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Abstract 

This is the final report on the NSF Research Initiation Award DDM-88-10146, 

"Development of a Spherical Stepper Wrist Motor." During the final reporting period the 

grant's activities have focused on the theoretical basis for the design, modeling, and control of a 

three degrees-of freedom (DOF) spherical variable reluctance (VR) motor, which presents some 

attractive possibilities by combining pitch, roll, and yaw motion in a single joint. The report 

covers (1) the determination of kinematically feasible design configurations for a ball-joint-like 

three DOF spherical VR motor, (2) engineering methods of modeling the reluctance force of the 

spherical motor using both the finite-element method and a permeance-based model, and (3) 

analytical forward and inverse dynamic models of the spherical wrist motor. 
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1. INTRODUCTION 

The report summarizes the results of a two year project entitled "Development of a 

Spherical Stepper Wrist Motor." The goal of this project is to establish the theoretical basis for 

the design, modeling, and control of the spherical stepper motor. As a result of prior research 

and extension work, the following issues were identified and addressed: 

1. Theoretical basis of kinematically feasible design configurations for a ball-joint-like 
three DOF spherical VR motor. 

2. Engineering analysis methods for modeling the reluctance force of the spherical motor. 

3. Analytical modeling method of the spherical wrist motor, which are essential for design 
optimization and motion control law development of the spherical motor. 

The remainder of this section will begin with the overview of prior works and summarizes 

the progress of the analytical modeling efforts. 

1.1 Background 

The advancements of robotics and automation have motivated the development of a variety 

of actuators for high performance multi degrees-of-freedom (DOF) wrist motion control. Wrist 

joints are normally the last few joints of an robotic arm and are used primarily for orienting the 

end-effector in an arbitrary direction. Significant research efforts have been reported in the 

design of robotic wrist. Among these, Bennett has developed a six degrees-of-freedom 

mechanical wrist based on the concept of Stewart platform mechanism [1]. A review of robot 

wrist designs has been reported in [2]. 

In some applications, such as high speed plasma and laser cutting, it is required that the end 

effector is oriented quickly, continuously and isotropically in all directions. Unfortunately, the 

popular three-consecutive-rotational-joints wrist possesses singularity inside its workspace, 
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which is a major problem in trajectory planning and control. At a singularity, the wrist cannot 

orient the end-effector in certain directions. Asada and Cro-Granito [3] suggested relocation of 

the singularity outside the required workspace by varying the direction of the end-effector mount. 

Alternatively, the task may be re-arranged such that the working space of of the end-effector is 

not in the vicinity of the singularity. However, in the vicinity of a singularity, the ratio of the 

rotation rate of the wrist joint to that of the end-effector is very large. Paul and Stevensons [4] 

defined the cone of degeneracy as the the space in which the wrist-joint to end-effector rotation 

rate ratio is larger than twice the minimum in the entire workspace. In some cases, the cone of 

degeneracy can have a vertex angle of 60 degrees. 

For precision manipulation of robotic wrist, the traditional approach for end -point sensing 

in a serially actuated consecutive-rotational-joints wrist when the end-point is not in contact with 

the environment is to measure the joint angles and compute the cartesian position/orientation 

from the forward kinematics. This process may introduce errors into the final result even if the 

analytical model is completely accurate, due to the structural deflection of the wrist joint or due 

to the fact that the actual dimensions of any particular arm may deviate from the nominal values. 

Examination of the existing mechanical joints reveals that the ball-joint-like spherical 

actuator is an attractive alternative to the three consecutive-rotational joint configuration. The 

interest in spherical motor as a robot wrist is re-triggered because of its ability in providing the 

roll, yaw and pitch motion in a single joint, isotropic in kinematics and kinetics, and its relatively 

simple structure. Also, it has no singularity in the middle of workspace except at the boundary. 

Direct sensing of the end-point orientation is possible due to its simplicity in structure. The 

elimination of gears and linkages enables both high positioning precision and fast dynamic 

response to be achieved by a properly designed spherical motor. These attractive features have 
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potential applications such as high-speed plasma and laser cutting where the orientation must be 

achieved rapidly and continuously with isotropic resolution in all directions. 

A particular form of spherical induction motor was originally designed, built and 

successfully tested by William et. al. [5], [6], [7], and [8]. Here, the application was in speed 

control for one-rotational axis - achieved by controlling the direction of the stator wave 

excitation at an arbitrary angle to the motor axis. Since the work in [5]-[7], little attention has 

been given to the spherical motor, with the exception to the design of a rotodynamic pump [8] 

and in gyroscope applications [9], [10]. 

An increasing need for high performance robotic applications has motivated several 

researchers to direct their investigation efforts to new actuator concepts to improve the dexterity 

of robotic wrists. A spherical induction motor was conceptualized in [11] for robotic 

applications and detailed analysis was given in [12]. However, it is difficult to realize a 

prototype of its kind because of its complexity in mechanical and winding design and 

manufacturing, which requires inlaying all three transversing windings on the inner spherical 

surface of the stator. Laminations are required to prevent movement of unwanted eddy currents. 

Complicated three phase windings must be mounted in recessed grooves in addition to the rolling 

supports for the rotor in a static configuration. These and other considerations lead the PI and his 

co-workerd [13] to investigate an alternative spherical actuators based on the concept of variable 

reluctance (VR) stepper motor which is easier to manufacture. The trade-off, however, is that 

sophisticated control scheme is required. 

Hollis et al. [14] has developed a six DOF direct-current (DC) "magic wrist" as part of a 

coarse-fine robotic manipulation. An alternative DC spherical motor design with three DOF in 

rotation was demonstrated by Kanedo et al. [15], which can spin continuously and can be 
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inclined to a degree of 15 ° . Although the DC spherical motor is characterized by its 

constructional simplicity, the range of inclination and the torque constant are rather limited. 

Foggia et al. [16] demonstrated an induction type spherical motor of different structure. The 

range of motion of the spherical motor is a cone of 60° angle. Since the control strategy has not 

well developed, no results were given on the ability of the motor to realize an arbitrary motions. 

1.2 Design Concept 

Lee and his co-workers [13] have presented the original design concept of the spherical 

stepper motor as shown in Fig. 1.1. Compared with its DC counterpart, a spherical VR motor 

has a relatively large range of motion, possesses isotropic properties in motion, and is relatively 

simple and compact in design. A penneance-base model, which is commonly used in the stepper 

motor community to model the reluctance force of a step motor, was developed in [17] to predict 

the the influence of the stator coil spacings on the reluctance force. 

It has been demonstrated in the PI's prior research [17] that the operating principle of the 

three DOF spherical stepper motor differs significantly from the single axis stepper motor. 

These differences are as follows: (1) Two torques that are not co-linear with the center of the 

rotor are necessary to provide rotor stability at a static position and 3 DOF motion at any instant. 

(2) The maximum number of coils which can be evenly inscribed on a spherical surface is 

limited. (3) The actuation of the spherical VR motor depends on the pole overlapping, the area 

of which must be determined on the coupled encoder readings. This realization caused us to 

devote great efforts to determine the kinematic feasibility of the design configuration. 
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Figure 1.1 Conceptual schematics of a spherical VR motor 

8 



Section 2 begins with the operational principle of the spherical motor, which leads to the 

identification of the optimal design and operational parameters. For the purpose of modeling the 

kinematics of the spherical motor and hence determining its kinematic feasibility, a general 

expression to determine the overlapping area between a stator pole and an adjacent rotor pole is 

presented. The expression of overlapping area allows the constraints imposing the pole design 

configurations to be described. Along with the results of motion simulation using bang-bang 

control, a particular design configuration is illustrated. 

1.3 Reluctance Model 

To obtain some knowledge on the initial design of a VR spherical motor, Lee at. el. [17] 

presented the analytical model using a permeance-based model [18] to predict the reluctance 

force of a spherical stepper motor. However, the permeance-based model which depends 

significantly on the assumed shape of the magnetic flux tubes yields only qualitative agreement 

with the experimental study. To provide physical insights of the magnetic flux patterns and to 

examine the validity of the assumed flux shape of permeance-based model, the finite element 

analysis [19] [20] was used in this investigation to provide the necessary knowledge on the 

magnetic flux patterns by numerically solving the Maxwell's equations. 

Section 3 presents the modeling technique of the reluctance model using both the finite-

element method and a permeance-based model. To obtain some preliminary knowledge of coil 

excitation on flux distributions, a two-dimensional model of one degree-of-freedom (DOF) linear 

motion structure where the depth dimension is infinite was analyzed using both the finite-

element method and a permeance-based model. The two-dimensional finite element model is 

formulated using the two-dimensional vector potential method. The results allow a rational 
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comparison between the finite element method and the permeance-based model, examine the 

validity of assumptions commonly made in the modeling of permeance, and provide an 

assessment of the effect of magnetic leakages and fringing on reluctance forces. 

A three-dimensional model, which is solved by reduced scalar potential formulation, takes 

into account of the flux distribution in the third dimension. Thus, it gives a more accurate 

solution than a two dimensional model. Despite the geometrical modeling difficulty, a three 

dimensional model is used in order to solve the flux distribution, especially the fringing flux 

distribution. 

1.4 Analytical Model 

For motion control of the spherical motor, both the direct dynamics which determine the 

torque generated as a result of activating the motor coils and the inverse dynamics which 

determine the coil excitations required to obtain the desired torques are needed. The solution to 

the direct dynamics of the spherical motor is unique but the inverse dynamic may have many 

solutions and therefore an optimization is required. The model permits a variety of magnetic 

field interactions between the stator and the coil excitation to be investigated. Section 4 presents 

the analytical modeling of the spherical VR motor. Both the forward and inverse torque 

predictions are discussed. The objective is to provide an analytical basis for design optimization 

and control strategy development. 

Section 4 begins with the derivation of the torque prediction equations. The reluctance in 

the iron pole is assumed negligible to obtain a lumped parameter model, and the validity of the 

assumption has been verified through experiments and finite element analysis. It will be shown 

in Section 4 that by choosing current sources for coil excitation, the torque prediction are 
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algebraic and decoupled from the dynamic equations of motion and thus, would reduce the 

motion control to a great extent. 

The inverse problem to torque prediction model is to determine the coil excitations for a 

specified torque. The inverse problem has infinite solutions and thus a non-linear optimization 

technique is used to solve the inverse problem. The following aspects are addressed in Section 4; 

namely, (1) formulation of the inverse problem to torque prediction model for optimization and 

(2) real-time implementation of the optimization method. The results obtained in this section 

can be readily used for motion control of the spherical motor. 

11 



2. DESIGN CONCEPT 

The spherical motor referred to in this paper is a ball-joint-like device that consists of two 

ferromagnetic spheres as shown in Fig. 2.1. These two spheres are concentric and are supported 

one on the other by bearing rollers in the air gap. The poles on the stator, or the stator poles, are 

wound by coils and each coil can be energized individually. The ferromagnetic poles are 

strategically distributed on the stator surface. The rotor poles are distributed on the rotor surface. 

In order to create a smooth spherical surface for the bearings rollers to roll on, the spherical 

surface should be made of non-magnetic but hard material except the magnetic poles. In order to 

maintain geometrical symmetry for simplicity in control, it is desired that the stator poles and the 

rotor poles are of circular shape. 

2.1 Operational Principle 

The spherical motor is operated on the principle of variable reluctance motor. The driver of 

the mechanism is the magnetic attraction force between the rotor and the stator coil excitations. 

The stator coils can be energized individually using a control circuitry. As the stator coils 

adjacent to the rotor poles are energized, a magnetic field is generated. The corresponding 

magnetic flux flows through the air gap between the rotor and the stator. The magnetic attraction 

is created as the system tries to minimize the energy stored and reduces the reluctance of the 

magnetic path. The tangential components of the magnetic force attract the adjacent rotor poles 

and hence exert a resultant torque on the rotor. The motor consists of four major components; 

namely a set of M interconnecting stator poles, a set of N interconnecting rotor poles, the air gaps 

formed between pairs of overlapped stator and rotor poles, and a set of stator coils. A magnetic 

model of the spherical motor is illustrated by Fig. 2.2(a). 
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Figure 2.1 (a) Exploded view of spherical VR motor 
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Figure 2.2 Magnetic model and circuit of spherical VR motor 
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2.1.1 Torque Generation 

For the purpose of modeling the kinematics of the spherical motor, both the leakage flux 

and the fringing flux are neglected, and the magnetic system is assumed to be linear. Also, it is 

assumed that the rotor poles have no coil excitations. The flux between a stator pole and a rotor 

pole is assumed to flow only through the overlapping area of the two poles. The assumption 

implies that zero overlapping area corresponds to zero flux. In addition, the flux density 

distribution in the overlapping area is assumed to be uniform. Thus, the reluctance between the 

kth  stator pole and the / th  rotor pole, Rice', is obtained as 

R
ki 

- 
g 

(2.1) 

o
S 
k/ 

where go  is the permeanability of air, g is the air-gap distance, and S ki  is the overlapping area 

between the k th  stator pole and the / th  rotor pole. If the rotor pole does not overlap with a stator 

pole, i.e. S ki  = 0 or Ric/  00, the flux flowing across these two poles is assumed to be zero. 

The completecircuit of the spherical motor is presented in Fig. 2.2(b), where N rotor poles 

are shown and each rotor pole connects to all M stator poles. The flux flowing through the air-

gap between the k th  stator pole and the 1th  rotor pole is denoted by o ki, in Fig. 2.2(b). A k 

 stands for the flux flowing through the kth  stator coil. Since the gap reluctances R id, where = 

1, 2,...,N, are in parallel, the total reluctance Tk  is given by 

N 
1 	 1 

Tk 
  R

ki 
= 1 

(2.2) 

where I' = 1, 2, .... N. The solution of the circuit yields 
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E (1/T
/ ) 

/=1 

where Fk  is the magneto-motive force (mmf) applied to the k th  coil, k = 1, 2, ...., M. 

Since the flux Xk  through a stator coil equals to the sum of the flux of all the air gaps at this 

coil, 0k/,/ = 1, 2, .... N, the flux in each individual air gap is then solved as, 

ki =  F
k 

M 	N 
E 	E 

m=1 n=1 
(F 	/R 	) 

m 	mn 
 

(2.4) 
1,t 1)ci„ 

M 	N 

E 	E 
m=1 n=1 

(1/R
mn

) 

Equation (2.4) represents the flux solution for the spherical motor. The sign of F k  follows the 

following convention: if the resulting flux density of the coil points outward, then F k  is positive. 

Otherwise Fk  is negative. 

From the magnetic circuit solution in Equation (2.4), the magnetic field energy stored in an 

air gap is 

1
2 	

g 

E
ki 

= — 0
k/ 

2 	g
o 

S
ki' 

 

(2.5) 

 

The magnitude of the resulting torque acting on the rotor is derived from the principle of virtual 

work which yields 

1 
X 

T
k 

	F
k 

M 
E (F

l
/T

/
) 

1=1 
(2.3) 
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dS ki 

  

I t ki 1 — 
2g 

o 

      

(2.6) 

 

S ki 

   

de 

 

      

         

where I dS kt  /de I is the magnitude of the gradient of the overlapping area in spherical 

coordinates and e is the angle between the position vectors of the stator and rotor poles. The 

principle of variable-reluctance states that the direction of the torque tends to drive the two poles 

towards each other in attempt to align the poles. Thus, given the position vectors of the stator 

and rotor poles as qk and pi , the direction of the torque can be determined from Equation (2.7) 

with respect to a known reference frame 

t
ki 	

p
i 
 x q

k  
(2.7) 

I tki I IP, x qk I 

Hence the resulting torque in an air gap is 

   

oki 

S ki 

2
cIki 	

pi  x q
k [S 	1 

de 	1 pi  x q
k 1 

 

t
ki 

- 
g 

 

(2.8) 
2 

II 0 

 

      

where k = 1, 2, ..., M and i = 1, 2, ..., N. 

2.1.2 Overlapping Area Of Two Poles 

The overlapping area between any two adjacent poles determines the resultant tangential 

force. As indicated by Equation (2.8), the derivation of the overlapping area is necessary. 
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Exact solution  

Consider any two partially overlapping circular poles on a sphere of radius R, where the 

sizes of the poles are denoted by the half-angles as 	and V/ 2  as shown in Fig. 2.3. Two body 

coordinate frames, X-Y-Z and x-y-z, are attached to the poles 	and 2  respectively at the 

origin of the sphere. The orientation of the coordinate frames are assigned such that the Z-axis 

and z-axis are pointing along the normal vectors of the poles respectively and that the X-axis and 

x-axis have a common direction. Thus, the coordinate frame x-y-z can be described with respect 

to the X-Y-Z frame using the following transformation [T(9)] 

[T (0) = 

1 

0 

0 

cos 

sin 

0 

9 

9 

—sin 

cos 

0 

9 

9 

(2.13) 

where 9 is the angle between the Z-axis and the z-axis. 

In parametric form, the circular edge of the pole denoted by the curve e i , i = 1 and 2, can be 

written with respect to its own body coordinate frame as 

curve e,: 
{x

2+ y2 = (R sin Iv )2 
i 

z = R cos tf/ i  
(2.14) 

In the following derivation, the coordinates are written with respect to the X-Y-Z frame. Using 

the transformation matrix given in Equation (2.13) the curve e 2  can be described by 

+ (y + R cos
1 
 sin 	2 /cos 2 0  = (R sin 0

2
) 2 

(2.15) 

x
2 

+ (z + R cos 1 
	

2 
cos 0) /sin

2 
 6 = (R sin 4/

2
)

2 
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Figure 2.3 Overlapping area of two poles 

y 

Figure 2.4 approximation of the overlapping area 

20 



The position vectors of the two intersecting points are P1 and P2 which are symmetrical about 

the YZ plane and can be derived by solving Equations (2.14) and (2.15) simultaneously. Thus, 

the position vector P1 is obtained as 

R 
	[(sin 0 1 sin 9) 2  — (cos 0 1 cos 8 — cos 02 )

211/2 
 J 

sin 8 

R 
	 (cos 11/

1
cos 8 — cos 0

2
) 

sin 8 

R cos 0
1 

(2.16) 

and point p 2  is a mirror image of point p i . If a plane is defined to pass through p i  and p2  and 

the origin of the sphere, the plane would divide the overlapping area S into two parts, S i  and S2 . 

Let the intersecting contour be denoted by the curve e 3  and the angle between plane op l p2  and 

the XZ plane be p. The intersecting contour e 3  is derived with respect to X-Y-Z frame as 

x
2 

+ y
2 
 /sin

2 
 p = R

2 

(2.17) 

x
2 

+ z
2
/cos

2
p = R

2 

   

P 
1 

x
p1 

 

 

  

   

where 

—1 
p = tan 

cos 0
2 

— cos tif
1
cos 0 

(2.18) 
cos 0

1
sin 0 

From the projection of the curves e i , i = 1, 2, and 3 on the XY plane given in Equations (2.14), 

(2.15) and (2.17), the overlapping area is computed from the following integral: 

S i  = f f 

D,
i
R

2 
— x

2 
— y

2 
dx dy 	i = 1, 2 	(2.19) 

R 

21 



-1 [cos '
i+1 

— cos 0,cos 9 
= tan r. 

1 	 cos 0
i 
sin 0 (2.22) 

where S i  and D i  are the areas bounded by e i  and e 3  on the spherical surface and the 

corresponding projections on XY plane respectively. By carrying out the integration, the 

overlapping area is found to be 

where 

2 
= E 	S, 

1 
i=1 

(2.20) 

S, = R2 {[1 + Sgn(cos 0 cos 9 — cos 0 	)] (1 — cos 0, ) 	+ 
+1 

2 Sign (cos 0, cos 	 . — cos 	) 	cos 	sin
-1 
 (cos I' sin Ai ) 

i+1 
(2.21) 

and 

    

= tan
-1 

1 

 

,l(sin 0 	
2 

i
sin 0) — (cos 0

i
cos 9 — cos 	) 

2 
41i+1 

 

(2.23) 

 

Icos 0,cos 9 — cos 0 	I 
i+1 

 

     

where 4/ 3  = 4/ 1  and the function sgn(x) is 1 if x is positive or -1 if x is negative. 

Approximate solution  

The expressions of S in Equations (2.20) and it's derivative are rather complicated functions 

of 0, >ji l  and 11/ 2 , and require time-consuming computation. It is of interest to derive the 

approximations of the overlapping area and it's derivative. The approximated overlapping area 

has been derived by treating the two poles as planar disks of radii 

r, = R 0, 	where 	i =1, 2 	(2.24) 
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With the aid of Fig. 2.4, the overlapping area and its spherical gradient are obtained as 

S 	= 

and 

where 

iT 

— 2 — atan2 (y0, x
o

) 
2  

r
1  

X
o 

 Yo 

= 

[27  

d 
— 

atan2 	(d — y 0 , 	x
o

) 

S
ki 

 = 2 R x
o  

I r
2
2 

  
— x

o
d 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

dB 

2 
r

1  

2 
r

1 
r

2 

r
2 

— r
2
2 
 + d

2 
1 

2d 

+ d
2 

2d 

where d is the separation between these two disks. The direction of dS ki/d0 in Equation (2.26) 

is along the line connecting the centers of the two poles. The comparison between the exact and 

the approximate solutions is shown in Fig. 2.5 where the overlapping area and its derivative are 

plotted against the normalized displacement, cl/(r i  + r2). The approximate solution is very close 

to the exact solution for small r i /r2 . 

2.2 Design Configuration 

The geometrical parameters, such as the number of poles and their distribution as well as 

the size of the poles, directly affect the pole overlappings which in turn affect the motion. The 

geometrical parameters must be designed based on the following considerations. 
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Figure 2.5 Comparison between exact and approximate solutions 
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For simplicity in motion control, it is desired that the poles are evenly spaced on the stator 

and on the rotor following the pattern of regular polyhedrons. Each vertex of the polyhedron 

corresponds to the location of one pole. The regular polyhedrons are tetrahedron, octahedron, 

cube, icosahedron, and dodecahedron. These polyhedrons have four, six, eight, twelve, and 

twenty vertices, respectively. The choice on the particular pattern influences the range of 

inclination which is given by Equation (2.29) 

= 	— A — 7  -
2 

	 (2.29) 

where 0, F, and 8 are angles defined in Fig. 2.6. 

The spherical actuator has an infinite number of rotational axes and has three degrees of 

freedom. With only one rotor pole, a point on the rotor surface can be stabilized in any direction 

along the tangential inner surface of the stator and thus provide two degrees of freedom motion 

control. To provide the third DOF motion which is the spin motion about an axis through the 

center of the rotor and that of the rotor pole face, a second force must be actuated at an additional 

rotor pole. Thus, at least two independent torques which are not colinear acting on the rotor are 

required to generate three DOF orientations. Furthermore, each of the rotor poles must overlap at 

least three adjacent stator poles at any instant in order to actuate the rotor pole within the 

bounded region formed by the adjacent stator poles on the tangential surface of the stator. Thus, 

it is necessary to have more stator poles than rotor poles, or 

2 s  N < M. 	 (2.30) 

Equation (2.29) must be valid for the entire range of motion. 
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Figure 2.6 Illustration of the range of inclination 
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It is undesirable that a stator pole simultaneously overlaps more than one rotor poles. The 

rotor would tend to position itself as the stator pole moves toward the larger overlapping area in 

an attempt to minimize the reluctance. Thus, in order to avoid the rotor pole to have overlapping 

area with two or more rotor poles, the following inequality must be satisfied: 

A 
0 1 	1 2 

< 7 (2.31) 

where A is the angle between any two adjacent equally spaced rotor poles. 

The maximum allowable size of a stator pole is corresponding to the case where two 

adjacent stator poles are touching each other. 

1 	-1 
tir

1max 
= 	cos 	(P si . P s ) 

	i 	j 	(2.32) 
j 

where Psi  and Psi  are the position vectors of two adjacent poles. 

The rotor orientation at which the spherical motor loses the ability to generate one or more 

degrees of freedom is referred here as an electro-mechanical singular point. When all the stator 

and rotor poles are fully overlapping, dS id/d19 = 0 and no torque would be generated as derived 

in Equation (2.8). Thus, Equation (2.8) implies that the rotor must not have the same number of 

evenly spaced poles as that of the stator, i.e. N M, since a minimum reluctance occurs and no 

tangential torque can be generated. 

2.3 Illustrative Example 

A particular design configuration, an octahedron/dodecahedron configuration, is given in 

the following to illustrate the design process. The application of kinematic model for motion 
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simulation and control of a spherical motor is demonstrated using a kinematic simulation 

program. 

2.3.1 Design Configuration 

Five rotor poles are located on the inner surface of the outer sphere, corresponding to five 

vertices of an octahedron. Twenty stator poles are spaced on the outer surface of the sphere in 

accordance to the pattern of a dodecahedron. The pole locations of the rotor and the stator are 

illustrated in Figs. 2.7(a) and 2.7(b) respectively. The octahedron/dodecahedron arrangement 

permits a largest possible number of control inputs evenly spaced on the spherical surface. The 

locations of the rotor and stator poles in spherical coordinates are tabulated in TABLES 2.1 and 

2.2 respectively. 

The upper bound on the stator pole size is given by 

1 
	20.9° 
	

(2.33) 

and the inequality which avoids any stator pole to overlap with two or more rotor poles is 

1 + V/
2 

< 45 
	

(2.34) 

The five rotor poles form an orthogonal set of three independent torques that are not 

colinear with the spherical center. Wherever a pair of stator poles fully overlap with a pair of 

stator poles on a great circle, the spherical motor may lose the ability to spin about an axis 

perpendicular to the plane connecting the two fully overlapping rotor poles if the size of the rotor 

pole is not sufficiently large. Thus, as illustrated in Fig. 2.8, in order to avoid such an electro-

mechanical singular point, the size of the rotor pole must satisfy the following inequality given 

the stator pole. 
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(a) Octahedron as the model of the rotor 

q19 

(b) Dodecahedron as the model of the stator 

Figure 2.7 Octahedron and dodecehedron configurations 
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Table 2.1. Apex coordinates of an octahedron 

pole pi P2 P3 P4 P5 

0 

'-
'4,
 0

 
0

 

0 

0
 

0
 1 -1• 

0 0 

Table 2.2. Apex coordinates of a dodecahedron 

coil qi Q2 Q3 q4 Q5 

0.491 -0.188 -0.607 -0.188 0.491 

›...) 0.357 0.577 0 -0.577 -0.357 

0.795 0.795 0.795 0.795 0.795 

coil q6 'V q8 q9 qv) 

0.795 -0.304 -0.982 -0.304 0.795 

0.577 0.934 0 -0.934 -0.577 

0.188 0.188 0.188 0.188 0.188 

coil qn q12 q13 q14 q15 

0.304 -0.795 -0.795 0.304 0.982 

›
.z 0.934 0.577 -0.577 -0.934 0 

-0.188 -0.188 -0.188 -0.188 -0.188 

coil q16 q17 q18 4719 420 

X
 	

>•-■
 N

 

0.188 -0.491 -0.491 0.188 0.607 

0.577 0.357 -0.357 -0.577 -0.000 

-0.795 -0.795 -0.795 -0.795 -0.795 
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Figure 2.8 Pole size requirements for inclination 
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cos 9 cos ib sin 7 + sin 9 cos y Z cos co l  + 02 ) 	(2.35a) 

where 	
7  = a  + ° 1 - °2 

For a octahedron/dodecahedron configurations, 0 = 52.62° , 0 = 36° , and a = 10.81'. In 

addition, 

0
1 

+ 0
2 

> A - 0 
	

(2.35b) 

The bounded region of the pole sizes computed using Equations (2.33), (2.34) and (2.35) is 

plotted in Fig. 2.9. 

2.3.2 Motion Simulation 

A computer program was written to simulate the motion of a spherical motor for a pre-

specified trajectory. A simple bang-bang control law was used in the simulation which is based 

on the following steps: 

(1) The direction of the desired torque to generate an incremental step along a pre-
specified trajectory from any initial rotor orientation to is determined. 

(2) The direction of the torque at each overlapping area is computed. If the torque 
contributes motion in the direction of the desired rotation, the corresponding stator 
coil is selected to be energized. If a stator pole fully overlaps with a rotor pole, the 
coil is also turned on to provide extra strength to the magnetic field and to provide a 
return path for the magnetic flux. The magnitude of the mmf is +1 for outward 
magnetic field or -1 for inward field. Of all the energized coils, about half of them 
are inward and the other half outward so that closed flux loops could be formed. 

(3) The flux and the torques of all the overlapping areas, which include those with 
unenergized coils are then computed from the magnetic circuit solution in Equations 
(4) and (8). 

(4) The resultant torques are obtained by summing vectorly the individual computed 
torque. The total torque may not be exactly along the desired rotational axis. 

(5) The rotor is rotated a small angle in the direction of the total torque to reach a new 
orientation. 

(6) Steps (1) - (5) are repeated until the target orientation is reached. 
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Figure 2.9 Bounds on the rotor and stator pole sizes 
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For each combination of stator and pole sizes a number of trajectories were tested. TABLE 

2.3 gives an example of a typical trajectory in terms of the specified roll, pitch and yaw angles. 

The three continuous curves represent the actual roll, pitch and yaw angles, whereas the symbols 

of the curves represent the trajectory specified roll, pitch and yaw angles. The stator and rotor 

pole sizes for this particular plot are 15 ° and 26° respectively. This figure shows that the motor 

is capable of moving from one desired orientation to the other. The corresponding range of 

inclination is based on the assumption that the stator shaft occupies a cone of ±20°. 

As shown in Fig. 2.10, the motor is capable of generating three independent torques at any 

point within the work space and therefore a desired trajectory of the rotor can be successfully 

traced. When a more sophisticated control strategy is adopted, the spherical motor is expected to 

improve its three-dimensional torque capacity and thus to improve its trajectory tracking ability. 

In summary, the theoretical design basic for a variable-reluctance motor was established, 

upon which a specific design scheme that utilizes an octahedron and a dodecahedron as its basic 

configuration was developed, and its feasibility was verified via a computer simulation. 
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Table 2.3 Trajectory used in illustrative example 

roll pitch yaw 

0 0 

5 5 0 

10 5 0 

10 5 10 

10 15 10 

20 20 10 

25 25 20 

25 30 25 

35 40 30 

40 25 30 

40 10 25 

30 0 25 

30 0 10 

30 0 -5 

20 0 -10 

10 0 -20 

0 -5 -25 

0 -15 -30 
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Figure 2.10 Simulation results of trajectory tracking of spherical motor 
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3. RELUCTANCE MODEL 

The principle of variable-reluctance can be demonstrated by a simple linear motor scheme 

shown in Fig. 3.1(a). The coil in the figure represents the stator winding that provides the 

magnetic field. The iron block represents the rotor. The motion of the rotor is the linear 

displacement x. The corresponding magnetic circuit is shown in Fig. 3.1(b), where F is the 

magnetomotive force (mmf) of the coil and R is the reluctance of the system. 

When the rotor is subject to a differential displacement dx, the total electrical energy input 

dWe  by the coil is expended to the increase of magnetic field energy dW f  and to the mechanical 

work dWm  done to carry out such a displacement dx. That is, 

dW
e 

= dW
f 

+ dW
m

. 

For a constant F, dW f  is obtained by differentiating W f  which is represented by the area of the 

triangle load in Fig. 3.1(c) as dW f  = F dc5/2. The total electrical energy increment dW e  supplied 

by the coil is dWe  = F do, represented by the area abcd in Fig. 3.1(c). Thus, the mechanical 

work dWm is found to be dWm = F (10/2. From the principle of virtual work, the mechanical 

force is derived to be 

dW
m 	1 [F1 

d 

2 
dR 

dx 
f = 	

x . 
(3.1) 

This equation states that the force on the rotor always attempts to move the rotor in the direction 

of reducing the reluctance of the magnetic circuit, i.e. the direction of increasing the overlapping 

area of the poles. The prediction of the torque generation of a variable reluctance motor for a 

given F requires that reluctance models of the magnetic system to be known. 
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(a) Illustrative motor 
	

(b) magnetic circuit 
	

(c) IP vs F curve 

Figure 3.1 A demonstrative linear VR motor 

Figure 3.2 A flux tube bounded by two equipotential surfaces 
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• / 

V — v 
1 	2 

H — (3.4) 

dl, = J.L
o 	f 

— V
2 v l 

3.1 Fundamental Equations 

The fundamental equations of magnetostatics, which relate the electromagnetic field and the 

source quantities of a magnetic field system, are described by the following Maxwell's 

equations. 

V • B = 0 
	

(3.2) 

V XH= J 
	

(3.3) 

where B is the flux density, H is the magnetic field intensity, and J is current density. Equation 

(3.2) states that the magnetic flux lines are sourceless at any point in the field. Equation (3.3) 

states that the circulation of the magnetic field at a point is due to the existence of current with 

density J at that point. In addition to these equations, the constitutive law that describe how the 

physical properties of the materials affect the field is given by B = mil where g is the 

permeability of the material. 

Fig. 3.2 illustrates a differential flux tube of cross section ds and length / between the two 

equipotential surfaces, the magnitude of the field intensity H is 

The differential flux dI is given as 

where go  is the permeability of air. The total flux 4 is the integral of dcl) over the entire 

equipotential surface S. The reluctance which is the reciprocal of the permeance is defined as 
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4) 

V
1 
 - V

2 
R - (3.5a) 

or 
1ds 

K =uo 
s 

i (3.5b) 

where (V 1  — V2) has been assumed to be a constant in the derivation of Equation (3.5a). As 

shown in Equation (3.5b), the permeance is a function of geometry and the computation requires 

the knowledge of the flux tube (i.e., S and I). 

When the air-gap is much smaller than the dimensions of the adjacent core faces such that 

fringing at the air gap is negligible, the reluctance of the air-gap can be approximated as 

R - 
g A 
0 0 

(3.6) 

where Ao  and / are the overlapping area and the distance between the stator and rotor poles. 

Permeance-based model  

To account for the fringing effects, the shape of the magnetic flux is commonly assumed in 

modeling the permeance of stepper motors. With an assumed flux shape, the permeance model 

of an electromagnetic system is determined from Equation (3.5b) with the following 

assumptions: 

1. The iron reluctance is assumed infinite as compared to the air reluctance. 

2. No hysteresis or saturation of iron elements in the system. This assumption is 
reasonable as long as the coil excitations are limited so that the flux density in the 
iron is within the linear portion of the iron magnetization curve. 

3. The assumed flux path is connected to the nearest coil by a straight line and/or a 
circular arc such that it enters or emerges iron surface perpendicularly and does not 
cross other flux paths. 

4. No magnetic flux leakages between the adjacent stator coils, between the adjacent 
rotor coils, or in the system. 
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5. 	The coil excitations are made such that there are only attraction forces between rotor 
coils to stator coils. Repulsion between coils generates significant flux leakages. 
This assumption is also a necessity in order for assumption (4) to be reasonably 
stated. 

A typical flow chart which illustrates the procedure of the static force generation using 

permeanced-based method is shown in Fig. 3.3. 

Finite-element Methods  

Alternatively, the finite-element (FE) method is used to solve numerically for the magnetic 

field from the Maxwell's equations as outlined in Appendix A. To do so, the Maxwell's 

equations are first formulated into a Poisson equation either by the vector potential method or by 

the reduced scalar potential method. The Poisson equation is then implemented by finite element 

methods to arrive at the magnetic field solution. 

A two dimensional model, which is solved by the vector potential formulation, is relatively 

simple to be solved and therefore is well suitable for cases where the geometrical method is 

subjected to change. More importantly, two-dimensional model can explicitly give the flux lines 

by plotting the equipotential lines. However, the two dimensional model ignores the flux 

distribution in the third dimension. Therefore a two-dimensional model is suitable for qualitative 

study in the design stage. On the other hand, a three-dimensional model, which is solved by the 

reduced scalar potential formulation, takes into account of the flux distribution in the third 

dimension. Thus, it gives a more accurate solution than the two-dimension model. 

The finite element solution yields the nodal potential values and the average elemental flux 

density values. With the knowledge of the fields at hand, the flux through a surface can be 

calculated using the following summation: 

4 = E 	(B, • n, ) AS, 
—1 —1 	1 

(3.7) 
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Compute coordinates of each stator coil 
and airgap element 

Find the nearest stator coil to each airgap 
element and compute the flux path length 
to that coil 

Measure rotor displacement and find the 
coordinates of each rotor coil 

For each airgap element find the nearest 
stator and compute the flux path length to 
that coil 

For each airgap element compute the 
permeance and the permeance derivative 

Define coils excitations. Construct 
equivalent magnetic circuit to find flux 
density in each element 

Compute force of each element 
Sum airgap forces to find total force. 

Solve rotor equation 
of motion 

Fig. 3.3 Flow-chart for calculating the model force 
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where B. IF andASt  are the flux density at the centroid, the unit normal vector, and the surface 

area of the i th  element. The useful flux may be divided into three regions. Region 1 is the flux 

flowing through the overlapping area between the rotor and stator pole which is denoted as 4 , 1 . 

Region 2 is the rest of the surface of the rotor pole, and region 3 is the cylindrical surface of the 

rotor pole. The flux flowing through regions 2 and 3 are denoted by 1.2 and 43  respectively. 

The fringing flux is the sum of the flux flowing through regions 2 and 3, or 

ti f = cD2 + 4)3 • 
	 (3.8) 

The reluctance is computed from Equation (3.5a) for a specified potential difference. 

3.2 Comparison between Permeance-based and Finite-element Models 

To obtain some knowledge of coil excitation on flux distributions, magnetic leakages, and 

reluctance forces, a two-dimensional model of one degree-of-freedom (DOF) linear motion 

structure as shown in Fig. 3.4 was computed, where the depth dimension is infinite was 

computed. The magnetic properties of the iron is given in Fig. 3.5. The two-dimensional model 

is formulated using the vector potential method. The nodal potentials at all other boundary 

planes which are treated at infinity are set to zero. 

The flux distribution computation was performed using the ANSYS finite-element package 

written by Swanson [20]. The static force generated between the stator and the rotor for a given 

coil excitation is determined using both the finite-element method and a permeance-based model. 

To make the two methods comparable, the product of the current density and the coil cross-

sectional area is chosen such that it yields the desired magneto-motive-force (mmf). 
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Figure 3.4 2-D multi-pole model of the spherical VR motor 
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Figure 3.5 B-H curve of soft iron 
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In the following discussion J = (mmf)/A, where J is the current density in Amperes/m 2; 

mmf is the magneto-motive-force in Ampere-turns; and A is the cross-sectional area of the coil 

in m2 . In the simulation, the cross-section of the coil on each side is 20mm x 3mm. Thus, 100 

Ampere-turns are equivalent to 1.66E+6 Amperes/m 2. Two different values of iron permeance 

were used, i.e. gi/go = 1E+3 and 1E+7. TABLE 3.1 summarizes the result of the computation, 

where the percentage error listed is relative to the force computed by finite element method. The 

excitation is indicated as positive if the mmf is directed toward the air gap. The magnitude of 

each excitation is 100 Ampere-turns. A few selected flux pattern computed using the finite 

element method is displayed in Fig. 3.6. 

Except for Case (5), the permeance-based model yields relatively good approximation when 

the magnetic materials has a very high permeability. There are three major assumptions which 

may accumulate significant errors in the permeance-based model: 

1. The model assumes no reluctance in the iron core. 
2. The model neglects leakage paths . 
3. The model is inaccurate in describing the flux paths. 

The contribution of the first source may be inferred by running modified finite element model 

using an iron core of very high permeability. As shown in TABLE 3.1, the relative errors in 

Case (1) are 35.3% and 15.5% with the iron permeance of 1E+3 and 1E+7 used in ANSYS 

program respectively. The decrease in relative error can also be observed in all cases, which is 

consistent with the assumption made in permeance-based model that the reluctance of the iron is 

negligible or the permeability of the iron is infinite. 
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Table 3.1 
Comparison between permeance-based model and finite-element model 

Case Model force 
Ansys Force 
Permeance 
u=1E+3 

Error 
Ansys Force 
Permeance 
u=1E+7 

Error 

1 16.47 12.17 35.3% 13.52 15.5% 
2 10.81 7.81 38.4% 8.79 23.0% 
3 10.31 7.90 30.5% 8.82 16.9% 
4 63.95 47.68 34.1% 52.33 22.2% 
5 -8.02 -4.12 94.7% 4.33 85.2% 
6 -5.98 -5.39 10.9% -5.89 1.5% 
7 -26.77 -26.75 0.1% -28.88 -7.4% 
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Figure 3.6 Flux of 2-D multi-pole model under leftward excitations 
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Figure 3.6 Flux of 2-D multi-pole model under leftward excitations 
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The relative contribution of the second and the third sources to the error is not as obvious. 

However, the assumption of no magnetic leakages in permeance-based model implies that the 

flux would generally flow through the excited coils and returns through the remaining poles on 

both side of electromagnetic structure. As shown in the flux pattern computed for Case (5) 

demonstrates that the inaccurately assumed flux path may result in a relative error over 90%. 

The results have led to the concept of selective magnetic path planning which aims at 

guiding the magnetic flux to pass through the selected air-gaps in order to optimize the overall 

reluctance force in the specified direction for a given set of design parameters. The selective 

magnetic path planning offers the following potential advantages by distributing the input power 

among a group of coils, each of which contributes a small fraction of total mmf required: 

i. As illustrated in Cases (1) and (7), the force can be significantly increased for a given 
weight. 

ii. Given the same force-to-weight ratio, the multiple coil excitation in selective magnetic 
path planning allows lower current per coil but large surface areas for heat dissipation. 

iii. The selective magnetic path planning would tend to result in predictable flux pattern 
which is a necessity of success for the analytical force prediction using permeance-based 
model. As illustrated in Case (4) where the input excitation is tripled, the reluctance force 
increases by a factor of four as compared to Case (1). The significant increase of the 
reluctance force is the result of a well-shaped magnetic flux path which not only utilizes 
all the rightward force generating air-gaps but also effectively eliminates the magnetic flux 
from flowing through the air-gaps which would contribute to the generation of leftward 
forces. 

3.3 Finite -element Analysis 

Despite the geometrical modeling difficulty, a three-dimension model is used to solve the 

flux distribution, especially the fringing flux distribution. Since the reduced scalar potential 

method does not directly give the flux lines, the solution is represented by the equipotential lines. 
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As mentioned before, flux lines can be obtained by drawing line orthogonal to the equipotential 

lines if no current sources are present. 

3.3.1 Finite-element models 

Two finite element models are discussed in the following analysis; namely, multiple-pole 

configuration and a single pole-pair configuration. The objectives are to predict the magnetic 

field distribution and the sensitivity of the fringing flux distribution, the air-gap reluctance to the 

changes of the geometrical parameters, and the allows the reluctance force comparison to be 

made between the finite element method and the experimental results. In addition, a reluctance 

model as a function of displacement is presented, which would provide a rational basis of 

reluctance force modeling. 

Fig. 3.7 shows a planar magnetic structure consisting of a rotor pole and three stator poles 

along with basic geometry, where the location of the three stator poles form an equilateral 

triangle. The distance between any two adjacent pole boundaries is ten times greater than the air-

gap spacing and the model is assumed to be magnetically isolated from the rest of the spherical 

motor. In addition, as the pole sizes are relatively small as compared to the corresponding 

surface of a spherical motor, it is expected that the finite element result based on the planar 

structure would not differ significantly from the spherical structure. 

In general, the flux lines are not orthogonal to the equipotential lines except when the 

current sources H s  are absent from the system. Thus, the stator poles are excited using 

permanent magnets instead of electromagnetic coils in order to simplify the air gap reluctance 

calculation in the finite-element analysis. 
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Figure 3.7 Model of a section of the spherical VR motor 
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Permanent magnets, however, have different magnetic properties from the core material, the 

magnetic field in the air gap would be different from that of an air gap bounded by two iron 

cores. Thus, a 3-millimeter-thick iron cap is placed on the magnet as illustrated in Fig. 3.8 so 

that the magnetic field solution around the air-gap is independent of the type of excitation. The 

demagnetization curve (i.e. the third quadrant of the hysteresis loop of the permanent magnet) 

and the normalized B -H curve of the iron structure are given in Figs. 3.9. Three different cases 

of excitations are illustrated along with the boundary conditions in Fig. 3.10, which are denoted 

as up-none, up-up, and up-down excitations. In all three excitations, the first stator pole was 

excited such that the flux through the first stator pole would flow towards the rotor and the third 

stator pole was unexcited. The second stator pole is not excited in the up-none excitation and is 

excited to have the same polarity as the first pole in the up -up excitation and opposite polarity in 

the up-down excitation. Since the magnetic model is isolated from the rest of the spherical 

motor, the cylindrical boundary surface satisfies the Dirichet boundary condition and the nodal 

potentials on the boundary are set to zero. The top and bottom boundaries of the model, 

however, vary from one excitation configuration to another. For the cases where the second 

stator pole is not excited or is excited to have the same polarity as the stator pole 1, the nodal 

potentials of the bottom and top boundary surfaces are set to zero, in which case the flux flows 

perpendicularly to the bottom and top surfaces. However, when the polarity of the stator pole 2 

is in the opposite direction of stator pole 1 in the up-down excitation, the flux is expected to 

circulate between stator poles 1 and 2 via the rotor pole. In other words, the fluxes in the back 

irons of the stator and the rotor are assumed to be parallel to the bottom and upper boundary 

surfaces. Thus, the top and bottom boundaries satisfy the Normann boundary conditions when 

the stator poles 1 and 2 are excited in opposite direction. 
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(a)  

(b) 

( c) 

Figure 3.10 Boundary settings for the basic three pole model 
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The values of the air-gap spacing and the stator pole length are 0.5 mm and 6mm. In order 

to examine the sensitivity of the flux distribution and the air-gap reluctance to the geometrical 

parameters, two additional finite element computations have been made, one with the air-gap 

spacing of 1 mm and the other with the stator pole length of 30mm. 

3.3.2 Results and discussions 

In each of these finite-element computations, all other dimensions were unchanged and only 

the up-none excitation was applied as shown in Fig. 3.10(a). The results are tabulated in TABLE 

3.2. Fig. 3.11 indicates that the magnet surface is not equipotential without the iron cap. The 

effect of the iron cap on the magnetic flux apparently serves to provide an uniform flux 

distribution at the air gap and thus the corresponding reluctance of region 1 can be closely 

estimated using Equation (3.6). Due to the nonuniform potential at the magnetic stator pole face, 

the reluctance of the overlapping area without the iron cap is about 7% smaller than 1.85. The 

average potential value has been used in computing the air-gap reluctance. The percentage of 

the fringing flux, however, is not remarkably sensitive to the presence of the iron cap. 

The fringing flux accounts for over 25 percent of the useful flux in the air-gap. The 

percentage of the fringing flux increases from 26.7% to 31.7% as the air-gap spacing is doubled. 

Therefore, negligence of the fringing flux would under-estimate the air-gap flux and reluctance 

estimation. However, the fringing flux is relatively insensitive to the adjacent coil excitation. 

Thus, when the pole-separation to air-gap ratio is greater than 10, the influence of magnetic field 

in one air gap on the other may be neglected. The result reasonably justifies the previously stated 

assumption that the magnetic model as shown in Fig. 3.6 may be treated as an isolated section 

from the rest of the spherical motor. The assumption significantly reduce the complexity of the 

spherical motor modeling using finite element method. 
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(b) up-up excitation 

JI 

c) up-down excitation 

Figure 3.11 	Side cut-away view of the equipotential lines of the basic 
three pole model 



Fig. 3.11(d) 	Top view of air gap equipotentials of the basic three pole mode 
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Figure 3.12 (a) Finite element result of potential distribution 

Figure 3.12 (b) Traditional assumption of potential distribution 
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Table 3.2. FE results of the basic and the non-capped three pole models 

Model Basic three pole model Non-capped three pole model 

Excitation type up-no I up-up up-dn up-no I up-up up-dn 

Potential at bottom V1  360 420 380.00 351.19 313.66 387.55 

Potential at top 1/2  10 120 10.00 4.77 3.44 31.28 

Gap potential drop V1  - V2 350 300 370.00 346.42 310.22 356.27 

Region 1 flux 41. 1  (x10-6 ) 189.67 162.22 199.75 197.13 178.43 203.25 

Region 2 flux 1, 2  (X 10') 58.97 48.33 63.95 48.97 39.15 53.72 

Region 3 flux (1)3 (x 10-9 10.09 7.82 11.21 19.02 15.26 22.05 

Fringing flux (/) f = 4?2 + (1) 3 69.06 56.15 75.15 67.99 54.41 75.77 

Gap flux 4).4)1+ 41)2-1-03 258.64 218.37 274.91 265.12 232.84 279.02 

Percent fringing flux (%) 26.7 25.7 27.3 25.6 23.4 27.2 

Overlap reluct. 	iap  (x106 ) 1.845 1.849 1.852 1.766 1.739 1.753 

Fringing reluct. R. f ( x106 ) 5.068 5.343 4.923 5.095 5.702 4.702 

Total gap reluct. R. ( x10 6 ) 1.353 1.374 1.346 1.307 1.332 1.277 

Note: The estimated main reluctance iir.p of the overlapping area is 1.85 x 10 6 . 
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The equipotential plot of the fringing flux in region 2 forms a constant-width band as 

illustrated in Fig. 3.11. where the potential is represented by the loops in solid line and the flux 

is represented by the dashed lines. The commonly assumed flux path in stepper motor modeling 

is shown in Fig. 3.12, which generally neglects the magnetic flux leakages and predicts the point 

of maximum potential at the edge of the stator pole. In contrast, the influences of the leakage 

fluxes can be clearly visualized from the equipotential plot of the finite-element analysis. 

TABLE 3.3 summarizes the compulation results of two other configurations. In the large 

gap model, the air gap between the stator and the rotor poles is increased from 0.5 mm to 1 mm. 

All other dimensions are given in Fig. 3.6. Similarly, in the long rotor pole model, the length of 

the rotor pole is modified from 6 mm to 30 mm. As shown in TABLE 3.3, as the air gap width 

increased by a factor of 2, the main flux in region l has been reduced significantly whereas the 

fringing flux has been increased from 26.7% to 31.7%. 

The increase of rotor pole length from 6 mm to 30 mm does not have significant effect on 

the fringing flux. This is because the fringing flux mainly distributes around the end of the rotor 

pole. Therefore, in the design of the spherical motor, small rotor pole aspect ratio may be 

applied to achieve a compact structure. This model shows that an aspect ratio of 0.2 is 

satisfactory. 

3.4 Reluctance Model 

The flux distribution and hence the reluctance model of the air gap depend on the geometry 

of the structure and is a function of the displacement. In order to allow the following quantities, 

namely, the total flux cl) t  flowing through the magnet, the airgap flux fig , and the leakage flux 4)/ 

to be modelled, the magnetic structure as shown in Fig. 3.13 has been analyzed. 
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Table 3.3. FE results of the large air gap model and the long rotor pole model 

Model large gap model long rotor pole model 

Excitation type up-none up-none 

Potential at bottom V1  555.00 360.00 

Potential at top V2 5.00 10.00 

Gap potential drop V1  — V2 550.00 350.00 

Region 1 flux €1:0 1  (x10-6 ) 148.67 189.58 

Region 2 flux 4) 2  ( X10-6 ) 55.00 58.85 

Region 3 flux 03 (x 10-6 ) 14.06 12.88 

Fringing flux (I)  f = 4t2 + 413 69.06 71.73 

Air gap flux (I) = 4)1+4'2+4'3 217.75 261.31 

Percent fringing flux(%) 31.7 27.5 

Main reluctance R ove,. ( x106 ) 3.699 1.846 

Fringing reluctance 7Z.f (x106 ) 7.964 4.879 

Total gap reluctance R. (x10 6 ) 2.526 1.339 

Note: The estimated main reluctance R eap  of the overlapping area for the big gap 

model is 3.695 x 106 . 
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Figure 3.13 3-D model with permanent magnet 
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The magnetic properties of the permanent magnet and the iron are given in Fig. 3.14. Due 

to the symmetry of the structure, the total flux ck t  is given by that flowing through the middle 

cross-section of the permanent magnet. The flux flowing across the air gap consists of two 

portions; namely the airgap flux passing through the overlapping area between the permanent 

magnet and the iron structure, and the fringing flux which include the remaining flux from the 

permanent magnet towards the iron. The leakage flux can be computed from the continuity of 

flow, 

43
/ 

=
t 

— 4)
g 

Since the system is symmetrical about x-y plane and x-z plane, only a quarter of the 

magnetic system is meshed and computed. The nodal potentials on the x-z plane of symmetry, 

satisfy the Neumann boundary condition and that on the x-y plane of symmetry satisfy the 

Dirichet boundary condition. The distances from the far boundaries to the structure are at least 

15 times the width of the air gap which is 0.5 mm, therefore they are treated as at infinity and the 

nodal potentials are set to zero. 

The equipotentials in the center plane of the pole are plotted in Fig. 3.17, which show the 

equipotentials at three normalized displacements 0, 0.5 and 1. The total flux (1 ,t  is calculated by 

Equation (3.5a) where the integration surface is taken as the elements of the middle cross-section 

of the magnet. Similarly, the air gap flux 4)g is calculated by taking the integration surface as the 

layer of elements that encloses the pole. The leakage flux (P t  is the difference between the total 

flux cbt  and the air gap flux fl) g. The three flux values are given in TABLE 3.4 for three 

normalized displacements 0, 0.5, and 1.0. 
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Figure 3.14 (a) Normalized demagnetization curve of permanent magnet 

1.81 

t .6 -I 

1.2 - 

0.6 

0 . 

0.2 1 

0 
0 	4 	a 	12 	16 	20 	24 	28 

H (x1000 Al 

Figure 3.14 (b) Characteristic of soft iron 
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(a) Equipotentials at center plane at 1. = 0 

(b) Equipotentials at center plane at i = 0.5 

(c) Equipotentials at center plane at i = 1 

Figure 3.15 Equipotentials of 3-D model with permanent magnet 
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Table 3.4. Flux in the 3D model with permanent magnet 

Displacement x (mm) 0 10 20 

Normalized disp i 0 0.50 1.00 

B value at magnet pole (T) 0.921 0.802 0.596 

Air gap potential drop (AV) 725 1237.5 2800 

Total flux (D t  ( x10 -3  Wb) .165 .155 .137 

Air gap flux 4)9 ( x 10 -3   Wb) .145 .112 .048 

Leakage flux (1): ( x10 -3  Wb) .020 .043 .089 

Percentage leakage (%) 12 27.7 65 

Air gap reluctance 7? .9  (x10 6 ) 4.897 11.049 58.300 

Air gap perrneance P9  (x10 -6 ) .204 .091 .017 
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The permeance based on Equation (3.6) and the three-dimensional permeance are found to 

have the same shape as shown in Fig. 3.16 where the two models are compared. However, the 

difference between these two curves grows greater as the normalized pole distance increases the 

pole overlapping area decreases and the proportion of fringing flux increases. 

normalized displacement 

Figure 3.16 Comparison of airgap permeance of 2-D and 3-D models 
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4. ANALYTICAL MODEL OF TORQUE PREDICTION 

The electro-magnetic phenomena are governed by Maxwell's equations as discussed in the 

previous section. For a specific problem where the geometries, the material properties, and the 

boundary conditions are well defined, the Maxwell's equations represent the model of a 

distributed parameter system. In deriving an analytical model of the spherical motor for motion 

control law development, it is desired to reduce the relatively complex magneto-quasi-static field 

of spherical geometry to a tractable form. In this section, both the forward and inverse torque 

prediction model of the spherical motor using a lumped-parameter approach are derived. 

4.1 General Formulation 

The following assumption are made in the derivation of the spherical model: 

1. The reluctance of the iron core is negligible as compared to that of the airgap. The error 
introduced by this assumption depends on the geometrical dimensions of the structure 
and the permeability of the material. This error, in general, can be significantly reduced 
with magnetic material of high permeability and with small airgap. 

2. The spacing between any adjacent rotor poles and that between any adjacent stator poles 
is assumed to be much larger compared to the airgap. This assumption implies that no 
leakage flux occurs between adjacent stator (or rotor) poles. 

3. The magnetic circuit of the spherical motor is modelled using a lumped-parameter 
approach analogous to the linear electric circuit. The linearized model allows the flux 
flowing through the reluctance of airgaps to be considered separately. Thus, the 
reluctance of the magnetic circuit can be determined from the reciprocal of the 
permeance derived in the previous section. 

The magnetic system as shown in Fig. 4.1 is considered in the derivation of the torque 

prediction model of the spherical motor consisting of m active rotor coils and n active stator 

coils. The torque generated by the magnetic system is governed by the principle of conservation 

of energy, which yields: 
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Figure 4.1 Magnetic circuit of the spherical VR motor 
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E
m
(t) = E (t) 	— T(t) • w(t) 

where 

m 
= time rate of magnetic energy stored, 

e
= electrical power input, 

i
n
= current through the nth  excited coil, 

X
n
= flux linkage through the nth excited coil, 

T = resultant torque acting on the rotor, and 

w = angular velocity of the rotor. 

Electrical power input 

The rate of change of the total electrical input to the system is given by 

	

m 	n 

	

E = E 	E (M 	
rj 

+ M 
e 

i=1 j=1 	
si 	 ij 

(4.1) 

(4.2) 

where (1)ij is the flux flowing through the airgap between i th  stator coil and j th  rotor coil; and Mg 

 and Mrj  are the mmf generated by the ith  stator coil and the j th  rotor coil respectively. From Fig. 

4.1, the magnetic flux flowing through the air-gap separating the i th  rotor coil and the jt h 

 stator coil is given by 

ot.. = P. . [M 	+ M 	V] 	 (4.3) 
1 j 	13 	Si 	rj 

where Pii  is the permeance of the air-gap between the i th  stator coil and the j th  rotor coil, and V 

is the magnetic potential at the rotor core. Since 

m 	n 
E 	. = 	0, 	 (4.4) 

i=1 j=1 
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the magnetic potential at the rotor core V can be derived by substituting ck ii  from Equation (4.3) 

into Equation (4.4), which leads to 

m n 
E 	E P , (M 

Si
+ M , ) 

1=1 j=1 1 	
l 	rj 

 
V —  	 (4.5) 

m n 
E E P 

i=1 j=1 

Noting that the time derivative of the flux ck ij  can be determined from Equation (4.3), the 

electrical power input to the system is given by Equation (4.6): 

E = 
.
=1 	1 
E 	E { (V — M — M , 

2 
 ) P. + P, (M + M ) (M + M ) 

e 
1 

si 	r] 	13 	13 Si 	rj 	Si 	rj 
j= 

(4.6) 

Rate of change of magnetic energy 

The total magnetic energy stored in the system is 

m n 
1 	 2 

cI), 	R, 
i=1 j=1 

E
m 
 = 2 E 	E 	

ii ij 
(4.7) 

where the flux is given by Equation (). By substituting the time rate of change of magnetic flux 

4•• the corresponding time-rate of change in the magnetic energy stored in the airgap is derived 

as 

m 	n 
E

rn 
= EE { —

2 
 (M 

si
+ M 

r3 
 ,— V)2 P

ij 
+ P. (m 

si
+ M ,— V) ( NI sl  ,+ Mr : ,) 	} 

i=1 j 
=1 	 13 	r3 

 

(4.8) 

From Equations (4.6) and (4.8), it follows that 

i j 
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m n 

E 
e —Em 	2 

= 1 	E 	
(M si —Mrj 	

2 
—V) 	1

ij 	
(4.9) 

i=1 j=1 

Mechanical Power 

Since the mechanical power can be re-written as: 

3 
T • 4) = E 	T

k 
c.k k  

k=1 

(4.10) 

where 0 1 , 	 and and 0 3  are the angles that the rotor rotated about the the axes of rotor body frame. 

Using the result from Equations (4.1), (4.9), and (4.10), and noting that the differentials of 0 1 , 

02, and 0 3  are independent of each other, the torque generated by the magnetic system is given 

by 

	

T = 0 (E — E ) 	 (4.11) 
e 	m 

where 

V 
	a 	

u
l + 	

a 	
u
2 + 

"1 

4.2 Forward Torque Prediction Model 

The forward torque prediction model is to determine the torque generated by the spherical 

motor for a given set input currents applied to the electromagnetic coils. As discussed in 

previous section, the torque generated depends on the permeance of the electromagnetic system. 

For a specified spherical motor structure, the permeance between any pair of the stator pole and 

rotor pole is a function of the distance between the two poles. As shown in Figure 4.4 for the 

case of rotation, the separation angle between the i th  stator pole and the j th  rotor pole is denoted 

as (p i.j . Hence, 

P.. = P (O. •) 1] 
(4.12) 
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If Csi (xsi , ysi, zsi) and C ri (xri , yrj , zri ) are the position vectors of i th  stator coil and the j th  rotor 

coil originating from the center of spherical motor respectively, the angle between the i th  rotor 

coil and j th  coil can be determined from the dot product of the position vectors, Csi and Crj , or 

C . • C 
cos (Oil ) — 	  

2 
r3 

R 
 

where the position vector of the j th  rotor coil is defined by 

C r3  . 	 c 	I = [T] 	r3 
1 1XYZ 	 1 	123 

(4.13) 

(4.14) 

[T] is a homogeneous transformation describing the rotor frame with respect to stator frame, and 

c • describe the position vectors of j th  rotor pole with respect to the rotor frame. It can be 

shown that the torque generation can be computed from Equation (4.11), which leads to 

m n 
1 [ E 	E (M 	M 	

V ) 2 dP (0) 
T = —

2 

	. 
Sisi 	ri 	dcp 	0= 	

] e 
4), , 	3.3 

1=1 j=1 
(4.15) 

where eu is an unit vector perpendicular to the position vectors C si and Crj and can be derived 

from differential geometry to be 

C . X C . 
si 	r3 

Thus, Equation (4.15), along with Equations (4.5) and (4.16) and the permeance model, defines 

the torque generated by the spherical motor for a given set of inputs in terms of the magneto-

motive-forces (MMF's) of the coils. 

e. . — 13 
R

2 
sin 0„ 

1] 

(9.16) 
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Remark 1  

The torque generation equation given by Equation (4.15) is quadratic with respect to (M si , 

i=1,...m) and (Mri , j=1,...n). In controlling the electromechanical devices, either current or 

voltage sources may be used. If the current source is used, the MMF of each coil is simply the 

ampere-turns, i.e. the product of the current and the number of turns in each coil, and the torque 

prediction model of a current-controlled spherical VR motor remains to be an algebraic quadratic 

function of the currents through the coils. 

However, if a voltage source is used for each stator coil of N turns and with a coil resistance 

of re, then 

r
e 

u
si 

_ m 	+ N – E 	(1). si N 	dt 	lj 
j=1 

(4.17a) 

where u si  is the voltage supplied to the i th  stator coil. Similar expression can be derived for the 

voltage input to the j th  rotor coil 

M
e 

 d 

	

u = M — + N — 	 (4.17b) 
rj 	rj N 	dt 	lj 

1=1 

Substituting Equations (4.3) - (4.5) into Equation (4.17) and noting that 

dP (dO0)  d 
dt P ij (95 ij ) 	 • dt n_j 

(4 . 1 8 ) 

which is velocity related. Equation (4.17) is essentially a set of differential equations in terms of 

(Msi, i=1,...,m) with time-varying coefficients due to the coupled velocities. Equations (4.15) 

and (4.17) constitute the torque prediction model of a voltage-controlled spherical VR motor. 

Unlike the current-controlled spherical VR motor for which the torque generation is described by 

a set of algebraic equations, the torque generation of a voltage-controlled spherical VR motor is 
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r ,r 
P

, 
/3 1  R 

r3 	r , + r 	
(4.20) 

 , 
P3 	/3 

M, - 
rD 	r, + r 

P1 	/  

Mpi  
and 

represented by a set of dynamic equations which coupled the electromagnetics with the motion 

dynamics through the velocity. 

Thus, it is desired to use current sources for a spherical VR motor in order to ease the task 

of designing the motion controller for the spherical motor. 

Remark 2  

The physical meaning of Equation (4.15) can be interpreted as follows: Equation (4.14) 

represents the magnetic energy E m  in the electromagnetic field, which is a form of potential 

energy. From Equation (4.15), the torque may be viewed as the spatial gradient of a scalar field. 

Moreover, consider each pair of stator-rotor poles is treated separately. If the magnetic 

energy stored in an airgap between the i th  stator pole and the j th  rotor pole is Eii , the vector 

1 	 2 dP (0) 

	

T. . 	(M 	M ,— V ) • 	 e. 

	

3.3 	2 	si 	rp 	dO 	0=0, . 
(4.19) 

can be thought as the torque generated by this particular pole pair. The direction of this torque is 

such that the two poles are attracted to each other in order to reduce the magnetic energy stored. 

The summation of Equation (4.19) over all i = 1, m and j =1, n gives Equation (4.15). 

Remark 3  

Consider that the rotor poles of the spherical motor are driven by permanent magnets 

instead of electromagnetic coils. In general, the reluctances of the permanent magnets and hence 

the leakage flux cannot be ignored. If the jth permanent magnet of the rotor is characterized by a 

mmf M
Pi rPJ' 

and a reluctance 	the j th  magnetic driver may be represented by an equivalent 

reluctance in series with an equivalent mmf 	as as 
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where rij is the reluctance to the leakage flux of the j th  permanent magnet. However, the 

magnetic flux 	flowing through the air-gap separating th e j th  rotor coil and the i th  stator coil is 

flux dependent, which is given by 

m 
1 = P

i 
 , [M 	— R , E 	— M 	— V ] . 

3 	3 	Si 	r 	4  3 k=1  kj 
	Mr (4.21) 

The magnetic potential at the rotor core V can be derived by substituting 4)ii from Equation 

(4.21) into Equation (4.4), which yields 

m n 
E P 

1=1 j=1 13 
 V - 	  

m 
(M 

Si 
+ M 	R 	E 4)

k j 
I 

rj r k=, 

(4.22) 
m n 

E P„  
i=1 j=1 13  

Thus, the corresponding flux ck ij  can be determined from the following system of linear 

equation 

[A] 4) = b 

where 

4 	[411' 412' • • • 	41n ; 4>21' 422' •  

(4.23) 

• 	,• 2n' - • . ; 

4)m1
, 4,

m2
,  . • , m ]

T 
n 

 

In order to determine the flux flowing through an airgap, a system of mxn equations in the form 

of Equation (4.23) must be solved simultaneously. Similar argument can be made for the case 

where the reluctance of the magnetic core of stator coils cannot be ignored. 
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U = [M
s1 

. M ] 	E R 	, 
sm 

am] 
T 

 a = [ a
l 
	.. a ,

1 
 . 

(4.24) 

(4.25) 

4.3 Inverse Torque Prediction Model 

The inverse torque prediction model is to compute a set of coil excitations, which is denoted 

here as a control input vector U, that is required to generate the desired torque. Unlike the 

forward torque prediction model which yields an unique torque vector for a specified set of coil 

excitations, there are generally infinite number of solutions to the inverse torque prediction 

model of a spherical VR motor which would produce a specified torque. To simplify the 

derivation, the following additional assumptions are made: 

1. In practice, it is desired to have no wiring in the moving parts and thus, only iron cores 
or permanent magnets are used as magnetic poles in the rotor. The presence of 
permanent magnets, however, generally introduces reluctances and magnetic leakages 
which result in complicated electromagnetic model. Thus, it is assumed that M rj = 0 
for j = 1 	n. The assumption implies that there are not control variables in rotor. 

2. To simplify the derivation, it is assumed that only current sources are used and that the 
MMF's of the coil are treated as system input variables. 

4.3.1 	Matrix Representation 

In order to obtain an optimal solution to the inverse torque prediction model, the torque 

equation is presented in quadratic form using the following notations: 

 

n 
E 	P

ij 
j=1 

a, =  	 E a = 1 
1 	m n 

1=1 
E 	E P, 

i=1 j=1 13  

c. 	[ 0 	0 ... 1 	0 	0 	
T 

(4.26) 

and 

(4.27) 
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i.e. except the i th  element which is equal to 1, all other elements of ci  are equal to 0. Clearly, the 

sum of ai  over i = 1, .., m is unity. Hence, using the notations defined by Equations (4.24) to 

(4.27), the torque can be written in matrix form as follows: 

1 
Tk 	2 

= — U
T 
 [ A

I
] U 

where 

I = 1, 2, 3 	 (4.28) 

m in 
dP  (0) 	 T 

[A
I

] 	= 
i

E 
1 	

E
1 

(10 	
I 	

(e..• u ) 	(a — c.) (a — c.) 
= 	j=

0=0, 
(elf 

13 
 

where (up 1=1,2,3) is an unit vector along the axes of the rotor baby frame. 

Property 

The matrix obtained above have the following property: Define U e  = [1, 1, ..., 1]T e Rm, 

then 

[A
I

] U
e 

= 0 
	

(4.30) 

which means summing the column vectors over each matrix resulting a zero vector. This can be 

verified as follows: Define bi k  = 1 if i=k or 0 otherwise. Then the elements of [AI] can be 

written as 

m in 
dP (0)  

A
il(/' 

= E 	E 
cly6 	10=q5 	(e ij • u I )  

i=1 j=1 	 ij I (a
k 
 — 6,

1k 
 ) (a

/  — b it 
) 

(4.31) 

By summing Equation (4.31) over (1 = 1, ..., m), 

m 	m 	n 
dP (4))  I 

E A
D(' 

= E 	E 	 (e..• u
I

) 
1=1 	j=1 

dO 	10=0, . 	3.3 
1=1 	 13 I 

m 
(a k— 6 1, k ) E (a1  — 6 i/

) . 
1 =1 

(4.32) 

(4.29) 
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Using Equation (4.26) and the definition of b ik, the right-hand-side of Equation (4.32) can be 

readily shown to be zero. Since for any a c R, which implies 

[A
k

] ( a Ue ) = 0 , 
	 (4.33) 

the property means that if all the control variables have a same value, no torque will be 

generated. The property can also be seen from Fig. 4.1 where if all MMF's are the same no flux 

will be generated. In other words, adding a constant to all components in U does not change the 

torque T. 

4.3.2 Formulation for Inverse Torque Model 

The derivations in the previous subsection have established the model for predicting the 

torques for given control inputs. Given the desired torque, U may be determined from Equation 

(4.28) by solving the algebraic equations. However, since U c R m  where m is the number of 

stator coils sufficiently large integer as compared to three, the degrees-of-freedom of the 

spherical motor, there are generally infinite numbers of solutions to the inverse problem. It is of 

interest to determine an optimal solution by some guidelines or a criterion, such as one 

minimizing of the current amplitude or the consumed power. In other words, the inverse torque 

prediction is essentially an optimization problem, which may be formulated as follows: 

m 

Minimize 	E I u, IP  
i=1 

where p > 0 	 (4.34) 

subjected to constrains imposed by Equation (4.28). 

Typical values of p are 1, 2 and OD. When p is chosen as 1, the sum of the current amplitude is 

minimized. If the consumed power of the electrical circuit is to be minimized, p equal to 2 may 
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be assigned. For the case where the maximum amplitude of the current is to be minimized, p is 

set to infinity. 

The generalized reduced gradient (GRG) method [21] [22], is used to solve for the optimal 

solution, which is well known to be an effective way in solving the nonlinear programming 

problem [23] [24]. However, it is difficult to find a feasible point and to proceed within the 

feasible region, the GRG method is not suitable for the problem with equality constraints. 

Therefore, the inverse problem (4.34) is reformulated as an unconstrained problem. The equality 

constraint problem can be converted to the unconstrained problem in two ways; namely the use 

of Lagrange multipliers and the addition of panel terms. 

Formulation I  

m 	 3 
1 

	

Mimimize f (U, X) = 	
lu 	

+ 	X
I 

(-
2 

U
T 
 [A ]U - T

I ) 
1=1 	 I=1 

where X 1 , A2, and X 3  are the Lagrange multipliers. 

Formulation II 

m 	 3 
1 

Mimimize f (U) = u'l + M Z 	(-
2 

U
T 
 [A ]U - T )

2 

	

i=1 	 1=1 

(4.35) 

(4.36) 

where M > 0 and M is a very large real number. It has been shown that under some very general 

conditions, the solution to the problem formulation II approaches the solution to the original 

inverse problem (4.34) as M-oo. The problem formulation I is unbounded since X's can be 

chosen such that the objective function has arbitrarily large amplitude with minus sign. 

Therefore, the gradient-based method would fail to find the stationary points. On the other hand, 

the problem represented by the formulation II is bounded and a global optimal solution exists 
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since f(U) Z 0 for all U a Rm. It has been numerically found that the GRG method works well 

in solving Formulation IL 

4.3.3 Implementation of the inverse torque model 

The average running time to solve an optimal solution represented by Problem (4.36) using 

an off-the-shelf optimization software [25] is about 1 minute on a Intel 80386 25 MHz computer. 

The typical sampling rate in the control of an electromechanical systems is in the order of 1KHz. 

In other words, if the inverse torque model is to be implemented in real-time, it is necessary that 

all computations should be completed within 1 cosec. For real time applications, a look-up table 

may be pre-compiled using off-line computation. The following discussion addresses practical 

issues related to the design of the look - up table for real time implementation, which fits the 

practical memory size. 

The table size is determined by the number and the range of variables. Since the matrices 

([A1], 1=1,2,3) vary with the orientation of the spherical motor, the table should typically consists 

of three torque components and three independent position coordinates. Therefore, the 

dimensions of the table will be six. If all of the variables are simply put together into the table, 

the table size will be enormously large as illustrated in the following example. 

Consider eleven stator coils to be individually controlled. Each of the control inputs 

require two bytes for representation. If each of six system variables (three torque and three 

position coordinates) is characterized by 20 points over the entire range (which is still rough), 

the total number of points would be 20 6  or 64x106. Each point would require 11 x 2 = 22 bytes 

to store an input vector U. The memory needed would exceed 1300 Mbytes. 
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Table Size Reduction by Parameter elimination  

To reduce the table size, first notice that (4.49) is a quadratic function, the torque is 

proportional to II U II 2, where II U II 2  = UT  U. Therefore, it is possible that the table only 

contains the results for I T 1=1, since for other values of T, the control inputs can be obtained by 

scaling. Now there are only two independent components for T of unity amplitude, the 

dimensions of the table is reduced by 1. 

This is still far from satisfactory. A more efficient way is to eliminate all the torque 

variables in the table. Several approaches along with their advantages and shortcomings are 

discussed as follows: Let U1, U 2 , and U3  be the control inputs computed off-line from the 

inverse torque model which would produce the unit torque components T 1 , T2  and T3  about the 

three axes of the rotor body frame respectively. For each rotor position which is characterized by 

three independent position coordinates, the three input vectors U 1 , U2 , and U3  are stored in the 

precompiled table. 

(A) For a specified torque of any arbitrary direction, the input vector U is given by 

U = a U
1 

+ 0 U
2 

+ 7 U
3 

. 	 (4.37) 

Given the three coordinates of the spherical motor, the three input vectors U1, U2, 
and U3  corresponding to the input vectors required to generate a specified torque with 
respect to the rotor body frame respectively, are determined from the table. The 
coefficients (a, 13, 7) are computed from a set of three nonlinear simultaneous 
equations, which are obtained by substituting Equation (4.37) into Equation (4.28). 
Thus, the required control input can be solved from Equation (4.37). In this approach, 
only the three input vectors (U1, U 2, and U3) are required to be stored for each rotor 
position and thus the torque variables are eliminated. 

(B) This approach is similar to the approach (A), but in solving U 1 , U2, and U3 , six more 
constrains are added: 

[A
J

] U
I 

= 0 
	

(4 . 3 8 ) 

for J 	I where I, J = 1, 2, 3 
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which makes all cross terms zero when Equation (4.37) is substituted into Equation 
(4.28). Therefore without solving for (a, p, 7), U can be directly written as 

3 
U = E 	T I 
	

(4.39) 

As in approach (A), only U 1 , U2 , and U3  are required to be stored for each rotor 
position. 

(C) In this approach, the sampling period is divided into three segments t1, t2 and t3 such 
that the sum of t 1 , t2 , and t3  is equal to a specified sample time. The control inputs 
U1 , U2 , and U3  are applied to the system during the time intervals t 1 , t2, and t3 

 respectively. Since (t1 , t2 , and t3) can be chosen to be proportional to the desired 
(T1 , T2, T3), the result effect of the control inputs to the system will yield an output 
torque approximately equal to the specified T(T 1 , T2, T3). 

Consider the same example where the spherical motor consists of eleven stator coils and 20 

points are used to characterize each of the three position coordinates. The total number of points 

required to be stored in the look-up table would be (20 3  x 11 x 3 x 2 bytes) or 528 Kbtyes in all 

three approaches (A), (B) and (C). The memory space required for the table is reduced by a 

factor of 8000 as a result of eliminating the three torque components as parameters. 

Among the approaches, (C) requires a minimum amount of computation and is easiest to 

realize. However, the actual trajectory resulted from approach (C) may not be very smooth, and 

the abrupt change in U in a fraction of a specified sampling time may cause a very high voltage 

in coils. The approach (A), on the other hand, requires an on-line computation of (a, 13, 7) from 

a set of three non-linear simultaneous equations. By imposing six additional constraints to the 

inverse torque model, U, the approach (B) aims at reaching a near optimal solution to eliminate 

the on-line computation of (a, 0, 7), which implies more currents (or more power consumed) 

than (A) are required to generate a specified torque. 
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Table Size Reduction by Use of Symmetry  

Since the torque variables are eliminated from the table, the variables in the table are only 

the position coordinates, namely, Eulerian angles. Further reduction of the look-up table can be 

achieved by using the pole location symmetry of the spherical motor to reduce the range of 

position variables. The following example illustrates the method. 

Consider a spherical motor where eleven poles on the stator are arranged according to the 

apices of an icosahedron. The rotor has four evenly spaced poles. The stator and rotor poles are 

listed in TABLEs 4.1 and 4.2 respectively. The corresponding ranges of the Eulerian angles are 

as follows: 

precession: 	0 s s 27r 
nutation: 	0 s B s /r/4 
spin: 	 0 s q5 5 27r 

Fig. 4.2 shows the rotor pole configurations with respect to the rotor body frame. 

Similarly, the stator pole configuration with respect to the stator coordinate frame is shown in 

Fig. 4.3 where Si defined the i th  space bounded between two adjacent projections of the radial 

lines connecting the origin and the stator poles on the xy plane. Let b be the end point of the 4 th 

 rotor pole. Consider be Sp the range of the spin angle about the pole b required in the 

formation of the look-up table is 0 s 0 5 2r/3. Suppose b remains the same position and spin 

angle 0 Z 2r/3. Since the rotor poles are evenly spaced at 2/r/3 apart about the pole b, the same 

torque generated will remain unchanged if the control inputs are the same as the case when b'= 

± 2r/3. Therefore, to produce the same torque, u(0) = u(0 ± 2/r/3). 

Outside the region S i , the same torque can be obtained by transformations of the control 

input U for b as follows: In general, 

U
(K) 

= [R K]U
(1)  
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Table 4.1. Coordinate of the stator poles 

pole 

0 0.0000 0.0000 0.0000 
1 0.8944 0.0000 0.4472 
2 0.2764 0.8507 0.4472 
3 -0.7236 0.5257 0.4472 
4 -0.7236 -0.5257 0.4472 
5 -0.2764 -0.8507 0.4472 
6 0.7236 -0.5257 -0.4472 
7 0.7236 0.5257 -0.4472 
8 -0.2764 0.8507 -0.4472 
9 -0.8944 0.0000 -0.4472 

10 -0.2764 -0.8507 -0.4472 
11 0.0000 0.0000 -1.0000 

Table 4.2. Coordinates of the rotor poles 

pole 

1 0.9428 0.0000 0.3333 
2 -0.4714 0.8165 0.3333 
3 -0.4714 -0.8165 0.3333 
4 0.0000 0.0000 1.0000 
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Figure 4.2 Rotor pole configuration 
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Figure 4.3 Stator pole configuration 
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First consider the case where K is an odd index number defining the region S K  indicated in 

Fig. 4.3. Suppose b e S 3 . If (Ni, 8, 0) denotes the position of b when b e S 1 , the corresponding 

position of b in the region S 3  can be written as Op + 2r/5, 0, (0). If U(1)  where the superscript 

(1) denotes the input vector U required to generate T when b e S p  to produce the same torque T 

with respect to the rotor body frame, the input vector U (3)  is deduced from U (1)  by shifting the 

the components of U(1)  2/r/5 in the counterclockwise direction. Hence, the transformation [R3] 

is made up by the following equations: 

0 0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 

[R
3

] 	= 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 

_0 0 0 0 0 0 0 0 0 0 1 

The remaining transformations for an odd number of K is given as follows: 

[R i ] = [I] 

[R5] = [R 3] 2  

[R7] = [R3] 3 

 [R9] = [R3]4  

Finally, consider an even number of K. To begin with, suppose b E Sio. From symmetric, the 

mirror image of any point b with its position denoted by (1,G, 0, 0) E S 1  is (-4/, 0, —0) = (2v—IP, 

8, 27-5) e S io . Since this symmetry is mirror-like and cannot produce the same torque by 
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simple transforms, but we can produce a torque that is the mirror image of the torque produced 

when beS1. 

T 
e 

= 
[ 	-1 

0 
0 

0 
1 
0 

0 
0 

-1 
T

o 

This can be done by using the transformation [R 10]: 

1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 

= 
[R10 ] 

 0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 

For an even number of K, the transformation is given as follows: 

[R2] . [R3] [R 10] 

[R4] . [R3]2  [R10] 

[R6] = [R3]3 [R10] 

[R8] = [R3]4 [R10] 

Thus, the ranges of the rotor coordinates are reduced to 

precession: 0 5 ty s 27r/5, 
nutation: 0 5 0 5 7r/4, and 
spin: 0 5 it) 5 27r/3, 

which represents 1/30 as the original rave. It is expected that the memory size required by the 

table can be reduced to the order of 10 0 Kbytes. 
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5. CONCLUSIONS AND FUTURE WORK 

This section is a summary of major findings already discussed in each of the previous 

sections: 

1. Along with an illustrative example, the design feasibility of a ball-joint-like 
spherical VR motor has been described in terms of the overlapping area between the 
circular stator and rotor poles. Two general expressions to determine the 
overlapping area between any circular stator/rotor pole pair in three dimensional 
space, an exact solution and an approximation, have been derived. 

2. Magnetic flux patterns of a typical pole interaction have been predicted using finite 
element methods. It has been shown that inaccurate assumed flux shapes and the 
assumption of no magnetic leakages in deriving the reluctance force could lead to a 
significant error as high as 90%. 

3. By choosing current sources for coil excitation, the torque prediction model is 
algebraic and decoupled from the dynamic equations of motion and thus, would 
reduce the motion control to a great extent. 

4. The inverse problem to torque prediction model of the three DOF spherical VR 
motor, which determines the coil excitations for a specified torque, is characterized 
by its infinite solutions. 

5. Along with the formulation for input vector optimization, the memory size of the 
lookup table for practical implementation of the optimal solution can be effectively 
reduced by parameter elimination technique and the symmetry property of pole 
configuration. 

The analysis presented in this report would serve as a basis for spherical VR motor design. 

Research efforts have been led to the prototype development of a three DOF spherical VR motor. 

The prototype spherical VR motor will serve as a testbed for experimental verification of the 

reluctance and the torque prediction models. Research efforts have currently been directed 

towards the motion control law development and implementation. 
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APPENDIX 

FINITE ELEMENT FORMULATION 

The fundamental equations of magnetostatics, which relate the electromagnetic field and 
source quantities in a magnetic field system, are described the following Maxwell's equation as: 

V • B= 0 	 (1) 

VXH=J 	 (2) 

where B is the flux density, H is the magnetic field intensity, and J is current density. Equation 
(1) states that the magnetic flux lines are sourceless at any point in the field. Equation (2) states 
that the circulation of the magnetic field at a point is due to the existence of current with density 
J at that point. In addition to these equations, the constitutive law that describe how the physical 
properties of the materials affect the field and source quantities is given by 

B = µ H 	 (3) 

where 14 is the permeability of the material. 

The Maxwell's equations are numerically solved using finite element method to predict the 
magnetic field. In order to do so, the Maxwell's equations are formulated into a Poisson 
equation which was then solved by the finite element method. Two particular methods are used 
in the finite element formulation; namely, the vector potential formulation and the reduced scalar 
potential formulation. 

Ad Vector Potential Formulation 

In the vector potential formulation, a vector potential A is defined as 

VXA=B 
	

(A.1) 

V • A= O. 	 (A.2) 

Using the constitutive law defined in Equation (3) and the definition given in Equation (A.1), 
Equation (2) becomes 

VX 
 1

2--VXA) =J. 
IA 

(A.3)  

In the two-dimensional analysis, where both the current density J and the magnetic vector 
potential A posses only longitudinally directed components, i.e. A x  = Ay  = 0, Jx  = .Ty  = 0, and 
Az  = Az(x,y), Equation (A.3) can be simplified to 

which is in the form of a Poisson equation. 

V • [—i VAI =—J 
Z 	 Z 

(A.4)  
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Az  is assumed to have an expansion form 

N 

A = >7  a, N,. 
z 	 3 	3 

(A.5) 

where the a• terms are unknowns and the N. are chosen shape functions. The N shape functions 
are chosen such that each shape function has a value of 1 at the node i, and linearly reduces to 0 
at the adjacent nodes and the rest of the domain. 

Equation (A.4) is multiplied by N i  (i = 1, N) on both sides and integrated by parts over 
the domain D. By applying the divergence theorem to the first term on the left-hand side of 
Equation (A.6) and substituting A z  from Equation (A.5) into Equation (A.6) , the unknown 
vector a = [a l  ... aN ] r  can be determined from Equation (A.7) 

where the elements of the N x N constant 

and the element c i  of the constant vector 

c, 	= 

k, 

matrix 

= 
13 

c = [c 1  

D J z 
 N,dx 

[K] a 

[K] , kiif 

1  VN 
D 	1,2 

c N] T  

— 
1 

= c 

is 

• VN , dx 
j 	1 

is 

	

N, 	SA z  
dx 

(A.7)  

(A.8)  

(A.9)  f 	
g an 

where 8 D denotes the boundary of domain D and 3A zian is the boundary condition to be 
specified. 

Since /.1 is a nonlinear function of H, this solution process must be iterative. The first 
iteration uses a guessed value of g to evaluate k ii  and c i  numerically from the integrals in 
Equations (A.8) and (A.9) respectively. The solution of A z  can be determined from the 
summation in Equation (A.5) by solving for the nodal potential vector a from Equation (A.7). 
The flux density B can then be computed from Equation (A.1). Using the computed flux density 
B, the g value is updated according to the B-H curve of the magnetic material. The solution is 
repeated until further update of g does not cause significant change in B. 

A.II Reduced Scalar Potential Formulation 

In the reduced scalar potential formulation, the magnetic field intensity H is first 
distinguished as the fraction due to current sources and the fraction due to the induced 
magnetization of the material. That is, 
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H = H + H
m S 

where H s  is due to the current sources and H m  is due to magnetization of the material. Thus, 
Equation (3.2) gives 

V X (H + H ) = J 	 (A.10) 
s m 

or 

V X H = J 
S 

VXH
m 

= 0 

Equation (A.10) suggests that H m  is curl free and therefore can be expressed as the gradient of a 
"reduced" scalar function V as [] 

V V = — H
m 
	 (A. 11) 

The term "reduced" comes from the fact that V is defined only by H m, not the full field intensity 
H which can be expressed correspondingly as 

Equation (1) become 
s 

H = —VV + H
m

. 

V • (zW) = V • (gH ) 
s 

(A.12) 

(A. 13) 

which is in the form of a Poisson equation. The left hand side term H s  can be directly calculated 
from the current sources by applying the Biot-Savart law as follows 

1 i Jxr  
H

s 
— 	 dv. 

4ir JD 
I r I3  

(A.14)  

where the domain of integration D is the entire current carrying body, r is the vector pointing 
from the differential current carrying body to the point where the H s  is to be calculated, and J is 
the current density at this differential body. 

Using Gerlakin approach, the reduced scalar function V is approximated by 

N 

V = 

 

v N . N. 
7 7 

(A.15)  
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where the v.
J 
 terms are unknowns and the N i  are chosen shape functions as defined in Equation 

. 
(A.5). The finite element formulation of Equation (A.13) is similar to that for the vector 
potential method. The unknown vector v = [v 1  ... viNi]T  is determined from Equation (A.16) 

[K] v = c 	 (A.16) 
where 

k 	 VNii  = fp 	VN , • 	dx 
	 (A.17) 

av c i  = JD  gHs  • VN,dx — f aD  gNi  -671- dx. 	(A.18) 
1 

and where 8V/8n is the boundary condition to be specified. The solution of H is an iterative 
process, which starts with a guessed value of g. The nodal potential vector v is solved from 
Equation (A.16), in which ki • and ci  are evaluated numerically from the integrals in Equations 
(A.17) and (A.18). The field intensity H can then be solved from Equation (A.12) and the new 
value of tt is obtained using Equation (3). This process is repeated until the change of g does not 
cause significant change in H. 

In the reduced scalar potential formulation the flux lines are not equipotential lines. In 
general, the flux lines are not orthogonal to the equipotential lines except when the current 
sources H s  are absent from the system. 
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