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SUMMARY

Humans are experts at understanding what they see.  Similarity and analogy play 

a significant role in making sense of the visual world by forming analogies to similar 

images encountered previously.  Yet, while these acts of visual reasoning may be 

commonplace, the processes of visual analogy are not yet well understood. 

In this dissertation, I investigate the utility of representing visual information in a 

fractal manner for computing visual similarity and analogy.  In particular, I develop a 

computational technique of fractal reasoning for addressing problems of visual similarity 

and novelty. I illustrate the effectiveness of fractal reasoning on problems of visual 

similarity and analogy on the Raven’s Progressive Matrices and Miller’s Analogies tests 

of intelligence, problems of visual novelty and oddity on the Odd One Out test of 

intelligence, and problems of visual similarity and oddity on the Dehaene test of core 

geometric reasoning.  I show that the performance of my computational model on these 

various tests is comparable to human performance.  

Fractal reasoning provides a new method for computing answers to such 

problems.  Specifically, I show that the choice of the level of abstraction of problem 

representation determines the degree to which an answer may be regarded as confident, 

and that that choice of abstraction may be controlled automatically by the algorithm as a 

means of seeking that confident answer.  This emergence of ambiguity and its remedy via 

problem re-representation is afforded by the fractal representation.  I also show how 

reasoning over sparse data (at coarse levels of abstraction) or homogeneous data (at finest  

xxvii



levels of abstraction) could both drive the automatic exclusion of certain levels of 

abstraction, as well as provide a signal to shift the analogical reasoning from 

consideration of simple analogies (such as analogies between pairs of objects) to more 

complex analogies (such as analogies among triplets, or larger groups of objects).  

My dissertation also explores fractal reasoning in perception, including both 

biologically-inspired imprinting and bistable perception.  In particular, it provides a 

computational explanation of bistable perception in the famous Necker cube problem that 

is directly tied to the process of determining a confident interpretation via re-

representation. 

Thus, my research makes two primary contributions to AI theories of visual 

similarity and analogy.  The first contribution is the Extended Analogy By Recall (ABR*) 

algorithm, the computational technique for visual reasoning that automatically adjusts 

fractal representations to an appropriate level of abstraction. The second contribution is 

the fractal representation itself, a knowledge representation that add the notion of self-

similarity and re-representation to analogy making.  
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CHAPTER 1

INTRODUCTION

 We humans are expert at visual reasoning.  We constantly receive a complex 

visual world, and interpret it: faces and figures, diagrams and paintings, landscapes and 

abstracts, all yield to our superimposed understanding.  In the scenes we see, we 

recognize familiar objects, we notice novelty, and we are reminded of prior experiences.  

Yet, while the act of visual reasoning may be commonplace, how it is accomplished is 

unclear. 

 Though it is thoroughly influenced by prior research into human visual reasoning, 

the goal of my research and this dissertation is to develop a computational model of 

visual reasoning, and not a cognitive model per se.  The model I propose herein is based 

on representing the received world in a fractal manner. Using this new representational 

lens, I illustrate the power and expressivity of the model in addressing problems of visual 

similarity and novelty.

 In this introductory chapter, I begin with a few remarks concerning the inspiration 

I’ve taken from human visual reasoning, in particular familiarity, novelty, analogy, and 

abstraction. From there, I develop the problem statement, the research question, and what 

it is to construct a represented world.  I note the several challenges to undertaking this 

work, and discuss the way in which I limit the scope.  Next, I present the dissertation’s 

thesis, and three hypotheses that it addresses.  Finally, my work makes several significant 

contributions to science, and I conclude this introductory chapter with them, as a 

preamble for their further detailed discussion in the subsequent chapters. 
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The Inspiration of Human Visual Reasoning

 My research has been significantly inspired by prior research into the way in 

which we reason about the visual world. In this section, I situate my research in the 

context of those sources of inspiration.  

Novelty and Abstraction

 Among the variety of processes, there are two aspects of human visual reasoning 

that seem especially powerful.  These are the ability to notice novelty, and the ability to 

shift to an appropriate level of abstraction.

Novelty and Familiarity

 Novelty and familiarity are related and intertwined (Sokolov, 1963): one might be 

very familiar with some visual object, yet may not consider it to be novel unless one 

encounters that object at time when least expected.  As may be seen in Figure 1.1, novelty  

implies a context in which the visual signal is to be appraised; familiarity does not 

necessarily suggest this.  Indeed, one may be entirely familiar, as an example, with what 

an apple looks like, but that apple would be unremarkable and lack novelty without some 

context.
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 Figure 1.1.  Novelty in Context.

 In psychology, the phenomena of the orienting reflex (Sokolov, 1963) suggests 

that when stimuli are presented consistently, we (and all mammals) will turn or orient 

ourselves in the direction of a newly arriving distinct stimulus (Kishiyama & Yonelinas, 

2003).  Gradually, if the novel stimulus remains, we become habituated to it - it has 

become familiar.   This habituation to stimuli is in a sense an outcome of a consistent 

perceptual state (Barsalou, 1999).

Perception and Memory

 Perception and memory are connected via novelty as well.  Several studies 

indicate that we recall novel events more readily than non-novel events (Hunt, 1995; 

Wallace, 1965), a phenomena known as the von Restorff effect (Von Restorff, 1933, as 

cited in Hunt, 1995).  Hunt (1995) uses the term distinctiveness as a descriptive term to 

denote the perceptual saliency (or novelty) of events which violate the prevailing context, 

and argues that the novelty demands or attracts additional processing, perhaps through the 
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mechanism of selective attention. This then causes further processing and elaboration, 

and the novel event is encoded into memory with the additional elaboration, which 

facilitates retrieval (Hunt, 1995).  

 Kishiyama and Yonelinas (2003) counter proposed, through their familiarity/

novelty hypothesis, that it is familiarity, and not recollection per se, that is sensitive to 

novelty.  Their studies suggested that novelty affects both recollection and familiarity, but  

that recollection only exhibited the von Restorff effect if the stimulus was intentionally 

encoded, whereas familiarity exhibited the von Restorff effect when the stimulus was 

encoded intentionally or incidentally.  Thus, Kishiyama and Yonelinas (2003) appeared to 

show that there may be two partially distinct responses to novelty, as measured by 

recollection.  The key in their distinction, however, lay in the nature of the encoding of 

the stimulus.

Analogy and Representation

 Our experiences provide a rich and ever changing context in which to situate, to 

compare, and to remember the in-falling visual world.   This visual input may be novel, 

or it may be the same as our just-prior experience (and we would be habituated to it).  

This textural lexicon is the structure unto which is lain the newly arriving world for 

judgment.  

 It is in this contextualization of novelty that I find the bridge to that which 

Hofstadter views as the central core of cognition, the ability to make analogies 

(Hofstadter, 2001).  Something regarded as familiar (or rather, similar, or analogous) 

must agree, in some sufficient number of aspects or ways or degrees, to that expectant 

tapestry of experience. For something to be novel, though, one need only note a single 

aspect or way or degree that doesn’t match.  

4



 In either case, it is that the something can regarded as either familiar or novel only 

when it is compared against some expectation, and that expectation comes from our 

experiences. Holyoak and Hummel (2001), in their description of the consensus of 

component processes involved in analogical thinking, specifically mention the retrieval 

of a source analog from long-term memory, in addition to others: a process for mapping 

that source analog to a target in working memory, the generalization and evaluation of 

inferences, and the induction of relational schemas.  

 Essential to these processes of analogy making is the representation (are the 

representations) upon which each operates.  Most theories of analogy place particularly 

strong emphasis on structurally mapping relational presentations (Gentner, 1983; 

Holyoak & Hummel, 2001).  Yet, all begin with that retrieval of an analog from memory, 

something with which to compare the present experience. The target stimulus, the just 

arrived experience, triggers retrieval, but what affords the retrieval?

 

5



Figure 1.2.  Successively zooming into detail.

Attention, Abstraction, and Representation

 That we are able to notice novelty so quickly, to zone in on just that substantive 

difference, is remarkable.   How is it, then, that we are able to make such swift shifts, and 

draw attention to those aspects of the visual world?  In the prior section, I discussed the 

orienting reflex, and drew upon the work of Hunt (1995) to suggest the role that the 

process of attention plays in the elaboration and encoding of visual stimuli.  Here, I 

expand on those remarks.

Signals and Attention

 The detection of a signal, the onset of a stimulus, has been studied extensively in 

psychology.  In these experiments, a signal is the stimulus being presented to a test 

subject, while noise is understood to be the rest of the environment (Goldstein, 2013). 
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Particular attention has been given to the awareness and report of the stimulus, through 

experiments which test the subject’s ability to detect near-threshold signals (signals which 

are just distinguishable from the background noise) (Posner et al., 1980).  The theory of 

signal detection (Green & Swets, 1966) makes the assumption that the observer is not-

passive, but actively determines through some process whether or not to report the 

presence of a signal.  Thus, in signal detection theory, not only is there the notion of 

sensitivity (the difficulty of distinguishing the signal from the background noise) but 

there is the notion of bias, the extent to which an answer (signal present/signal absent) is 

more probable. Both sensitivity and bias vary with the observer (Green & Swets, 1966).  

 The detection of a visual signal from a background, as one might expect in a task 

involving novelty, however differs from most of the experiments involving signal 

detection, as Posner et al. point out in a crucial way: the given signal is clearly above the 

noise threshold and 100% detectable (Posner et al., 1980).  What is varying is the spatial 

position the signal occupies in the visual scene.  This signal somehow attracts visual 

processing or attention, evoking a search of the scene for the signal itself.  

 Cognitive psychology offers at least two models for how visual attention shifts: 

the spotlight model and the zoom-lens model. In 1980, Posner et al. proposed the 

spotlight model of attention (Posner et al., 1980). The spotlight model describes attention 

as having a focus area of very high visual resolution, and a fringe area surrounding the 

focus but with a substantially lower visual resolution.  The size of the spotlight, and the 

relative proportion sizes of the focus and fringe, are fixed.  The zoom-lens model is the 

spotlight model, but relaxes the constraint of the sizes (Ericksen & St. James, 1986).  

 The tradeoff between these models rests in how much information is carried into 

the incoming signal, through the shifting in size of the region of high visual resolution.  

Both models maintain that the center of attention is wherever the geometric center of the 
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focus area happens to land within the visual field.  It’s that last bit–the geometric center 

of the focus area–that poses an issue.  How does one decide where to focus?  Perhaps it is 

driven by some innate properties of objects in the visual field to focus on those areas: 

exogenous orienting is caused by stimuli in the visual periphery or an unusually bright or 

sharp contrast. Attention maybe driven endogenously, by what one is thinking at the time, 

by expectations about the scene, past experiences, or the task at hand, to direct the eyes to 

focus other places (Goldstein, 2013).  It may be a bit of both (Berger et al., 2005). 

Attention and Abstraction

 It seems that one regards the entire image somehow, and then some further 

processing happens which directs the attention to focus on certain regions.  When we 

receive a visual scene, high quality visual information is acquired only from a limited 

spatial region surrounding the center of gaze (the fovea of the eye): visual quality falls off 

rapidly and continuously from the center of gaze into a low-resolution visual surround 

(Henderson, 2003).  Thus, the scene itself, for each gaze, varies in resolution: to obtain a 

more uniform resolution across the entirety of the scene requires the shifting of gaze, as 

illustrated in Figure 1.2.  The visual scene then is available to be reinterpreted at a finer 

granularity in this manner.  The degree to which the visual scene may be abstracted into 

finer or coarser resolution is mediated by some attention mechanism. 

 We humans effortlessly shift these levels of abstraction, changing the way in 

which the inbound visual world is modulated, all in the context and service of some task 

at hand.   Yet we also are agents embedded in the world we receive, and have other means 

to modulate the abstraction level of the visual scene.  We are able to move ourselves 

toward or away from a scene, or perhaps move some object closer to or further from us.  

In doing so, we alter the amount of the scene received by our eyes. As Wagemans et al. 

(2012a) point out, to deem something as novel involves the complex interaction of at 
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least two relationships: the relationship between the observed and its context, and the 

relationship between the observed and the observer.

Binding, Integration and the Point of View

 When we received the visual scene, we receive a great deal of information about 

the color, motion, and location.  Treisman and Gelade (1980) proposed Feature 

Integration Theory as a two-stage process by which individual objects within a scene 

might be perceived, through the binding of features received at spatial locations to objects 

located there.  To Treisman and Gelade, a received visual scene is first encoded in a 

variety of separable features or dimensions such as color, orientation, and brightness, in 

parallel across the entire scene.  Then, through attending to various locations of the scene, 

these separable features at those locations are bound together, forming the perception of 

integral objects at those locations (Treisman & Gelade, 1980). 

 This perceptual binding of features in a scene into objects represents a deeper shift 

in perception: the shift from a received visual world to a collection of objects over which 

to reason.  Marr (1982) proposed a similarly staged account of how human vision works.

 Vision, according to Marr (1982), is a process that produces from images of the 

external world a description that is useful to the viewer and not cluttered with irrelevant 

information. To that end, Marr argues forcefully for the shift in point of view, from 

received image to representations of 3D models (Marr 1982). This progression of 

representations begins with features ala Treisman and Gelade, although Marr limits 

himself to considering only intensity. From an array of these intensities, a primal sketch 

representation is derived, consisting of lines and edges, boundaries and blobs.  From the 

primal sketch, an analysis is made with respect to how the edges come together, and a 

2½-D sketch is formed, with inferred surface orientations and depth information.  Lastly, 
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from the 2½-D sketch, a 3D model is made by inferring volumetric primitives and their 

arrangement in an object-centered coordinate frame. 

 The result is that through the vision process proposed by Marr, the received visual 

scene is transformed into a collection of representations of the objects contained within 

the scene.  Other received features, such as color or motion, may be bound to these object 

representations, using feature integration theory, because the objects themselves occupy a 

spatial location within the scene. These object representations are then the stuff of further 

cognition (Marr, 1982).
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Problem and Research

 As I said in the preface of this chapter, my research and this dissertation are 

thoroughly influenced and motivated by studies of human visual reasoning.  However, 

the focus of my research is on artificial intelligence, and the development of intelligent 

agents (Russell et al., 2010).  To that end I would construct systems which could embody 

computationally some model of these processes of visual reasoning, the ability to notice 

novelty, to choose appropriate levels of abstraction, and make analogies over visual 

information.

 Thus, the challenge posed would seem to distill such observations into the 

tractable and the computable.  My body of work is marshaled toward addressing the 

following specific problem statement and research question.  

The Problem Statement

 Given that novelty and abstraction are so fundamental to visual reasoning, the 

problem lies in precisely how this may occur.  This dissertation’s problem statement is:

 
How might a visual scene be received to afford the notice of novelty at an appropriate 

level of abstraction? 

The Research Question

 My work is focused on the creation of computational models, and not expressly 

upon the delivery of a cognitively-plausible explanation of the phenomena. Therefore, the 

research question derived from the problem statement is restricted to computational 

models. Further, the question must be restricted toward problems which involve 

determining novelty or similarity, and in particular problems which involve analogy. 

Thus, this is the dissertation’s research question:
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How might a cognitively-inspired computational model receive a visual scene and, in the 

service of some visual analogical task, notice novelty at an appropriate level of 

abstraction? 

 In the next sections, I will expand upon what I mean by the visual scene and 

visual tasks, to motivate my thesis statement and its attendant hypotheses.

Figure 1.3. A 2D visual scene

Receiving a Visual Scene

 Simply put, for humans, to receive a visual scene is to gaze upon it, and receive 

light information into the eyes. Computationally, it is analogous: a scene is received once 

it is input in some format. Figure 1.3 shows one such scene.

 However, it is important to draw a distinction between what the world is and what 

the world affords.  Some object in the world may be labelled as novel by a particular 
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observer, but that is not sufficient to suggest that the object in question would be regarded 

as novel by every plausible observer.  Novelty depends upon context, and every 

observer’s context–her internal, perceptual context–will vary.

 Similarly, while a visual scene arriving from the world is continuous, it does not 

directly offer a notion of abstraction, merely offering an opportunity for an observer to 

receive the world in differing manners through some enaction of the observer upon or 

within the world (changing the nature of the light which falls upon an object or 

manipulating the object somehow) or through some modification of the observer as an 

entity within the world (moving closer or further to an object, or changing the visual 

system mechanically via squinting, and the like).  

Requirements

 The acts of noting novelty and shifting abstraction are cognitive acts which occur 

entirely within the mind of a human observer.  The visual scene of the world itself affords 

them, but it is the observer performs them. That is, some set of cognitive processes occurs 

within the observer to accomplish these feats.  

 As the goal of this research has been to create one or more cognitively-inspired 

computational models, then a subgoal would be that the models must exhibit analogs to 

these processes.  If such processes are present in the computational model, then the 

models’ performance on certain tasks may be characterized, and contrasted where 

appropriate with human performance on those tasks.

 Even so, these acts are available to be performed not only due to some variety of 

processes, but also because some sufficient representation of the received visual scene 

which affords them. 
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Representation of knowledge

 The representation of the visual scene received by the agent contains information 

and knowledge about the world from which the scene is taken.  In the preceding section, I 

described the feature integration theory of Treisman and Gelade (1980) as a means by 

which humans come to associate visual features and information with objects inferred 

from the scene (perhaps using the vision theory of Marr (1982)). But as I am dealing in 

artificial intelligence and computational models, how might this be accomplished in an 

intelligent agent?  The information used by the agent must be more than a data structure 

containing the scene: it should be organized into a knowledge representation.

 While use of the term “representation” is quite commonplace in the artificial 

intelligence literature, what is a knowledge representation?  In their paper, Davis et al. 

(1993) note that knowledge representations play five distinct, critical roles:

• as a surrogate;

• as a set of ontological commitments;

• as a fragmentary theory of reasoning;

• as a medium for efficient computation; and

• as a medium of expression.

 Each of these aspects matters when regarding visual reasoning.  The fidelity of the 

correspondence between the representation as surrogate and the received visual scene of 

the world affects and informs the possible levels of abstraction.  The ontological 

commitment of what within the received signal to represent (and what to leave out) 

contribute to the constraints the knowledge representation may impose upon reasoning. 

The fragmentary reasoning that a knowledge representation affords stems from what 

inferencing it allows, and how that set of allowed inferences may be constrained.  The 
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guidance a knowledge representation gives for computation arises from its role as an 

organizational mechanism for the corresponding received information, and reflects upon 

the adequacy with which that information is captured.  The utility of the knowledge 

representation for communicating information directly affects the agent’s ability to mix 

new data with old into newer data, and provides the way in which comparison arises.

 In the subsequent two chapters of the dissertation, I develop a particular 

knowledge representation, and discuss in detail why that representation is indeed a 

knowledge representation.

Vision, and visual reasoning

 It may be tempting to view these remarks, and indeed all of my research, as being 

focused on vision.  While there has been substantial research on the detection of objects 

and novelty in computer vision (e.g. Markou & Singh, 2003a,b; Viola & Jones, 2001), my 

efforts concern themselves with visual reasoning, and in particular the role analogy-

making may play when reasoning about visual stimuli.  This dissertation is about 

cognitively-inspired computational strategies, and how they arise from the choices made 

when representing a received visual scene.
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Challenges

My research has been in the development of a computational model which while 

addressing a task of visual analogy exhibits cognitively-inspired processes which can 

distinguish between the familiar and the novel, and which can shift between levels of 

abstraction automatically.  These processes are sanctioned by some appropriate 

representation of the received visual scene which affords re-representation to varying 

levels of abstraction and offered features which may be used for memorization, recall, 

and comparison, as required by the visual analogy tasks.  The act of characterizing and 

developing those processes were thereby co-mingled with the act of describing a suitable 

representation.

To do this, I identified several specific challenges, which I now detail.

The Challenge of Complexity in Representation

Intuitively, the whole visual world is profoundly messy, and the visual signal 

received from it is complex.  A suitable representation would need to be able to capture 

the inherit complexity of the received world.  However, to demonstrate that the attempt to 

characterize and capture every conceivable aspect of the world with sufficient complexity  

would seem intractable.  

This challenge contributed to this research in two important ways. It constrained 

the work to a subset of the world, and thus focused upon visual scenes that are relatively 

simple and largely geometric in aspect. However, to avoid loss of generality, this 

simultaneously forces the consideration of a more universal visual representation, a 

substrate upon which a received visual scene may be built.  It was in facing this challenge 

that I turned to fractals.
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Figure 1.4. Problems of Similarity and Novelty.

The Challenge of Domains

This would be a corollary to the challenge of representation.  The complexity of 

the world does offer up quite the variety of problems and puzzles. While minds might 

capably perform many, many tasks, this research was focused on the exploration of 

novelty and abstraction tasks, in the context of visual reasoning specifically.  Thus, I 

restricted consideration of problems to receive from the world to those domains in which 

novelty or similarity may be determined via visual input alone.  Figure 1.4 illustrates two 

such example problems.

In particular, I chose to restrict the problem domain over which the computational 

model would operate to tasks of visual analogy.   There exists significant prior research 

into visual analogy (e.g. Goldschmidt, 2001; Davies & Goel, 2001; Ferguson, 1994; 

Forbus et al., 2008; Hofstadter, 2008).  Some of the problem domains addressed by that 

research have been in the area of computational psychometrics (Bringsjord & 

Schimanski, 2003; Lovett et al., 2007, 2010; Lovett et al., 2008; Kunda et al., 2010, 2011, 

2012, 2013). 

It has proven somewhat daunting to create models and write code which will be 

compared against others’ code, and it has certainly been true that one’s model and code 

must achieve a certain measure of correctness on those psychometric tests in order to be 

taken seriously in literature reviews.  However, the selection of problems from 
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psychometrics had a distinct advantage over other domains, in that there exists a general 

breadth and availability of human performance data on those tests.

The Challenge of Visual Reasoning, Itself

In artificial intelligence, models are built of cognition and computational 

creativity, and those models are subjected to various tests.  Often, these tests are 

themselves artificial, contrived to limit the model’s domain to a carefully composed 

world (classically, the Blocks world (Winograd, 1973; Bobrow & Winograd, 1977)).  Yet, 

critics of AI charge that the composition of the problem domain itself is too carefully 

constrained, and that the resulting model clearly should work, for it, and the world upon 

which it acts, are joined one to another, representationally intertwined (Reeke & 

Edelman, 1988; Brooks, 1991).

There may be many different ways in which a problem may be represented.  

However, a chosen representation expressly determines the nature of the reasoning which 

may operate upon the representation. The selection of representation then must expressly 

afford and sanction the kinds of visual reasoning the research wished to explore.  Thus, 

the selection of representation was restricted to those which both afforded reasoning 

about novelty and similarity, and supported shifting levels of abstraction.

The Challenge of Correspondence

The current theories of visual and analogical reasoning depend upon a significant 

theoretic leap:  that the received world is transformed from a series of received percepts 

into some symbolic representation (e.g. Marr, 1982; Kokinov & Petrov, 2001; Holyoak & 

Hummel, 2001; Barsalou, 2008). The challenge is that this transduction of perception into 

symbolism readily may be viewed as reducing correspondence with the world (that is, 

with reality) (Markman, 1999; Davis et al., 2003).  Reducing correspondence with reality 

affects the correspondence in level of abstraction which might be afforded by the 

symbolic representation.  
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Thus, for the purposes of this research, a suitable representation must maintain as 

strong as practical a correspondence to the received percepts. The need for such strong 

grounding also was a determining factor in my choice to focus on fractals, the argument 

for which I develop in the next two chapters..

The Challenge of Models

As mentioned prior, there exist several kinds of visual analogy problems, and this 

research addresses certain of these. These problems share many common aspects, but 

they have very specific differences as well.  Perhaps it may be assumed that each of these 

problems quite naturally might lead to its own computational model.  

Suppose, instead, that a common representation may be shared amongst those 

models; would that representation provide an account for their commonality?  If so, then 

one may find that though there can be differences in model, there may exist a single 

cognitively-inspired computational architecture upon which those models are founded 

(Johnson-Laird, 1983; Laird et al., 1987; Tversky, 1993).  

Finding first these computational models, and then explicating an underlying 

overall model, has been a goal of this research.  In the chapters of this dissertation 

concerning the various problem domains, I describe the algorithms that constitute the 

computational model addressing the problem, but I also describe the lineage between the 

algorithms, and through those connections establish a common model, rooted in the 

chosen representation.

The Challenge of Judging a Model

According to Cassimatis et al. (2008), computational modeling is a particularly 

important part of understanding higher-order cognition, for two reasons. First, having a 

precise model clarifies notions such as representation and concept. Furthermore, being 

instantiated into a computational model makes the possibility of intelligence arising from 

natural phenomena more plausible (Cassimatis et al., 2008). 

Such models are judged by their degree of ability, empirical coverage and their 

parsimony (Cassimatis et al., 2008).  Judging the ability of a computational model does 
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not mean that there is a direct mapping implied between the performance of the 

computational model and that of a human: Cassimatis et al. (2008) point to Logic 

Theorist (Newell et al., 1958) as proof that what mattered was the demonstration that 

some mechanism could explain some kinds of problem solving. Judging parsimony is 

straightforward: merely note the number of computational methods needed to address the 

problem.  Judging empirical coverage, in contrast, is complicated.

Ordinarily, empirical coverage for computational models has meant that human 

performance levels are achieved, both in the time taken to perform a task, and in the 

number and kind of errors made during a task.  However, to judge a computational 

model’s coverage based on time performance must be reconsidered, for at least two 

reasons.  Firstly, each year machines and devices grow faster and faster, and storage more 

abundant (Schaller, 1997): at some point, the task that satisfactorily covers human 

performance will be performed much quicker by machine.  Thus, the time performance 

metric, as a standard for empirical coverage, diminishes.  Secondly, the algorithms one 

now designs are generally executed in a serial fashion, with strict data flows.  Human 

brains, in contrast, don’t quite seem to follow either aspect, being inherently (and 

massively) parallel, and with bidirectional information flowing (Ullman, 1995). 

For these two reasons, I suggest that judgment be passed upon the research’s 

computational models’ empirical coverage in two ways: by its error patterns vis-a-vis 

human error patterns where available, and by its demonstrated suitability across multiple 

problem domains.  
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Limitations

 My dissertation’s research question is:

How might a cognitively-inspired computational model receive a visual scene and, in the 

service of some visual analogical task, notice novelty at an appropriate level of 

abstraction? 

The challenges just enumerated offered ways with which to constrain the 

question’s exploration.  In light of those constraints, I additionally and deliberately 

limited the scope of this work in two important ways, namely:  

• the work makes a strong commitment to a particular kind of representation; and 

• I focused on developing cognitively-inspired computational models for four 

specific, interrelated problem domains.

Limitation 1: Commitment to a representation

The representation chosen is the fractal representation, a novel visual 

representation which I developed over the course of performing this research.  Indeed, 

this representation is perhaps the key contribution of my research.

The fractal representation arises from the fractal encoding of visual input. Fractal 

encoding itself is an encoding of both spatial and photometric relationships which 

captures the nuances of textures present within a received image. Fractal representations 

capture the similarity between visual images, even if the images are the same. A thorough 

discussion of fractal encoding and the development of the fractal representation are found 

in the subsequent two chapters.
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Limitation 2: Commitment to specific domains

In service to the development of this research, I discovered, developed and tested 

cognitively-inspired computational models based on fractal representations across four 

specific problem domains, two of visual similarity and two of visual novelty.  

For the visual similarity domain, I chose the Ravens Progressive Matrices tests 

(Raven et al., 2003) and the Miller Analogies Test (Meagher, 2006; Pearson, 2011), used 

by Evans  in his seminal early work on analogy (Evans, 1964).  The Ravens tests offer a 

combined set of 204 well-documented, human-tested visual analogy problems, 

distributed across four distinct test sets.  The Miller Analogies Test offers 20 such 

problems.  The Ravens test and the Miller Analogies test have a similar structure: given a 

matrix of figures in which one figure is missing, choose from a set of candidate answer 

figures which one best completes the matrix.

For the visual novelty domain, I choose two particular sets of problems. The first 

chosen, the Odd One Out test, developed by Adam Hampshire and colleagues at 

Cambridge Brain Sciences (Owen et al., 2010), consists of almost 3,000 3x3 matrix 

reasoning problems organized in 20 levels of difficulty, in which the task is to decide 

which of the nine abstract figures in the matrix does not belong (the so-called “Odd One 

Out”). For the second set, I chose the Dehaene test of core geometry (Dehaene et al., 

2006), consisting of 45 problems designed to measure whether an individual has a notion 

of certain principles of geometry.  Both the Odd One Out test and the Dehaene core 

geometry test have a similar structure: given a matrix of figures, decide which one does 

not belong.

My intention was that by considering problems of similarity (Ravens and Millers) 

independently from problems of novelty (Odd One Out and Dehaene), distinct models 

would emerge, one for similarity and one for novelty.  From these models, the intention 

was to extract those domain-generic techniques to form the basis of a cognitively-inspired 
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computational model, one in which noting novelty and adjusting levels of abstraction are 

fundamental and strategic acts, afforded expressly by the fractal representation.

I point out that these problem domains are static, 2D worlds.  If this research were 

concerning itself with vision in the general sense, one would have to choose additional 

dynamic domains which would offer the opportunity to address the challenges of 

occlusion, motion, noise, and the like.  Although I believe this work may hold promise in 

those areas, as noted above this research is not about vision: it is about visual reasoning, 

and the role analogy-making and representation play in it.   Nonetheless, I did explore the 

potential connection with vision and other visual perception, by performing minor 

experimentation in using fractal representations and similarity as latent support for 

flocking behaviors in agents, and in modeling perceptual instability when considering the 

Necker cube.

These domains, the developed computational models, and the results of all 

experiments are presented in detail in the subsequent chapters devoted to each.
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Thesis & Hypotheses

With these challenges, limitations and intentions in mind, I make the following 

sufficient, expressive thesis statement and collection of hypotheses.

The Thesis Statement

My dissertation concerns itself with this thesis statement:

Reasoning using fractal representations is a novel, feasible and useful 

computational technique for solving certain problems of visual similarity and novelty.

I developed three primary hypotheses from this thesis statement, and the balance 

of the dissertation provides a detailed account of my research to confirm them.  The three 

hypotheses are:

• that using the fractal representation, a robust cognitively-inspired computational 

strategy may be determined which automatically adjusts the representation to an 

appropriate level of abstraction;

• that using the fractal representation, a robust cognitively-inspired computational 

model can be derived for certain classes of  problems of visual similarity, such as the 

Raven’s Progressive Matrices tests; and

• that using the fractal representation, a robust cognitively-inspired computational 

model can be derived for certain classes of problems of visual novelty, such as those in 

the Odd One Out set.

In addition to these three primary hypotheses, I make a zeroth hypothesis 

concerning the representation chosen, that the fractal representation is a knowledge 

representation.
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Hypothesis 1

Using the fractal representation, a robust cognitively-inspired computational 

strategy may be determined which automatically adjusts the representation to an 

appropriate level of abstraction.

In support of hypothesis 1, I discovered, developed and implemented an original 

and novel algorithm, the Extended Analogy By Recall (ABR*) algorithm.  The ABR* 

algorithm is based on the premise that analogy begins by being reminded of something, 

and integrates the return of a measure of similarity with a retrieved analog. Furthermore, 

the algorithm also provides how the ambiguity or uncertainty with which an answer to a 

visual analogy problem may be characterized can be attributed to those features naturally 

arising from fractal representations.  I showed that such a characterization can be used 

concurrent with problem solution, as a mechanism for driving level-of-abstraction 

refinement.   

Beginning with Chapter 2’s robust discussion of the fractal representation and 

continuing through Chapter 4, using as a visual similarity task as a basis, my dissertation 

presents a complete description of the algorithm, its motivation, and an argument that the 

reasoning embodied therein may be construed as a computational model of visual 

abstraction.
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Hypothesis 2

Using the fractal representation, a robust cognitively-inspired computational 

model can be derived for certain classes of  problems of visual similarity, such as the 

Raven’s Progressive Matrices tests.

In support of hypothesis 2, I describe herein the problems of the Raven’s 

Progressive Matrices tests, in terms of their individual nature as well as their importance 

in the realm of human psychometrics.  I developed both a visual reasoning strategy and 

an algorithm which embodies that strategy, based upon and relying solely upon the fractal 

representation of a Raven’s problem, which can, as shown in Chapter 5, solve the 

problem without intervention.  This dissertation clearly illustrates the algorithm as 

implemented in both pseudo-code and in the Java programming language (available on 

our research lab’s website), and presents the results of the algorithm’s execution against 

the full set of Raven’s Progressive Matrices tests.  

Similarly, in Chapter 6, the dissertation shows the same for the problems of the 

Miller Analogies Test, with no modification to the underlying algorithm or representation.  

The performance of the Fractal Raven and Fractal Miller algorithms compares quite 

favorably to all prior computational approaches to these problem domains, as I illustrate 

in the corresponding chapters.
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Hypothesis 3

Using the fractal representation, a robust cognitively-inspired computational 

model can be derived for certain classes of problems of visual novelty, such as those in 

the Odd One Out set.

In support of hypothesis 3, I first describe, in Chapter 7, the problems of visual 

oddity, in terms of their individual nature as well as their distinction from visual 

reasoning as required for problems of the Raven’s test.  I developed a visual reasoning 

strategy and an algorithm which embodies that strategy, based upon and relying solely 

upon the fractal representation of an Odd One Out problem, and demonstrated that the 

algorithm will solve the problem without intervention.  I wrote the algorithm in code and 

executed that code against a large corpus of Odd One Out problems (approximately 

3,000, at varying levels of human difficulty). In Chapter 8, I report the results of the 

algorithm’s performance.  

In addition, the visual oddity algorithm developed for the Odd One Out was 

extended and used to address those problems present in the Dehaene set of core 

geometry.  This dissertation presents the results of those experimental runs as well, in 

Chapter 9, and compares those results with a prior computational approach to the 

Dehaene set as well as to human results.
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The Zeroth Hypothesis

The fractal representation is a knowledge representation.

In support of this hypothesis, in Chapter 2 I fully motivate, develop and illustrate 

the fractal representation.  Furthermore, I present the manner by which the fractal 

representation may be extended, from a representation of a single image, to any number 

of images.  In Chapter 3, drawing on the criteria and roles of knowledge representations 

in general of Markman, Davis, and others, I illustrate precisely how the fractal 

representation satisfies the various criteria, and thereby is to be regarded as a knowledge 

representation.
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Additional Results

I explored two additional problem domains with the fractal representation, using 

the core machinery of the Extended Analogy by Recall (ABR*) strategy.  

In Chapter 10, I report the details of an exploration of fractal perception in 

interacting agents.  In this chapter, I describe first how computer graphics simulations of 

flocking agents occurs.  I implemented such a simulation, which contained hundreds to 

thousands of those agents. I then introduce the idea of providing a perceptual processing 

system to one of those agents, based on fractal representations, and show how the 

behavior of the agent can remain analogous to the other agents, as a full participant in the 

flock.

In Chapter 11, I report a computational model of perceptual bistability, using the 

Necker cube as the subject of study.  I provide a review of prior attempts to characterize 

perception of the Necker cube, and then, through the use of three sets of exemplar 

images, present the ambiguous Necker cube, represented fractally, to the Extended 

Analogy by Recall algorithm.  In my results, I show that the Necker cube as perceived by 

my computational strategy remains in a perceptually ambiguous state, regardless of 

exemplar or level of abstraction.  To my knowledge, this is among the first ever 

computational models of perceptual bistability. Furthermore, these results suggest that my 

computational model offers potential avenues in which to explore additional cognitive 

phenomena. 
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Contributions

My dissertation and the body of research it describes makes two primary, novel, 

and significant contributions to science. 

The first contribution is the Extended Analogy by Recall (ABR*) algorithm, a 

parsimonious, cognitively-inspired computational model for visual reasoning which 

automatically adjusts its representations to an appropriate level of abstraction. The 

subsequent chapters of this dissertation show unmistakably that the strategy contained 

within the ABR* algorithm is suitable to meet the demands of a variety of visual analogy 

problems.  In addition to this primary contribution, several algorithms, which address 

reasoning specifically in visual similarity and visual oddity tasks, as well as algorithms 

which afford or mimic aspects of visual perception, are contributions in their own right.

The second contribution is the fractal representation itself, a new and novel 

knowledge representation that will open the door for analogy researchers, cognitive 

scientists, and computer scientists to explore the role self-similarity and perceptual 

complexity play in analogy making.

The concluding chapter of this dissertation expands upon a number of potential 

future research directions suggested by these contributions.
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A Guide to this Dissertation

This dissertation is divided into five sections.  

The first of these sections is introductory in nature, and includes the present 

chapter and a chapter on knowledge representation and the fractal representation.  The 

details of exactly how to transform an image into the fractal representation are presented 

in that chapter, and pseudo-code is provided.

The second section concerns itself with visual reasoning, and in particular the 

visual similarity domain.  Chapter 4 develops the overall approach to fractal visual 

reasoning and introduces the visual similarity algorithm.  Later in that chapter, I continue 

the refinement of visual reasoning, incorporating levels of abstraction and automatic 

abstraction shifting, and introducing the Extended Analogy By Recall (ABR*) algorithm. 

In the third section, the visual similarity domain is explored by example.  Chapter 

5 presents the development of the Fractal Ravens algorithm and shows, by way of 

extensive example, how it may be used to solve problems of the Ravens Progressive 

Matrices tests.  The particular results of the algorithm upon the Ravens tests may be 

found in Chapter 5, along with comparison to human performance data.  Chapter 6 

concerns the adaption of the Fractal Ravens algorithm into the Fractal Miller algorithm  

and its use on the Miller’s analogy problems.

The fourth section devotes itself to the visual oddity domain.  Chapter 7 builds 

upon the lessons learned from the Fractal Ravens algorithm, and introduces the visual 

oddity algorithm.  The Odd One Out problems suite is discussed at length in Chapter 8, 

and the results of running the ABR* algorithm against the large corpus of oddity 

problems.  Chapter 9 is an explication of the Dehaene core geometry problems, and 

presents the results of an experiment in which the ABR* algorithm is made to address 

them.

The final section summarizes the dissertation and its implications.  It begins with 

two chapters (Chapters 10 and 11) which describe the preliminary experiments into 

fractal perception and the emergence of perceptual instability when using the model to 

reason about a classic problem of perceptual gestalt psychology.  The final chapters 
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(Chapters 12 and 13) provide a review of the claims made by this dissertation, the 

implications of this work for various fields, and a glimpse into future research directions.
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CHAPTER 2

FRACTALS AND REPRESENTATION

 In this chapter, I discuss the development and construction of the fractal 

representation, as a powerful means of representing images. 

Fractal Encoding and Representations

An image, as held in memory in a computer, is a representation which may occur 

in a variety of forms.   In one case,  a vector image, the image might be represented as a 

proximal sum of a variety of lines, curves, and polyhedral shapes.  Vector images are 

quite well suited for representing diagrams.  In another, more common example, the 

image might be represented in bitmap fashion, a rectilinear array of pixels (photometric 

values) of a specific width and height.  Bitmapped images are typically used as methods 

for storing so-called “natural images.”  In either case, a coordinate system typically is 

inferred to ascribe the position and orientation of various spatial elements, be they pixels 

or polygons. 
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Figure 2.1. A Circle, As Pixels.

The challenge of representing an image, in any fashion, stems from this: to what 

end is the representation intended?  As shown in the previous section, a representation 

entails a set of possible inferences, and implicates a surrogate standing.  An image 

representation is arrived at from some putative input.  We receive the world, and we 

represent it.

Fractals

Benoit Mandelbrot coined the term “fractal” from the Latin adjective fractus and 

its corresponding verb (frangere, “to break” into irregular fragments), in response to his 

observation that shapes previously referred to as “grainy, hydralike, in between, pimply, 

pocky, ramified, seaweedy, strange, tangled, tortuous, wiggly, wispy, wrinkled, and the 

like” could be described by a set of compact, rigorous rules for their production 

(Mandelbrot, 1982).  

The computer graphics community has generated fractal imagery, similar to this 

figure, for several decades.  Indeed, there are several different kinds of fractals described 
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within the literature of computer graphics, physics, and mathematics.  Here are a few 

examples. 

Figure 2.2. A Fractal Fern, Constructed From Other Ferns.

Iterated Function Systems

Iterated function systems (IFSs) were devised by Barnsley and his colleagues 

(Barnsley & Demko, 1985) as a means of generating a broad class of fractals, using a set 

of affine maps and an associated set of probabilities. Each such IFS resolves to a single 

attractor set. In the early 1980s, much effort was focused on the generation of naturally 

occurring, complex phenomena, such as clouds, plants, and landscapes. Demko et al. 

proposed the use of iterated function systems as one such method for creating computer 

graphic models of these phenomena (Demko et al., 1985). The relatively small set of 

affine maps and overall compact nature of IFSs was demonstrated by Demko et al. 

successfully. The iconic fractal fern shown in figure 2.2 is due to a three-map IFS 

discovered by Barnsley.  Iterated function systems have been used to model single-valued 

discrete-time sequences (Mazel & Hayes, 1992), neural networks (Stark, 1991), and 
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image compression (Barnsley & Sloan, 1990).  It is from this later work, as image 

compression, that my own research and development of fractal representations stems.

Figure 2.3. Strange Attractors

Strange Attractors

Studies of turbulence in fluid mechanics and nonlinear physics gave rise to a more 

mathematical class of fractals known as strange attractors (Grassberger & Proccaccia, 

1983; Eckmann & Ruelle, 1985). In a physical model, the whole system is represented by 

a number of modes - independent oscillators of variables, or states.  While each mode can 

be thought of as periodic, the whole system is quasi-periodic (a superposition of the 

modes), and a system can be seen as progressively more turbulent as the number of 

modes increases (Eckmann & Ruelle, 1985). An attractor is a mathematical description of 

the stable oscillation of the dynamic system as transient behaviors decrease. However, 

there are systems in which this behavior itself is unstable.  Such systems are deemed 

chaotic by Eckmann & Ruelle (1985) and thereby possess a strange attractor.  A 

companion way to consider a strange attractor is to think of the attractor itself as a 

particular configuration of a system (set of states) and a probability that the system would 
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be in that particular configuration (Halsey et al., 1986).  In this way, one can make an 

analogy that the set of states and probabilities view of strange attractors is similar to the 

iterated function system notion of set of affine transformations and probabilities. 

Figure 2.4. Lindenmayer Systems

Lindenmayer Systems

As early as 1968, Lindenmayer developed mathematical models of cellular 

interaction and growth (Lindenmayer, 1968).  Lindenmayer (Lindenmayer et al., 1990) 

fully realized his system of describing plant growth as a technique of originating with a 

string of symbols (an initial condition) and a set of rules for transforming a substring of 

symbols into a different set of symbols.  Each of these rule might be interpreted as an 

instruction for generating part of a plant (grow longer, branch left, fork at a certain angle, 

etc.).  Probabilities could be associated with the advent of each rule.

As computer graphics techniques improved through the 1980s, Smith (1985) 

turned to Lindenmayer’s descriptions of string-rewriting rules as a method for generating 

realistic renditions of plants. These fractal plants were determined both by their initial 

conditions, and by the probabilistic choice of which of several rewriting rules would be 

37



used during construction.  The advent of procedural modeling in computer graphics saw 

Lindenmayer systems applied to a variety of models, including the modeling of cities 

(Parish & Muller, 2001). 

Again, it may be seen that the notion of a set of rules and an associated set of 

probabilities is very much akin to that of an iterated function system.

Figure 2.5. Escape-time Systems

Escape-Time Systems

Renderings of Julia sets and Mandelbrot sets are the most commonly seen images 

associated with the word “fractal.”  Both of these sets, however, are examples of escape-

time systems.  In an escape-time system, for each point in a set there exists a recurrence 

relationship.  That is, when one arrives a particular point in the system, there is a function 

over that point in the set which maps the point to another point in the set.  The 

colorization of the renderings of a Julia or Mandelbrot set can be thought of as the 

distance between the point and its subsequent mapping.
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Figure 2.6. Random Fractals

Random Fractals

Space-filling curves and surfaces such as Hilbert curves, Koch snowflakes and 

Sierpinski gaskets as well-known, and have broad application (e.g. Baliarda et al., 2000 

for a description of using Koch curves for compact antenna design).  In general, these 

surfaces and curves are formed through the consistent and repeated application of a 

specific rule, or set of rules: for Koch snowflakes, replace any line segment with four 

segments, each one third the length of the original, with the middle third of the original 

segment replaced by two segments joined as if to form an equilateral triangle with the 

original middle third. 

However, the mathematical regularity of such curves and surfaces can be 

perturbed by deciding, based on some stochastic method, when and where to apply the 

rules. Such a process, while chaotic, can generate curves and surfaces with the same 

fractal nature and the same expressive natural rendering potential (Krapivsky & Ben-

Naim, 1994; Mandelbrot, 1975; Schenider & Westermann, 2001). These random fractals 

begin with some initial condition (to which they are sensitive), and then extend the 
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general notion of set-of-rules plus probabilities for application to include the idea that the 

probabilities themselves may vary.  Put differently, the random fractal has a form which 

contains the transformation rules and a range of putative probabilities for each, rather 

than a single value.

Fractal imagery

While the various formulas for generating fractal imagery is quite well-known, 

many images of real-world artifacts appear to have “fractal” properties.  Indeed, the quest 

to render apparently real-world artifacts propelled the discovery and use of fractal 

descriptions and techniques in computer graphics as noted above.  If these images are 

“fractal” in some sense, then what formula (to be more specific, what representation) may 

underlie these images?  We must now consider a fundamental question: what, precisely, is 

fractal?

Fractals in the Real World

The mathematical derivation of fractal image representation expressly depends 

upon the notion of real world images, i.e. images that are two dimensional and 

continuous (Barnsley & Hurd, 1992).  Both of these assumptions are important.  That an 

image is two dimensional means that there is an ability to assign a coordinate system to 

the image, and that the photometric elements, the pixels, within that image have a spatial 

relationship to one another (that there is a distance metric upon the space).  That an image 

is continuous implies that no matter how closely one might choose to examine the image, 

there still will remain finer and finer gradations of the pixels.  In a sense, the continuity of 

the image suggests that the selection of an image’s resolution (the ability to resolve or 

describe a single pixel) is under the control of the observer.  In this assumption, a pixel 

gains the descriptive quality of a photometric region.
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Figure 2.7. Images with Fractal Properties.

Real world imagery, in the definition above, encompasses not only that which 

occurs in the natural world, but all imagery. Natural and artificial scenes, all diagrams 

and schemata, every image which arises as a result of light being reflected by or 

transmitted from any surface and subsequently falling upon the photoreceptors and made 

available to the human visual system is a real world image.  Images generated internally 

or those arising from some act of visual imagination or via some other means 

(specifically, those images whose arrival does not encompass perception and the 

enactment of the early visual system, the lensing system, and especially, the striate and 

pre-striate cortex) are excluded from the definition of real world imagery.
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Figure 2.8. A Field of Sunflowers, Showing Repetition and Similarity at Scale.

A key observation by Barnsley and Hurd (1992) is that all naturally occurring 

images perceived appear to have similar, repeating patterns. Another observation is that 

no matter how closely you examine the real world, you find instances of similar 

structures and repeating patterns.  The twin ideas, of repeating patterns and of repetition 

at differing scales (or resolution), combine to provide the basis for labeling such images 

as “fractal.”  Importantly, the repetitive nature of these images persists at all observable 

scales, down to the resolving power of the observer.  

Figure 2.9. Broccoli, Illustrating Similarity and Repetition.
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These powerful observations suggest that it is possible to describe the real world 

in terms not of traditional graphical elements, but of observed similarity and repetition 

alone.  This is the crucial idea upon which the fractal representation is formulated.

The Mathematical Basis for Fractals as Operations 

The mathematical derivation of fractal representation as an operation over images 

expressly depends upon the notion of real world images, i.e. images that are two 

dimensional and continuous (Barnsley & Hurd, 1992). Every image received by the 

human visual system may be construed as meeting this requirement, with the proviso that 

the notion of continuity has a resolution limit, and that limit plays a significant role in 

visual abstraction, as shall be discussed later in this dissertation.  

Collage Theorem 

Computationally, the determination of the fractal representation of an image can 

be performed through the use of the fractal encoding algorithm. The collage theorem 

(Barnsley & Hurd, 1992) at the heart of the algorithm can be stated concisely: 

For any particular real world image, there exists a finite set of affine 

transformations which, if applied repeatedly and indefinitely to any other real world 

image, will result in the convergence of the latter into the former.

It is important to note that the collage theorem is describing a set of 

transformations which are derived by mapping an image into another.  In other words, 

fractal encoding determines an iterated function system which is applied repeated to some 

source image, with the result that the encoded image emerges.  

The Development of the Fractal Representation

Let us suppose F() is a fractal encoding of image B.  Then, since I have 

designated fractal encoding as an iterative function system, the successive application of 

F() onto its prior output will converge upon the image B.  Thus, given any other image A:
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F(A) = A1, F(A1) = A2, F(A2) = A3 ... and so on, until F(A∞) ≐ B 

According to the Collage Theorem, F() is itself a finite set of affine 

transformations T which describe how to modify portions of an image such that 

convergence is assured. Therefore, 

 F() ≣ T ≣ { T1, T2, T3, ... , Tn }

Each of the constituent affine transformation may affect some or all of the given 

image, but it is the unordered union of their actions which comprises the resultant image.  

Thus:

F(A) = T(A) = ∪ Ti(A), 1 ≤ i ≤ n

Dependencies 

There are several, interrelated dependencies implied in the Collage theorem.  

These are specificity, partitioning, and search. I shall describe each in turn now, in the 

context of the theorem, and later, in the context of the algorithm and the subsequent 

representation.

Dependency upon the specificity of the source and the destination.

The first dependency is that such a fractal encoding is dependent not only upon 

the destination image, but also upon the source image, from which the set of affine 

transformations T is discovered.  However, once the fractal encoding has been 

determined, the application of that encoding to any source image will result in the target 

image. This dependency is to suggest that, a priori any application of the encoding, a 

particular fractal encoding is determined uniquely by a particular source image.

Dependency upon the partitioning of the destination image.

The cardinality of set of transformations is determined exactly and solely by the 

partitioning scheme chosen for the image being encoded.  It is presumed that the image 

being encoded admits to being partitioned in some manner, however. 
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Images may be partitioned using a variety of methods.  In computer vision, one 

typically seeks to segment an image into regions or shapes (Ray & Turi, 1999; Zhu & 

Yuille, 1996).  Another segmentation scheme would seek to segregate an image into two 

segments, a foreground and a background (Kim, et. al., 2005).  Other partitionings of 

images may be regular, such as the division of computer-based images into pixels, at 

some resolution. It must be noted that the choice of partitioning scheme affects the 

computational complexity of enacting the partitioning.

The Collage theorem imposes no constraint upon the choice of partitioning save 

one, and that is that the union of all partitions wholly cover the image to be encoded.  

Topologically speaking, the image B is treated as a set, and the partitioning P() of that 

image into a finite collection of subsets is a cover of that set if:

P(B)  = { b1, b2, b3, ... bn } 

B ⊆ ∪ bi, 1 ≤ i ≤ n

Dependency upon the search of the source image.

The essential implied step of the Collage theorem is that there is a match for each 

subimage of the destination, as determined by the partitioning, to be sought within the 

source image. Through this searching process, the affine transformation for that subimage 

is obtained.  However, the quality and character of the match, as well as the 

computational complexity of the algorithm, depends upon the constraints selected for 

comparing the destination subimage with some portion of the source.
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Fractal Encoding Algorithm 

Given a target image B and a source image A, the fractal encoding algorithm 

seeks to discover this particular set of transformations T. 

Algorithm 2.1. Fractal Encoding of B in terms of A

 As can be seen in Algorithm 2.1, the fractal encoding of image B in terms of 

image A consists of two phases: partitioning and searching.  I shall now discuss each 

phase.  

Partitioning

 The target image B is first partitioned into a set of other images.  As one is dealing 

with computer images, one may safely assume that the image B will have some finite 

resolution, and thus a limit as to the smallest achievable partition.  Practically, this 

smallest resolvable unit is a unitary pixel, which would denote both a spatial location and 

a photometric value.  

 As noted above, the Collage theorem places a topological constraint on the 

partitioning scheme, and requires that it form a topological cover over the image B.  Such 

a constraint admits a wide variety of methods for partitioning the image, but many of 

these partitionings may prove computationally expensive.  

First, choose a partitioning scheme P to systematically divide 
the destination image B into a set of images, such that  
B ⊆ {b1, b2, b3, … bn}. 

For each image bi: 

· Search the source image A for an equivalent image fragment ai 
such that an affine transformation of ai will likely result in bi. 

· Collect all such transforms into a set of candidates C.
· Select from the set C that transform which most minimally 

achieves its work, according to some predetermined metric.
· Let Ti be the representation of the chosen transformation 

associated with bi.

The set T = {T1, T2, T3, … } is the fractal encoding 

of the image B.
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 In the interest of reducing computational complexity, one may impose two 

additional constraints:  each subimage in the partition must be simply connected to at 

least one other subimage, and the union of all of the subimages must be exactly 

equivalent to the image B.  Stated mathematically:

P(B)  = { b1, b2, b3, ... bn } is a valid partitioning iff: 

∀ i ∃ j ≠ i : simplyconnected( bi ∪ bj ), and

B ≡ ∪ bi , 1 ≤ i ≤ n

where 

simplyconnected( X ) → ∄ x,y ⊂ X : x ∩ y = ∅

One computationally inexpensive way to achieve such a constrained partitioning is to 

impose upon the image B a uniform, rectilinear grid, and select the subimages based upon 

some chosen grid size, as expressed in units of pixels.   

 Thus, a stronger specification of the fractal encoding T may be thought of as a 

function of three variables, the source image A, the target image B, and the partitioning 

scheme P:

T( A, B, P ) = { T1, T2, T3, ... , Tn } 

where the cardinality of the resulting set is determined solely by the partitioning P. That 

is, each subimage bi that P extracts from B will be represented by exactly one element of 

the set T.

Partitioning and Level of Detail 

 Choosing a partitioning determines the level of detail at which an image is 

encoded.  Thus, the coarsest level of detail possible for an image is the partitioning into a 

single image (the whole image).  The finest level of detail achievable is that set of images 

wherein each image is but a single pixel.  
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Figure 2.10. Levels of Partitioning.

 The choosing of a grid size, and of a partitioning in general, may be interpreted as 

an indication of the level of detail at which an image may be encoded.  Figure 2.10 

illustrates the effect of partitioning an image into a variety of levels of detail, using a 

regular rectangular grid.

 The ability to express level of detail as an artifact of partitioning, whether by 

controlling grid size, by altering the consistency of partition size, or by modification of 

the shape and nature of the underlying regions and their spatial arrangement (i.e.  

hexagonal versus rectilinear scaffolding, or polar versus Cartesian coordinates) is an 

important aspect of the encoding, and a key feature entailed by the fractal representation.

Searching 

 The partitioning scheme P extracts a set of images bi from the target image B.  

The next step of the algorithm is to perform a systematic examination of the source image 

A for fragments of A which can be said to best match a particular image bi.  The method 

by which the search is conducted may be varied, as can the meaning of what is said to be 

a “best match.”
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Global and Local Coordinates 

 An image bi extracted by the partitioning scheme can be considered as a region 

containing a number of pixels which are addressable in some fashion.  The addressability 

of these pixels may be viewed as a local coordinate system imposed upon the region.  

Additionally, the region described by the image bi has a location and orientation within 

the image B, strictly determined by the partitioning scheme.  Thus, the image bi may be 

considered as an ordered set of pixels, having both a local (intrinsic) coordinate system 

and extent, and a position and orientation within a global (within image B) coordinate 

system.  Figure 2.11 illustrates the local and global coordinate systems.

Figure 2.11. Global and Local Coordinates.

 However, the same partitioning scheme necessarily does not need to be applied to 

the source image. The entire source image A may be examined in any manner for a 

fragment that most closely matches bi. 

Discovering the “Best Match” 

 The source image A is examined to determine which fragment of it, which I shall 

label ak, can be said to “best match” the sought-for image bi from the target image B.   

That is, the correspondence between ak and bi can be said to be “best” if it is the 

minimum value of the following function: 
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Correspondence( ak, bi ) = PhotometricCorrespondence( Transform( ak, t ), 

bi )

     ∀ ak ⊂ A, t ∈ AdmissibleTransformations

where AdmissibleTransformations is a finite set of spatial transformations applied by the 

operator Transform() to the pixel values contained within ak, and 

PhotometricCorrespondence() is a pixel comparison operation.  

Photometric Correspondence 

The photometric correspondence between the fragment ak from the source image A and bi 

from the destination image B is calculated to be the difference between the photometric 

values found in those fragments under a given alignment of their pixels.   I wish to 

propose a metric to ensure that this difference would be 0 if the two fragments were 

identical photometrically.  Such an algorithm to calculate the photometric correspondence 

is given by Algorithm 2.2:

Algorithm 2.2. Photometric Correspondence 

 The corresponding pixel in ak is determined by imposing the same local 

coordinate system used in bi upon ak.

 The Photometric value of a pixel used in this calculation may vary according to 

the nature of the image itself.  For example, if the image is in full color, the photometric 

value may be a triplet of actual values; if the image is monochromatic, then the 

photometric value will be single valued.  Since it is desired to calculate a photometric 

correspondence which is single-valued, a mapping from multivariate photometry to a 

single value is typically employed.  This can be seen, globally, as mapping from one 

color space into another.  For example, to reconcile traditional computer graphics images 

Let C ← 0.
For each pixel x ∈ bi and corresponding pixel y ∈ ak:
 C ← C + ( Photometric( x ) - Photometric( y ) )2

The value C is then the photometric correspondence between ak 
and bi.
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given in triplets of red, green, and blue values into single grayscale values, a formula 

such as this may be used, which seeks to equate the colorimetric luminance of the RGB 

image to a corresponding grayscale rendition (McGreggor, et al. 1999):

Photometric( <R,G,B> ) = 0.3 R + 0.59 G + 0.11 B

 Careful consideration of the underlying photometric nature of the image being 

encoded therefore must be given, but only at this particular moment in the overarching 

algorithm for encoding.  The choice of the Photometric() function determines the 

interrelationship of the image’s colorimetry and its constituent importance to the 

matching function.

Affine Transformations 

 The fractal encoding algorithm seeks to find the best matching fragment in a 

source image which corresponds to a given image partitioned from the target image.   As 

shown above, this matching is achieved by calculating the photometric correspondence 

function between two fragments, while considering all admissible transformations of the 

fragment from the source.  The set of admissible transformations is a subset of affine 

transformations known as similitude transformations. 

 An affine transformation, in two dimensions, may be considered to be of the form:

W(x,y) = (ax + by + e, cx + dy + f ) 

where a, b, c, d, e, and f are all real numbers. This equation, which maps one point in a 

two-dimensional plane into another point in a two-dimensional plane, may be rewritten 

into matrix form like so:

 In this way it can be seen that an affine transformation is a combination of a linear 

transformation followed by a translation.    

 Not all affine transformations are admissible for the fractal encoding transform, 

however.  In particular, those which are admissible must be invertible (Barnsley & Hurd, 

W(<x,y>) = [ a b ]( x ) + ( e )W(<x,y>) = [ c d ]( y ) + ( f )
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1992).  Intuitively, this means that each point in space can be associated with exactly and 

only one other point in space.  Mathematically, this means that the inverse has this form:

W-1(x,y) = (dx - by - de + bf, -ex + ay + ce - af) / (ad - bc)

and the denominator must not be equal to zero to satisfy invertibility.

Similitude Transformations 

An important group of affine transformations are those which are called similitudes.  A 

similitude transformation may be expressed in one of these two forms:

 Thus, a similitude transformation is a composition of a dilation factor r, an 

orthonormal transformation (a rotation about the angle ϴ where 0 ≤ ϴ < 2π), and a 

translation (e,f).  Similitude transformations are invertible except when r = 0.

Defining the AdmissibleTransformations set 

Given this formulation for similitude transformations, one can imagine having to consider 

a great many potential rotational angles to find the best match.  Indeed, the computational 

complexity of the encoding would seem a function of the angles under consideration.  In 

practice, I find that only eight of these orthonormal transformations need to be 

considered, as shown in Figure 2.12.

W(<x,y>) = [ r cos θ  -r sin θ ] ( x ) + ( e )W(<x,y>) = [ r sin θ  r cos θ ] ( y ) + ( f )
W(<x,y>) = [ r cos θ  r sin θ ] ( x ) + ( e )W(<x,y>) = [ r sin θ  -r cos θ ] ( y ) + ( f )
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Figure 2.12. The Eight Operations over 2x2 Pixels.

Consider the smallest region of pixels for which orthonormal transformations upon those 

pixels would result in a visible change.   The size of this region is an area two pixels wide 

by two pixels high.  This small region has four lines of symmetry.  Taking into account 

each line of symmetry, and reflecting the pixels in the region about each in turn, there are 

eight possible outcomes.

 My implementation of the fractal encoding algorithm examines each potential 

correspondence under each of these possible transformations.  These form the set of 

admissible transformations.  The transformation from this set which yields the best 

photometric correspondence is noted by the search algorithm.

Translation arises from searching 

 The searching process examines each potential fragment in a given source image 

for correspondence to a particular fragment of the target image.   Let us presume that the 

coordinate systems of the source and the target images may be aligned such that their 

origins exactly coincide.   Then, the relative location of a potential fragment in the source 

image can be mapped to a location within the target image.   This mapping, from the 

potential fragment’s local origin to the particular fragment’s local origin, is a translation, 

and it is this mapping which forms the translation portion of the sought-for similitude 

transformation.
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Dilation and Fractals 

 Taken together, the orthonormal transformation and the translation provide a 

sufficient means for describing self-similarity which may exist within an image.  

However, that self-similarity is not quite sufficient for describing how the similarity may 

occur at different levels of detail.  The dilation factor, r, is used to invoke a contraction of 

space, whenever r < 1.0.  The fractal encoding algorithm prescribes that the dilation 

factor to be used when searching may be conveniently set as r = 0.5.   In practice, this 

entails that the source image, as a whole, may be scaled to one-half its original size, and 

then searched for photometrically corresponding fragments.  

 Mathematically, choosing r < 1.0 ensures that the encoding derived for the entire 

image, if applied successively and indefinitely to an image, will cause the resulting image 

to converge upon the desired destination image (Barnsley & Hurd, 1992). 

Colorimetric Contraction 

 As a final step, having located the best photometrically corresponding source 

fragment, the algorithm determines a rate at which the two regions may be brought into 

colorimetric harmony.  To do this, the average colorimetric description of both regions is 

calculated, and the distance between the two is multiplied by a dilation.  The formula 

used to calculate the colorimetric contraction is:

colorContraction( ak, bi ) = 0.75 * ( colorMean( bi ) - colorMean( ak ) )

where the colorMean of a region is the average of all colorimetric information available 

in that region, taking into account the multivariate nature of the underlying image as 

previously discussed.   The derivation of the colorimetric dilation factor of 0.75 is given 

by Barnsley and Hurd (1992), and is shown to be correlated to the spatial dilation factor 

of 0.5.

Exhaustive Searching 

 The search over the source image A for a matching fragment is exhaustive, in that 

each possible correspondence ak is considered regardless of its prior use in other 
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discovered transforms. By allowing for such reuse, the algorithm affords the first 

Mandelbrot fractal observation, the notion of repetition.

Refining Correspondence 

 There may be many fragments in the source image which may have identical 

photometric correspondence to the sought for fragment bi.  This is particularly true when 

all of the values in the two fragments are identical.  To break these potential ties, a further 

refinement of the correspondence function is necessary.

 I compute a simple distance metric upon the images, and give it a weighting.  

Thus, the correspondence calculated between two fragments becomes:

 Correspondence( ak, bi ) = w1 PhotometricCorrespondence( Transform( ak, t), bi )

+ w2 Distance( ak, bi )

     ∀ ak ⊂ A, t ∈ AdmissibleTransformations

where the weights w1 and w2 are chosen such that the calculation of correspondence is 

dominated by the value of the photometric correspondence.  This can be ensured if the 

following relationship is held:

 w2 maximalDistance ≪ w1 minimalJustNoticeablePhotometric

where maximalDistance is the longest possible distance between the origins of bi and any 

fragment in the corresponding source image, and minimalJustNoticeablePhotometric is 

the PhotometricCorrespondence which would be calculated if the photometric difference 

between bi and any fragment were so small as to be indistinguishable.  Practically, I set 

this value such that this is as small as possible yet not zero, given the color system used 

in the images.  For example, for 8-bit greyscale images where the value 0 represents 

“black” and the value 255 represents “white,” the minimalJustNoticeablePhotometric 

would be set to a value of 1.
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Fractal Codes 

 For each image bi taken from a partitioning of the target image B, the fractal 

encoding algorithm locates, via exhaustive search over the source image A, a 

corresponding fragment ak which the algorithm has deemed to be most minimally distant 

photometrically under a discovered transformation.  The algorithm constructs a 

description of its discoveries, in a representation called a fractal code.  A fractal code 

consists of six elements, as shown in Table 2.1.

Table 2.1. Elements of a Fractal Code.

 

 Note that the dilation factor, for both spatial and photometric properties, is not 

represented here.  This is for efficiency, as these dilations are presumed to be global.

 Further efficiencies of expression also may be found by dropping the colorimetric 

operation (a way of describing how the colorimetric contraction value is to be combined 

into the region).  Since the set of orthonormal transformations the search mechanism uses 

is finite, I represent the transformation as a referent to that transformation’s ordinal 

membership in the set.  The size and shape of the region may be reduced itself, if the 

partitioning of the image is regular.  In my implementation, I use a regular, uniform 

partitioning, which forms a grid.  Thus, the size and shape of the region can be expressed 

with a single integer, which represents the width and height of the region in pixels.

Arbitrary selection of source

 The choice of source image A is arbitrary. Indeed, the target image B may be 

fractally encoded in terms of itself, by substituting B for A in the above algorithm. 

Although one might expect that this substitution would result in a trivial encoding (in 

SpatialSpatial PhotometricPhotometric

sx, sy Source fragment origin C Colorimetric contraction

dx, dy Destination fragment origin Op Colorimetric operation

T Orthonormal transformation

S Size/shape of the region
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which all fractal codes correspond to an identity transform), this is not the case, a fractal 

encoding of B will converge upon B regardless of chosen initial image. For this reason, 

the size of source fragments considered is taken to be twice the dimensional size of the 

target image fragment, resulting in a contractive affine transform. Similarly, as shown 

above, color shifts are made to contract.  This contraction, enforced by setting the dilation 

of spatial transformations at 0.5, provides the second key fractal observation, that 

similarity and repetition occur at differing scales. 

Arbitrary ordinality of encoding

 The ordinality of the set of fractal codes which comprise a fractal representation is 

similarly arbitrary.  The partitioning P may be traversed in any order during the matching 

step of the encoding algorithm.  Similarly, once discovered, the individual codes may be 

applied in any order, so long as all are applied in any particular iteration. 

Fractal Representation is Fractal Encoding

 The fractal encoding algorithm, while computationally expensive in its exhaustive 

search, represents the relationship between two images (or between an image and itself) 

as a much smaller set of fractal codes, an instruction set for reconstituting the 

relationship, with inherently strong spatial and photometric correspondence.  It is through 

this encoding that the fractal representation of the relationship between those two images 

is derived.  Indeed, the fractal representation is the fractal encoding.

Features from Fractals 

 The fractal representation of an image is an unordered set of fractal codes, which 

compactly describe the geometric alteration and colorization of fragments of the source 

image that will collage to form the target image. While it is tempting to treat contiguous 

subsets of these fractal codes as features, I note that their derivation does not follow 

strictly Cartesian notions (e.g. adjacent material in the destination might arise from non-

adjacent source material). Accordingly, each of these fractal codes can be considered 
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independently, and candidate fractal features can be constructed from the individual 

codes themselves, and not from clusters of codes.

 Each fractal code yields a small set of features, formed by constructing subsets of 

its underlying six-tuple. These features are determined in a fashion to encourage both 

spatial- and photometric-agnosticism, as well as specificity. My algorithm creates 

features from fractal codes by constructing subsets of each of the six members of the 

fractal code’s tuple.    

 I further chose to represent each feature as a concatenated string in memory.  I 

form these strings by attaching a character tag to each field in the fractal code and then 

converting that field into string format prior to concatenation, like so:

sx, sy (source fragment origin)  →  Ssxsy (string representation)

 The choice of the particular tag is arbitrary, but tagging itself is not: tagging is 

necessary to avoid in-string matching between the different kinds of fields (e.g. an 

numerical value may appear in multiple fields of a fractal code).  Doing so attributes a 

world grounding to each field, and collectively to the entire fractal code.

Number of Features

 As mentioned above, the features are constructed by extracting subsets of each of 

the six members of the fractal code’s tuple.  In theory, the number of available subsets 

would be equivalent to the size of the power set of those six members, or 26 = 64.  

However, we may generate more that that number of features, by noticing that two of the 

primary features (the source fragment origin and destination fragment origin) themselves 

consist of pairs of numbers.  Therefore, the available number of features is at least 1024 

(210).  Moreover, we may further extract additional features by considering these two 

pairs under a different coordinate system (polar coordinates, as an example, would yield a 

distance and an angle, if we take the destination to be the origin, and the source fragment 

origin as an endpoint for a ray).

 In practice, I notice that the photometric operation typically is constant 

(corresponding to a “copy” operator), and that the source fragment and destination 
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fragment origins may be treated without loss of generality as their constituent portions.  

Therefore, the number of available features is closer to 128 (27).  This is further 

diminished as we consider that we want the order of the features in each subset to be 

unimportant.

 The selection of which features to use, and whether to numerically combine or 

repurpose them via alternate coordinate systems, may be viewed as an additional control 

mechanism for algorithms which operate over fractal representations.

Mutuality 

 The analogical relationship between source and target images may be seen as 

mutual; that is, the source is to the destination as the destination is to the source. 

However, the fractal representation is decidedly one-way (e.g. from the source to the 

destination).  To capture the bidirectional, mutual nature of the analogy between source 

and destination, I now introduce the notion of a mutual fractal representation. Let us label 

the representation of the fractal transformation from image A to image B as TAB.  

Correspondingly, let us label the inverse representation as TBA. I shall define the mutual 

analogical relationship between A and B by the symbol MAB, given by this equation:

MAB = TAB ∪ TBA 

 By exploiting the set-theoretic nature of fractal representations TAB and TBA to 

express MAB as a union, the mutual analogical representation affords the complete 

expressivity and utility of the fractal representation.

Extended Mutuality

 I note that the mutual fractal representation of the pairings may be employed to 

determine similar mutual representations of triplets, quadruplets, or larger groupings of 

images.  As a notational convention, I construct these additional representations for 

triplets (Mijk) and quadruplets (Mijkl) in a like manner:
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Mijk = Mij ∪ Mjk ∪ Mik   

Mijkl = Mijk ∪ Mikl ∪ Mjkl ∪ Mijl 

 Thus, in a mutual fractal representation, there is the necessary apparatus for 

reasoning analogically about the relationships between images, in a manner which is 

dependent upon only features which describe the mutual visual similarity present in those 

images.
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CHAPTER 3

FRACTALS AND KNOWLEDGE

 In the preceding chapter, I illustrated the development and construction of the 

fractal representation.  In this chapter, I specifically address the question of whether the 

fractal representation is a knowledge representation.

What is a Knowledge Representation

 Acts of cognition involve the manipulation of knowledge, represented in some 

manner.  While the term “representation” is quite commonplace and its use may be 

familiar, it is significant to note that very rarely is the notion tackled of what a 

representation actually may be.  However, in the AI literature, a paper by Davis, Shrobe, 

and Szolovits, did address this issue (Davis et al., 1993), and Sowa later expanded on 

their criteria, albeit from a perspective of knowledge engineering (Sowa, 2000).  Guarino 

(1995) also addressed the ontological aspects of representation.

The roles of representation

 A representation can be said to have meaning when in service toward a particular 

task.  Davis et al. (1993) note that representations play five distinct, critical roles.  Those 

roles are as a surrogate, as a set of ontological commitments, as a fragmentary theory of 

reasoning, as a medium for pragmatically efficient computation, and as a medium of 

human expression.   Let us consider each role in brief, and begin to bring aspects of 

visual search into the discussion.
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Representation, as a surrogate

 When a mind reasons about its world, this reasoning occurs internally, while the 

majority of what it reasons about exists externally.  A representation then must act as a 

surrogate for things which exist outside the reasoning agency.  Direct interaction with real 

world objects are paralleled by operations upon the internal representations of those 

objects.

 Davis et al. (1993) raise two significant points concerning surrogates:  what is a 

surrogate a surrogate for, and what is the fidelity of a surrogate?  Some correspondence 

between the surrogate and its counterpart in the world must be specified.  With respect to 

fidelity, what attributes of the original are preserved, omitted, or implied with the 

surrogate must be addressed, for perfect fidelity is impossible.  

 Representations, then, must be imperfect, and since reasoning operates upon 

representations, so to must reasoning itself arrive at imperfect conclusions, even if the 

reasoning process itself is sound.  It is this correspondence aspect which must be 

adequately addressed in any system which seeks to concern itself with levels of 

abstraction. 

Representation, as a set of ontological commitments

 Selecting a representation involves a decision about how and what to represent 

from the arriving world.  A set of commitments, then, is made that both define the extent 

of the representation’s capture of the world and define the way that extent is expressed or 

embodied within the representation ontologically.  Here, the task at hand acts as a guide 

toward the selection of an appropriate ontology.  These commitments start at the moment 

a representation begins to form, and likely accumulate as the representation is used.  As 

Davis et al. (1993) note, the representational power lies in the correspondence of the 
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representation to something in the world and in the constraints that that correspondence 

impose.

Representation, as a fragmentary theory of reasoning

 Representations are formed to allow cognition to occur within some agency.  

Even though the theory of reasoning arising from a representation may be implicit, it can 

be seen through three aspects: what the representation defines as inferencing, the set of 

inferences it allows, and the subset of those inferences which it recommends.  I refer the 

reader to the Davis paper for a thorough discussion of what it is to make intelligent 

inferences.

 Allowed inferences are those inferences which can be made from available 

information.  As a representation might arise in any number of ways, so too might the 

allowed inferences vary.  As Davis et al. (1993) point out, this flexibility is acknowledged 

so as to admit the legitimacy of the various approaches.  Having this flexibility at its core 

provides a framework for re-representation.

 Clearly, the set of allowable inferences may become untenably large. A smaller, 

constrained subset of these inferences is necessary.  Whether by specifying the constraints 

with which to select recommended inferences, or by providing them somewhat explicitly, 

some process or reasoning or insight must be at work to frame them.  In this way, Davis 

et al. (1993) citing Minsky by way of example, illustrates that representation and 

reasoning are intertwined in a deep, theoretical manner.  They also observe that much of 

the reasoning which informs recommended inferences has been provided by observation 

of human behavior.
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Representation, as a medium for efficient computation

 The information processing stance of human cognition holds that cognition is a 

computational process. In the same sense that a representation recommends inferences, so 

to does it imply the manner in which it may be used in computation.  This guidance 

speaks to the adequacy of the representation, as an organizational mechanism for 

information, for the task at hand. 

Representation, as a medium of expression

 Although the Davis paper addresses itself to the notion of representations as 

vehicles for human expression, I wish to stress that the internal dialogue of, about, and 

with representations is as important as the external one.  In so complex a system as the 

human brain, information must pass from subsystem to subsystem, preferentially without 

substantial degradation and with increasing specificity. The expression of representations 

internally is a process of systematic reassembly of aspects of those representations into 

new ones, through which other systems may operate upon the newfound representations, 

with the core roles of representations implied by those systems’ tasks. Herein, cognitive 

models are formed. 

The representation definition and criteria of Markman

 In his book “Knowledge Representation,” Markman offers both a definition of 

representation as well as a set of criteria for assessing a representation (Markman, 1999).  

Let us first consider Markman’s remarks. 
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Defining representation

 Markman (1999) gives a definition of representation with four components.  The 

four components are:

1. a represented world - the domain that the representations are about;

2. a representing world - the domain which contains the representations;

3. representing rules - a set of rules which map elements in the represented 

world to elements in the representing world; and

4. a process which uses the representation.

  Markman notes that in all known representational systems, the representing world 

loses information about the represented world (Markman, 1999).  Specifically, he assigns 

this loss of information to the decision made about what aspects of the represented world 

to be included in the representing world. That is, the agent constructing the representing 

world must decide what to include, and what to exclude, and that decision carries forward 

into the representation the consequences of it. 

 Markman notes that the representing rules determine the isomorphism (or 

homomorphism) of the representation: if each unique element in the represented world is 

mapped to a unique element in the representing world, the representation is isomorphic 

(Markman, 1999). The correspondence given by the representing rules also imply loss of 

information: if a representation is homomorphic, then more than one element in the 

represented world maps in an undifferentiable manner to the same element in the 

representing world, and therefore the ability to discriminate between those represented 

world elements is lost.  This loss of information, through deliberate omission and through 

potential homomorphism, affords the capacity for reasoning about the missing 

information from that which is not missing. 

 Markman’s requirement that the representation must be associated with some 

process which uses it implies that utility to an agent is the rationale for the construction of 

the representation. Markman additionally notes that Marr (1982) remarks that a given 
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representation makes some information about the represented world easier to access than 

other information, via the representing rules and the loss of information.

Characterization

 There are additional ways to characterize representations, and both Markman 

(1999) and Nersessian (2008) provide insights into how to achieve such characterizations.

Analog / Symbolic

 Markman further distinguishes representations as either analog or symbol. A 

representation is an analog if the representing world has an inherent structure about how 

it operates and that the relationships between elements in the representing world are not 

arbitrary. A representation is symbolic if a convention exists which links all of the 

elements in the representing world, the convention being arbitrary in a sense that 

representing rules could be changed to determine a wholly new convention.  In this way, 

the representing rules determine, Markman seems to suggest, the nature of a 

representation’s analogism or symbolism. 

Iconic / Propositional

 Nersessian (2008), in a discourse on mental modeling, uses slightly different 

terminology to emphasize the same point.  To Nersessian, a representation may be 

characterized as as iconic if it demonstrates a structural relationship to the thing it 

represents.  Iconic representations therefore afford an ability to assess similarity or 

goodness of fit, and provide a notion of “accurate” or “inaccurate” (Nersessian 2008). A 

Nersessian iconic representation is thereby closely associated with Markman’s analog 

representation.  

 In contrast, Nersessian holds that if the relationship between a representation and 

what it represents stands for a kind of “truth” and if the operations over the representation 

preserve this “truth” via the use of a consistent set of symbols which themselves stand for 

a stable collection of properties, then the representation is deemed propositional 
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(Nersessian, 2008).  Therefore, Nersessian propositional representation is most closely 

aligned with Markman’s symbolic representation.

Modal / Amodal

 Nersessian (2008) further delineates representation along a dimension which 

pertains to the degree to which its symbols can be associated with perceptual states 

(Barsalou, 1999, 2008). Modal symbols are analog (in the Markman sense) 

representations of the perceptual states from which they are extracted. Amodal symbols, 

on the other hand, are arbitrarily (but consistently) assigned.  

 Therefore, in Nersessian’s view, a propositional representation uses amodal 

symbols, but an iconic representation may use either modal or amodal symbols, or both.  

Markman representational dimensions

 Markman further suggests that proposed representations be assessed with respect 

to at least three dimensions: their endurance, the presence of symbols, and their 

abstractness.  By endurance, Markman means not that some specific values within a 

representation be maintained (a state), but that the representation itself may be temporary 

or long-lasting. By the presence of symbols, this is a distinction between representations 

which are symbolic and which are not.  Markman invokes the use of a space (as a 

structure upon which elements have some positional meaning) as an example of non-

symbolic representation. Lastly, by abstractness, Markman suggests that this is the degree 

to which the process which uses the representation is distinct from the representation 

itself. Markman further develops the notion of the power of a representation as a 

convolution of another way in which to describe the suitability of the representation to 

the process which intends to use it with the expressivity of the representation (the degree 

to which it may be able to represent all represented worlds).

Fractal representations, in light of Markman

 Let me now reflect on the fractal representation as a representation, working in 

somewhat the reverse order of the Markman definition and criteria.
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Fractal representations and the represented / representing worlds

 By beginning with the fractal encoding process, the fractal representation is a 

capture of that unordered set of transformations which transform one image into another 

image. The represented world is the set of the source and target images.  The representing 

world is the set of transformations. There is a commitment, via the chosen partitioning 

scheme, as to what aspects of the represented world are selected as being contained in the 

representing world.  Indeed, the partitioning scheme itself is the constructing agent’s 

primary method by which the inclusion/omission of represented world information is 

made.  The fractal representation satisfies this aspect of Markman’s definition.

Fractal representations and the representing rules

 Again, due to the use of the fractal encoding process itself in conjunction with the 

partitioning scheme, the representing rules clearly and distinctly map the represented 

world (source/target images) with the representing world (set of transformations).  

Moreover, this mapping is isomorphic, as the partitioning scheme must meet the 

connectivity and covering requirements described above.  Therefore, the fractal 

representation satisfies this aspect of Markman’s definition.

Fractal representations and symbolism

 The fractal representation is non-symbolic in the Markman sense, in that it rests 

upon an inherent structure given by the representing rules which is non-arbitrary.  

However, as I point out above, the aspects of the fractal representation, the fractal 

features, may themselves by represented according to any suitable arbitrary convention, 

so long as they allow for discrimination between themselves. While the symbols chosen 

may indicate correspondence to certain non-arbitrary aspects of the representing world (a 

position in space, a color, etc.), the manner in which the features are denoted itself is 

independent and arbitrary with respect to inherent structure of the fractal representation 

and to the manner in which the comparison between features is made. Thus, fractal 

features are symbolic in the Markman sense, but the fractal representation from which 
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they are derived are not. Even so, the fractal representation satisfies this aspect of 

Markman’s definition.

The expressivity and power of fractal representations

 The fractal representation is able to represent any two arbitrary real-world images. 

Furthermore, as developed in the section on mutual fractals, the fractal representation 

may be extended to represent any arbitrarily large set of images. Thus, the fractal 

representation affords a tremendous expressivity.  But does this mean that it is a powerful 

representation? According to Markman, the power of a representation can only be 

determined via its suitability to some task.  It is my belief that through the demonstration 

of the fractal representation’s utility in addressing a wide variety of problems of visual 

similarity, visual oddity, and perception, I have provided reasonable evidence to suggest 

that the fractal representation is quite powerful with respect to those tasks.

 But let me take it one step further.  The expressivity and power of fractal 

representations is also rooted in the powerful association of the representation and the 

mathematical notions of iterated function systems.  As seen in the prior chapter, iterated 

function systems have been used to characterize and to create models of a wide variety of 

physical and mathematical systems.  The fractal representation provides a direct means to 

reconstruct the target image from its represented world if it is used in an iterated function 

system (IFS) manner; that is, a sufficient fidelity rendering of the target image may be 

obtained if the representation is used to calculate as an IFS, from any original image, for 

the target image is the encoded attractor. The power of the fractal representation stems 

not only from this aspect, but from the explicit use of the source image as the initial 

condition, forming a structural, spatial relationship between that initial condition and the 

attractor.

 Lastly, the fractal representation is specifically and deliberately modal, for it 

expressly relates the received perceptual input of source and target images from the 

represented world and establishes an isomorphic mapping between that input and the 

representing world.
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The knowledge representation roles of Davis et al.

 Let me now address the roles of Davis et al. (1990) and fractal representations. 

The five roles are as a surrogate, as a set of ontological commitments, as a fragmentary 

theory of reasoning, as a medium for pragmatically efficient computation, and as a 

medium of human expression.

Fractal representation as a surrogate

 Davis et al. (1990) argue that a knowledge representation is a surrogate for the 

world, over which reasoning is performed. A fractal representation is the representation of 

a pair (or more) of real-world images (source and target) as a finite set of similitude 

transformations. No reasoning about a fractal representation involves the original, 

represented world: reasoning is only performed on the set of transformations (or fractal 

features derived from them). The representation maintains a strong, direct 

correspondence between the represented and representing worlds, a consequence of the 

act of encoding and the choice of the partitioning scheme used by the encoding. 

Furthermore, the fidelity of the correspondence is determined precisely by the 

partitioning scheme.  This commitment of the fractal representation to correspondence 

and fidelity, driven largely by the partitioning, allows the representation both to satisfy 

the first role as well as affords a powerful means by which the fidelity may be tuned, 

providing a different kind of abstraction (different from the Markman sense) which I 

develop in a subsequent chapter.

Fractal representation as a set of ontological commitments

 The fractal representation, through the encoding process by which it is derived 

and the partitioning scheme which the encoding process uses to carve up the represented 

world, clearly makes a deliberate commitment and mapping between the represented and 

representing worlds. But is this ontologically sound? 

 My answer is yes. There is absolute grounding between each transformation in the 

representing world and the fragments derived from the represented world.  Moreover, the 
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mapping is wholly isomorphic.  Thus, there is no other potential meaning for any of the 

transformations other than it precisely stands as the capture of the mapping between the 

fragments. Each transformation is complete, concise, and deliberately excludes 

implication or information from any other portion of the represented world. Thus, the 

fractal representation satisfies the second role.

Fractal representation as a fragmentary theory of reasoning

 To consider the fractal representation as a fragmentary theory of reasoning, we 

must consider what the representation defines as inferencing, the set of inferences it 

allows, and the subset of those inferences which it recommends.  As for inferencing, or in 

the broader sense of intelligent reasoning (ala Davis et al. 1990), I refer the reader to 

subsequent chapters of this dissertation, in which I explore in detail the fractal 

representation’s suitability to addressing problems in visual similarity, visual oddity, and 

perception. But let us consider more closely the afforded and sanctioned “inferences” of 

the fractal representation.

 The fractal representation clearly affords the ability to determine subsets of its 

core set of transformations.  It also affords the determination of fractal features from each 

of these transformations, as well as the collection into strings or sets various collections 

of those features. It, at least in principle, admits the combination of aspects of its 

transformations into subsequent transformations, a topic which I explore in some detail at 

the end of this dissertation, under fractal composition.

 The fractal representation specifically sanctions all of the above as well, but it 

does not, perforce, sanction the partial combination of aspects of one transformation with 

aspects of another. Why? Because to do so would negate the strong correspondence 

between the represented and representing worlds.  Indeed, the only sanctioned operations 

are those which expressly maintains that correspondence.  

 Notice that a powerful operation that the fractal representation sanctions is the 

modification of the partitioning scheme used by the encoding process. This ability itself 

provides the mechanism by which a fractal representation can be rerepresented into a 
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more coarse or more finer correspondence. This ability to shift levels of abstraction 

between the represented and representing worlds, afforded by modifying partitioning, is 

developed later in this dissertation.

 All of the examples of reasoning using fractal representations contained in this 

dissertation specifically require this sanctioning.  In this way, fractal representations 

satisfy the third role.

Fractal representation as a medium for pragmatically efficient computation

 While process of encoding a pair of images fractally is computationally intensive, 

it is not to say that the resultant fractal representation itself carries that burden. In fact, 

one of the most common uses I make of the representation is to use fractal features as 

indices for storing or retrieving the representation in a memory. In this regard, the 

representation is phenomenally effective, as I demonstrate through the development and 

description of the Analogy by Recall algorithm subsequently. Furthermore, as I outline in 

the latter chapter of the dissertation, the ability to construct new fractal representations 

without resorting to recalculating the encoding is both computationally efficient and 

afforded and sanctioned.  In this manner, the fractal representation satisfies the fourth 

role.

Fractal representation as a medium of human expression

 This last role of Davis et al. proves the most vexing to argue for, for at its core, 

this would seem to require the communication of fractal representations between two 

agents in order to assess its expressivity. Let me tackle it in this way.

 The fractal representation may need to be examined as a series of subsets of its 

original state, or rerepresented into a more coarse or more fine correspondence, in order 

for the agent to accomplish its task.  The representation itself is far more compact than 

the original (and arguably infinite) data in the represented world.  Thus, any subsystem 

which makes use of the representation or shares it with another (for example, from a 

memory system to a system which calculates featural similarity) benefits from the 

efficiency of this compaction.
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 So, is the fractal representation an effective means of human expression? Perhaps 

not, for I make no claim that what I have developed is a cognitive model (which is, after 

all, what Davis et al. (1990) address indirectly through the development of their 

knowledge representation roles. Instead, let me say that the fractal representation affords 

a profound computational model, clearly cognitively inspired. 

The Fractal Representation is a Knowledge Representation

 In light of the strength with which the fractal representation satisfies the criteria of 

Markman and meets the roles of Davis et al., I claim that, yes, the fractal representation is 

a knowledge representation.  Furthermore, and to be quite specific ala Markman and 

Nersessian, the fractal representation is an analog/iconic modal knowledge 

representation.
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CHAPTER 4

FRACTALS AND VISUAL SIMILARITY

 This chapter will discuss visual similarity, and a class of problems from visual 

analogy in which similarity calculations are used to derive an answer.  This chapter serves 

to introduce the Analogy By Recall (ABR) algorithm.

Visual Analogy and Similarity

 Suppose there is a visual analogy, expressed symbolically as A : B :: C : D, with 

the symbols representing images, as shown in Figure 4.1.  This can be interpreted as 

suggesting that some operation T exists which captures the relationship between image A 

and image B (“A is to B”).  Likewise, some other operation T’ is proposed which captures 

the relationship between image C and image D (“C is to D”).  

Figure 4.1. An Example of Visual Analogy

 In this manner, it is seen that the central analogy in such a problem rests not with 

the images themselves, but in the degree to which the two operations T and T’ are 

analogous or similar.  I can express the problem to make plain this distinction thus:

A : B :: C : D   ⟶  T(A,B) :: T’(C,D) 
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Similarity between operations

 The nature of this similarity may be determined by a number of methods, many of 

which might associate visual or geometric features to points in a coordinate space, and 

compute similarity as a distance metric.  Tversky developed an alternate approach by 

considering objects as collections of features, and similarity as a feature-matching 

process (Tversky, 1977).  

 I adopt Tversky’s interpretation of similarity, and thus seek to express these 

operations T and T’ in some representation which both is robust and affords sufficient 

feature production to permit feature-matching (Ashby & Ennis, 2007).  A particular 

nuance of Tversky’s approach, however, is that either the representation or the features 

derived from the representation must be formable into sets, as the calculation for 

similarity employed requires the counting of elements within sets (and their union and 

intersection).   

 Thus, I can revisit the typical visual analogy A : B :: C : D, where T and T’ are 

now representations which meet Tversky’s featural requirement.  To make a comparison 

between the two representations, I first derive features from each, and then calculate a 

measure of similarity based upon those features.

Similarity metric

I desire a metric of similarity which is normalized, one where the value 0.0 means 

entirely dissimilar and the value 1.0 means entirely similar.  Accordingly, I use the ratio 

model of similarity as described by Tversky (1977), wherein the measure of similarity 

between the two representations T and T’ is calculated thus:

 S(T,T’) = Ƒ(T ∩ T’) / [Ƒ(T ∩ T’) + α Ƒ(T-T’) + β Ƒ(T’-T)] 
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where the operator Ƒ(Y) derives the number of features in some set Y.  The particular sets 

involved may be considered as indicating, respectively, those features the two 

representations share (T ∩ T’), those features in T but not in T’ (T-T’), and those features 

in T’ but not in T (T’-T).

 Tversky (1977) notes that the ratio model for matching features generalizes 

several set-theoretical models of similarity proposed in the psychology literature (e.g. 

(Bush & Mosteller, 1953) and (Gregson, 1976)), depending upon which values one 

chooses for the weights α and β. Later in this discussion, I shall revisit these weights, and 

illustrate the significance of their choice.

 A Strategy for Visual Analogies

 One can interpret visual analogies as suggesting that some operation T exists 

which captures the relationship between image A and image B (“A is to B”).  Likewise, 

some other operation T’ is proposed which captures the relationship between image C and 

image D (“C is to D”).  Let us now consider a class of visual analogy puzzles, an example 

of which is shown in Figure 4.2.  

Figure 4.2. A visual analogy puzzle. 

 In this problem, the image D is missing, and the challenge is to determine which 

of the offered candidate images would best fit into the matrix.  That is, it must be 
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determined which of these candidate images, if selected as image D, would establish 

transformation T’ as most analogous to transformation T.

 Analogies in a general sense are based on similarity and repetition (Hofstadter, 

2008). I would seek to employ a suitable representation, one which affords the capture of 

these qualities as well as sanctions reasoning over them. As I showed previously, fractals 

capture self-similarity and repetition at multiple scales (Mandelbrot, 1982), and I 

therefore propose that fractal representations are an appropriate choice for addressing 

certain classes of analogy problems. 

 One method for solving this puzzle is this: from this set of candidates, form the 

fractal representations from the fractal encoding of the transformation of each candidate 

image X in terms of image C.  

∀ X ∈ { candidate answers }, Tx ≔ FractalEncode(C,X)

Ω = { T1, T2, T3, T4, … Tn } and T’ ∈ Ω

This provides a set of possible transformations, which I shall label Ω, from which to seek 

the most analogous transformation T’ and thereby find which candidate image was 

responsible for it.

The Analogy By Recall (ABR) Algorithm

 I claim that analogy initiates with an act of being reminded, and that fractally 

representing both that triggering percept as well as all prior percepts affords 

unprecedented similarity discovery, and thereby analogy-making.   I have developed and 

implemented an algorithm, called Analogy By Recall (ABR), to assist in illustrating and 

refining these claims.
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The Generality of Representations

 While in this dissertation I exclusively shall use fractal representations in the 

examples and subsequent discussion, the overall approach is agnostic with respect to 

representations, and may be used with any representation which affords the ability for 

objects thus represented to be decomposed into a set of features.  The approach is 

distinguished from other analogical algorithms in that it presumes no explicit relationship  

between objects or between features of objects. 

Introducing the Analogy By Recall (ABR) Algorithm

 My approach compares each transform in the set Ω to the original transform T by 

means of recalling common features and calculating similarity metrics.  This method is 

divided into several stages. I now present the algorithm in pseudo-code form, and then 

describe each stage of the algorithm in detail.
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Algorithm 4.1. The Analogy by Recall (ABR) Algorithm.

Analogy by Recall: Preparatory Stage

 My system uses a feature-based similarity approach to analogy.  Consequently, I 

chose data structures which facilitate the storage and retrieval of information based upon 

aspects of the data, specifically by using a hash table as a data structure surrogate for 

memory. As transformations will be hashed into memory, I define two additional 

To determine the transform T’ which is most analogous to transform 
T from a set of transformations Ω ≔ { T1, T2, T3, T4, … Tn }:

 P R E P A R A T O R Y
Let Ω* ≔ { T } ∪ Ω
Construct a memory M as an empty hash table.
Let F() be a function which generates a set of features.
Let Κ() be an injective hash function for M.

 I N D E X I N G  
For each transform τ ∈ Ω*, hash τ in M by: 
· Generate a set of features F(τ) = { f1, f2, f3, … }.
· For each feature fj ∈ F(τ), store τ into M, using Κ(fj) as a key.  

 R E T R I E V A L  
For each transform Ti ∈ Ω, calculate Si as the similarity  of T to Ti 
by:
· Set a ← b ← c ← 0.
· Generate a set of features F(Ti) ≔ { f1, f2, f3, … }.
· For each feature fj ∈ F(Ti): 

•Use Κ(fj) as a key to retrieve a set of entries µ from M.
•If T ∈ µ, then a ← a + 1 ∵ fi ∈ F(Ti) ∩ F(T).
•If T ∉ µ, then c ← c + 1 ∵ fi ∈ F(Ti) − F(T).

· Generate a set of features F(T) ≔ { f1, f2, f3, … }.
· For each feature fj ∈ F(T):

•Use Κ(fj) as a key to retrieve a set of entries µ from M.
•If Ti ∉ µ, then b ← b + 1 ∵ fi ∈ F(T) − F(Ti).

· Calculate Si from the values a, b, and c:
Si ←a / ( a + α*b + β*c )

Determine ζ ←max { S1, S2, S3, S4, … Sn }

T’ is therefore that transform Ti ∈ Ω which corresponds to the 
maximal similarity ζ, and is deemed the most analogous to 
transform T.

79



operators: F(), a method to generate a set of features from a given transformation; and 

K(), an injective hash function which operates solely over the domain of the features.  

 I made the commitment to a hash table for two reasons beyond that of wishing to 

use features.  First, it is desirous to find some overlap in the features which occur 

between two transformations, such that a perfect overlap would deem the transformations 

perfectly analogous.  The hash function K() may result in hashing multiple 

transformations to the same feature, and therefore K() must operate only upon a given 

feature, and not take into consideration the transformation which gave rise to that feature.  

Second, F(), the method which generates features from a transformation, must do so in a 

manner such that each generated feature affords salience, or information content (Tversky  

1977).

Analogy by Recall: Indexing Stage

 I wish to store each transformation in the hash table memory M. The set of 

possible analogous transformations Ω is combined with the original transformation T to 

form a new set Ω*.  The algorithm iterates over each member τ ∈ Ω*, and from each 

member calculates a set of features using F(τ).  For each feature fi ∈ F(τ), the 

transformation is indexed as an ordered pair (K(fi), τ). That there likely will be hash 

collisions at key value K(fi) is expected and desired.

Analogy By Recall: Retrieval Stage

 A measure of similarity between the original transformation T and each possible 

analogous transformation Ti ∈ Ω must be determined. The choice of metric reflects 

similarity as a comparison of the number of features shared between candidate pairs 

taken in contrast to the joint number of features found in each pair member (Tversky, 

1977).  I desire a metric which is normalized with respect to the number of features under 
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consideration.  In my implementation, the measure of similarity between the target 

transform T and a candidate transform Ti is calculated using the ratio model (Tversky, 

1977):

 S(T,Ti) = Ƒ(T∩Ti) / (Ƒ(T∩Ti) + α Ƒ(T-Ti)  + β Ƒ(Ti-T))

and Ƒ(Y) is a function which determines the number of features which may be extracted 

from the set Y.   These values may be calculated effectively, using hash table retrieval as a 

surrogate for distinguishing and counting common and distinct features within the sets 

T∩Ti , T-Ti, and Ti-T respectively.

 Tversky notes that the ratio model for matching features generalizes several set-

theoretical models of similarity proposed in the psychology literature, depending upon 

which values one chooses for the weights α and β (Tversky, 1977). I have found that 

significant discrimination between candidate answers may be found by using the Jaccard 

similarity; that is, by setting α ← β ← 1.0, and thus favoring features from either 

transformation equally. As Tversky (1977) notes, by equating α and β, I ensure that the 

calculation of similarity is symmetric with respect to the transformations under 

comparison.

 Once the algorithm has calculated the similarity function over all of the candidate 

transforms, it is a straightforward matter to determine which transformation has generated 

the maximal similarity.  This transformation, T’, is deemed to be the most analogous to 

the original transformation T.
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An Example

 I now present an example of using fractal representations and my strategy to solve 

the visual analogy puzzle shown in Figure 4.2 above. 

The primary and candidate transformations

In this example, the problem is to determine for which of the candidate images the 

transformation T’ is made most analogous to transformation T.  I first will represent T as 

a fractal representation, and then generate a set of candidate transformations Ω as shown 

in Figure 4.3.

Figure 4.3. The primary and candidate transformations

 I arbitrarily may select any partitioning scheme, so long as that partitioning meets 

the criteria of coverage outlined above.  For the purpose of this example, let us choose to 

partition each image into a series of 16x16 pixels, forming a regular grid.   Each of these 

images is 134 pixels wide and 84 pixels high.  Thus, each image is to be partitioned into 

54 blocks.  

 Each of these blocks will be represented by a single fractal code.  In my present 

implementation, each fractal code generates 63 features.  Therefore, at this partitioning, 

each primary transformation will be indexed into memory using the 54 x 63 x 2 = 6804 

features generated from mutual fractal representation of that transformation. 
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Calculating similarities and selecting the most analogous.

 After the primary transformation T is indexed into memory using features derived 

from the fractal codes, a similarity value for each of the candidate transformations in the 

set Ω may be calculated using the Tversky formula as noted.  Table 4.1 illustrates the 

values calculated for each of the candidate transformations.

Table 4.1. Candidate transformation similarities

 

 It may be seen that the fourth transformation is the most similar to the primary 

transformation T, with a value of 0.842.  Therefore, for this puzzle, the answer is 

candidate answer 4.

Confidence

 In the Analogy by Recall algorithm, and as illustrated by the example above, a 

candidate representation can be found to be the most analogous by a straightforward 

calculation of its featural similarity, using the Tversky formula.  But a question quickly 

arises: how confident is the answer?  That is, given the variety of answer choices, even 

transformation similarity

0.623750735

0.517048795

0.552910053

0.84244562

0.573780129

0.535273369

83



though an answer may be selected based on maximal similarity, how may that choice be 

contrasted with its peers as the designated answer? 

 A potential path forward would be to assess the given similarity calculation as a 

member of the set of all such similarity calculations for the collection of potential 

answers.  Let us suppose that for a given collection of answers, a strategy such as ours is 

used to calculate a corresponding set of similarity values:

ABR( {A1, A2, A3, A4, ... An }, problem ) →{ S1, S2, S3, S4, … Sn }

∀Si, 0.0 ≤ Si ≤ 1.0

The ABR algorithm would offer 

ζ ← max( { S1, S2, S3, S4, … Sn } )

as the maximal similarity value, and thereby deem the answer which generated that value 

as the most analogous.  It may be determined, additionally, how statistically distinct the 

value ζ is from its peers, by first calculating the mean, standard deviation, and standard 

error of the mean for the set of similarity values, and then, assuming a normal 

distribution, calculating the deviation of each of the values from the mean of the set:

µ = n-1 Σ Si    and   σ = √ [n-1 Σ (Si-µ)2]   ∀i, 0 < i  ≤  n

σµ = σ/√n

then

Deviations ← { D1, D2, D3, D4, ... Dn }

∀i, 0 < i  ≤  n, Di = (Si-µ)/σµ

where the set Deviations is a t-distribution of the similarity values. The most analogical 

answer, the one corresponding to the maximal similarity value ζ, would have the largest 

positive deviation value under this reformulation:
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Sx = ζ ← max( { S1, S2, S3, S4, … Sn } ) iff

∃ x = y, Dy = max( { D1, D2, D3, D4, ... Dn } )

 This, then, suggests that the most analogical answer would in a sense “stand 

apart” from the rest of the answers.  The degree to which it “stands apart” may be 

interpreted as a metric of confidence in selecting the answer.  Indeed, assuming a normal 

distribution, a confidence interval based upon the standard deviation may be calculated, 

and score each of these values along such a confidence scale, where 0.0 would indicate 

no variation at all from the answer, and 1.0 would indicate an utterly apparent and distinct 

value.  Thus, the problem of selecting the most analogous answer is transformed into a 

problem of distinguishing which of the possible answers is a statistical outlier.

Ambiguity

 The similarity scores generated by the ABR algorithm may vary widely.  As 

shown above, the problem of selecting the most analogous answer may be considered as 

the companion problem of determining the statistical outlier.  The challenge is that there 

may be more than one such outlier, or none at all.  I deem these situations ambiguous.

 To resolve such ambiguity, one must first examine why such a situation might 

arise.  I argue that the ambiguity arises due to a data problem, but it is more: it is a 

problem with the representation itself, from whence the data arise. The similarity value 

calculated by the ABR algorithm is determined by the Tversky formula for similarity:

 Si ← S(T,Ti) = Ƒ(T∩Ti) / (Ƒ(T∩Ti) + α Ƒ(T-Ti)  + β Ƒ(Ti-T))

which is itself wholly dependent upon Ƒ(), the number and nature of the features being 

considered, and the intersection and difference of the sets of those features.  
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Homogeneity and Sparsity

 Therefore, it is the homogeneity of the features (those which occur in both sets, 

Ƒ(T∩Ti) ), and the sparsity of the number of features, which directly affect the similarity 

calculation.  These two factors in turn affect the ability of the ABR algorithm to offer an 

unambiguous selection of the most analogous answer.

 To address the sparsity of data, there must be determined a way to create more of 

it.  To address homogeneity of data, the manner in which the data is created must be 

modified, so as to afford potential variance.  In either case, what is sanctioned by the 

representation over which the analogies are being formed must be examined. 

Resolving Ambiguity

As noted in Chapter 3, Davis et al. (1993) describe the five distinct roles that 

representations play: as a surrogate, as a set of ontological commitments, as a 

fragmentary theory of reasoning, as a medium for pragmatically efficient computation, 

and as a medium of human expression. Even though the theory of reasoning arising from 

a representation may be implicit, it can be seen through three aspects: what the 

representation defines as inferencing, the set of inferences it allows, and the subset of 

those inferences which it recommends. 

 Allowed inferences are those inferences which can be made from available 

information.  As a representation might arise in any number of ways, so too might the 

allowed inferences vary.  As Davis, et al. (1993), point out, this flexibility is 

acknowledged so as to admit the legitimacy of the various approaches.  Having this 

flexibility at its core provides a framework for re-representation.

 However, the set of allowable inferences may become untenably large. A smaller, 

constrained subset of these inferences is necessary.  Whether by specifying the constraints 
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with which to select recommended inferences, or by providing them somewhat explicitly, 

some process or reasoning or insight must be at work to frame them. 

 In the same sense that a representation recommends as well as sanctions 

inferences, so to does it imply the manner in which it may be used in computation.  

According to Davis et al. (1993), it is this guidance which speaks to the adequacy of the 

representation, as an organizational mechanism for information, for the task at hand.

Sanctioned operations on fractal representations

 Performing reasoning afforded by the fractal representation of the relationship 

between images limits the mechanisms to those which the representation sanctions.  

There are two primary sanctions of the representation: the number of fractal codes which 

constitute the representation, and the creation of features from those fractal codes.  These 

two sanctions offer methods by which the data problem of ambiguity that arises in 

analogical reasoning by recall may be addressed.

Fractal Abstraction

 The features available from a fractal representation are derived from that 

representation’s constituent fractal codes.  The number of fractal codes in a particular 

fractal representation is determined solely by the partitioning scheme chosen when 

constructing the representation.  The twin key observations of images which entailed 

fractal encoding (repetition and similarity at different scales) may be exploited here.  In 

essence, partitioning is a modeling of how coarsely or finely an image is received or 

regarded, and that granularity determines the algorithm’s ability to capture within the 

representation any present repetition or inherent similarity at that limit.  Thus, the 

partitioning affords a level of visual abstraction.
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 Increasing the degree of partitioning accomplishes two acts: more fractal codes 

are created, and the possible variety of features arising from those codes increases.  Both 

of these may address ambiguity in the data.  

 However, a closer consideration reveals further nuances in abstraction.  As the 

partitioning becomes finer, there likely is a level at which the ambiguity is resolved.  

However, as the partitioning surpasses that point, and becomes finer, the answer may well 

become ambiguous once again.  What does this suggest with respect to a balancing 

between the sparsity of data (the number of available features) and the homogeneity of 

data?

Emergent Sufficient Abstraction

 As the level of abstraction becomes finer (resolution increases due to increased 

partitioning), the number of fractal codes, and thereby the number of features, rises.  As 

resolution increases, the fractal codes represent partitioned areas in the image that are 

covering ever smaller areas.  These areas become increasingly more homogenous, and 

therefore the fractal codes become more similar to one another (that is, their features 

become more consistent).  As the abstraction grows finer, more codes are devoted to 

representing areas of consistent color and texture. Even though the number of codes and 

features is increasing, the homogeneity, and thereby the ability to discriminate based on 

those features, is decreasing.  I believe this equates to a frequency apprehension of the 

image, with coarse resolution corresponding to low frequencies (fundamentals), and fine 

resolution corresponding to high frequencies (overtones, and then noise).  

 Thus, the disappearance and reemergence of ambiguity is an emergent 

characteristic.  This emergent sufficient abstraction suggests that the Analogy by Recall 

algorithm may be modified to notice this characteristic automatically, adopted as a meta-

reasoning strategy, sanctioned by the representation.  In doing so, this strategy expresses 
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the first aspect of visual perception: the relationship between the observer and the 

observed.

Ambiguity and Mutuality

 Above, I illustrated how ambiguity may be resolved through re-representation via 

adjusting the level of abstraction (or degree of partitioning), and that a strategy may be 

derived which notices the need for such repartitioning in an automatic fashion.  There 

exists a case which bears brief further discussion: what if every level of detail or 

repartitioning results in continued ambiguity?

 In the case of resolving ambiguity through changing abstraction, the 

representation from which the features are derived remains one in which the relationship 

between objects remains fixed.  Let us examine the situation where the relationship itself 

may vary.

 I described earlier the notion that a fractal representation may capture not just the 

relationship between two images, but that it may be extended to describe the relationship 

between an arbitrary number of images.  This is attributable specifically to the nature of 

the fractal representation itself: it is an unordered set of fractal codes, from which 

features are derived.

 Depending upon the analogy problem, it may be feasible to consider first 

analogies between pairs of images.  Then, should ambiguity be manifested at all practical 

levels of abstraction for those pairs, the algorithm could shift to consideration of triplets, 

quadruplets or other groupings of images, until such a time as ambiguity may be 

resolved.  This shifting to higher order relationships, expressed by complexity in 

groupings, as a strategy for meta-reasoning, is expressly sanctioned by the use of fractal 

representations.
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The ABR* Algorithm

 Given these two sanctioned meta-reasoning strategies, I now revisit the ABR 

algorithm and extend it to incorporate them in an autonomous fashion.  This extended 

algorithm I call the ABR* algorithm.

Algorithm 4.2. The Extended Analogy by Recall (ABR*) Algorithm.

Note that as presented above the ABR* algorithm suggests that abstraction be increased 

before complexity grouping.  This is not a strict guideline, and the inner and outer loops 

may be interchanged without loss of generality.  Note also that it is possible that the 

algorithm will be unable to return an answer (if ambiguity fails to be resolved).  In that 

case, the normal ABR algorithm may be used to choose the answer with the maximal 

To determine the transform T’ which is most analogous to transform 
T from a set of transformations Ω ≔ { T1, T2, T3, T4, … Tn }:

P R E P A R A T O R Y

Let A := { 1, 2, 3, ... n } represent an ordered range of abstraction
Let G := { 1, 2, 3, ... m } represent an ordered range of complexity 
groupings
Let Ε be a real number which represents the number of standard 
deviations beyond which a value’s answer may be judged as 
“confident”

 E X E C U T I O N  

For each complexity g ∈ G:
 For each abstraction a ∈ A:

• Re-represent T’ and Ω according to g and a
• Derive the set of similarity  values S := { S1, S2, S3, S4, ... Sn } 

by way of the ABR algorithm
• Set µ ← mean ( S )
• Set σµ ← stdev ( S )/√n
• Set D ← { D1, D2, D3, D4, ... Dn } where Di = (Si-µ)/σµ
• Generate the set C := { Ci ... } such that Ci ∈ D and Ci > E
• If |C| = 1, return T’ as the transform Ti ∈ Ω which corresponds 

to Ci
• otherwise there exists ambiguity, and further refinement must 

occur.

If no answer has been returned, then no answer may be given 
unambiguously.
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similarity metric at a designated abstraction and complexity.  Finally, the value E, which 

is used to designate a confidence level, may itself be varied as a meta-reasoning strategy.

The Example, Revisited

 I return to my earlier example, now with the notion that using the ABR* 

algorithm may vary the level of abstraction to hone into a particular answer with 

confidence.

Determining a range of abstraction

In the ABR* algorithm, the partitioning scheme will vary, with the intention of 

automatically arriving at the appropriate level of abstraction at which the most suitable 

answer image may be selected with some confidence.   To do so, a range of values must 

be established for the partitioning and a manner by which the partitioning will be refined 

at each subsequent step as necessary.

 Let us establish a finest level of possible detail as a grid size of 2 x 2, as I noted 

earlier that such a size is the smallest which affords the set of admissible similitude 

transformations.  The intent is to systematically reduce from a coarsest level of detail to 

this finest level.  In my present implementation, as it resolves in to ever finer levels, the 

grid size is halved.  Therefore, using this strategy of resolutions, for an image with a 

maximal pixel dimension of N, this formula determines the coarsest level of detail:

coarsestLevel ← 2(1 + ⌊log2 N⌋)

The images in the example are 134 pixels width by 84 pixels high, stored in the .PNG 

format.  Thus, images with a maximal pixel dimension of 134, the coarsestLevel will be 

equal to 256.  Using a strategy of halving the grid size, and progressing through each 

level of detail, this will provide for examination of the problem at 8 levels of detail.  Each 
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of the 134 x 84 pixel images will be placed into the center of a new 256 x 256 empty 

image, and it is these new images from which the ABR algorithm will commence.

Choosing a level of confidence

 Since the set of deviations determined is a t-distribution of the similarity values, 

the choice of a level of confidence in selecting the answer can be made using 

conventional statistics.  

 If a normal distribution of the deviations is assumed, then an interval may be 

devised such that with an expected confidence of C for any deviation d, the probability of 

d in that interval is C:

P( -z ≤ d ≤ z ) = C

Note that this also lets one say that that the probability of d outside of the interval [-z,z] 

is:

P( d < -z ) = P( d > z ) = ½(1.0 - P( -z ≤ d ≤ z ) ) = ½ (1.0 - C )

The set of deviations is a t-distribution of the similarity values.  If this is a normal 

distribution:

P( -z ≤ d ≤ z )  = Φ( z ) - Φ( -z ) = erf( z / √2 )

z = √2 erf-1( C ) 

where Φ() is the cumulative normal distribution function and erf() is the error function.  

Therefore, given some value C, the equation above will determine the boundary.

 Let us suppose, as an example, that for C = 90%, some answer Xi is the most 

analogous one.  This would imply that the probability of that answer’s corresponding 

deviation Di obeys this:

z = √2 erf-1( 0.90 ) = 1.644853 
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Thus, if the deviation Di is larger than 1.644853, with 90% confidence, the answer Xi is 

the most analogous.

 For this example, let us chose a 95% confidence value, therefore seek a deviation 

which is larger than 1.959964, approximately a 2-sigma signal.

Calculating deviations and selecting an answer with confidence

 In Table 4.2, I present the deviation values found for all eight levels of 

abstraction.  Note that even at the coarsest levels, the correct answer to the puzzle 

(transformation #4) is significantly more deviant from the mean.  But the information in 

the table warrants further consideration.

Table 4.2. Candidate transformation similarities

T’ deviationsdeviationsdeviationsdeviationsdeviationsdeviationsdeviationsdeviations

0 -1.46 0.60 0.55 0.33 3.23 3.71 4.39

-2.24 -0.97 -1.81 -1.73 -1.83 -2.19 -2.26 -1.89

0 0.03 -1.03 -1.66 -1.11 -1.81 -1.77 -2.04

4.47 4.87 4.68 4.71 4.76 2.93 2.09 0.712

0 -1.48 -0.79 -0.84 -0.68 -0.56 0.12 0.36

-2.24 -0.97 -1.65 -1.03 -1.47 -1.60 -1.90 -1.54

grid size 256 128 64 32 16 8 4 2

 µ 0.492 0.283 0.307 0.298 0.606 0.684 0.758 0.866

 σµ 0.116 0.095 0.098 0.085 0.049 0.038 0.027 0.013

codes 2 4 12 30 108 374 1428 5628

features 126 252 756 1890 6804 23562 89964 354564
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Abstraction and Ambiguity

 My experimental data suggests that there exists states of abstraction of a 

representation at which ambiguity vanishes, and others for which ambiguity is present.  

A strategy for determining an appropriate level of abstraction might entail first 

discovering those conditions at which there are marked changes in ambiguity.  In earlier 

sections, I established the connection between ambiguity and abstraction: I now formalize 

the relationship, and explore how to conduct this discovery of ambiguity changes. 

Ambiguity as a function

 Ambiguity might be modeled expressly as a function of abstraction. In so far as 

the level of abstraction could be considered as a continuum from most coarse to most fine 

given a particular representation, this function also may be viewed as continuous. 

 Then would ambiguity as a function be thus:

ξ = f( a ), ∀ a ∈ A, 

where A is the set of abstractions derivable from some representation R.

 Note that here I refer to some representation R.  Even those I have previously 

considered the problems and examples in this dissertation as separate representations, I 

now wish to regard R as the summation of those individual representations.  For example, 

one may say that R is the set of representations that encompass the candidate solution 

images for a matrix problem.  I presume here to seek those levels of abstraction which 

cause one aspect of R to be distinguishable from all other aspects of R. 

 With ambiguity expressed as a function, the boundary conditions of abstraction 

may be regarded mathematically as those places at which the function achieves a local 

minima or maxima.  For convention, let us denote an ambiguity value of 0 as a best 
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possible local minima; that is, for an ambiguity value of 0, the level of abstraction is such 

that an aspect of R is completely distinct from all other aspects of R. 

The emergence of abstraction boundaries

The deviations presented in table 4.2 appear to suggest that if one starts at the 

very coarsest level of abstraction, the answer is apparent.  Additionally, it seems to 

suggest that if one starts at the finest level of abstraction, another quite different answer is 

apparent.  Both of the deviations for these levels, 4.47 for the coarsest and 4.39 for the 

finest, are unique for the set of answers at those levels, and deviations of that magnitude 

would suggest confidence levels of >99.99% if a normal distribution of error is 

presumed.

Extrema in data

I propose that in both cases, at the extrema of abstraction, the ABR* algorithm is 

operating with either too sparse a data set (at the coarsest) or with too homogeneous a 

data set (at the finest).  Indeed, one can see that at the coarsest abstraction, there are 126 

features upon which to calculate similarity, and at the finest abstraction, there are more 

than 350k features.

The data in the table offers the possibility of automatically detecting these 

situations.  I suggest that the average similarity measurement should increase as the 

number of features against which it is calculated increases. Yet, one can see that the 

average similarity measurement at the coarsest abstraction is 0.492, but then falls, at the 

next level of abstraction, to 0.283, only to thereafter generally increase.  I claim this 

constitutes an emergent boundary for coarse abstraction. 

Other shifts

There exist other changes of note within the data.  The average similarity 

measurement abruptly shifts value between grid sizes 32 and 16. In addition I specifically  
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observe the arrival of ambiguity for grid sizes 8 and 4, in the sense that no value achieves 

the sufficient level of confidence required to make an answer.  

Sufficient Abstraction

My interpretation is that the emergent sufficient level of abstraction, then, is at a 

grid size of 16, at that place where there appear to be a substantial number of features 

available for reasoning and yet those features retain discriminatory power that finer 

abstraction levels lack.

The Interplay of Observer, Observed, and Context

To deem some apprehended object as similar or novel involves the complex 

interplay of at least two relationships (Wagemans et al, 2012a and 2012b): the 

relationship between the observer and the observed, and the relationship between the 

observed and its context. The relationship between the observing agent and the observed 

object may vary depending upon some act taken by the observer.  For example, if one 

wishes to appreciate an object at a higher level of detail, one might move closer to the 

object, or bring the object closer, resulting in the object occupying a larger expanse of the 

observer’s field of view.  This action modifies the resolution of the object: at differing 

levels of resolution, fine or coarse details may appear, which may then be taken into the 

consideration of the novelty of the object. The observed object also is appreciated with 

regard to other objects in its environment.  Comparing an object with others around it 

may engage making inferences about different orders of relationships. The comparison 

may begin at a lower order but then proceed to higher orders if needed. The context also 

sanctions which aspects, qualities, or attitudes of the objects are suitable for comparison.  

Analogies in a general sense are based on similarity and repetition (Hofstadter, 

2008), and so I hold that fractal representations are a suitable representation, one which 

affords the capture of these qualities as well as sanctions reasoning over them.  

The strategies employed in the Extended Analogy by Recall (ABR*) algorithm 

address both aspects of similarity and novelty detection I described above.  It models the 

relationship between the observer and the observed by starting with fractal 
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representations encoded at a coarse level of resolution, and then adjusts to the right level 

of resolution for addressing the given problem. It models the relationship between the 

observed and its context by searching for similarity between simpler relationships, and 

then shifts its searches for similarity between higher-order relationships.  In each aspect, 

these adjustments are made automatically by the strategy of ABR*, by characterizing the 

ambiguity of a potential solution.
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CHAPTER 5

FRACTALS AND RAVENS

 Raven’s Progressive Matrices Test suite is a set of standard and common tests of 

intelligence (Raven et al. 2003). The standard version of the test consists of 60 geometric 

analogy problems. Figure 5.1 illustrates a problem typical to those that appear on the test. 

Throughout this dissertation, when I refer to Raven’s problems, I use example problems 

which are similar to those found on Raven’s tests, due to copyright concerns and to 

ensure the integrity of the tests themselves.  The results I report below, however, are from 

the actual test problems. 

 The task in the problem is to pick one of the eight choices in the bottom of the 

figure for insertion in that bottom-right element of the 3x3 matrix in the top of the figure. 

The chosen element should best match the patterns in the rows and columns of the 

matrix.

 Figure 5.1. Problem similar to those of the Raven’s Standard Progressive Matrices test.
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 The Raven’s Progressive Matrices (RPM) test paradigm is intended to measure 

eductive ability, the ability to extract and process information from a novel situation 

(Raven et al. 2003).  Eductive ability stands in contrast to reproductive ability, which is 

the ability to recall and use previously learned information.

 The problems from Raven’s various tests are organized into sets.  Each successive 

set is generally interpreted to be more difficult than the prior set.  Some of the problem 

sets are 2x2 matrices of images with six possible answers; the remaining sets are 3x3 

matrices of images with eight possible answers.  

 The tests are purely visual: no verbal information accompanies the tests.  The test-

taker is asked to select from the available possible answers the single answer that best 

completes the matrix (Raven et al. 2003).

A Raven’s Example  

 Let us illustrate the use of fractal representations and the ABR* algorithm for 

solving Raven’s matrices problems.   I shall use as an example the 3x3 matrix problem 

shown above.  

Figure 5.2. The simultaneous relationships

99



Simultaneous Relationships, Multiple Constraints.

 An aspect of any Raven’s problem, whether 2x2 or 3x3, is that there exist 

simultaneous horizontal and vertical relationships which must be maintained by the 

selection of the most analogous answer.  In a 2x2 problem, there is one horizontal and 

one vertical relationship which constrain the selection.  In a 3x3 problem, there are two 

horizontal and two vertical relationships.   In my implementation, I represent these 

relationships as mutual fractal representations.

 In Figure 5.2, I illustrate these relationships using the example problem.  As 

shown, relationships H1 and H2 constrain relationship H, while relationships V1 and V2 

constrain relationship V.  There are other possible relationships which can be suggested 

by this problem: I have chosen to focus on these particular four relationships for clarity.

 To solve a Raven’s problem, one must select the image from the set of possible 

answers for which the similarity to each of the problem’s relationships is maximal.  For 

the example, this involves the calculation of a set of similarity values Θi for each answer 

Ai:

Θi ← { S( H1, H(Ai) ), S( H2, H(Ai) ), S( V1, V(Ai) ), S( V2, V(Ai) ) }

 ∀ i, 1 ≤ i  ≤  8

where S(X,Y) is the Tversky similarity between two sets X and Y, and H(Ai) and V(Ai) 

denote the relationship formed when the answer image Ai is included in the H() or V() 

set, respectively.

Reconciling Multiple Analogical Relationships  

 For each candidate answer, the similarity of each potential analogical relationship 

is considered as a value upon an axis in a large “relationship space.” The dimensionality 

of this space is determined by the problem at hand. Thus, for a 2x2 Raven’s problem, the 
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space is 2-dimensional; for a 3x3 Raven’s problem, the space is 4-dimensional, using the 

relationships as shown above.  

 A single value for the similarity is desired.  To do so, I treat these 

multidimensional sets as a vector, and determine its length, using a Euclidean distance 

formula:

Si ← √ Σ Θij2    ∀ i, 1 ≤ i  ≤  8 and ∀ Θij  ∈ Θi

Thus, the longer the vector, the more similar; the shorter the vector, the more dissimilar. 

 Generally, no particular relationship is favored; that is, I do not, as an example, 

weight more decisively those values found upon the horizontal relationships over those 

upon the vertical relationships.  Giving preferential weighting to a relationship is a 

straightforward extension to the calculation above, but choosing which relationship to 

prefer may be non-trivial.
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The Fractal Raven Algorithm

 My algorithm for solving Raven’s problems is itself a slight modification of the 

Extended Analogy By Recall (ABR*) algorithm.  I now present the Fractal Raven 

algorithm in pseudo-code form. I separate the algorithm into two parts: the preparatory 

stage and the execution stage.

Algorithm 5.1. The Fractal Raven Algorithm, preparatory stage.

Given an image P containing a Raven’s problem, determine an 
answer.
P R O B L E M  S E G M E N T A T I O N

By examination, divide P into two images, one containing the 
matrix and the other containing the possible answers.  Further 
divide the matrix image into an ordered set of either 3 or 8 matrix 
element images, for 2x2 or 3x3 matrices respectively.  Likewise, 
divide the answer image into an ordered set of its constituent 
individual answer choices.
Let M := { m1, m2, ... } be the set of matrix element images.
Let C := { c1, c2, c3, ... } be the set of individual answer choices.
Let η be an integer denoting the order of the matrix image (either 2 
or 3, for 2x2 or 3x3 matrices respectively).
R E L A T I O N S H I P  D E S I G N A T I O N S

Let R be a set of relationships, determined by the value of η as 
follows:
If η = 2:
 R ← { H1, V1 } where
 H1 ← MutualFractal( m1, m2 )
 V1 ← MutualFractal( m1, m3 )
Else: (because η = 3)
 R ← { H1, H2, V1, V2 } where
 H1 ← MutualFractal( m1, m2 , m3 )
 H2 ← MutualFractal( m4, m5 , m6 )
 V1 ← MutualFractal( m1, m4 , m7 )
 V2 ← MutualFractal( m2, m5 , m8 )

 A B S T R A C T I O N  L E V E L  P R E P A R A T I O N  

Let d be the largest pixel dimension for any image in the set M ∪ C.
Let A := { a1, a2, ... } represent an ordered range of abstraction 
values where
 a1 ← d, and  ai ← ½ ai-1  ∀ i, 2 ≤ i ≤ ⌊ log2 d ⌋  and  ai  ≥  2  
The values within A constitute the grid values to be used when 
partitioning the problem’s images.
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The Fractal Raven Algorithm: Preparatory Stage

 In the first stage of the Fractal Raven Algorithm, an image containing the entire 

problem is first segmented into its component images (the matrix of images, and the 

possible answers).  Next, based upon the complexity of the matrix, the algorithm 

determines the set of relationships to be evaluated.  Then, a range of abstraction levels is 

determined. 

 As I have implemented it, the abstraction levels are determined to be a 

partitioning of the given images into gridded sections at a prescribed size and regularity.
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Algorithm 5.2. The Fractal Raven Algorithm, execution stage.

The Fractal Ravens Algorithm: Execution Stage

 The algorithm concludes by using a variant of the ABR* algorithm to determine 

the confidence in the answers at each level, stopping when ambiguity is sufficiently 

resolved.  Thus for each level of abstraction, the relationships implied by the kind of 

Raven’s problem (2x2 or 3x3) are re-represented into that partitioning.  Then, for each of 

the candidate images, a potentially analogous relationship is determined for each of the 

Given M, C, R, A, and η as determined in the preparatory  stage, 
find the answer.

P R E P A R A T O R Y

Let Ε be a real number which represents the number of standard 
deviations beyond which a value’s answer may be judged as 
“confident”
Let S(X,Y) be the Tversky similarity metric for sets X and Y

 E X E C U T I O N  

For each abstraction a ∈ A:
• Re-represent each fractal representation r ∈ R according to 

abstraction a
• S ← ∅
• For each answer image c ∈ C :

• If η = 2:
H ← MutualFractal( m3, c ) according to abstraction a
V ← MutualFractal( m2, c ) according to abstraction a
Θ ← { S( H1, H ), S( V1, V ) }

• Else: (because η = 3)
H ← MutualFractal( m7, m8, c ) according to abstraction a
V ← MutualFractal( m3, m6, c ) according to abstraction a
Θ ← { S( H1, H ), S( H2, H ), S( V1, V ), S( V2, V ) }

• Calculate a single similarity metric from vector Θ: 
t ← √ Σ θ2    ∀ θ  ∈ Θ
S ← S ∪ { t }

• Set µ ← mean ( S )
• Set σµ ← stdev ( S )/√n
• Set D ← { D1, D2, D3, D4, ... Dn } where Di = (Si-µ)/σµ
• Generate the set Z := { Zi ... } such that Zi ∈ D and Zi > E
• If |Z| = 1, return the answer image Ci ∈ C which corresponds 

to Zi
• otherwise there exists ambiguity, and further refinement must 

occur.

If no answer has been returned, then no answer may be given 
unambiguously.
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existing relationships and a similarity value calculated.  The vector of similarity values is 

reduced via a simple Euclidean distance formula to a single similarity.  The balance of the 

Fractal Ravens algorithm follows the ABR* algorithm, using the deviation from the mean 

of these similarities, continues through a variety of levels of abstraction, looking for an 

unambiguous answer that meets a specified confidence value.

The example, solved.

 Table 5.1 shows the results of running the Fractal Ravens algorithm on the 

example problem, starting at an original gridded partitioning of 200x200 pixels (the 

maximal pixel dimension of the images), and then refining the partitioning down to a grid 

of 3x3 pixels.  The table gives the mean (µ), standard deviation (σµ), and number of 

features (f) for each level of abstraction (grid).  The deviation and confidence for each 

candidate answer are given for each level of abstraction as well.  A confidence level of 

95% is sought.  In the table, I color a cell yellow if it exceeds the desired confidence 

level, and red if it does so unambiguously for the given grid partitioning.
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Table 5.1. Image Deviations and Confidences

Discussion of the example results

The deviations presented in table 5.1 appear to suggest that if one starts at the very 

coarsest level of abstraction, the answer is apparent (image choice 3).  Indeed, the 

confidence in the answer never dips below 99.83%, across all levels of abstraction.

 I see evidence that operating with either too sparse a data set (at the coarsest) or 

with too homogeneous a data set (at the finest) may be problematic.  The coarsest 

abstraction (200 pixel grid size) offers 378 features, whereas the finest abstraction (3 

pixel grid size) offers more than 1.5 million features for consideration. 

image deviations & confidencesdeviations & confidencesdeviations & confidencesdeviations & confidencesdeviations & confidencesdeviations & confidencesdeviations & confidences

0.175
13.84%

-2.035
-95.82%

-1.861
-93.72%

0.698
51.47%

-0.760
-55.29%

-0.610
-45.79%

-1.311
-81.02%

-0.321
-25.17%

4.166
>99.99%

2.783
99.46%

2.179
97.07%

0.681
50.4%

1.106
73.12%

0.480
36.86%

6.390
100%

3.484
99.95%

2.930
99.66%

4.487
>99.99%

3.961
99.99%

4.100
>99.99%

4.006
>99.99%

0.495
37.97%

-3.384
-99.93%

-3.841
-99.99%

-4.848
<-99.99%

-4.958
<-99.99%

-5.454
-100%

-4.620
<-99.99%

-1.741
-91.84%

-1.678
-90.67%

-2.148
-96.83%

-0.591
-44.56%

-2.825
-99.53%

-1.921
-94.52%

-2.775
-99.45%

-0.321
-25.17%

1.560
88.12%

2.444
98.55%

-1.361
-82.64%

0.896
62.96%

0.643
47.99%

0.832
59.49%

-1.741
-91.84%

0.254
20.02%

2.172
97.02%

-1.826
-93.22%

0.668
49.58%

0.213
16.85%

0.570
43.15%

-2.935
-99.67%

-2.366
-98.20%

-2.479
-98.68%

1.262
79.31%

2.338
98.06%

1.922
94.54%

2.817
99.52%

grid size 200 100 50 25 12 6 3

µ 0.589 0.310 0.432 0.690 0.872 0.915 0.948

σµ 0.031 0.019 0.028 0.015 0.007 0.005 0.003

codes 6 24 96 384 1734 6936 26934

features 378 1512 6048 24192 109242 436968 1696842
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 The data in the table continues to suggests the possibility of automatically 

detecting these boundary situations.  The average similarity measurement at the coarsest 

abstraction is 0.589, but then falls, at the next level of abstraction, to 0.310, only to 

thereafter generally increase.  This constitutes further evidence for an emergent boundary 

for coarse abstraction. 

 I suspect that ambiguity exists for ranges of abstraction, only to vanish at some 

appropriate levels of abstraction, and then reemerges once those levels are surpassed. I 

see evidence of such behavior in this example, where there exists ambiguity at grid sizes 

100, 50, 25, and 12, then the ambiguity vanishes for grid size 6, and then reemerges for 

grid size 3.  This suggests that there are features within the image which are sufficiently 

discriminatory only at certain levels of abstraction.

Results of Fractal Ravens on the Raven’s progressive matrices

 I have tested my Fractal Ravens algorithm on all problems associated with the 

four main variations of the Raven’s Progressive Matrices Tests: 60 problems of the 

Standard Progressive Matrices test, 48 problems of the Advanced Progressive Matrices 

test, 36 problems of the Coloured Progressive Matrices test, and 60 problems of the SPM 

Plus test.  To my knowledge, this is the first account of any computational model’s 

attempt at the entire Raven’s test. In this section, I present my results and discuss my 

findings.

Inputs used for the test

 To create inputs for the Fractal Ravens algorithm, each page from the various 

Raven test booklets were scanned, and the resulting greyscale images were rotated to 

roughly correct for page alignment issues. Then, the images were sliced up to create 

separate image files for each entry in the problem matrix and for each answer choice. 
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These separate images were the inputs to the technique for each problem. No further 

image processing or cleanup was performed, despite the presence of numerous pixel-level 

artifacts introduced by the scanning and minor inter-problem image alignment issues. 

Additionally, the fractal algorithm attempted to solve each problem independently: no 

information was carried over from problem to problem, nor from test variant to test 

variant.  The correct answers for the individual problems were provided in an answer key 

that came with the source material for each test suite.

 The code used in conducted these runs is precisely the same code as used in the 

earlier example.  This code is available for download from our lab website.  The images 

scanned, however, are copyrighted and thus are not available for download.  However, I 

believe that the instructions for preparing the images provided above will allow for 

someone with access to the Ravens materials to reproduce these results.

Levels of abstraction considered and calculations performed

 The images associated with each problem had a maximum pixel dimension of  

between 150 and 250 pixels.  Accounting for variation within each test problem, and 

setting a minimum grid size of 4 pixels, the algorithm therefore calculated five or six 

levels of abstraction for each problem, using the formula described above for determining 

maximum grid size and using a strategy of halving the pixel dimension at each 

successively finer level of abstraction.  

 At each level of abstraction, the similarity value for each possible answer was 

calculated, as proscribed by the Fractal Ravens algorithm.  Those calculations used the 

Tversky formula, and set alpha to 1.0 and beta equal to 0.0, conforming to values used in 

the coincidence model by Bush and Mosteller (1953). From those values, the mean and 

standard deviation were calculated, and then the deviation and confidence for each 

answer was determined.  Which answers provided a confidence above the chosen level 
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were noted, as well as whether for each abstraction level the answer was unambiguous or 

ambiguous, and if ambiguous, in what manner.  In those cases where ambiguity was 

found, I explored several different data techniques to assist in the resolution.  I describe 

those techniques after the presentation of the performance.

Assessment of Fractal Ravens performance against human norms

 There are three main assessments that can be made following the administration 

of a Raven test to an individual: the total score, which is given simply as the number of 

correct answers; an estimate of consistency, which is obtained by comparing the given 

score distribution to the expected distribution for that particular total score; and the 

percentile range into which the score falls, for a given age and nationality (Raven et al. 

2003). A score is “consistent” if the difference between the actual score and the expected 

score for any given set is no more than ± 2 (Raven et al. 2003).

The Standard Progressive Matrices test

The Raven’s Standard Progressive Matrices test consists of 60 visual analogy 

problems, organized into five sets of 12 problems each. The problem sets are denoted by 

the letters A through E.  The problems are ordered in approximate degree of difficulty by 

set, but this increase in difficulty is not uniform.   

Performance on the Standard Progressive Matrices test

On the Raven’s Standard Progressive Matrices test, the Fractal Ravens algorithm 

detected the correct answer at a 95% or higher level of confidence on 50 of the 60 

problems.  The number of problems with detected correct answers per set were 12 for set 

A, 10 for set B, 11 for set C, 9 for set D, and 8 for set E.  Of the 50 problems where the 

correct answers detected, 38 were determinable by one or more of the ambiguity-

resolution strategies. Of the remaining 12 problems noted answers, all but three were 
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ambiguous between two or three particular answers.   Table 5.2 provides a summarization 

of these results.

Table 5.2. SPM Results

As shown in Chart 5.1, the score differences for Fractal Ravens on each set were 

no more than ±1. For a human test-taker, this score distribution generally would indicate 

that the test results do provide a valid measure of the individual's general intellectual 

capacity. This score pattern illustrates that the results achieved by the algorithm fall well 

within typical human norms on the SPM for all sets.

Chart 5.1. Human norms comparison for SPM score of 50.

SPM Detected
Correct

Determined by 
Strategy

Ambiguous 
between 2 or 3

Total 50 38 9

set A 12 11 1

set B 10 8 1

set C 11 8 3

set D 9 6 2

set E 8 5 3
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Using norms from the United States, a total score of 50 corresponds to the 95th 

percentile for children about 12 years old, the 75th percentile for children around 14 

years old, and the 50th percentile for children older than 16 years old (Raven et al. 2003).
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The Advanced Progressive Matrices test

The Raven’s Advanced Progressive Matrices test consists of 48 visual analogy 

problems, organized into two sets of 12 and 36 problems, respectively. The problem sets 

are denoted by the letters A and B.  The problems are ordered in approximate degree of 

difficulty by set, but this increase in difficulty is not uniform.  

Performance on the Advanced Progressive Matrices test

On the Raven’s Advanced Progressive Matrices test, the Fractal Ravens algorithm 

detected the correct answer at a 95% or higher level of confidence on 42 of the 48 

problems.  The number of problems with detected correct answers per set were 10 for set 

A, and 32 for set B.  Of the 42 problems where the correct answers detected, 28 were 

determinable by one or more of the ambiguity-resolution strategies. Of the remaining 14 

problems noted answers, all but four were ambiguous between two or three particular 

answers.   Table 5.3 provides a summarization of the APM results.

Table 5.3. APM Results

The score differences for Fractal Ravens on both APM sets were no more than ±1, 

indicating consistency and that the results achieved by the algorithm fall well within 

typical human norms on the APM for both sets.  A total score of 42 corresponds to the 

95th percentile for adults between 50 and 60 years old, and exceeds the 75th percentile 

performance for adults of all measured ages  (Raven et al. 2003).

APM Detected
Correct

Determined by 
Strategy

Ambiguous 
between 2 or 3

Total 42 28 10

set A 10 6 4

set B 32 22 6
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The Coloured Progressive Matrices test

The Raven’s Coloured Progressive Matrices test consists of 36 visual analogy 

problems, organized into three sets of 12 problems. The problem sets are denoted by the 

letters A, AB, and B.  The problems are ordered in approximate degree of difficulty by 

set, but this increase in difficulty is not uniform.    

Performance on the Coloured Progressive Matrices test

On the Raven’s Coloured Progressive Matrices test, the Fractal Ravens algorithm 

detected the correct answer at a 95% or higher level of confidence on 30 of the 36 

problems.  The number of problems with detected correct answers per set were 12 for set 

A, 11 for set AB, and 7 for set B.  Of the 30 problems where the correct answers detected, 

24 were determinable by one or more of the ambiguity-resolution strategies. Of the 

remaining 6 problems noted answers, all were ambiguous between two or three particular 

answers.   Table 5.4 provides a summarization of these results.

Table 5.4. CPM Results

As shown in Chart 5.2, the score differences for Fractal Ravens on each set were 

no more than ±2, indicating consistency. This score pattern also illustrates that the results 

achieved by the algorithm fall well within typical human norms on the CPM for all sets.

CPM Detected
Correct

Determined by 
Strategy

Ambiguous 
between 2 or 3

Total 30 24 6

set A 12 11 1

set AB 11 8 3

set B 7 5 2
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Chart 5.2. Human norms comparison for CPM score of 30.

Using the United States norms, a total score of 30 on the CPM test corresponds to 

the 95th percentile for children about 7 years old, the 75th percentile for children about 9 

years old, and the 50th percentile for children about 11 years old (Raven et al. 2003).
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The SPM Plus test

The Raven’s Standard Progressive Matrices Plus test consists of 60 visual analogy 

problems, organized into five sets of 12 problems. The problem sets are denoted by the 

letters A, B, C, D, and E.  The problems are ordered in approximate degree of difficulty 

by set, but this increase in difficulty is not uniform.  

Performance on the SPM Plus test

On the Raven’s Standard Progressive Matrices Plus test, the Fractal Ravens 

algorithm detected the correct answer at a 95% or higher level of confidence on 50 of the 

60 problems.  The number of problems with detected correct answers per set were 10 for 

set A, 9 for set B, 9 for set C, 11 for set D, and 11 for set E.  Of the 50 problems where 

the correct answers detected, 39 were determinable by one or more of the ambiguity-

resolution strategies. Of the remaining 11 problems noted answers, all but one were 

ambiguous between two or three particular answers.   Table 5.5 provides a summarization 

of these results.

Table 5.5. SPM Plus Results

SPM Plus Detected
Correct

Determined by 
Strategy

Ambiguous 
between 2 or 3

Total 50 39 10

set A 10 9 1

set B 9 8 1

set C 9 5 4

set D 11 8 2

set E 11 9 2
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Comparison to other computational models

 While this is the first published account of a computational model’s attempt at the 

entire suite of Raven’s tests, there are other computational models which have been used 

on some or all of certain tests.  For those accounts which report scores, I compared their 

results with those achieved by the Fractal Raven algorithm.  Table 5.6 documents the 

performance of the Fractal Ravens algorithm against those contemporaries. 

Table 5.6 Comparing Fractal Ravens to Other Models

Carpenter et al. (1990) report results of running two versions of their algorithm 

(FairRaven and BetterRaven) against a subset of the APM problems.  The subset of 

problems chosen by Carpenter et al. reflect those whose rules and representations were 

deemed as inferable by their production rule based system (Carpenter et al. 1990).

Lovett et al. (2007, 2010) report results from their computational model’s 

approach to the Raven’s SPM test.  In each account, only a portion of the test was 

attempted, but Lovett et al. project an overall score based on the performance of the 

attempted sections.  The latest published account by Lovett et al. (2010) reports a score of 

44 out of 48 attempted problems from sets B through E of the SPM test, but does not 

offer a breakdown of this score by problem set. Lovett et al. (2010) project a score of 56 

SPM ResultsSPM ResultsSPM ResultsSPM ResultsSPM ResultsSPM ResultsSPM Results APM ResultsAPM ResultsAPM ResultsAPM Results

model Total # att. A B C D E Total # att. A B

Carpenter et al. “FairRaven” 23 34 7 16

Carpenter et al. “BetterRaven” 32 34 7 25

Lovett et al. (2007) 22 24 - 12 10 - -

Lovett et al. (2010) 44 48 - unreportedunreportedunreportedunreported

Cirillo & Ström 28 36 - - 8 10 10

Kunda et al. Affine 50 60 11 12 10 8 9 18 48 5 13

Fractal Ravens 50 60 12 10 11 9 8 42 48 10 32
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for the entire test, based on human normative data indicating a probable score of 12 on 

set A given their model’s performance on the attempted sets.

Cirillo and Ström (2010) report that their system was tested against Sets C 

through E of the SPM and solved 8, 10, and 10 problems, respectively.  Though 

unattempted, they predict that their system would score 19 on the APM (a prediction of 7 

on set A, and 12 on set B).

Kunda et al. (2011, 2012) report the results of running their Affine algorithm 

against all of the problems on both the SPM and the APM tests, with a detailed 

breakdown of scoring per test.  They report a score of 50 for the SPM test, and a score of 

18 on the APM test. 

Specific comparison of Fractal Ravens vs Kunda et al. Affine

The agreement of scores between the Fractal Ravens algorithm and the Kunda et 

al. Affine algorithm on the SPM warrant further inspection and remarks.  Kunda et al. 

(2012) inspect each row and column of a Raven problem, comparing pixels between 

images under both a series of similitude transformations (indeed, they employ the same 

eight similitude transformations used by the fractal encoding process) and other pixel 

transformations.  Once a candidate transformation has been selected, then the 

transformation is applied to the images in the final row and column of the problem, 

generating a prediction image.  This prediction image is then compared against the 

candidate images by calculating a similarity score based on pixel correlation.  The 

candidate image with the maximum similarity score is selected as the answer.

Although Kunda et al. (2012) do not report the ambiguity of their results, I 

received their similarity data for the SPM, APM, and CPM test results via private 

communication, and made the calculation using the techniques described above for the 

ABR* algorithm.  Table 5.7 directly compares the specific results of the Kunda et al. 

Affine algorithm and the Fractal Ravens, color coded to indicate ambiguity.
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Table 5.7. Comparison of SPM Results between Affine and Fractal Ravens

Table 5.7 shows the results of both algorithms at a 95% level of confidence. 

While both algorithms answer 50 of the 60 problems, the degree of ambiguity differs 

substantially.  The Fractal Ravens algorithm has ambiguous results on 12 problems, while 

the Affine algorithm is ambiguous on 31 problems.  This discrepancy can be attributed at 
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least in part to the single level of abstraction at which the Affine algorithm operated.  In 

contrast, the Fractal Ravens algorithm examined five or six levels of abstraction for each 

problem.

The pattern of agreement between the algorithms is likewise intriguing. Of the 60 

problems, the algorithms agree (both either correct, ambiguous, or incorrect) on 25 

problems.  This is expected, as both algorithms use representations which are imagistic in 

nature rather than the propositional representations used in Lovett et al. (2007 and 2010). 

On 15 problems, the Fractal Ravens algorithm selects the correct answer, while the Affine 

algorithm is ambiguous. This result also is expected, for as indicated above, the Fractal 

Ravens algorithm operates over substantially more levels of abstraction. In contrast, only 

on one problem (B3) is the Affine algorithm correct while the Fractal Ravens algorithm is 

ambiguous. A closer inspection of the Fractal Ravens activity on that problem indicates 

that at the middle level of abstraction, the correct answer is unambiguously identified, yet 

at more coarser and more fine levels of abstraction, other answers would have been 

selected. Thus, while the Fractal Ravens algorithm notes the correct answer, it cannot be 

selected unambiguously.

Each algorithm fails to spot the correct answer on 10 problems, but they fail in 

common on only three problems (D8, E10, and E12).  The pattern of discrepancy for the 

remaining 14 problems falls into three categories:  Fractal Ravens correct / Affine 

incorrect (A11, C2, C9, D6, and D12); Fractal Ravens ambiguous / Affine incorrect (D7 

and E7); and Fractal Ravens incorrect / Affine ambiguous (B9, B10, C3, D10, D11, E1, 

and E3).  There was no problem in which the Affine algorithm was correct while the 

Fractal Ravens algorithm was incorrect.

With regard to the third pattern of discrepancy (Fractal Ravens incorrect / Affine 

ambiguous) in which the Affine algorithm outperformed the Fractal Ravens algorithm, 

three of the problems (C3, E1, and E3) involve the addition of two of the three horizontal 

or vertical images.  The Affine algorithm employs a specific pixel addition transformation 

as well as the eight similitude transformations, and it is likely that this accounts for the 

performance distinction on these problems. In the remaining four problems, the Fractal 
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A Fractal Affine

# 12 11

1 correct correct

2 correct correct

3 correct ambiguous

4 correct correct

5 correct correct

6 correct correct

7 ambiguous ambiguous

8 correct correct

9 correct correct

10 correct ambiguous

11 correct

12 correct ambiguous

B Fractal Affine

# 10 12

1 correct correct

2 correct correct

3 ambiguous correct

4 correct correct

5 correct correct

6 correct correct

7 ambiguous ambiguous

8 correct correct

9 ambiguous

10 ambiguous

11 correct correct

12 correct correct

C Fractal Affine

# 11 10

1 correct ambiguous

2 correct

3 ambiguous

4 correct ambiguous

5 ambiguous ambiguous

6 correct correct

7 correct ambiguous

8 correct ambiguous

9 correct

10 ambiguous ambiguous

11 ambiguous ambiguous

12 correct ambiguous

D Fractal Affine

# 9 8

1 correct ambiguous

2 correct ambiguous

3 correct ambiguous

4 ambiguous ambiguous

5 correct ambiguous

6 correct

7 ambiguous

8

9 ambiguous ambiguous

10 ambiguous

11 ambiguous

12 correct

E Fractal Affine

# 8 9

1 ambiguous

2 correct ambiguous

3 ambiguous

4 correct correct

5 correct correct

6 ambiguous ambiguous

7 ambiguous

8 correct ambiguous

9 ambiguous ambiguous

10

11 correct ambiguous
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Ravens algorithm fails to note the answer unambiguous at the considered levels of 

abstraction. Three problems (B9, B10 and D10) have the answer noted as among the best 

three answers at certain levels, but in each instance noted below the 95% confidence 

level. The remaining problem (D11) has the answer noted as an ambiguous possibility, 

but prefers instead to choose an answer which has the correct aspect (closed figure) and 

shape (wave), but is truncated instead of full.

Thus, while the scores of the two algorithms are in close agreement, the 

differences in the algorithms’ approaches and the representations used lead to specific 

distinctions in the individual answers on the SPM test.  As shown, the Fractal Ravens 

algorithm, by dint of its use of several levels of abstraction, is substantially less 

ambiguous than the Affine algorithm.  

Choice of psychological model

As noted earlier, the Tversky formula for featural similarity offers the ability to 

vary the similarity metric through the selection of weights for common or unique 

features.  In my assessment, I looked at the Fractal Ravens algorithm’s performance on 

all of the Raven tests using three such psychological models of similarity:  the Gregson-

Sjoberg model, the Eisler-Ekman model, and the Bush-Mosteller model. 

The Gregson-Sjoberg model establishes α = β = 1.0  This yields a similarity 

metric which is the Jaccard similarity, a balanced approach which favors neither 

transformation:

 S(T,T’) = Ƒ(T ∩ T’) / Ƒ(T ∪ T’)

Tversky (1977) points out that the Eisler-Ekman model, setting α = β = 0.5, yields 

a a similarity metric of the form:

 S(T,T’) = 2Ƒ(T ∩ T’) / (Ƒ(T) + Ƒ(T’))

A slightly different formulation for Eisler-Ekman is given by Junge (1977):

S(T,T’) = 2q / (1 - q)  where q = RT/RT’
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where the values RT and RT’ are the responses to stimuli T and T’.  Junge’s reformulation 

using the response ratio introduces an asymmetry (through the choice of which response 

is to be judged as the denominator).

Of the models considered, only the Bush-Mosteller model, which sets α = 1.0 and 

β = 0, offers a strictly Tversky-formulated asymmetric view of the transformations.  In 

doing so, this model introduces the notion of directional salience (Santini & Jain, 1999).  

This asymmetry  creates a violation of the strictly geometric distance axioms associated 

with a distance metric. Another interpretation is that using the Bush-Mosteller model, 

S(T,T’) > S(T’,T) whenever Ƒ(T) < Ƒ(T’)

This implies a relationship between the asymmetry of the model and the 

homogeneity of the features being used to discrimination T and T’.

In my experiments, I found that the choice of model had little or no effect on the 

results obtained on the APM and CPM tests.  On the SPM and the SPMPlus tests, the 

outcomes did change, but only very slightly.  The Bush-Mosteller model generated the 

highest score on the SPM (a score of 50), while the Gregson-Sjoberg model generated the 

lowest score of 48.  I conclude that the selection of the psychological model for similarity  

distance has little effect on the general outcome of the Fractal Ravens, though testing 

other models and similarity metric calculations would be a good exercise for future 

research.  

I speculate that the lack of outcome differential when using the Bush-Mosteller 

model in my results is due to the juxtaposition of that model’s implicit directional 

salience with the mutual fractal representation.  I will offer further speculation on the 

relevance of this model a bit further ahead in this discussion.
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Performance at varying levels of confidence

I also ran the Fractal Ravens algorithm against the Ravens test suite using a 

variety of levels of confidence.  Chart 5.3 provides the details of these test runs.

Chart 5.3. Percentage of Correct Scores, Performance per sigma

As the confidence level, expressed here in terms of the deviation, increased from 

38% confidence (at 0.5-sigma) to 99.99% confidence (at 4-sigma), the test performance 

decreased.  Note that at 95% confidence (about 2-sigma), for all tests, the scores are at or 

above 80%, and there is a sharp falloff in certain tests (the CPM in particular) for 3-sigma 

and beyond.  Even so, the SPM and SPMPlus, while different in content but similar in 

composition, exhibit performance curves which resemble one another.

As confidence increases, the agreement in scores between those noted correct and 

those discernible as correct via some strategy also increases.  I believe my computational 

evidence suggests that increasing confidence decreases ambiguity, and thus provides 

sufficient data for the various strategies to determine an answer.  That, in turn, leads to 

the convergence in score agreement as confidence increases. 
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CHAPTER 6

FRACTALS AND MILLER ANALOGIES

 In this chapter, I describe the use of a derivation of the Extended Analogy By 

Recall (ABR*) algorithm on a classic set of geometric analogy problems, those first used 

by Evans in his 1964 study (Evans, 1964). This chapter develops and illustrates the 

Fractal Miller algorithm, and provides a comparison of its performance against 

contemporary studies and human behavior on the Evans suite of problems.

Miller Analogies Test

 The Miller Analogies Test (MAT) is a high-level mental ability test which requires 

the solution of problems presented as analogies (Meagher, 2006; Pearson 2011).  The test 

is used by a large number of graduate studies programs as one of several criteria for 

admission, as the abilities to recognize and to construct analogies are thought to be key 

indicators of constructing explanations and building arguments, and represents a 

fundamental way in which understanding is formed and communicated (Gentner, 

Holyoak, & Kokinov, 2001; Holyoak & Thagard, 1996). Psychologists also suggest that 

the format of the Miller Analogy Test represents an efficient and effective way to sample 

reasoning processes and to measure verbal reasoning, inferential ability, and analytical 

intelligence (Kuncel, Hezlett, & Ones, 2004; Lohman, 2004; Sternberg, 1977, 1985, 

1988). 

MAT Analogies

  The problems on the MAT are entirely verbal, and are referred to as MAT 

analogies.  MAT analogies have the general form “A : B :: C : ____” with four possible 

answer choices given.  To solve a MAT analogy, one must recognize some relationship 
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between two of the given terms, and then look for that same relationship between the 

third given term and one of the answer choices.   This yields two possible interpretations 

for “A : B :: C : ___”:

A is to B as C is to (one of the answers)

A is to C as B is to (one of the answers)

The Miller Analogy Test expressly precludes the remaining interpretation (Pearson 2011):

B is to C as A is to (one of the answers)

Here are some examples of MAT analogies:

Plane : Air :: Car : _____

(a . motorcycle, b . engine, c . land, d . atmosphere)

Induction : _____ :: Soldier : Priest

(a . confirmation, b . graduation, c . ordination, d . resistance)  

 In the first example, the sought-for relationship is “travels by”: a plane “travels 

by” air.  Thus, one can consider in turn which of the possible answers would best satisfy 

the statement: car “travels by” ____.  In this example, the answer is “c. land.”   In the 

second example, the sought-for relationship is “ceremony for becoming”: a soldier 

becomes one by being inducted.  The answer to the second example, then, is “c. 

ordination”: a priest becomes one by being ordained. 
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 Note also that the second example is given in a format which is different but 

semantically equivalent:  C : ____ :: A : B.  Indeed, on the Miller Analogy Test, the 

problem may be posed in any of these formats:

A : B :: C : _____

A : B :: _____ : C

C : _____ :: A : B

_____ : C :: A : B

 Regardless of the manner in which the missing term is presented, the challenge of 

solving a MAT analogy remains the same:  there will exist one relationship which best 

describes either the pair A and B or the pair A and C, and therefore one sought-for 

answer. 

Solving a MAT Analogy

 Schematically, if one treats the original analogy as A : B :: C : X, then there are 

two candidate relationships R1 and R2 which can be expressed in a functional notation:

R1(A,B) :: R1(C,X)

R2(A,C) :: R2(B,X)

The challenge with solving a MAT analogy, then, is to determine which of these 

relationships R1 or R2 is the sought-for relationship.  This determination will be informed 

by all of the given terms (A,B,C), as well as the four potential answers to be substituted 

in for X. 

Geometric variations of the Miller Analogy Test and AI

 In 1964, Evans published a paper entitled “A heuristic program to solve 

Geometric Analogy Problems” (Evans, 1964).  In the paper, he describes his efforts to 
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address a ‘wide class of intelligence test problems of the “geometric-analogy” type 

(“figure A is to figure B as figure C is to which of the following figures?”).’  What Evans 

proposed, and produced, was the first such program to tackle geometric variations of the 

Miller Analogy test.  

 Evans used a canonical format for his problems: A : B :: C : (a, b, c, d, e), with 

three given images (A, B, C), and five potential answers (a,b,c,d,e).  An example problem 

from those Evans addressed is shown in Figure 6.1.

: :: : ?

a b c d e

Figure 6.1. An Evans analogy problem

Evans (1964) notes that his approach does not concern itself with the original capture of 

the figural information, and instead presumes the capture process results in a list-structure 

representation, comprised of geometric descriptions.  For example,  (DOT (X . Y)) would 

be inferred to mean that there is a DOT at coordinates (X,Y), and (SCC ((X1 . Y1) 0.0 

(X2 . Y2) 0.0 (X3 . Y3) 0.0 (X1 . Y1))) would be inferred as a “simple closed curve” 

describing a triangle with vertices at (X1,Y1), (X2,Y2), and (X3,Y3).   Other descriptions 

included ways to denote spatial relationships between pairs of objects (e.g. (INSIDE A B) 

meant that object A was wholly contained inside of object B).  Each of the given objects 

in a geometric MAT problem and all of the possible answers were represented in this 

manner.

 With this representation of the problem, Evans made another simplifying decision 

and restricted his work to being an interpretation of the R1 relationship of the more 
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general MAT problems; that is, the form A : B :: C : X is always interpreted as R1(A,B) :: 

R1(C,X), removing the problem of determining which of the two relationships should be 

sought.  This in turn provided two-part strategy for Evan’s solver. First, the solver 

determined all of the possible ways in which the spatial relationships of A and B can be 

matched, and from those matchings established one or more rules for transforming A into 

B (thereby determining R1(A,B)).  Next, a candidate set of rules is determined for 

transforming C into each of the potential answers, using the same technique.  Then, each 

of those rules are compared against the set of R1(A,B) rules, and the similarity between 

each is noted (in terms of how much or little of the original rule appears in the candidate 

rule, and the manner in which the variables are used).  Finally, the rules which are found 

to resemble each other are applied to the objects A and C, to determine which information 

is preserved in the construction of B from A and the construction of the candidate answer 

from C (Evans, 1964).  

 Evans (1964) points out that although there may be many such rules determined 

by the first part of the solver, he coded the solver to seek the “best” or “strongest” rule, 

one that results in the most descriptive answer or is the least alteration of the rule (Evans 

permits for the production of an answer which uses some but not necessarily all of the 

elements of a rule).  As Evans notes, if a single rule meets this criteria, it is chosen as the 

analogy, and the potential answer from which it was generated is selected as the answer 

to the problem (Evans, 1964).  If a tie results, the method is deemed to have failed to 

produce an analogy.

 Evans’ aim was to develop a method by which a program could form a “theory” – 

the R1(A,B) rule – on the basis of the evidence present in the descriptions of A and B, and then 

generalize the theory as required (through rule modification) to fit further evidence (in the form 

of C).  Once generalized, the program would use the theory to make a prediction from that 

evidence, and test that prediction via comparison of the output to the potential answers, iteratively 
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modifying the rule and retesting its predictions until a singular answer was determined or no 

further modifications could be formed.

Contemporary approaches to Miller Geometric Analogies

While there are several published accounts of models and systems which address 

geometric analogies (Bohan & O’Donoghue 2000; Ragni et al., 2007; Schwering et al., 

2007), the largest body of contemporary work on address the specific challenges of the 

Evans set of geometric MAT problems comes from the work of Kenneth Forbus and his 

colleagues.  Several of the publications report on the problem of constructing input from 

sketches (Forbus et al., 2001; Forbus et al., 2008).  Two papers in particular, however, 

specifically address geometric MAT problems in details.

 In Tomai et al. (2004), the authors develop and defend the notion that qualitative 

visual structure combined with analogical processing can produce human-like results, 

using the domain of geometric MAT problems. The paper illustrates the general purpose 

nature of the Structure-Mapping Engine (SME).  With regard to Evans, however, Tomai 

et al. demonstrate that processing only differences (as opposed to similarities) in the 

second stage of their model leads to sufficient results.

 In Lovett et al. (2009), the authors further their argument that second-order 

analogies over differences computed via analogies between images are sufficient.  They 

make an extensive comparison between the results of their model’s output and that of a 

behavioral experiment performed on humans taking the Evans problem suite.
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The Fractal Miller algorithm

 In the course of my research, I developed the Fractal Ravens algorithm as 

presented in an earlier chapter.  Since the mechanisms for deriving an answer based upon 

multiple relationships were already available through that algorithm, the derivation of the 

Fractal Miller algorithm from the Fractal Ravens algorithm was straightforward.  

An example

Let us use the example problem from Evans’ research as the basis for describing the 

algorithm.  Recall that in the problem, there is exactly one relationship which must be 

considered (as opposed to the several that must be simultaneously considered when 

addressing a Raven’s problem).   Let us denote this left-side relationship as R, and the 

right-side relationship as R’, as shown in Figure 6.2.

: :: : ?

RRR R’R’R’

Figure 6.2. the R and R’ relationships

To solve a Miller’s problem, one must construct a set of similarity values Θi for each of 

the five potential answers Xi:

Si ← S( R, R’(Xi) )   ∀ i, 1 ≤ i  ≤  5

where S(X,Y) is the Tversky similarity between two sets X and Y, and R’(Xi) denotes the 

relationship formed when the answer image Xi is included in the R’() set.

129



The algorithm, presented

 My algorithm for solving geometric MAT problems, like the Fractal Ravens 

algorithm, is itself a slight modification of the Extended Analogy By Recall (ABR*) 

algorithm.  Here is the algorithm in pseudo-code form. I separate the algorithm into two 

parts: the preparatory stage and the execution stage.

Algorithm 6.1. The Fractal Miller Algorithm, preparatory stage.

The Fractal Miller Algorithm: Preparatory Stage

 In the first stage of our Fractal Miller Algorithm, a geometric Miller’s Analogy 

Test problem is first segmented into its component images (the matrix of the given 

images, and the collection of images of possible answers).  Next, the algorithm 

determines the relationship between the first two given images, expressed as a mutual 

fractal representation.  Then, a range of abstraction levels is determined. 

Given a geometric Miller’s Analogy Test problem, determine an 
answer.
P R O B L E M  S E G M E N T A T I O N

By examination, divide the problem into two segments, one 
containing the matrix of givens and the other containing the 
possible answers.  Further divide the matrix of givens into an 
ordered set of 3 images.  Likewise, divide the answer segment into 
an ordered set of its constituent individual answer choices.
Let M := { m1, m2, m3 } be the set of matrix element images.
Let C := { c1, c2, c3, ... } be the set of individual answer choices.
R E L A T I O N S H I P  D E S I G N A T I O N S

Let R be a relationship, determined as follows:
 R ← MutualFractal( m1, m2 )

 A B S T R A C T I O N  L E V E L  P R E P A R A T I O N  

Let d be the largest pixel dimension for any image in the set M ∪ C.
Let A := { a1, a2, ... } represent an ordered range of abstraction 
values where
 a1 ← d, and  ai ← ½ ai-1  ∀ i, 2 ≤ i ≤ ⌊ log2 d ⌋  and  ai  ≥  2  
The values within A constitute the grid values to be used when 
partitioning the problem’s images.
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 As I have implemented it, the abstraction levels are determined to be a 

partitioning of the given images into gridded sections at a prescribed size and regularity.

Algorithm 6.2. The Fractal Miller Algorithm, execution stage.

The Fractal Miller Algorithm: Execution Stage

 The algorithm concludes by using a variant of the ABR* algorithm to determine 

the confidence in the answers at each level, stopping when ambiguity is sufficiently 

resolved.  Thus for each level of abstraction, the relationship R is re-represented into that 

partitioning.  Then, for each of the candidate images, a potentially analogous relationship 

is determined and a similarity value is calculated.  The balance of the Fractal Miller 

algorithm follows the ABR* algorithm, using the deviation from the mean of these 

Given M, C, R, A, and η as determined in the preparatory  stage, 
find the answer.

P R E P A R A T O R Y

Let Ε be a real number which represents the number of standard 
deviations beyond which a value’s answer may be judged as 
“confident”
Let S(X,Y) be the Tversky similarity metric for sets X and Y

 E X E C U T I O N  

For each abstraction a ∈ A:
• Re-represent each fractal representation r ∈ R according to 

abstraction a
• S ← ∅
• For each answer image c ∈ C :

R’ ← MutualFractal( m3, c ) according to abstraction a
S ← S ∪ { S( R, R’) }

• Set µ ← mean ( S )
• Set σµ ← stdev ( S )/√n
• Set D ← { D1, D2, D3, D4, ... Dn } where Di = (Si-µ)/σµ
• Generate the set Z := { Zi ... } such that Zi ∈ D and Zi > E
• If |Z| = 1, return the answer image Ci ∈ C which corresponds 

to Zi
• otherwise there exists ambiguity, and further refinement must 

occur.

If no answer has been returned, then no answer may be given 
unambiguously.
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similarities, continues through a variety of levels of abstraction, looking for an 

unambiguous answer that meets a specified confidence value.

The example, solved.

 Table 6.1 shows the results of running the Fractal Miller algorithm on the example 

problem, starting at an original gridded partitioning of 59x59 pixels (the maximal pixel 

dimension of the images), and then refining the partitioning down to a grid of 7x7 pixels.  

The table gives the mean (µ), standard deviation (σµ), and number of features (f) for each 

level of abstraction (grid).  The deviation and confidence for each candidate answer are 

given for each level of abstraction as well.  A confidence level of 95% is sought.  In the 

table, I color a cell yellow if it exceeds the desired confidence level, and red if it does so 

unambiguously for the given grid partitioning. 
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Table 6.1. Image Deviations and Confidences

Discussion of the example results

As with the Fractal Ravens example results, here the deviations presented in table 6.1 

appear to suggest that if the algorithm starts at the very coarsest level of abstraction, the 

answer is apparent (image choice 4).  The confidence in that answer tapers off as the level 

of abstraction becomes finer.

image deviations & confidencesdeviations & confidencesdeviations & confidencesdeviations & confidences

1.0
68.27%

3.034
99.76%

3.079
99.76%

2.099
96.42%

1.0
68.27%

1.687
90.85%

1.604
89.13%

1.329
81.61%

1.0
68.27%

1.005
68.52%

1.069
71.51%

0.886
62.43%

4.0
99.94%

1.723
91.52%

1.438
84.96%

0.944
65.47%

1.0
68.27%

1.992
95.37%

2.176
97.04%

3.486
99.95%

grid size 59 29 14 7

µ 0.2889 0.1644 0.1382 0.2033

σµ 0.0508 0.0197 0.0069 0.0020

codes 2 18 50 162

features 126 1134 3150 10206
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 Again, as with the Fractal Ravens results, I see evidence that operating with either 

too sparse a data set (at the coarsest) or with too homogeneous a data set (at the finest) 

may be problematic.  The coarsest abstraction (59 pixel grid size) offers 126 features, 

whereas the finest abstraction (7 pixel grid size) offers more than 10,000 features for 

consideration. 

 The data in the table continues to suggests the possibility of automatically 

detecting these boundary situations.  The average similarity measurement at the coarsest 

abstraction is 0.2889, and falls steadily at finer levels of abstraction, to sharply increase at 

the finest level.  Unlike the Fractal Ravens example, I believe this provides evidence for 

for an emergent boundary for finer abstraction. 

 I note also that the only level for which the answer is unambiguous is the most 

coarse level of abstraction, and that all other tested levels offer ambiguity.  To me, this 

suggests that while there may be a sufficient level of abstraction (even if it is coarse) at 

which an unambiguous answer may be obtained, perhaps the fact that there is but only 

analogical relationship at play in a geometric MAT problem, as opposed to the multiple 

analogical relationships present in a Raven’s problem, implies that the additional 

constraints of multiple relationships may serve to increase the confidence in the answer.  

Running the algorithm against the Evans problems

 I tested the Fractal Miller algorithm on all of the problems originally used by 

Evans in his 1964 paper.  I now present the results of that experiment, and a discussion of 

those results.

Inputs used for the test

 To create inputs for this experiment, I used the same problems Evans used, but as 

illustrated in the appendix of Lovett et al. (2009).  A screen capture was made of each 

page of the appendix, and segmented into individual problem images. Then, each 
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problem image was sliced up to create separate image files for each of the given items in 

the matrix and for each answer choice. These separate images were the inputs to the 

technique for each problem. No further image processing or cleanup was performed, 

despite the presence of several pixel-level artifacts introduced by capture and 

compression. Additionally, the fractal algorithm attempted to solve each problem 

independently: no information was carried over from problem to problem, nor from test 

variant to test variant. 

 The code used in conducted these runs is precisely the same code as used in the 

earlier example.  This code is available for download from our lab website, along with the 

images themselves.

Levels of abstraction considered and calculations performed

The images associated with each geometric MAT problem had a maximum pixel 

dimension of  59 pixels.  Accounting for variation within each test problem, and setting a 

minimum grid size of 7 pixels, the algorithm therefore calculated four levels of 

abstraction for each problem, using the formula described above for determining 

maximum grid size and using a strategy of halving the pixel dimension at each 

successively finer level of abstraction.  

 At each level of abstraction, the similarity value for each possible answer was 

calculated, as proscribed by the Fractal Miller algorithm.  Those calculations used the 

Tversky formula, with alpha set to 1.0 and beta equal to 0.0, conforming to values used in 

the coincidence model by Bush and Mosteller (1953). From those values, the algorithm 

calculated the mean and standard deviation, and then calculated the deviation and 

confidence for each answer.  Which answers provided a confidence above our chosen 

level were noted, and whether for each abstraction level the answer was unambiguous or 

ambiguous, and if ambiguous, in what manner.  In those cases where ambiguity was 
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found, I explored several different data techniques to assist in the resolution, the same 

techniques which I described in the earlier chapter on Fractal Ravens results.

Performance on the Evans suite of geometric MAT problems

On the Evans suite of geometric MAT problems, the Fractal Miller algorithm 

detected the correct answer at a 95% or higher level of confidence on 13 of the 20 

problems.  Of the 13 problems where the correct answers detected, 11 were determinable 

by one or more of our ambiguity-resolution strategies. Of the remaining two problems 

noted as answers, both were ambiguous between two particular answers.  

Comparison to other computational models

 This certainly is not the first published account of a computational model’s 

attempt at the Evans suite.  For those accounts which explicitly report scores (e.g. Tomai 

et al., 2004), I compared their results with those achieved by the Fractal Miller algorithm.  

I also compared the results against human performance data on the problems as given in 

an experiment detailed in Lovett et al. (2009).  Table 6.2 documents the performance. 

Table 6.2. Comparison to Other Methods

problem FractalMiller Tomai et al. 2004 Human

1 ambiguous yes yes

2 yes yes yes

3 yes yes yes

4 yes yes ambiguous

5 yes yes

6 yes yes

7 yes yes yes

8 yes yes yes

9 yes yes

10 yes ambiguous

11 yes yes yes

12 yes yes

13 ambiguous ambiguous
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14 yes ambiguous

15 yes yes

16 yes yes

17 ambiguous

18 yes yes ambiguous

19 yes yes ambiguous

20 ambiguous yes yes

Total 13 (2 ambiguous) 15 (1 ambiguous) 20 (7 ambiguous)

Tomai et al. (2004) report the results of a version of their algorithm.  They 

specifically suggest that their efforts are not to improve upon the results of Evans’ 

original program, but to validate the ability of their general purpose system, SME, to 

produce human-like analogy judgments.  The representation of the problems are created 

automatically using sKEA, a sketching knowledge entry associate program.  These 

representations are in turn fed into SME, an implementation of Gentner’s structure 

mapping theory (Gentner 1983).  Tomai et al. report that a number of the problems 

(12-20) were run through only stage 2 of their system due to limitations in recognition.  

They also note that the program did not perform axial symmetry, lacked the ability to 

decompose glyphs, lacked a hierarchical awareness in positional relationships, and did 

not have the ability to reinterpret the example to attempt another solution.  They note that 

these deficiencies were present in some of the correct answers, but other factors were 

able to deduce a correct answer.

In Lovett et al. (2009) the SME program is again employed to solve the Evans set, 

using the output of CogSketch as input.  In addition to the two-stage process of SME, an 

additional model component, the executive, is presented as a means to evaluate whether 

an answer is a sufficient answer (e.g. all the facts determined in the relationships between 

the givens and the candidate answer align).  Additional modes of mapping for the first-

stage area also introduced, but their usage is strongly constrained.  The results reported in 

Lovett et al. (2009) concern themselves more with the discussion of their correlation with 

human-preferred answers rather than providing an explicit account and detailed 

discussion of their computational models.  They do note that their model chooses the 
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human-preferred answer for each of the 20 problems.  Thus, their results can be construed 

as identical to that given in the human column in the table above.

It is also important to note that for the problems in which the human answer is 

given as “ambiguous” this means that I have interpreted any problem in which less than 

95% of the participants preferred that any one particular answer as ambiguous.  This 

decision I made subjectively, but motivated by the desire to mirror the 95% confidence 

level used in the Fractal Miller algorithm. 

Bohan and O’Donoghue (2000) discuss Evans ANALOGY in the context of 

presenting their argument for adding attribute matching to Gentner’s theory (which calls 

for only relational predicate mapping).  However, they offer no evidence of having 

attempted to solve any of the Evans problems.  

Ragni, Schleipen, and Steffenhagen (2007) similarly discuss Evans ANALOGY 

briefly, but only in the service of contrasting against their SRM model, and its focus and 

grid approach.

Schwering et al. (2007) offer an approach for solving geometric analogy problems 

using only a single analogical mapping stage, based on hand-coded representations and 

Gestalt grouping principles.  They offer no evidence of having attempted to solve any of 

the Evans problems using their Heuristic-Driven-Theory-Projection (HDTP) system.
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CHAPTER 7

FRACTALS AND VISUAL ODDITY

 This chapter will discuss visual oddity, and a class of problems from visual 

analogy in which similarity calculations are used to derive an answer.  This chapter 

develops a cognitively-inspired computational model to address that class of problems, 

and introduces the concept of distributed similarity.

Oddity and Novelty

 Let us consider a problem of visual oddity.  Suppose one is presented with a group 

of objects, and are to determine, without further instruction, which one of the objects 

does not belong with the others.  Figure 7.1 shows an example of such a problem.

Figure 7.1. Visual Oddity example

Note that although the problem presents the objects in a matrix fashion, the presentation 

itself is meaningless.  The problem of selecting which one does not belong would remain 

regardless of arrangement. 

 This problem can be interpreted as a classification problem, where one of the 

objects is classified into one category (ODD), and the rest are classified into another 
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category (TYPICAL).  For example, if there are n objects, and all of the objects Oi are in 

some set M initially, one can presume that there exists two mutually exclusive sets ODD 

and TYPICAL:

M = ∪ Oi   ∀ i,  0 < i ≤ n

∃ ODD, TYPICAL → M = ODD ∪ TYPICAL 

and ODD ∩ TYPICAL = ∅

One would seek some function S() which serve to score each object, and then given the 

score be able to assign the object into one of the two sets.  The value of the function 

would act as a threshold T:

Oi ∈ TYPICAL if S(Oi) > T, and 

Oi ∈ ODD if S(Oi) ≤ T

The challenge is that there is no additional information as to how the classification is to 

proceed.  Thus, a problem of visual oddity becomes how to determine the function S() 

and the threshold T.

Oddity as Analogy

Let us consider the function S().  I am addressing a problem of classifying a finite set of 

objects into two mutually exclusive sets.  I then may reinterpret S() as being a function of 

two variables instead of one, and allow S() to consider a given object in terms of some or 

all of the other objects:

S( Oi, X )  where ∃ j, 0 < j ≤ n, X = ∪ Oj ∴ X ⊆ M

Notice that I can further restrict X such that it contains only one object Oj:

S( Oi, X )  where ∃ j, 0 < j ≤ n, X = { Oj }
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As I will be using S() to determine whether an object Oi is classifiable as a member of the 

set { Oj }, I suggest that S() represents in some sense how similar Oi is to the members of 

set { Oj }.   In such a manner, I can proscribe that S() attain a value between 0.0 and 1.0, 

where a value of 0.0 would indicate entirely dissimilar, and a value of 1.0 would indicate 

completely similar.  This characterization is important, for it allows the threshold value T 

to be bound to a range of from 0.0 to 1.0.  

 One could also infer that the value of S() being equal to 1.0 would suggest that an 

object was being considered for membership with a set containing itself as the set’s sole 

element.  Indeed, a value of S() equal or nearly equal to 1.0 would by this reasoning 

suggest that the members of the compared set would share many characteristics in 

common with the compared object Oi, and from that it might be inferred that the 

members of the set would share a similar many characteristics in common with one 

another.  It is from these two inferences (commonality between Oi and the set, and 

commonality between members of the set itself) that I find the basis for comparison, that 

is, how the commonality is calculated.

 However, note that the calculation of that similarity is yet unconstrained.  Let us 

now consider how to restrict the calculation, and specify the role that the fractal 

representation can play in that restriction.

The Two Relationships

 To deem some apprehended object as odd or novel involves the complex interplay 

of at least two relationships (Wagemans et al., 2012a): the relationship between the 

observer and the observed, and the relationship between the observed and its context. The 

relationship between the observing agent and the observed object may vary depending 

upon some act taken by the observer.  For example, if one wishes to appreciate an object 

at a higher level of detail, one might move closer to the object, or bring the object closer, 
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resulting in the object occupying a larger expanse of the observer’s field of view.  This 

action modifies the resolution of the object: at differing levels of resolution, fine or coarse 

details may appear, which may then be taken into the consideration of the novelty of the 

object. The observed object also is appreciated with regard to other objects in its 

environment.  Comparing an object with others around it may engage making inferences 

about different orders of relationships. One may begin at a lower order but then proceed 

to higher orders if needed. The context also sanctions which aspects, qualities, or 

attitudes of the objects are suitable for comparison.  

 Given the importance of perceptual novelty detection, there has been quite a bit of 

work on the topic. Markou & Singh (2003a, 2003b) review statistical and neural network 

techniques for novelty detection. Neto & Nehmzow (2007) illustrate the use of visual 

novelty detection in autonomous robots. Work on spatial novelty and oddity by Lovett, 

Lockwood & Forbus (2008) centered on qualitative relationships in visual matrix 

reasoning problems. They showed that by applying traditional structure-mapping 

techniques (Gentner, 1983) to qualitative representations, analogical reasoning may be 

used to address problems of visual oddity; however, they did not show where the 

representations come from (Indurkhya, 1998).  More recently, Prade and Richard (2011, 

2013) present a logical axiomatic approach to the problem.
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A General Strategy for Visual Oddity

 A strategy for solving visual oddity problems should address both aspects of 

novelty detection described by Wagemans et al. (2012a).  I now present the derivation of 

one such strategy.

Modeling the relationships

 In my research, I model the relationship between the observer and the observed by 

starting with fractal representations encoded at a coarse level of resolution, and then 

adjusting to the right level of resolution for addressing the given problem. I model the 

relationship between the observed and its context by searching for similarity between 

simpler relationships, and then shifting its searches for similarity between higher-order 

relationships.  In each aspect, these adjustments are made automatically by my strategy, 

by characterizing the ambiguity of a potential solution. 

Connecting the relationships to the problem

Let us consider the second relationship (between the observed and its context).  

One way to judge the commonality of one object to another is to consider how its 

relationship between two objects compares to other such relationships.   Let us suppose 

there is an object Oi, selected from a group of N such objects.   I can denote the 

relationship between Oi and another object Oj in this fashion:

R( Oi, Oj )

I model the relationship between Oi and Oj as a mutual fractal representation:

R( Oi, Oj ) ← T( Oi, Oj ) ∪ T ( Oj, Oi )

where T( Oi, Oj ) is the fractal representation of Oi in terms of Oj and T( Oj, Oi ) is 

the fractal representation of Oj in terms of Oi.  In this fashion, a set of relationships 

(indeed, they are now representations) can be determined from the entire set of objects M 

by considering all of the possible subsets of M which contain exactly two members.  
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 Mathematically, if the cardinality of M is n, then the formula for the 2-

combination of the set M is:

C(n,2)  = ( n )  =
n!

C(n,2)  = ( 2 )  =
2!(n-2)!

Thus, if there are 9 objects in the set M, then a total of 36 possible 2-combinations 

of M would yield 36 relationships defined as mutual fractal representations. Furthermore, 

it is easy to see how the number of relationships could be extended for 3-combinations, 4-

combinations, or higher, through the use of the mutual fractal representation.  In this 

manner, a strategy which uses the mutual fractal representation to model the relationship 

between two or more objects captures the second relationship required of noticing oddity.

The first relationship of Wagemans et al. (2012a), the relationship between the 

observer and the observed, can be captured as noted by varying the level of abstraction 

(or resolution) which at which the fractal representations are calculated.  Thus, a strategy 

which employs fractal representations captures both relationships.  However, as the 

strategy thus far presented considers and affords comparison between relationships, and 

not between objects, additional reasoning must occur.

From relationships to objects

To determine which of the objects is the most novel, the strategy must determine 

how dissimilar each object is from its fellows.  As each of the objects has been placed 

into a variety of fractal representations, the model must first determine how similar each 

of these representations is to all of the others, and then distribute that similarity to the 

objects.  

To calculate a measure of similarity, let us use the Tversky metric described 

elsewhere in this dissertation, which provides a comparison of the number of fractal 

features shared between each pair member (Tversky, 1977).  However, in order to favor 

features from either image equally, and distinguished from the work in visual similarity 

presented earlier, here I choose to set the weights α and β equal to 1.0.  Thus, I calculate 

similarity as a Jaccard similarity:

144



 Similarity of A and B = Ƒ(A ∩ B) / Ƒ(A ∪ B)   

where as before Ƒ(X) denotes the number of features in the set X.  

Relationship Space 

As this calculation for each relationship is performed, the model determines a set 

of similarity values for each member of this collection of fractal representations. I 

consider the similarity of each analogical relationship as a value upon an axis in a large 

“relationship space” whose dimensionality is determined by the size of the initial set.  For 

example, if the set M had 9 objects, then for 2-combinations, the space is 36 dimensional. 

For relationships of 3-combinations, the space would be 84 dimensional; for relationships 

of 4-combinations, the space is 126 dimensional. 

Maximal Similarity as Distance 

To arrive at a scalar similarity score for each object of M, the model constructs a 

vector in this multidimensional relationship space and determine its length, using a 

Euclidean distance formula. The longer the vector, the more similar two members are; the 

shorter the vector, the more dissimilar two members are.  As the model is looking for the 

object which is most novel, then it should seek to find the shortest vector, as an indicator 

of dissimilarity.

Distribution of Similarity 

From the similarity score for a relationship between objects given as a mutual 

fractal representation, the model determines individual object scoring, the S( Oi ) value, 

by distributing the similarity value equally among all objects participating in the 

relationship.  If an object is one of the two objects in a 2-combination, as an example, 

then the object’s similarity score receives one half of the 2-combination’s calculated 

similarity score.  Once all similarity scores of the relationships have been distributed to 

the objects, the similarity score for each object is known.  Algorithm 7.1 provides an 

overview of this similarity distribution.
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Algorithm 7.1. Similarity distribution

Thus, I have a general strategy for determining which object is novel.  The 

strategy begins with a determination of the constituent objects.  Each of these objects 

must be somehow represented in a fashion which affords its comparison to its fellow 

objects, in this case, via mutual fractal representations.  Next, reflection occurs over those 

comparisons, to see if one of the objects’ comparisons might be exceptional.  If no one 

object thus stands out, perhaps reexamining some or all of the objects might be in order.  

Upon the conclusion of this iteration of reflection and reexamination, the object which is 

the most novel may be indicated.

Given a set of objects M = { O1, ... On } and a set of 
representations R = { R1, ... Rl }, where each Ri is the mutual 
fractal representation between two (or more) of the objects 
selected from M.

Let Q be a vector of cardinality |M|, initialized to 0: 
Q ← 0, |Q| = |M|

For each representation Ri ∈ R:
· Let S be an vector of cardinality |R|, initialized to 0:  
 S ← 0, |S| = |R|
· For each representation Rk ∈ R:

• If i = k, then Sk = 1 ∵ Ri is identical to itself 
• If i ≠ k, then calculate Sk using the Tversky/Jaccard formula:

Sk ← Ƒ(Ri ∩ Rk) / Ƒ(Ri ∩ Rk) 
·Let V be a scalar value, set to the normalized magnitude of S:  

V ← ǁ‖Sǁ‖ / |S|
· For each object Oj which is represented by Ri:

• Qj ← Qj + V 

The vector Q then contains the distributed similarity of each 
object to one another.
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Visual Oddity, Fractally 

My model for tackling visual oddity problems consists of three phases: 

segmentation, representation, and reasoning. I shall illustrate the technique by working 

through the example problem shown above.

Segmentation Phase 

First, the model must segment the problem into its constituent objects, which shall 

be labelled O1 through O9.  In this example, the problem is given as a 478x405 pixel 

JPEG image, in the RGB color space.  The objects are arrayed in a 3x3 grid within the 

problem image.  At this resolution, I have found that each object fits well within a 96x96 

pixel image, as may be seen in Figure 7.2.  

Note that even though these objects appear to contain regular geometric shapes, 

the algorithm does not interpret them as such, and due to the nature of the JPEG 

compression algorithm, each object contains a certain quantity of noise and image 

artifacts.  There is no processing of these images in any fashion to remove these artifacts: 

the pixels are addressed as received.

⇒

Figure 7.2. Segmentation of a visual oddity problem

Representation Phase

Given these nine objects, the strategy now groups objects as 2-combinations, into 

pairs, such that each object is paired once with the other eight objects, to form the 36 

distinct 2-combinations.  The strategy then calculates the mutual fractal representation Rij 

for each pair of objects Oi and Oj, as described above.
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Figure 7.3. The 36 pair-wise relationships to be represented fractally

The block partitioning used initially is identical to the largest possible block size 

(in this case, 96x96 pixels).  For this example, the strategy shall conduct the finer 

partitioning by uniform subdivision of the images into block sizes of 48x48, 24x24, 

12x12, 6x6, and 3x3 pixels. 

Reasoning Phase

To determine the novel object, the model must determine how dissimilar each 

object is from its fellows.  This is accomplished, using the distributed similarity 

calculation described above.  Accordingly, these are the distributed similarity values 

derived for the objects:
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Table 7.1. Example similarity distribution for the initial 96x96 partition

Concluding the example 

Once that distribution is accomplished, the model must examine the resulting 

similarity values to see if any object has a substantially lower score than the others. A 

tempting way to accomplish this would be to simply select the object with the lowest 

similarity distribution, but as this example illustrates, the distinction between the lowest 

and next-lowest score may be quite fine, and it is difficult to determine whether that 

distinction is substantial enough to warrant the decision.

The way the model makes this assessment is the same manner in which the model 

for visual similarity makes its determination: to calculate the mean of the similarity 

values and the standard deviation of each of the scores from this mean, and then check 

whether any of these standard deviations falls below the mean sufficiently to indicate a 

desired confidence interval (assuming a normal distribution).  For this example, at a 

96x96 partition, the mean score is 20.94 and the standard deviation is 0.68. If one desires 

a confidence of 90%, then some score must be less than 20.15 to be sufficiently novel.  At 

this partitioning, none of the objects manages to achieve this level.  If the confidence is 

relaxed to 80%, then the score must be less than 20.24, a value which two of the objects 

are calculated to be below.

Ambiguity, Abstraction, and Refinement

As the example illustrates, it is not quite so simple to select the novel object, as 

ambiguity may be present.  Let us now be much more precise.

21.301 20.206 20.384 21.301 21.985 21.814 20.639 20.632 20.198
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Ambiguity  

Similarity scores for objects may vary widely. If the score for any object is 

“unambiguously smaller” than that of any other object, then one may deem that object to 

be novel.  By unambiguous, I mean that there is no more than one score which is less 

than some ε, which may be varied as a tuning mechanism for the algorithm. I see this as a 

useful yet coarse approximation of the boundary between the similar and the dissimilar in 

feature space, the T value noted above.  As I have shown, one way to characterize ε is as 

a confidence interval, and indeed this value may be chosen arbitrarily.  I believe it to be 

rigorous to report the novelty as “object X, with Y% confidence.”  In my implementation, 

I use 90% as the de -facto confidence interval.

How might these ambiguities be characterized?  If no object’s similarity value is 

sufficiently lower than the mean to fall below the confidence threshold, then perhaps the 

value itself is derived from a set of data which is too homogenous or too sparse.  If more 

than one object’s similarity value meets the criteria, then it may also be said that the data 

used was too sparse or too consistent.

Abstraction  

I argue then that the ambiguity arises due to a data problem, but it is more: it is a 

problem with the representation itself, from whence the data arise.  If the data is sparse, 

more of it can be created; if it is too homogenous, the strategy can change how data is 

created, potentially affording variance.   

Since the model is performing reasoning afforded by the fractal representation of 

the relationship between objects, it is limited in mechanisms to those which the 

representation sanctions.  There are two primary sanctions of the representation: the 

number of fractal codes which constitute the representation, and the creation of features 

from those fractal codes.  

The number of fractal codes in a particular fractal representation is determined 

solely by the partitioning scheme chosen when constructing the representation.  The twin 

key observations of images which entailed fractal encoding (repetition and similarity at 
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different scales) may be exploited here.  In essence, partitioning is a modeling of how 

coarsely or finely an image is received or regarded, and that granularity determines the 

algorithm’s ability to capture within the representation any present repetition or inherent 

similarity at that limit.  The partitioning affords a level of visual abstraction. Figure 7.4 

illustrates how changes in partition may be thus interpreted.

Figure 7.4. Visual abstraction as partitioning

Increasing the partitioning accomplishes two acts: more fractal codes are created, 

and the possible variety of features arising from those codes increases.  Both of these may 

address the ambiguity illustrated in the data. 

Refinement

Let me now revisit the example, and illustrate the effect of partitioning as 

abstraction.  I redetermine the fractal representation at partitioning levels of 96x96, 

48x48, 24x24, 12x12, 6x6, and 3x3 pixels successively.  After each partitioning, 

Algorithm 7.1 is run, and the similarity distribution and the attendant confidence scores 

determined.  Table 7.2 illustrates the result of these iterations.

96 x 96 48 x 48 24 x 24 12 x 12

151



Table 7.2. Confidence scores for various partitions

There is one value, at a partitioning of 24x24, which yields a single answer whose 

confidence value exceeds 90%.  The novel object for this example is therefore object 3.

A closer examination of this table reveals further nuances in abstraction.  As the 

partitioning becomes finer, there is a moment at which the ambiguity is resolved.  

However, as the partitioning surpasses that point, the answer becomes ambiguous once 

again.  In this example, other objects arise as potential candidates (note objects 7 and 8 at 

6x6 and 3x3 in particular), but none exceed the confidence threshold.  As the resolution 

reaches its limit (for these purposes, the 3x3 partitioning), there are two candidate 

answers, and thus ambiguity remains, even though the confidence for either candidate 

approaches 85%.

Ambiguity

As the level of abstraction becomes finer, the number of fractal codes, and thereby 

the number of features, rises.  It is reasonable to presume that not all of these features will 

be unique at any particular level. At 96x96, there is but a single fractal code per object, 

96x96 0.404 -0.719 -0.586 0.404 0.876 0.801 -0.342 -0.349 -0.725

48x48 0.840 0.304 -0.736 0.820 -0.479 -0.235 -0.744 -0.510 0.546

24x24 0.731 0.307 -0.911 0.853 -0.004 0.202 -0.646 -0.579 0.182

12x12 0.780 0.506 -0.657 0.810 -0.040 0.026 -0.777 -0.823 0.246

6x6 0.770 0.635 -0.269 0.722 -0.439 0.033 -0.814 -0.855 0.366

3x3 0.742 0.645 -0.016 0.687 -0.463 -0.142 -0.846 -0.847 0.458
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and 106 features.  As noted earlier, the number of features are determined by a choice of 

which of the primary aspects of the fractal code to use.  In this example, the number 106 

is arrived at by considering most (but not all) of the possible combinations of  six 

features, bound into string structures. At 24x24, there are 16 fractal codes (1,696 

features).  At the finest level, there are 1,024 fractal codes (108,544 features).  Why is it 

that ambiguity appears to resolve at a certain level of granularity, only to retreat at others?

As resolution increases, the fractal codes which represent areas in the object are 

covering ever smaller areas.  These areas become increasingly more homogenous, and 

therefore the fractal codes become more similar to one another (that is, their features 

become more consistent).  As the abstraction grows finer, more codes are devoted to 

representing areas of consistent color and texture. Even though the number of codes and 

features is increasing, the ability to discriminate based on features is decreasing.  I 

believe this equates to a frequency apprehension of the image, with coarse resolution 

corresponding to low frequencies (fundamentals), and fine resolution corresponding to 

high frequencies (overtones, and then noise). 

Thus, the disappearance and reemergence of ambiguity is an emergent 

characteristic of the fractal representation itself.  The strategy to determine novelty is 

determined solely by data arising from reasoning sanctioned by the representation.  In 

doing so, this strategy expresses the relationship between the observer and the observed.

Summary

I have shown, through this example, that ambiguity may be resolved through 

repartitioning, and that a strategy may be derived which notices the need for 

repartitioning in an automatic fashion.  There exists a case which bears brief further 

discussion: what if every level of detail or repartitioning results in continued ambiguity?

I believe that a second strategy is to use not just pairs of objects in the calculation 

of similarity, but to extend that grouping to triplets or even quadruplets of objects.  

Through the use of extended mutual fractal representations as proscribed above, the 
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algorithm for similarity distribution readily extends to accommodate any degree of 

groupings of objects without loss of generality or modification. 

It is this second strategy, of extended mutuality, which captures the relationship 

between the observed and its context.  Like the first strategy, this strategy also follows 

directly as an emergent consequence, an affordance, of the fractal representation.
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CHAPTER 8

FRACTALS AND THE ODD ONE OUT

This chapter discusses the Odd One Out problem set, and illustrates how the visual oddity  

computational model works against the almost 3,000 problems in the corpus.

Odd One Out Problems

General one-one-out (or odd-man-out) tasks can be presented with many kinds of 

stimuli, from words, colors, and images, to sets of objects.  Minimal versions of these 

tasks are presented with three items, from which the “odd” one must be selected.  Three 

item one-one-out tasks, in contrast to two-item response tasks, evaluate a participant’s 

ability to compare relationships among stimuli, as opposed to just comparing stimuli 

features.  It has been shown that these relationship-comparison tasks track general IQ 

measure more closely than do two-item tasks, and this tracking of IQ increases with the 

number of relationships to be considered (Diascro and Brody, 1994). 

Ruiz (2009, 2011) investigated odd-one-out tasks in an effort to understand and 

categorize an individual’s g-factor (Spearman, 1904). Ruiz developed an oddity test (the 

Ruiz Absolute Scale of Complexity Management, or R-ASCM), and collected data from 

186 university students. In particular, Ruiz sought to determine a ratio scale for fluid 

intelligence, based upon an interpretation of entropy as a correlate of the complexity of 

the problem (Ruiz, 2009). This entropy interpretation led Ruiz to develop a system which 

classified such problems based upon repetition of features (Ruiz, 2011). 

The Hampshire Odd One Out Test

I have chosen the Odd One Out test developed by Adam Hampshire and 

colleagues at Cambridge Brain Sciences (Owen et al. 2010).  This particular test consists 

of almost 3,000 3x3 matrix reasoning problems organized in 20 levels of difficulty, in 
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which the task is to decide which of the nine abstract figures in the matrix does not 

belong (the so-called “Odd One Out”).  Figure 8.1 shows a sampling of the problems, 

illustrating the nature of the task, and several levels of difficulty. 

Figure 8.1. Odd One Out problems. 

As is the case in most odd-one-out tasks, the matrix-like arrangement in these 

Odd One Out problems is arbitrary; that is, the “Odd One Out” is odd no matter the 

configuration.  The problems are presented in that arrangement because the original data 

set had them so.

An algorithm for determining the Odd One Out

In the previous chapter, a general strategy for solving visual oddity problems was 

developed, and an example was given showing the application of the strategy to a visual 

oddity problem.  That example problem was taken from the Odd One Out problem set. 

I now present an algorithm which encapsulates the general strategy as a means for 

direct application to the Odd One Out problem suite.  Like the strategy, the algorithm 

consists of three phases: a preparatory phase in which the problem image is segmented 

into the constituent objects, and represented as mutual fractals to afford comparison; a 

reasoning phase, to provide reflection over those comparisons, to see if one of the 

objects’ comparisons might prove exceptional; and a re-representation phase, should no 

one object stand out,.  In practice and as shown below, the re-representation phase occurs 

in concert with the representation phase, as a nested loop. Thus, the two phases of 

reasoning and re-representation occur as a unified execution phase. Upon the conclusion 

of this iteration of reasoning, reflection and reexamination, the Odd One Out may be 

indicated.
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The algorithm for visual oddity is a direct extension of the Extended Analogy By 

Recall (ABR*) algorithm, differing only in its use of the similarity distribution algorithm 

as means of calculating object similarity.

Algorithm 8.1. The Visual Oddity (VO) Algorithm.

To determine from a group of objects M  which of the objects is the 
most novel or “odd.”

P R E P A R A T O R Y

Let M := { O1, O2, ... On } represent a group of objects.
Let A := { a1, a2,  ... al } represent an ordered range of abstraction, 
from most coarse (at a1) to finest (at al).  The cardinality of A, |A|, 
and the members of A themselves are determined according to the 
formula given in the chapter on Analogy and Ambiguity. 
Let G := { g1, g2, ... gm } represent  an ordered range of complexity 
groupings, from 2-combinations (at g1) to (n-1)-combinations (at 
gm). Thus |G| = |M|-2.
Let Ε be a real number which represents the number of standard 
deviations beyond which a value’s answer may be judged as 
“confident.”  E then is the threshold value T which groups objects 
into the TYPICAL or ODD sets according to their similarity value.  

 E X E C U T I O N  

For each complexity g ∈ G:
 For each abstraction a ∈ A:

• Form a set  of relationships R from the objects in M according 
to g and a

• Derive the set of similarity  values S := { S1, S2, S3, S4, ... Sn } 
from the set of relationships R, using the similarity distribution 
algorithm

• Set µ ← mean ( S )
• Set σµ ← stdev ( S )/√n
• Set D ← { D1, D2, D3, D4, ... Dn } where Di = (Si-µ)/σµ
• Set TYPICAL ← ∅
• Set ODD ← ∅
• Distribute the objects Oi ∈ M by this rule:

if Di > E , then ODD ← ODD ∪ { Oi }
else TYPICAL ← TYPICAL ∪ { Oi }

• If |ODD| = 1, return the object Oi ∈ ODD 
• otherwise there exists ambiguity, and further refinement must 

occur.

If no answer has been returned, then no answer may be given 
unambiguously.
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As is the case in the derivation of the Extended Analogy By Recall (ABR*) 

algorithm, the Visual Oddity Algorithm (VO) attempts to isolate the novel object as being 

the statistical outlier.  The threshold value E corresponds to a deviation from the mean 

equivalent to some desired confidence level.

 Solving the Odd One Out

 The Visual Oddity (VO) algorithm was run against 2,976 problems provided by 

Hampshire and associates. The problems were generated by Hampshire, using a private 

program written in the Python programming language, and were provided to me as a set 

of individual images in the .PNG format.  These problems span a range of difficulty in 20 

levels, from the very easiest up to the most difficult, with approximately 150 problems in 

each level. For example, the problem in previous chapter which I used to illustrate our 

algorithm is a level 16 problem.  No additional information as to the nature or derivation 

of the levels was given or sought, save that Hampshire suggested in a private 

correspondence that different rules were used to generate the various levels.  

 The VO algorithm was coded into the Java programming language, and run on a 

Macbook Pro computer.  The process ran for several weeks, due to the large number of 

fractal representations which needed to be calculated.  The abstraction levels used ranged 

from a coarse partition of 96x96 pixels down to a fine partitioning of 6x6 blocks, 5 levels 

of abstraction.  Only 2-combination relationships were used.
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Table 8.1. Results of the VO algorithm on the Odd One Out

Performance

 The overall results are that the VO algorithm solved 1,647 of the 2,976 problems.  

Table 8.1 presents the results broken down per level.   As shown by the data, the VO 

algorithm solves many more at the lower (easier) levels than at the higher (harder) levels. 

  Chart 8.1. Performance and error patterns of the VO algorithm 

Level Total Correct Level Total Correct
1 148 147 11 149 115
2 148 135 12 149 123
3 147 119 13 149 36
4 149 141 14 149 38
5 149 88 15 149 36
6 149 97 16 149 34
7 149 100 17 149 22
8 149 88 18 149 28
9 149 114 19 149 31
10 149 125 20 149 30
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 Chart 1 illustrates the performance of the algorithm, with correct answers and 

subsequent error patterns noted for the various levels of abstraction.  The error patterns 

denoted e96, e48, and so forth indicate levels of abstraction at which an incorrect answer 

was selected.  Note that the VO algorithm stops when an unambiguous answer is reached.  

Thus, an e48 error pattern means that the algorithm chose an incorrect yet unambiguous 

answer at the abstraction level corresponding to a partitioning of 48x48.

 There are quite clear degrees of performance variation generally grouped 

according to sets of levels (levels 1-4, 5-8, 9-12, 13-16, and 17-20). This is consistent 

with the knowledge that the problems at these levels were generated using varying rules.  

Intriguingly, it appears that the technique used by Hampshire to generate the problems at 

various levels enables distinct new rules at levels 5, 9, 13, and 17, which persist for the 

next four levels.  A visual inspection of the problems did not reveal any indication of 

such. Therefore, the algorithm alone was able to indicate a grouping of problems. At 

present, the VO algorithm does not carry forward information between its execution of 

each problem, let alone between levels of problems.  However, that the output illustrates 

such a strong degree of performance shift provides a further research opportunity in the 

areas of reflection, abstraction and meta-reasoning.

Error Patterns

 As I analyzed the errors made at differing partitioning levels, I realized that most 

errors occur when the algorithm stops at quite high levels of abstraction.  I interpret this 

as strong evidence that there exist levels-of-detail which are too gross to allow for 

certainty in reasoning. Indeed, the data upon which decisions are made at these levels are 

three orders of magnitude less than that which the finest partitioning affords (roughly 100 

features at 96x96 versus more than 107,000 features at 6x6).  I find an opportunity for a 
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refinement of the algorithm to assess its certainty based upon a naturally emergent artifact 

of the representation.  Although it has been shown practical to proceed with problem 

solving at the most coarse degree of abstraction, it may be unwise to do so.

 The errors which occurred at the finest level of partitioning (the error pattern 

denoted e6) were caused not due to the algorithm reaching an incorrect unambiguous 

answer; rather, the algorithm was unable to reach a sufficiently convincing or 

unambiguous answer.  This effect is especially noted at Level 13 and above.

 These results are based upon calculations involving considering shifts in 

partitioning only, using 2-combinations of objects. There appear to be Odd One Out 

problems for which considering pairs of objects shall prove inconclusive at all available 

levels of detail.  It is this set of problems which I believe implies that a shift in grouping 

(from pairs to triplets, or from triplets to quadruplets) must be undertaken to reach an 

unambiguous answer. 

 These results led me to reexamine that data in light of abstraction.  From this data, 

I developed the theory of abstraction emergence as outlined previously.  In addition, the 

previous analysis of errors made led me to the conclusion that too coarse a level of 

abstraction may lead to reasoning errors, a result I now realize (and argue above) is 

attributable to too sparse or too homogenous a set of features.  Lastly, errors which 

occurred at the finest level of partitioning I now know are attributable to ambiguity, and 

this led me to develop and refine the use of extended mutuality in the similarity 

distribution algorithm, which gave rise to satisfaction of the second aspect of novelty 

detection as given by Wagemans et al (2012a).

Direction for future work

 Future work on the Odd One Out problem should center on the interplay between 

the first and second strategies.  I believe that it is practical, and perhaps even desirable, to 
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explore both strategies in parallel, and allow the first unambiguous result from either 

strategy to be deemed the Odd One Out.  Other activities to be pursued involve the use of 

the onset or the width of range of unambiguous partitionings as a mechanism for 

characterizing the ease with which a human might solve such problems: a wide range of 

successful partitionings might suggest an easy problem, but a narrow range, or the onset 

of such a range at a fine partitioning might suggest that the problem would be considered 

difficult.

 As it is so strong an indication in the experiment conducted, a potential avenue of 

work is to investigate the coincidence of the failure at the extreme ends of abstraction as a  

signal to shift group abstraction.  
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CHAPTER 9

FRACTALS AND CORE GEOMETRY

 In this chapter, I develop the notion that reasoning from fractal representations of 

visual stimuli can mimic aspects of core mathematical or geometric reasoning.  I pay 

particular attention to a set of problems developed by Dehaene et al. (2006), and illustrate  

the CoreGeo algorithm, an extension of the Visual Oddity algorithm.  I contrast the 

performance of the CoreGeo algorithm to that of another computational approach.

Mathematical Reasoning and the World Around Us

 Where does mathematical ability come from? Does geometry constitute a core set 

of intuitions present in every human, regardless of language or education?  

 The first of these questions was poised by Lakoff and Núñez (2000) as a way of 

initiating the study of mathematics from a cognitive science perspective.  Their 

arguments, principally that the embodied mind of humans creates mathematics and 

therefore it is subject to analysis in cognitive science methodologies, suggest that there 

may be innate principles in the mind which afford mathematical and spatial reasoning 

capabilities.  From my representationalist point of view, I take this to mean that there are 

representations which the mind uses which afford these kinds of reasoning.  Lakoff and 

Núñez discuss number discrimination in babies, and in particular look at subitizing (the 

ability to determine the number of objects presented from a glance), drawing on the work 

of others (among them, Mandler and Shebo 1982,  and Trick and Pylyshyn, 1993, 1994), 

to note that subitizing is not a pattern recognition process. They point to Dehaene’s work 

with patients who have suffered injury which prevents them from attending to things in 

their environment in a serial fashion (and therefore cannot count them), but nonetheless 
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perform limited subitizing (Dehaene & Cohen, 1994, 1996).  Obviously, statements such 

as these, and others made in their book have attracted much criticism to Lakoff and 

Núñez.  For example, Schiralli and Sinclair (2003) appear to take issue with the use of 

metaphor rather than pattern recognition as the basis of the Lakoff and Núñez argument, 

citing repeated examples of the derivation of mathematical principles precisely due to the 

discovery of patterns.  Insofar as I am aware, the debate of whether the embodied mind 

gives rise to mathematics, or whether mathematical principles are otherwise transcendent 

continues without resolution.

 The second question above, on whether humans possess a core geometric 

intuition, is due to Dehaene (2006). Dehaene and colleagues designed and conducted a 

study of spontaneous geometrical knowledge of the Mundurukú, an Amazonian indigene 

group.  The study looked at two nonverbal tests designed to probe conceptual primitives 

of geometry.  It is the first of these tests, inspired by a test administered in an earlier study 

by Franco and Sperry (1977) of the hemispheric localization of geometric processing in 

patients with a surgical disconnection between the left and right hemispheres of their 

brain, that is of interest here.  This particular test was designed to probe the Mundurukú’s 

intuitive comprehension of the basic concepts of geometry, including points, lines, 

parallelism, and the like (Dehaene et al., 2006).  For each of these concepts, Dehaene et 

al. designed an array of six images, five of which incorporated some desired concept, 

while the sixth image did not.  In essence, each of these problems was a test of perceiving 

visual oddity.

 Dehaene et al. (2006) report that the Mundurukú faired very well with core 

concepts of topology, Euclidean geometry, and basic geometrical figures, but they 

experienced more difficulty in detecting symmetries and metric properties. The 

Mundurukú faired poorly on two domains, each of which Dehaene et al. (2006) point out 
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involve the mental transformation of one shape into another, followed by a second-order 

judgment about the nature of that transformation. Dehaene suggests that perhaps 

geometric transformations are more inherently difficult mathematical concepts, or that the 

detection of such transformations may be more difficult in static images.  Dehaene also 

tested for comparison a group of American children and adults, and found that both the 

American group and the Mundurukú group shared the same difficulties on the task, 

although American adults performed at a higher overall level.  This led Dehaene et al. to 

conclude that there exists some shared competence for basic geometrical concepts, 

regardless of culture (Dehaene et al., 2006).

Visual Oddity and Spatial Geometric Reasoning Tasks

 In their 2008 paper, Lovett et al. describe a computational model for a visual 

oddity task, based on Dehaene’s work (Lovett et al., 2008).  Their rationale for choosing 

Dehaene appears to be two-fold: one, that the Dehaene study was designed to test which 

features people represent when they look at geometric figures in a visual scene, and two, 

that the methodology used in the Dehaene study was an oddity task methodology (e.g. 

look at an array of figures and choose the one which does not belong).  Lovett and 

colleagues specifically examined the qualitative nature of the representations of the 

figures in the oddity task, focusing on two core claims: that when people encode a visual 

scene, they focus on qualitative attributes and relations of objects in the scene (therefore 

an abstract and robust representation) rather than a quantitative representation of the 

scene itself (cf. Forbus et al., 2001); and that people compare low-level visual 

representations using the same process as that used to perform abstract analogies.   This 

latter claim, and the intent of their paper, is to show the versatility of the model of 

comparison they use, which is based on the structure-mapping theory of Gentner 

(Gentner, 1983).
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 The model described by Lovett et al. employs four systems: CogSketch to 

construct the qualitative representations (Forbus et al., 2008); SME to model comparison 

and similarity (Falkenhainer et al., 1986); MAGI to model symmetry detection 

(Ferguson, 1994); and SEQL to model generalization (Kuehne et al., 2000).  They note 

that this particular model has been used in their work on the Ravens test suite, which I 

described in a prior chapter.  The focus of their paper concerns how qualitative 

representations may be generated in CogSketch, but it is important to note expressly why 

these components were chosen and to consider the reasoning power each brings to their 

model.

 The Structure-Mapping Engine (SME) is a computational model of the structure-

mapping theory of Gentner (Gentner, 1983; Falkenhainer et al., 1986; Forbus & Oblinger, 

1990).  SME determines mappings between base and target symbolic representations 

which provide correspondences, an estimate of the similarity of the base and target, and 

potential inferences about the target which can be supported by the mapping and structure 

of the base.  MAGI, based on SME, identifies symmetry by comparing a representation to 

itself (Ferguson, 1994), and is included by Lovett et al. (2008) to facilitate recognition of 

axes of symmetry in the object.  SEQL (Kuehne et al., 2000) is based upon the idea that 

generalizations are learned through progressive alignment (Gentner & Loewenstein, 

2002), that commonalities between representations are discovered as a direct result of 

comparison, and through a process of eliminating the portions of those representations 

which fail to align.

 In their paper, Lovett et al. (2008) note that a key to qualitative representation is 

the encoding of relationships that are unlikely to have occurred by accident, ala 

Biederman’s recognition-by-components theory (Biederman, 1987).  They further 

distinguish qualitative aspects intrinsic to a particular shape from those discernible from 
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the edges of the shape, but they presume that reasoning about the representations will 

prefer one or the other, and not both.  They present twin vocabularies for describing 

shape attributes and relations and for describing edge attributes and edge relations.  The 

CogSketch program is used to generate representations of the input based upon these 

vocabularies.

 In their approach, a chosen Dehaene problem is first segmented into the 

individual images, and those images are then represented via CogSketch.  Next, SEQL is 

used to create a generalization of those representations. The individual images are 

compared against the generalization and scored via SME.  If one image is noticeably less 

similar to the generalization, it is deemed the one that doesn’t belong.  Lovett et al. note 

that the actual processing consists of a series of these “generalize and compare” trials, 

selecting subsets of the individual images from which to create generalizations.  They 

appear to limit these subsets to be either the top three or bottom three images.  Further, 

since their model uses representations of either the shape or the edges of the shape but not  

both, the system decides which version to use based upon an examination of the first 

image in the problem: if the image contains multiple shapes or a shape with a single edge 

(e.g. a circle), then the shape qualitative representation is used; otherwise, the edge 

qualitative representation is used.  They do note that their system will abandon the edge 

representation if SEQL cannot generate a sufficient generalization (for example, if the 

images subject to generalization contain varying numbers of edges).  The system looks 

for a sufficiently distinct candidate (they suggest a confidence of 95% as sufficient).  If 

one is not found, then the system attempts additional trials, switching between shape and 

edge representation or varying the similarity scoring.
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Reasoning based upon the Fractal Representation

 In my research, I am exploring the extent to which the fractal representation 

affords analogical reasoning.  The representations of the visual input given to my system 

represent the whole of the scene, and do not segment or otherwise seek to discriminate 

between objects in the scene.  This represents an instant departure from the 

representations generated from sketches by CogSketch, in that there is no notion of either 

qualitative or quantitive in the fractal representation, nor is there any distinction between 

a shape and its edge.  Furthermore, the Extended Analogy By Recall (ABR*) algorithm I 

developed provides a singular method of using similarity scores (chiefly determined via 

recall of objects indexed via features from memory) as a means both for declaring 

analogically derived answers as well as for providing evidence those cases in which the 

scene should be represented at a different level of abstraction.  There are no other special 

purpose mechanisms (i.e. MAGI or SEQL) which augment the analogical reasoning of 

my system.  

 However, if one considers the general approach used in both my work and that of 

Lovett et al., the reasoning architecture itself is strongly similar.  In both, the input is 

represented with strong commitment.  In both, individual representations are compared to 

representations of subsets of images.  In both, a sufficient score must be determined, or 

the models make variances in representation and try again. 

 For these reasons, exploring the effects of the fractal representation and the ABR* 

and Visual Oddity algorithms on the Dehaene problem set seemed prudent.  In addition, I 

wished to explore the extent to which strictly visual representations and the perceptual 

history of an agent constructing a received world in such a manner could afford that agent 

rudimentary geometric reasoning capacity.
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The CoreGeo algorithm

 In the previous chapter on Visual Oddity, a general strategy for solving oddity 

problems was developed.  I now present an algorithm which is derived from the general 

strategy expressed in the Visual Oddity algorithm as a means for direct application to the 

Dehaene set of core geometry problems.  Like the general strategy, this algorithm, called 

CoreGeo, consists of three phases: a preparatory phase in which the given problem is 

segmented into its constituent images and represented as mutual fractals to afford 

similarity comparisons; a reasoning phase which reflects on those comparisons to see if 

any of them may prove exceptional; and a re-representation phase, shifting automatically 

to a different level of abstraction should no single answer stand out.  In practice and as 

shown in the work on the Odd One Out, the re-representation phase is managed in close 

concert with the representation phase as a nested loop.  In this way, the two phases of 

reasoning and re-representation occur as a unified execution phase.  Upon the conclusion 

of the iterative reasoning, reflection and reexamination, the most visually odd item may 

be indicated.

 The CoreGeo algorithm is a direct extension of the Extended Analogy By Recall 

(ABR*) algorithm and also incorporates the similarity distribution technique used above 

in the work on the Odd One Out problem domain as a means for calculating individual 

object similarity.
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Algorithm 9.1. The CoreGeo Algorithm.

The CoreGeo algorithm attempts to isolate the novel object as being the statistical 

outlier.  The threshold value E corresponds to a deviation from the mean equivalent to 

some desired confidence level. 

To determine from a group of geometrically related objects M 
which of the objects does not share the sought-for relationship.  The 
specifics of the relationship are not known at the outset of the 
problem.

P R E P A R A T O R Y

Let M := { O1, O2, ... On } represent a group of objects.  
Let A := { a1, a2,  ... al } represent an ordered range of abstraction, 
from most coarse (at a1) to finest (at al).  The cardinality of A, |A|, 
and the members of A themselves are determined according to the 
formula given in the chapter on Analogy and Ambiguity. 
Let G := { g1, g2, ... gm } represent  an ordered range of complexity 
groupings, from 2-combinations (at g1) to (n-1)-combinations (at 
gm). Thus |G| = |M|-2.
Let Ε be a real number which represents the number of standard 
deviations beyond which a value’s answer may be judged as 
“confident.”  E then is the threshold value T which groups objects 
into the TYPICAL or ODD sets according to their similarity value.  

 E X E C U T I O N  

For each complexity g ∈ G:
 For each abstraction a ∈ A:

• Form a set  of relationships R from the objects in M according 
to g and a

• Derive the set of similarity  values S := { S1, S2, S3, S4, ... Sn } 
from the set of relationships R, using the similarity distribution 
algorithm

• Set µ ← mean ( S )
• Set σµ ← stdev ( S )/√n
• Set D ← { D1, D2, D3, D4, ... Dn } where Di = (Si-µ)/σµ
• Set TYPICAL ← ∅
• Set ODD ← ∅
• Distribute the objects Oi ∈ M by this rule:

if Di > E , then ODD ← ODD ∪ { Oi }
else TYPICAL ← TYPICAL ∪ { Oi }

• If |ODD| = 1, return the object Oi ∈ ODD 
• otherwise there exists ambiguity, and further refinement must 

occur.

If no answer has been returned, then no answer may be given 
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An example

Let us illustrate the workings of the CoreGeo algorithm by working through one 

of the problems of the Dehaene set in detail.  The chosen problem is Dehaene #35, which 

seeks to determine an understanding of symmetry transformation about a mixed axis.  

The problem can be seen below in figure 9.1.

Figure 9.1. Dehaene #35, Transformation with mixed axial, symmetry.

Segmentation phase

First the algorithm must segment the problem into its constituent objects, which I 

shall label O1 through O6.  In this example, the problem is given as a 720 x 540 .PNG 

image in the RGB color space.  The objects are arrayed in a 3x2 grid within the problem 

image.  At this resolution, I had found that each object fits within a 210x210 pixel image. 

Note that the matrix arrangement of the objects is immaterial to the problem at hand: the 

one which does not belong would be determined as not belonging without regard to its 

specific position.

As with all of the examples presented in this dissertation, even though the objects 

appear to be regular geometric shapes, the algorithm and the representation do not 

interpret them in any manner other than as mutual fractals.  In addition, some noise and 
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image artifacts are inevitably present, even though they may not be evident in the 

illustration here.  Other than a straightforward conversion of the color image into a 

grayscale image (using the formula mentioned in the chapter on fractal representations), 

no other processing of the image to remove artifacts occurs: the pixels are addressed as 

received.

Representation Phase

Given these six objects, the strategy now groups objects as 2-combinations, pairs, 

such that each object is paired once with the other five objects, to form 10 distinct 2-

combinations.  The strategy then calculates the mutual fractal representation Rij for each 

pair of objects Oi and Oj as described above. 

The level of abstraction used initially is identical to the largest possible pixel 

dimension, in this case 210x210 pixels.  For this example, the algorithm shall determine 

the finer levels of abstraction by uniform subdivision of the images into block sizes of 

105x105, 52x52, 26x26, 13x13, and 6x6 pixels.

Reasoning Phase

To determine the object which does not possess the same geometric relationship 

as the others, the algorithm must determine the dissimilarity of each object.  The 

CoreGeo algorithm calculates the dissimilarity via the distributed similarity technique 

described above and in the Visual Oddity algorithm. 

At the coarsest level of abstraction, these are the distributed similarity values for 

the objects in the example problem.

Table 9.1.  Similarity distribution for the initial 210x210 level of abstraction.

0.2273 0.2416 0.2303 0.2484 0.2419 0.2381
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Concluding the example

Once the distribution of similarity is accomplished, the algorithm must examine 

the resulting values to see if any object has a substantially lower score than the others.  

This is wholly in keeping with the method used in the prior chapters for determining the 

Odd One Out.

As in the example with the Visual Oddity algorithm, the distinction between the 

lowest and the next-lowest score can be quite close (in this case, 0.2273 vs. 0.2303, a 

delta of only 0.003).  If I calculate the mean of the similarity values and standard 

deviation of each of these values from that mean, a different picture emerges.  In this 

example, the similarity mean is 0.2379 and the standard deviation is 0.0032.  Therefore, I 

get the following table of deviations and subsequent confidences:

Table 9.2.  Deviations and confidences for the initial abstraction level. 

3.302
-99.9%

1.151
75.0%

2.379
-98.3%

3.257
99.9%

1.227
78.0%

0.045
3.6%

As can be seen, both the first and third answers are values well below the standard 

deviation and therefore at a strong confidence level. The negative values here are to 

indicate the least similar outliers; the strong positive confidence in the fourth answer, in 

contrast, indicates a strong prototype of the group.  Thus, one is left with an ambiguous 

answer at this level of abstraction, and the algorithm must re-represent each of the 2-

combinations at a finer level and try again.

Refinement

By re-representing the 2-combinations at increasing levels of abstraction, it is 

possible to determine an unambiguous answer.  The following table illustrates the results 

of that successive refinement of abstraction.
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Table 9.3. Mean, Standard Deviation, and Confidence for various levels of abstraction

µ σµ

210x210 0.2379 0.003 -99.9% 75.0% -98.3% 99.99% 78.0% 3.6%

105x105 0.189 5.5x10-5 41.1% 96.3% -39.6% -27.3% 98.9% -99.9%

52x52 0.271 0.005 -95.2% -74.3% 99.9% -65.4% -93.9% 92.6%

26x26 0.337 0.002 -98.9% -99.7% 99.9% 42.6% 3.7% 82.6%

13x13 0.399 0.001 -99.9% -91.9% 99.9% 90.1% 69.6% -60.2%

6x6 0.494 0.001 -98.3% -99.8% 99.9% 80.0% 53.4% 2.8%

As can be seen in the table, there are three levels of abstraction for which a 

singular answer stands out as significantly odd, while for the other levels there exists 

ambiguity.  If the algorithm strictly followed the philosophy of proceeding from coarsest 

to finest abstraction until a value stands out, then the CoreGo algorithm would select 

answer 6 at the abstraction denoted by 105x105 partitioning.  This answer, unfortunately, 

is incorrect: the proper answer is answer 1.  Inspection of the results shows that for all 

levels of abstraction except for the 105x105 level, answer 1 is among the chosen values 

which exceed a 95% confidence.  Why would this not be true at the 105x105 level?

The advent of significance

A closer inspection unveils the mystery.  At the 105x105 level, the standard 

deviation from the mean for all values is remarkably low (in this case, 5.5x10-5).  That 

deviation is two orders of magnitude smaller than all other abstraction levels.  Thus, 

while the signal at that level of abstraction is unambiguously in favor of answer 6, the 

signal itself is too weak to merit consideration.  In contrast, the unambiguous signal for 

answer 1 at the 52x52 level of abstraction is three orders of magnitude stronger.
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The similarity calculations arise from the comparison of features present in the 

fractal representations of the relationships being examined.  As noted earlier, in the 

chapter on visual similarity, the number of features available gives rise to the presence or 

absence of ambiguity, either through a sparsity of features or an increase in the 

homogeneity of features.  In this example, I find evidence of both of these, yet the data 

itself has yielded now a clue for detecting homogeneity: the coefficient of variation (CV), 

a normalized measure of the dispersion of the values.  Let us revisit the results in light of 

the CV for each level, calculated using this formula: 

CV = σµ / µ

Table 9.4. CV and Confidence for various levels of abstraction

CV

210x210 0.0126 -99.9% 75.0% -98.3% 99.99% 78.0% 3.6%

105x105 0.0003 41.1% 96.3% -39.6% -27.3% 98.9% -99.9%

52x52 0.0185 -95.2% -74.3% 99.9% -65.4% -93.9% 92.6%

26x26 0.0059 -98.9% -99.7% 99.9% 42.6% 3.7% 82.6%

13x13 0.0025 -99.9% -91.9% 99.9% 90.1% 69.6% -60.2%

6x6 0.0020 -98.3% -99.8% 99.9% 80.0% 53.4% 2.8%

I now can offer an amendment to the CoreGeo algorithm, and by extension to the 

general models for addressing visual similarity and visual oddity.  The selection of a 

threshold confidence value itself is not enough: the signal must be unambiguous and 

strong before the algorithm declares a solution.  With this addition, I capture a powerful 

notion of analogy making and rule discovery, that the analogy must be significant enough 

to warrant notice.
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Results of CoreGeo on the Dehaene set

 The CoreGeo algorithm was run against the 45 problems provided to me by 

Dehaene via personal correspondence, and are the same problem set examined in Lovett 

et al. (2008).  The problems are grouped into various categories of mathematical or 

geometric reasoning.  

Preparation of the material

 The Dehaene problem set was given as individual slides contained within a 

PowerPoint document.  Each slide was exported into a single image in the .PNG format.  

Each problem image was 720 x 540 pixels, in the RGB color space.  Each problem 

consists of six subimages, each of which upon inspection was found to fit well within a 

210 x 210 boundary.  

Levels of abstraction considered and calculations performed

 The levels of abstraction used ranged from a coarse partition of 210x210 pixels, 

down to a fine partitioning of 6x6 pixels, giving 6 levels of abstraction, using the formula 

described in an earlier chapter for determining the maximum grid size and using a 

strategy of halving the pixel dimension at each successively finer level of abstraction.  As 

the CoreGeo algorithm is a derivative of the Visual Oddity algorithm, the algorithm is 

capable of examining all combinations of the six subimages; however, only 2-

combination relationships were examined in this experiment.  This restriction was made 

only to serve the interests of experimental time, and illustrate the use of the algorithm on 

the problem set.  It is important to note that the goal of the experiment was not to 

improve upon any prior computational model results: the goal was to illustrate that a 

parsimonious account could accomplish much on the test.

176



 At each level of abstraction for each problem, the algorithm determined the 

similarity value as distributed amongst the six candidate images.  For these calculations, 

the algorithm used the Tversky formula and set alpha and beta to 1.0, thus conforming 

the model of Gregson and Sjöberg (Gregson, 1976; Sjöberg, 1971), as it is unclear which 

of the difference relationships to favor.  As proscribed by the CoreGeo algorithm, 

calculations continued until the confidence in an answer exceeded a given threshold, or 

until all levels of abstraction were calculated.  For this experiment, that threshold value 

was able to be varied.

 The CoreGeo algorithm was coded into the Java programming language, and run 

on a Macbook Pro computer.  The code and entire Dehaene set of problems are available 

on our lab’s research site, to facilitate replication of these results and future studies.

Performance

 The overall results are that the CoreGeo algorithm detected the correct answer at a 

95% or higher level of confidence on 35 of the 45 problems.  Of the 35 problems where 

the correct answer was detected, 13 were ambiguously so.

 The performance of the algorithm can be analyzed by varying the level of 

confidence required.  As the table below shows, the performance of CoreGeo increases as 

the level of confidence required is lowered, but the ambiguity of the answers 

correspondingly increases. 

 Table 9.5. Performance of the CoreGeo Algorithm at varying levels of confidence

confidence levelconfidence levelconfidence levelconfidence levelconfidence level

problem / categoryproblem / category 99% 95% 90% 80% 70% 60%

Total noted correct Total noted correct 31 35 36 38 40 42

Correct but ambiguousCorrect but ambiguous 6 13 18 22 26 27
1 Training Color yes yes yes yes yes yes
2 Training Orientation yes yes yes yes yes yes
3 Topology Holes yes yes yes yes yes yes
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4 Topology Inside/Outside ambiguo
us5 Topology Closure ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us6 Topology Connexity yes yes yes yes yes yes
7 Topology Belongs To ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us8 Geometry curved lines yes yes ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us9 Geometry Convexity ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us10 Geometry straight lines yes yes yes ambiguo
us

ambiguo
us

ambiguo
us11 Geometry aligned yes ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us12 Geometry quadrilateral ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us13 Geometry right angle triangle ambiguo
us14 Geometry right angle cross ambiguo

us
ambiguo

us15 Geometry right angle abut yes yes yes yes yes yes
16 Geometry distance ambiguo

us
ambiguo

us17 Geometry circles yes yes yes yes yes ambiguo
us18 Geometry center of circle yes yes yes yes yes yes

19 Geometry midpoint ambiguo
us

ambiguo
us

ambiguo
us20 Geometry Equilateral triangles yes yes yes yes ambiguo

us
ambiguo

us21 Geometry Proportion 1:3 ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us22 Geometry Diagonals ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us23 Geometry Square yes ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us24 Geometry Rectangle yes ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us25 Geometry Parallelogram ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us26 Geometry Trapezoid

27 Transformation vertical axial 
symmetry

yes yes ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us28 Geometry vertical axial symmetry yes yes yes yes ambiguo

us
ambiguo

us29 Geometry horizontal axial 
symmetry

yes yes yes ambiguo
us

ambiguo
us

ambiguo
us30 Geometry random axial symmetry yes yes yes yes yes yes

31 Transformation translation yes yes yes yes yes yes
32 Transformation point symmetry ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us33 Transformation horizontal axial 
symmetry

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us34 Transformation rotation yes yes yes yes yes yes

35 Transformation mixed axial 
symmetry

yes yes ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us36 Transformation homothety yes yes yes yes yes yes

37 Geometry Parallels yes yes ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us38 Geometry Chirality 1 ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us
ambiguo

us39 Geometry Proportions ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us

ambiguo
us40 Geometry Parallels 2

41 Geometry Chirality 2 yes yes yes yes yes yes
42 Geometry Chirality 3 yes yes yes yes yes yes
43 Series Arithmetic ambiguo

us
ambiguo

us
ambiguo

us44 Geometry Chirality 4 yes yes yes yes yes yes
45 Series Geometric
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Discussion of the specific results

 As can be plainly seen in the table above, there are certain problems and 

categories for which the CoreGeo algorithm successfully identifies a correct answer 

unambiguously, and others for which the algorithm is consistently ambiguous or wrong.  

There are still other problems and categories for which the results are mixed across the 

spectrum of confidence levels examined.

Topological reasoning

 The CoreGeo algorithm performs well on the problems involving topological 

reasoning except for one type: inside vs outside.  Figure 9.2 illustrates the Dehaene 

problem #4.

Figure 9.2. Dehaene problem #4, topological inside/outside

 As in all the examples, the features over which the CoreGeo algorithm reasons are 

derived from the fractal representation.  Between the features themselves, there is no 

connection, and therefore no ability to directly associate the location of the dot in the 

figures above as either within or without the closed line.

Geometrical reasoning

 The CoreGeo algorithm performs somewhat well on problems involving 

geometric shapes and geometric reasoning, with two notable exceptions: reasoning about 

179



trapezoids, and reasoning about parallelism.  Figure 9.3 illustrates two Dehaene problems 

which evoke a failing in my algorithm.

Figure 9.3. Dehaene problems #26 and #40

In the case of Dehaene problem #26, while the shape lacking non-parallel edges is 

apparent, at the fractal feature level, the comparisons would be with respect to finding 

similarity between the angles themselves.  Each of the other shapes contains at least one 

oblique angle and two acute angles, and so the failing for this problem would seem to 

indicate that the numerosity of the angle kinds is absent or not readily inferred from the 

fractal representation.  In Dehaene problem #40, as in Dehaene problem #4 above, the 

satisfactory answer would imply that comparisons be made between the whole line 

shapes, rather than their constituent parts (that is, the fractal representation of the images 

would note that line segments may be formed via the collage of other line segments).

Reasoning about Series

 The CoreGeo algorithm performs poorly on problems involving reasoning about 

series.  Figure 9.4 illustrates the two Dehaene problems which evoke a failing in the 

algorithm.
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Figure 9.4. Dehaene problems #43 and #45

The CoreGeo algorithm fails to note the oddity in arithmetic progression (Dehaene 

problem #43) and in geometric progression (Dehaene problem #45), and in fact I should 

be quite surprised if it were to do so. The detection of regular progression (whether 

arithmetic or geometric) would require a segmentation of the image into shapes, and then 

a comparison of the attitude of those shapes when taken in groups of two or more.  The 

fractal representation of a scene does not perform segmentation.

Comparison against prior efforts and human performance

 Lovett et al. (2008) report that their system correctly solves 39 of the 45 

problems.  They also note a strong correlation between their model’s performance and the 

performance of human test takers.  Their paper presents a summarization of their results, 

and that of American and Mundurukú test subjects.  Here is a comparison of those results 

with those of the CoreGeo algorithm set at a confidence level of 95%. Note that I 

interpret the human data as correct if the accuracy value (given in the chart in Lovett et 

al. 2008) is above 0.6 (about 1 standard deviation of confidence), ambiguous if between 

0.6 and 0.2 (approximately random), and incorrect if below 0.2.
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 Table 9.6. Comparing the CoreGeo Algorithm

problem / categoryproblem / category Core Geo Lovett et al. American Mundurukú

Total noted correct Total noted correct 35 39 43 40

Correct but ambiguousCorrect but ambiguous 13 0 12 10
1 Training Color yes yes yes yes
2 Training Orientation yes yes yes yes
3 Topology Holes yes yes yes yes
4 Topology Inside/Outside yes yes yes
5 Topology Closure ambiguous yes yes yes
6 Topology Connexity yes yes yes yes
7 Topology Belongs To ambiguous yes yes yes
8 Geometry curved lines yes yes yes yes
9 Geometry Convexity ambiguous yes yes yes

10 Geometry straight lines yes yes yes yes
11 Geometry aligned ambiguous yes yes yes
12 Geometry quadrilateral ambiguous yes yes yes
13 Geometry right angle 

triangle
yes ambiguous yes

14 Geometry right angle cross yes yes yes
15 Geometry right angle abut yes yes yes yes
16 Geometry distance yes yes yes
17 Geometry circles yes yes yes yes
18 Geometry center of circle yes yes yes yes
19 Geometry midpoint yes ambiguous ambiguous
20 Geometry Equilateral 

triangles
yes yes yes yes

21 Geometry Proportion 1:3 ambiguous ambiguous yes
22 Geometry Diagonals ambiguous ambiguous
23 Geometry Square ambiguous yes yes yes
24 Geometry Rectangle ambiguous yes yes yes
25 Geometry Parallelogram ambiguous yes ambiguous yes
26 Geometry Trapezoid yes yes yes
27 Transformation vertical axial 

symmetry
yes yes ambiguous

28 Geometry vertical axial 
symmetry

yes yes ambiguous yes
29 Geometry horizontal axial 

symmetry
yes yes ambiguous ambiguous

30 Geometry random axial 
symmetry

yes yes yes yes
31 Transformation translation yes yes yes ambiguous
32 Transformation point 

symmetry
yes yes ambiguous

33 Transformation horizontal 
axial symmetry

ambiguous yes ambiguous ambiguous
34 Transformation rotation yes ambiguous
35 Transformation mixed axial 

symmetry
yes yes ambiguous ambiguous

36 Transformation homothety yes yes yes ambiguous
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37 Geometry Parallels yes yes yes yes
38 Geometry Chirality 1 ambiguous ambiguous
39 Geometry Proportions ambiguous
40 Geometry Parallels 2 yes yes yes
41 Geometry Chirality 2 yes yes yes yes
42 Geometry Chirality 3 yes yes yes yes
43 Series Arithmetic yes yes ambiguous
44 Geometry Chirality 4 yes ambiguous
45 Series Geometric yes yes ambiguous

 Again, I must point out that the intention of this experiment was not to improve 

upon the results of the Lovett study, but to show that fractal representations and the 

parsimonious reasoning techniques afforded by it are capable of a fair showing.  It is 

intriguing to note that on the six problems that the Lovett et al. model misses, the 

CoreGeo algorithm either answers correctly (on two of them) or ambiguously correct (on 

the remaining four).  On the 10 problems that the CoreGeo algorithm fails to note the 

correct answer, one or both of the sets of human test takers score ambiguously on five of 

them.
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CHAPTER 10

FRACTALS AND PERCEPTION

 In this chapter, I present the use of the fractal representation and related 

algorithms as a basis for limited visual perception.  

 As mentioned earlier, this work on perception is presented only to show the 

broader utility of the fractal representation and the ABR* algorithm, and therefore 

contains preliminary results.  The last chapter of this dissertation, on future directions, 

expands on methods by which this particular section may be extended or enhanced.

Agents Perceiving Fractally

 While we may not be able to ascertain the workings of visual reasoning by direct 

interrogation, we may observe the interaction of humans and animals as they interact with 

each other and their environment.  We might construct artificial agents, endow them with 

our models of such reasoning, place them into virtual worlds, and observe the correlation 

of their acts with their reality companions.

 In nature, highly complex interactions between agents are common. 

Murmurations of starlings, schools of fish, and stampedes of wildebeest are at once 

stunning and remarkable in appearance. Even though these groups are made up of 

discrete individuals, the overall group splits and combines with extraordinary fluidity and 

grace.  The collection of agents, taken together, appear to be acting under some organized 

control system.  Yet, as Craig Reynolds, a pioneer in computer graphic flocking observes, 

“all evidence indicates that flock motion must be merely the aggregate result of the 

actions of individual animals, each acting solely on the basis of its own local perception 

of the world.” (Reynolds, 1987) He reinforces the distinction between his work on boids 
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and prior particle system research by remarking that to flock realistically, boids (and 

birds) must interact strongly with one another, and rely computationally upon both an 

internal state and a received external state. A simulation of flocking consists of having 

each agent adjust itself (modulated by internal and external state) and then rendering each 

agent in the simulated environment.

 Reynolds’ work in flocking has inspired a generation of computer graphics artists 

simulating natural flocking (Tu & Terzopoulos, 1994), including some of the most 

stunning examples ever presented on film (Allers & Minkoff, 1994; Jackson, 2003). The 

initial work has been extended to provide mimicry of other natural, commonplace 

steering mechanisms (Reynolds, 1999).  In each of these systems, however, Reynolds’ 

initial proscription for how agents interpret their environment has remained essentially 

intact.  I now briefly introduce this proscription, as a prelude to my departure from it.

Boids, and the Three Laws of Flocking

 Reynolds' boids are agents with an internal state which describes their current 

heading (which can be modeled by a velocity vector in two or three dimensions) and an 

awareness of those agents to whom they should attend (their flock mates). They also have 

a minimum set of intrinsic behaviors that drive them to coordinate their actions with 

those flock mates.

 As shown in figure 10.1, the minimum set of behaviors required to produce 

realistic facsimiles of flocks in nature are three: stay close together, don’t collide, and 

mimic the motion of others.
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Figure 10.1. Flocking Behaviors: Cohesion, Separation, and Alignment

Cohesion  

 Flocking animals appear to want to be close to others like themselves.  In 

simulations, this is achieved by calculating a centroid of the apparent position of flock 

mates, and adjusting a boid’s heading to aim in that direction.

Separation  

 Animals generally do not want to collide with one another.  The separation 

behavior balances the cohesion behavior by forcing a boid’s heading away from the 

apparent direction of each individual flock mate.

Alignment  

 Animals mimic one another. A way to provide this mimicry to agents in a flock is 

to have each agent attempt to match the movement of its flock mates. In practice, this is 

accomplished by having a boid adjust its heading to align with the aggregate direction of 

its flock mates.

Interaction

 These three behaviors interact with one another in specific ways.  The separation 

behavior affords static collision avoidance, in that the position of flock mates is perceived 

at every new moment, and thus may be considered static.  In contrast, the alignment 

behavior is dynamic, in that the heading (and not the position) of flock mates is 

considered.  As Reynolds points out, this is a simplified predictive version of collision 
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avoidance, complementary to the separation behavior, in that boids that mimic the motion 

of their flock mates are less likely to collide with them than would boids which moved 

freely (Reynolds, 1987).  The cohesion behavior drives a boid to become the center of its 

flock, with the urge to move to the center modulated by its distance from the centroid of 

its mates.  This movement to the center is localized, and allows a flock to split around 

obstacles (or other portions of the flock) with natural fluidity.

Perception 

 A flock in nature (a murmuration of starlings, for example) may be composed of 

many thousands of individuals. It would seem an improbable computational load to place 

upon each agent within the flock the attempt to ascertain aspects of each member of the 

flock prior to making modifications to its own behavior. Some restriction of which 

individuals to consider must occur. Reynolds characterizes this as considering each agent 

to have a local perception. In computer simulations of flocks, the local perception each 

agent has of the world typically is provided to the agent by a godlike view of the entire 

environment, and a superimposed restriction of individuals by culling those deemed too 

distant to consider. This distance is usually referred to as a range of influence.

The Froid World

 The oraclesque decision of whom to consider is only practical in computer 

simulations. In natural flocks, clearly no such ability is afforded, and each animal must 

make its decisions based upon some combination of what it is perceiving of or thinking 

about its world.  The choice of flock mate is crucial for the remaining behavior to 

succeed.

 For explorations of visual reasoning, affording agents with models of perception 

based on familiarity and novelty and observing those agents as flocks seems ideal. Prior 
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research has employed fractal representations to model and discover similarity and 

novelty in visual analogy tasks such as intelligence tests (references omitted).  In my 

system, I wish to endow my agents with a visual reasoning apparatus that embodies 

precisely these characteristics.  Thus, for my flocking simulation, I created agents 

possessed with the ability to receive their local environment by localized observation 

only, and to perceive this received world via manipulations of fractal representations.  I 

call my agents froids (“fractal boids”).

Froids versus Boids 

 The difference between my froids and typical Reynolds boids is two-fold: froids 

sense and then classify their environment, whereas boids are told explicitly about their 

surrounds.  Both boids and froids manifest the same behaviors, and thus participate in 

flocking with their mates, but only froids perceive and reason about their environment 

prior to enacting those behaviors.  Figure 10.2 illustrates the visual reasoning pipeline of 

a froid, from the reception of the world, through perceiving individuals and objects in the 

world, reasoning about those perceptions, and finally to enacting a decided upon course 

of action.

Figure 10.2. Visual reasoning pipeline

 The perceptive system of a froid must be computationally efficient, to permit 

sufficient time to select and enact a behavior based upon the arriving stimulus.  In 

animals, the perception system, while informed by the decision and control system, 
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appears to operate concurrently with those systems, providing a real-time appraisal of a 

continuously shifting world.  For the purposes of my experiment, and in the general case 

for systems based upon Reynolds’ boids, the simulation of the agents within the world 

proceeds in discrete steps. Thus, the available stimuli from the world changes at a known 

pace, and I need not provide for parallel processing with the visual reasoning pipeline, 

nor for the need to interrupt an action in process to accommodate new information. 

 I therefore made two simplifying architectural decisions. First, the perception 

stage occurs in a serial fashion with the behavior decision stage, since the world of the 

simulation will not have changed until all the agents have moved themselves. Second, the 

perception stage would act only upon newly arriving stimuli, and not be influenced by 

prior decisions.  This variety of architecture is deemed "reactive control" in robotics 

(Arkin, 1998) and "situated action" in cognitive science (Norman, 1993). I made these 

simplifications so that I might better compare the effect of perception on the subsequent 

behavior, without having my analysis take into account any perceptual hysteresis or other 

internal state.

 I now shall describe each stage of the visual reasoning pipeline in some detail.

Figure 10.3. Visual field to retina mapping

How a Froid Sees

 I imagine a froid as having a single “eye” with a broad field of view.  The froid’s 

eye consists of a simulated retina, an arrangement of sensors. A froid sees its environment 
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by receiving photometric stimulation upon this retina.  The light entering each of these 

sensors is combined to form a visual field, as shown in figure 10.3.  In my simulation, I 

use ray-casting to send a ray out through each of the sensors into the simulated world, 

and note whether that ray intersects anything.  I illustrate this in Figure 10.4.

Figure 10.4.  Seeing via ray casting

 The froid interprets the “light” falling upon the sensor is a function of the distance 

of the intersected object from the froid, where objects which are distant are fainter than 

close objects.  No characterization is made regarding what object has been intersected, 

only that an intersection has occurred at some distance.  Figure 10.5 shows an example of 

how objects within the froid’s immediate environment may be mapped by this visual 

system onto its retina.

Figure 10.5. Objects in the environment, retinal image
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Fractal Perception

 The photometric values arriving via the froid’s retina next are interpreted by the 

froid’s perception stage.  While there may be many possible objects one may wish to 

divine from this visual stimuli, I restrict the intentionality of the perception to only those 

tasks which will drive the flocking behavior.  Accordingly, the primary task of the 

perception system is to determine flock mates.  

 This, however, raises an immediate question: what does a flock mate look like to a 

froid? My froids are rendered into the simulated environment as chevrons whose 

orientation, color and physical size may vary.  The visual environment, as transduced 

onto the retinal image, will show only an arranged set of values, roughly corresponding to 

visual distance to whatever object happened to intersect the ray from the sensor.

Filial Imprinting

 I was inspired to approach this problem using techniques from neurological and 

biological research.  Certain baby animals acquire behaviors from their parents, via a 

process called filial imprinting.  Implicit in the imprinting is the ability to identify a 

parent.  There is evidence that certain species have innate or rapidly develop through 

acclimation visual prototypes which allow young members to accurately identify their 

parents (O’Reilly & Johnson, 1994).  

 There are many possible visual arrangements between a froid and a prototypical 

“other” in its environment.  I chose to restrict these prototypes to six: four which 

corresponded to points on the compass (north, south, east and west), and two which 

corresponded to specific situations which would seem useful for behavior selection (close 

and empty).  Figure 10.6 illustrates these filial imprints, along with their corresponding 

retinal impressions.  These imprints are given as innate knowledge to each froid.
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Figure 10.6. Filial Imprinting

Fractal Imprinting

 A froid encodes all its visual information, its retinal data, as  a fractal 

representation.  Accordingly, each imprinted prototype is encoded into a fractal 

representation, and placed, indexed by derived fractal features, into the froid’s memory 

system.  The technique for transforming the image into a fractal representation and the 

derivation of fractal features from that representation is the same as described earlier in 

this dissertation. 

 This imprinting, encoding, and memorization provides each froid with a static 

knowledge base. From this foundational base, a froid can receive new retinal images and 

seek within those arriving images what it believes to be familiar. 

Finding the familiar by visual analogy 

 The arriving retinal image is an otherwise undifferentiated collection of 

photometric information, with each value corresponding to a particular direction and 

distance. From this retinal image, flock mates that might be within the visual range of the 

froid may be identified.

 As shown in figure 10.7, the algorithm begins by segmenting the retinal image 

into varying sets (collections of adjacent sensors), and then encoding each of these 

segments into fractal representations. No attempt is made to interpret the retina image for 

edges or other boundary conditions: the segments are treated merely as they are found. 
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 Additionally, the segment size itself is arbitrarily chosen. For my experiment, I 

selected a segment size corresponding to 10 retinal sensors, with the entire retina being 

90 sensors in size, encompassing a field of view roughly 135°, oriented to the froid’s 

forward motion. Thus, each retinal image yielded nine segments for analysis.

Figure 10.7. Segmenting the retinal image

 The process of perceiving a segment and possibly selecting a familiar prototype is 

given in Algorithm 10.1. First, the segment is encoded into its fractal representation, 

exploiting its self-similarity. Next, the froid’s memory is interrogated for similarity with 

imprinted prototypes, using a scoring system for featural similarity as described by 

Tversky (1977). The most similar imprinted prototype is chosen as the interpretation of 

that segment of the froid’s retinal image.
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Algorithm 10.1. Selecting the familiar

 If a segment appears to correspond to an imprinted prototype (and not to empty 

space), then several inferences may be made. The first is that an individual flock mate 

exists in that direction of view, which corresponds to the segment’s retinal constituents. 

Secondly, it may be inferred that the flock mate lies at a distance which corresponds to a 

function of the faintness of the photometric readings of that portion of the froid’s retinal 

image. By systematically examining each segment of the retina, the froid’s flock mates 

thus may be inferred by visual analogy.

The Three Laws for Froids

 Once the flock mates have been discovered, the Reynolds rules for flocking may 

be invoked.  Since the perception system has inferred the existence of a flock mate at a 

particular distance and direction, the separation and cohesion rules may be enacted 

directly. However, the alignment rule’s application requires further inference.

 To align with a flock mate, the froid must infer the  heading from the visual 

classification of the mate.  This classification depends explicitly upon which of the filial 

To determine the prototype P’ which is most analogous to the retinal 
segment R from a set of fractal prototypes P ≔ { P1, P2, … Pn }:

F ← Fractal( R, R )
Set M ← 0 and P’ ← unknown
For each prototype Pi ∈ P:
· Calculate the similarity of F to Pi : S ← Sim( F, Pi )
· If S > M, then M ← S  and  P’ ← Pi

P’ is therefore that prototype Pi ∈ P which corresponds to the 
maximal similarity S, and is deemed the most analogous to retinal 
segment R.
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prototypes has been selected as most representative of the retinal segment.  Algorithm 

10.2 provides the following five rules of heading inference.

Algorithm 10.2. Inferring flock mate heading

 Figure 10.8 shows an example of these inference rules at work.  In this example, 

the retinal image is classified as most similar to the RIGHT filial prototype. The heading 

of this identified object is inferred to be at a 90° angle to its apparent direction.  Note that 

the partially viewed individual does not sufficiently cover enough retinal space to be 

identified.

Figure 10.8. Inferring heading from a retinal segment

 Once the heading is inferred, the alignment rule of Reynolds may be used to 

adjust the motion of the froid.

Froids and Boids

 To test my belief that a froid could behave as naturally as its boid counterparts, I 

created a traditional Reynolds- style boid system, written in Java, running on a 

To determine the heading H for an identified flock 
mate with classification C and apparent direction D: 

If C = LEFT, then H ← D - 90°
If C = RIGHT, then H ← D + 90°
If C = BEHIND, then H ← D
If C = FRONT, then H ← D + 180°
If C = CLOSE or C = EMPTY, then H ← unknown
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conventional computer system. I first placed into the environment several thousand 

standard boids, and observed that their aggregate motion was as expected: a realistic 

simulation of natural flocking behavior.

Figure 10.9. A froid flocks with boids, a closeup of the froid perceiving its environment 

 I then introduced one froid into the environment with the boids. Figure 10.9 

shows a view of this simulation, with traditional boids in green, and the froid in gold. I 

observed that the froid, whose identification of flock mates was based solely upon its 

fractal perception system, behaved in the same manner as those boids whose 

identification of flock mates was given in the traditional oracle manner. I subsequently 

added several more froids into the mix, and found that the overall flocking behavior 

remained consistent and realistic. Figure 10.9 also shows a closeup of the froid, in the 

company of several boids, with its perception system visualized, perceiving and 

classifying its flock mates.

 Unlike the boids, the froids appeared to suffer from uncertainty (manifested by a 

stuttering motion) when in the proximity of a large number of other boids. I surmised that 

this is due to the inability of the segmentation system using within the retina to 

accommodate or otherwise classify large amounts of overlapping or confounding visual 

data. Another possibility concerns the enaction itself. Let us suppose that two action 

vectors arising due to two received perceptual signals almost exactly cancel each other. In 
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this case, small fluctuations in the perceptual signal can cause a significant change in the 

action vector, which may result in stuttering.

Summary

 Through this experiment, I have shown that the fractal techniques previously 

developed for visual analogies can be used for perception. I constructed an artificial boid 

like world that is popular in graphics and games, and demonstrated that froids (fractal-

based boids) can use the fractal technique for mapping percepts into actions in real time 

and manifest flocking behavior. 

 While the use of fractal representations is central to my technique, the emphasis 

upon visual recall in my solution afforded by features derived from those representations 

is also important. There is evidence that certain species have innate or rapidly develop 

through acclimation visual prototypes which allow young members to accurately identify 

their parents (O’Reilly & Johnson, 1994). I hold that placing imprints into memory, 

indexed via fractal features, affords a new and robust method of discovering image 

similarity, and that images, encoded and represented in terms of themselves, may be 

indexed and retrieved without regard to shape, geometry, or symbol. I also hold that the 

representations of the perceptual stimuli, as in my fractal technique, need to be built at 

run-time and in real-time.
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CHAPTER 11

FRACTALS AND GESTALT PERCEPTION

 The relationship of my computational approach to visual analogy using fractal 

representations and the gestalt view of visual perception in cognitive psychology 

(Arnheim, 1954; Steinman et al., 2000; Wagemans et al. ,2012a, 2012b) requires 

examination. The gestalt view of visual perception recently has received attention in 

computational models of visual analogy (e.g., Schwering et al., 2007, but obliquely 

Dastani & Indurkhya, 1997, 2000; and Ojha & Indurkhya, 2009). As in gestalt methods in 

general, my fractal approach to visual analogy constructs different interpretations of the 

input dynamically and re-represents the problem as needed. 

 As mentioned earlier, this exploration of gestalt perception is presented only to 

show the broader utility of the fractal representation and the ABR* algorithm, and 

therefore contains promising but very preliminary results.  The last chapter of this 

dissertation, on future directions, expands on methods by which this particular section 

may be extended or enhanced.

Bistable Perception and the Necker Cube

 A visual percept is deemed bistable if there are two potential yet mutually 

exclusive interpretations of the percept between which the human visual system cannot 

unambiguously choose.  An additional characteristic of bistable perception is that 

alternation between the available interpretations appears to happen in an uncontrollable,  

spontaneous and stochastic manner (Kogo et al., 2011; Nagao et al., 2000). Perhaps the 

most famous example of a bistable visual percept is the Necker Cube, shown in Figure 

11.1 (Necker, 1832).  
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Figure 11.1. The original Necker Cube

As Necker notes concerning this illustration from crystallography, although the figure is 

drawn to indicate that the solid angle labelled A should be seen as closest and the solid 

angle X should be seen as furthest (and therefore, the face ABCD would be foremost), 

one’s perception of the figure will shift involuntarily to cause the opposite interpretation 

(Necker, 1832).

Investigations of Bistable Perception

 Psychological and cognitive neuroscientists have been fascinated by the advent 

and potential cause of bistable perception, though not all of their research has been 

concerned with the Necker Cube.  For example, one way to induce a bistable percept in 

humans is to present dissimilar visual images to each eye, in a process known as 

binocular rivalry (Meng & Tong, 2004; Mitchell et al., 2004; Tong et al., 2006).  When 

presented in such a manner, the images compete for perceptual dominance, with each 

image “available” in a perceptual sense for a few moments while the other image is 

perceptually suppressed.  Because the changes in perception occur without changes in the 

actual stimuli, studies have been conducted to establish the neural correlates of those 

perceptual responses.  Lumer et al. (1998) report that fMRI studies revealed cortical 

regions typically associated with spatial attention were active, but that activity in the 

frontopariental cortex were specifically associated with perceptual alternation, suggesting 

that visual awareness was biased toward abstract internal representations rather than 

merely the arriving percept’s spatial arrangement. 
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 That there appears to be a neural correlation between bistable perception and the 

regions of the brain thought to involve abstraction representation is of keen interest to my 

research.  As ever, the question arises as to what the nature of that representation may be, 

and therefore what sorts of reasoning would it endorse.

 Work on the Necker Cube problem has occurred since Necker’s original paper 

(Necker, 1832) on the subject.  A fair number of efforts have examined the perceptual 

alternation problem. Einhauser et al. (2004) performed eye tracking studies and found 

that there is a close link between the perception of the Necker cube and eye position, 

wherein a subject’s eye position shifts after their perceptual shift, moving to a extreme 

position that then, in turn, caused a perceptual shift, suggesting that somehow eye 

position suppress the older percept. In examining the timing information available in 

EEG studies, Kornmeier and Bach (2004) found an early electrophysical correlate of the 

perceptual reversal in an Necker cube by comparing exogenous reversals of unambiguous 

stimuli to the endogenous reversal in Necker-like stimuli.  This suggested to Kronmeier 

and Bush that the emergence of a 3D interpretation of the stimuli and its reversal likely 

occur in purely visual areas, but that the act of perceiving the stimuli is modulated from a 

higher level in the visual system, perhaps a confirmation of the earlier results of Lumer et  

al. (1998).

 Noest et al. (2007) present a neural model of perceptual switching which exhibits 

the percept choosing and spontaneous switching without any high-level decision making 

or memory.  Their work specifically addresses the problem that the ambiguous visual 

stimuli is viewed continually, but the perception of that constant stimuli switched many 

times.  

 Of particular consequence to my work is that the investigations of Noest et al. 

(2007) were guided by their recognition of the process of ambiguity resolution as an 
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example of dynamically equivalent nonlinear processes that occur throughout nature 

which are mathematically well characterized (Cross & Hohenberg, 1993; Guckenheimer 

& Holmes, 1983). Sundareswara and Schrater (2008) likewise investigated ambiguity 

resolution as a potential explanation for perceptual bistability by exploring the effects of 

the background on the viewpoint selected.

Perceiving the Necker Cube, Fractally

 As a consequence of my research, I wished to see how the Extended Analogy By 

Recall (ABR*) algorithm would perform when considering the Necker Cube problem.  In 

particular, what I sought to discover was whether the algorithm would exhibit an inability 

to choose between alternative visual interpretations of the Necker Cube.

The input data

 I set up the experiment in the following manner.  First, I created a very exact 

rendition of the Necker Cube at a resolution of 200x200 pixels, and saved it in the .PNG 

format in the RGB color space.  This target cube is shown in Figure 11.2.

Figure 11.2. The target Necker Cube.

 I then created, from that original drawing, three sets of alternative visual 

interpretations of the cube, each set containing two interpretation choices: C1, an image 

with the forward face lowermost, and C2, an image with the forward face uppermost.  

 Each set maintained the same isometric projection as the target cube, but in each 

set, a visual cue was embedded to suggest which face was forward.  In Set 1, a technique 
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known as “haloed lines” was used (Appel et al. 1977). In Set 2, the edges which are to be 

interpreted as “behind” are rendered in a slightly different color.  In Set 3, the occluded 

edges are removed entirely, leaving an impression of a solid cube.  In each set, the 

individual images were 200x200 pixels, and saved into the .PNG format in the RGB 

colorspace.  Figure 11.3 illustrates the alternative pairs I created.

C1

Leftmost Forward
C2

Rightmost Forward

Set 1
Halo edges

Set 2
Faint edges

Set 3
Solid cube

Figure 11.3. Sets of alternative interpretations of the Necker Cube
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Creating the relationships

 Since the ABR* algorithm compares the similarity between fractal 

representations, I created for each set three fractal relationships.  The first relationship 

was between the target and itself (to establish a self-referential identity).  The second 

relationship was between the target and the set’s C1 image, and the third was between the 

target and the set’s C2 image.  Thus, for each set, these mutual fractals were created:

R = MutualFractal( target, target )

R1 = MutualFractal( target, C1 )

R2 = MutualFractal( target, C2 )

The problem, then, becomes this:  to which of the two relationships, R1 or R2, is the R 

relationship most similar? Another, and most concise, statement of the problem for each 

set would be: if R1 and R2 are known (previously experienced, kept in memory), of which 

is R most analogous?

Calculating Necker analogies

The algorithm for calculating Necker analogies for each set, the Fractal Necker 

algorithm, is a derivation of the ABR* algorithm, and is given below.  As in the ABR* 

algorithm there are three phases: preparatory, examination and re-representation.  Indeed, 

as in the other instances of the ABR* presented in this dissertation, the examination and 

re-representation phases are combined into a single execution phase for expedience.
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Algorithm 11.1. The Fractal Necker Algorithm, preparatory stage.

The Fractal Necker Algorithm: Preparatory Stage

 In the first stage of my Fractal Necker Algorithm, a Necker Cube problem is first 

segmented into its component images (the target image T, and the collection of 

interpretation images).  Next, the algorithm determines the relationship between the target 

and itself, expressed as a mutual fractal representation.  Then, a range of abstraction 

levels is determined. 

 As in other implementations in my research, the abstraction levels are determined 

to be a partitioning of the given images into gridded sections at a prescribed size and 

regularity. In contrast to earlier implementations of the ABR* algorithm, however, in this 

experiment I wished to note the circumstances under which the algorithm would prefer 

one or the other alternative interpretation of the target Necker Cube.  Therefore, for this 

experiment, I allowed the level of abstraction to begin at the coarsest possible level 

(200x200), but decrease in a regular fashion, in steps of 3 pixels.  Thus, the abstraction 

Given a target Necker cube and set of possible interpretations, 
determine an answer.
P R O B L E M  S E G M E N T A T I O N

By examination, the set of interpretations are individual images.
Let T be the target Necker cube image.
Let C := { C1, C2, ... } be the set of individual interpretations.

R E L A T I O N S H I P  D E S I G N A T I O N S

Let R be a relationship, determined as follows:
 R ← MutualFractal( T, T )

 A B S T R A C T I O N  L E V E L  P R E P A R A T I O N  

Let d be the largest pixel dimension for any image in the set M ∪ C.
Let δ be the abstraction decrement value where 1 ≤ δ ≤ d.
Let A := { a1, a2, ... } represent an ordered range of abstraction 
values where
 a1 ← d, and  ai ← ai-1  - δ ∀ i, 2 ≤ i and  ai  ≥  2  
The values within A constitute the grid values to be used when 
partitioning the problem’s images.
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level proceeded as follows:  200x200, 197x197, 194x194, and so forth, down to a 

minimum level of 5x5. 

Algorithm 11.2. The Fractal Necker Algorithm, execution stage.

The Fractal Necker Algorithm: Execution Stage

 The algorithm concludes by using a variant of the ABR* algorithm to determine 

the confidence in the answers at each level, stopping when ambiguity is sufficiently 

resolved.  Thus for each level of abstraction, the relationship R is re-represented into that 

partitioning.  Then, for each of the candidate images, a potentially analogous relationship 

is determined and a similarity value is calculated.  The balance of the Fractal Necker 

algorithm follows the ABR* algorithm, using the deviation from the mean of these 

Given M, C, R, A, and η as determined in the preparatory  stage, 
find the answer.

P R E P A R A T O R Y

Let Ε be a real number which represents the number of standard 
deviations beyond which a value’s answer may be judged as 
“confident”
Let S(X,Y) be the Tversky similarity metric for sets X and Y

 E X E C U T I O N  

For each abstraction a ∈ A:
• Re-represent each fractal representation r ∈ R according to 

abstraction a
• S ← ∅
• For each answer image c ∈ C :

R’ ← MutualFractal( T, c ) according to abstraction a
S ← S ∪ { S( R, R’) }

• Set n ← |S|
• Set µ ← mean ( S )
• Set σµ ← stdev ( S )/√n
• Set D ← { D1, D2,  ... Dn } where Di = (Si-µ)/σµ
• Generate the set Z := { Zi ... } such that Zi ∈ D and Zi > E
• If |Z| = 1, return the answer image Ci ∈ C which corresponds 

to Zi
• otherwise there exists ambiguity, and further refinement must 

occur.

If no answer has been returned, then no answer may be given 
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similarities, continues through a variety of levels of abstraction, looking for an 

unambiguous answer that meets a specified confidence value. 

 However, in this experiment, I did not allow the algorithm to halt if one or the 

other interpretation exceeded the confidence threshold.  To achieve this, I set the 

confidence level artificially high (100%), a result unobtainable.  This then caused the 

algorithm to proceed to calculate and report similarity values at all levels of abstraction.

Results of the experiments

 I ran the algorithm on each of the three sets given above.  The algorithm was 

coded in the Java programming language, and run on a Macbook Pro computer.  The total 

running time required was less than a day, the bulk of which was taken up by the 

construction of the various fractal representations. As with previous algorithms and 

experiments in this dissertation, the code and example images are available on our 

research lab’s website for ready replication and extension.

 As indicated above, the algorithm calculated similarity values for all of the 

available levels of abstraction, beginning with the coarsest (200x200) and proceeding in a 

regular fashion down to the very finest (5x5). At each level of abstraction, the similarity 

value for each of the possible interpretations is calculated, using the Tversky formula, and 

set alpha to 1.0 and beta equal to 0.0, conforming to values used in the coincidence model 

by Bush and Mosteller (1953). From those values, the algorithm calculated the mean and 

standard deviation, and then calculated the deviation and confidence for each answer.  

The calculations of confidence were not used to halt the running of the algorithm.

 Very intriguingly, the algorithm showed a clear instability in its ability to choose 

between either of the alternative interpretations for each set of the Necker problems 

tested.  In fact, in no case was there any preference for either interpretation which was 

determined unambiguously, even though the confidence values for the interpretation 
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exceeded that corresponding to a confidence of 95% for a sample set of two.  The 

following charts plot the deviation of the interpretation similarity values against the level 

of abstraction, from coarsest to finest, for each of the sets, plainly showing the oscillation 

between interpretations.
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Figure 11.4. Deviation oscillations for Set 1.
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Figure 11.5. Deviation oscillations for Set 2.
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Figure 11.6. Deviation oscillations for Set 3.

 There are occasional oscillations in the deviation at some coarse levels of 

abstraction, particularly apparent in Sets 2 and 3.  Then, a regular pattern of oscillation 

appears to occur in each set after the abstraction level dips below 100x100.  I attribute 

some of this to the manner in which the fractal representation is calculated:  at a given 
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partitioning level, an empty, temporary image buffer is calculated which is an even 

multiple of the partitioning in both directions, and then the image is composited into the 

center of that temporary buffer.  The oscillations present in Sets 2 and 3 suggest this, but 

Set 1’s chart does not.  My interpretation in that case is that the haloed line effect used in 

Set 1 is not a remarkable feature within the image until the partitioning reaches a lower 

limit; thus, Set 1 deviations remain almost perfectly flat for much of the coarse 

abstractions.

 An examination of the similarity values for each set is similarly revealing.
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Figure 11.7. Similarity values for Set 1.
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Figure 11.8. Similarity values for Set 2.
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Figure 11.9. Similarity values for Set 3.

 In these charts, it can be seen that the similarity value itself gyrates sporadically at 

coarse abstraction levels, and then, somewhere between 100x100 and 80x80, settles into 
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a gradual rising pattern of oscillation about the mean, for each of the sets.  

 Unsurprisingly, the similarity value itself creeps upward to approach 1.0 as the 

abstraction level becomes ever finer.  This is due to the increase in the homogeneity of 

the features being considered, coupled with the shear number of features under 

consideration (more than 200,000 at 5x5).  

Implications

 To my knowledge, this is the first computational model of the Necker cube which 

directly examines the bi-stable interpretation.  Even when presented with sets of potential 

interpretations with varying visual cues, the model exhibits an inability to determine an 

unambiguous and significant interpretation of the Necker cube’s orientation.  This 

suggests that the analogical reasoning afforded by the fractal representation and 

illustrated via the ABR* algorithm (from which the Fractal Necker algorithm is derived) 

may offer some insight into the gestalt perceptual capabilities of humans.

 As noted at the outset of this chapter, these results are very preliminary, and 

additional research will be needed to prove whether or not the techniques above are 

sufficiently robust for a variety of candidate interpretation images.
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CHAPTER 12

FRACTALS AND IMPLICATIONS

 All of the prior chapters in this dissertation concern themselves with either a 

motivation of some particular point of fractal representations or describe the results of 

experiments.  In this chapter, I shall summarize the defense of my thesis, and discuss the 

contributions and implications of the research.

The Summary

 My dissertation has presented a very specific model of reasoning, one rooted in 

the utility of fractal representations, as a means of addressing in a computationally 

feasible manner certain problems of visual similarity and visual oddity.  I hold that my 

research is sufficient to permit me now to assert that the hypotheses I made at the outset 

of this dissertation are substantiated claims, and that the sum of these claims substantiates 

my thesis.  I present now those claims, and that summation.
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Claim 1: the Fractal Representation is a Knowledge Representation

 I claim that the fractal representation is a knowledge representation.

Development and Motivation

 In Chapter 2, Fractals and Representation, I gave the background and motivation 

for the need to represent the received visual world in a novel way, one that captured, as a 

core aspect, the inherent repetition and similarity at scale present in visual scenes.  I 

described in detail the manner in which images may be encoded in a fractal manner.  I 

illustrated how this fractal encoding was dependent upon not just the source and target 

images, but also upon the partitioning chosen, and how in this manner these are important 

initial conditions to which the encoding is sensitive.  This led to four significant insights.

Insight 1: the Relationship between Source and Target

 I described the insight that the relationship between the source and target images 

of the encoding could be considered as encoded as well in this fractal manner, even 

though in accordance with the Collage theorem the use of such a fractal encoding would 

necessitate convergence into the target image, regardless of source image.  The specific 

insight was that the source image, in its role as an initial condition, significantly 

determined the encoded relationship.  Furthermore, given the nature of the search at the 

heart of the encoding algorithm, which seeks similarity at different scales, I put forth that 

this encoding of similarity was a direct way to capture the visual analogical relationship 

between the  two images.

Insight 2: the Partitioning as Abstraction “Knob”

 As shown in chapter 2 and mentioned above, the partitioning of the images into 

subimages which are then used in the pattern-matching search at the heart of the fractal 
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encoding algorithm can itself be considered as a significant initial condition.  I showed 

that this partitioning decision determines the size of the encoding, the amount of time 

required to perform the overall encoding, and the fidelity with which the encoding 

captures the colorimetric information in the images.  In this manner, the partitioning itself 

determines the level of abstraction of the information.  

 As it is a formal initial condition, however, the partitioning is seen as a useful 

“knob” with which to vary the information about the relationship between the source and 

target images.  The advent of this “knob” precisely affords the ability to re-represent that 

relationship at a different level of abstraction should the need arise.  Thus, the insight was 

that re-representation was so afforded, that subsequent re-representations could retain the 

same nature as the initial representation, and that the mechanism required for the re-

representation was identical to the initial representation. 

Insight 3: Features of Fractals

 The fractal encoding algorithm, as described in Chapter 2, generates an encoding 

of the relationship between a source and a target image at a given level of abstraction. As 

the overall aim of my research addressed reasoning, the ability to judge a comparison 

between relationships of images became paramount.  I noted that the set of 

transformations generated by the fractal encoding algorithm was unordered, providing a 

connotation of mutual independence between the transformations.  Thus, I examined each 

transformation and developed a methodology of expressing each as a code consisting of a 

limited number of variables.  Each of these variables, in turn, could be treated as labelled 

information (the color shift, the kind of similitude transformation used, and so forth).  

 In essence, each code I viewed as a Minsky-esque knowledge frame for that 

portion of the visual scene from which the transformation was derived, and the set of 

transformations in the fractal encoding then regarded as a frame-system. Furthermore, 
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each code, having labelled variables, could be used, in whole or in subsets, as a means to 

index the encoding into memory.  This interpretation in turn enabled the strategy for 

analogy making which I defend in the next section.

Insight 4: Mutuality

 As my research progressed, the problem of addressing not just pairs of images, 

but groups of images, arose frequently.  As an algorithm, the fractal encoding algorithm 

provided a means for generating a representation of the relationship between two images 

at some abstraction.  However, I noticed that the fractal representation by itself had both a 

directionality (in the sense that a target image was considered in light of a source image) 

and an unordered set quality (in that the individual transformations that form the 

representation will cause convergence into the target no matter the order in which they 

are applied).  

 What was necessary, I realized, was that the representation must include not just 

the relationship from the source to the target, but also the relationship from the target to 

the source.  The set-theoretic nature of the representation allowed me to describe 

therefore the mutual relationship between the images as the union of the two fractal 

representations, swapping the initial conditions of the images used in the encoding while 

maintaining the partitioning. Armed with this mutual representation, I extended it, in the 

manner as described in Chapter 2, to allow representations of three or more images, 

without losing any aspect of the encoded relationships.

From Fractal Encoding to Knowledge Representation

 In Chapter 3, I argue that the fractal representation meets the criteria of a 

knowledge representation in several regards.  I recap those arguments here briefly. 
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 Fractal representations satisfy Markman’s notion of a represented and 

representing world expressly through the particular initial conditions of the source and 

target images and the level of abstraction (as embodied by the partitioning), as via the 

commitment of inclusion/omission of that information into the representing world as 

given by the generated set of transformations.  Markman’s notion of representing rules 

find purchase in the fractal representation via the isomorphic mapping achieved by the 

partitioning scheme.  The fractal representation is non-symbolic ala Markman in that it 

rests upon the non-arbitrary inherent structure determined by the representing rules, but I 

note that the manner in which the features extracted from the transformations of the 

representation may be regarded as symbolic.  The expressivity and power Markman 

requires of a knowledge representation for the fractal representation rests in the 

extensibility of the mutuality I described above, the ability of the representation to 

represent any two (or more) arbitrarily chosen real-world images, and in the direct 

association of the representation to the mathematical notion of iterated function systems.

 The fractal representation satisfies the roles required of a knowledge 

representation as given by Davis et al. (1990) as well. A fractal representation is a clear 

surrogate for two or more images, with a strong correspondence established by the 

manner in which the representation is achieved via the partitioning.  As I argue in Chapter 

3, this grounding correspondence is isomorphic and, in conjunction with the 

independence of the transformations under that partitioning, thereby makes an explicit, 

complete, and concise ontological commitment. As I show repeatedly through the 

dissertation, the fractal representation affords and sanctions a number of inferences, or 

perhaps better said, a number of ways in which the information contained within the 

representation may be combined and construed.  Additionally, the various chapters of the 

dissertation illustrate precisely how the representation may be used for pragmatically 
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efficient computation.  Lastly, I argue in Chapter 3 that the fractal representation via its 

affordance of re-representation and featural similarity discovery offers a computational 

approximation of a medium of expression.

 For all of the above reasons, I maintain that claim one is satisfied: the fractal 

representation is a knowledge representation.
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Claim 2: the Identification of the Computational Strategy

 I claim that using the fractal representation, a robust computational strategy may 

be determined which automatically adjusts the representation to an appropriate level of 

abstraction.  

The Extended Analogy By Recall (ABR*) Algorithm

Regardless of which definition of analogy one chooses to adopt, all definitions 

require that some situation be regarded in comparison with another.  That is to say, then, 

that two significant aspects of analogy making are that there is a comparison evaluated 

via some criteria and that that comparison involves one thing and another.  Any strategy 

which would purport to address analogy making, it seems to me, then by necessity and at 

minimum would speak to both aspects: the manner of comparison to be conducted, and 

the manner by which the analog is chosen.  

In the course of my research, and as I describe in detail in Chapter 4, I discovered, 

developed and implemented an original and novel algorithm, which I call the Extended 

Analogy By Recall (ABR*) algorithm.  The ABR* algorithm addressed both aspects of 

analogy making I described above:  it is based on the premise that analogy begins by 

being reminded of something (cf. Holyoak & Hummel, 2001), and therefore provides a 

mechanism for retrieving an analog, and it integrates the return of a measure of similarity 

along with that retrieved analog.  The measure of similarity which the ABR* algorithm 

returns is based upon the commonality or rarity of the features found in the retrieved 

analog and the target, from which an original set of features are derived.  The particular 

method of featural similarity which is used by the ABR* algorithm is based upon the 

theories and work of Amos Tversky (1977).

Ambiguity, Confidence, and Abstraction-Shifting

It is possible, even likely, that given some target, one or more analogs might be 

retrieved from memory using features derived from that target.  In this case, the similarity 

metric which is returned along with the analogs may be used to distinguish which one of 
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those analog should have priority (that is, which among them retrieved choices would be 

deemed to share the greatest featural similarity with the target).  Unfortunately, the 

similarity measures for the analogs might be quite close in value, and although one might 

be numerically higher than the others, it is possible that it is not statistically significantly 

higher.  Thus, one can readily see that there can arise a sense of ambiguity in two ways: a 

multiplicity of analogs, or a lack of a statistically significant singular analog.  Thus, the 

algorithm would be able to offer only an ambiguous answer in response to some question, 

or lack the confidence with which to hold forth some particular answer.  

In my work, I showed how the ABR* algorithm provides a way in which any 

ambiguity or uncertainty with which an answer to a visual analogy problem may be 

characterized can be attributed to those features naturally arising from fractal 

representations, as described above and in Chapter 2.  I illustrated, in detail in Chapter 4, 

and in subsequent chapters and experiments, how the algorithm could use the advent of 

ambiguity as a means for triggering re-representation, using the fractal representation’s 

inherent level-of-abstraction as a “knob.”  In this manner, I demonstrated how such a re-

representation could be employed as a means of automatically adjusting the level of 

abstraction, successively moving through them, until a confident, unambiguous answer 

could be chosen.  Subsequent chapters in the dissertation bear witness to the application 

of this automatic adjustment stratagem.   

Thus, in Chapter 4, using as a visual similarity task as a basis, I presented a 

complete description of the ABR* algorithm, its motivation, and an argument that the 

reasoning embodied therein may be construed as a computational model of visual 

abstraction.  Throughout the technical chapters of this dissertation, I illustrate regularly 

how the ABR* algorithm or algorithms directly derived from it are put into the service of 

solving visual analogy tasks.  In this manner, I show that the strategy itself is robust 

across the several domains. Finally, as I developed the ABR* algorithm as a consequence 

of being inspired by aspects of human visual reasoning, and in particular, the human 

ability to shift the manner with which we regard some scene in order to facilitate 
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understanding, I maintain that the algorithm on the whole is a computational strategy, yet 

cognitively-inspired.

For the reasons I have mentioned above, I maintain that claim two is satisfied: 

using the fractal representation, I have identified a robust computational strategy – the 

Extended Analogy By Recall (ABR*) algorithm – which automatically adjusts the 

representation to an appropriate level of abstraction.
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Claim 3: the Utility of the Strategy for Visual Similarity Problems

 I claim that using the fractal representation, a robust computational model can be 

derived for certain classes of problems of visual similarity, such as the Raven’s 

Progressive Matrices tests.  

The work on Raven’s Progressive Matrices

 In Chapter 5, I show the derivation of a new algorithm, Fractal Raven, based upon 

the ABR* algorithm.  I use the Fractal Raven algorithm as a means to address all 

available problems from the entirety of those found in the Raven’s Progressive Matrices 

suite.  As my experiments show, the Fractal Raven algorithm detects the correct answer in 

50 of the 60 problems of the Standard Progressive Matrices (SPM) test, 42 of the 48 

problems on the Advanced Progressive Matrices (APM) test, 30 of the 36 problems on 

the Colored Progressive Matrices (CPM) test, and 50 of the 60 problems on the Standard 

Progressive Matrices Plus (SPM Plus) test.  Insofar as I know, only one other 

computational model, that of my research colleague Maithilee Kunda, has been used 

against all available Raven’s tests.

 The results of Fractal Raven also illustrate an important aspect of my research, 

namely that although the answers were noted correctly, they were not always so noted 

uniquely or unambiguously.  Indeed, the abstraction-adjustment strategy at the heart of 

the ABR* algorithm and present in Fractal Raven illustrated quite strongly that ambiguity  

and confidence are significant considerations and worthy of reporting for any 

computational model, yet for all prior models, none of them bring this into the discussion.  

Therefore, the Fractal Raven algorithm is the first computational model to address 

Raven’s tests with confidence. Finally, although it was not the intention of my research to 

develop an algorithm which would demonstrate superior ability on the Raven’s tests, as 
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shown in Chapter 5 the results of Fractal Raven compare quite favorably to all other 

attempts.

The work on Miller Analogies

 A characteristic of a Raven’s visual similarity problem is that two or more 

analogical relationships must be preserved when selecting an answer.  In other words, the 

problem is constrained in at least two ways.  To illustrate the robustness of the overall 

strategy of ABR*, I additionally chose to experiment with the Miller Analogies test, and 

in particular, to draw upon examples first used by Evans in one of the first AI efforts on 

analogy making (Evans, 1964).

 As I illustrated in Chapter 6, a Miller Analogies Test (MAT) problem consists of a 

single relationship, and the potential answer must maintain that analogous relationship.  I 

derived an algorithm, Fractal Miller, based on the ABR* algorithm and as a direct 

descendant of the Fractal Raven algorithm, and conducted an experiment on all 20 

problems used by Evans.  The Fractal Miller algorithm detected the correct answer in 13 

of the 20 problems, a score just slightly worse (13 vs. 15) than a contemporary 

computational model, as noted in Chapter 6.

Summation for Claim 3

 For the reasons just mentioned, and as developed more fully in Chapters 5 and 6, I 

maintain that claim three is satisfied: I have successfully derived a robust computational 

model and employed it successfully against the entirety of the problems contained in the 

Raven’s Progressive Matrices suite as well as those used classically by Evans in a test of 

visual Miller’s Analogies.
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Claim 4: the Utility of the Strategy for Visual Oddity Problems

 I claim that using the fractal representation, a robust computational model can be 

derived for certain classes of problems of visual novelty, such as those found in the Odd 

One Out set.  Herein, I support that claim.

On Visual Oddity

 In Chapter 7, I discuss at length a problem of visual oddity, and particularly note 

the difficulty present in such problems: that the relationship between other objects in a 

scene are not known, nor are the number of those relationships known, and that all that is 

known is that some object or aspect of the scene is deemed odd.  Immediately, this 

interposed a new aspect, that an object’s relationship to all other objects in the scene, and 

not just some subset of pre-existing relationships, must be represented and considered.  I 

developed, as a derivative of the ABR* algorithm, the Visual Oddity algorithm, and 

showed how oddity could be derived.  Furthermore, I developed a means for distributing 

similarity measures to participating objects in relationships, to support the determination 

of oddity.  Lastly, I showed that the unusual affordance of re-representation to differing 

levels of abstraction, using the fractal representation and confidence as described above, 

were useful and maintained in the Visual Oddity algorithm.

On the Odd One Out

 In order to test the veracity of the Visual Oddity algorithm, I needed a set of 

problems, and found it in the work of Adam Hampshire and colleagues, in the form of 

almost 3,000 problems in their Odd One Out set, arranged in 20 levels of difficulty.  Each 

problem in the Odd One Out set consisted of 9 images, arranged in a matrix fashion, and 

in each problem, there was exactly one image which did not belong with the rest – the so-

called Odd One Out. No additional information was given.
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 In Chapter 8, I used the Visual Oddity algorithm to tackle the 2,976 problems of 

the Odd One Out.  The Visual Oddity algorithm correctly identified the Odd One Out in 

an unambiguous fashion in 1,647 of the problems.  The algorithm’s performance was 

better on problems which were perceived as easier by human test takers than it was on 

problems perceived as more challenging by human test takers.  Moreover, the results 

from this experiment also illustrated a significant aspect of the ABR* algorithm and the 

fractal representation:  at coarse levels of abstraction, there are very few features over 

which to reason (tens to hundreds), whereas at very fine levels of abstraction, there are 

many, many more (hundreds of thousands).  The scarcity of data at the coarse levels of 

abstraction led to mistakes, and at homogeneity of data at fine levels led to mistakes, as 

illustrated in Chapter 8.  This new information, coupled with continued performance of 

the general abstraction shifting strategy, led to a refined version of ABR*, one in which 

the amount of data and the nature of that data also may be used as contributing factors in 

selecting an appropriate level of abstraction.

On Core Geometry

 In another experiment, as explained in Chapter 9, I used a derivation of the Visual 

Oddity algorithm to address the problems used by Stanislaw Dehaene and colleagues to 

test whether humans have a naive understanding of certain geometric and mathematical 

concepts. The Dehaene test consisted of 45 visual oddity tasks, each containing six image 

of abstract geometric shapes.  Five of the subimages in a Dehaene problem were related 

by some geometric or mathematical principle, such as alignment, chirality, or symmetry, 

but a sixth image was not. Thus, a Dehaene problem required the test taker to select the 

one that did not belong – a geometric rendition of an Odd One Out problem.

 I derived a new algorithm, called CoreGeo, from the Visual Oddity algorithm, and 

applied it against the 45 Dehaene problems.  As I report in Chapter 9, the CoreGeo 
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algorithm detects a correct answer at a confidence of 95% or higher in 35 of those 

problems.  In my analysis of the results, I discovered that the selection of a confidence 

threshold itself was not sufficient, and that the signal of an answer must be both 

unambiguous, confident, and strong.  This is to say that the discovered oddity must be 

significant enough to warrant notice.  I show in the chapter that a straightforward 

calculation of the coefficient of variation, a normalized measure of the dispersion of 

similarity values, is one way to determine such significance.

Summation for Claim 4

 For the reasons summarized in this section, and developed fully in Chapters 7 

through 9, I maintain that claim 4 is satisfied: using the fractal representation, a robust 

computational model has been derived for certain classes of problems of visual novelty, 

such as those found in the Odd One Out set.
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Summation of the Defense

 My research has shown, and this dissertation described in detail, the manner with 

which each of these claims have been satisfied:

• the fractal representation is a knowledge representation;

• using the fractal representation, a robust computational strategy may be 

determined which automatically adjusts the representation to an appropriate level 

of abstraction;

• using the fractal representation, a robust computational model can be derived for 

certain classes of problems of visual similarity, such as the Raven’s Progressive 

Matrices tests; and

• using the fractal representation, a robust computational model can be derived for 

certain classes of problems of visual novelty, such as those found in the Odd One 

Out set.

 

 The overall computational strategy which I developed, embodied in the Extended 

Analogy by Recall algorithm and fueled by reasoning over fractal representations, is 

novel in several senses:  it is operating over fractal representations, which are themselves 

a new and novel contribution; it provides not only a retrieval of one or more source 

analogs from memory but a measure of the similarity associated with each; and it 

provides a parsimonious manner in which to shift or re-represent the elements over which 

it operates, based entirely upon the confidence and significance of the answer being 

return.  The strategy is feasible, as I have demonstrated the ability to conduct various 

experimental runs using an instantiation of the algorithm written in the Java programming 

language running on conventionally available computer hardware.  Lastly, the strategy is 
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useful, for I have demonstrated precisely how it addresses problems in a variety of 

domains.  

 I therefore maintain strongly and confidently that my thesis statement is defended: 

reasoning using fractal representations is a novel, feasible and useful computational 

technique for solving certain problems of visual similarity and novelty.
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The Contributions

 My dissertation and the body of research it describes makes two primary, novel, 

and significant contributions to science.  Those are the Extended Analogy by Recall 

(ABR*) algorithm and the fractal representation.  Additionally, as I have noted in the 

preceding chapters, my research has other contributions which are of note.  I shall now 

put each forward.

The Extended Analogy by Recall (ABR*) Algorithm

The first contribution is the Extended Analogy by Recall (ABR*) algorithm, a 

parsimonious, cognitively-inspired computational strategy for visual reasoning which 

automatically adjusts its representations to an appropriate level of abstraction. The 

several chapters of this dissertation show unmistakably that the strategy contained within 

the ABR* algorithm is suitable to meet the demands of a variety of visual analogy 

problems.  

The Fractal Representation

The second contribution is the fractal representation itself, a new and novel 

knowledge representation that will open the door for analogy researchers, cognitive 

scientists, and computer scientists to explore the role self-similarity and perceptual 

complexity play in analogy making.

The Secondary Contributions

In addition to these primary contribution, several algorithms, which address 

reasoning specifically in visual similarity and visual oddity tasks, as well as algorithms 

which afford or mimic aspects of visual perception, are contributions in their own right.

The Advent of Ambiguity Resolution

In the course of developing the ABR* algorithm, and as a direct consequence of 

the fractal representation’s affordance of re-representation via altering the initial 
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condition of partitioning, I contributed a manner with which to shift the level of 

abstraction.  By placing this shifting into service when and if the algorithm deems that an 

answer cannot be arrived at in an unambiguous and strong manner, this methodology of 

abstraction shifting becomes automated.  Insofar as I am aware, no one has ever 

constructed or demonstrated such a parsimonious mechanism.

The Fractal Raven Algorithm

As I point out in Chapter 5, a significant amount of research has been devoted to 

the cognitive and computation study of the Raven’s suite of visual similarity problems.  

My work on Raven’s, and the Fractal Raven algorithm itself, contributes to and extends 

that research.

The Visual Oddity Algorithm

Visual oddity tasks, in the same manner as the visual similarity tasks such as the 

Raven’s test, also command their fair share of research, both cognitively and 

computationally.  My research in this area offers researchers a powerful new set of tools, 

the fractal representation and the regard of ambiguity resolution, as a means for delving 

into phenomena arising from their exploration.

The CoreGeo Algorithm

In Chapter 9, I remarked upon the work of Dehaene and others on whether 

humans possess innate mathematical or geometric reasoning or recognition skills.  The 

CoreGeo algorithm, with its lineage to both fractal representations and the ABR* 

algorithm, provide both a way to consider and revisit observed effects in those 

experiments, as well as a means for categorizing and developing new problems which 

might elicit and discriminate finer effects.
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The FractalNecker Algorithm

Although it is preliminary, to my knowledge, my research and the Fractal Necker 

algorithm provide the first computational model of the Necker cube which directly 

examines the bi-stable interpretation as a byproduct of confidence.  
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The Implications

 I believe strongly that my research carries with it a number of indications and 

implications for artificial intelligence, cognitive science and vision.  I believe this to be so 

because in no small part my efforts have been inspired by the various aspects of human 

visual reasoning and by my work and the work of others to transmute certain of those 

aspects into computational models. 

 Although I reserve the final chapter of this dissertation as the place for speculation 

about certain topics which may overlap these, I must share now, in this penultimate 

chapter, those indications that are specific consequences of the contributions.  I also ask 

for a measure of forbearance, for any moderate attempt at suggesting implications calls 

for some degree of speculation, as may be noted here.

Implications for Perception

 My research has begun with the receipt of some visual scene.  As shown above 

and throughout this dissertation, what I sought to do was to provide as a surrogate for that 

arriving scene a fractal representation of it.  From there, depending upon the task at 

hand–decide what is similar, decide what is novel, decide how to act–my research looked 

expressly to the representation, and to what it afforded and sanctioned.  This is the way in 

which the algorithms I developed came about.

 But what of the arriving visual input itself?  As I mentioned, it is the observation 

of Mandelbrot (1982), and of Barnsley and Hurd (1992), that the world itself exhibits 

repetition and similarity at various scales.  The deliberate choice of building a fractal 

representation from a fractal encoding of the arriving world scene at once grounds the 

representation in the world and yet abstracts all else of the world away, so that what 

remains is merely a recipe for how one might reconstruct the scene, iteratively.  It is the 

arriving world, inbound with repetition and similarity at scale, which affords and 
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sanctions the kinds of reasoning I discuss.  The fractal representation packages this, 

concisely. This, then, would beg at once several implications for further exploration.

 Firstly, let us suppose that we might construct scenes which do not exhibit these 

characteristics.  Is it possible to do so? What would they be?  Would we be able to say 

that they are analogous to nothing in our experience?  

 A particular implication worthy of future study would be that there may exist a 

continuum of visual images, not classifiable along the traditional means of color, spatial 

structure, etc., but along a fractal-like dimension.  When reasoning from a fractal 

representation, my research focused only upon features derived from the various 

transformations at the core of the representation, and only upon each of them 

independently.  Thus, as a first approximation, what might be gleaned from considering 

tandems or subsets of the transformations?  Would the consideration of those subsets 

yield a measure of the overall scene complexity akin that entropy measure found by Ruiz 

(2009)? 

 Another characterization of the scene might well stem from an analysis of the 

visual noise present.  While determining how “noisy” a scene is may be achieved by any 

number of computer vision methods, perhaps a characterization may be provided within 

the fractal representation itself.  In doing so, a potential new measure may emerge: the 

likelihood that measures of similarity or oddity calculated from the representation will be 

sufficiently discriminable. 

 Yet another implication has to do expressly with the grounding of the 

representation in the scene itself.  Let us suppose that although the scene is encoded in 

total, some aspects of the representation are omitted, accidentally or intentionally.  Could 

this also form another technique for establishing the veracity of reasoning from the 

representation; that is, could the degree to which the representation is judged to be 
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isomorphic with the received visual scene play a crucial role in subsequent calculations 

of certainty and significance? In precisely the same manner that it affords re-

representation into finer or coarser abstraction, the fractal representation offers a direct 

means to judge that isomorphism in conjunction with the partitioning which is its initial 

condition.  I imply that this is a worthy area of future study.

  Two aspects of human neurophysiology also present opportunities.  The orienting 

reflex, as a mechanism for studying that a subject has noted an anomaly, would seem an 

evident choice, and perhaps with careful attention to visual design, scenes with less or 

more self-similarity could be used in replication of those studies, with the intention of 

implicating the acts of encoding or the regard of complexity.  Similarly, a study of human 

vision search, in the spirit of Treisman and Gelade (1980) but using scenes with known 

fractal complexity, as determined by a computational model of the scene from the fractal 

representation, might illuminate a distinction in the kinds of processing at play in vision 

at a glance versus vision with scrutiny.  I should hope that there could be discovered a 

new event-related potential ala P3a (cf. Picton, 1992; Näätänen & Gaillard, 1983) which 

may be seen as variable in correlation with the fractal complexity of the regarded scene.

 Finally, with regard to perception, the fractal representation and the work I have 

performed can be specifically characterized as viewer-centric regards of the arriving 

world.  I have not pursued the extension of my techniques into the object-centric view.  

However, in the last chapter of this dissertation, I do discuss at some length the 

frameworks of David Marr, and offer some speculation about the utility of fractal 

representations in the service of object discovery.

Implications for Cognition

 Beyond perception, once the fractal representation is arrived at, it must be put to 

use in service of some goal or task.  In my research, those tasks varied from decision 
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making concerning visual similarity or visual oddity to classifying simulated retinal 

regions in agents piloting a simulated world.  What other tasks may be worth attention?  

How might the tasks require the representation itself to be arrived at in a different 

manner?

 As I showed through the development of the ABR* algorithm, the analogy 

making begins with the selection of some source analog, and in particular retrieved from 

a prior perceptional history of potential analogs kept in a memory system in a fashion 

organized by the features derived from the fractal representation of those prior percepts.  

The fractal representation itself I have shown is sensitive to its triplet of initial conditions, 

the source image, the target image, and the chosen partitioning.  It is possible to relax any 

of these initial conditions, and each yields interesting nuances.

 Suppose that the partitioning itself is kept constant, and let us presuppose that it is 

impossible to regard the arriving visual scene at a different level of abstraction.  This 

would correspond to receiving a scene at a glance.  What if the need arose to regard the 

scene at a different level of abstraction?  One method would be to infer coarser or finer 

abstractions for aspects of the representation.  In the last chapter of this dissertation, in 

the section on fractal reasoning, I offer a very specific suggestion as to how this may be 

accomplished, and how fractal composition may be seen as inference.

 Suppose that the target image itself is kept constant, but let us relax the constraint 

of choice of the source image.  If this is so, then any available image may be used to take 

the place of the source, including that of the target image.   If we should choose to take 

the target as the source, then the fractal representation would provide an interpretation of 

the visual scene in terms of itself.  This then would yield a potential strongly significant 

signal as to the visual complexity, but this would only be knowable (by another process 
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assessing the representation) if the representation carried information concerning its 

precise source and target. 

 In another stance, let us suppose that the source image is not provided, and that 

for some reason there is not a desire to encode the target in terms of itself.  I suggest that 

another option exists, and that is to use as a source image other prior percepts from the 

perceptual history of the agent, reconstituted as necessary.  Indeed, as I have shown via 

the derivation of the mutual fractal representation, any number of such percepts could be 

used as source images, and the lot could be combined to form a prior perceptually 

grounded fractal representation of the just arrived visual scene.

 Such an interpretation holds substantial implications, on several fronts: the 

arriving visual scene could be said to be grounded in a consistent perceptual stream; the 

arriving visual scene could be viewed as determined by what was just prior “in mind”–a 

priming point of view; or the source image could be constructed from perceptual 

fragments either as the target image arrived, or brought to bear in a kind of mental 

imagery task.  It is even possible to consider that an admixture of the two could be used: 

the arriving visual scene could be encoded first in terms of itself, and then, through the 

elicitation of source analogs from perceptual history, could be reinterpreted via re-

representation into a fractal representation (or mutual fractal representation as outlined 

above). Any of these are worthy of future experimentation.

 At present, there is no information carried into the fractal representation which 

indicates which if any of the aforementioned constraints are present or relaxed: the 

representation simply is what it is.  This meta-knowledge concerning the construction of 

the fractal representation may be quite useful, as I outlined above, and could be at the 

discretion of some over-arching cognitive-like process. 
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 The ABR* algorithm presumes that there is a desire on the part of the enacting 

agency to provide a confident answer to the task at hand.  This drive may or may not 

actually exist in cognition, or it might be manifested at a differing priority than the 

primacy with which my research has regarded it.  That the ABR* algorithm, using fractal 

representations, can generate not just a set of answers but a companion set of confidences 

(or rationales) for those answers should be useful to subsequent processing.  The degree 

to which confidence may be a drive, and the manner in which it might be relaxed or 

augmented by other processes is worth exploration.

 Some criticisms of published accounts of aspects of my research focus upon the 

fractal representation and ABR* algorithm’s inability to account for why one answer is 

the answer to a problem.  My response to those criticisms is straightforward:  the why is 

always the same – the answer is shown to stand out via featural similarity in a statistically 

relevant manner.  More intriguing is that this research points to a theory of how to decide 

not why something stands out, but that something stands out. This is deliberate, and 

driven by the design goal of noticing similarity and novelty. But, this does not mute nor 

does it diminish the request: a continued exploration of the fractal representation, the 

ABR* algorithm and its descendent techniques should focus on connecting the that to the 

why, from a knowledge-based point of view, and not merely a statistical one.

 My research has specific implications for theories of analogy as well.  Current 

theories of analogy approach regard the process of analogy-making as if it were a 

singular process of mind.  In the current thinking, the process of analogy-making is based 

upon three core ideas: that analogy depends upon the capture of not just features but the 

relationships between objects or concepts (Holyoak & Thagard, 1996); that propositional 

representations (and not imagistic representations) are crucial for the concise expression 

of those transformations and relationships;  and that the fit of an analogy depends upon 
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the alignment between the structure of representations, not necessarily the content of 

knowledge represented (Gentner, 1983). In contrast, our research group has a long history 

of building an alternative account of analogy (Goel, 1997; Griffith et al., 2000; Davies et 

al. 2005).  In our group’s view, analogy is composed of multiple processes, some of 

which are based on just features (e.g. Kunda et al., 2013) and others capturing 

relationships (e.g. Yaner & Goel, 2007, 2008), some more focused on propositional 

representations (e.g. Davies & Goel, 2001) and others on imagistic representations (e.g. 

Kunda et al., 2010), and some intent on exploiting the organization of knowledge into 

abstraction hierarchies (e.g. Goel & Bhatta, 2004; Davies et al., 2009) while others 

examine the content of knowledge at specific abstraction levels (e.g. McGreggor et al. 

2012).  My research clearly illustrates a connectivity to this history, and shows that the 

fractal representation as an imagistic representation and the ABR* algorithm as a featural 

analogical process offer one example of a content-based theory of analogy.

Implications for Artificial Intelligence

 I have developed a novel visual representation, the fractal representation, and 

shown the power of a computational model based upon reasoning afforded by it through 

successive derivations of the ABR* algorithm.  I believe, however, that more specific 

development can be done in the arena of artificial intelligence via these tools.

 In my opinion, the field of AI suffers through representational swings, and it is the 

reliance on kinds of representations (lately symbolic versus neuronal/nodal) that hold 

large sway upon it.  My hope is that with the advent of the fractal representation, as a 

novel form which sits not quite cleanly in either the “good-old-fashioned AI” or machine-

learning camp, that additional techniques and representations may be derived.  Thus, my 

hope is that just via existence, the fractal representation and the work represented here be 

a catalyst.
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 I mentioned briefly above that the fractal representation may be viewed as a frame 

system, and that each of the attendant portions of the representation viewed as frames, 

expressly in the sense that Minsky first proposed them (Minsky, 1975).  I want to 

underscore the significance of this mapping, now, from the point of view of artificial 

intelligence. 

 Too infrequently are the representations that some AI system uses actually 

grounded in the world.  The outcome of such loose grounding is often that the system 

itself can be seen as brittle, focused upon a particular domain or world, and unable to 

transcend that domain to general utility.  

 I propose the fractal representation has an additional opportunity for AI, as one 

such example of a wholly grounded representation.  Given that it is demonstrably 

grounded, however, would this be a sufficient condition to admit a computational model 

that does not suffer from brittleness? 

 It is for this reason that I suggest exploration in AI concerning not just the fractal 

representation, but of the ABR* algorithm as well. Insofar as it is now conceived, the 

ABR* algorithm depends not quite entirely upon the fractal representation per se, but 

upon the ability of a representation to afford re-representation in service of the task (and 

in the express case of ABR*, to reduce ambiguity).  What other kinds of representations 

await discovery, that afford parsimonious re-representation and substantive grounding?  

Could representational families exist, in which re-representation swaps between kinds of 

representations, and yet stay within the familial set?  Could the notions of grounding or 

re-representation be added to already familiar knowledge representations, and then those 

new derivations be pressed into the task of analogy making?

 Finally, the fractal representation offers a tantalizing hint concerning the nature 

and advent of a knowledge production rule.  The fractal representation takes a source 
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image, a target image, and a partitioning as initial conditions.  It is but a small stretch of 

viewpoint to consider it as taking some initial state (the source image), some final state 

(the target image), and a system of constraints (the partitioning), and in this manner 

describing or representing the transformation of the initial state into the final state.  What 

does the fractal representation, with its reliance on feature space searching at the heart of 

its encoding process, say with respect to its utility as a production rule?  What does the 

composition of mutual fractals involving several images suggest about the composition 

and chaining of rules?  Does the ability to reason analogically about fractal 

representations offer a means for identifying similarity between rules?

 This, perhaps above all the rest of the implications, might prove the most worthy 

to pursue for AI.
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CHAPTER 13

FRACTALS AND FUTURE

 All of the prior chapters in this dissertation concern themselves with either a 

defense of some point of my thesis or describe the results of experiments.  This chapter is 

a departure, in that I intend to bring up ideas that occurred to me during the course of my 

research, some well-formed, others less so, and to speculate briefly on what the future 

may hold for fractal reasoning. I’ll segment my remarks into two primary areas: those 

concerning the fractal representation, and those concerning fractal reasoning.  Finally, I’ll 

close with some general commentary.

Forward the Fractal Representation

 The fractal representation was described in substantial detail in Chapter 3.  Yet, as 

I worked on its development, there were several aspects of representations and fractal 

representations which came to mind.  Some of those ideas, notably the ability to vary the 

grid size to facilitate re-representation at different levels of abstraction, found their way 

into the main body of my research.  Others, though, remain to be explored.  Here are 

some of those ideas.

The Image, Revisited

 The images that I’ve used throughout my research and presented within this 

dissertation are two-dimensional arrays of pixel values, generally in the RGB color space.  

It is from these images that fractal representations are calculated, by forming some 

partition based on a desired level of abstraction, and then proceeding with reasoning. it is 

true that there are any number of photometric manipulations permissible on the image, 

some of them perhaps advantageous (conversion to grayscale, for example).  Generally, 
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regardless of the photometric manipulation, we put pixels in, and get pixels out.  But, 

treating images as arrays of pixels is not the only manner in which a fractal representation 

may be constructed.  The principle requirement of constructing the fractal representation 

is that the source and target images being represented are searchable.

 One such image representation which meets the requirement of searchability and 

therefore would be suitable as input into the fractal representation is the Discrete Cosine 

Transformation (DCT) (Ahmed et al., 1974; Chen et al., 1977).  A discrete cosine 

transformation is a finite set of data points (in this case, pixels) in terms of a series of 

cosine functions of varying frequencies.  DCTs are used in the JPG and other images 

formats, due to their lossy compression characteristics.   A strong recommendation in 

favor of using DCTs when comparing images is that the transformation into the 

frequency domain for blocks within an image capture compactly a sense of the texture 

within that block.

 To prepare a source and a target image for fractal representation at a given level of 

abstraction (call it N for discussion purposes) using DCTs, one would first calculate 

DCT(target,N). This means that the entire target image would be re-represented as a set 

of DCT blocks, each derived from a NxN block taken in a regular fashion from the target 

image.  Similarly, but distinctly, one would also calculate a set of DCT blocks of size 

NxN from the source image, but instead of forming a regular partition, one would 

calculate the set of ALL possible DCT blocks of size NxN.   Then, given these two 

representations, DCT(target,N) and ALLDCT(source,N), a set of fractal codes may be 

calculated for each block in DCT(target,N), found by searching for the best matching 

DCT block in ALLDCT(source,N). 

 Interestingly, since the DCT blocks would contain frequency information, and not 

photometric information, the number of possible features per fractal code increases from 
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a single photometric value (the shift for all pixels within the block) to a frequency shift 

vector (potentially as long as NxN, but generally much shorter, involving only the lowest 

frequency or two).  The DCT block is arranged such that the first value represents the 

average overall photometric value of the block, and successive values represent higher 

frequencies.  Searching for blocks becomes much faster, since the average value is 

compared first (comparing the average of a target block to the average of a source block).  

 Exploring the use of DCT-based fractal representations would be an interesting 

future angle of research.

The Eight Transformations, Revisited

 One of the areas where the fractal representation could be extended is in its use of 

the eight similitude transformations.  In the discussion of the fractal representation, I 

made the case that those eight were sufficient, given that the smallest unit of an image 

which could encode symmetry, etc., was a 2x2 set of pixels. As seen throughout this 

dissertation, the level of abstraction is almost always something greater than this smallest, 

finest level (the pedantic finest level would be 1x1, or a single pixel, which I shall discuss 

shortly). 

 One can suppose that it is possible to allow for any arbitrary rotation to be used, 

and along with it reflections across arbitrary axes.  The consequences to the 

representation would be felt in two ways.

 Firstly, the fractal code itself would have to be extended to include a 

representation of the angle of rotation of either the image or the axis of reflection or both.  

One could imagine such a representation could be of the form: rθ or aθ, to represent a 

rotation of θ degrees or a reflection about an axis at θ degrees, respectively.  Doing so 

would offer the opportunity to create new features from these representations as well, 

perhaps affording a finer degree of analogical comparison.
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 Secondly, and most impactfully, the runtime complexity of creating the fractal 

representation would increase substantially.  Instead of searching for 8 possible 

transformations, the algorithm would now have to evaluate 2N additional matches per 

block in the partitioning scheme, where N = |{θ1, θ2, .... }| the magnitude of all potential 

angles of rotation or reflection.  

 I believe that affording this flexibility to the fractal representation in no way 

would diminish it, and would provide potentially improved reasoning on the Dehaene set 

of geometry problems.  It also would be likely to provide improved performance on 

several of the Ravens test suite problems.

Variations of the Fractal Code

 I’ve just mentioned allowing a number of new transformations into the fractal 

code, but I can suggest a few other ideas as well.

Coordinate system inferences

 The coordinate system used for images throughout this dissertation has been the 

Cartesian coordinate system, with the origin located at the upper leftmost extent of an 

image.  However, there exists other ways in which to address pixels within the scene, or 

to interpret their location afterward.

 One such system is the polar coordinate system (Korn & Korn, 2000).  In it, the 

traditional (x,y) coordinate is transformed into a radius and angle pair (r,θ) indicating 

distance and direction from the origin.  However, if one merely used the upper leftmost 

extent as the origin, this would yield values of θ between 0.0 and ½π.  If one instead 

locate the origin at the center of the image (e.g. at (½w,½h), presuming an image that is 

wxh pixels in extent), then the value of θ would range from 0.0 to 2π. While this may be 

of interest, it does carry with it an additional constraint, one that is absent in the fractal 
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code as presented, and that is that the image’s extent is known.  This may not always be 

the case, nor may it always be desirable.  Thus, if one is restricted to only constructing an 

inference based upon the information already present in a fractal code, then the quadrant 

restriction for θ must remain, and the distance value can be readily calculated as the 

square root of the squares of the (x,y) coordinate.  Even so, this would add distance and 

direction as features over which to calculate similarities.

Colorimetric inferences

 The pixel shift value encoded in a fractal code, like its spatial coordinate brethren, 

can also be interpreted in a number of ways.  If the average value of the whole image is 

known, then the shift value would be recast in terms of relative value to that average.  

Thus, if an image were predominantly light colored, a darker pixel shift value might have 

more value which matching for similarity as a relative measure.  But let me be clear, this 

would still presume that the overall average luminosity of an image be known at the 

fractal code level, perhaps an undesirable requirement. 

 Another interpretation of the shift value, independent of the average image value, 

would be to change the scale of the value from a linear scale to a logarithmic scale (Hunt 

& Pointer, 2011).  Thus, small changes would match small changes more crisply.  

 A third possible way to conduct the interpretation would be to discretize the 

values into some limited set of values, and therefore clump the matching potential for 

features which composite the shift value (Hall, 1989).  

 It is also possible to have these additional varying scales merely be rendered as 

additional features, and therefore move from one to three or more colorimetric features 

portions.
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The Finest Abstraction

 At the finest level of abstraction, a portion of an image is reduced to a single, 

orientation-free, photometric value, a pixel.  Curiously, the fractal representation readily 

may represent a single pixel, as a colorimetric shift, an identity transformation, and some 

offset. Thus, the fractal representation can represent any arriving image at any desired 

level of abstraction. 

 A potential future experiment would be to allow the visual similarity algorithm to 

proceed down to this finest level, and note the coefficient of variation in the answers.

Probabilistic Coding

 The search for a code yields a number of possible candidates, some of which are 

identically suited. My current implementation uses a heuristic of seeking the closest 

matching blocks which are spatially near the same location in the source and target 

images.  However, these other, unchosen matches are known to the algorithm, yet 

discarded.

 A variation of the fractal code, then, would be to introduce a notion of 

probabilistic coding.  That is, the fractal code could make note of how many blocks were 

close (within some controllable δ) matches, and have that be a new feature aspect.  This 

would offer a chance to reason over which blocks were most or least frequent in the 

source, a nice thought if the source image contains a high degree of self-similarity.

The Fractal Modality

 All of this dissertation research concerns itself with visual images.  But the visual 

sense is not the only one over which one could reason in a fractal-like manner.  Any sense 

modality which receives or transduces frequencies could have its input represented in a 

fractal form.  Audial fractal reasoning is an area to explore!

243



On Fractal Reasoning

 Analogical reasoning, in general, has been the province of reasoning over 

propositional or strongly symbolic representations.  There have been exceptions, among 

them my research, and that of my colleague Maithilee Kunda.  Much of my research has 

been inspired by my earliest exposures to AI, in working with Janet Kolodner on the 

preamble to case-based reasoning (Kolodner, 1982; Kolodner et al., 1982). Here, I want 

to bring attention to specifically what additional kinds of reasoning fractal (or fractal-

like) representations afford, and expand on other intuitions arising from the advent of the 

ABR* algorithm.

Inference as Composition

 As I described earlier, Davis et al. (1993) note that knowledge representations 

play five distinct, critical roles.  Those roles are as a surrogate, as a set of ontological 

commitments, as a fragmentary theory of reasoning, as a medium for pragmatically 

efficient computation, and as a medium of human expression.   For the moment, let me 

presume that I’ve succeeded in my defense of the fractal representation as a knowledge 

representation, and focus on its ontological commitments and its impact on reasoning.

Fractals, Ontologically

 The fractal representation clearly makes a set of commitments that both define the 

extent of the representation’s capture of the world and define the way that extent is 

expressed or embodied within the representation ontologically.  As Davis et al. (1993) 

and Sowa (2000) note, the representational power lies in the correspondence of the 

representation to something in the world and in the constraints that that correspondence 

imposes.  As I’ve shown, the fractal code contains some features which are spatial and 

some which are photometric. The act of creating a fractal representation depends upon a 
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partitioning of the image into these fractal codes which is itself spatial.  The 

correspondence between the codes and portions of the image are firmly established, but 

so to are the constraints: the representation is only about spatial and photometric 

information.  There is no commitment to the construction of more commonplace 

geometric features (lines, enclosed areas, figure/ground, etc.) intrinsic in the fractal 

representation.

Inferences

 Even though the theory of reasoning arising from a representation may be 

implicit, it can be discerned by considering three aspects: what the representation defines 

as inferencing, the set of inferences it allows, and the subset of those inferences which it 

recommends.  I’ll discuss what I mean by fractal inferencing momentarily, but let us first 

examine the nature of the allowed and the recommended inferences.

 Allowed inferences are those inferences which can be made from available 

information.  As a representation might arise in any number of ways, so too might the 

allowed inferences vary.  As Davis, et al., point out, this flexibility is acknowledged so as 

to admit the legitimacy of the various approaches.  Having this flexibility at its core 

provides a framework for re-representation.  Indeed, much of my research hinged upon 

the fractal representation’s facility for re-representation.

 Clearly, the set of allowable inferences may become untenably large. A smaller, 

constrained subset of these inferences is necessary.  Whether by specifying the constraints 

with which to select recommended inferences, or by providing them somewhat explicitly, 

some process or reasoning or insight must be at work to frame them.  They also observe 

that much of the reasoning which informs recommended inferences has been provided by 

observation of human behavior.  While there are many possible inferences which can be 

drawn from the fractal encoding, my preliminary thoughts on fractal inferencing, and 
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subsequent discovery of the recommended inferences, stems from another role of 

knowledge representations: that they are a medium of efficient computation.  

Motivating Composition

 I noted earlier that the initial partitioning has a defining effect upon the fractal 

representation, in that each area partitioned results in a single fractal code.  Over the 

course of my research, I have experimented with varying the partitioning by using block 

sizes of many sizes, even to the extent wherein the entire image was considered as a 

single block.  These experiments lead me to an obvious finding: the time required to 

represent an image fractally increases as the partitioning varies.  Intriguingly, however, 

the encoding process that underlies creating fractal representations did not increase 

uniformly with a decrease in partition size.  In fact, I observed that the very largest or 

very smallest partitions took roughly the same amount of computation time, but that 

partitioning at sizes between these extremes took dramatically more computational 

resources.

 The search for matching blocks within the source and target images while creating 

fractal representations is the cause almost all of the computation time.  But, when faced 

with these experimental results, I began to speculate on how to leverage the notion of 

faster runtimes at the extreme of levels of abstraction. In particular, I had an “Aha!” 

moment: I wondered whether computational performance might improve if I composed 

coarser partitioning from the faster finer partitioning.  This lead me to conjecture that 

composition might be a form of fractal inference, and to develop a composition algorithm 

for fractal representations, which I now present.
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The Fractal Composition Algorithm

 The Fractal Composition Algorithm is a way to ensure that all possible 

compositions have been made from a given encoding.  It begins with the existing 

partitioning as expressed in the fractal representation, and stops when no further 

compositions can be made.  

Algorithm 13.1. Fractal Composition Algorithm

Proposing Composition

 A subset of the fractal codes in the fractal representation T is selected, based 

solely upon a single feature: its block size.  It is important to note that the selection of this 

subset based upon this one feature is non-arbitrary: I choose this feature expressly 

because I am seeking to optimize the calculation of a coarser partitioning based on block 

size.  Were it desirable, other partitionings of the fractal codes could be determined by 

Given the set T = {T1, T2, T3, ..., Tn} is a fractal representation.
Let B represent the level of abstraction at which T is encoded.
Do:
• Let n ← |T|
• Construct T’ ⊆ T such that Ti ∈ T’ iff the block size of Ti is B.
• For each fractal code Ti ∈ T’: 
- Propose a composition K, based on Ti.
- Search for 3 appropriate codes in T’ which both satisfy the rules of 
composition and correspond to needed elements of K.
- If the appropriate codes cannot be found, proposed composition K 
is invalid.
- If the appropriate codes are found, the proposed composition K is 
valid.
- If K is valid, form a new fractal code K’ from K, and add it  to the 
set T:  T ← T ∪ { K’ }

• Set B ← 2*B.
Repeat until n = |T|
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extracting this subset using any of the feature (or combination of features) within a fractal 

code.

 Given the selection of such fractal codes, I can now address what kinds of 

compositions might be made.  In the present case, I know that one of these fractal codes 

will be one of four participating codes in a larger composition, as illustrated in Figure X.

Figure 13.1.  Image Composition

 The affine transformation feature of the composed code I shall require, as a 

constraint in the present implementation, to be identical to the affine transformation 

associated with the given code.   As the composition can be considered to be a 4-tuple of 

codes, this feature determines which position within that 4-tuple will be occupied by the 

given code.  Table 13.1 illustrates the required tuple location, based upon the affine 

transformation.
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Table 13.1. Initial location within the composed tuple.

Transformation Name Position Tuple

  Identity 1 < C, *, *, * >

  
Rotate 90° 3 < *, *, C, * >

  
Rotate 180° 4 < *, *, *, C >

  
Rotate 270° 2 < *, C, *, * >

  
Flip Horizontal 2 < *, *, C, * >

  
Flip Vertical 3 < *, *, C, * >

  
Reflect XY 1 < C, *, *, * >

  
Reflect -XY 4 < *, *, *, C >

 Since each fractal code has a single affine transformation associated with it, and 

because I am constraining the composed code to have the same affine transformation, 

there will be exactly one proposed composition per selected fractal code.  I note, 

however, that a code may participate in more than one composition.

 The act of composition becomes searching for three other codes which can be 

combined to fill out the missing places in the 4-tuple and thus form the composition.  

While they are selected from the same subset of fractal codes as the original code, they 

are further constrained by four rules, which I have labeled the rules of fractal 

composition.
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Rules of Fractal Composition

 I believe that these four rules are minimally necessary to ensure candidacy for 

combination.  While the order of application of these rules is generally arbitrary, 

computational efficiency may be gained by pruning the subset of codes through a 

particular ordering (size, transform, photometric) prior to calculation of coverage.  The 

rules subdivide into two groups: the consistency rules, and the coverage rule.

Consistency Rules: the Photometric, Size, and Transform Rules

 A fractal code contains both spatial and photometric features.  The photometric 

rule holds that the photometric features of the codes being combined must be the same.  

Thus, the pixel operation and the amount of color shift must be the same across all 

candidate codes.  The size rule requires that the dimensions of the code being composed 

be exactly twice that of the constituent code.  The algorithm directly enforces this rule 

during the selection by block size of the subset of codes to consider.  Lastly, the transform 

rule constrains the candidate codes to possess the same affine transformation as that of 

the original code.

The Coverage Rule

 The codes being combined must be spatially adjacent to one another and 

completely cover the area under consideration.  However, they must not overlap.  I use 

region connection calculus (reference) to specify how each of the regions must be 

externally connected (in that they share borders but do not overlap).  Furthermore, these 

regions must exhibit this connectivity in the destination image space.  Thus, for a 

proposed combination 4-tuple <C1,C2,C3,C4> and their corresponding regions 

{R1,R2,R3,R4}, the following four RCC relationships must hold:
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 R1 EC R2 ⋀ R3 EC R4 ⋀ R1 EC R3 ⋀ R2 EC R4

where, given point-set closed regions A and B,

 A EC B ≔ A ∩ B ≠ ∅ ⋀ interior(A) ∩ interior(B) = ∅

 interior(A) ≔ the set of interior points of A

Confirming Composition

 Once candidate blocks are found which conform to the rules of composition, then 

the task is to confirm the composition.  This can be done quite readily by examining the 

proposed composition under the coverage rule, but instead of using the destination image 

space, I use the source image space.  If all four of the RCC relationships hold in source 

image space, then the proposed composition is valid.

 A new fractal code may be generated from the proposed composition by taking 

the source and offset spatial values from the first value of the 4-tuple, and using the twice 

the block size, the affine transformation, and the color shift which were constant across 

all constituents.

Is Composition Truly Inference?

 The result of the composition algorithm is the creation of additional fractal codes, 

which are added to the entire representation.  Can it be said that these additional codes 

are the result of inference?

 Preliminarily, I’d argue that yes, composition in this manner is inference.  New 

knowledge is being created in a manner wholly sanctioned by the representation.  

Additionally, that new knowledge is then kept within the same representational 

framework as the old knowledge.  From a fractal reasoning point of view, this means that 

there would now be available, for any given initial level of abstraction, a set of inferred 
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fractal codes, each of which would contribute their own fractal features over which 

analogy by recall could occur.

Visual Case-based Reasoning

 Case-based reasoning concerns itself with performing analogical reasoning over 

cases stored in memory (Kolodner, 1993; Riesbeck & Schank, 1989).  My ABR 

algorithm was entirely informed by this field.   Yet, in the ABR algorithm, and not so 

with case-based reasoning, I make use of how something is stored in memory, rather than 

what something is stored in memory.  The use of features as indices into memory aligns 

with case-based reasoning, but differs in that no quality assessment is made with respect 

to the index itself.  Every index is treated equally.

 One could make an extension to my algorithms and models by relaxing this 

equality among indices.  After all, each index for me is a feature vector of some degree.  

It is easy to see how a weighting system could be implemented (e.g. the more features 

have that particular index, the stronger that index becomes when calculating similarities). 

Likewise, it is easy to see how to extend the comparison of indices, by relaxing the binary 

nature of the current comparison of the feature (to wit, in the present implementation, my 

algorithms view feature matching as all-or-nothing).  Proximal feature matching, on a 0.0 

to 1.0 scale, could yield a more finely tuned match, where the feature preference 

parameters could be determined a priori by the problem under consideration.

 In such a light, the Analogy By Recall algorithm and its descendants can be 

considered as a form of visual case-based reasoning. 

252



The long shadow of Marr

 David Marr was a highly influential researcher in vision (Marr, 1982; Frisby & 

Stone, 2010). Famously, he proposed two frameworks for evaluating computational 

systems and for how the human visual system may work.  

 The first of these, his computational framework as outlined in Frisby & Stone 

(2010), informs and inspires my work as much as any other.  In this framework, he 

proposes that computational systems be analysis at three distinct levels:

* the computational level, to identify the constraints for solving some problem: what is 

the nature of the problem to be solved, what i the goal of the computation, why is it 

appropriate, and what is the logic of the strategy by which it can be carried out?

* the representational and algorithmic level, in which the constraints are put to work in an 

algorithm: how can the computational theory be implemented, what representations are 

to be used, and what is the algorithm which transforms the input into the output?

* the hardware implementation, as the realization of the algorithm and the representation: 

what is the physical nature of the processing?

 With this analytical approach, Marr did not mean to imply that the way the brain 

interprets visual information would be best seen as some series of steps, but rather that 

this affords a way to characterize the advent and realization of constraints when 

performing that interpretation.  Marr also did not equate this framework with computer 

vision per se, and rather used it to lump problems into two “types.”  A “type one” 

problem would be one in which some computational account would be attainable in 

principle, and therefore subject to his three-level analysis.  A “type two” problem would 

offer only evidence as to the interplay of various components, and not to the specifics of 

those components (and therefore not subject to the three-level analysis).  It is safe to 

253



presume at this writing that how it is that the brain “sees” a visual scene is a task which 

we can ascribe to neither of Marr’s problem types.

 Marr’s other framework forms a potential account of how the human visual 

system may see a scene.  In Marr and Hildreth (1980), they describe how to form, first, a 

raw primal sketch of edges found within a presented visual scene, postulating that the 

first few stages of a brain’s visual processing system affords the neuronal apparatus 

necessary to detect edge fragments.  Then, from these fragmentary raw edges, a full 

primal sketch may be determined, using principles of gestalt perception and reasoning 

(such as grouping, continuity, closure, and the principle of least commitment).  From this 

slightly higher level representation, additional reasoning occurs to form planar closed 

shapes, and so on.

 I offer a different thought:  what if the material upon which Marr’s first stage of 

visual processing were not fragmentary edges, but fractal codes?  My supposition here is 

that just as Marr leverages gestalt continuity to assist in joining edge fragments into full 

primal edges, reasoning from fractal features, based upon an agent’s prior perceptual 

history, could give rise to similar gestalt-like capabilities.  Perhaps even such a system 

could operate in tandem with a Marr process, influencing and informing the inferences 

made at each of Marr’s stages.
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Final Remarks

 Fractal representations are analogical in that they have a structural 

correspondence with the images they represent. Like other knowledge representations, 

fractal representation support inference and composition. In this dissertation, I’ve used 

fractal representations to develop a powerful new model of analogical reasoning and 

applied it to problem domains of visual similarity and visual oddity.  Along the way, I 

also illustrated its utility in providing a nascent perceptual capability for agents in a 

virtual world, and even demonstrated its ability to mimic bistable perception.  The sum of 

my research suggests a degree of generality to fractal representations for addressing 

visual analogy problems.

 Analogies are based on similarity and repetition. Fractals capture self-similarity 

and repetition within images at multiple scales. Thus, the fractal representation brings the 

powerful idea of self-similarity to analogy-making. Furthermore, since fractals work at 

multiple scales, they give to rise to an iterative problem solving strategy as I have 

demonstrated. Processing may begin at a certain level of abstraction for computational 

efficiency or other expediencies, but should the problem solving not result in a clear 

answer, the strategy may be shifted to other levels of abstraction.  

 All of this is a direct consequence of choosing to represent images fractally.
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