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• To my financé Bobbi-Jo for your love and encouragement at every step along the way.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Traditional Approaches to Robot Control . . . . . . . . . . . . . . . . . . . 1

1.2 The Equilibrium Point Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Effects of External Torque on Joint Control . . . . . . . . . . . . . 5

Chapter II SYSTEM MECHANICS . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Application of the Equilibrium Point Hypothesis to Joint Control . . . . . 9

2.3 Nonlinear Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Mechanical Implementation . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Robotic Joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter III SYSTEM CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Field Programmable Gate Arrays . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Equilibrium Point Control Model . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Complete Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Testing Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter IV IMPLEMENTATION OF JOINT CONTROL . . . . . . . . . 39

4.1 Results and Validation of the Implementation . . . . . . . . . . . . . . . . 39

4.1.1 Accuracy of Joint Actuation . . . . . . . . . . . . . . . . . . . . . . 39

iv



4.1.2 Independence of Joint Equilibrium Angle and Joint Stiffness . . . . 43

4.1.3 Compensation for Applied Loads . . . . . . . . . . . . . . . . . . . 47

4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Contribution of this Architecture to Robot Control . . . . . . . . . . . . . 49

4.4 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



LIST OF TABLES

Table 1 Parameters used in producing the numerical solution to the differential
equation describing the curvature of the roller profile. . . . . . . . . . . . 18

vi



LIST OF FIGURES

Figure 1 The effect of increasing co-contraction level on the equilibrium angle of a
joint subjected to an external torque. . . . . . . . . . . . . . . . . . . . . 6

Figure 2 The mechanics of a joint actuated with antagonistic actuators using series-
elastic cables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3 The effect of co-contraction on net joint torque using linear springs. . . . 10

Figure 4 The effect of co-contraction on net joint torque using quadratic springs. . 12

Figure 5 Comparison of the joint stiffness produced by linear and quadratic springs. 12

Figure 6 Quadratic spring device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 7 Variables used in device analysis. . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 8 Numerical solution to the differential equation describing the curvature of
the roller profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 9 Implementation of the quadratic spring device. . . . . . . . . . . . . . . . 19

Figure 10 Force-length relationship of the quadratic spring device. . . . . . . . . . . 20

Figure 11 Coil envelope for the conical spring designed using a piece-wise approach. 23

Figure 12 Ideal and simulated force-length relationship for the conical spring design. 23

Figure 13 The single degree of freedom joint with antagonistic, series-elastic actuation. 25

Figure 14 The Xtreme DSP Development Kit . . . . . . . . . . . . . . . . . . . . . 28

Figure 15 A simple Simulink model that can be compiled and implemented on a
Xilinx FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 16 A Simulink model that computes the expressions for servo angles. . . . . 30

Figure 17 An overview of conversion from DC signals to PWM signals. . . . . . . . 31

Figure 18 The effect of input signal value on the width of the PWM pulses. . . . . . 32

Figure 19 Expanded view of how scaling and shifting of the ramp signal was done to
produce the desired PWM waveform. . . . . . . . . . . . . . . . . . . . . 33

Figure 20 A Simulink model that converts DC servo angle signals into PWM signals 34

Figure 21 The Simulink model implemented on the FPGA to control the system. . 35

Figure 22 The dSpace model used to perform automated testing of the system . . . 36

Figure 23 The electrical connectivity used for testing the final system. . . . . . . . . 37

Figure 24 The complete experimental setup including the robotic device and all test-
ing equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



Figure 25 The accuracy with which the joint is actuated given a variety of stiffness
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 26 A high-resolution recording of measurement variability. . . . . . . . . . . 41

Figure 27 Frequency analysis of the error in recorded joint angle as stiffness is varied. 42

Figure 28 Independence of joint equilibrium angle over a full range of stiffnesses. . . 43

Figure 29 Variations in joint stiffness produced at a given joint equilibrium angle. . 44

Figure 30 Independence of joint stiffness over three equilibrium angles. . . . . . . . 45

Figure 31 Relationship between commanded and measured joint stiffness. . . . . . . 46

Figure 32 Compensation for an externally applied joint torque. . . . . . . . . . . . . 48

viii



SUMMARY

Biological systems are able to perform complex movements with high energy-efficiency

and, in general, can adapt to environmental changes more elegantly than traditionally en-

gineered mechanical systems. The Equilibrium Point Hypothesis describes animal motor

control as trajectories of equilibrium joint angle and joint stiffness. Traditional approaches

to robot design are unable to implement this control scheme because they lack joint ac-

tuation methods that can control mechanical stiffness, and, in general, they are unable to

take advantage of energy introduced into the system by the environment. In this paper,

we describe the development and implementation of an FPGA-controlled, servo-actuated

robotic joint that incorporates series-elastic actuation with specially developed nonlinear

springs. We show that the joint’s equilibrium angle and stiffness are independently control-

lable and that their independence is not lost in the presence of external joint torques. This

approach to joint control emulates the behavior of antagonistic muscles, and thus produces

a mechanical system that demonstrates biological similarity both in its observable output

and in its method of control.

ix



CHAPTER I

INTRODUCTION

1.1 Traditional Approaches to Robot Control

Terrestrial locomotion is a complex behavior that requires animals to maneuver through

non-uniform environments and to handle unpredictable changes in their surroundings. Legged

locomotion offers unique benefits over other approaches (e.g., wheeled vehicles) because it

increases an robot’s ability to avoid obstacles and to manage various types of discontinuities

(e.g., span gaps, climb stairs) [21]. Similarly, segmented limbs give animals the ability to

reach, push, and otherwise manipulate their environment. For decades, researchers have

built robots with actuated joints in an effort to create machines that can perform complex

tasks efficiently. However, the control of movement in non-ideal environments has proven

to be complex problem.

A few researchers have used biped robots and a variety of control strategies to study

walking [2], [7], [13], [18]. One of the most common is the trajectory-tracking technique

in which robots move by following pre-planned leg position or force trajectories [2]. A

limitation of this method is that it is completely feed-forward and is thus sensitive to

perturbations. A more advanced version of this approach is the model-based technique in

which algorithms are used to determine ideal placements of legs to maintain stability. This

technique requires the robot either to have an a priori knowledge of its environment or to

have sensors that can quickly and sufficiently detect all relevant details of the environment

that are needed by the algorithm. The algorithm then compares current limb positions

with these environmental constraints to determine the appropriate movements of each leg

[7]. Similar algorithms can also be used to make predictions about upcoming moves and

begin preparing for the move ahead of time. For example, a robot may begin to lean to one

side when a turn to that side is approaching. A drawback to the model-based technique is

the need to have direct, precise control over joint angles or forces to produce movements
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that correspond to the algorithm’s output. Imprecision can result in bad foot placement

and become a source of instability.

In the late 1980’s Raibert demonstrated that complex control algorithms were not nec-

essary to control running in a three-dimensional, single-legged, hopping robot [18]. The

robot was controlled using a few simple physics-based rules that computed the appropriate

actuation of its leg based on the the results of the last step. Another significant contribution

made by Pratt and Raibert made was the introduction of series-elastic actuators [16], [11].

This term refers to the intentional inclusion of an elastic element between the output of a

geared-down motor and the load. Its purpose is to reduce the non-linear effect of load jitter

or shock as well as to significantly reduce the output inertia of the motor. With a lower

output inertia, the load is not held as rigidly and the natural dynamics of the actuated

device become important.

Another approach to robot locomotion control—inspired by a walking toy—involves

using the passive mechanics of a robot as the sole source of control [17], [13]. Because the

robot has no actuators, it requires a small downhill slope to provide energy. With careful

design, stable locomotion can be produced in either two or three dimensions [22]. This

control scheme suffers from sensitivity to perturbations, initial conditions, and the angle of

the downhill slope. (Recent computational models have demonstrated that small actuators

can be used on otherwise passive robots strictly to compensate for changes in slope and

thus maintain the needed level of input energy [15].)

Robots that closely emulate the mechanics and control of biological systems can provide

a research tool for testing theories of animal neural control architectures. However, it

is critical that the method by which robots actuate their joints, and thus control their

movements, be modeled as close as possible to biology.

1.2 The Equilibrium Point Hypothesis

While a good deal is known about the output of the neuromuscular system during locomotion—

such as motoneuron and muscle activity—relatively little is know about how animals con-

trol and coordinate muscular contractions to produce desired motions. The λ-version of the
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Equilibrium Point Hypothesis (EPH) of motor control seeks to explain joint movements at

a macroscopic level [5],[6]. Because it is unconcerned with low-level details such as muscle

fiber composition or activity of individual neurons [8], it is ideal for use in a robotic system

that can at best emulate macroscopic views of motor activity.

The primary aspect of this hypothesis is that there is a single control variable, λ, that

can be set by the central nervous system independent of the current or past kinematic

state of the animal. Although no evidence has directly linked λ to a biologically measurable

quantity, this parameter is generally considered to correspond to the muscle length at which

autogenic feedback begins activating its motoneuron pool [6]. This method of control does

not allow the central nervous system to determine the level of α-motoneuron activity. For

slow muscle stretches, activity is instead determined by the relationship between λ and

muscle length, where muscle length is set by the interaction between the joint actuated by

the muscle and externally applied torques [6].

Considering a single degree of freedom (DOF) joint actuated by a single muscle, the

level of muscle activity can be represented as follows:

A =





L− λ for L ≥ λ

0 for θ < λ

(1)

where A is the level of static muscle activation and L is the muscle length [1]. Note that

activity ceases when the muscle is shorter than λ because the stretch reflex is silenced.

The EPH can be expanded to represent the contributions of the stretch-rate sensitivity

of group Ia afferents by modifying the definition of λ to include velocity as follows:

λ∗ = λ− µω (2)

where µ is a second central control parameter and ω is the angular velocity of the actuated

joint [20]. For the purposes of this research, we assume that the velocity component is

negligible. To justify this assumption, we note that µ is commonly approximated to be

small (0.58) [12], [1] and that, in this research, data was collected during steady-state

conditions. Therefore, for this research, Equation 2 becomes:

λ∗ = λ (3)
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By controlling the λ values for antagonistic muscles, the movement of joints can be

influenced. Feldman and Latash [6], [12] have defined two central command signals to

describe the interaction of antagonistic muscles—R (reciprocal) and C (coactivating)—as

follows:

C =
λFLEX + λEXT

2
(4)

R =
λFLEX − λEXT

2
(5)

where λFLEX is the λ of the flexor muscle and λEXT is the λ of the extensor muscle. If a

pair of antagonistic muscles had identical properties (i.e., identically matched motoneurons

and muscle composition, symmetric attachment points, etc.) and no external load is applied

to the joint, then the time trajectory of R is proportional to the trajectory of the joint’s

equilibrium angle, while the trajectory of C is proportional to the trajectory of the joint’s

stiffness [5]. Joint stiffness is defined as its resistance to angular changes:

S =
dT

dθ
(6)

where T is the net torque applied to the joint by the muscle pair.

Because stiffness defines the level of compliance with which a joint reacts to external

forces, it has direct implications on how individual joints and whole limbs are controlled

in motor tasks such as balance maintenance or locomotion. The ability to control a joint’s

stiffness independent of its equilibrium angle is crucial. This is evidenced in experiments by

Nichols and Houk [14] that demonstrated that joint stiffness, rather than muscle length, is

the mechanical property regulated by stretch reflex. Since stiffness regulation is important,

it is not possible to accurately emulate the dynamics of a biological joint without some

method to modify the joint’s stiffness as external conditions or desired performance change.

In this research, it was necessary to correlate λ with muscular forces. Isometric analysis

of cat soleus muscle by Joyce [9] has demonstrated that the relationship between muscle

tension and motoneuron stimulus rate can be approximated as a quadratic function for

stimulus levels less than 10 Hz. (Above 10 Hz, the the relationship saturates and a maximal

tension level is reached.) Similarly, Contreras-Vidal [3] has demonstrated that the active
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component of muscle contraction can be modeled as a quadratic function:

F = ρ(L− λ)2 (7)

where ρ is a muscle-specific parameter and L is the muscle length. Joyce’s data correlates

well with this model, provided that motoneuron firing rate is inversely proportional to λ.

With this assumption, an increase in motoneuron firing rate produces a quadratic increase

in muscle force. By defining the force-length relationship of each muscle, the equilibrium

point and stiffness of a joint can be controlled by appropriately setting the muscles’ λ values.

1.2.1 Effects of External Torque on Joint Control

Equations 4 and 5 demonstrate that when no external torque is applied to a joint, unique

expressions can be derived for the joint’s equilibrium angle (proportional to R) and stiffness

(proportional to C). However, with the addition of external torques, changes in R and C

lose their uniqueness (i.e., changes in C affect joint equilibrium angle and changes in R

affect joint stiffness) [20]. As an example, Figure 1 shows a joint that has been subjected to

an external torque. The initial torque-angle curves for the agonist and antagonist muscles

are shown as the red and blue solid traces, respectively. The sum of these curves yields the

applied joint torque (solid green trace), which is the torque produced solely by the muscles.

When a 2.0 mNm external torque is applied to the joint, an equilibrium point, EP1, is

established at the intersection of the applied joint torque curve and the external torque line

(black dashed trace). Next, the level of co-contraction is increased and the new agonist,

antagonist and applied joint torque curves are shown as red, blue, and green dashed traces,

respectively. Note that the applied joint torque curve has simply rotated about the origin,

resulting in a new intersection point, EP2, with the external torque line. Thus, a change

in co-contraction level, C, has caused a change in the equilibrium joint angle. Similarly, in

the presence of external torques, changes in R yield changes in both equilibrium angle and

in joint stiffness. (This effect is not shown.)

While the loss of R and C uniqueness complicates the computation of a joint’s equi-

librium angle and stiffness, deterministic relationships are still attainable as described in

Section 2.2.
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CHAPTER II

SYSTEM MECHANICS

This chapter addresses the details of the theory and implementation of the mechanical

elements of the robotic system. Relevant mechanical quantities are defined and then given

context through their relationship to the Equilibrium Point Hypothesis. The design and

development of a specialized nonlinear spring and the robotic joint are also discussed.

2.1 Overview

To understand the control technique that will be used, an understanding of the mechanics

of joint control is necessary. Figure 2 shows a schematic drawing of the mechanics of

the joint that is used in this research. Note that two servos are attached to the joint

through a series connection of cables and springs. Note also that both servo pulleys have

the same radius (RJ), and that this radius is larger that of the joint pulley (RS), so some

gearing up is present. There are three important angles in this system—α, β, and θ—

that correspond to the agonist servo angle, the antagonist servo angle, and the joint angle,

respectively. As a convention, we have chosen that clockwise rotations represent positive

angular displacements for α and θ and represent negative a angular displacement for β.

The two fundamental mechanical quantities used in this research are joint equilibrium

angle and joint stiffness. A joint’s equilibrium angle is defined as the angle at which it would

come to rest in the absence of external forces. Joint stiffness is defined as the resistance to

angular displacements of the joint from its equilibrium angle, or the derivative of applied

torque with respect to angular displacement (Equation 6). Mechanically, joint stiffness is

created by applying equal and opposite torques to the joint via the two servos so that any

angular displacement produced by an external torque causes an increased loading of one

spring and a decreased loading of the other.

It has been shown that stiffness of biological joints is both linear and elastic about a set
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operating point [10]. Section 2.2 shows that this behavior can be produced through series-

elastic actuation of a mechanical joint with either linear or quadratic springs. Although

linear springs are easier to work with and are readily available, they do not allow the

joint stiffness to be varied because, under any amount of co-contraction, the movement

of a joint causes equal and opposite length changes in the two springs and hence equal

and opposite force changes. Because the sum of the spring forces is always constant, the

resulting stiffness is always proportional to the sum of the two spring constants. The desired

behavior is that as co-contraction increases, stiffness increases. Quadratic springs produce

the same performance as linear springs for a set operating point, but also allow the joint

stiffness to be varied as needed. (The details of this discussion are presented in Section 2.2.)

2.2 Application of the Equilibrium Point Hypothesis to Joint
Control

The control of servos requires that they receive a desired angle signal as input at all times;

it is this angle that they are designed to reach using any available torque. A primary

contribution of this research is the design and implementation of an algorithm that allows

a user to control a joint by specifying its equilibrium angle and stiffness rather than by

specifying individual servo angles. For the following discussion, we will use the assumption

that the system is calibrated such that when the joint angle and both servo angles are

set to 0o, the cables are idle (i.e., the cables are taut but are conveying no tension). This

configuration is shown in Figure 2. As mentioned in Section 2.1, the use of linear springs in a

series-elastically actuated joint prevents the application of variable stiffness. The achievable

stiffness with linear springs is:

SLinear =
−πR2

J

180
(k1 + k2) for θ ∈ {−α ≤ θ ≤ β} (8)

where k1 and k2 are the two linear spring constants. Because all parameters in this equa-

tion are constants (i.e., there is no dependence on servo angles), the stiffness will always

be constant, provided both springs are always in tension. Tension is guaranteed when

−α ≤ θ ≤ β.

Figure 3 shows the effect of co-contraction on stiffness when linear springs are used. The

9
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black trace in each panel represents the applied joint torque, which is the torque applied to

the joint by the servos. Note that as co-contraction level increases from zero, the slope of the

operating region (i.e., the region in which both cables are in tension) is always -0.44 mNm
deg .

To produce variable joint stiffness, we have chosen to use nonlinear springs as part of

the actuation system. In an effort to maintain similarity with Equation 7, we have chosen

to implement springs with quadratic force-length characteristics such that:

F = a(L− L0)2 + b(L− L0) + c (9)

where L is the spring’s length, L0 is the spring’s resting (no-load) length and a, b, and c

are spring constants. Using these springs and the mechanical configuration from Figure 2,

the equation for applied joint torque, T , is:

T = −πRJ

1802
(180b + aπRS(α + β))(RS(α− β) + 2RJθ) for θ ∈ {−α ≤ θ ≤ β} (10)

Furthermore, the equation for joint stiffness (dT
dθ ) becomes:

S = −2aπ2R2
JRS

1802
(α + β)− bπR2

J

90
for θ ∈ {−α ≤ θ ≤ β} (11)

In this case, stiffness is indeed dependent on the servo angles—α and β. In fact, the

stiffness equation is linearly dependent on the co-contraction, C, with a constant offset

proportional to b, the linear term of the quadratic springs. Figure 4 shows a plot of the

applied joint torques that result when quadratic springs are used by co-contracting servos.

It can be seen that in the operating region, a linear slope is present in the applied joint

torque. Furthermore, this slope increases in magnitude as co-contraction increases.

Figure 5 is a plot of stiffness versus co-contraction for quadratic springs (blue data

points), and for linear springs (red data points). Note that when using linear springs, the

stiffness is constant for non-zero levels of co-contraction; in the case of quadratic springs,

stiffness is linearly related to the level of co-contraction.

While the quadratic spring of the form shown in Equation 9 appears to yield the desired

joint controllability, there is one significant limitation. Equation 11 demonstrates that the

stiffness the joint is proportional to the co-contraction and has a constant offset proportional

to b, the linear term in the quadratic force-length relationship. Because of this offset, the

11
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joint stiffness can not be reduce in magnitude to a value less than bπR2
J

90 . It is therefore

desirable for the spring to take the form:

F = a(L− L0)2 + c (12)

The benefits of springs of this form are described in more detail in by English [4]. Section

2.3 describes the steps taken to implement springs of this form. Note that in the remainder

of this section, calculations will include the linear spring term because non-idealities in the

manufacturing process tend to yield non-zero values of b.

The equilibrium joint angle of the system can be found by computing the joint angle at

which the applied joint torque is equal and opposite that of an externally applied torque.

Setting the applied torque (from Equation 10) equal to the externally applied torque, which

will be referred to by the variable Load, yields the following equation for θEQ, the joint’s

equilibrium angle:

θEQ = −1802Load + πRJRS(α− β)[180b + aπRS(α + β)]
2πR2

J [180b + aπRS(α + β)]
(13)

Note that the equation for joint stiffness (Equation 11) is independent of external torques

because it is assumed that the externally applied torque does not vary with θ, and therefore,

dT
dθ does not include any term containing Load.

We can solve Equations 11 and 13 for α and β so that θEQ and S are controllable by

simply setting appropriate servo angles. The equations for the servo angles are:

α = −90(bπR2
J + 90S)

aπ2RSR2
J

− RJ

RS

(
θEQ − Load

S

)
for S ∈ {S < 0} (14)

β = −90(bπR2
J + 90S)

aπ2RSR2
J

+
RJ

RS

(
θEQ − Load

S

)
for S ∈ {S < 0} (15)

To summarize, by using nonlinear (quadratic) springs, the equilibrium angle and stiffness

of the mechanical joint can be linearly and independently controlled, provided that the two

actuation cables for each joint always remain in tension (i.e., −α ≤ θ ≤ β).
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Roller Profile

Ball Bearing Roller

Roller Guide

Figure 6: Quadratic spring device implemented using elastically coupled bearings that roll
on a nonlinear profile.

2.3 Nonlinear Springs

The implementation of a device that could provide the desired quadratic force-length rela-

tionship proved to be one of the most challenging portions of this research. Several alternate

approaches were considered (Section 2.3.3). The following sections describe the analysis and

implementation of the final design, a device that uses linear springs to produce an overall

quadratic force-length relationship. The procedure used for this design was general enough

that it can be used to implement any continuous force-length relationship.

2.3.1 Mathematical Analysis

A schematic drawing of the nonlinear spring’s design is shown in Figure 6. The primary

concept for this device is that when a stretch of length l is applied to it (that is, the

roller guide is moved relative to the profile a distance l), the springs (one is visible in the

foreground of Figure 6 and one is behind the device) are stretched as a nonlinear function

of l such that the output force of the device is a quadratic function of l.
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Figure 7: Variables used in analysis of spring device.

To begin analysis, a few variables need to be defined. Figure 7 shows an enlarged view

of one of the ball bearing rollers used in the device. F represents half of the total output

force of the device (a second force F is created by the other bearing), S represents the

combined spring force applied to the rollers, N is the normal force of the bearing, φ is the

angle the normal force makes with the vertical axis, and R is the radius of the roller. We

define the independent variable, x, to have an origin at the left-most extreme of the profile,

such that for all calculations x ∈ {x ≥ 0}. g(x) represents the surface of the roller profile on

which the roller moves, and f(x) represents the trajectory of the center of the roller. Using

trigonometry, we can show the following relationships exist:

F = N sinφ (16)

S = N cosφ (17)

F

S
= tanφ =

dg(y)
dy

∣∣
y=x+R sin φ

(18)

f(x) = g(y)
∣∣
y=x+R sin φ

+ R cosφ (19)

By definition, the force F acting on each roller is one half of the force exerted by the

entire device. Thus F is one half of the overall desired force-length relationship of the
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device:

F =
ax2 + c

2
(20)

The spring force, S, is defined as the sum of the forces exerted by both springs:

S = 4k[f(x)− L0] + PL (21)

where k is the linear spring constant, L0 is the resting length of the spring, and the spring

pre-load, PL, is the amount of force that must be applied to the spring for the coils to begin

separating from each other. The factor of four in this equation results from two springs

each being stretched on both ends (i.e., both rollers are moving along trajectories of f(x)

causing the springs to actually be stretched to a length 2f(x) at any given x.

The overall objective of the following derivation is to determine g(x), the function of

the roller profile’s surface. To begin, we note that:

F

S
= tan(φ) =

dg(x + R sin(φ))
dx

(22)

Substituting in expressions for F and S,

ax2+c
2

PL + 4k[f(x)− L0]
=

dg(x + R sin(φ))
dx

(23)

ax2+c
2

PL + 4k[g(x + R sin(φ)) + R cos(φ)− L0]
=

dg(x + R sin(φ))
dx

(24)

In the following series of equations, the independent variable y is used, which is a simple

trigonometric transformation of the independent variable x, such that y = x + R sin(φ).

a(y−R sin(φ))2+c
2

PL + 4k[g(y) + R cos(φ)− L0]
=

dg(y)
dy

(25)

Using Equation 18, we can derive two useful identities:

sin(φ) =
dg(y)

dy√
1 +

(
dg(y)

dy

)2
(26)

cos(φ) =
1√

1 +
(

dg(y)
dy

)2
(27)
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Substituting these identities into Equation 25 and rearranging we obtain the final equation

for g(y):

(
dg(y)
dy

)2 (
PL

4k

)
+

dg(y)
dy


g(y) + R




1√
1 +

(
dg(y)

dy

)2


−NL


−

a

8k


y −R




dg(y)
dy√

1 +
(

dg(y)
dy

)2







2

− c

8k
= 0 (28)

Because we were not able to find an analytical solution to this complicated differential

equation, we opted to compute a numerical solution using Mathematica 4.1 (Wolfram Re-

search, Inc., Champaign, IL). The blue trace in Figure 8 shows the numerical solution for

g(y). Also shown for comparison is f(x), the desired trajectory of the ball bearing roller, as

the red trace. To provide a solution to Equation 28, we choose linear springs parameters

based on commercially available springs and we choose the device force-length parameters

based on the desired performance of the joint. Table 1 shows all of the parameters used in

the computation of the numerical solution.

Equation 28 is a closed-form equation that defines the trajectory, g(y), of the roller

profile’s surface. It was derived by defining the desired force-length relationship to be that of

Equation 20. However, this design approach generalizes such that F can be any continuous

function. Therefore, the design of this nonlinear spring device can be modified to produce

any arbitrary joint stiffness function (provided that the function is continuous). Generally,

the effect of co-contraction on the joint stiffness function is proportional to the derivative

of the individual springs’ force-length relationship. That is, co-contraction produces no

change in stiffness when linear springs are used; co-contraction produces a linear change

in stiffness when quadratic springs are used. Thus, if we need joint stiffness to be some

continuous function of co-contraction, we simply need to create roller profiles whose surface

trajectories are proportional to the integral of that function.
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Figure 8: Numerical solution of Equation 28 for g(y). Also show is f(x), the desired
trajectory of the ball bearing roller.

Table 1: Parameters used in producing the numerical solution to the differential equation
(Equation 28) describing the curvature of the roller profile.

Parameter Value
k 5.50 N

cm

NL 3.81 cm
PL 2.62 N
R 0.79 cm
a 8.27 N

cm2

c 2.22 N
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Figure 9: Implementation of the quadratic spring device.

2.3.2 Mechanical Implementation

Using this solution, we designed the spring device using AutoCad 2002 (AutoDesk, Inc.,

San Rafael, CA) and manufactured it using a CNC vertical milling machine. The resulting

device (shown in Figure 9) is made primarily with aluminum to reduce the weight of the

device, while providing a higher resistance to deformation than a non-metal such as teflon.

Four press-fit dowel pins held the two roller guides to each other and prevented them from

rotating relative to the profile. Two additional dowel pins were used to hold the rollers and

to provide attachment points for the two linear springs. Screw eyes on the roller profile and

on each of the roller guides provided attachment points for the cables used to stretch the

device.

Figure 10 shows the results of characterizing the force-length relationship of two of

these quadratic springs. Both springs demonstrate strong quadratic behavior (R2 = 0.9997

and R2 = 0.9998). However, some aspects of their performance are not ideal. The ideal

force-length relationship is:

F = (8.27
N

cm2
)x2 + 2.22N (29)
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Figure 10: Force-length relationship of the quadratic spring device.

but the quadratic curve fits to the springs’ data points yield the following best-fit equations:

Spring 1: F = (10.97
N

cm2
)x2 − (1.34

N
cm

)x + 1.73N (30)

Spring 2: F = (10.84
N

cm2
)x2 − (2.82

N
cm

)x + 1.94N (31)

Therefore, the quadratic terms of these equations have a 31.1% and 32.5% error, non-zero

linear elastic terms have been introduced, and the constant offset terms have a 12.0% and

22.0% error. There are two major causes for these non-ideal characteristics—imperfect

machining and load deformations of the roller profile.

During the automated machining of the roller profiles performed by the CNC mill, it was

noted that the cutter feedrate specified was too high, resulting in the aluminum reaching

excessive temperatures and being exposed to excessive forces during the cutting. This

caused the metal to slightly deform during cutting (e.g., expand and bow), which affected

the depth of each cut. Additionally, analysis of the roller profiles after machining revealed

that the high feedrate prevented some of the metal chips from being cleared properly by
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the cutter. This caused some chips to be impacted into the components, resulting in an

increase in the roller profiles’ width and the introduction of small bumps along the path of

the ball bearing rollers. As the profiles’ width increases, the linear springs become more

stretched, and therefore the force-length relationship of the nonlinear spring increases.

The other main source of error is the deformation (compression) of the roller profile when

it is loaded. Because the profile has a large cutout in its center, only two small strips of

aluminum with a 43.5 mm2 cross-sectional area are available to oppose the compressive load

produced by the two linear springs. At maximal deflection, the linear springs apply 93 N

of force primarily to the longer aluminum strip, creating a 2.145 MPa stress. The resultant

displacement is 0.88µm. Although this is a small deflection, we believe it contributes to

the linear term in the springs’ force-length relationship because a previous iteration of

this design, which used a Teflon roller profile, had a calculated deflection of 122.6µm and

produced a linear term of -5.07 N
cm .

The effect of having these imperfections is limited. The quadratic term of the force-

length relationship, a, was arbitrarily chosen to be a reasonable value. While more than

30% error exists in the two springs, the relative values are well matched (that is, they differ

by only 1.1%) and their values are within a reasonable range. The presence of a non-zero

linear term, b, results in a small, constant offset in the joint stiffness (demonstrated as the

second term in Equation 11 and explained in Section 2.2). As with the quadratic term,

absolute error in the constant offset term, c, is unimportant provided there is minimal

relative difference in the values for the two springs. In this case, the relative difference is

only 9.1% so the two terms approximately cancel each other out.

2.3.3 Other Approaches

Before choosing the final design of the nonlinear spring device, other implementation options

were considered. We started by contacting spring manufacturers to discuss the feasibility

of simply ordering coil springs with a custom force-length characteristic. All eight of the

manufacturers we contacted either stated that they were not able to design springs to fit

our requirements or, in one case, attempted to design the spring and ended up producing
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springs that were approximately linear.

When it became clear that we were not able to rely on designs provided by outside

manufacturers, we sought a method of modeling the dynamics of conical springs (i.e., springs

with coils of variable diameter). An attempt was made to find a closed-form equation for

a spring in which the coil diameter followed a specific function (for example, a quadratic

force-length relationship). However, we could not find sufficient information in the literature

to properly model all of the forces in effect. Our next attempt was to design a conical spring

using a piece-wise approach. Twenty segments per coil were used and spring parameters

such as pitch, spring length and wire diameter were found by trial-and-error. In this iterative

process, we varied the radius associated with each coil segment using a cubic function to

produce the desired force-length relationship. Once the coil radii were defined, an increasing

load was applied to the spring and deflection of each segment was examined. Two cases had

to be considered for each segment’s deflection. Because of the conical nature of the spring,

some coil segments could simply be compressed within the next larger coil without contact.

(Note that conical springs are typically designed in this manner so that a fully compressed

spring is flat.) In the other case, the compressed coil segment could be compressed such

that in contacts the next larger coil. This scenario occurred when the radius of one segment

differed by less than the wire diameter from the radius of the segment 3600 away. The coil

profile for the best design that we could produce is shown in Figure 11 and the accompanying

force-length relationship of the design is shown in Figure 12.

The design fits the ideal force-length curve well when the applied load is more than

3.11 N. The problem with this design was one of manufacturability. We were unable to find

a spring manufacturer capable of producing a spring that met our coil radius specifications.

Once we reached this point, we decided that our spring design could not rely on custom

spring manufacturers, and we began work on the design described above that uses readily-

available linear springs to produce the desired force-length relationship.
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2.4 Robotic Joint

This section describes the manufacturing of a single DOF robotic device that emulates a

single, antagonistically controlled, rotational joint. The mechanical schematic for the device

is shown in Figure 2. Our implementation of the actual device followed the schematic

closely. A polycarbonate and stainless steel structure was built to hold in place the shaft

of the rotating aluminum bar (the joint) and two servos capable of producing 1.27 Nm of

stall torque (Model HS-5945MG, Hitec, Inc., Poway, CA). The servo horn of each servo was

attached to the joint’s shaft via the nonlinear springs described in Section 2.3. Connections

to the springs were made using 1.14 mm diameter steel cable to prevent any significant

contribution to the elasticity of the nonlinear spring. Joint angle was measured using an

optical angle encoder (Model E2, US Digital Corp., Vancouver, WA). The completed device

is shown in Figure 13.

2.5 Conclusions

We have designed and constructed a servo-controlled mechanical system that emulates the

equilibrium point and stiffness control of a rotational joint using antagonistic control of

movement. Series elastic actuation was implemented using nonlinear springs. It was shown

that the use of springs with a quadratic force-length relationship provide an advantage over

the use of linear springs because they provide a means of varying joint stiffness. Equations

were derived that specify the angles required by the two servos to independently control

joint equilibrium angle and stiffness.

A detailed process was developed for designing spring-like devices that can produce

any smooth force-length function. These devices produce the desired force-length function

by stretching linear springs in a nonlinear manner. Thus, by controlling the linear spring

stretch function versus device lengthening, we can directly specify any smooth function.
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Figure 13: The single degree of freedom device with antagonistic, series-elastic actuation.
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CHAPTER III

SYSTEM CONTROL

This chapter focuses on the systems that were used to generate control signals for the robot.

An overview of the electrical hardware is given, followed by explanations of how the control

model presented in Chapter 2 was implemented. The chapter concludes with a description

of the testing setup that was used to collect data.

3.1 Overview

The major goal of this research was to design and produce a system that could receive

joint equilibrium angle and joint stiffness trajectories and could use this information to

appropriately control a robot’s servos using pulse-width modulated (PWM) signals. Because

servos must be controlled with digital signals, a digital control architecture was chosen.

3.2 Field Programmable Gate Arrays

We choose to use a field-programmable gate array (FPGA) as the controller of the robotic

system. An FPGA is an integrated circuit that contains huge arrays of digital gates that

can be programmed to create a wide variety of digital circuits. When designing a circuit for

the FPGA to implement, the user commonly only considers higher-level components such

as a signal inverter rather than two interconnected transistors.

In the same manner, an FPGA’s gates can be arranged to form a fully functional mi-

croprocessor, if desired. However, a major advantage of FPGA’s is that they are not reliant

on a processor to synchronize events. Rather, completely-parallel circuits can be designed

whose computational speed is not reliant on the number of individual sub-circuits.

FPGA’s are quickly reprogrammable using software tools such as MATLAB’s Simulink

(The Mathworks, Inc., Natick, MA) and do not require the user to have a mastery of low-

level digital circuit design. FPGAs are currently available with more than 10M gates and
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can be run at over clock speeds of more than 67MHz. Thus, these devices were able to

provide more than enough size and speed to perform the necessary calculations for this

project.

In selecting which type of digital system to use as a controller, we considered physical

device size, computational speed, degree of parallelism, and design flexibility. A number of

possible solutions were ruled out using these criteria:

• Computers - physically large, degree of parallelism limited by number of processors.

• DSP processors - lack parallelism.

• ASICs (application-specific integrated circuits) - one design takes several weeks to be

fabricated and tested and, once manufactured, these devices cannot be reconfigured.

Because an FPGA is an integrated circuit, a support board is required to provide power,

clock signals, all input/output, etc. We choose to use the Xtreme DSP Development Kit

(Nallatech Ltd., Orlando, FL) for this purpose. This kit features one XC2V2000-4FG676

FPGA (Xilinx, Inc., San Jose, CA), two 14-bit ADC channels, two 14-bit DAC channels,

two digital I/O bits, and 0.5MB of ZBT-SSRAM. A photograph of the kit is shown in

Figure 14.

3.3 Equilibrium Point Control Model

As mentioned in Section 3.2, a major feature of FPGA’s is their ability to be quickly

reprogrammed. Typically, models are designed using VHDL code, which is a hardware

description language that specifies which digital components should be instantiated on the

FPGA and how the components should be interconnected. Xilinx offers an additional

method of programming their devices. Rather than write code to specify the design, the

user can create schematics in MATLAB’s Simulink using a Xilinx toolbox named System

Generator in which each block in the drawing corresponds to a user-level digital component

on the FPGA. A simple example of a schematic that outputs the scaled version of the sum

of two analog input signals is shown in Figure 15.

27



Figure 14: The Xtreme DSP Development Kit, an FPGA-based controller used for the
system.

Figure 15: A simple Simulink model that outputs a scaled version of the sum of two input
signals. Using the System Generator tool, the model can be compiled and implemented on
a Xilinx FPGA.

28



Equations 14 and 15 give expressions for the servo angles, α and β, that must be set to

yield an appropriate equilibrium joint angle and stiffness for a given external load. Thus,

the role of the controller can be reduced to receiving the three input signals (θ, S, and

Load), performing the calculations in Equations 14 and 15, and producing PWM output

signals specifying α and β. Because of the limitation of only having two ADC’s on the

FPGA board, Load was specified as a parameter for each experiment, while θ and S were

analog input signals. To simplify the calculations that needed to be performed on the

FPGA, Equations 14 and 15 were rearranged and constant parameters were grouped into

coefficients of the resulting polynomial. This is shown in Equations 32 and 33.

α = −

ε1︷ ︸︸ ︷(
RJ

RS

)(
θ − Load

S

)
−

ε2︷ ︸︸ ︷(
902

aπ2RSR2
J

)
S −

ε3︷ ︸︸ ︷(
90b

aπRS

)
(32)

β =
(

RJ

RS

)

︸ ︷︷ ︸
ε1

(
θ − Load

S

)
−

(
902

aπ2RSR2
J

)

︸ ︷︷ ︸
ε2

S −
(

90b

aπRS

)

︸ ︷︷ ︸
ε3

(33)

It can be seen that ε1, ε2, and ε3 are derived solely from mechanical and mathematical

constants. Therefore, these three coefficients were calculated a priori leaving simpler ex-

pressions for the FPGA to compute. Figure 16 shows a Simulink schematic that computes

the expressions for α and β using ε1, ε2, ε3, and Load as constants and θ and S as analog

input signals.

While this circuit performs the computations necessary to determine the appropriate

servo angles, other support circuitry must also be implemented on the FPGA so that the

input and output signals are formatted properly for interfacing with external devices. For

example, the signals sampled by the ADCs must be scaled so that their signal levels are

in an appropriate range for use in calculations. Also, because servos require PWM control

signals, extra circuitry must be added to convert α and β from DC signals to PWM signals

before they are output through the DACs.
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Figure 16: A Simulink model that computes the expressions for α and β.
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Figure 17: PWM conversion takes place by comparing the DC input signal to a repeating
ramp signal. Whenever the ramp signal is lower in value, the output of the comparator
goes high.

3.3.1 PWM Signal Generation

To convert DC output signals into PWM output signals a comparator circuit was designed

to compare the DC signal with a repeating ramp signal. A comparator has a high output

level when the non-inverting input terminal has a greater voltage applied to it than the

negative input terminal. Figure 17 shows the general setup of the circuit. Note that the

input signal is applied to the non-inverting input terminal. Therefore, as the input signal

level increases, the width of the positive pulse produced by the comparator increases. This

is shown in Figure 18.

To control the properties of the PWM signal, the ramp signal had to be carefully de-

signed. The servos require a 5.0 V, 50 Hz PWM signal. There is a one-to-one relationship

between the pulse width of the PWM signal they receive and the angles they produce. A

0.9ms pulse corresponds to −90o, a 1.5 ms pulse corresponds to −0o, and a 2.1 ms pulse

corresponds to 90o.

We set the clock frequency of the FPGA to 65.0MHz. To produce a PWM waveform

with a frequency of 50Hz, the ramp signal’s period was set to 1.30x106 clock cycles. To

produce the appropriate pulse width, the ramp signal was specified such that, for each

period of the PWM signal, the servo input signal is greater than the ramp signal for at least

0.9ms (for a servo angle of −90o) and no more than 2.1ms (for a servo angle of 90o). As
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Figure 18: The effect of varying input signal value on the width of the PWM pulses.

shown in (Figure 19), this was accomplished by creating a ramp signal that varied between

1,202,500 and -97,500. To allow a comparison of the input and ramp signals, the ramp

signal was then scaled by a factor of 90
39,000 to produce a ramp signal that varied between

2775 and -225. Because the input signal was always between −90o and 90o, the PWM pulse

width was always between 0.9ms (Point C) and 2.1ms (Point A).

In digital hardware this design was implemented using a counter, a scaling element,

and two relational elements. The free-running counter began at 1,202,500 and decremented

by one for each clock cycle. When the counter reached -97,500, a relational element was

triggered to reset the counter back to 1,202,500. The value of the counter was fed through

a scaling element that multiplied the counter value by 90
39,000 to place it in the appropriate

range. Finally, the relational operators compared the DC servo angle signals to the ramp

signal and produced PWM signals for α and β. The Simulink model used for this sub-circuit

is shown in Figure 20.

3.3.2 Complete Model

The final model implemented on the FPGA to control the system is shown in Figure 21.

Note that calibration blocks for the two ADC’s have been added and that the appearance
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Figure 19: Expanded view of how scaling and shifting of the ramp signal was done to
produce the desired PWM waveform. Note that the values for the ramp signal value are
given in both scaled and unscaled (in parentheses) units.
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Figure 20: A Simulink model that converts DC servo angle signals into PWM signals
appropriate for controlling servos.

has been simplified by grouping the many of the components shown in Figures 16 and 20

into subsystems named ‘Calc Angles’ and ‘Ramp Signal Generator’, respectively.

3.4 Testing Setup

To perform automated testing on the completed system, we used a dSpace controller board

(dSpace, Inc, Novi, MI) to provide trajectories for joint equilibrium angle and stiffness

while recording the actual joint angle. dSpace models were also designed using MATLAB’s

Simulink; the design used is shown in Figure 22. This model allows the user to select either

a constant or a sinusoidal input signal using the switches. The signals are then formatted to

be in an appropriate range for the DAC’s and output to the FPGA. Additionally, the joint

angle measured by the optical encoder on the robotic device is recorded. The full wiring

schematic of the system, including the dSpace controller board and a simple interface circuit

board is shown in Figure 23. Note that the interface circuit board is only used to organize

wiring cables, route signals appropriately, and increase the capacitance of the +6V power

supply. The board has no active devices and performs no calculations. Figure 24 shows the

complete experimental setup including the robotic device and all testing equipment.
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Figure 21: The Simulink model implemented on the FPGA to control the system. The
‘Calc Angles’ subsystem contains the model shown in Figure 16 and the ‘Ramp Signal
Generator’ subsystem contains the model shown in Figure 20.
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Figure 22: The dSpace model used to perform automated testing of the system.
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Figure 23: The electrical connectivity used for testing the final system, including the
dSpace automated testing board.

Figure 24: The complete experimental setup including the robotic device and all testing
equipment.
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3.5 Conclusions

We have implemented the control model for this architecture using an FPGA. This high-

speed, digital device provides a means to compute the joint control equations in paral-

lel. The model was programmed using a MATLAB toolbox named System Generator, in

which high-level blocks (such as multipliers, ADC’s and DAC’s) were assembled as a wiring

schematic. The model had two inputs—joint equilibrium angle and joint stiffness—and had

two outputs—the two servo angles, α and β. Because servos must be driven with PWM

signals, the output stage of the model contained DC signal to PWM signal converters. The

entire architecture was tested using a dSpace computer interface board, which output joint

equilibrium angle and joint stiffness signals to the FPGA and recorded the joint angle signal

for analysis.
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CHAPTER IV

IMPLEMENTATION OF JOINT CONTROL

This final chapter presents the results obtained from experiments with the robot. Valida-

tion of the theoretical model and its implementation in electrical and physical hardware is

demonstrated using static and dynamic tests. We conclude with a brief discussion of the

applications of this approach to robotic joint control.

4.1 Results and Validation of the Implementation

The primary goal of this research was to develop a robotic joint whose equilibrium angle

and stiffness could be independently controlled. This was implemented by actuating a joint

with a single, rotational degree of freedom with two strong servos that antagonistically

pulled on the joint via nonlinear springs. The following subsections describe the series of

experiments that were performed which validate the success of this approach. Throughout

this discussion, the following variables are used:

• θc represents the commanded (desired) joint angle

• θm represents the measured joint angle

• Sc represents the commanded (desired) joint stiffness

• Sm represents the measured joint stiffness

4.1.1 Accuracy of Joint Actuation

The first test performed was an analysis of the accuracy with which the joint could be

actuated. This was done by setting θc = 0o and measuring θm when Sc was set to a series of

values between −0.010 mNm
deg and −0.700 mNm

deg . Ten trials were performed for each stiffness

value. For each trial, the joint was randomly perturbed and allowed five seconds to settle
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Figure 25: The accuracy with which the joint is actuated given a variety of stiffness values.
Ten trials were performed for each stiffness value. For each trial, the joint was randomly
perturbed and allowed five seconds to settle on its final value (settling actually only took
approximately three seconds). Standard deviation for each stiffness level is shown as red
error bars. It can be seen that as stiffness increases, the accuracy of the actuation also
increases.

on its final value (settling actually only took approximately three seconds). The results of

this experiment are shown in Figure 25.

This plot shows that the mean θm obtained for each stiffness ranges between −4.55o

and 3.85o. The standard deviation of θm was 2.37o for low-magnitude stiffness values

(|Sc| < 0.176 mNm
deg ), but was reduced to 1.20o for high-magnitude stiffness values. To

determine the source of the errors, we performed a high-resolution test to determine if the

variability was due to the presence of high-frequency noise. The test was performed for

−0.5mNm
deg < Sc < −0.4mNm

deg . The resulting data is shown in Figure 26, and the Fourier

transform of the data is shown in Figure 27. The data demonstrates that high-frequency

noise does not contribute significantly to the error. Rather, the primary source of variability

is the 18 deg
mNm frequency component, which corresponds to the large peaks in Figure 26
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Figure 26: A high-resolution recording of measurement variability. As with the previous
experiment, ten trials were performed for each stiffness value and settling was allowed to
occur before recordings were taken. Standard deviation for each stiffness level is shown as
red error bars.

that have a 0.055 mNm
deg period.

The actuation variability can be explained for both the low and high magnitude stiffness

regions. When stiffness is small in magnitude, the antagonistic forces used to drive the joint

to θc are low enough that frictional forces and the bumps on the roller profile (created during

its machining) can significantly hinder the joint from reaching θc. When stiffness increases

in magnitude, the driving forces are able to overcome frictional forces, and thus reduce

trial-to-trial variability. However, the joint still misses θc by a few degrees because the

bumps create local energy minima that consistently attract the rollers to rest in certain

positions. The effects of individual bumps can be seen as the large-magnitude changes in

θm that occur throughout Figures 25 and 26. Note that a bump on one spring causes a

positive deflection in θm, while a bump on the other spring causes a negative deflection;

both positive and negative deflections can be seen in these Figures. We expect that a higher
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Figure 27: Frequency analysis of the data from Figure 26 showing that the primary
frequency component of the error in the joint actuation is 18 deg

mNm .
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Figure 28: The independence of joint equilibrium angle over a full range of stiffnesses. In
this plot, each trace represents represents one value of θc.

precision machining of the roller profiles would largely remove the bumps and thus reduce

the variability in θc.

4.1.2 Independence of Joint Equilibrium Angle and Joint Stiffness

To demonstrate that the joint’s equilibrium angle can be specified independent of the joint’s

stiffness, an experiment was performed in which θm was measured while θc and Sc were

swept from −75o through 75o and from −0.011 mNm
deg through −0.807 mNm

deg , respectively.

The results are shown in Figure 28.

Each trace in this figure represents one value of θc. Ideally, each trace would be per-

fectly flat, demonstrating that variations in stiffness have no effect on joint angle. In the

experiment, variability is seen in the same range as the variability inherent in the system

(θm was always within 3.0o of θc and the standard deviation of θm was 1.25o).

The next step was to verify that the stiffness of the joint was controllable and that SC

and Sm were well correlated. Because stiffness is defined as the joint’s resistance to angular
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Figure 29: Variations in joint stiffness produced at a given joint equilibrium angle. Exter-
nal torques were applied to the joint until a set joint angle was achieved. The corresponding
angle-torque pairs were then plotted as the circles. The traces represent a linear regression
through each set of points. The R2 value for each regression is shown in the legend. Note
that as Sc increases, the slope of the torque-angle line (Sm) also increases in magnitude.

displacement, or dT
dθ , we obtained values for Sm by measuring the static torque that needed

to be applied to the joint to produce a series of θm values within ±60o of θc. Figure 29

shows the data collected for five equally spaced joint stiffnesses when θc = 0o.

To avoid the large effects of frictional forces and to prevent the actuating cables from

going slack, the minimum value for Sc was set to −0.277 mNm
deg . It can be seen that for any

of the five values of Sc, the relationship between measured joint torque and θm is linear.

The mean correlation coefficient for the linear fits was 0.994. Moreover, as Sc increases,

the slope of the torque-angle line (Sm) also increases in magnitude. To demonstrate that

this behavior was independent of θc, this experiment was repeated for θc = ±45o. The

torque-angle lines for each of these experiments are shown in Figure 30.

Figure 31 correlates Sc and Sm by plotting the slopes from Figure 30 versus Sc. Er-

ror bars for this plot were determined by performing a Monte Carlo simulation with the
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Figure 31: The relationship between commanded and measured joint stiffness showing
a high correlation (R2 = 0.9998) between the ideal curve and the actual stiffness values
achieved. Error bars for this plot were determined by performing a Monte Carlo simulation
with the error statistics taken from Section 4.1.1.

error statistics taken from Section 4.1.1. The black trace in this figure corresponds to the

linear regression through these points and therefore defines the relationship between the

commanded joint stiffness, Sc, and the actual measured joint stiffness, Sm. The equation

for this relationship is:

Sm = 0.89Sc − 0.06
mNm
deg

(34)

The red trace corresponds to the ideal Sc vs. Sm relationship. The similarity of the

black and red traces verifies that the stiffness of the joint was controllable independent of

θc and that SC and Sm were well correlated. In fact, the data points fit the ideal trace with

a correlation coefficient of 0.998.

The range of stiffness achievable by the joint corresponds well to the range produced in

the human knee when scaled by the difference in inertia. Human knee stiffness has been

shown to range from 0.700 mNm
deg to 2.09 mNm

deg and lower leg inertia has been estimated to be
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0.437 kg m2 [23], [19]. The inertia of the robotic limb was calculated to be 1.87x10−4 kg m2,

which produces a scaling factor of 2337. When the stiffness values produced by the robotic

joint were scaled by this factor, the resulting stiffness values ranged between 0.467 mNm
deg

and 1.869 mNm
deg . Therefore, biologically achievable stiffness values overlap significantly with

those achievable with the robotic device.

4.1.3 Compensation for Applied Loads

In the experiments performed up to this point, no loads were externally applied, and there-

fore the Load parameter of the control algorithm was set to 0.0 mNm
deg . All external torques

used to characterize the joint’s stiffness were assumed to be perturbations. However, in the

normal use of a robotic joint, forces are applied for which compensation must be applied to

maintain the desired joint equilibrium angle and stiffness. In this experiment, the effect of

a non-zero external torque on θm is measured with and without appropriate compensation.

In the first part of the experiment, θc = 0o and Load = 0.00 mNm
deg . An external torque

equal to either −11.3 mNm
deg , −22.6 mNm

deg , or −33.9 mNm
deg was then physically applied to the

joint and θm was recorded for range of stiffness values. This data is displayed in Figure 32

as the bottom three traces. These traces show that when no compensation is used by the

control algorithm, the joint’s equilibrium angle deviates significantly from its target angle

of 0o.

The top three traces show the same experiment when compensation was applied by

setting the variable Load equal to the value of the external torque. For large magnitude

stiffnesses (Sc < −0.28mNm
deg ), the compensation brings the mean joint angle to −0.66o with

a standard deviation of 0.93o. Note that the compensated traces increase in value for

Sc > −0.28mNm
deg . This occurs because one of the actuation cables had gone slack. In other

words, θ had left its operating region, which was defined in Section 2.2 to be:

−α ≤ θ ≤ β (35)

The gradual increase in value of the bottom three traces as Sc increases in magnitude

occurs because the uncompensated external torque caused joint angle and joint stiffness

signals to lose their uniqueness. A detailed explanation of this effect was given in Section

47



−0.55 −0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15
−120

−100

−80

−60

−40

−20

0

20

40

60

Applied Joint Stiffness (mNm/deg)

M
ea

su
re

d 
Jo

in
t A

ng
le

 (
de

g)

Load Compensation

Load = −11.3 mNm/deg − Without Compensation
Load = −22.6 mNm/deg − Without Compensation
Load = −33.9 mNm/deg − Without Compensation
Load = −11.3 mNm/deg − With Compensation
Load = −22.6 mNm/deg − With Compensation
Load = −33.9 mNm/deg − With Compensation

Cable Slack Region      

Operating Region      

Figure 32: Compensation for an externally applied joint torque. The bottom three traces
occurred when the algorithm did not expect an external load to be applied. The bottom
three traces occurred when the proper compensation was used for each of the external loads.
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1.2.1. To summarize, when an external torque is applied to a joint without compensation,

any increase in stiffness magnitude (i.e., co-contraction) causes the joint’s equilibrium angle

(shown as EP1 and EP2 in Figure 1) to move nearer its target angle. This behavior only

occurs because compensation was not applied; it does not play a factor once Load is specified

properly.

4.2 Conclusions

We have tested this architecture’s static performance to validate its mechanical design.

First, we showed that joint angle actuation was accurate (the standard deviation was 1.20o),

provided the stiffness magnitude was at least 0.176mNm
deg . The error that was produced was

primarily due to imperfections in the machining of the nonlinear spring components. Next,

we demonstrated that varying stiffness does not significantly affect the equilibrium joint

angle. For all eleven angles tested the deviation over the entire range of stiffnesses was

less than ±3.0o. Stiffness independence was demonstrated by measuring the deviation in

joint stiffness that occurred as joint equilibrium angle was varied. The maximum stiffness

deviation that occurred in this experiment was 0.041mNm
deg . Stiffness actuation accuracy was

then demonstrated by plotting the recorded joint stiffnesses versus the commanded joint

stiffnesses. A correlation coefficient of 0.998 was achieved between the data points and the

ideal linear trace. Finally, the ability of the system to compensate for externally applied

torques was demonstrated by verifying that a target angle could be consistently reached

despite the presence of the external torques, provided that the control algorithm received

the values of the external torques as input.

4.3 Contribution of this Architecture to Robot Control

The major contribution of this work was the design, implementation, and validation of a

robotic joint with independent control of equilibrium angle and stiffness. The control scheme

was devised to emulate the λ-version of the Equilibrium Point Hypothesis of animal motor

control in an attempt to produce a robotic system with biologically realistic joint dynamics.

Control of the actuating servos was provided by an FPGA, which received desired joint
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angle and stiffness as inputs and produced PWM signals needed to control the actuating

servos as outputs. The system was validated by demonstrating:

• the independence of joint equilibrium angle and stiffness

• the high correlation of between commanded and measured values of joint equilibrium

angle and joint stiffness

• the ability of the control scheme to compensate for applied loads

Because many existing robotic systems currently use servos to actuate their joints, this

architecture may be applied without major redesigns. Each joint would need to have two

dedicated servos connected to it via a series connection of non-elastic cables and quadratic

springs.

While this version of the architecture proved to be successful, there exist variations that

can improve the its overall performance. Because the bumps on the nonlinear springs pre-

sented complications during testing, we believe that careful re-machining of these parts may

produce devices with improved performance. Furthermore, this particular implementation

of quadratic springs may be replaced with any implementation that reliably produces a

quadratic force-length relationship. (For example, we considered, but have not yet imple-

mented, a design that involves cams attached to both servos and to the joint, which are

connected via a series connection of cables and linear springs.) By offering flexibility in

the mechanical implementation, and a straightforward control algorithm, this architecture

provides the basis for a biologically inspired method of controlling robotic joints.

4.4 Future Direction

This work was the first step in applying the principles of the Equilibrium Point Hypothesis

to robotic joint control. There are still limitations of the architecture in its current form that

must be addressed before it can be applied to dynamic systems. For example, damping was

not used in the current system because all test were performed at steady-state. However,

dynamic testing requires that damping to avoid inappropriate joint oscillations. Once it is

included, we can perform several experiments, including those that follow.
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Pointing Recreate the trajectories for equilibrium angle and stiffness that have been em-

pirically determined from human experiments.

Postural Stability Analyze the effect of joint stiffness on postural stability during per-

turbations from the environment.

Dynamic Perturbation Analyze the effect of environmental perturbations on the stabil-

ity of a rhythmically moving joint, such as a leg being controlled by a neural central

pattern generator.

The next step will be to apply this architecture to a multi-joint limb. This will introduce

more complexity and more rich dynamics. Of primary interest will be the modeling and

performance of multi-articular muscles. There will also be issues concerning the dynamics

of the limb’s end-point versus the dynamics of each individual joint. While these consider-

ations will significantly complicate robot control, our solutions may also bring us closer to

understanding the solutions biology has found.
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[15] Ortega, R., Spong, M. and Gómez-Estern, F., “Stabilization of underactuated
mechanical systems via interconnection and damping assignment,” IEEE Trans. Aut.
Control, vol. 47, no. 8, pp. 1281–1233, 2002.

[16] Pratt, G.A. and Williamson, M.M., “Series elastic actuators,” Proceedings of
IROS, 1994. Pittsburg, PA.

[17] Pratt, J.E. and Pratt, G.A., “Exploiting natural dynamics in the control of a 3d
bipedal walking simulation,” Proceedings of the International Conference on Climbing
and Walking Robots (CLAWAR99), 1999. Portsmouth, UK.

[18] Raibert, M.H., Legged Robots the Balance. MIT Press Cambridge, MA, 1986.

[19] Tai, C. and Robinson, C.J., “Variation of human knee stiffness with angular pertu-
bation intensity,” Proceedings of IEEE Engineering in Medicine & Biology 17th Annual
Conference and 21st Can. Med. & Biol. Eng. Conference (CD-ROM, 2 pages), 1995.
Montreal.

[20] Tresilian, J.R., “Retaining the equilibrium-point hypothesis as an abstract descrip-
tion of the neuromuscular system,” Motor Control, vol. 3, pp. 67–89, 1999.

[21] Weidemann, H-J, Pfeiffer, F. and Eltze, J., “A design concept for legged robots
derived from the walking stick insect,” Proceedings of the 1993, International Confer-
ence on Intelligent Robots and Systems, pp. 545–550, 1993.

[22] Wisse, M., Schwab, A.L. and Linde, R.Q., “A 3d passive dynamic biped with yaw
and roll compensation,” Robotica, vol. 19, pp. 275–284, 2001.

[23] Zhang, L., Nuber, G., Butler, J., Bowen, M. and Rymer, W.Z., “In vivo
human knee joint dynamic properties as functions of muscle contraction and joint
position,” Journal of Biomechanics, vol. 31, pp. 71–76, 1998.

53


