
A Cache-Aware Parallel Implementation of the
Push-Relabel Network Flow Algorithm and

Experimental Evaluation of the Gap Relabeling
Heuristic

David A. Bader�

College of Computing
Georgia Institute of Technology

Vipin Sachdeva
Electrical and Computer Engineering Department

University of New Mexico

February 25, 2006

Abstract
The maximum flow problem is a combinatorial problem of significant importance in a wide va-
riety of research and commercial applications. It has been extensively studied and implemented
over the past 40 years. The push-relabel method has been shown to be superior to other methods,
both in theoretical bounds and in experimental implementations. Our study discusses the imple-
mentation of the push-relabel network flow algorithm on present-day symmetric multiprocessors
(SMP’s) with large shared memories. The maximum flow problem is an irregular graph problem
and requires frequent fine-grained locking of edges and vertices. Over a decade ago, Anderson and
Setubal implemented Goldberg’s push-relabel algorithm for shared memory parallel computers;
however, modern systems differ significantly from those targeted by their implementation in that
SMP’s today have deep memory hierarchies and different performance costs for synchronization
and fine-grained locking. Besides our new cache-aware implementation of Goldberg’s parallel
algorithm for modern shared-memory parallel computers,our main new contribution is the first
parallel implementation and analysis of the gap relabeling heuristicthat runs from 2.1 to 4.3 times
faster for sparse graphs.

�This work was supported in part by NSF Grants CAREER ACI-00-93039, NSF DBI-0420513, ITR ACI-00-
81404, DEB-99-10123, ITR EIA-01-21377, Biocomplexity DEB-01-20709, and ITR EF/BIO 03-31654; and DARPA
Contract NBCH30390004.



1 Introduction

A flow network is a directed graphG= (V;E) with jVj = n vertices andjEj = m edges and with

two distinguished vertices, the source vertexsand the sink vertext. Each edge has a positive real-

valued capacity functionc, and there is a flow functionf defined over every vertex pair. The flow

function must satisfy three constraints:

� f (u;v)� c(u;v) for all u;v in V�V (Capacity constraint)

� f (u;v) =� f (v;u) for all u;v in V�V (Skew symmetry)

� ∑v2V f (u;v) = 0 for all u in V�fs; tg (Flow conservation)

The flow of the network is the net flow entering the sink vertext (which is equal to the net

flow leaving the source vertexs). In mathematical terms,j f j = ∑u2V f (u; t) = ∑v2V f (s;v). The

maximum flow problem (MAX-FLOW) is to determine the maximum possible value forj f j and

the corresponding flow values for each vertex pair in the graph.

The maximum flow problem is not only an important theoretical graph algorithm, but has

important practical applications in resource-allocation in networks and a variety of scheduling

problems. Also, a surprising variety of linear programming problems in practice can be modeled

as network flow problems. In such cases, special purpose network flow algorithms can solve

such problems much faster than conventional linear programming methods. Also several of the

graph problems such as bipartite matching, shortest path, and edge/vertex connectivity, can also

be modeled as network flow problems [1, 23]. A large variety of sequential algorithms exist for

MAX-FLOW. The sequential algorithms are typically grouped into two classes.

2



Augmenting Path Algorithms: maintain mass balance constraints at each vertex (other thans or

t) and incrementally augment flow along paths froms to t;

Preflow Push-Push Algorithms: flood the network as a first step, and incrementally relieve flow

from vertices with excesses by sending flow forward towardst or backward towardssbased

on the capacity of each edge.

Ford and Fulkerson [9] proposed the first maximum-flow algorithm, using the concept of augment-

ing paths (an augmenting path is a path froms to t that can be used to increase the flow froms to t

because it is not being optimally used) and sending flows across these paths. Edmonds and Karp [8]

improved upon the algorithm by sending flows across the shortest augmenting paths. They showed

that using a breadth-first search in the labeling algorithm and selecting the shortest augmenting

path always allows the algorithm to terminate in at most O
�
nm2

�
. Dinic’s algorithm [7] finds all

the shortest augmenting paths in a single step, using “layered networks.” Layers are determined by

the present flow, and built on a breadth-first search using only useful arcs(e= hu;vi s.t. fe < ce

or e= hv;ui s.t. fe> 0). (Note that throughout this paper fore= hu;vi we use the shorthand

notationFe to representF(u;v) for function F.) A phase consists of finding a layered network,

then finding a maximum flow on the layered network and improving the original flow. The num-

ber of phases is at mostn�1, and the algorithm runs in O
�
n2m

�
. Karzanov [19] introduced the

concept of preflows and the push operation and gave an O
�
n3
�

algorithm. Goldberg and Tarjan

designed the push-relabel algorithm [13] with the time-bound of O
�

nmlog n2

m

�
. In 1993, compu-

tational experiments confirmed that Goldberg’s algorithm was the fastest algorithm in practice [2].

In a later paper by Goldberg and Cherkassky [5], several implementations of the push-relabel were

studied and their results analyzed on a variety of graphs. We will discuss this algorithm in detail

3



in Section 2, as our parallel implementation is based upon this sequential approach. Goldberg’s

survey paper [12] gives an excellent review of the algorithmic developments for the network-flow

algorithm for the past forty years, including recent efforts.

Several researchers have given theoretic parallel algorithms for MAX-FLOW using the PRAM

model [10, 15]. Goldberg and Tarjan [13] proposed an implementation of their push-relabel algo-

rithm which takes O
�
n2 logn

�
on an EREW PRAM with O(n) processors. Details of Goldberg’s

parallel implementation using parallel prefix-sums is given in [11]. The MAX-FLOW problem

restricted to planar directed graphs can be solved in O
�
log3n

�
time using O

�
n4
�

processors or

in O
�
log2n

�
time using O

�
n6
�

processors on a CREW PRAM [16]. A more recent result for

the MAX-FLOW problem on graphs with integer capacities is given by Sibeyn [21]. His solu-

tion finds the maximum flow in O
��

logC+ log4n
�

logn= log(m=n)
�

using O
�
n2
�

processors on

a CREW PRAM whereC is the average edge capacity. Shiloach and Vishkin [20] give a parallel

MAX-FLOW algorithm which runs in O
�
n2 logn

�
using O(n) processors on CRCW PRAM. There

exists a randomized parallel algorithm to construct a maximum flow in a directed graph whose edge

weights are given in unary, such that the number of processors is bounded by a polynomial in the

number of vertices, and its time complexity is O
�
logk nlogC

�
for some constantk, whereC is

the largest capacity of any edge [18]. While several researchers have proposed PRAM algorithms

for the maximal flow problem, practical parallel implementations of any of these algorithms are

rare. Anderson and Setubal [3] gave the first practical parallel implementation of the push-relabel

algorithm for a uniform shared-memory address space. Their parallel implementation used only

the global relabelingheuristic (described in Section 2) and demonstrated good speedups on the

Sequent Symmetry over a sequential implementation for the families of graphs that were tested.

4



Our target architecture is a symmetric multiprocessor (SMP). Most of the new high-performance

computers are clusters of SMPs having from 2 to over 100 processors per node. In SMPs, proces-

sors operate in a true, hardware-based, shared-memory environment. SMP computers bring us

much closer to PRAM, yet it is by no means the PRAM used in theoretical work—synchronization

cannot be taken for granted, memory bandwidth is limited, and good performance requires a high

degree of locality. Designing and implementing parallel algorithms for SMPs requires special con-

siderations that are crucial to a fast and efficient implementation. For example, memory bandwidth

often limits the scalability and locality must be exploited to make good use of cache.

Our major innovations discussed in this paper are

� a cache-aware optimization of Anderson and Setubal’s approach, and

� the first design, implementation, and analysis, of a new shared-memory parallel algo-

rithm for the gap relabeling heuristic that has been shown to improve performance.

The organization of the rest of this paper is as follows. In Section 2 we review Goldberg and

Tarjan’s sequential push-relabel method for MAX-FLOW, including the global and gap relabeling

heuristics. Section 3 describes Anderson and Setubal’s parallel implementation of push-relabel

that uses only the global relabeling heuristic. Our new high-performance and cache-aware paral-

lel implementation using both global and gap relabeling is presented in Section 4. In Section 5

we perform experimental studies and analyze the performance using our parallel gap relabeling

heuristic.

5



2 The Push-Relabel Algorithm

In this section, we detail the push-relabel algorithm by Goldberg and Tarjan [13]. The motivation

behind the push-relabel algorithm is to push a large amount of flow fromsto any internal vertexv in

a single operation rather than augmenting the flow from the source in a time-consuming operation

in some cases. This initial flow might be passed from the internal vertex to the sink, if there exists

sufficient capacity, or might be passed back to the source if it is in excess of the capacity of the

network fromv to the sink. This introduces the concept ofpreflow that relaxes the constraints

discussed previously in which the net flow to any internal vertex, i.e. the difference between the

incoming and the outgoing flows, is allowed to be non-negative during the running of the algorithm

as opposed to be strictly zero. When the constraints are again satisfied for all the vertices of a graph,

preflow becomes the maximum-flow of the graph.

All of the verticesv2 V for which net flow is non-zero areactive vertices. Admissible edges

are edgeshu;vi for which flow can be further increased without violating the maximum capacity,

i.e. for whichc(u;v)� f (u;v) = uf (v;w)> 0. In Alg. 1 we first define apushandrelabeloperation

after which we detail the algorithm.

2.1 Heuristics of Push-Relabel

A number of computational studies have focused on the push-relabel algorithm [6, 2]. The push-

relabel algorithm is slow in practice, and relies upon two major heuristics (Global Relabel and Gap

Relabel) to improve its performance. The following definitions are needed. Theresidual capacity

of an edgehu;vi is r(u;v) = c(u;v)� f (u;v). The edges withr(u;v) > 0 are residual edgesEf

which induce theresidual graph Gf = (V;Ef ). An edge withr(u;v) = 0 issaturated.

6



push(v;w)
Requirement: v is active andhv;wi is admissible.
Action: sendδ = (0;min(ef (v);uf (v;w)) units of flow fromv to w.

relabel(v)
Requirement: v is activeand push(v;w) does not apply for anyw.
Action: replaced(v) by minhv;wi2Ef

d(w)+1

Data : (1) A directed graphG= (V;E) of jVj= n andjEj= m with two distinguished
vertices sources and sinkt
(2) Each vertexv2V has an adjacency listλ(v)
which has all outgoing edges outgoing fromv
(3) Each edgee= hu;vi 2 E has a capacity ofc(u;v)
which is the maximum flow which can be passed through the edge

Result : The maximum flowf (s; t) which can be routed through the graph i.e. from the
sources to the sinkt.

begin
(1) Set the source labeld(s) = n, the sink label tod(t) = 0, and the labels on the
remaining vertices tod(v) = 0 for all v2V�fs; tg.
(2) Saturate all edges in the adjacency list of the sources i.e. e2 λ(s) placing
excess flow on all the vertices connected to the source i.e. allw such thathv;wi 2 λ(s).
(3) Calculate the residual edges i.e. alle2 E such thatce� fe> 0.
while (active vertices)do

(3.1) Perform theRelabeloperation on the active vertices.
(3.2) Perform thePushoperation on the admissible edges.

end

Algorithm 1: Goldberg’s Push-Relabel Algorithm for Maximum Flow

7



Global Relabeling heuristic: The distance labels (d(v) for v2V) in the push-relabel represent a

lower bound on the distances from any vertex to the sink. These labels help the algorithm

to push flow towards the sink, as the push operation is always carried from a vertex with a

higher label connected to another with a lower label. Global relabeling updates the distance

labels on the vertices as the shortest distance from the vertexv to the sinkt along the residual

graphGf = (V;Ef ). This can be performed by a breadth-first search to the sink, the cost of

which is O(n+m). Such a relabeling is performed periodically after a number of push-

relabel steps to amortize the expensive computational cost of the heuristic.

Gap Relabeling heuristic: updates the labels of the vertices which are unreachable from the sink

to the label of the source which isjVj= n. Such a situation arises if there are no vertices with

labelsσ but vertices with distance labelsd(v) such thatσ < d(v) < n. The distance labels

of such vertices can be updated then ton. Such an update makes it possible to remove these

vertices from consideration for pushing flow to the sink at once.

Goldberg and Cherkassky [5] implemented the push-relabel algorithm, and studied the running

times based on operation orderings and distance update heuristics on a variety of graph families.

They concluded that both the global relabeling as well as gap relabeling heuristics give the best

performance. They also affirmed that the processing of vertices should be carried out preferably in

highest-label order, as compared to first-in, first-out (FIFO) order. Goldberg [11] showed that the

worst-case running time of FIFO order is O
�
n3
�
, compared with O

�
n2pm

�
for highest-label order.

Also, the implementation of highest-label dramatically reduces the work necessary for finding

gaps; hence even if the gaps are not found in some cases, the overhead is sizably small and can still

achieve close to optimal performance [5].

8



3 Parallel Implementation of Push-Relabel

In this section, we focus on the parallel implementation by Anderson and Setubal [3]. We chose

their implementation as, to our knowledge, it is the only practical push-relabel algorithm that

has demonstrated a good speedup on shared-memory architectures. To achieve this performance,

Anderson and Setubal optimized the concurrent global relabeling implementation. They realized

in a shared-memory machine with a low number of processors, synchronous implementation of

global or gap relabeling heuristics will offset any advantage in incorporating such a step in the

parallel implementation. Goldberg’s valid relabeling requires thatd(v) � d(w)+1 for all edges

hv;wi 2 Ef . Due to multiple processors working on possibly overlapping data, invalid relabelings

might occur which could push the flow towards the sources causing incorrect results. Hence for

simultaneous periodic global relabeling, they introduced the concept ofwaves. Each vertex of the

graph, in addition to its labeld(v), is now assigned a wave numberwave(v). The wave number

denotes the number of times the vertex has been globally relabeled. Alg. 2 details the augmented

definitions ofpushand theglobal relabeloperation required for concurrent global relabeling [3].

CurrentWaveandCurrentLevelare the current wave number and the current level in the BFS tree,

respectively.

Global relabeling is performed periodically, i.e. after 2n discharge operations are carried out

by all the processors in total. Each processor has two local queues: an in-queue and an out-queue.

A processor works on its in-queue in a FIFO order, until it runs out of work, in which case it gets

vertices from the shared queue. Newly active vertices which are created during the discharge op-

eration are placed in the out-queue of a processor until it gets full; after which the processor places

all the activated vertices in the out-queue of the shared queue. The number of vertices transferred

9



Pushi(v;w)
Requirement: Processori holds the locks for bothv andw, hv;wi 2 Ef ;d(v) = d(w)+1,
andwave(v) = wave(w).
Action: Push as much flow tow ashv;wi affords, and updatev’s andw’s excesses.

Global Relabeli(v)
Requirement: Processori holds the locks forv, wave(v)< CurrentWave.
Action: if d(v)< CurrentLevelthen

1.1d(v) CurrentLevel;
1.2wave(v) CurrentWave;

Algorithm 2: Anderson-Setubal definitions forPushand Global Relabel

between the shared-queue and the in- or out-queues is varied during the program execution for

dynamic granularity control through heuristics. Processors use locks for any access of the shared

queue (i.e., for transferring vertices in or out of the shared queue).

4 Our New High-Performance Implementation

Anderson and Setubal conducted their studies on the Sequent Symmetry, a shared-memory parallel

machine circa 1987, no longer in production, and based on 16 MHz Intel 80386 processors. Su-

perscalar processors capable of running two orders of magnitude faster are now widely pervasive

in present day SMP’s. The rate of improvement in microprocessor speed has been exponential and

has exceeded the rate of improvement in DRAM speed. Hence, algorithm designers are faced with

an increasing processor-memory performance gap, often referred to as the memory wall, a pri-

mary obstacle for attaining improved performance of computer systems. Cache-aware algorithm

design is emerging as a possible technique for addressing this issue. Our initial port of Setubal’s

implementation for modern shared-memory computers scaled linearly in relative speedup with

the number of processors on one family of graphs (acyclic dense graphs, described later), and

10



nearly linearly on other families of graphs. However, the performance lacked absolute speedup

compared with an optimized sequential implementation such as Goldberg’shipr (available from

http://www.avglab.com/andrew/soft.html ). For instance, our parallel code, running on eight

processors, barely achieved the performance of the sequential implementation. Profiling the ex-

ecution revealed a high rate of cache misses due to irregular memory access patterns, hindering

performance.

4.1 Cache-Aware Implementation

In the push-relabel method, each directed edgee= hv;wi 2 E is converted into two edges in op-

posite directions,e1 = hv;wi ande2 = hw;vi. Edgee1 appears in the adjacency list ofv and has

a capacity of the original edgee; edgee2 appears in the adjacency list ofw and has a capacity of

0, denoting that there cannot be flow along edgee2. We refer toe1 as the mate edge ofe2 and

vice-versa in later sections. The antisymmetry constraint by Sleator [22] then specifies that the

flow in e1 should always be the opposite of the flow ine2. Thus, during the execution of the code,

any increase in the flow ofe1 must be met by a decrease in the flow ofe2. Such an access is also

required for the global relabeling step since it has to read the mate edge’s flow for a valid global

relabeling. In this case, the mate edge’s flow is just read and not updated contrary to thepush

operation.

For each edge we save its maximum flow and current flow informationand its mate’s informa-

tion. This reduces the number of memory accesses when the mate edge’s information is just read

and not updated. For updates though, an effective solution is the contiguous allocation of memory

used for the mated pair of edges. This ensures spatial locality so that a cache line or pair of ad-

11



jacent lines holds the mated edge pair’s portion of the data structure during the updating. When

thiscache-awarecode was now tested for the families of graphs, it was found to give an excellent

relative speedup for each family of graphs. However, the absolute speedups, compared to the opti-

mized sequential implementation by Goldberg using push-relabel method with highest-label order

vertices processing and gap and global relabeling heuristics, were not consistently improved. For

dense graphs with 1,000 or more vertices, our cache-aware parallel implementation demonstrated

good absolute speedups relative to Goldberg’s code. However, the absolute speedup was poor on

random level graphs. We discuss these issues and improvements to our parallel implementation in

the next section.

4.2 Highest-Label Ordering of Vertices

Our cache-aware implementation, while improving the performance on dense graphs, lacked ab-

solute speedup improvements on other families of graphs. The parallel code performed an order

of magnitude more push and relabel operations than the sequential code. Due to the inherent

cost of locking used in every push-relabel operation in the parallel code, this led to a significant

performance degradation of the parallel code. There are two noteworthy differences between the

sequential code (Goldberg’shipr) and our cache-aware parallel implementation.

� The sequential code processes the vertices in highest-label order (vertices with highest label

are processed first) compared to parallel code which was processing the vertices in approxi-

mate FIFO order.

� The sequential code uses both the gap and global relabeling heuristics compared to the par-

allel code which lacked the gap relabeling heuristic.

12



Goldberg asserted that with FIFO order processing of vertices, the gap relabeling heuristic did not

give further improvements. However, with highest-label processing order, the gap relabeling gives

significant improvements. Thus for optimized performance, we needed to design and implement

the following two modifications together:

� The processing of vertices must occur in highest-label rather than FIFO order.

� Gap relabeling must occur asynchronously; i.e., carried out concurrently with the push/relabel

operations performed on the active vertices.

Next we detail our new approach for highest label processing in the parallel implementation; and

defer the design and implementation of concurrent gap relabeling to the next subsection.

The prior implementation [3] uses a shared queue and a queue local to each processor for

active vertices. Each local queue is further divided into a local in-queue and a local out-queue. The

processor discharges or relabels vertices from its local in-queue and places the new active vertices

into the local out-queue. When the local out-queue is full, it is emptied into the global shared

queue. This structure is primarily maintained for load-balancing and work-stealing. Transfer of

vertices between the local and the global queues is carried out in batches, for instance of sizeb

each. This parameterb is varied during the course of the run for improved results: Anderson

and Setubal gave different rules for increasing or decreasing the parameterb to prevent too much

oscillation. We retain the queue structure and the load-balancing rules for transferring vertices.

To implement highest-label ordering, we modify the structure of the local in-queue and the global

queue, while retaining the concept of transfer of vertices between the shared queue and the local

in- and out-queues. We divide the local in-queue intobuckets, each of which holds vertices with

the same label. The number of buckets is thus equal to the number of possible labels of vertices (0

13



to n�1). When a vertex is moved into the in-queue of a processor, it is placed in the appropriate

bucket which holds all the vertices of the same label. The global queue is similarly divided into

buckets, and any transfer between a local and global queue is thusemptying of bucketswith the

bucket of the highest label emptied first. Thus, when a processor attempts to transfer vertices

from either the global queue or the local out-queue into the in-queue, the active vertices are copied

starting from the highest label of the non-empty bucket. The highest label of the local in-queue

and the global queue is suitably altered in case of such transfers: the highest label of the in-queue

mostly increases while the highest label of the global queue decreases as the buckets with the

highest labels areemptied.

To optimize this implementation, several parameters are added to each local queue: number

of vertices of each label or vertices present in a bucketbi , total number of vertices each processor

holds in its local in-queue or in all its buckets, and the highest label held by any processor in its

local in-queue. We added this last parameter as we discovered that frequently the highest label

held by any processor was much less than the maximum labeln which could label any vertex in

the graph. An issue of synchronization remains in that a processor running the global relabeling

heuristic may update the labels of the vertices that are held in another processor’s local in-queue.

This occurs because there is a separate queue for the global relabeling, with processors gaining

control of the queue at different intervals, and leads to vertices being held in a bucket with an

updated label. We solved this issue by adding a flag to each vertex. When a processor changes

the labels of a vertex in the global relabeling step, it sets the flag of the vertex denoting that the

vertex has beenworked upon. A processor then checks the flag of a vertex before it transfers the

vertices from the local in-queue to the out-queue or the global queue: if the flag is set, it then moves

14



the vertex into the correct bucket while transferring to the global queue. The transfer of vertices

starting with thehighest-label bucketensures that the processing of the vertices is approximately

highest label.

4.3 Concurrent Gap Relabeling

For improved performance, we use the gap relabeling heuristic in conjunction with the highest-

label processing described in the previous section. For gap relabeling, we require additional book-

keeping such as the counts of the number of vertices with each particular label. Thus, when a

processor changes the label of a vertex, it also updates the counts of the previous and new labels.

This leads to a slight overhead: for updating the label, the processor was locking the vertex, but

now also has to lock the previous label and the new label as well. We maintain a shared data

structure comprised of a Boolean flag and a label which is initialized ton. For the gap relabeling

heuristic, if the count of vertices of any label reaches zero due to relabeling, local or global, it is

identified as a gapGl . Therefore, vertices with labels greater than the label of the gap discovered

previously are updated ton and are identified asgap-active. Once the gap is discovered, the pro-

cessor then proceeds with the locking of the data structure, sets the Boolean flag, and updates the

shared label to the label of the gap discoveredGl . We now introduce the updatedrelabel opera-

tion: the flag and the label are first read before relabeling, and if the flag is not set, the processors

continue with the normal relabel operation. If however the flag is set, the processor checks the

label of the vertex which it is to relabel, and if the label is greater than the label of the gap, the new

label isn. Other processors may also discover other gaps; however, these gaps will only help in

faster running of the implementation if a newly discovered gap has a lower label than the previous

15



gap. Hence, the gap label is updated only if the newly discovered gap is lower than the previous

gap label. The gap relabeling heuristic presented here is thus performed concurrently, without ex-

plicit synchronization. In Alg. 3 we give the algorithms for the updated and the newly introduced

operations for gap relabeling.

gap active(l1)
Requirement: Count[l1] is 0and gapFlagis not set.
Action: Set thegapFlag, and updategapLabelto l1.

gap update(l2)
Requirement: Count[l2] is 0,gapFlagis set,and gapLabel l2 < l1
Action: updategapLabelto l2.

relabel nogap(v)
Requirement: v is active,gapFlagis not set,and push(v;w) does not apply for anyw.
Action: replaced(v) by minhv;wi2Ef

d(w)+1

relabel gap(v)
Requirement: v is active,gapFlag is set,and push(v;w) does not apply for anyw and
d(v)> gapLabel.
Action: replaced(v) by n

Algorithm 3: Updated and newly introduced operations for gap relabeling.

5 Experimental Results

We tested our shared-memory implementation on the Sun E4500, a uniform-memory-access (UMA)

shared memory parallel machine with 14 UltraSPARC II 400MHz processors and 14 GB of mem-

ory. Each processor has 16 Kbytes of direct-mapped data (L1) cache and 4 Mbytes of external (L2)

cache. We implement the algorithms using POSIX threads and software-based barriers [4].

We use three families of graphs (taken from the 1st DIMACS Implementation Challenge [17])

for the experimental results:

16



Random Level Graphs: These graphs are rectangular grids of vertices, where every vertex in a

row has three edges to randomly chosen vertices in the following row. The source and the

sink are external to the grid, the source has edges to all vertices in the top row, and all vertices

in the bottom row have edges to the sink.

RMF graphs: These graphs, described by Goldfarb and Grigoriadis [14], are comprised ofl1

square grids of vertices (frames) havingl1� l2 vertices, and connected to each other in

sequence. They can be generated by the RMFGEN generator by Goldfarb. The source

vertex is in a corner of the first frame, and the sink vertex is in a corner of the last frame.

Each vertex is connected to its grid neighbors within the frame and to one vertex randomly

chosen from the next frame.

Acyclic Dense Graphs: These are complete directed acyclic dense graphs: each vertex is con-

nected to every other vertex, the source and the sink included.

In Fig. 1 we plot the running times with increasing number of processors for instances of the

three separate families. The graphs draw a comparison between the FIFO implementation with no

gap relabeling, the FIFO implementation with gap relabeling, and our new highest-label processing

with concurrent gap relabeling heuristic. In our experiments with FIFO-processing order, using

gap relabeling has negligible effect on the performance, as expected. For acyclic dense graphs, the

execution time difference between the FIFO implementations and the highest-label implementation

with gap relabeling is negligible, and we expect this for the following reason. Since each vertex

is connected to all other vertices, very few gaps (if any) are discovered, and the gap relabeling

heuristic is not very effective in this case. We do observe a decrease in speedup with increasing

number of processors, a problem due to smaller input sizes of graphs. On the other hand, we found

17



significant improvement for random level graphs and the RMF graphs with the gap relabeling

heuristic used in conjunction with the highest-label processing. In these cases of sparse graphs, the

improvements ranged from 2.1 to 4.3 times faster than the FIFO implementations.

Acknowledgments

We wish to thank Jo˜ao Setubal for his parallel implementation of Goldberg’s push-relabel maxi-

mum flow algorithm. Emeline Picart, while visiting University of New Mexico, ported Setubal’s

code from the Sequent Symmetric to modern Symmetric Multiprocessors. The porting was a

non-trivial task as Emeline had to fix newly introduced race conditions caused by the significant

differences between the shared memory models.

18



Figure 1: Performance of the Parallel Maximum Flow Implementations for Acyclic Dense Graphs
(top), Random Level Graphs (middle), and RMF Graphs (bottom). We compare the performance
of our cache-aware optimized implementations of FIFO processing with and without gap relabel-
ing to our new optimized version with highest-label processing and the concurrent gap relabeling
heuristic.

19



References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, editors.Network Flows: Theory, Algorithms and
Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] R.J. Anderson and J. C. Setubal. Goldberg’s algorithm for the maximum flow in perspective:
A computational study. InNetwork Flows and Matching: First DIMACS Implementation
Challenge, pages 1–18, 1993.

[3] R.J. Anderson and J.C. Setubal. On the parallel implementation of Goldberg’s maximum
flow algorithm. InProc. 4th Ann. Symp. Parallel Algorithms and Architectures (SPAA-92),
pages 168–177, San Diego, CA, July 1992.

[4] D. A. Bader and J. J´aJá. SIMPLE: A methodology for programming high performance algo-
rithms on clusters of symmetric multiprocessors (SMPs).Journal of Parallel and Distributed
Computing, 58(1):92–108, 1999.

[5] B.V. Cherkassky and A.V. Goldberg. On implementing the push-relabel method for the max-
imum flow problem.Algorithmica, 19:390–410, 1997.

[6] B.V. Cherkassky, A.V. Goldberg, P. Martin, J.C. Setubal, and J. Stolfi. Augment or push: a
computational study of bipartite matching and unit-capacity flow algorithms.ACM J. Exper-
imental Algorithmics, 3(8), 1998.www.jea.acm.org/1998/CherkasskyAugment/ .

[7] E.A. Dinic. Algorithm for solution of maximum flow in networks with power estimation.
Soviet Math. Dokl., 11:1277–1280, 1970.

[8] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems.Journal of the ACM, 19(2):248–264, 1972.

[9] L.R. Ford, Jr. and D.R. Fulkerson, editors.Flows in Networks. Princeton Univ. Press, NJ,
1962.

[10] S. Fortune and J. Wyllie. Parallelism in random access machines. InProc. 10th Ann. Symp.
of Theory of Computing (STOC), pages 114–118, San Diego, CA, May 1978. ACM.

[11] A.V. Goldberg.Efficient graph algorithms for sequential and parallel computers. PhD thesis,
MIT, Cambridge, MA, January 1987.

[12] A.V. Goldberg. Recent developments in maximum flow algorithms. In6th Scandinavian
Workshop on Algorithm Theory (SWAT), pages 1–10, Stockholm, Sweden, July 1998.

[13] A.V. Goldberg and R.E. Tarjan. A new approach to the maximal flow problem.Journal of
the ACM, 35:921–940, 1988.

[14] D. Goldfarb and M.D. Grigoriadis. A computational comparison of the Dinic and network
simplex methods for maximum flow.Annals of Oper. Res., 13:83–123, 1988.

20



[15] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, New
York, 1992.

[16] D.B. Johnson. Parallel algorithms for minimum cuts and maximum flows in planar networks.
Journal of the ACM, 34(4):950–967, 1987.

[17] D.S. Johnson and C.C. McGeoch, editors.Network Flows and Matching: First DIMACS
Implementation Challenge, volume 12 ofDIMACS Series in Discrete Mathematics and The-
oretical Computer Science. American Mathematical Society, 1993.

[18] R.M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random NC.
Combinatorica, 6(1):35–48, 1986.

[19] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows.
Soviet Math. Dokl., 15:434–437, 1974.

[20] Y. Shiloach and U. Vishkin. AnO(n2 logn) parallel MAX-FLOW algorithm. J. Algs.,
3(2):128–146, 1982.

[21] J. Sibeyn. Better trade-offs for parallel list ranking. InProc. 9th Ann. Symp. Parallel Algo-
rithms and Architectures (SPAA-97), pages 221–230, Newport, RI, June 1997. ACM.

[22] D. D.K. Sleator. AnO(nmlogn) algorithm for maximum network flow. Technical Report
STAN-CS-80-831, Computer Science Department, Stanford University, 1980.

[23] K. Steiglitz and C. H. Papadimitriou.Combinatorial Optimization : Algorithms and Com-
plexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

21


