two hypotheses.  The tests available in Experiment 

3 all possessed the same pattern of outcome probabilities, but they applied to different 

hypotheses.  The diagnostic value for all tests was controlled such that they were equivalent 

without the presenting symptoms (diagnosticity = 2.46) 

Table 10.  Test outcome ecology for Experiment 3. 

  Diagnostic Tests 

  Test1 Test2 Test3 Test4 

Hypothesis 1 

Outcome 1 .65 .30 .30 .10 

Outcome 2 .25 .40 .40 .25 

Outcome 3 .10 .30 .30 .65 

Hypothesis 2 

Outcome 1 .10 .65 .30 .30 

Outcome 2 .25 .25 .40 .40 

Outcome 3 .65 .10 .30 .30 

Hypothesis 3 

Outcome 1 .30 .10 .65 .30 

Outcome 2 .40 .25 .25 .40 

Outcome 3 .30 .65 .10 .30 

Hypothesis 4 

Outcome 1 .30 .30 .10 .65 

Outcome 2 .40 .40 .25 .25 

Outcome 3 .30 .30 .65 .10 
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The test phase of Experiment 3 was completed over 4 blocks of 16 trials, for a total 

of 64 test trials.  During the test phase of the experiment, participants selected tests as has 

been the case in each of the previous instantiations of the MDG, but JOKs were elicited 

after each testing event.  This change in the procedure also forced participants to select at 

least one test before recording the first JOK.   Participants were asked to rate their 

confidence, from 0 to 100, that they knew the correct disease.  Responses were recorded 

by a sliding scale that would appear in the center of the display; only whole numbers 

between 0 and 100 could be selected on the scale.  Participants were instructed that 100 

meant they thought there was a 100% chance that they knew the correct disease, and that 

0 meant they thought there was a 0% chance that they knew the correct disease.  This 

prompt appeared following each selection of a medical test.  Access to additional medical 

tests was blocked while participants were tasked with responding to the JOK prompt.  After 

participants submitted their JOK, they were given the option to terminate the trial and 

submit a diagnosis or select another test.  The point at which a diagnosis was submitted 

was self-paced, such that participants were free to select all or none of the tests available 

on any given trial.  A JOK elicitation always appeared prior to the diagnosis submission 

and subsequent termination of the trial. 

3.4.2 Results.   

Learning.  A binomial regression analysis regressed Phase 1 accuracy on block, 

finding that block had no relation to the accuracy of diagnosis in the learning phase (χ2 

(n=36,23) = 25.50, p = 0.33).  Moreover, participants were not any more likely to submit a 

correct diagnosis in block 24 than they were in block 1 (β = 0.19, SE = 0.12, p = 0.19).  

However, there was a significant linear trend relating block and accuracy (χ2 (n=36,1) = 
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6.25, p = 0.01).  Figure 11 illustrates that the distribution of learning phase performance is 

closer to chance performance than it had been for the previously reported studies.  Mixed 

learning results imply that knowledge of the task environment varied across participants, 

and can potentially aid in elucidating performance during Phase 2.  Notably, the bottom 

quadrant of participants was below the chance line.   

A 

 

B 

 

Figure 11.  Panel A illustrates Experiment 3 learning phase accuracy broken out by 

block.  The dotted line represents chance performance (25%).  Error bars represent 

standard error. Panel B tracks proportion correct for 5 participants across all trials 
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of Phase 1, as well as sample average (black, dotted line) and chance performance 

(black, dashed line).  The worst performer scored below chance accuracy, while the 

best performer scored just above 50%. 

 

 Accuracy.  A logistic regression evaluated how well accuracy was predicted by 

block.  Block was not found to be predictive of learning phase accuracy (χ2 (n=36,1) = 

0.32, p = 0.57), suggesting that performance did not improve over the course of the test 

phase.  Participants were nearly equally likely (O = 0.96) to submit a correct diagnosis in 

the final block as they were in the first (β = -0.04, SE = 0.08 , p =.57).  Moreover, accuracy 

in the first block (M = 0.38, SE = 0.02) and the second block (M =0.39, SE = 0.02) were 

approximately equal to learning phase performance. 

Stopping.  A multinomial logistic regression analyzed the degree to which 

presenting cue and participants’ first JOK predicted the total number of tests selected.  

Recall that participants were required to select at least 1 test and respond to 1 JOK 

elicitation for Experiment 3.  Thus, JOK 1 is the only judgment for which all participants 

have data.  JOK 1 was found to be a strong predictor of tests selected (χ2 (n=36,1) = 19.00, 

p < 0.0001) such that the number of tests selected was reduced as the magnitude of JOK 1 

increased (β = -0.04, SE = 0.009, p < 0.0001).  This result suggests that participants sought 

more information when their metacognitive self-assessment suggested uncertainty 

regarding the patient’s disease.  Neither presenting cue (χ2 (n=36,3) = 1.14, p = 0.77) nor 

the interaction between presenting cue and JOK 1 (χ2 (n=36,3) = 1.36, p = 0.72) predicted 

total tests selected. 

 JOK.  To assess JOKs over the course of the experimental task, the dataset was 

parsed by number of tests selected.  Four linear regression analyses evaluated the relation 

between presenting cue and JOK.  For three of those analyses, the number of tests selected 
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prior to the JOK was included in the statistical model to test for changes in JOK magnitude 

over the course of trials.  Presenting cue did not predict JOK magnitudes when participants 

selected 1 (χ2 (n=36,3) = 5.45, p = 0.14), 2 (χ2 (n=36,3) = 1.83, p = 0.61), 3 (χ2 (n=36,3) = 

2.09, p = 0.55), or 4 tests (χ2 (n=36,3) = 2.04, p = 0.56).  Number of tests selected, however, 

was a strong predictor of JOK magnitude across all analyses (see Figure 12).  Tests selected 

strongly predicted JOK when 2 tests were selected (χ2 (n=36,1) = 16.39, p < 0.0001), such 

that the difference between JOKs reported after the second test selection and the first test 

selection was significantly larger than zero (z = 6.35, p < 0.0001).   

 

Figure 12.  Experiment 3 JOK magnitude across trials.  JOKs increased in magnitude 

across trials, showing increasing confidence in participants’ capacity to diagnose 

patients accurately.  Termination occurred after similarly sized JOKs on average 

when participants selected fewer than the maximum number of test. 

 

Tests selected was predictive of JOK magnitude when three tests were selected (χ2 

(n=36,2) = 13.04, p = 0.0015), such that magnitudes grew substantially which each 

subsequent test selection.  Participants’ JOKs were of significantly higher magnitude after 

selecting the second test compared to the first test selection (z = 4.29, p < 0.0001), as was 

true when comparing JOK magnitude after selecting the third test to the second test 
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selection (z = 7.18, p < 0.0001).  Tests selected also predicted JOK magnitude when 

participants selected four tests (χ2 (n=36,3) = 7.99, p = 0.046).  The same pattern persisted 

under these conditions where JOK magnitude grew after each test selection.  JOK 

magnitude was significantly larger after the second test selection compared to the first test 

selection (z = 3.73, p < 0.001), larger after the third test selection compared to the second 

test selection (z = 3.55, p < 0.001), and larger after the fourth test selection compared to 

the third (z = 3.28, p = 0.0001). 

JOK growth suggested that participants experienced an increase in confidence 

regarding their capacity to diagnose patients correctly while they accumulated data.  

Moreover, two patterns of interest emerged in the data and are visible in Figure 12.  First, 

the relation between JOK 1 and the number of tests selected is well illustrated, as a marked 

drop in JOK magnitude can be seen for JOK 1 when the total number of tests selected 

increases.  Second, participants appear to have terminated search after reporting JOKs of 

similar magnitude for trials when they selected fewer than the maximum number of tests.  

To explicitly test for differences in final JOK, a regression analysis found that presenting 

cue (χ2 (n=36,3) = 1.78, p = 0.62), total tests selected (χ2 (n=36,3) = 7.99, p = 0.046), and 

the interaction of these two variables (χ2 (n=36,9) = 7.99, p = 0.046) failed to predict the 

final JOK elicited from participants prior to search termination.  Figure 13 illustrates this 

result. 
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Figure 13.  Experiment 3 final JOK magnitude.  The figure illustrates the JOK elicited 

when participants terminated testing, broken out by total tests selected.  Analyses 

failed to detect differences across the four patterns of test selection.  Error bars 

represent standard error. 

 

Test selection.  Four binomial logistic regressions assessed selection of each of the 

four available tests within the context of the varied presenting cues (see Figure 14).  Test 

3 was predicted by presenting cue (χ2 (n=36,3) = 9.88, p = 0.019).  As expected, Test 3 

selection was most closely associated with Cue 3 presentation.  Test 3 was selected 1.49 

times more often following presentation of Cue 3 relative to Cue 2 (β = 0.40, SE = 0.19, p 

= 0.029), 1.62 times more often relative to Cue 1 (β = 0.48, SE = 0.21, p = 0.023), and 1.75 

times more often relative to Cue 4 (β = 0.56, SE = 0.16, p < 0.001).  Selection of no other 

test was predicted by presenting cue, including Test 1 (χ2 (n=36,3) = 5.84, p = 0.12). Test 

2 (χ2 (n=36,3) = 5.36, p = 0.15) and Test 4 (χ2 (n=36,3) = 3.44, p = 0.33). 
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Figure 14.  Experiment 3 test selection.  Test 3 was the only source of information 

predicted by presenting cue, as it was found to be most closely associated with Cue 3 

presentation. Presenting cue influenced no other tests. Error bars represent standard 

errors. 

 

 The test selection analyses were repeated for the sake of exploring what if anything 

could become known by including Phase 1 performance in the statistical model.  Generally, 

none of the variables predicted selection for any of the four tests (see Table 11).  The one 

exception was Test 3, for which learning was a significant predictor.  Presenting cue, 

previously been found to predict Test 3 selection, and the interaction term approached but 

did not reach statistical significance.  While the interaction term did not predict Test 3 

selection, it may be the case that the relation between Cue 3 presentation and Test 3 

selection hinges upon how well the task environment is encoded.  This finding must be 

interpreted, however, while considering that no other test was found to be related to 

presenting cue. 
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Table 11. Experiment 3 test selection analyses including Phase 1 learning. 

  n df χ2 p 

Test 1 

Presenting Cue 36 3 2.31 0.51 

Learning 36 1 0.43 0.51 

Interaction 36 3 2.79 0.42 

Test 2 

Presenting Cue 36 3 2.78 0.42 

Learning 36 1 0.13 0.71 

Interaction 36 3 3.51 0.32 

Test 3 

Presenting Cue 36 3 6.37 0.10 

Learning 36 1 4.16 0.04 

Interaction 36 3 6.96 0.07 

Test 4 

Presenting Cue 36 3 6.49 0.09 

Learning 36 1 0.88 0.34 

Interaction 36 3 6.42 0.09 

 

 Test preference.  To delve further into test selection behavior, selection data was 

transformed to reflect the order in which tests were selected.  The order recorded during 

completion of the task was reverse scored such that a test selected first was scored a 4 and 

a test selected fourth was scored a 1.  Any test that was not exploited during a trial received 

a score of 0.  Four multinomial logistic regressions were run to evaluate whether or not 

presenting cue predicted test preference (see Figure 15).  As was the case for test selection, 

Test 3 preference was predicted by presenting cue (χ2 (n=36,3) = 9.93, p = 0.019).  Test 3 

was found to be most associated with Cue 3, as it was 1.51 times more likely to be selected 

earlier in the testing sequence after Cue 3 than Cue 2 (β = 0.42, SE = 0.18, p = 0.019), 1.78 

times more likely to be selected early after Cue 3 than Cue 1 (β = 0.58, SE = 0.24, p = 

0.015), and 1.88 times more likely to be selected early after Cue 3 than Cue 4 (β = 0.63, 

SE = 0.18, p < 0.001).  Presenting cue did not predict Test 1 preference (χ2 (n=36,3) = 5.36, 
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p = 0.15), Test 2 preference (χ2 (n=36,3) = 4.50, p = 0.21), or Test 4 preference (χ2 (n=36,3) 

= 4.21, p = 0.24). 

 

Figure 15.  Experiment 3 test preference.  Test 3 was the only medical test for which 

the order it was selected was predicted by presenting cue, as it was found to be most 

closely associated with Cue 3 presentation. Presenting cue influenced no other tests. 

Error bars represent standard errors. 

 

 A second array of multinomial logistic regressions included learning phase 

performance to explore if testing order could be elucidated by considering how well 

participants understood the task environment.  The addition of learning in the statistical 

models reported in Table 12 did not substantially alter the result, as presenting cue did not 

predict preference scores for any available test.  This result marks a change for Test 3, 

which was initially found to have a relation with presenting cue but was predicted by Phase 

1 performance instead (χ2 (n=36,1) = 4.85, p = 0.027). 
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Table 12. Experiment 3 test preference analyses including Phase 1 learning. 

  n df χ2 p 

Test 1 

Presenting Cue 36 3 4.61 0.20 

Learning 36 1 0.80 0.37 

Interaction 36 3 4.83 0.18 

Test 2 

Presenting Cue 36 3 1.39 0.71 

Learning 36 1 0.21 0.65 

Interaction 36 3 1.94 0.58 

Test 3 

Presenting Cue 36 3 6.83 0.08 

Learning 36 1 4.85 0.03 

Interaction 36 3 6.96 0.07 

Test 4 

Presenting Cue 36 3 4.25 0.24 

Learning 36 1 0.52 0.47 

Interaction 36 3 4.21 0.24 

 

 Model fitting.  Although the statistical models evaluating the testing behavior 

recorded in Experiment 3 found no link to presenting cue, unlike Experiments 1 and 2 there 

was indirect evidence that participants were responding to the information acquiring from 

testing events.  Thus, simulations were conducted to explore the stopping behavior 

participants exhibited in Experiment 3 and its link to belief revision. 

Test selection and belief revision were modeled consistent with the methodology 

outlined for Experiment 1 and 2 simulations with the exception that softmax was not 

parameterized in Experiment 3 simulations.  Diagnosticity was computed using Equation 

17 and belief revision was estimated using Equation 18.  The best available test was always 

selected and posterior belief distributions were always perfectly calibrated to the newly 

acquired datum.  The stopping rule was implemented as a probabilistic function, where the 

probability of termination search was computed using Equation 20 (Harbison, Dougherty, 

Davelaar, & Fayyad, 2009).   
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𝑃(𝑡) =

1

1 + 𝑒−𝑔(𝑋−𝜃)
 (20) 

 𝑋 = 𝐸𝑉𝑀𝑎𝑥 − 𝐸𝑉𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (21) 

 The simulation iterated through several values of the gain parameter (g) and the 

theta parameter (θ).  Theta represented the decision threshold, which took the form of the 

minimum value gained by continued search in this simulation.  Gain represented sensitivity 

to the difference between the change in expected value brought about by continued search 

and the threshold.  That difference (X) was estimated using Equation 21, where the 

expected value of the system’s current state of knowledge (i.e., the probability of a correct 

response multiplied by the payoff for a correct response) was subtracted from the expected 

value anticipated for a future state brought about by continued search.  A random model 

was included in the simulation.  The random model selected tests at random and terminated 

search such that the probability of termination was 50% after each test selection.   

Table 13.  Experiment 3 aggregate fit statistics (BIC) for all possible parameter 

combinations. 

  Theta (θ)  

  50 100 150 200 250 Random 

G
ai

n
 (

g
) 

0.6 884.08 854.00 509.44 320.00 42.20 0.00 

0.8 526.65 812.75 733.38 411.75 723.81  

1.0 1058.86 877.01 630.87 346.66 -352.04  

1.2 977.99 780.04 629.94 459.48 -457.844  

 1.4 1312.46 516.93 516.96 576.76 -379.21  

  

Likelihoods were computed for each trial of participant behavior across all 

parameter combinations and the random model.  Specifically, the preference scores for 

each test selection, total number of tests, and final JOK were used to evaluate participant 
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performance.  Likelihoods were aggregated for each participant and used to compute G2 

statistics to fit participants to each parameter combination and the random model.  The G2 

for each parameter combination was compared against the random model and corrected for 

parameters (2) to compute a Bayes Information Criterion (BIC) for each participant.  Table 

10 lists aggregate BIC statistics for all parameter combinations with respect to the random 

model, where more negative values represent better fit.  BICs larger than zero indicate that 

the random model was a better fit.  The best fit model was the stopping rule that 

implemented a gain value at 1.2 and a theta value at 250 (see Table 13).  This suggested 

that participants exhibited slightly heightened sensitivity to potential gains in value from 

continued search and established a threshold such that they expected novel information to 

improve their confidence by 25%.  The aggregate fit statistics are fortified by the fact that 

nearly a third of participants (31%) were best fit by those parameter combinations (see 

Table 14).   

Table 14.  Experiment 3 proportion of participants fitting to parameter combinations. 

  Theta (θ)  

  50 100 150 200 250 Random 

G
ai

n
 (

g
) 

0.6 0.00 0.00 0.00 0.00 0.00 0.19 

0.8 0.00 0.00 0.00 0.00 0.00  

1.0 0.00 0.00 0.00 0.00 0.33  

1.2 0.00 0.00 0.00 0.00 0.31  

 1.4 0.00 0.00 0.00 0.00 0.17  

  

Over 80% of participants were best fit by the threshold value of 250.  This suggests 

that participants across the board expected that participants exhibited a high threshold for 

information.  Participants also exhibited high sensitivity to change, as demonstrated by the 

fits to gain values of 1.0, 1.2, and 1.4.  A model that selected tests at random and terminated 
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search at random best fit nearly 20% of participants, which marks a relative reduction in 

the number of participants fitting a random model when considering performance in 

Experiments 1 and 2. 

 

Figure 16.  Experiment 3 JOK difference.  No relation was found between simulated 

and observed JOK.  This remained true when the data were parsed out by best fit 

model.  Error bars represent standard errors. 

 

Participant JOKs were explicitly evaluated with respect to simulated posterior 

asymmetry by matching each human trial to model behavior.  Specifically, model 

asymmetry was operationalized as the maximum belief in a disease state exhibited by the 

best fit parameters for each participant.  Behavior was matched on the content of the case.  

Simulated JOK was regressed over participant JOKs, revealing that there was no relation 

between the two (χ2 (n=36,1) = 1.55, p = 0.21).  The analysis was conducted once more, 

parsing out the data by best fit model.  Once again, no relation was unveiled between JOK 

and simulated JOK for the Random model (χ2 (n=7,1) = 1.99, p = 0.16), the Gain=1 model 

(χ2 (n=12,1) = 0.39, p = 0.53), the Gain=1.2 model (χ2 (n=11,1) = 0.23, p = 0.63), or the 
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Gain=1.4 model (χ2 (n=6,1) = 3.09, p = 0.08).  Figure XX illustrates the difference between 

observed JOKs and simulated JOKs by the best fit model. 

3.4.3 Discussion 

Experiment 3 was the first study to my knowledge to both elicit metacognitive self-

assessment in an information acquisition task and report a relation between that self-

assessment and the amount of information foraging recorded in the experiment.  

Specifically, participants generally increased the number of tests they exploited as their 

initial self-assessments decreased—a finding generally supportive of the probabilistic rule 

posited in the hypothesis-driven valuation model.  This result suggests that participants 

experienced some sensitivity to the information available in the environment despite the 

poor accuracy performance reported in the results section.  The general rise in JOK over 

the course of trials wherein multiple tests were selected also suggested that participants 

were reacting to newly acquired information.  That increased confidence judgments 

followed data acquisition is evidence that participants recognized improvement in their 

knowledge about a case as its details were revealed—a sign that meaningful data was 

gleaned from test results. 

The results of Experiment 3 also suggest that decisions to terminate search were 

related to beliefs.  Specifically, mean JOKs appeared to approach a similar plateau before 

search was terminated, and the mean final JOK did not vary with respect to the number of 

tests selected by participants.  The pattern points to changes in belief brought about by 

newly acquired data and the subsequent rise in confidence as important contributors to 

decisions to terminate search.  The fit of the simulation results to patterns in the behavioral 

data supported this conclusion, as evaluating Experiment 3 data on a per-trial basis showed 
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signs that posterior belief and anticipated outcomes were directly related to decisions to 

terminate search.  A large majority of participants were best fit by the probabilistic 

termination rule when the threshold parameter equaled 250—a 25% improvement in 

confidence.  That the parameter was indicative of a high threshold for increases in expected 

value suggests that participants were somewhat conservative in their decisions to stop 

testing.  Specifically, they expected that the effort expended to acquire new information 

would result in a relatively large improvement in their prospects for a correct diagnosis. 

One caveat to consider when contemplating the result linking beliefs to decisions 

to terminate search is that it was not coupled with evidence of hypothesis-guided testing 

behavior.  Moreover, behavior was modeled with respect to a system that was perfectly 

sensitive to diagnosticity and perfectly calibrated to novel data.  What was in dispute when 

simulating and fitting Experiment 3 participants was whether decisions to terminate search 

behavior was informed and related to the knowledge state of participants or determined at 

random.  Although the knowledge state simulated was ideal, it created a stark contrast with 

the random model and revealed something about the behavior exhibited by participants in 

this task.  The fact that far more participants fit the ideal operator suggests that a majority 

of the participants were making informed decisions when terminating search. 

Additionally, the simulation of the gain parameter’s impact on the probability of 

terminating search could be interpreted as learning.  A low gain would suggest poor 

sensitivity to difference between the expected value of future states and an idiosyncratic 

threshold and, potentially, poor understanding of the task environment.  In the simulation, 

gain trades off with threshold such that a low gain could diminish the liberal strategy 

suggested by a low threshold, as it would reduce the system’s ability to detect large 
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differences between future states and the threshold.  Participants generally fit higher values 

of gain best, which indicates that participants experienced no deficits as it relates to 

detecting how the expected value was likely to change in future states of search. 

Although Experiment 3 provided data sufficient to explore the nature of the 

probabilistic stopping rule put forth in the hypothesis-driven valuation model, participants 

did now show signs of sensitivity to presenting cue when selecting tests.  This experiment 

was the last reported in this document to implement the presenting cue manipulation within 

the MDG paradigm.  Summation of these three studies finds no support for the hypothesis-

guided testing hypothesis.  Experiment 3 did include a significant predictor of Test 3, as 

presentation of Cue 3 resulted in a higher frequency of Test 3 selection and a higher 

preference score for Test 3.  The most likely explanation for this result is a spurious 

significant test given that this was the only of 12 opportunities to detect any Cue-Test 

relation.   

As was the case for Experiments 1 and 2, participants performed poorly in the MDG 

task implemented in Experiment 3.  Learning phase performance averaged around 33% 

accuracy. Moreover, the participant representing the 1st quartile completed the learning 

phase performing at 25% accuracy, meaning a quarter of participants were performing at 

or below chance—the worst of any experiment reported in this document.  This poor 

showing in the learning phase contrasts harshly with the fact that Experiment 3 possessed 

the most consistent manipulation of diagnosticity across tests, and the tests possessed the 

highest diagnosticity of any set of tests reported thus far (2.46).  The relative ease with 

which this statistical structure could be learned may have come across in test phase 

performance, as a total of 8 participants scored above 52% (Max = 61%) after the best 
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performer in the learning phase finished at 51% accuracy.  In fact, the accuracy distribution 

for the test phase was positively skewed if not bimodal, showcasing that a number of 

participants were able to perform well on the task. 

The inconsistency with which participants performed in Experiment 3 is yet another 

instance in which participant engagement may have been a limitation of this study.  All but 

two participants completed test trials in less than 1 second (a whole second shorter than the 

time pressure manipulation implemented in Experiment 2).  The other two participants 

were recorded as having minimum response times of 1.001 and 1.003 seconds.  Bear in 

mind that information was not immediately available to participants during test phase trials.  

The nature of the game was such that participants were tasked with explicitly selecting the 

information they deemed necessary to complete the task—a time-consuming endeavor for 

a mindful decision-maker.  As has been discussed, a number of studies previously found 

diagnosticity to be an adequate information metric such that participants appear capable of 

encoding and acting on the information presented in similar tasks. (Illingworth & Thomas, 

2015; Lange, Thomas, & Dougherty, 2010; Nelson, 2005; Nelson et al., 2010).  Although 

I previously proposed changes to the ecological structure of the task to facilitate better 

learning, not much can be done to intervene with participant performance when such little 

time and effort is spent on challenging tasks such as the MDG paradigm. 

3.5 Experiment 4 - General Search Tradeoffs and Hypothesis Testing 

Theoretical accounts of information search and hypothesis testing have grown in 

complexity, such that contemporary models of these phenomena address the utility of 

potential answers in addition to the nature of the queries people formulate (e.g., confirming, 

falsifying) prior to making decisions (Johnson-Laird & Byrne, 1991; Nelson, 2005; Nelson, 
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McKenzie, Cottrell, & Sejnowski, 2010).  Moreover, attention has been drawn to the 

importance of subjective judgments of information utility (Manktelow & Over, 1990)—a 

perspective that was an important precursor to the emergence of memory-based accounts 

of utility estimation (Johnson, Haubl, & Keinan, 2007; Weber, Johnson, Milch, & Chang, 

2007) and process model accounts of hypothesis testing behavior (Dougherty, Thomas, & 

Lange, 2010; Thomas, Dougherty, Sprenger, & Harbison, 2008).   

In spite of advancements in the rigor with which search and hypothesis testing are 

conceptualized and empirically examined, understanding of the nuanced nature of 

hypothesis testing is limited.  Most notably, comprehensive theories accounting for 

decisions to terminate hypothesis testing have yet to be developed (c.f., Ficic & Buckman, 

2015).  Decisions to terminate testing are critical to the understanding of information 

acquisition, as the amount a decision-maker searches determines the quantity and content 

of the gathered information as well as the total costs incurred searching (Illingworth & 

Thomas, 2015).  Moreover, the data ultimately accessed by decision-makers is 

hypothesized to influence the knowledge and beliefs upon which actions are based (Lange, 

Thomas, Buttaccio, Illingworth, & Davelaar, 2013; Melhorn, Taatgen, Lebiere, & Krems, 

2011).  One reason for limited theoretical advancement may be a failure to reconcile the 

current understanding of hypothesis testing with broader research programs investigating 

information foraging and cognitive search. 

Recent developments in cognitive search theory have highlighted parallel findings 

that emerge across a myriad of research programs investigating search, positing that search 

behavior shares common strategies that are processed with similar neural structures (Hills, 

2006; Hills, Todd, & Goldstone, 2008).  Specifically, Hills (2006) argues that these patterns 
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materialize because of an area-restricted search mechanism that is well suited for 

environments where the locations of resources are correlated.  In other words, search 

becomes localized to exploit clustered resources, such as the information that could be 

gleaned from the results of a medical test.  Hypothesis testing also shares characteristics 

with diet selection in addition to area restricted search (Stephens & Krebs, 1986), as 

selecting information depositories or formulating a test is analogous to exhibiting a 

preference for a specific class of nutrients due to increased expected gains via increasingly 

selective consumption (Pirolli & Card, 1999; Winterhalter, 1986). 

Few studies have explored hypothesis-testing behavior within a foraging context 

where the perceived value of a test is conceptualized as a function of its expected utility 

and the costs associated with acquiring test results.  The goal of Experiment 4 was to 

address this gap in the literature by investigating how factors ubiquitous in applied decision 

domains—such as costs of gathering information (e.g., time, monetary expenses), risks 

taken when pursuing unreliable sources of information, and changes in task context (i.e., 

the framing of outcomes as gains or losses)—influence decisions to terminate data 

acquisition.   

Attempts to elucidate rules for terminating search behavior have been primarily 

confined to memory retrieval (Dougherty & Harbison, 2007; Harbison, Dougherty, 

Davelaar, & Fayyad, 2009; Hills, Jones, & Todd, 2012; Metcalfe & Murdock, 1981; Miller, 

Weidemann, & Kahana, 2012; Raaijmakers & Shiffrin, 1981; c.f., Lejuez et al., 2002; 

Pleskac, 2008).  Models of memory search termination assume that retrieval termination 

depends on the probability of successful retrieval and the cost of additional attempts to 

probe memory.  These models are often inspired by the animal foraging literature.  In 
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particular, optimal foraging theory (Stephens & Krebs, 1986) assumes that decisions to 

leave a cluster of resources rely on a cost-benefit assessment, considering both expected 

benefits (energy gains) and costs (energy expenditures) of continued search.  The animal 

literature has a rich history of investigating contextual factors (e.g., predation risk, energy 

reserves, mating opportunities) that influence foraging (Lima & Dill, 1990; McNamara & 

Houston, 1992; Nonacs, 2001)—a practice yet to be fully integrated into the study of 

information acquisition.   

Perhaps the most studied contextual effect in decision-making is the framing effect 

in which people show a stronger preference for a risky prospect when described as a 

potential loss than when described as a potential gain (Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1992).  Kahneman & Tversky’s Prospect Theory accounts for 

framing effects by postulating that people are risk-averse in gain contexts, but are risk 

seeking in loss contexts.  To date, framing effects have received little attention in the 

hypothesis testing literature (c.f., McKenzie, 2004).  Mishra and colleagues have 

investigated the influence of framing on terminating sequential decision-making (Mishra 

& Fiddick, 2012; Mishra, Gregson, & Lalumiere, 2012), but such studies differ from the 

scope of the current work given the focus on data acquisition and hypothesis testing.  We 

also explore the influence of two operational definitions of risk within the framing 

paradigm.  Both outcome variance (Sharpe, 1968) and probability of undesirable outcomes 

(Dror, Busemeyer, & Basola, 1999) have been tied to risk-sensitive behavior; however, the 

suitability of these manipulations for learning-based experiments has been a topic of some 

debate (Weber, 1988; Weber & Milliman, 1997).   
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When deciding to terminate hypothesis testing it is critical for an intelligent agent 

to know when the costs of further data acquisition are likely to exceed the utility realized 

from potential information to reduce unnecessary expenditures.  In many situations, queries 

or tests that provide people with richer information are often more costly options.  In 

medicine, for example, the expense of medical procedures has risen dramatically as 

medical professionals have come to rely on more advanced technologies (Skinner, 2013).  

Thus, in lieu of acquiring information from sophisticated sources, medical practitioners 

may opt for procedures that provide less diagnostic information, or reduce the number of 

tests they run, to avoid costs (Cohen, Jones, Littenberg, & Neuhauser, 1982; Cummings, 

Frisof, Long, & Hrynkiewich, 1981; Hoey, Eisenberg, Spitzer, & Thomas, 1982).   

How people perceive cost is another factor likely to influence decisions to terminate 

search.  It has long been argued that human judgments reflects an inconsistent scaling 

mechanism, highly subject to contextual influences (Kahneman & Tversky, 1979; Lopes, 

1984; Stewart, Chater, & Brown, 2006).  Detected across varied literatures such as 

perception (Rogers, 1941; Sherif, Taub, & Hovland, 1958), social judgment (Herr, 1986), 

and reinforcement learning (Bower, 1961), contrast effects illustrate how peripheral 

information bleeds into assessments of focal stimuli.  Specific to the current study, the 

experience of expending costs of varying magnitudes is expected to influence perceptions 

of cost in the MDG and, subsequently, decisions to terminate testing behavior.  Experiment 

4 will directly manipulate the order of cost conditions and evaluate how the experience of 

cost influences testing behavior. 

The goal of Experiment 4 was to explore hypothesis-testing behavior within the 

context of tradeoffs inherent to foraging tasks.  To that end, the study afforded detection of 
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numerous contextual effects studied extensively in the decision literature that may 

influence testing behavior.  Thus, this experiment had the potential to tie hypothesis testing 

to both the foraging and decision-making literatures and may serve as the foundation upon 

which more complex relations between generation processes and environmental 

constraints can be investigated.  Experiment 4 investigated the prediction that increasing 

costs would reduce testing behavior while the framing of the problem would result in a 

preference for riskier tests under a loss condition. 

3.5.1 Method.   

Undergraduate students enrolled at the Georgia Institute of Technology were 

recruited to participate in this study via an online experiment management system (SONA 

Systems).  In total, 112 participants completed the experiment.  All participants received 

partial course credit for their involvement in the study. 

The values in Table 15 defined the ecological disease-test outcome relations for 

Experiment 4.  Note that there was no presenting cue ecology for this experiment.  Level 

diagnosticities signify the degree to which specific test outcomes differentiated between 

the hypotheses, while test diagnosticity represents how well each test differentiated 

between the hypotheses after collapsing across all possible outcomes.  Although the overall 

diagnosticity of the tests was controlled so as to be nearly identical, some tests were 

designed to be riskier than others. 

 

 

 

 



 102 

Table 15.  Environmental ecology for Experiment 4. 

 Test 1 Test 2 Test 3 Test4 

 Level 1 3.54 3.56 3.57 3.28 

 Level 2 1.00 1.00 1.00 1.00 

 Level 3 3.74 3.80 3.87 4.01 

 Diagnosticity 3.21 2.91 2.58 2.21 

 D. Variance 2.33 2.41 2.48 2.46 

 

Risk was operationally defined as the probability with which an undesired event 

will occur when taking a particular action (e.g., Dror, Busemeyer, & Basola, 1999).  

Specifically, I defined risk within the MDG as the probability of sampling a useless or non-

diagnostic test outcome—information that disallows changes in a decision-maker’s beliefs.  

Such information is undesirable because it costs resources but can neither confirm nor 

contradict the beliefs of the decision-maker.  The tests listed in Table 8 were ordered by 

increasing riskiness, where the probability that Level 2 (the non-diagnostic outcome) was 

obtained was lowest given Test 1 (20%) and highest given Test 4 (50%).   

The learning phase for Experiment 4 was completed over 8 blocks of 30 trials, 

resulting in a total of 240 learning trials.  Learning trials were completed in a manner 

consistent with the methodology described for the previously reported experiments.  The 

one deviation from the previous procedure was an instruction that the points earned during 

the learning phase would be sacrificed to acquire information during the test phase of the 

experiment. 

The second phase of Experiment 4 employed a 3 (costs) x 2 (frame) mixed design.  

The test phase was completed over 6 blocks of 30 trials, resulting in a total of 180 test 

trials.  Costs were manipulated within-subject across 3 levels—None, Moderate, and High.  

Cost conditions were experienced in a randomized order, and each condition was 
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completed over 2 consecutive blocks.  Participants paid $0 per test in the None condition, 

$100 per test in the Moderate condition, and $200 per test in the High condition.  Prices 

appeared on the display just below the test label.  When a mouse-click was registered within 

the widget, the price of the test was deducted from the participant’s bank and the outcome 

of the test appeared within the circular widget.  The number of tests viewed was left to the 

participant’s discretion, where termination of search (i.e., submission of their diagnosis) 

could occur after viewing between none and all of the test outcomes.   

Frame was manipulated between-subjects.  Regardless of frame, a correct diagnosis 

resulted in a net gain of $1000, while an incorrect diagnosis resulted in a net gain of $250 

to the participant’s bank. Each trial began with $1000 appearing in a temporary holding 

account displayed on the monitor.  In the gain condition, the payoff for a correct answer 

was described as acquiring $1000, while the payoff for an incorrect answer was described 

as acquiring $250 from the temporary account.  In the loss condition, the payoff for a 

correct answer was described as losing $0, while the payoff for an incorrect answer was 

described as losing $750 of the points available in the temporary account.  This feedback 

was provided after the completion of each trial. 

3.5.2 Results.   

Learning.  A binomial logistic regression evaluated participant learning over Phase 

1 of the experiment.  Block approach but did not reach significance as a predictor of Phase 

1 accuracy (χ2 (n=112,7) = 12.54, p = 0.084).  However, participants were found to be 1.19 

times more likely to issue a correct diagnosis in the final block of Phase 1 than they were 

in the first block (β = 0.19, SE = 0.12, p = 0.19).  There was also a significant linear trend 

linking block and accuracy (χ2 (n=112,1) = 7.05, p = 0.008).  Taken together, these results 
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suggest that participants generally exhibited learning of the task environment by the end of 

Phase 1.  Figure 17 illustrates the positive trend in performance across blocks of learning 

trials and individual participants across all trials. 

A 

 

B 

 

Figure 17.  Experiment 4 learning.  Panel A illustrates Experiment 4 learning phase 

accuracy broken out by block.  The dotted line represents chance performance (25%).  

Error bars represent standard error. Panel B tracks proportion correct for 5 

participants across all trials of Phase 1, as well as sample average (black, dotted line) 

and chance performance (black, dashed line).  The worst performer performed just 

above chance accuracy, while the best performer was correct for well over 60% of 

trials. 
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Accuracy.  A logistic regression evaluated how well accuracy was predicted by 

block.  Block was not found to be predictive of learning phase accuracy (χ2 (n=112,5) = 

2.78, p = 0.73), suggesting that performance did not improve over the course of the test 

phase.  Participants were nearly equally likely (O = 0.94) to submit a correct diagnosis in 

the final block as they were in the first (β = -0.06, SE = 0.05 , p =.26).  Moreover, accuracy 

in the first block (M = 0.45, SE = 0.01) and the last block (M =0.44, SE = 0.01) were 

approximately equal to learning phase performance. 

Stopping.  A multinomial logistic regression analyzed the total number of tests 

selected across frame, cost, and first cost conditions (i.e., the cost condition the participant 

experienced in their first block of Phase 2).  Cost was found to be a significant predictor of 

total test selection (χ2 (n=112,2) = 47.85, p < 0.0001).  However, this relation was 

superseded by a cost by first cost interaction that significantly predicted total tests (χ2 

(n=112,4) = 21.84, p < 0.001).  The nature of this interaction can best be understood by 

comparing the $100 cost conditions when either $0 or $200 is experienced first.  

Participants were .82 times as likely to select more tests in the $100 condition after 

experiencing the $200 condition first relative to those who experienced the $0 condition 

first (β = -0.20, SE = 0.34, p = 0.57)—a contrast effect illustrated by Figure 18.  The pattern 

of testing behavior across cost conditions varies as it relates to total tests selected and the 

cost condition experienced first.  Testing is generally abbreviated when $200 is 

experienced first relative to other condition orders, while the largest impact of changing 

costs is visible after the $0 condition is experienced first. 
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Figure 18.  Experiment 4 total testing.  The figure illustrates mean total tests selected 

by cost condition and first condition experienced.  A contrast effect emerged where 

perceptions of cost—driven by experience—are a likely influence of observed 

termination strategies.  Error bars represent standard errors. 

 

 Neither first cost condition (χ2 (n=112,1) = 0.41, p = 0.52) nor frame (χ2 (n=112,1) 

= 0.41, p = 0.52) were found to predict total tests select.  Moreover, no interaction term 

that included frame reached statistical significance.  This include the two-way interactions 

between frame and costs (χ2 (n=112,2) = 0.61, p = 0.74) and between frame and first cost 

(χ2 (n=112,2) = 4.74, p = 0.09), as well as the three-way interaction between frame, costs, 

and first cost (χ2 (n=112,4) = 3.92, p = 0.42). 

 Test selection.  Four binomial logistic regressions were run to evaluate the relation 

between selection of each available test and frame, costs, and first cost.  Test 1 selection 

was predicted by costs (χ2 (n=112,2) = 31.22, p < 0.0001).  However, the influence of costs 

appears to be dependent on which cost condition is experienced first, as the interaction 

between costs and first cost was a significant predictor (χ2 (n=112,4) = 18.56, p = 0.001).  
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relative to the $0 condition (β = -0.77, SE = 0.15, p < 0.0001) and .41 times as likely to 

select Test 1 in the $200 condition relative to the $0 condition (β = -0.90, SE = 0.14, p < 

0.0001).   

The general pattern of this interaction appears to map well to the interaction effect 

that predicted total tests selected.  Selection of Test 1 is less likely as costs increase, but 

the pattern depends on the cost condition experienced first.   For example, while Test 1 was 

generally selected more often when costs were $0, the proportion of trials for which Test 

1 was selected differed substantially with respect to the cost condition experienced first.  

Participants were 0.40 times as likely to select Test 1 in the $0 cost condition after seeing 

$100 costs first relative to when the $0 condition was first (β = -0.92, SE = 0.42, p = 0.029), 

and 0.42 times as likely to select Test 1 in the $0 cost condition after seeing $200 costs first 

compared to seeing the $0 condition first (β = -0.77, SE = 0.155, p < 0.0001).  See Figure 

19 for an illustration of this pattern of results. 

 

Figure 19.  Experiment 4 test selection.  Tests selected by cost condition and first 

condition experienced.  This figure illustrates a contrast effect where perceptions of 

cost—driven by experience—are a likely influence of observed termination strategies.  

Error bars represent standard errors. 
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 Cost condition also predicted Test 2 selection (χ2 (n=112,2) = 41.56, p < 0.0001).  

Test 2 selection diminished when costs increased, where participants were 0.45 times as 

likely to select Test 2 as costs increased to $100 (β = -0.79, SE = 0.16, p < 0.0001) and 0.35 

times as likely to select Test 3 as costs increased to $200 (β = -0.92, SE = 0.16, p < 0.0001).  

That influence, however, is modified by first cost condition as the interactive term 

including these two variables also reached statistical significance as a predictor of Test 2 

selection (χ2 (n=112,4) = 16.19, p = 0.0028).  Once again, Test 2 selection in the $0 cost 

condition showcased differences that resulted from manipulating the order in which costs 

were experienced.  Test 2 was 0.49 times as likely to be selected in the $0 condition after 

seeing the $100 condition first relative to the $0 first condition (β = -0.70, SE = 0.27, p = 

0.0094), and 0.37 times as likely to be selected in the $0 condition after seeing the $200 

condition first relative to the $0 first condition (β = -0.98, SE = 0.28, p = 0.0005). 

 Test 3 selection was predicted by costs (χ2 (n=112,2) = 32.30, p < 0.0001).  The 

cost pattern remained consistent for Test 3 such that there was a reduction in the rate at 

which it was selected as costs increased.  Participants were 2.12 times as likely to select 

test 3 in the $0 condition relative to increased cost conditions (β = 0.74, SE = 0.18, p < 

0.0001).  

 Cost condition predicted Test 4 selection (χ2 (n=112,2) = 36.18, p < 0.0001).  Again, 

Test 4 selection was reduced as costs increased.  Participants were 0.35 times as likely to 

select Test 4 as costs increased from $0 to $100 (β = -0.62, SE = 0.15, p < 0.0001) and 0.32 

times as likely to select Test 4 as costs increased from $0 to $200 (β = -0.70, SE = 0.16, p 

< 0.0001).  The interaction between cost and first condition was also a significant predictor 

of Test 4 selection (χ2 (n=112,2) = 32.30, p < 0.0001).  Focusing on the $0 cost condition 
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to illustrate the different patterns of Test 4 selection resulting for the order manipulating, 

Test 4 was selected at a far lower rate when $100 and $200 cost conditions were 

experienced first.  Specifically. Participants were 0.56 times as likely to select Test 4 in the 

$0 cost condition when the $100 cost condition was experienced first instead of the $0 

condition (β = -0.59, SE = 0.28, p = 0.032) and 0.53 times as likely to select Test 4 in the 

$0 cost condition when the $200 cost condition was experienced first instead of the $0 

condition (β = -0.63, SE = 0.26, p = 0.014). 

 All predictors that included frame fell short of predicting the selection of any test.  

This includes the variable acting alone and in any two-way or three-way interaction (all ps 

>.05). 

Test preference.  To evaluate the nature of sequential test selection behavior, a 

transformation was performed on selection data to reflect the order in which tests were 

selected.  The order recorded during completion of the task was reverse scored such that a 

test selected first was scored a 4 and a test selected fourth was scored a 1.  Any test that 

was not exploited during a trial received a score of 0.  Four multinomial logistic regressions 

evaluated whether or not frame, costs, or first cost condition predicted test preference.  Cost 

predicted Test 1 preference (χ2 (n=112,2) = 17.98, p = 0.0001), such that Test 1 was 0.21 

times as likely to be preferred first as costs increased to $100 (β = -1.55, SE = 0.21, p < 

0.0001) and 0.18 times as likely to be preferred first as costs increased to $200 (β = -1.71, 

SE = 0.22, p < 0.0001).   

The influence of cost was modified by first cost condition experienced (χ2 

(n=112,4) = 18.01, p = 0.0012).  Participants were 0.24 times as likely to prefer Test 1 first 

in the $0 cost condition after experiencing the $100 condition first 100 (β = -1.40, SE = 
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0.32, p < 0.0001) and 0.25 times as likely to prefer Test 1 first in the $0 cost condition after 

experiencing the $200 condition first 100 (β = -1.37, SE = 0.26, p < 0.0001).  Figure 20 

illustrates test preference for all four medical tests, the patterns for which reflect test 

selection behavior depicted in Figure 19. 

 

Figure 20.  Experiment 4 test preference.  The figure illustrates mean test preference 

scores broken out by cost condition and first condition experienced.  Error bars 

represent standard errors. 
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experienced first (β = -2.05, SE = 0.27, p < 0.0001).  This illustrates the impact of different 

experience early in the test trials, and the effect of that experience on perceptions of cost. 

Cost condition also predicted Test 3 preference (χ2 (n=112,2) = 19.94, p < 0.0001), 

where participants were less likely to prefer Test 3 as costs increased. For example,  0.33 

times as likely to prefer Test 3 first as costs rose to $100 (β = -1.10, SE = 0.21, p < 0.0001)  

and 0.31 times as likely to prefer Test 3 first as costs rose to $200 (β = -1.19, SE = 0.21, p 

< 0.0001). 

Test 4 preference was predicted by cost condition (χ2 (n=112,2) = 28.80, p < 

0.0001), such that Test 4 was 0.12 times as likely to be preferred first as costs increased to 

$100 (β = -2.10, SE = 0.24, p < 0.0001), and 0.12 times as likely to be preferred first as 

costs increased to $200 (β = -2.11, SE = 0.26, p < 0.0001).  Test 4 preference was also 

predicted by the cost by first cost condition interaction (χ2 (n=112,4) = 15.61, p = 0.0036).  

Focusing—once more—one the $0 cost condition, Test 4 was 0.21 times as likely to be 

preferred first when the $100 condition was experienced first (β = -1.56, SE = 0.30, p < 

0.0001), and 0.22 times as likely to be preferred first when the $200 condition was 

experienced first (β = -1.51, SE = 0.30, p < 0.0001).   

Overall, scoring testing behavior with respect to order reveals nothing beyond what 

was reporting for selection.  Moreover, all predictors that included frame fell short of 

predicting the preference for any test.  This includes the variable acting alone and in any 

two-way or three-way interaction (all ps >.07). 

3.5.3 Discussion.   

By manipulating risk, costs, and frame Experiment 4 took a first step in elucidating 

the role that environmental factors play in decisions to terminate search in sequential 
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hypothesis testing.  To my knowledge, this is the first experiment to implement a frame 

manipulation within the context of hypothesis testing and information search.  

Traditionally, such paradigms limit choices to one risky option and one safe option, forcing 

participants to select one or the other. My paradigm differed from the traditional risky-

choice manipulation because it permitted access to multiple sources of information during 

each trial, affording the selection of both risky and safe options.   

However, participants failed to exhibit sensitivity to frame in two ways critical to 

my predictions: Participants showed no preference for riskier sources of information in a 

loss frame as compared to the gain frame and there was no proclivity for additional testing 

in the loss frame that would suggest loss aversion.  This result differs considerably from 

those of typical framing manipulations (Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1992), but extends the finding to scenarios where choice is not constrained to 

two options.   

One possible account that may explain the absence of a framing effect is that the 

frequency manipulation of risk in this experiment (Dror, Busemeyer, & Basola, 1999) was 

not effective for conveying risk to participants, necessitating additional work to examine 

the role of risk in testing behavior more effectively.  The best operational definition of risk 

is a topic of rich debate in the literature (Weber, 1988; Weber & Milliman, 1997).  Two 

alternatives to the frequency risk manipulation are possible candidates to replace it to 

explore what if any effect can come about by modifying the operational definition of risk.  

A variance-based manipulation of risk in the MDG paradigm would see larger variability 

in test outcome diagnosticity for risky tests (e.g., Sharpe, 1968).   
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For example, exploitation of such a test could equally result in highly informative 

results or entirely uninformative results.  A less risky test would have outcomes of near 

equal diagnosticity.  Weber and her colleagues, however, argue that variance manipulations 

alone may not capture what it means to perceive risk inherent to some choice.  Weber 

suggests that the history of outcomes that manifest over the course past decisions define 

for an individual what constitutes a risky choice.  Thus, risk is defined not by objective 

control over outcome variability, but by the subjective variance experienced by an 

individual. 

The findings demonstrated that strategies for acquiring information are sensitive to 

the costs attached to acquisition, as the participants selected fewer medical tests in cost 

conditions regardless of the manner in which the task was framed (Illingworth & Thomas, 

2015)—a  finding consistent with optimal foraging theory (Stephens & Krebs, 1986).  We 

can further conclude that the valuation of information involves some mechanism by which 

costs impact perceived utility.  Moreover, rules governing the termination of data 

acquisition must be sensitive to that valuation given that search stopped after significantly 

more foraging when information was free. 

 Experiment 4 provided further evidence in support of memory-based accounts of 

utility estimation. Specifically, I observed that prior experience exploiting information 

depositories in particular environments influenced the nature in which those resources were 

exploited when the environment changed. In other words, how people perceive the cost of 

information depends, at least in part, on experience of those costs. In this experiment, 

participants were willing to increase foraging behavior when they were accustomed to 

getting less for their money. Alternatively, foraging behavior was truncated when 
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participants acquired fewer resources in more expensive environments than the conditions 

to which they had become accustomed. 

 Process accounts of valuation judgments are lacking in the literature; however, 

many have explored the importance of memory and memory dynamics for estimating the 

value of a resource (Gallimore, 1994; Johnson et al., 2007; Weber et al., 2007). Further 

work is required to parse out the nature of the relation between memory and valuation. For 

instance, Johnson, Weber, and colleagues have shown that generated uses for an object 

have a positive relation with perceived value. This work, however, suggests that past costs 

associated with acquiring a resource directly influence the interpretation of future costs. It 

appears there are several traces of information available within memory that are active in 

the valuation process. These findings are important for continued development of valuation 

research and process accounts for testing and valuation behavior. 

In conclusion, Experiment 4 ties information depository preference and search 

termination to ecological factors such as the cost of data acquisition and individual 

differences such as experience with cost.  These findings demonstrate that hypothesis 

testing behavior is subject to manipulations commonly deployed in the broader context of 

foraging research, and can be explicated within the context of general cognitive search.  

More importantly, this study illustrates a strong role for memory processing in judgments 

of value.  These results illustrate the need to investigate hypothesis testing with respect to 

cognitive processes known to govern both decision-making and information foraging 

behavior. 
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CHAPTER 4. SUMMARY AND IMPLICATIONS 

4.1 Summary 

Four experiments and three simulations were carried out to evaluate an extension of 

the HyGene architecture (Thomas, Dougherty, Sprenger, & Harbison, 2008): The 

hypothesis-guided valuation model.  The singular premise of the model was that 

hypotheses generated to explain a decision-maker’s observations also served as the 

foundation for estimating the value of information depositories with uncertain outcomes.  

An intelligent agent must also determine when continued information search is unjustified 

in light of the costs necessary to achieve it relative to the gains expected to be acquired.  

The studies reported here afforded me observations with which to explore the 

environmental and cognitive signals that contribute to decisions to terminate search.  

Specifically, the stopping rule implemented in the hypothesis-guided valuation model was 

fit to participant data, evaluating the degree to which participants were sensitive to the 

expected value of information depositories and how belief was related to termination 

decisions. 

The experiments tested the propositions of the model by addressing three research 

questions intended to promote three distinctive lines of inquiry into the cognitive 

mechanisms underlying hypothesis testing behavior: the role for generation in test 

selection, the role for belief if termination, and how search operates in costly environments.  

The first queried the relation between hypothesis generation and patterns of test selection.  

This motivated two experiments that cast hypothesis testing within an empirical context 

typically formulated to study the hypothesis generation process.  Experiment 1 was 
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designed to expand upon previous research that had limited diagnostic testing behavior to 

comparisons of single- and multiple-hypothesis scenarios, showing that the number of 

hypotheses considered by a decision-maker determines whether or not diagnostic tests are 

preferred (Lange, Thomas, & Dougherty, 2010).  Specifically, Experiment 1 tested the 

prediction that the specific set of hypotheses under consideration by a decision-maker 

should account for test preferences beyond the mere number of hypotheses believed to be 

in contention—hypothesis-guided testing.  The data were examined in search of evidence 

to support a hypothesis-guided testing heuristic, where the value or preference exhibited 

for a test changes as a consequence of a decision-maker’s beliefs.  Experiment 2 was 

designed to explore hypothesis testing within the context of time constraints in an attempt 

to expand upon Dougherty and Hunter’s (2003a) demonstration that time pressure truncates 

hypothesis generation that, in turn, causes increased subadditivity.   

The second research question motivated an exploration of the role belief states 

played in decisions to terminate testing behavior.  This surprisingly sparse area of research 

has seldom seen researchers attempt to account for termination decisions within the context 

of information acquisition (c.f., Ficic & Buckman, 2015).  Experiment 3 was designed to 

initiate inquiry regarding the role metacognitive self-assessment in search termination with 

the hope of detecting a relation between belief states and termination behavior.  The third 

question gave rise to Experiment 4—an inquiry into the varying environmental factors that 

may influence test preference and termination.  This experiment explored avenues through 

which hypothesis testing could be linked to the broader fields of choice and decision-

making. 

4.1.1 General discussion. 
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At least one element of the experimental design implemented for each of the four 

experiments was intended to capture behavior that would test the predictions of the 

hypothesis-guided valuation model.  The first three experiments introduced a presenting 

symptom to the MDG paradigm that was structured to vary the set of hypotheses most 

strongly considered by decision-makers.  The HyGene architecture predicts that people 

would exhibit a preference for those sources of information perceived to be best suited to 

disambiguate the uncertain mental state that manifests when more than one hypothesis is 

considered a candidate explanation for observed data.  The statistical relation between 

disease states and medical tests was such that the diagnostic value of each test would 

change in response to the presenting symptom and each subsequent test selection.  These 

shifting values are what was hypothesized to provide signals to decision-makers who 

would determine what test was desired next.  More specifically, past experience interacting 

with information in these environments was expected to provide differential memory 

strength signals with respect to considered hypotheses—a memory-based mechanism for 

determining value in an information resource.   

The behavior captured in Experiments 1 through 3 showed minimal signs of 

sensitivity to the statistical environments participants operated within.   A number of 

exploratory analyses were conducted to analyze what if any difference considering learning 

phase behavior could make in elucidating test phase behavior.  These analyses did not yield 

any learning-dependent relation between presenting symptom and medical test selection.  

As a whole, the collection of experiments conducted for this dissertation provide no 

substantial support to the hypothesis-guided valuation model.   
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The most important contribution of the hypothesis-guided valuation model was its 

solution to the limitation of current hypothesis testing theory: The inability for any 

contemporary model to account for the manner in which hypotheses under the 

consideration of decision-makers govern observable hypothesis testing behavior.  As a 

natural extension of HyGene, this model of hypothesis testing carried with it the primary 

assumptions and hypothesized mechanisms of previous instantiations of the model.  At 

face value, the findings of this dissertation cast doubt on HyGene’s capacity to explain how 

people choose information depositories in sequential hypothesis testing tasks.  Note, 

however, that participants exhibited exceptionally poor performance throughout the 

reported studies, and may not have been fully engaged in the experimental tasks. 

A number of reasons may account for the poor performance exhibited by 

participants during the learning phase of these experiments.  The easiest to address is the 

diagnostic value of the sources of information available to decision-makers in the empirical 

tasks.  Across all studies, these values ranged between 2.09 and 3.21.  While this confirms 

that the medical tests were informative, they may have been insufficient to support 

adequate learning to perform a challenging task well.  Alternative, the effort put forth by 

participants was discussed throughout this document, focusing on the degree to which they 

exhibited the focal behavior (selection of tests) and the amount of time they spent on task.  

It was often observed that participants spent less than a second selecting tests and 

submitting a diagnosis—a feat unlikely to indicate careful consideration of their task. 

Previously, the predictions of the HyGene architecture regarding hypothesis testing 

were supported.  Lange, Thomas, and Dougherty (2010) found that pseudo-diagnostic 

search was a direct consequence of the hypothesis generation process, such that people 
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engaged in positive search only their search behavior was guided by a single hypothesis.  

Alternatively, people exhibited sensitivity to diagnostic tests when they generated more 

than on hypothesis.  It was concluded that a memory strength heuristic was operating such 

that experience with more diagnostic tests was only useful when more than one hypothesis 

was probing the traces in memory that would bring that value to consciousness.   In other 

words, people became aware of the value of a test when the association in memory between 

its results and one hypothesis under consideration were strong for but weak for another.  

Though more complicated than Lange et al.’s (2010) environmental manipulations, the 

experiments reported here emulated some of the critical features of that earlier work.  

Additionally, the results of this dissertation conflict with those of previous studies that 

found people to be sensitive to the diagnostic value of tests (Illingworth & Thomas, 2015; 

Nelson, 2005; Nelson et al., 2010).  

As previously mentioned, hypothesis generation models appear to provide a sound 

foundation for hypothesis testing theory.  These theories, however, have been poorly 

equipped to address more nuanced behavior, which was the goal of this dissertation.  A 

notable deficit repeatedly discussed in this document is the fact that no theory before the 

hypothesis-driven valuation model considered how it was that people terminated search 

behavior.  The absence of a stopping rule points to a lack of consideration of value on a 

broader scale.  If an information source’s value will inevitably fail to exceed what is 

deemed worthwhile for exploitation, how was its value determined in the first place?  What, 

if anything, contributes to perceptions of access cost?  How do these concepts tradeoff 

when considering decisions to exploit an information depository or terminate search? 
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Greater consideration should be afforded to valuation judgments of information 

depositories, as their features beyond those related to information value may disassociate 

core cognitive functioning (e.g., hypothesis generation) from information search behavior.  

For instance, the cost of an information depository may be perceived as a cue to its worth 

(Illingworth & Thomas, 2015).  It may be the case that memories associated with an 

information depository (e.g., its cost) contribute in unexpected ways to interfere with the 

signals postulated by HyGene.  Additional study of the environments in which hypothesis 

testing takes place will help to parse out the varied potential signals combined to determine 

depository value. 

A limitation of this dissertation worth noting is the abandonment of full-scale 

HyGene modeling in light of the performance exhibited by participants in all four studies.  

HyGene is best equipped to showcase a process account for behaviors linked to hypothesis 

generation.  Within the context of the studies reported here, this behavior would manifest 

in response to evidence that participants’ testing patterns were a byproduct of the 

presenting cue manipulation.  In the place of HyGene simulations, components of the 

general process hypothesized to operate in the experimental tasks were used to evaluate 

specific behaviors recorded in the participants.  Simulations demonstrated participants 

were responding to the information building into the tasks of Experiment 1 and 2.   This 

result suggests HyGene cannot be discounted as a possible account of these data, as some 

consideration of the hypotheses could explain sensitivity to test diagnosticity.   

Experiment 3 was the first study to my knowledge to both elicit metacognitive self-

assessment in an information acquisition task and report a relation between that self-

assessment and the amount of information foraging recorded in the experiment.  
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Specifically, participants generally increased the number of tests they exploited as their 

initial self-assessments decreased—a finding generally supportive of the probabilistic 

stopping rule posited in the hypothesis-driven valuation model.  This result suggests that 

participants experienced some sensitivity to the information available in the environment 

despite the poor accuracy performance reported in the results section.  The general rise in 

JOK over the course of trials wherein multiple tests were selected also suggested that 

participants were reacting to the newly acquired information.  That increased confidence 

judgments followed data acquisition is evidence that participants recognized improvement 

in their knowledge about a case as its details were revealed—a sign that meaningful data 

was gleaned from test results.  Moreover, the modeling endeavor for Experiment 3 

suggested that these judgments mapped consistently to predicted posterior belief 

distributions. 

Two results peripheral to the primary goal of this dissertation detected factors not 

previously associated with search behavior.  Experiment 3 provided evidence suggesting 

that decisions to terminate search were related to beliefs.  The initial confidence reported 

by participants predicted the amount of testing behavior they would exhibit in the task.  

Additionally, JOK elicitations revealed increasing confidence as more information was 

consumed, culminating in a plateau around 50% prior to search termination.  The pattern 

points to changes in belief brought about by newly acquired data and the subsequent rise 

in confidence as important contributors to decisions to terminate search.  That a link was 

detected between belief and termination afforded examination of the probabilistic 

termination rule posited in the hypothesis-driven valuation model.  Simulation of the 

stopping rule found evidence in support of the model, as participants fit parameters 
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indicative of a high threshold for increases in expected value.  Participants exhibited an 

expectation that the costs expended to acquire information would substantially increase the 

possibility of a correct diagnosis. 

Experiment 4 provided insight regarding the role that environmental factors play in 

decisions to terminate search in sequential hypothesis testing.  The findings demonstrated 

that decisions to exploit information depositories are sensitive to the costs attached to 

exploitation.  I can also conclude that the valuation of information involves some 

mechanism by which costs impact perceived utility.  The rules governing search 

termination must be sensitive to that valuation because search stopped after more testing 

behavior when information was free. 

 The role of memory in utility estimation was also enlightened by the results of 

Experiment 4.  Specifically, behavior recorded in Experiment 4 suggests that experience 

plays an important role in how people perceive the cost of information.  People accustomed 

to getting a lot of information for few costs are more sensitive to increased cost compared 

to those accustomed to moderate costs.  Memory-based accounts for valuation show 

promise in their capacity to further explain testing behavior, especially as it applies to test 

preference and decisions to terminate search. 

 The HyGene predictions evaluated in these experiments have not been supported 

by the observed patterns of behavior.  Specifically, the data cast doubt on the arrows 

feeding into Step 5 of the hypothesis-driven valuation model of hypothesis testing (Figure 

1).  Those arrows represent how episodic events activated by observed data and generated 

hypotheses contribute to valuation judgments prior to test exploitation.  Not one experiment 

in this document found an effect of presenting cue on test selection or preference—which 
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suggests no influence of generated hypotheses.  However, the findings reported in this 

document are insufficient for claiming a falsification of the cognitive process posited in 

Figure 1.  In a number of ways discussed previously in this report, participants exhibited 

poor understanding of the task environments.  This lack of understanding accounts for the 

observed behavior and is consistent with the theory.  Had participants exhibited learning 

in Phase 1 of these experiments prior to exhibiting unpredicted patterns of testing behavior, 

the theoretical premise of these studies would be considerably jeopardized.  

4.2 Implications 

 Hypothesis testing is a ubiquitous behavior, exhibited by people in a number of 

diverse settings.  Poletiek (2001), for example, lists numerous behaviors—such as glancing 

at one’s surroundings to evaluate expectations of surrounding objects, uttering sounds 

while learning a language to assess one’s mastery of novel phonemes, and solving 

problems in novel ways so as to observe their impact on the world—that are, essentially, 

different forms of hypothesis testing behavior.   Acquisition of information in such 

carefully crafted situations is important for how people behave within and understand the 

world.  Thus, a comprehensive hypothesis testing theory can inform our understanding of 

a wide scope of human behavior.  

The studies reported here showcase the complexity inherent in foraging tasks, and 

the care necessary to construct environments that can give rise to informative search 

behavior.  Manipulations of information in sequential hypothesis testing tasks must be 

carefully planned to elicit specific predictions.  Although careful consideration of 

numerous factors preceded design of the statistical structures implemented in the reported 

experiments, available tests could have been designed to be more informative.  This would 
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shift the demands of the task further towards forming more nuanced connections between 

hypotheses and information depositories. 

It is critical to understand that hypothesis testing does not occur in a vacuum. The 

parallels observed spanning myriad literatures strongly suggest that a number of cognitive 

processes share common mechanisms with hypothesis testing, precede and, thus, influence 

hypothesis testing, or are antecedents of hypothesis testing and are influenced by its 

byproducts.  An abundance of environmental factors constrains or enhances these 

processes in ways that map to broader conceptualizations of human foraging behavior.  

This dissertation has taken an initial step towards establishing the first and only research 

program to account for individual differences in cognitive resources, environmental 

constraints, and the hypotheses considered by the decision-maker in hypothesis testing 

investigations.  Although data to support the predictions of the HyGene architecture have 

proven to be elusive in this instance, the results of the work reported here clearly 

demonstrate a role for metacognitive self-assessment in decisions to terminate search and 

highlight the interaction of access costs with experience of costs when people perceive the 

value of engaging in testing behavior.  These findings represent a starting point from which 

future investigations of hypothesis testing will be forged.   
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APPENDIX A. FIT STATISTICS FOR EXPERIMENT 1 

BIC fit to each model for each participant. 

   Tau (τ)  

Participant Ideal 0.2 0.8 1.4 Random 

1 -179.307 -70.5415 -20.6832 -13.8655 -179.307 

2 -91.8218 -64.3031 -17.3763 -11.783 -91.8218 

3 -1396.24 -235.925 -48.5642 -28.7361 -1396.24 

4 -99.7972 -69.8917 -20.0456 -13.3902 -99.7972 

5 -811.515 -161.05 -35.1511 -21.4655 -811.515 

6 -17.4471 -17.5126 -7.60596 -6.62424 -17.4471 

7 -1587.56 -263.166 -53.0861 -31.1241 -1587.56 

8 -153.039 -121.158 -31.1817 -19.3017 -153.039 

9 -17.6111 -23.7569 -10.1127 -8.00993 -17.6111 

10 -932.091 -155.792 -30.5151 -18.6632 -932.091 

11 -1551.21 -259.209 -52.5127 -30.8239 -1551.21 

12 -87.8105 -74.7404 -19.7351 -12.9865 -87.8105 

13 -175.644 -126.173 -32.5043 -20.0776 -175.644 

14 -776.273 -154.242 -36.2502 -22.3694 -776.273 

15 -224.18 -81.1814 -22.0218 -14.5511 -224.18 

16 -134.968 -109.198 -29.6823 -18.627 -134.968 

17 -415.731 -86.4187 -20.326 -13.4722 -415.731 

18 -823.682 -168.444 -35.9661 -21.8059 -823.682 

19 -15.4489 -16.3641 -6.88928 -6.27823 -15.4489 

20 -1512.09 -254.316 -51.5014 -30.2641 -1512.09 

21 -963.424 -180.486 -39.2195 -23.7156 -963.424 

22 -154.815 -125.181 -32.3178 -20.014 -154.815 

23 -210.476 -60.7055 -16.3916 -11.374 -210.476 

24 -7.37721 -6.64443 -1.12265 -2.75686 -7.37721 

25 -47.8818 -38.3234 -6.05915 -4.89262 -47.8818 

26 -13.3214 -19.4583 -9.71004 -7.84457 -13.3214 

27 -230.211 -22.057 -4.79308 -4.95095 -230.211 

28 -356.461 -96.0871 -25.9657 -16.841 -356.461 

29 -131.086 -58.7087 -18.4541 -12.7125 -131.086 

30 -166.501 -21.7283 1.217918 -0.68634 -166.501 

31 -120.985 -41.2147 -12.9049 -9.45061 -120.985 
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APPENDIX B. FIT STATISTICS FOR EXPERIMENT 2 

BIC fit to each model for each participant under no time pressure 

  Tau (τ)  

Participant Ideal 0.2 0.8 1.4 Random 

1 -795.97 -143.36 -31.23 -20.05 0 

2 -36.32 -32.64 -14.24 -11.17 0 

3 -110.13 -17.22 -7.16 -7.06 0 

4 -795.97 -143.36 -31.23 -20.05 0 

5 -777.10 -140.69 -30.83 -19.85 0 

6 -382.32 -73.26 -18.55 -13.24 0 

7 -180.36 -36.07 -11.59 -9.51 0 

8 -418.43 -77.18 -18.78 -13.31 0 

9 -313.20 -67.84 -18.78 -13.48 0 

10 -735.21 -132.05 -29.06 -18.89 0 

11 -795.97 -143.36 -31.23 -20.05 0 

12 -6.09 3.72 -3.10 -4.89 0 

13 57.14 45.70 14.21 5.73 0 

14 14.16 7.50 -2.38 -4.50 0 

15 -626.17 -119.35 -27.69 -18.22 0 

16 -291.02 -50.18 -13.53 -10.52 0 

17 -229.96 -63.33 -19.44 -13.94 0 

18 14.16 7.50 -2.38 -4.50 0 

19 -118.82 -10.16 -2.58 -4.12 0 

20 -716.92 -129.78 -28.72 -18.70 0 

21 -795.97 -143.36 -31.23 -20.05 0 

22 41.04 45.49 14.88 6.18 0 

23 -795.97 -143.36 -31.23 -20.05 0 

24 -112.09 -18.22 -6.74 -6.70 0 

25 -404.77 -78.97 -20.09 -14.13 0 

26 -652.81 -115.73 -25.65 -17.01 0 

27 14.16 7.50 -2.38 -4.50 0 

28 -114.83 -33.06 -11.95 -9.72 0 

29 14.16 7.50 -2.38 -4.50 0 

30 -736.60 -133.15 -29.39 -19.07 0 

31 -531.29 -92.60 -20.52 -14.11 0 

32 -301.84 -71.09 -20.07 -14.21 0 
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33 -639.49 -117.48 -26.57 -17.54 0 

34 -663.90 -124.69 -28.48 -18.63 0 

35 -41.29 -36.66 -15.51 -11.90 0 

36 -775.72 -139.59 -30.50 -19.66 0 

37 -33.34 -17.73 -9.20 -8.28 0 

 

BIC fit to each model for each participant under time pressure 

  Tau (τ)  

Participant Ideal 0.2 0.8 1.4 Random 

1 -674.45 -120.48 -26.50 -17.44 0 

2 -31.35 -28.37 -12.58 -10.17 0 

3 -239.97 -46.59 -13.66 -10.65 0 

4 -395.10 -57.23 -11.02 -8.64 0 

5 -112.97 -31.71 -11.75 -9.65 0 

6 -422.25 -80.53 -20.15 -14.15 0 

7 -221.68 -44.20 -13.11 -10.32 0 

8 -481.62 -90.74 -21.99 -15.13 0 

9 -201.96 -53.33 -16.80 -12.45 0 

10 -717.73 -130.48 -29.00 -18.87 0 

11 -795.97 -143.36 -31.23 -20.05 0 

12 -109.82 -41.81 -15.44 -11.79 0 

13 -57.79 -11.93 -5.94 -6.29 0 

14 -13.02 -1.79 -4.74 -5.81 0 

15 -494.10 -100.68 -24.94 -16.79 0 

16 -513.81 -91.66 -21.46 -14.79 0 

17 -171.97 -54.23 -17.93 -13.14 0 

18 -37.13 -33.34 -14.53 -11.34 0 

19 -155.95 -28.49 -9.08 -8.00 0 

20 4.14 13.59 1.84 -1.81 0 

21 -701.63 -130.02 -29.26 -19.03 0 

22 -1.30 36.24 12.52 4.80 0 

23 -777.10 -140.69 -30.83 -19.85 0 

24 -19.11 -19.00 -10.26 -8.94 0 

25 -437.50 -92.68 -23.76 -16.18 0 

26 -557.09 -101.41 -23.56 -15.94 0 

27 -72.40 -12.01 -6.58 -6.79 0 

28 -11.13 -12.46 -8.10 -7.69 0 
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29 4.46 -0.23 -4.68 -5.79 0 

30 -588.43 -114.02 -26.90 -17.81 0 

31 -774.33 -138.36 -29.98 -19.34 0 

32 -468.30 -92.49 -22.91 -15.66 0 

33 -581.50 -108.50 -25.26 -16.89 0 

34 -720.50 -132.69 -29.65 -19.24 0 

35 -41.29 -36.66 -15.51 -11.90 0 

36 -795.97 -143.36 -31.23 -20.05 0 

37 -48.29 -17.40 -8.84 -8.08 0 
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