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ABSTRACT

Every day, we rely on the information that is encoded in the au-
ditory feedback of our physical interactions. With the goal to per-
ceptually enhance those sound characteristics that are relevant to
us — especially within professional practices such as percussion
and auscultation — we introduce the method of real-time Audi-
tory Contrast Enhancement (ACE). It is derived from algorithms
for speech enhancement as well as from the remarkable sound
processing mechanisms of our ears. ACE is achieved by individ-
ual sharpening of spectral and temporal structures contained in a
sound while maintaining its natural gestalt. With regard to the tar-
geted real-time applications, the proposed method is designed for
low latency. As the discussed examples illustrate, it is able to sig-
nificantly enhance spectral and temporal contrast.

1. INTRODUCTION

Every sound that we encounter in our daily lives contains infor-
mation. If the sound is the result of a physical process such as an
interaction with our environment, then it contains information on
the involved physical objects (e.g., material or geometry), their en-
vironment (e.g., room acoustics), and the type of interaction (e.g.,
hitting or scratching). Pieces of information that are not only re-
stricted to natural sounds but also apply for synthesized sounds are,
for example, sound parameters such as frequency or amplitude, as
well as their perceptual pendants — here pitch and loudness. If
such sound parameters are deliberately modified with respect to
some underlying data, as being the case in auditory display and
also in music, then even this data is encoded in the sound. Un-
fortunately, we are not able to perceive the entire information, but
only a small fraction of it.

Nevertheless, as an everyday experience, we rely on the audi-
tory feedback of our physical interactions, either consciously, e.g.,
when shaking a box to guess its contents, or unconsciously, when
automatically adapting to the physical structure of the ground
while walking. If the auditory feedback (the sonic reaction to
physical interaction) is artificially modified, then we speak of aug-
mented auditory feedback [1]. It seeks to attain three goals. (1)
Add additional information to the sound. This is usually referred
to as Auditory Augmentation [1, 2, 3, 4]. (2) Modify the informa-
tion that is already contained in the sound, in order to achieve a
change in behavior, e.g., [5, 6, 7]. (3) Enhance the information
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Figure 1: Someone shaking a box to guess its contents from the
resulting sound. A task we want to facilitate.

that is already contained in the sound, e.g., improvement of the
Signal-to-Noise-Ratio (SNR).

In this sense, we introduce Auditory Contrast Enhancement
(ACE) with the objective to enhance relevant sound characteristics
in order to facilitate their perception and hence improve the con-
veyance of the underlying information. This concept is illustrated
in Fig. 1. What might be relevant to users, however, depends on
their individual activities, as well as on the type and origin of the
observed sound. We expect high potential for auditory contrast
enhancement where listening is part of a knowledge-making pro-
cess. Especially when, for example, scientists, engineers, or physi-
cians rely on their ears during professional routines. Even for this
limited group of people and their audition-based practices, Supper
and Bijsterveld discriminate between at least six different listening
modes, depending on the purpose and on the way of listening [8].

One of these practices is percussion, a technique where a phys-
ical object or body part is actively hit in order to reveal information
on its inner structure through the induced auditory feedback. This
technique has established in everyday life to locate a good spot
for a drill hole in a wall. The passive complement is ausculta-
tion where a physical object such as a machine or a human body
is inspected by passively listening to its sound — usually by using
a stethoscope. This tool enhances auditory contrast not only by
efficient guidance of the structure-borne sound to the user’s ears,
but also by amplification of frequency-ranges which are of special
interest to the user [9].

We distinguish between two types of auditory contrast. By
inter-stimulus contrast, we mean the perceived differences be-
tween stimuli, which results from juxtaposing them. Inter-stimulus
ACE tries to display all aspects in which two or more stimuli differ
auditorily. This topic is extensively investigated in our companion
paper [10] and will not be covered further here. By intra-stimulus
contrast, we mean the strengths of peculiarity of a single stimu-
lus. These may be the spectro-temporal dynamics of a sound. By
intra-stimulus ACE, we seek to intensify those peculiarities.
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Our goal is to enhance the perception of those sound properties
that characterize a sound, while maintaining its original gestalt as
good as possible. We assume that this compromise can be achieved
by attenuating non-characteristic aspects of the signal, thus leading
to reduced spectral, temporal, and informational masking. In the
extreme case, a very strong contrast enhancement leads to a car-
toonification of the sound, reducing it to only a few very prominent
sound attributes. This is conceptually similar to the visual domain
where contrast is usually understood as the degree to which areas
of an image differ in appearance.

Assuming that a sound is characterized by its unique spectral
and temporal structure, an enhancement of this structure may au-
tomatically enhance the contrast to other sounds which exhibit a
different structure. If, however, two sounds share the same strong
characteristics with only minor differences, intra-stimulus contrast
enhancement could even suppress those differences, leading to re-
duced inter-stimulus contrast between both. Such “similarity en-
hancement” might be useful when searching for similarities be-
tween stimuli. Otherwise, inter-stimulus contrast enhancement
would be the recommended choice (see companion paper [10]).

In summary, we identify two activities which intra-stimulus
ACE should improve: (1) identify the physical sound source, as
visualized in Fig. 1. and (2) discriminate between sounds that are
different to each other.

The rest of this article is structured as follows. In Sec. 2
we derive an algorithm for real-time intra-stimulus ACE. Spectral
and temporal contrast enhancement are individually addressed in
Sec. 2.1 and 2.2, respectively. Finally, a general discussion (Sec. 3)
as well as conclusions and an outlook on future investigations
(Sec. 4) are given. Supplementary material such as the sound ex-
amples (Snd.) referenced in the text can be found under the follow-
ing link: https://doi.org/10.4119/unibi/2935786

2. AUDITORY CONTRAST ENHANCEMENT

The main applications that are envisaged for real-time ACE are
percussion and auscultation — not so much for medical purposes
but more for material testing by ear and auditory observation of
mechanical processes such as machines. The targeted sounds
therefore include transient interaction sounds and environmental
sounds, but not speech or music. The focus on real-time appli-
cation on auditory feedback makes a low-latency implementation
necessary. Furthermore, the sounds resulting from ACE should
maintain some degree of naturalness — they should stay within the
limits of plausibility with reference to their individual context and
the performed action. Even if ACE is only used as a technical
tool, we know that “naturalness influences the perceived usabil-
ity and pleasantness of an interface’s sonic feedback“ [11]. While
development is performed in Matlab, the real-time algorithm will
be implemented in SuperCollider and Pure Data to finally be able
to run on smartphones or low-latency platforms such as the Bela
[12]. Sound recording and playback can be done either with a
contact microphone and loudspeaker, or by using a mic-through
system (headphones with built-in microphones).

Figure 2 shows the overall block diagram. Output s0[n] is a
mix of three signals: (1) the dry input signal s[n] (e.g., coming
from a microphone), (2) the output sf [n] of Spectral Contrast En-
hancement (SCE, see Sec. 2.1), and (3) the output st[n] of Tem-
poral Contrast Enhancement (TCE, see Sec. 2.2). Their individ-
ual gains are parametrized by two linear cross-fades: (1) between
sf [n] and st[n] to intuitively tune to the signal dimension of in-

s[n]
gd

+ s0[n]
gf

SCE

gt

TCE

sf [n]

st[n]

Figure 2: Overall block diagram of real-time ACE.

terest, and (2) between this weighted sum and the original signal
(wet and dry) for overall strength of the effect.

2.1. Spectral Contrast Enhancement

Yang et al. define spectral contrast as “the decibel difference
between peaks and valleys in the [magnitude] spectrum” [13].
They describe several algorithms for spectral contrast enhance-
ment, aiming at two applications: (1) compensation of reduced
frequency selectivity in hearing-impaired people, and (2) speech
enhancement in noise. One of the easiest methods is to exponen-
tiate the magnitude spectrum by a variable exponent, followed by
normalization [14]. This results in a spectral dynamics expansion
with respect to the global maximum. Other approaches use lin-
ear prediction which works well for speech enhancement where
detailed information on the sound source is available [13].

A large group of algorithms is based on an analog circuit pro-
posed by Stone and Moore [15]. In principle, the signal is split into
a number of frequency bands which are separately processed by a
variable gain amplifier and then summed. The gain of each chan-
nel is a weighted sum of its own envelope and the envelopes of
four neighboring channels; the latter with negative weights. This
weighting is similar to a transversal FIR filter. As result, spec-
tral peaks are amplified while troughs are attenuated. The digital
implementation of this algorithm — Yang et al. refer to it as “Cam-
bridge’s method” — works as follows [13, 16]:

1. Computation of the spectrum Xk of a (windowed) signal block
via Fast Fourier Transform (FFT), with frequency index k.

2. Calculation of excitation pattern Pk — “the representation of
a spectral shape in the auditory system” [15]. It resembles a
smoothed version of the magnitude spectrum |Xk|.

3. The enhancement function Ek is the convolution of Pk with
a Difference-of-Gaussians (DoG) function. This is similar to
a smoothed 2nd derivative. The DoG function is the sum of
a positive Gaussian and a negative Gaussian with larger (here:
2⇥) bandwidth. Convolution runs on a scale which quantifies
the number of Equivalent Rectangular Bandwidths (ERB) that
fit below a certain frequency — the ERB-rate scale [17].

4. The enhanced magnitude spectrum |Yk| is then

|Yk| = Pk ·
�
|Ek| + 1

�sgn(Ek)·⇢ , (1)

where ⇢�0 controls the strength of the effect.
5. Inverse FFT of |Yk| combined with the original phase values.

While Cambridge’s method did not improve speech intelligibil-
ity — neither analog nor digital — its high potential in “technical”
enhancement of spectral contrast, i.e., increasing differences be-
tween peaks and valleys, is evident.

Our auditory system achieves spectral contrast enhancement
similar to Cambridge’s method. The underlying mechanism is
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based on Lateral Inhibition (LI) in the neural networks of the au-
ditory nerves and the auditory cortex [18, 19]. In general, this
process can be described as “the suppression of nervous activity at
one place in a receptor field as a consequence of the stimulation
of adjacent places in this field” [20]. Besides, for instance, the
retina and the skin, such receptor fields are also found along the
basilar membrane [21, 22]. Kral and Majernik used an artificial
neural network to model the effect of spectral contrast enhance-
ment in the auditory system via lateral inhibition [18]. Among
their simulated scenarios, three extreme cases are of particular in-
terest. (1) Partly overlapping band-limited noise signals are nar-
rowed in bandwidth and thus separated. (2) Uniform white noise
is effectively suppressed. (3) Uniform white noise where a specific
frequency-range has been suppressed leads to spikes at the edges
of the stopband — the so-called edge effect.

It seems that in general there are two types of spectral contrast:
(1) exponentiation relative to the global maximum (we refer to it
as spectral dynamics expansion), and (2) lateral inhibition (we re-
fer to it as spectral sharpening). It might be interesting to compare
these to the visual domain. Spectral dynamics expansion compares
to visual contrast control as shown in Fig. 3b, while spectral sharp-
ening is actually edge detection (see Fig. 3c; the image shows the
inverted result) — remember the edge effect demonstrated by Kral
and Majernik [18]. In order to achieve something close to cartooni-
fication, as exaggeratedly illustrated in Fig. 3d, we would need a
combination of both types of contrast. In vision, this would be an
overlay of Fig. 3b and c, e.g., by multiplying or taking the mini-
mum of both images). In the auditory domain, we would take the
maximum of both output spectra. The above considerations sug-
gest that both types of spectral contrast enhancement are necessary,
depending on the sound characteristics of interest, and therefore
need to be implemented for parallel or serial use.

As we target low latency and real-time operation, the use of
FFT — the basis for the majority of speech enhancement algo-
rithms — is not possible. For that reason, frequency separation
must be achieved by a filterbank, similar to the analog circuit by
Stone and Moore [15]. We are therefore restricted to operate on
a very limited number of frequency bands. Note, however, that
Cambridge’s method returns an altered version of the excitation
patterns — a signal with significantly reduced frequency resolu-
tion. An adequate approximation of the excitation pattern can
be obtained by a Gammatone filterbank (GTFB) — a widely used
model for the auditory filters [23]. If the filters’ center frequencies
are equally spaced on the ERB-rate scale (and set to constant band-
width in parts of the ERB), they simulate an equal spacing on the
basilar membrane. The lower bands exhibit a smaller bandwidth
in Hz, leading to longer impulse response and group delay. This
implies a trade-off between frequency resolution and group delay
towards low frequencies, which needs to be taken care of.

The excitation pattern is expressed by the energy distribution
across sub-bands, calculated via their channel envelopes. Depend-
ing on the implementation of the Gammatone filter, it can also
output the imaginary part of the resulting signal, in addition to the
real output. An accurate estimation of the signal envelope is then
given by the magnitude of the complex filter output. A suitable im-
plementation is the one by Hohmann [24], which is available for

1Fig. 3a-c: Anne Davis, http://flickr.com/anned/, Creative
Commons Attribution NonCommercial (CC BY-NC) 2.0 Generic License.
Fig. 3d: http://pngimg.com, CC BY-NC 4.0 International License.

(a) original photo (b) photo with high contrast

(c) photo with edge detection (d) a famous cartoon duck

Figure 3: The photo of a white duck in three versions, and the
drawing of a famous cartoon duck.1

Matlab2, Pure Data3 and SuperCollider4; in the latter case, a small
modification of the source code is needed in order to return the
imaginary part. We use 60 4th-order filters with center frequencies
from 50 Hz to 20 kHz, overlapping at their -4 dB cutoff frequency
(as in [25]). During resynthesis, i.e., summation of the processed
sub-bands, their different group delays are usually compensated
by individual time-delays, in order to reduce ripple in the output
spectrum. We circumvent such additional latency by weighting the
sub-bands with alternating signs, as proposed by Noisternig [25].

A block diagram of the proposed algorithm for spectral con-
trast enhancement is shown in Fig. 4. The overall block diagram
(Fig. 4a) illustrates the general idea described above. In summary,
the input signal s[n] is split into K sub-bands ck[n] by a Gam-
matone filterbank with K channels; k is the channel index. The
actual spectral contrast enhancement is done within the sub-band
processing block (SP). The sum of the processed (real-valued) sub-
bands c0

k[n] then forms the enhanced output signal. Within SP,
all channels are treated equally. While the Gammatone filterbank
accounts for the 1/f proportionality of signal energy, this might
not be enough for many natural signals which may exhibit even
stronger high-frequency loss. This could lead to overly damped
high-frequency content in the output. This effect is reduced by a
pair of shelving filters (HSF) — one boosting high frequencies of

2Matlab implementation of the used Gammatone filterbank [24]:
http://medi.uni-oldenburg.de/download/demo/
gammatone-filterbank/gammatone_filterbank-1.1.zip

3Audition library for Pure Data:
http://lumiere.ens.fr/Audition/tools/realtime/

4 AuditoryModeling UGens from SC3 Plugins:
https://github.com/supercollider/sc3-plugins
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Figure 4: Block diagram of spectral ACE.

s[n] before feeding it to the Gammatone filterbank (HSF 1), and
another one inverting the effect of the first one by attenuation after
resynthesis/summation (HSF 2).

Each channel ck[n] individually passes sub-band processing as
shown in Fig. 4b. First, the sub-band envelope ek[n] is extracted
by taking the absolute value of the complex signal ck[n]. This en-
velope then successively passes three stages: lateral inhibition (LI,
see Sec. 2.1.1), exponentiation (EX, Sec. 2.1.2), and decay prolon-
gation (DP, Sec. 2.1.3). The processed envelope pk[n] is finally
applied to the real part of the sub-band signal ck[n] by multipli-
cation with the ratio between processed and original envelope (see
Eq. 2). Both envelopes are low-pass filtered by a leaky integrator
with time-constant ⌧ =2 ms to suppress disturbing artifacts which
occur at high amplitude ratios, especially at low overall volume.
For regularization, a small value �=10�5 is added to the denomi-
nator (assuming audio signals in the range between -1 and 1).

c0
k[n] = Re

�
ck[n]

 
· e0

k[n]
ek[n] + �

. (2)

2.1.1. Spectral Sharpening

One problem we see in Cambridge’s method (Eq. 1) is that it not
only dampens spectral valleys but also amplifies spectral peaks.
This uncontrolled amplification of the signal can be avoided by
restricting the enhancement function Ek to negative values.

We first define an inhibition term Tk[n] which quantifies the
overall energy in the neighboring sub-bands. If it is larger than the
energy in the observed band, then this band is attenuated. Calcula-
tion of the inhibition term is based on the sub-band envelopes ek[n]
which are low-pass-filtered by a leaky integrator, which leads to
ẽk[n]. The resulting slow attack time suppresses inhibition caused
by short spikes in neighboring bands, while the decay adds an af-
tereffect to the lateral inhibition.

We base the calculation of the neighboring bands’ weights on
the DoG function as in Cambridge’s method. The ratio between
the bandwidths of the two Gaussians controls the sharpness of the
resulting spikes in the spectrum. As our approach anyway restricts
sharpening to the bandwidths of the used filters (which is quite
“unsharp”), we reduce the positive Gaussian to a minimum, being
a Dirac delta impulse. This way, extreme enhancement (large ⇢)
would inhibit all frequency bands except those which describe lo-
cal maxima. The bandwidth of the negative Gaussian is set via its
standard deviation � in ERB-rate.

For the lowest and highest sub-band, neighbors of significant
weight are outside the scope of the filterbank. A zero-padding
(insertion of zero-valued virtual bands on both sides) would intro-
duce an unwanted edge-effect at the lowest and highest sub-band

(k =1 and k =K, respectively), similar to the simulation by Kral
and Majernik [18]. Therefore, two virtual sub-bands (copies of
sub-bands 2 and K�1) are introduced as sub-bands 0 and K+1,
respectively (copying the edge bands themselves would half a po-
tential contrast in those bands). The inhibition term Tk[n] then
becomes

Tk[n] =

vuut 1

��
k

k�1X

i=0

�i,k · ẽ2
i [n] +

1

�+
k

K+1X

i=k+1

�i,k · ẽ2
i [n] , (3)

where �i,k is a Gaussian function, with center frequencies fc of
the filters given in ERB-rate:

�i,k = exp

✓
� (fc,i � fc,k)2

2�2

◆
. (4)

The scaling factor can be omitted, as the weights are anyway nor-
malized for the lower and upper neighbors individually, altogether
summing up to 1:

��
k = 2

k�1X

i=0

�i,k and �+
k = 2

K+1X

i=k+1

�i,k . (5)

This scaling ensures that a signal with equal envelopes, i.e., in
which ek[n] is the same for all k, implies Tk[n]= ẽk[n], and there-
fore leads to unchanged envelopes. Due to the ERB-scaled Gam-
matone filterbank, this is the case for a pink noise signal which
exhibits a magnitude spectrum that is proportional to 1/f . This re-
lation approximates the decrease in energy towards high frequen-
cies, that is common to many natural sounds. In analogy to Eq. 1,
the sharpened envelopes uk[n] then become

uk[n] = ek[n] · min

⇢✓
ẽk[n]
Tk[n]

◆⇢

, 1

�
(6)

The amount of spectral sharpening is set by the parameter ⇢ � 0.
As the quotient Tk[n]/ẽk[n] is restricted to values below 1, any
⇢>0 literally suppresses lower quotients.

The effect of spectral sharpening is demonstrated by knocking
with knuckles on a wooden plate. Listen to the signal without and
with spectral ACE (Snd. 1.1 and 1.2, respectively). Corresponding
spectrograms are shown in Fig. 5a-b. Parameters have been set
to values which work well for most signals: ⇢ = 30, � = 3 ERB,
and smoothing time constant ⌧ = 7 ms. It is apparent that the
described algorithm effectively suppresses spectral troughs while
leaving local maxima as narrowband regions with their original
amplitude. In addition, the broadband background noise is reduced
to some high-frequency artifacts of the recording which are now
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clearly audible. A ⇢ larger than 30 does not seem to bring any
benefit for spectral sharpening; the signal is already reduced to
its local maxima. Additional contrast can be achieved by spectral
dynamics expansion, as explained in the next section.

2.1.2. Spectral Dynamics Expansion

The goal of spectral dynamics expansion is to attenuate frequency
bands with low energy while pulling those with high energy, above
a certain threshold value, up to the running global maximum. In
contrast to spectral sharpening, this approach should not attenuate
broadband regions in the spectrum if they are prominent enough.
On the downside, it will suppress even very prominent local max-
ima if they appear below the threshold.

Spectral dynamics processing is achieved by exponentiation of
the magnitude spectrum — inspired by the simple algorithm orig-
inally proposed by Boers [14]. In our case, each envelope uk[n]
is scaled with respect to the global maximum of all (smoothed)
envelopes (see Eq. 7). As gain-factor, we use the quotient of the
smoothed envelope ũk[n] and a fraction of the instantaneous max-
imum of all smoothed envelopes (µũmax). The exponent � � 0
sets the amount of expansion; 0 < µ  1 is the relative threshold.
Gain is clipped at ũmax/̃uk[n] so that uk[n] does not exceed the
maximum of all sub-band envelopes.

vk[n] = uk[n] · min

(✓
ũk[n]

µũmax [n]

◆�

,
ũmax [n]
ũk[n]

)
(7)

with the (instantaneous) global maximum

ũmax [n] = max
k

�
ũk[n]

 
. (8)

Listen again to the enhanced signal from the previous section
(Snd. 1.2 / Fig. 5b). Additional contrast is achieved by feeding
this signal into spectral dynamics expansion (Snd. 1.3 / Fig. 5c).
Furthermore, the background noise is gone. The parameters have
been set to µ = 0.8 and an extreme value of � = 8, leading to a
spectral gate where values below µũmax [n] are almost completely
suppressed while values above approach the global maximum.

Contrary to spectral sharpening, spectral dynamics expansion
can also be used to exaggerate broadband regions in the spectrum.
This is demonstrated in Snd. 2.1 and 2.2 with the recording of a
vintage printing machine, with noise from a pneumatic system.

2.1.3. Decay Prolongation

Spectral resolution and pitch impression takes time. What if we
gave listeners more time to perceive a sound by prolonging it
through artificial decay? Such an effect could be achieved in a
natural way via reverberation. Dombois and Eckel argue that re-
verberation might even be used to enhance audifications, as it facil-
itates discrimination between short transient sounds [26, p. 315].
Koumura and Furukawa examined the effect of reverberation on
the identification of material via short impact sounds [27]. They
found out that reverberation actually deteriorates material identifi-
cation; however, after a short while, participants adapted to the re-
verberation and achieved similar identification rates as with the dry
stimuli. It must be noted that the results varied greatly among par-
ticipants. Furthermore, adaptation to reverberation during speech
does not help to identify a following impact sound [28]. Such nat-
ural reverberation, of course, is not correlated to the stimulus itself,

but just convolves it with an arbitrary impulse response. A com-
pletely “transparent” reverberation whose impulse response has a
white magnitude spectrum might already lead to better results.

Yet another problem is the broadband spectrum of the transient
sounds — any artificial reverberation will therefore mask succeed-
ing parts completely with broadband noise. Even if the resonances
are sharpened through spectral contrast enhancement as derived in
Sec. 2.1, a short transient signal in a single sub-band still results
in a broadband signal at the output. However, if artificial decay
is applied to the individual sub-band envelopes, their bandwidths
are reduced and more time is given to the listener to gain a pitch
impression. The enhanced sub-band envelopes after lateral inhi-
bition and exponentiation may still contain short spikes which are
not visible in the spectrogram of Fig. 5b-c, but which would have
a huge impact if the sub-band envelopes were decayed as they are.
Therefore, the envelopes must be smoothed before decay prolon-
gation. As this further smears the envelopes in time, we instead
split them into a transient part and a decay part. Only the decay
part receives decay prolongation; both are re-combined afterwards.

We first introduce two simple non-linear low-pass filters based
on a leaky integrator. enva has a smooth attack but instant decay,
while envd has a smooth decay but instant attack. enva is given
in Eq. 9 for an arbitrary input signal x[n] and output signal y[n].
envd follows the same equation, but with flipped direction of the
inequality sign, leading to a naturally-sounding exponential decay.

y[n] =

(
(1 � ↵)|x[n]| + ↵y[n � 1], |x[n]| < y[n � 1]

|xk[n]|, otherwise
(9)

The amount of smoothing is set via the smoothing factor ↵. A
more convenient parametrization can be achieved via time constant
⌧ or -60 dB reverberation time T60:

↵ = exp

✓
� 1

⌧fs

◆
= exp

✓
� ln(1000)

T60fs

◆
, (10)

where fs is the sampling frequency.
The envelope with smoothed attack enva{vk[n]} is fed to de-

cay prolongation, while the residuum (vk[n]�enva{vk[n]}) con-
taining only the attack part is added back to the result, leading to
the output signal of decay prolongation pk[n]:

pk[n] = envd

n
enva

�
vk[n]

 o
+ vk[n] � enva

�
vk[n]

 
. (11)

Due to the normalization with the original envelopes (Eq. 2)
the decay is fed by intrinsic signal components of the sub-band
signals in the relevant frequency region. In order to supply suffi-
cient signal energy in the case of large SNR combined with long
decay prolongation, a pink noise signal ⌘[n] is added to the input
signal just before feeding it to the Gammatone filterbank (see block
diagram in Fig. 4a); at a level below the threshold of hearing, but
enough to synthesize literally infinite decay. As internal signal pro-
cessing on any eligible platform offers at least 32 bit floating-point
precision, a noise level of around -96 dBFS is more than enough.

A constant decay time over the whole frequency range leads
to an unnatural amplification of high frequencies, as damping usu-
ally increases with frequency. We chose a rough approximation
by setting T60 inversely proportional to the center frequency, but
clipped below 1 kHz.

Sound example 1.3 and Fig. 5d show the effect of decay pro-
longation on the enhanced signal from Sec. 2.1.2 (Snd. 1.3 and
Fig. 5 c). For this example, reverberation time T60 at 1 kHz was
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(b) with spectral sharpening (Snd. 1.2)
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(c) with spectral dynamics expansion (Snd. 1.3)
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(d) with decay prolongation (Snd. 1.4)

Figure 5: Spectrograms of a test sound in 4 conditions: (a) original recording, (b) with spectral sharpening, (c) with spectral sharpening
and spectral dynamics expansion, (d) with spectral sharpening, spectral dynamics expansion, and decay prolongation.

set to 0.5 s. The time constant for transient separation was set to
7 ms. It is clearly visible and audible that relevant partials are sig-
nificantly extended in time.

2.2. Temporal Contrast Enhancement

Temporal contrast enhancement is done for two reasons: (1) to
make temporal structures in the sound more prominent, and (2) to
compensate latency and time-smearing of the spectral contrast en-
hancement. Spectral ACE, as described above, always introduces
some latency which is small at high frequencies but increases to-
wards lower frequencies. This frequency-dependent group delay is
acceptable for steady sounds, but it delays and smoothes any tran-
sient, transforming it to something similar to a down-chirp. Due
to their broadband spectrum in combination with smoothed lateral
inhibition, spectral ACE anyway effectively suppresses all tran-
sients. In order to preserve them, they must be detected as fast as
possible from the input signal and mixed together with the output
of spectral contrast enhancement and delay prolongation.

Transients are detected in real time by the same simple tran-
sient detection algorithm that has been used for decay prolonga-
tion (see Sec. 2.1.3). A 2nd-order high-pass filter with adjustable
cutoff frequency makes the transient detection more sensitive to
high-frequency content. sh[n] is the high-pass-filtered version of
s[n]. The envelope et[n] of the transient part of the signal is esti-
mated via the difference of a slowly decaying envelope et,d[n] and
a slowly rising envelope et,a[n]:

et[n] = max {et,d[n] � et,a[n] � ⌫ , 0} (12)

with threshold ⌫. Envelopes are computed via the two filters envd

and enva that have been explained in Sec. 2.1.3 and Eqs. 9–10:

et,d[n] = envd

�
sh[n]

 
, et,a[n] = enva

�
et,d[n]

 
. (13)

The output signal of temporal ACE, st[n], contains only the
detected transients with their original amplitude:

st[n] = s[n] · et[n]

envd

�
et[n]

 . (14)
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Figure 6: Waveform of the signal without (left, Snd. 2.1) and with
temporal ACE (right, Snd. 2.3).

Setting the time constants ⌧a = 3 ms for enva and ⌧d = 7 ms
for enva, seems to work well with most of the signals we tested.
Threshold ⌫ is adjusted dependent to the overall signal level.

In sound examples Snd. 1.2-1.4, the original transients are
smoothed by spectral contrast enhancement. For that reason, the
original transients are extracted (Snd. 1.5) and mixed to the en-
hanced signals. Sound examples 1.6-1.8 are the same as Snd. 1.2-
1.4, respectively, but with restored transients.

In Fig. 6 and Snd. 2.3, the effect of temporal contrast enhance-
ment is demonstrated with the machine recording from Snd. 2.1
It is clearly visible that, similar to spectral sharpening, local am-
plitude minima are attenuated while local amplitude maxima are
retained. Note that the algorithm operates on the highpass-filtered
version (cutoff frequency set to 4 kHz). The mechanic rattling thus
becomes the prominent sound characteristic. A mix with the en-
hanced signal from spectral dynamics expansion (Snd. 2.2) leads
to a spectrally and temporally enhanced signal (Snd. 2.4).

For temporal contrast enhancement, it makes no sense to apply
dynamics expansion based on an absolute threshold as for spec-
tral contrast enhancement via exponentiation — this would be a
waveshaper, introducing unwanted distortion. The linear cross-
fade with the dry input signal actually serves as a control for the
amplitude of the residuum signal between transients.

3. DISCUSSION

One might notice that the proposed ACE method does not explic-
itly include spectro-temporal contrast enhancement, e.g., temporal
contrast enhancement on a sub-band level. Our hearing system
does exactly that via contrast gain control in the auditory cortex, at
timescales of about 100 ms [29]. Rabinowitz et al. define spectro-
temporal contrast as “the variation in sound pressure in each fre-
quency band, relative to the mean”; a model can be based on the
standard deviation of recent sound pressure level [29]. One au-
dible effect is that a harmonic partial which is omitted and then
reintroduced may stand out perceptually for a short period of time
[30]. While this is certainly a helpful feature, it must be noted
that the main objective of such adaptive gain control is to com-
pensate the very limited dynamic range of neurons. We found that
spectro-temporal contrast is anyway strong with spectral contrast
enhancement alone, e.g., through a possible edge effect in case
of a missing partial. Even more so, if smoothing for lateral in-
hibition is bypassed, together with a large ⇢, a clicking transient
appears whenever there is a shift of spectral energy from one band
to another. Due to the group delay of the filters, however, such a
transient would exhibit latency that is unacceptable for short inter-
action sounds.

For continuous sounds where more latency can be tolerated,
it might be interesting to exaggerate amplitude modulations on a
sub-band level. For that goal we tried an algorithm which expands
the sub-band envelopes individually while preserving their overall

envelope trend [31]. While originally designed to exaggerate dis-
sonances, it is capable to enhance also low-frequency amplitude
modulations. At a closer look, however, similar results could be
achieved by spectral ACE alone.

Concerning spectral contrast, both methods — spectral sharp-
ening and spectral dynamics expansion — are essential. As soon as
spectral sharpening has reached its limits (i.e., what is left are lo-
cal maxima only), spectral dynamics expansion can add additional
contrast by suppressing all local maxima below a certain threshold.

In a parallel configuration, spectral sharpening and spectral
dynamics expansion can complement each other, producing a car-
toonification of the sound. This may be illustrated by the example
of human speech: By lateral inhibition, speech is basically reduced
to fundamental frequency and formants; consonants are attenu-
ated. While stops/plosives could be recovered via temporal con-
trast enhancement, sibilants are suppressed. Exponentiation main-
tains or even exaggerates consonants, including sibilants; however,
it has a tendency to suppress formants, so that discrimination be-
tween vowels is lost. The solution might be a combination by tak-
ing the maximum of both outputs.

Temporal contrast enhancement as implemented here works
similar to a transient shaper/designer for music production. The
main difference is that we try not to exaggerate transients but to
attenuate everything else. A dynamics expansion would conflict
with the limited dynamic range of our hearing system, and would
also produce an implausible amplification of the targeted interac-
tion sounds. The mix of spectral and temporal ACE works well
for these impact sounds sounds, but may produces quite disturbing
results for more continuous stimuli such as speech.

4. CONCLUSIONS AND OUTLOOK

We introduced a new method for real-time auditory contrast en-
hancement, targeting at interactive applications where auditory
feedback is used as part of a knowledge-making process. The
method is split in two parts — spectral and temporal contrast en-
hancement — which can be used in parallel to focus on different
auditory features. Spectral ACE is achieved in two ways which
both are needed for different tasks. While the first approach is
based on lateral inhibition and enhances spectral sharpness, the
second enhances spectral dynamics via exponentiation. In the vi-
sual domain, these would refer to edge detection and contrast, re-
spectively. Crucial for perceptibility of the enhanced sound is de-
cay prolongation which provides a listener with additional time for
pitch impression. Transient detection was found to be sufficient for
temporal contrast enhancement. First results indicate that auditory
contrast can be significantly enhanced by the proposed method.

The next step is to evaluate the multitude of parameters in
order to find meaningful ranges and scalings, and ultimately re-
duce them to only a few intuitive controls. A parameter study is
planned to find a compromise, achieving high auditory contrast
while maintaining a certain degree of naturalness and plausibility
of any auditory feedback. Participants will be rating the plausi-
bility of observed interactions (audition vs. vision) through short
video sequences, with different settings of ACE applied to the au-
dio track. Recordings are taken from the Greatest Hits dataset [32],
a collection of audio/video recordings of different kinds of objects
and materials being hit with a drumstick.

It is further planned to evaluate the presented method concern-
ing its primary target application: percussion. Contrary to the pa-
rameter study, interaction will be performed by the participants
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themselves. The technical setup can be regarded as a special case
of auditory augmentation, similar to the augmented table described
in [1, 4]; however, with electronics not hidden but clearly visible,
e.g., as a mic-through system. Participants will be asked to identify
position and type of concealed physical manipulations (e.g., cav-
ity or thickening) below the visible surface, via percussion with
fingers or a hammer tool. Performance with ACE will be com-
pared to the control condition without ACE; qualitative interviews
should reveal further implications.
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