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SUMMARY

Fundamental aspects of turbulence and turbulent mixing are investigated using direct

numerical simulations (DNS) of stationary isotropic turbulence, with Taylor-scale Reynolds

numbers (Rλ) ranging from 8 to 650 and Schmidt numbers (Sc) from 1/8 to 1024. The

primary emphasis is on important scaling issues that arise in the study of intermittency,

mixing and turbulence under solid-body rotation.

Simulations up to 20483 in size have been performed using large resource allocations

on Terascale computers at leading supercomputing centers. Substantial efforts in algo-

rithmic development have also been undertaken and resulted in a new code based on a

two-dimensional domain decomposition which allows the use of very large number of pro-

cessors. Benchmark tests indicate very good parallel performance for resolutions up to

40963 on up to 32768 processors, which is highly promising for future simulations at higher

resolutions and processor counts eventually to approach Petascale levels.

Investigation of intermittency through the statistics of dissipation and enstrophy in a

series of simulations at the same Reynolds number but different resolution indicate that

accurate results in high-order moments require a higher degree of fine-scale resolution than

commonly practiced. However, statistics up to fourth order are satisfactory if the grid spac-

ing is not larger than Komogorov scale, without the requirement of a clear analytic range

for corresponding structure functions as suggested by recent theories. Results from highly

resolved simulations provide support for a modified resolution criterion derived in this work

for structure functions of different orders and as a function of Rλ. At the highest Reynolds

xvii



number in our simulations (400 and 650) dissipation and enstrophy exhibit extreme fluctu-

ations of O(1000) the mean which have not been studied in the literature before. The far

tails of the probability density functions of dissipation and enstrophy appear to coincide,

suggesting a universal scaling of small scales.

Simulations at Rλ ≈ 650 on 20483 grids with scalars at Sc = 1/8 and 1 have allowed us to

obtain the clearest evidence of attainment of k−5/3 inertial-convective scaling in the scalar

spectrum (as function of wavenumber k) in numerical simulations to date. In addition,

results at high Sc appear to support k−1 viscous-convective scaling. Intermittency for

scalars as measured by the tail of the PDF of scalar dissipation and moments of scalar

gradient fluctuations is found to saturate at high Sc. This asymptotic state is reached at

lower Sc when Rλ is high. Statistics of scalar gradients in different directions are used

to address the scaling of anisotropy due to the imposed mean scalar gradient. Persistent

departures from isotropy are observed as Rλ increases. However, results suggest a return to

isotropy at high Schmidt numbers, a tendency that appears to be stronger at high Reynolds

numbers.

The effects of the Coriolis force on turbulence under solid-body rotation are investigated

using simulations at 10243 resolution on enlarged solution domains which reduce the effects

of periodic boundary conditions due to the growth of integral scales. Anisotropy at all scales

is observed, and is strongest at intermediate rotation rates. Spectra, structure functions and

different alignments show strong departures from classical scaling. At high rotation rates the

nonlinear terms are damped which help explain the observed decrease in intermittency. The

basic property of enstrophy production through vortex stretching in non-rotating flows is

also reduced at high rotation rates. Results from DNS do not appear to support some of the

assumptions leading to the classical form of the Taylor-Proudman theorem. A mechanism

for mixing and a scaling for structure functions is proposed for rapidly rotating flows.
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CHAPTER I

INTRODUCTION

1.1 Background

Turbulence characterized by disorderly fluctuations in time and three-dimensional space is

the most common state of fluid motion in nature and engineering, with diverse applications

including aerospace vehicles, combustion devices, and the environmental sciences. The

apparent randomness and nonlinearity of the turbulent fluctuations make a deterministic

approach almost impossible and also causes well-known closure difficulties in equations

that govern the statistical properties of the flow. The complexities of turbulence are such

that even after over a century of research effort (Lumley & Yaglom 2001) the subject is

still a major “unsolved” problem in physics (Nelkin 1992, Sreenivasan 1999). It is clear

that progress in understanding turbulence requires the careful use of both experiments

and (increasingly) numerical simulation. In many applications of interest e.g turbulent

combustion in a jet engine, efficient mixing of substances carried by the turbulent flow is

very important, and the turbulence itself may be occurring in a rotating frame of reference

subjected to Coriolis forces.

Because of the presence of a wide range of scales in the flow, a fundamental question in

the study of turbulence is how fluctuations at different scale sizes behave and interact with

each other. The concept of similarity scaling is thus to discover how the various important

statistics of the flow vary with scale size as well as with the range of scales present, and

to attempt to devise a systematic description of the observed behavior. A very well-known

theory in this regard is that represented by Kolmogorov (1941a)’s hypotheses of small-scale

universality, which leads to well-known results including predictions of the functional form of

1



velocity structure functions and energy spectra at different scale sizes, provided the Reynolds

number is sufficiently high. In particular, Kolomogorov introduced the concept of local

isotropy, which implies that the small-scale motions (e.g. velocity gradient fluctuations) are

statistically homogeneous and isotropic, with no preferential orientation regardless of the

geometry of the large scales or the flow domain in consideration. A similar description has

been extended to passive scalars in turbulent mixing, where an additional nondimensional

parameter is the Schmidt number (Sc), which is the ratio of the kinematic viscosity of the

fluid (ν) to the molecular diffusivity (D) of the transported scalar (e.g. concentration of a

contaminant, or a small temperature fluctuation). In addition, effects of a rotating frame

are represented by the Rossby number (Ro), which is the ratio of the time scale of rotation

to the time scale of the turbulence. As further discussed below, the research reported in this

thesis is centered around the use of large-scale computation on state-of-the-art computers

to address important scaling issues over a range of Reynolds, Schmidt and Rossby numbers,

including departures from Kolmogorov’s original theory or extensions therefrom.

In the study of turbulence scaling there is great interest in intermittency, which is the

property of intense and localized fluctuations especially at high Reynolds numbers (see e.g.

Obukhov 1962, Frisch 1995, Sreenivasan & Antonia 1997). These fluctuations are closely

related to the concept of anomalous scaling which is usually manifested as departures from

the classical theory of Kolmogorov (1941a). A practical consequence is that for small-scale

quantities the scaling relations for moments of different orders have to be obtained individ-

ually (Sreenivasan 1999) since they cannot be related to low order moments in a trivial way

and cannot be deduced from dimensional considerations alone. Incorporation of effects of

intermittency is very important in devising stochastic or subgrid-scale models appropriate

for application in high Reynolds number turbulence. At the small scales, intermittency can

be characterized by fluctuations of velocity gradients which can be decomposed into strain
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and rotation rates, whose quadratic invariants are represented by the dissipation rate and

enstrophy (vorticity squared) respectively. Local fluctuations of the energy dissipation rate

are especially important in the intermittency corrections needed for Kolmogorov (1941a).

Enstrophy, on the other hand, is related to rotating motions which are easily seen in any

turbulent flow in nature. Several attempts have been made to understand its role in the

dynamics of turbulence (see e.g. Tsinober 1998) or to further describe turbulent flows as

collection of vortical structures (see e.g. Pullin & Saffman 1998).

A distinguishing feature of turbulence is efficient transport of momentum, heat and mass,

which can be orders of magnitude faster than in a laminar flow which rely only on slow

molecular diffusion processes. This is a very desirable feature in combustion where reaction

rates depend on the mixing of multiple chemical species and in the environment where

pollutants in both air and water are dispersed into the surroundings. The fundamental

mechanisms of turbulent mixing are best illustrated by the study of passive scalars which

are defined as diffusive quantities that are convected by but do not modify the flow (Warhaft

2000). In practice the Schmidt number varies over a wide range, from O(0.01) in liquid

metals, to order one in gaseous flames, and O(1000) for industrial applications involving

organic liquids. The dynamics of moderately diffusive scalars with Sc ≤ 1 (Obukhov 1949,

Corrsin 1951) and weakly diffusive scalars with Sc ≫ 1 (Batchelor 1959) are governed

by distinct processes and characterized by different scaling behaviors. Because scalars of

high Sc possess scales much smaller than those for the velocity field (Batchelor 1959) they

impose further resolution requirements in both experiment and simulation (Bogucki et al.

1997, Yeung et al. 2004). As a result, less data is available (Antonia & Orlandi 2003), and

the scaling is less understood.

3



In most of our work we have focused on the idealized flow configuration of forced sta-

tionary isotropic turbulence, because it allows better sampling, is readily amenable to high-

performance computing (through the use of pseudo-spectral methods), and, most impor-

tantly, its small-scale features are of wide relevance as suggested by Kolmogorov (1941a)

theory. However, we are also interested in non-equilibrium situations where the presence of

a different physical process, such as uniform solid-body rotation, may change the turbulence

structure substantially such that Kolmogorov’s hypotheses do not apply. Rotating turbu-

lent flows occur in diverse fields such as engineering (e.g. turbomachinery and reciprocating

engines with swirl), geophysics, and astrophysics. It is known that rotation causes initially

isotropic turbulence to develop anisotropy at both large and small scales (e.g. Morinishi

et al. 2001, Yang & Domaradzki 2004). Strong rotation (represented by low Rossby num-

ber) is also known to reduce the cascade of energy and lead to the growth of the integral

scales (e.g. Jacquin et al. 1990, Mansour et al. 1991a, Cambon et al. 1997, Yeung & Zhou

1998). However, many aspects of the scaling with respect to the Rossby number are still not

understood. In addition to anisotropies at all scales we observe a decrease in intermittency

(Yeung et al. 2003) which could be explained by a strong damping of the nonlinear terms

in the governing equations.

While there is a variety of approaches in which supercomputers can be used to study

turbulent flows (Moin & Kim 1997) we focus on Direct Numerical Simulations (DNS, see

Moin & Mahesh 1998, for a review) where all scales are computed according to the instan-

taneous form of the Navier-Stokes equations. The primary advantage of this approach is

that it can provide tremendous detail about the flow physics: e.g. with the full velocity

field computed at every grid point, many quantities that are extremely difficult to measure

in experiments can be extracted from the DNS database with relative ease. In addition, the

relative ease of systematic variation of parameters such as the Reynolds, Schmidt or Rossby
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numbers allows one to address important scaling issues. It is well known, however, that the

range of scales of a turbulent flow increases with the Reynolds number (e.g. Tennekes &

Lumley 1972). Therefore, if one is to solve all the scales, the computational power required

also increases with the Reynolds number.

Rapid advances in computing power at aggregate speeds in the Teraflop range (1012

operations per second, see figure 1.1) have made very large simulations possible, typically

aimed at reaching higher Reynolds numbers (e.g. Kaneda et al. 2003’s, world-record res-

olution of 40963 for isotropic turbulence and Hoyas & Jiménez 2006 for fully-developed

channel flow). Reynolds numbers currently achievable on terascale computers are compara-

ble to those in controlled laboratory experiments. This is the case with our recent DNS of

turbulent mixing on a 20483 grid which is the largest in the US, at Taylor-scale Reynolds

number (Rλ ≡ u′λ/ν where λ2 = 〈u2〉/〈(∂u/∂x)2〉 is the Taylor microscale) almost 700,

which is close to that (800) in experiments performed by Mydlarski & Warhaft (1998) in a

setup designed to reach relatively high Reynolds numbers in an active-grid wind-tunnel.

As to be described in more detail later in Chapter 2, we have performed simulations

with a massively parallel implementation of the pseudo-spectral algorithm of Rogallo (1981)

at up to 20483 resolution at multiple national supercomputer centers. To prepare for 40963

and higher we have undertaken significant efforts to implement a new domain decomposition

that will allow us to take advantage of future machines with ever-larger processor counts.

The new code has been benchmarked successfully using up to 32768 processors of an IBM

BlueGene at IBM Watson Research Center (currently ranked No 4 in the world according

to the “top500” list in June 2007). The nature of turbulence as a Grand Challenge problem

in high-performance computing is clearly recognized in its selection as one of three model

problems in a recent solicitation by the National Science Foundation1 to create a computer

1http://www.nsf.gov/pubs/2006/nsf06573/nsf06573.html
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capable of sustained performance at one Petaflop/s (1015 operations per second) by the year

2011.

Below we give a more detailed review of the important recent developments in our field of

research, followed by a summary of objectives and an outline for the structure of subsequent

Chapters in this thesis.

1.2 Motivation and Literature Review

Because turbulent flows are extremely common in nature and engineering devices, its fun-

damental understanding is of utmost importance. Turbulence theories, models and appli-

cations permeate a very large number of other fields. The wide scope of turbulence can be

seen from recent reviews in different fields: from classical problems such as flow in pipes

(Jiménez 2004, Eckhardt et al. 2007), the scaling of anisotropy (Biferale & Procaccia 2005)

or turbulent mixing (Dimotakis 2005) to dispersion in the ocean (Garrett 2006), combustion

problems such as droplet evaporation (Birouk & Gokalp 2006) or modeling (Veynante &

Vervisch 2002), problems involving marine organisms (Sanford 1997, Abraham 1998, Franks

2005), magnetohydrodynamics turbulence (Zhou et al. 2004), or relatively novel applica-

tions such as quantum and classical turbulence in cryogenic flows (Vinen & Niemela 2002,

Nimela & Sreenivasan 2006). This list, which is far from comprehensive, is aimed at giv-

ing an example of the scope of applicability of achievements at the fundamental level and

therefore its importance.

The review by Lumley & Yaglom (2001) gives a broad view of the last hundred years

of turbulent research pointing out the lack of a comprehensive theory (see also e.g. Nelkin

1992, Sreenivasan 1999). An interesting historical review about the work of O. Reynolds

was recently published (Jackson & Launder 2007). Sreenivasan & Antonia (1997) review

the knowledge and importance of studying small scale intermittency. Direct numerical

simulation has a history of about 35 years, beginning with the work of Orszag & Patterson
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(1972) using pseudo-spectral methods and 323 grid points. Past reviews include Rogallo

& Moin (1984) and Moin & Mahesh (1998). The more recent review by Jiménez (2003)

compares simulations and experiments and speculates that in the future, understanding of

key concepts of wall-bounded flows would be better supported by simulations. At the time

of this writing, the largest DNS known for isotropic turbulence is that by Kaneda et al.

(2003) which used 40963 grid points achieving a Taylor-based Reynolds number of about

1200, although the simulation was relatively short and statistical sampling may not be

fully adequate. In our studies of turbulent mixing we have focused on reaching the highest

Reynolds number for Schmidt number unity (Yeung et al. 2005), as well as the highest

Schmidt number at very low Reynolds number (Yeung et al. 2004).

In order to push the envelope of the largest simulation possible (e.g. to investigate

scaling at ever-higher Reynolds numbers), one has to use the most powerful state-of-the-art

supercomputers available to the scientific community. This, in turn, requires porting the

code to new architectures where new challenges often arise. As the resolution increases (e.g.

40963) memory limitations, I/O and communications performance all have to be considered

and may present serious additional challenges. These issues are the driving force behind an

extensive effort in algorithm development as described in Chapter 2.

Intermittency has been an active field of research for several decades (see e.g. Obukhov

1962, Frisch 1995). In order to characterize small-scale intermittency many studies have

focused on high-order moments of velocity gradients or equivalently the tail of their proba-

bility density functions (PDF). Intermittency in the inertial range is usually characterized

by statistics of velocity increments whose PDF tails become wider at smaller scale sizes.

It is also observed that scaling exponents of structure functions in the inertial range show

non-trivial departures from the classical theory of Kolmogorov (1941a). Obukhov (1962)
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suggested using local averages of energy dissipation over a domain of linear size r to under-

stand its spatial fluctuations. According to this theory, the moments of local averages scale

as power laws in r with exponents that characterize the intermittent behavior in departure

from Kolmogorov (1941a) prediction. Kolmogorov (1962) further suggested that moments

of local averages of dissipation are linked to those of velocity structure functions in the

inertial range. A review of results on both dissipative and inertial range intermittency can

be found in Sreenivasan & Antonia (1997).

Two common descriptors of small scale intermittency are the fluctuations of dissipa-

tion rate and enstrophy. Theoretical arguments (L’vov & Procaccia 1996, He et al. 1998,

Nelkin 1999) have been given that suggest identical scaling for these two quantities at high

Reynolds numbers. However, almost all sources of data available (e.g. Siggia 1981, Kerr

1985, Yeung & Pope 1989, Sreenivasan et al. 1995, Chen et al. 1997a, Zhou & Antonia 2000)

show that enstrophy is more intermittent than dissipation. These data include high-order

moments, scaling exponents of local averages, tails of PDF’s. The clarification of this issue

is important because the hope for a universal behavior of the small scales will be strength-

ened if dissipation and enstrophy can be described by the same set of scaling exponents.

At the same time, it could help distinguish the roles of local straining versus rotation in

the modeling of turbulent dispersion (Borgas & Yeung 2004). We use our DNS database

to address the scaling of both dissipation and enstrophy, including whether the observed

differences are due to the effect of finite Reynolds number. The study of intermittency

requires that the simulations be able to capture the smallest scales (steepest gradients) in

the flow. Recent theories (e.g. Yakhot & Sreenivasan 2005) suggest stricter constraints in

resolution requirements for DNS to capture extreme fluctuations whose contribution to high

order moments is substantial. Therefore, it is important to address the effect of resolution in

the study of intermittency in turbulence. Depending on the quantities of interest, a better
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degree of resolution of the small scales than commonly practiced may be necessary.

The range of scales at which mixing occurs depends on the Sc. For moderately diffusive

scalars (Sc . 1) the smallest scale is the Obukhov-Corrsin scale ηOC ≡ ηSc−3/4 (Obukhov

1949, Corrsin 1951) where η is the Kolmogorov scale. For weakly diffusive scalars (Sc > 1)

the smallest scale is given by the Batchelor scale ηB = ηSc−1/2 (Batchelor 1959). The

processes dominating the mixing of the scalar at the smallest scales also depends on Sc.

The review by Warhaft (2000) focuses on experimental data at Sc ∼ O(1) and presents

evidence suggesting that local isotropy is violated even at very high Reynolds numbers, that

intermittency is stronger than for the velocity field at both inertial and dissipative scales,

and that there seems to be a strong interaction between large and small scales making

simple concepts of spectral cascade inadequate. For scalars of high Schmidt number, the

recent review by Antonia & Orlandi (2003) points out the existence of scalar “sheets” where

scalar dissipation concentrates, and the good collapse of spectra when normalized with

Batchelor scales. Although not completely conclusive, a k−1 scaling of the spectrum seems

plausible. The very fine structure of the scalar field appears to be better represented by

models that take into account fluctuations in the strain rate (absent in Batchelor’s model).

It is not known whether departures from local isotropy would vanish in the limit Sc → ∞.

Extensions to active scalars and reacting flows are reviewed by Dimotakis (2005).

We study in detail the scaling of the mean scalar dissipation rate although high or-

der statistics are also presented to characterize intermittency. Because Batchelor scale is

smaller than Kolmogorov scale, more stringent resolution requirements are imposed in both

simulations and experiments for high-Sc scalars. Therefore, knowledge about the scaling of

weakly diffusive scalars is less developed. Batchelor (1959) predicted a k−1 behavior for the

spectrum by assuming that the scalars are mixed by a slowly varying strain field. Although

an important theoretical result (Nelkin 1994), Batchelor k−1 scaling is not well established.
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While some experiments and simulations do support it (e.g. Gibson & Schwarz 1963, Garrett

1985, Prasad & Sreenivasan 1990, Bogucki et al. 1997, Antonia & Orlandi 2003) some other

data do not (e.g. Miller & Dimotakis 1996, Williams et al. 1997, Dasi 2004). One of the

difficulties in obtaining unambiguous scaling is the attainment of a clear viscous-convective

range in DNS and experiments due to resolution constraints. Intermittency at small scales

is usually studied through fluctuations of the scalar dissipation rate. This is important in,

e.g., reacting flows (Sreenivasan 2004, Bilger 2004) where reaction rates are proportional

to scalar dissipation and large values can lead to local extinction of the flame. It has been

observed that scalar dissipation is more intermittent than dissipation (see e.g. Sreenivasan

& Antonia 1997, Yeung et al. 2005). However, due to the constraints mentioned above, the

nature of Sc scaling is less understood.

The structure of turbulence is profoundly modified by uniform solid-body rotation (e.g.

Cambon & Jacquin 1989, Cambon et al. 1997). The basic picture of a spectral cascade is

disrupted and has to be revised. It was found that in addition to the usual cascade from

low wavenumbers to high wavenumbers, there is transfer between wavenumbers parallel

to the axis of rotation to wavenumbers perpendicular to it, the so-called “slow manifold”

(Cambon et al. 1997). If rotation is sufficiently strong, the latter “cascade” could entirely

replace the former (e.g. Morinishi et al. 2001). The combined effect of these transfers has

subtle consequences which include growth of integral length scales along the axis of rota-

tion, reduced decaying rates of kinetic energy, anisotropy at both large and small scales.

Following (Jacquin et al. 1990) it is possible to define different regimes for rotation based

on the values of the Rossby number. Although some effects are monotonic with rotation

(e.g. reduced spectral transfer to small scales), some others are strongest at intermediate

rotation rates. Due to the growth of integral scales, effect of domain size associated with
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periodic boundary conditions are a significant concern, which has led us to perform sim-

ulations at domain sizes (4π)3 and (8π)3 versus the usual (2π)3. Different spectral slopes

has been proposed in the literature (Cambon et al. 2004, see e.g.). However, evidence from

simulations and experiments is mixed. It is also known that, although the anisotropy ten-

sor remains isotropic, its different components present deviations from an isotropic state

(Morinishi et al. 2001, Yang & Domaradzki 2004) especially at intermediate rotation rates.

In addition, experimental results (Simand et al. 2000, Baroud et al. 2002) show anomalous

scaling for velocity structure functions which, however, suggest a possible self-similar behav-

ior. Quasi-two-dimensional features are expected based on the Taylor-Proudman theorem

for rapidly rotating flows (Greenspan 1968). However, this result has to be re-examined as

some assumptions may not be satisfied in turbulent flows.

1.3 Objectives and Outline

Our objectives in this thesis are to:

1. develop efficient simulation capabilities to perform large simulations (e.g. at 40963)

using very large number of processors;

2. study the issue of resolution in DNS for the study of intermittency. For this purpose

we investigate moments of dissipation and enstrophy as well as structure functions as

they approach the so-called analytic range;

3. study the scaling of small-scale intermittency through both dissipation and enstrophy.

We investigate whether the difference in scaling is due to Reynolds number effects with

particular attention to extreme values of the fluctuations;

4. investigate the scaling of passive scalars. We test the hypothesis that scalar dissipa-

tion is independent of molecular properties, which is necessary for the extension of
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Kolmogorov theory to passive scalars. We also address the scaling of the spectrum as

well a plausible saturation of intermittency with increasing Sc; and

5. study the effect of the addition of the Coriolis force in the governing equations. In par-

ticular we study the scaling of anisotropy and intermittency and possible mechanisms

for the observed homogeneity along the axis of rotation.

The rest of this thesis is organized as follows.

In Chapter 2 we describe the numerical method for our direct numerical simulations.

The parallel algorithm is briefly summarized followed by a description of a new scheme

developed to allow for larger simulations. Some benchmarks are presented and future issues

are also discussed.

Chapter 3 deals with the issue of resolution and high-order statistics. High-order mo-

ments of dissipation and enstrophy are used to investigate the need for resolving small

scales batter than usually done. We further derive expressions for the error incurred by

computing moments of gradients from structure functions and its departure from the ana-

lytic range. Results are compared with recent theories on the smallest scales to be resolved

in simulations.

In Chapter 4 we investigate the scaling of dissipation and enstrophy in the context of

small scale intermittency. Extreme fluctuations of order 1000 times the mean value are

found which tend to occur in clusters. The nature of these fluctuations is investigated

further in terms of local isotropy. A possible universal state for these extreme fluctuations

is discussed.

Turbulent mixing is studied in Chapter 5. The commonly accepted view that scalar

dissipation is independent of molecular properties is analyzed. The scaling of the scalar

spectrum in the inertial-convective and viscous-convective range is discussed. Intermittency

in small-scale mixing is investigated through fluctuations of the scalar dissipation rate.
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In Chapter 6 we study turbulence subject to solid-body rotation. We first investigate

the effects of domain size. Then, using new simulations at higher Reynolds number we

address the scaling of the spectrum, anisotropy and intermittency with respect to the two

relevant parameters, namely the Reynolds and Rossby numbers.

Chapter 7 summarizes the conclusions and explore possible extensions of the work pre-

sented in this thesis.

In the appendices we include the abstract of related publications which contain part of

the material presented in this thesis.

13



1940 1950 1960 1970 1980 1990 2000 2010 2020
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

11
10

12
10

13
10

14
10

15

Electro−mechanical

SEAC

MANIAC
IBM 704

IBM 7030

CDC 6600
CDC 7600

Cray−1 Cray X−MP

Easy−commercial Cray Y−MP
CM−1,etc

Intel Gamma, CM−2, etc
Intel Delta, CM−200, etc

Cray T3D

J−90 series

CM−5
Origin 2000

Lemeiux (PSC)

Earth Simulator
Seaborg (NERSC) DataStar (SDSC)

BlueGene/W (IBM)

Cray XT3 (PSC)

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Year

10
0

10
1

10
2

10
3

10
4

3D Navier−Stokes turbulence

Earth Simulator
40963

20483

NERSC/SDSC/PSC

Rλ

Figure 1.1: Evolution of computational power (left axis) and Rλ achievable (right axis)
as a function of calendar year. Figure originally by K.R. Sreenivasan (NRC Report 1999).
Today’s machines seem to continue the trend. The symbol ∗ represent a Petascale machine
expected to be available by the year 2011.

14



CHAPTER II

DIRECT NUMERICAL SIMULATIONS AND HIGH-END

COMPUTING

In this chapter we describe the numerical scheme, parallel implementation and benchmark-

ing of the code used for the simulations in this work. To date, our accumulated database

comprises more than 20 Terabytes. A summary listing for isotropic turbulence is shown

in Table 2.1. The Reynolds and Schmidt numbers ranges span about 3 and 4 decades re-

spectively. This wide range of parameters allows us to address some scaling issues, such as

dissipative anomaly or intermittency scaling, more reliably than possible before.

2.1 Numerical Method

Direct numerical simulation is a powerful tool in turbulence research (Moin & Mahesh 1998).

It consists of solving the exact Navier-Stokes equations for the instantaneous velocity field

representing the laws of conservation of mass and momentum for all the relevant time and

length scales in the problem. With no mean flow the velocity fluctuations evolve by the

equation

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
, (2.1)

with the conservation of mass for an incompressible fluid given by

∂ui

∂xi
= 0. (2.2)

Equations (2.1) and (2.2) can be transformed to Fourier space as

∂ûi(k, t)

∂t
= −ιklPim(k)

∫

k′

ûm(k′, t)ûl(k − k′, t)dk′ − νk2ûi(k, t) (2.3)

kiûi(k, t) = 0 (2.4)
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where ûi(k, t) is the velocity Fourier coefficient at wavenumber vector k and time t, ι ≡
√
−1

and Pim(k) ≡ δim − kikm/k2 (with k = |k|) is the solenoidal projection tensor. This leads

to a set of coupled ordinary differential equations which can be integrated in time using an

explicit second-order Runge-Kutta method. If equation (2.3) is written as

dû(k, t)

dt
= â[û(k, t)] (2.5)

where â represents the acceleration given by the right-hand side of Eq. 2.3, then to advance

the solution from time tn to tn+1 we compute a first-order approximation in the predictor

step as

û∗(k) = û(k, tn) + ∆t â[û(k, tn)] (2.6)

and then an improved solution is obtained in the corrector step as

û(k, tn+1) = û(k, tn) +
∆t

2
{â[û(k, tn)] + â[û∗(k)]} (2.7)

The time step ∆t is restricted by numerical stability considerations expressed by a

Courant number in explicit schemes. Although for spectral schemes stability constraints

are less established (see, e.g. Peyret & Taylor 1983) it is common to use the Courant number

to determine the time step. In three dimensions the Courant number is defined as

C ≡ ∆t max
x

{ |u1(x, t)|
∆x1

+
|u2(x, t)|

∆x2
+

|u3(x, t)|
∆x3

}

(2.8)

where the maximum is taken over all grid points. Tests conducted by Eswaran & Pope

(1988) showed that values of C greater than unity produce unacceptable results. Typically,

for second-order explicit schemes if C < 1 the time-stepping error decreases as C2. It is

clear that a small C enhances accuracy in time but (via number of time steps) also increases

the overall computational cost. In our simulations we typically use C = 0.6. Smaller values

are necessary for simulations involving scalars of high Sc which possess scales finer than the

velocity field.
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To maintain a stationary state an additional forcing term is added to Eq. 2.3. The

forcing used in this work, which uses a combination of six independent Uhlenbeck-Ornstein

random processes (Eswaran & Pope 1988), is nonzero for wavenumbers with magnitudes in

the interval k0 ≤ k ≤ kF where k0 is the lowest wavenumber represented in the calculation

(equal to unity in the case of a standard periodic cube of length 2π in each direction) and

kF is typically chosen to be either
√

2, 2 or 2
√

2. There have been many forcing schemes

proposed in the literature although there is no consensus on which one is the best (Overholt

& Pope 1998). However, the details of forcing do not appear to affect small scale statistics

(Eswaran & Pope 1988, Sreenivasan 1998).

A fully-spectral method for evaluating the convolution term in Eq. 2.3 would require

N6 operations since for each wavenumber N3 multiplications are involved. To avoid this

large cost the nonlinear terms are computed in physical space and then transformed back

to Fourier space (Orszag 1969, 1971). This scheme, called pseudo-spectral, reduces the

cost to O(N3 ln2 N) but aliasing errors arise which however, are carefully controlled by a

combination of truncation and phase shifting techniques (Rogallo 1981).

The highest wavenumber resolvable in the pseudo-spectral scheme used here is kmax =

√
2N/3 where N is the number of grid points in each direction. A convenient non-dimensional

parameter of resolution is kmaxη where η = (ν3/〈ǫ〉)1/4 is the Kolmogorov scale. In most

published work aimed at achieving the highest Reynolds number on a given grid, kmaxη is

between 1.0 and 2.0 (Eswaran & Pope 1988, Wang et al. 1996, Gotoh et al. 2002, Kaneda

et al. 2003, Biferale et al. 2004) with 1.4-1.5 being most common which corresponds to a

grid spacing of about 2η. At the same time, in order to capture the largest scales, the do-

main size should be several times larger than the longitudinal integral scale L1. Typically,

the ratio box-size to L1 is between 5 and 6. If that is not the case, a larger domain should

be used, as in simulations of rotating turbulence (see Chapter 6).
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Classical scale estimates (Kolmogorov 1941a) imply that the number of grid points

necessary to resolve all scales in a three-dimensional domain (N3) varies as N3 ∼ (L1/η)3

which is proportional to Rλ
9/2. Since the number of time steps M should be enough to

span several eddy-turnover times TE we can estimate M ∝ TE/∆t. If, as a first order

approximation, the term in brackets in Eq. 2.8 is assumed to be proportional to the rms

velocity, u′, then a fixed Courant number would imply ∆t ∝ ∆x/u′. As a result, M would

scale as TEu′/∆x ∼ L/∆x where L ∼ TEu′ is a large-eddy length scale. Because the grid

spacing should be of the order of Kolmogorov scale (i.e. ∆x ∼ η), we finally obtain the

number of times steps as M ∼ L/η ∼ Rλ
3/2. The overall computational power needed,

therefore, scales as

N3M ∼ Rλ
6 (2.9)

which shows clearly why simulations at high Reynolds numbers are highly CPU-intensive.

Recent work by Yakhot & Sreenivasan (2005) suggests an even stricter constraint of the

form Rλ
8 at higher Rλ due to intermittency, which is investigated further in Chapter 3.

2.2 Parallel Algorithms

We use a massively parallel implementation of the pseudo-spectral algorithm by Rogallo

(1981) in which the most time-consuming task is the three-dimensional Fourier transform.

The code was originally written to work on IBM machines using the Fast Fourier Trans-

forms (FFT) included in the IBM-optimized ESSL libraries, but it also has been ported to

non-IBM machines (such as Cray XT3, see Table 2.2) by using the portable FFTW package.

The FFTW implementation showed performance comparable to the ESSL (even on IBM

machines). The post-processing codes, which are also parallel, needed to be changed as well.

Given the severe computational requirements (see Eq. 2.9) it is clear that simulations of

high Reynolds number turbulence require the use of the most powerful computing resources

available to the research community. We have used significant resources at three national
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supercomputing centers, namely San Diego Supercomputer Center (SDSC), Pittsburgh Su-

percomputing Center (PSC), and the National Energy Research Scientific Computing Cen-

ter (NERSC). A summary of the major characteristics of the computers we use at these

sites is given in Table 2.2.

According to www.top500.org as of June 2007, the most powerful computer in the world

is an IBM BlueGene. The remaining machines in Table 2.2 are also based on top-ranked

architectures. In addition to production calculations carried out on machines at SDSC, PSC

and NERSC, we have ported and benchmarked our codes on a BlueGene (called BGW) at

IBM Watson Research Center which has 40960 processors and is ranked number four with

114 Tflops/s. This machine is highly scalable and has sufficient capacity for supporting

production calculations at 40963 resolution.

The data structure in the code is organized in “slabs” as shown in figure 2.1(a). For an

N3 grid, each processor holds N/NP planes of data where NP is the number of processors

(and is equal to the number of slabs). In the pseudo-spectral algorithm used here, to ad-

vance the solution in time, some quantities are needed in both Fourier and physical space.

They are obtained by a three-dimensional FFT implemented as below. In physical space,

since each processor holds data in the form of XZ-planes, FFTs are first applied in the

X and Z directions. To transform in Y , it is necessary that each processor hold all grid

points in that direction. Therefore, processors have to exchange data among themselves

to re-partition the domain. This transpose takes places among all processors with collec-

tive communication calls (using MPI ALLTOALL from the MPI software library) which

incurs significant overhead. Indeed, because all processors are involved, these operations

are the bottleneck for improved performance especially at large processor counts. The

three-dimensional transform is completed by transforming in the Y -direction since after the

transpose, processors hold data in XY -planes as shown in figure 2.1(b).
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While the scheme described above has worked well and was used for most of our pro-

duction runs to date, it has the disadvantage that the number of processors that can be

used is limited to N (i.e. number of planes in an N3 domain). Two issues arise for very

large problem sizes. First, for N = 4096 or higher, the memory requirements for just one

plane may exceed the memory available per processor. (This is especially true for IBM

BlueGene which has small memory per processor as seen in Table 2.2). Second, even if

sufficient memory is available (e.g. on DataStar at SDSC) the wall clock time when using

only N processors is likely to be too long for a production simulation spanning 104 or 105

time steps to be feasible.

To overcome the limitations above, we have devised, with help from strategic consultants

at SDSC, a new code which divides the solution domain in two directions as shown in

figure 2.2(a). The processors form a two-dimensional processor grid as each processor is

identified by two coordinates that specify which parts of the domain it holds. For example,

in figure 2.2(a), processor 0 (P0 in the figure) is located at (Y,Z)=(1,1) whereas processor

6 at (2,3). It is clear that the slabs code (figure 2.1a) corresponds to the special case of

a one-dimensional processor grid. In the example shown in the figure the two-dimensional

processor grid is, for simplicity, square with NP1 = NP2 = 4 where NP1 and NP2 are the

number of processors in each direction of the processor grid such that NP1NP2 = NP . The

size of each pencil is N × (N/NP1) × (N/NP2) = N3/NP and it is clearly seen that this

code allows the use of up to N2 processors. Our implementation allows for cases where NP1

and NP2 are not equal, as well as cases where NP2 is not an integer factor of N . In the

latter case, some processors carry a slightly larger amount of workload but departure from

perfect load balance is small.

The three-dimensional FFTs in the pencils code are performed with two collective com-

munication operations as follows. First, each processor transforms in the direction that
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contains all the grid points, X in physical space (figure 2.2a). To transform in another

direction, say Z, communication must take place so that each processor can hold all grid

points in that direction. This is done by a collective communication among processors in

the same row on the computational grid. In the case illustrated in the figure, say, processor

0, exchanges data only with processors 1, 2 and 3 to re-partition the data as pencils aligned

with the Z direction. Then, FFT’s are applied to data along Z. The last collective com-

munication is among processors in the same column on the computational grid after which

processors hold all grid points along Y as shown in figure 2.2(b). Finally, the transforms in

Y are performed.

As described above, for each three-dimensional FFT the code requires two collective

communication calls (as opposed to only one in the slabs code.) However, since these

communication calls occur on fewer processors (of the order ∼
√

NP ), the code is expected

to scale better than the slabs code when the number of processors becomes very large.

2.3 Performance and Benchmarking

It is useful to address the efficiency of the code via several performance measures as one

changes the number of processors and problem size. The so-called strong scaling consists

in changing the number of processors with problem size held fixed. Perfect strong scaling

implies a wall clock time inversely proportional to the number of processors. Weak scaling,

on the other hand, consists in varying both processor count and problem size so that the

load per processor remains constant. Since the cost of FFTs is proportional to N3 ln2 N ,

then perfect weak scaling would imply a wall clock time proportional to N3 ln2 N/NP . A

summary of benchmarking data on BG at SDSC is presented in Table 2.3 in terms of

the wall clock time per time step per processor (t/s/p) for a range of processor counts

and problem sizes. From the timings at N = 1024 we can see that strong scaling from

1024 to 2048 processors for the pencils code is as high as 98%. Since the FFT cost scales
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as N3 ln2 N , perfect weak scalability (fixed load per processor) would imply, for example,

that the time taken per step per processor for a 20483 grid on 2048 processors would

be ln2(2048)/ ln2(1024) = 1.1 times longer than a 10243 on 256 processors. We can see,

however, from Table 2.3 that in this case, the pencils code seems to achieve superlinear

scaling. This is not the case in general but only for a few combinations of resolutions

and processor counts. This behavior is a consequence of two factors. First, it depends on

how the two-dimensional domain decomposition is mapped onto a three-dimensional torus

architecture (like BG). If the grid decomposition is such that processors in one direction

fit exactly in that dimension of the torus, communications can use wraparound links and

are faster than the case in which collective communications have to use the network tree.

The second factor is related to effects of the processor cache size. For some processor grid

geometries the first dimension of the main arrays containing the flow variables is 32 bytes

long. The innermost loops over X (first dimension) then fit exactly in one line on Level 1

(L1) cache (L1 has 32KB on BG). Outside this loop, there are other loops over the other

directions as well as over flow variables which means that the code needs to read from

another location in memory. If the first dimension, however, is a few times greater than 32

bytes, then the processor would prefetch those lines at the same time it is computing on the

first cache line with the consequent increase in performance. More details on the scaling of

the DNS code on BG and DS were recently presented at a conference (Pekurovsky et al.

2006). We also conducted benchmarks at 40963 resolution on 2048 processors on DataStar

where we obtained (t/s/p)=110 secs and 133 secs for the slabs and pencils codes respectively.

However, this is not good enough for production purposes since a run with O(105) time steps

would cost more than 6 million CPU-hours using almost all of the entire machine for more

than 4 months.

Benchmark runs were also conducted on the 114 Tflops BlueGene at IBM’s Watson
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Research Center (called BGW). The architecture of this machine is similar to the BG at

SDSC (see Table 2.2) but it has 40960 processors. Results of this series of benchmarks

on BGW, BG at SDSC, and DataStar are shown together in figure 2.3. Each node on

BlueGene is composed of two cores and can run in two different modes: co-processor (CO)

mode in which one core performs computations while the other is responsible only for com-

munications, and virtual node (VN) mode in which each core performs both computation

and communication. In CO mode the computing node has access to twice as much memory

as in VN mode. The code was tested in both modes and VN was found to be better. In

part (a) of figure 2.3 perfect scaling would imply a Flop rate per processor independent

of NP . We see that although the scaling is not perfect, strong scaling of 85% is achieved

from 16384 to 32768 processors for a 40963 run . The code is also seen to attain about

10% of the theoretical peak performance which is comparable to the performance of most

large user codes. Benchmarks on DataStar (DS) are also included to compare the scaling

on other architectures. It is seen that on both BG and DS, the scaling is a weak function of

the number of processors. Figure 2.3(b) shows the aggregate Flop rates for the same cases

as in part (a). Perfect scaling would imply a straight line with slope unity and is shown

as a dashed line. Simulations using 32768 processors apparently reach about 5 Tflops/sec

with very good scalability. The good scaling seen in figure 2.3(b) is likely to persist for even

higher processor counts.

For a given problem size, performance of the pencils code depends not only on NP but

the geometry of the processor grid (i.e. NP1 and NP2). Although the code can automatically

generate a processor grid as “square” as possible, we found that other combinations lead

to better results. Table 2.4 shows (t/s/p) for a 40963 on 32768 processors using different

processor grids. The best performance in this case is obtained apparently with the choice

NP1 = 32 and NP2 = 1024. As shown in Pekurovsky et al. (2006), this result can be
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explained by considering how the data are mapped into the 3D torus along with cache effects.

As discussed earlier, these effects can also lead to superlinear scaling on BlueGene’s for

certain combinations of resolutions and processor grids. An example is seen in figure 2.3(a)

at NP = 512. Note that the results shown in figure 2.3 presented earlier were all obtained

with processor grids close to a square configuration. Therefore, actual Flop rates and

scaling better than those shown in the figure are possible. For example, for a 40963 we

obtain (t/s/p) ≈ 20 secs on 32768 processors and 39 secs on 16384 processors using the best

processor grids in each case with almost perfect strong scaling.

Velocity fields are saved regularly during production DNS runs for post-processing

and/or checkpointing. For example, in a 40963 simulation, the size of a set of restart

files is 768 GB (1.25 TB if two scalars are included). The I/O scheme we use is such that all

processors write their own files simultaneously . When thousands or tens of thousands of

processors are involved, however, some challenges arise. It is often the case that processors

share part of the I/O system (e.g. I/O nodes, network, disks) which may lead to severe

bottlenecks. BlueGene architecture is based on psets which are units containing a number

of computing nodes and one I/O node. The larger the ratio of number of computing nodes

to number of I/O nodes, the greater is the potential for a bottleneck. While this ratio is 8:1

on BG at SDSC and leads to good I/O performance, it is 64:1 on BGW. Originally, our code

on BGW using 32768 processors took about 3 hours to write the files. The scheme imple-

mented to alleviate this problem consists on scheduling the processors in batches. Within

a pset only a number of processors write simultaneously thus reducing the number of cores

accessing the I/O node. For that purpose, it is necessary to identify the location of each

MPI task within a given pset which is done through BlueGene “personality” functions for

which C wrappers were created. It was further necessary to create batches according to

the location of each MPI task in the 3D torus for which more wrappers had to be created.
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The resulting scheme consists of batches of a number of processors writing simultaneously.

Some tests on BGW showed that the optimum batch size within a pset was 4 while the

batches according to location in the torus have a size of 8192 processors. With all these

improvements, the time to write the restart files has been reduced recently to approximately

25 minutes.

2.4 Future Issues

The pencils code was written from scratch with the active help of consultants at SDSC,

and optimized for use with very large number of processors. Although we ran benchmarks

mainly on BG architectures, it is important to address the scaling on other machines since

communication times on different architectures can vary substantially. For example, time

spent in communication for a 10243 on 512 processors with the slabs code is approximately

36% of the total time on BG at SDSC whereas it is greater than 50% on an XT3 at

PSC. Since communication is the main bottleneck preventing better scaling, it will also be

worthwhile to explore the possibility of overlapping communication and computation. This

task may also be platform-dependent for which different solutions could be found. Regarding

I/O, it may also be interesting to explore the possibilities of MPI-IO which could help us

create a portable solution (although may not be the best for all architectures) using the

concept of view of a file. MPI-IO allows many processors to access the same file although

each processor have a different view of it. This view determines for example the location

in the file each processor has access to. Creating batches using MPI-IO schemes may help

reduce bottlenecks especially when many processors have to read the same file. Furthermore,

since both blocking and non-blocking versions of writing/reading calls are available, it could

be possible to overlap I/O and computations (during checkpoints for example). As was

described in the previous Section, a very specific solution for I/O performance was found

on BlueGene architectures. Fine tuning the code for a given architecture is a very important
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task when state-of-the-art supercomputers are used to push the limits of today’s standards.

It is important to address the scaling of all parts of the code especially taking into

account the National Science Foundation solicitation to create a Petascale machine for

which one of the model problems is turbulence simulation on a periodic domain. The

configuration is the same as we study in this thesis and the aim is to simulate 10000 time

steps at Rλ ∼ O(2000) on a 122883 grid in 40 hours with 50 checkpoints. It is clear that

I/O performance needs improvement to meet this goal. The estimated memory required for

such a problem is about 67.5 Terabytes which exceeds machine capacities available today

but should be feasible by 2011. Although actual tests cannot be conducted at this time, the

scaling performance presented in figure 2.3 suggests that our pencils code can, with certain

modifications, scale up to the challenge of a 122883 simulation.

In any production run of stationary turbulence it is necessary to achieve a physically

meaningful stationary state starting from some initial conditions. The time spent between

the start of the simulation and the attainment of a stationary state has to be minimized as it

could represent millions of CPU hours for a 40963 and much more for a 122883. The closer

the initial conditions are to a stationary state at a given Reynolds number, the shorter

the time to reach stationarity (e.g. Rosales & Meneveau 2006). An initial velocity field

could be generated using Gaussian random fields with a given spectrum (Rogallo 1981). In

our simulations we generate the initial spectrum by both interpolating and extrapolating a

time-averaged spectrum from a stationary state at a lower Rλ using concepts of Kolmogorov

(1941a) according to which the normalized spectrum

E(kη)

〈ǫ〉2/3k−5/3
= f(kη) (2.10)

is universal for the small scales. To understand this scheme, we first note that 〈ǫ〉 is

independent of viscosity and is determined by the large scale forcing which is the same at

different resolutions whereas viscosity is changed to achieve a target Reynolds number. To
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increase the Reynolds number, one has to increase the number of grid points from say N1 to

N2 = 2N1 (subscripts are used here to denote different simulations). In this example, twice

as many modes are available but η = (ν3/〈ǫ〉)1/4 is reduced (through changes in viscosity)

so that resolution at small scales remains the same (i.e. η2 ≈ η1/2). The normalized

wavenumbers in the N3
1 simulation are then

(kη)1 = η1, 2η1, 3η1, . . . , N1η1/2 (2.11)

whereas at N3
2 they are

(kη)2 = η2, 2η2, 3η2, . . . , N2η2/2 ≈ η1/2, η1, 3η1/2, . . . , N1η1/2. (2.12)

It is clear that since f(kη) in Eq. 2.10 is only known at the wavenumbers given in Eq. 2.11,

both interpolation and extrapolation are needed to obtain values of f(kη) at the wavenum-

bers given in Eq. 2.12. In figure 2.4 we show a typical result obtained using this scheme for

a spectrum at 40963 from a 20483 time-averaged spectrum. A well established stationary

state using this scheme is attained within 4 or 5 eddy turnover times. However, at 40963

resolution, this could cost of the order of 106 CPU-hours.

We have developed a new scheme in which both an interpolated/extrapolated initial

spectrum and an instantaneous velocity field of fully developed turbulence at a lower res-

olution and Rλ are used to generate the initial conditions. The Fourier coefficients from

a N3
1 simulation are read by the code and used at the same wavenumbers on a N3

2 grid

(N2 = 2N1). For example, û(k) at k = (2, 2, 2) on the N3
1 grid is used as the Fourier coeffi-

cient at wavenumber k = (2, 2, 2) on the N3
2 grid. We also noted that because at N3

1 fewer

modes are available, the new high-resolution initial velocity field will contain 7N3
2 /8 zero-

valued coefficients at high wavenumbers. Those coefficients are initialized with a Gaussian
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field (Rogallo 1981). In other words,

û(2)(k(2)) =



















û(1)(k(2)) if |k(2)| < k
(1)
max

Gaussian field otherwise

, (2.13)

where superscripts (1) and (2) denote simulations at N3
1 and N3

2 respectively. Becasue

the Fourier coefficients are equal at the same wavenumber k but not the same normalized

wavenumber kη (since η2 ≈ η1/2), the spectrum obtained at N3
2 using this scheme (say

Elr(k)) would not correspond to the universal form Eq. 2.10. To produce a velocity field with

a “target” spectrum Et(k), we multiply each Fourier coefficient by the factor
√

Et(k)/Elr(k).

The spectrum Et(k) is obtained from a time-averaged spectrum at lower resolutions as

described below Eq. 2.10.

The scheme just described involves intensive I/O which was optimized for BGW ac-

cording to the discussion in Section 2.3. Preliminary tests conducted at lower resolutions

suggest that the new scheme allows a stationary state to be developed in only about one

eddy-turnover time. Part of the success of the new proposed scheme in reducing transient

periods is related to the forcing. After multiplying Eq. 2.1 by ui and taking averages, one

obtains the kinetic energy budget with the energy input by the forcing given by 〈fiui〉. It

is clear that the energy input depends on the correlation between f and u. The stochastic

forcing used in this work (Eswaran & Pope 1988) requires an initial random number seed at

the start of the simulation. However, the level of correlation between forcing and velocity

cannot be determined a priori. In general, simulations which start with a randomly chosen

seed initially undergo a decay of kinetic energy due to the lack of correlation between f

and u before the energy input increases and leads to a stationary state. With the new

proposed scheme, the random number seed from the lower resolution simulation can be

used to generate a forcing field which is already well correlated with the velocity field at

large scales (where the forcing is applied). Therefore, the initial decay of kinetic energy is
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avoided. This scheme is currently being used as initial condition for a target 40963 simula-

tion with Rλ ≈ 1100.
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Table 2.1: DNS database of isotropic turbulence. The simulations were performed at the
three supercomputer centers in Table 2.2 using up to 2048 processors.

Rλ Sc grids up to

8 1/8,1, 4, 16, 32, 64, 128, 256, 512, 1024 5123

38 1/8, 1, 4, 8, 16, 32, 64 5123

140 1/8, 1, 4, 64 20483

240 1/8, 1 20483

400 1/8, 1 10243

650 1/8, 1 20483
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Table 2.2: Terascale computers used for simulations.

Computer DataStar BlueGene XT3 BigBen Seaborg Bassi

Center SDSC SDSC PSC NERSC NERSC

Procs. IBM
Power4

PowerPC AMD
Opteron

IBM
Power3

IBM
Power5

Peak perf. 1.5 Gflop/s 700 Mflop/s 2.6 Gflop/s 1.5 Gflop/s 7.6 Gflops/s

NO PROCS 2176 6144 4136 6080 976

Procs/node 8 2 4 16 8

Mem/proc. 16 GB 512 MB 4 GB 16 GB 32GB

Total perf. 15.6
Tflops/s

17.2
Tflops/s

21.5 Tflops/s 9.12
Tflops/s

7.4
Tflops/s
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Table 2.3: Benchmark on BlueGene (BG) and DataStar (DS) at SDSC using the slabs

code (1D processor grid) and the pencils code (2D processor grid). Numbers are in seconds
per step per processor. Note that slabs code cannot run with NP > N .

N NP 1D 2D Machine

512 512 2.05 1.5 BG

1024 256 22.3 34.4 BG

1024 512 13 17 BG

1024 1024 5.3 6.6 BG

1024 2048 — 3.84 BG

2048 2048 29.2 32.3 BG

4096 2048 110 130 DS

Table 2.4: Time per step per processor for a 40963 on 32768 processors with different
processor grids. Timings were obtained on BGW at Watson Research Center.

processor grid t/s/p

(NP1 × NP2 ) (secs)

256 x 128 27.8

128 x 256 26.1

64 x 512 24.6

32 x 1024 20.0

16 x 2048 22.6
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Figure 2.1: Data layout for a N3 grid with NP = 4 for the slabs code . Each processor
holds N/NP planes of data.
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Figure 2.3: Performance per processor (a) and aggregate (b) of the 2d DNS code on Blue-
Gene at resolutions 5123 (circles), 10243 (triangles), 20483 (squares) and 40963 (diamonds)
on up to 32768 processors. Open and closed symbols correspond to CO and VN mode
respectively. Timings on DataStar are also included for 10243 (asterisk) and 20483 (stars).
Dashed lines are theoretical peak performance for BlueGene. Percentages between data
points correspond to parallel scalability which are presented only for VN mode runs.
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CHAPTER III

EFFECTS OF RESOLUTION

Our interest in this Chapter is to quantify the effects of finite resolution on DNS results

through the statistics of dissipation and enstrophy, which are closely connected to velocity

gradients and, more generally, velocity increments as a function of scale size r in viscous and

inertial ranges. Below we first show the effects on single-point moments and then present

an analysis based on velocity increments which can be compared with recent theoretical

estimates by Yakhot & Sreenivasan (2005). Table 3.1 provides a listing of some of the

basic parameters in the simulations used in this Chapter, including those where increasing

computational power was used to resolve the small scales better instead of increasing the

Reynolds number. As in a number of past publications (e.g. Vedula & Yeung 1999, Yeung

et al. 2002, Donzis et al. 2005b) we average the results over a certain number of realiza-

tions (Nr) taken from instantaneous velocity fields saved at regular time intervals within

a simulation time (T ) typically of several eddy-turnover times (TE). Our present focus on

strong but short-lived events at the small scales allows us to take realizations closer in time

than otherwise, without compromising the desired statistical independence among different

datasets. Nevertheless, since samples of the most intense fluctuations are inherently few in

number, a clear distinction between errors due to finite resolution and uncertainties due to

finite sampling is not always possible.

3.1 Moments of Dissipation and Enstrophy

Well-known concepts of dissipative anomaly (Sreenivasan 1984, 1998, Donzis et al. 2005b)

imply that in our simulations the mean dissipation 〈ǫ〉 (and 〈Ω〉) is determined by the large
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scales subject to stochastic forcing and quite insensitive to small-scale resolution. It is

convenient to normalize both dissipation and enstrophy by the mean, i.e. to define

ǫ′ ≡ ǫ/〈ǫ〉; Ω′ ≡ Ω/〈Ω〉, (3.1)

and to examine their moments at order p = 2 onwards. We show these moments for

p = 2, 3, 4 in figure 3.1 (a,b) and Table 3.2 at different grid resolutions with Reynolds

numbers held fixed at Rλ ≈ 140 and 240 as indicated in Table 3.1. As expected, the effect

of finite resolution is seen in underestimation of these moments, and increasingly so at

higher orders. However, for kmaxη from about 3 onwards these effects appear to be weak

and within statistical error bounds indicated by 90% confidence intervals, suggesting little

further gain in accuracy if the grid spacing were reduced further to a value smaller than η.

An important check on the statistical reliability of the data above is to examine the

statistical convergence of moments via integrands of the form (ǫ′)pfǫ(ǫ
′) contributing to

each moment of order p (and similarly for Ω′), where fǫ(ǫ
′) is the PDF of the normalized

dissipation. In figure 3.2 we show these integrands for p = 4 at different resolutions with

Rλ ≈ 140. The area under each curve gives the normalized fourth-order moment, which

may be considered converged if the curve falls to nearly zero in the limit of the largest

sampled ǫ′ and Ω′. This behavior is well attained for all the curves shown, which suggests

satisfactory convergence or alternatively reliable estimates of the moments can be obtained

by integration from the PDF. At the same time this figure shows clearly that a grid at

resolution kmaxη ≈ 1.5 misses many samples of large ǫ′ or Ω′. On the other hand, resolution

does not appear to affect samples of ǫ or Ω close to the mean: curves for dissipation and

enstrophy show little difference for ǫ′ up to about 7 and Ω′ up to about 10 respectively.

However, both the location and height of the peak are underestimated in simulations at

kmaxη ≈ 1.4.

It is interesting to note from Table 3.2 that normalized moments of the form 〈ǫ4〉/〈ǫ2〉2
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are considerably less sensitive to resolution than “unnormalized” moments of the same

order (in this case, 〈ǫ′4〉 which is proportional to 〈ǫ4〉). This behavior can be understood by

noting that effects of resolution increase with the order of the moment, which implies that

some partial cancellation occurs when taking normalized ratios of moments of order close to

each other and hence leading to reduced sensitivity to resolution. Another interpretation is

that although finite resolution changes the shape of the observed dissipation and enstrophy

PDFs by failing to capture the farthest tails, the results may — as to be seen below — still

retain the correct functional form albeit with different values of parameters or coefficients

involved.

Although moments of both ǫ′ and Ω′ are (as seen in results above) significantly affected

by resolution, whether ratios between their corresponding moments, such as 〈(Ω′)p〉/〈(ǫ′)p〉

(for p = 2, 3, 4, etc) behave similarly is a different issue. Table 3.3 shows these ratios for the

same simulation datasets as in Table 3.2. It can be seen that the sensitivity is considerably

less: e.g., although at Rλ ≈ 140 both 〈(ǫ′)4〉 and 〈(Ω′)4〉 (from Table 3.2) change by a factor

of more than 2.5 between kmaxη ≈ 1.4 and 2.8, the ratio 〈(Ω′)4〉/〈(ǫ′)4〉 varies by less than

10%. Likewise, resolution effects on the ratio

〈Ω4〉/〈Ω2〉2
〈ǫ4〉/〈ǫ2〉2

are much weaker than on each quantity taken separately. The value 4.8 for this ratio from

our least-resolved simulation at Rλ ≈ 240 in Table 3.3 is also in reasonable agreement with

5.26 reported by Chen et al. (1997a) in simulations at Rλ = 216 with kmaxη < 2 on a

5123 grid. These observations suggest resolution tends to affect statistics of dissipation and

enstrophy similarly, which in turn imply that conclusions on the scaling of dissipation versus

enstrophy based on DNS data at modest resolution (Yeung et al. 2005) may remain at least

qualitatively valid. In particular, as we discuss later in Chapter 4, qualitative comparisons

between the PDFs of dissipation and enstrophy at modest resolution can still be made even
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when their tails individually are underestimated.

Recently Yakhot & Sreenivasan (2005) proposed a theory of small-scale statistics which

suggests, in part, that resolution of n-th order moments of dissipation requires an analytic

range in velocity structure functions of order 4n. For n = 4 (as we considered above) this

would point to structure functions of order 16, which are rarely available in the literature and

certainly cannot be captured reliably at the resolution level of kmaxη ≈ 3. In other words,

our data suggest that (for the present purposes) results of acceptable accuracy in higher

order moments of dissipation (and enstrophy) are possible under conditions less stringent

than proposed by Yakhot & Sreenivasan (2005). This observation calls for a careful study

of the resolution requirements applicable to the structure functions, or more generally, the

statistics of velocity increments in space as a function of scale size.

3.2 Statistics of Velocity Increments and Gradients

The importance of velocity increments in space in describing turbulence structure has been

well known since Kolmogorov (1941a); e.g. the third-order longitudinal structure function

is often used as a test for inertial-range behavior (Yeung & Zhou 1997, Yeung et al. 2005)

Analytic behavior at the small scales is (with an implied assumption of local isotropy)

indicated if in the limit of small r the longitudinal and transverse structure functions were

to scale as

〈(∆ru)p〉/rp = 〈(∂u/∂x)p〉 ; 〈(∆rv)p〉/rp = 〈(∂v/∂x)p〉 . (3.2)

In practice exact equality is not available but our goal is to develop a systematic estimate

of departures due to finite resolution at each order p and for the smallest r available (i.e.

the grid spacing, ∆x). We also check whether inertial-range statistics at intermediate r can

be affected substantially by resolution. While both longitudinal and transverse gradients

are considered, the latter are more intermittent and thus provide a more rigorous test of

data quality.
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Figure 3.3(a,b) shows the PDFs of transverse velocity increments for a range of scale

sizes r in our highly resolved 20483 simulation at Rλ ≈ 140, at kmaxη ≈ 11 and ∆x/η ≈ 0.3.

Two different normalizations are used: namely by the standard deviation (which increases

with r) in (a), and by using r and the Kolmogorov time scale (τη) in (b) as explained below.

In (a) we observe that, as expected, the increment at small r is highly non-Gaussian with

wide tails reflecting strong intermittency at the small scales, while Gaussian behavior at

large r is the result of the increment behaving as the difference between two uncorrelated

velocities at a large distance apart. However, for a test of resolution in view of Eq. 3.2, it

is useful to first divide ∆rv by r, and then to non-dimensionalize by the r.m.s. of velocity

gradient fluctuations, which is proportional to 1/τη. Unlike the standardized PDFs in (a),

curves in (b) are expected to converge as r is made even smaller towards the limit of analytic

behavior. Clearly, the curve for data obtained at the “standard” resolution kmaxη ≈ 1.5

differs significantly from the others, thus showing the effects of finite resolution. However

there is little further change as kmaxη is increased further beyond 3; in fact, for clarity, we

have removed the curve for kmaxη ≈ 5.7 since it is virtually indistinguishable from that

for kmaxη ≈ 11. These comparisons suggest contributions to velocity gradients from scale

sizes smaller than η/2 are small, and that for many purposes adequate results on velocity

gradient statistics can be obtained with kmaxη ≈ 3, i.e. ∆x/η close to 1.0.

In analogy to the moments of dissipation considered earlier in figure 3.1 and 3.2, the

quality of statistical sampling of the tails of the velocity increment PDFs in figure 3.3 can

be checked via a test for the convergence of integrals for moments of increasing order. Since

the transverse increments are statistically symmetric we define

Cp(z) =

∫ z

−z
(z′)pf(z′)dz′ (3.3)

where z is the normalized velocity increment δ∗rv ≡ (∆rv)/(rτη), f(·) is its PDF, and by

definition Cp(0) = 0, Cp(∞) = 〈(∆rv/r)p〉τη
p for any p > 0. Figure 3.4 shows the data,
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for p = 4, 6, 8, 10, 12 and kmaxη ≈ 1.5, 3 and 11 at Rλ ≈ 140 in our simulations. (Data

for kmaxη ≈ 6 are, as in figure 3.3 above, indistinguishable from kmaxη ≈ 11 and omitted

for clarity.) Statistical convergence is indicated if curves shown reach asymptotic values

in the limit of large z. This convergence is attained reasonably well up to order 8, but is

less satisfactory at higher orders or smaller scale sizes where stronger intermittency effects

are expected. Within each group of curves at fixed p we also observe convergence of a

deterministic nature in the limit of small r/η. In particular, using relations based on local

isotropy one can show that in the limit of r ≪ η the value of Cp(∞) defined above should

be equal to (2/15)p/2〈(∂v/∂x)p〉/〈(∂v/∂x)2〉)p/2, which increases strongly with p.

In the study of resolution effects there is much interest (Yakhot & Sreenivasan 2005) in

how small the grid spacing must be (compared to η) in order to observe analytic behavior in

velocity structure functions of order p, depending on both p and the Reynolds number. To

illustrate this issue we show in figure 3.5 the compensated longitudinal structure functions

〈(∆ru)p〉/rp at even orders p = 2, 4, 6, 8, 10, 12, from the Rλ ≈ 140 simulation with kmaxη ≈

11 (20483). (The solid-square symbols are from the theory of Yakhot & Sreenivasan (2005),

to be described below.) Analytic range behavior is indicated if the curves reach 〈(∂u/∂x)p〉

(dashed horizontal lines) as r is decreased towards the smallest value available (i.e., the grid

spacing ∆x). As expected, the minimum r required for an analytic range decreases with

increasing order p of the structure functions. In particular, analytic behavior for orders 8

and upwards requires r/η substantially smaller than 1, which is the smallest scale resolved

in simulations at kmaxη ≈ 3. In other words, although in figure 3.1 we saw that statistics for

the fourth-order moment of dissipation in simulations at kmaxη ≈ 3 appear to be accurate,

this is being achieved without satisfying the corresponding of analytic range in structure

functions of order 16 suggested in theory by Yakhot & Sreenivasan (2005).

In figure 3.5 it is evident that at any given r/η departure from analytic behavior increases
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systematically with order p of the structure functions: e.g. in our data at Rλ = 140 and

kmaxη ≈ 2.8 we find at r/η ≈ 1 about 1% error for p = 2 but 24% for p = 12. Solid squares

in the figure denote the theoretical estimate by Yakhot & Sreenivasan (2005) for the scale

needed to accurately capture structure functions of order p, as

ηp/η ≈ (Rλ
2/15)3/4+dp (3.4)

where dp = 1/(ζp − ζp+1 − 1) with ζp being the inertial-range scaling exponents of structure

functions of order p. It should be noted that this estimate does not distinguish between

longitudinal and transverse structure functions, and we have used R2
λ/15 in place of a large-

eddy or integral-scale Reynolds number, while following Yakhot & Sreenivasan (2005) in

taking ζp = 0.383p/(1 + 0.05p). Since the inertial range exponents possess the anomalous-

scaling properties ζp < p/3 (especially at larger p) the exponent 3/4 + dp in Eq. 3.4 is

negative with magnitude increasing with p, such that the predicted ηp/η decreases with

increasing p and increasing Rλ, as required. In practice, of course, statistics at different

orders taken from a simulation with given Reynolds number and resolution will always be

at different degrees of accuracy, such that some compromise at the highest orders of interest

is inevitable.

We are interested in developing an alternative estimate of the resolution required for a

given deviation from analytic range behavior, using a Taylor-series approach (Stolovitzky &

Sreenivasan 1993) that can also distinguish between longitudinal and transverse statistics.

For transverse velocity increments a standard Taylor-series expansion gives

∆rv

r
= vx +

r

2
vxx +

r2

6
vxxx + O(r3) (3.5)

where, for brevity, coordinate subscripts are used to denote differentiation. Taking the p-th

power and assembling terms in ascending powers of r gives

(

∆rv

r

)p

− vp
x = r

p

2
vp−1
x vxx + r2p

(

1

6
vp−1
x vxxx +

p − 1

8
vp−2
x v2

xx

)

+ O(r3). (3.6)
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It is useful to note the identities

vp−1
x vxx =

1

p
(vp

x)x (3.7)

and

vp−1
x vxxx = (vp−1

x vxx)x − (p − 1)vp−2
x v2

xx (3.8)

which imply that some of the contributions on the right of Eq. 3.6 vanish by homogeneity

when averaged in space. Accordingly we obtain

〈(

∆rv

r

)p〉

− 〈vp
x〉 = − 1

24
p(p − 1)r2

〈

vp−2
x v2

xx

〉

+ O(r4). (3.9)

With 〈vp−2
x v2

xx〉 being non-negative for all even integers p, this result is consistent with the

observation that finite resolution causes underestimation of higher-order moments. We also

see that, to leading order, the error involved decreases as r2 for structure functions at all

orders (p) but increases with p through the factor p(p−1) as well as the quantity 〈vp−2
x v2

xx〉.

To investigate the Reynolds number dependence in Eq. 3.9 it is useful to divide both

sides by 〈vp
x〉 and express the right hand side in terms of Kolmogorov variables. Upon some

further rearrangement a non-dimensional result can be written as

〈vp
x〉 − 〈(∆rv/r)p〉

〈vp
x〉

=
p(p − 1)

24
QT

p

(

r

η

)2

+ O(r4) (3.10)

where effects of small-scale intermittency are expressed by the quantity defined as

QT
p ≡ 〈vp−2

x v2
xx〉

〈vp
x〉/η2

. (3.11)

A similar expression can be written for second-order longitudinal structure functions in-

volving an analogous quantity QL
p in terms of longitudinal velocity gradients. Exact results

for QT
p (and QL

p ) are not available, although its numerator is subject to Cauchy-Schwarz

inequality for the covariance between two random variables (vp−2
x and v2

xx) whereas the

denominator 〈vp
x〉 can be analyzed using intermittency models such as those based on log-

normality or multifractal concepts. In any case these quantities are readily computed from
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our DNS database but because they involve second derivatives and higher powers of the first

derivatives we use only results from the best-resolved simulation at each Reynolds number.

Figure 3.6 shows DNS data on both QL
p and QT

p at Rλ ≈ 140 and 240, using simulations

at kmaxη ≈ 11 and 6 respectively. Since transverse gradients are statistically symmetric

data points for QT
p are available for even orders only. Although there is some scatter it

can be seen that, at each given p, both QL
p and QT

p increase with Reynolds number as the

turbulence becomes more intermittent; and QT
p is likewise larger than QL

p for longitudinal

gradients. However, except for p = 2 and perhaps p = 3, there appears to be no clear

dependence on p from 4 onwards. Taking an average from p = 4 through p = 12 produces

the values 0.0476 and 0.0548 for QL
p and QT

p respectively for Rλ ≈ 140 compared with

0.0563 and 0.0703 for Rλ ≈ 240.

It may be noted that some support for the observed quasi-constancy (with respect to p)

of QL
p and QT

p can be obtained by using a simple scaling argument for the second derivative

(Stolovitzky & Sreenivasan 1993)

vxx ∼ c
vx

η
(3.12)

where c is a random coefficient of order unity. This estimate is also consistent with the so

called p-model of intermittency (Meneveau & Sreenivasan 1987) and leads to the result

QT
p =

〈vp−2
x v2

xx〉
〈vp

x〉/η2
≈ 〈c2〉〈vp−2

x v2
x〉/η2

〈vp
x〉/η2

= 〈c2〉 (3.13)

which is indeed independent of p but can retain a dependence on the Reynolds number.

It is clear that a QT
p taken as quasi-constant as suggested above leads to p(p−1) scaling

for the normalized error in Eq. 3.10. In figure 3.7 we show the resulting estimated error at

each p for data at both Rλ ≈ 140 and Rλ ≈ 240, computed at degrees of resolution at kmaxη

nominally 1.5, 3 and 6 (see Table 1). We show only transverse data in this figure since if

transverse gradients are resolved adequately then results on longitudinal gradients will also
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be satisfactory (in fact, slightly better). At all three levels of resolution very good agreement

can be seen for order p = 4 onwards between actual (open and closed symbols) and estimated

(dashed and solid lines, correspondingly) errors from order 4 onwards. The agreement is

in general less close for higher orders, where there is greater statistical uncertainty and

possibly a need to retain more terms in the Taylor-series expansions we use in the paper.

Using Eq. 3.10 and data on the quantity Qp, as shown in figure 3.6, it is now possible to

compute a quantitative estimate of the value of r/η where structure functions at each order

p can capture the p-th order velocity gradient moment to within a specified error tolerance.

In particular if the fractional error allowed at order p is e, then Eq. 3.10 gives

(r/η)1−e ≈
[

24 e

p(p − 1)Qp

]1/2

(3.14)

as an estimate of the scale that must be resolved. As a working definition we take e = 5%

here and denote the pertinent scale as (r/η)95, which, in practice, would be a reasonable

criterion for how small ∆x/η needs to be in order to provide accurate results on velocity

gradient moments up to order p.

Figure 3.8 shows a comparison of (r/η)95 obtained directly from structure function

data in DNS using the LHS of Eq. 3.10, its estimated value based on Eq. 3.14 using quasi-

constant values of QT
p from figure 3.6, and the theoretical estimate ηp/η (Eq. 3.4) by Yakhot

& Sreenivasan (2005). It is clear the size of the smallest scale (compared to η) that must

be resolved decreases with increasing order of the moment as well as (less strongly) the

Reynolds number. As expected from the discussions in figure 3.6 and 3.7 results from

Eq. 3.14 based on a quasi-constant QT
p are close to the actual DNS data except for the

highest orders p = 10 and 12 mainly at higher Reynolds number (Rλ ≈ 240). Although

the 95% criterion (i.e. 5% error) proposed in Eq. 3.14 is somewhat arbitrary, a change to,

say, 99% would produce only a roughly 2% decrease in the size of the smallest scale that

must be resolved. The comparisons here suggest that the resolution criterion proposed by
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Yakhot & Sreenivasan (2005) may be overly restrictive at low and moderate orders, but

(importantly) more realistic at higher orders.

While we have focused primarily on resolution concerns for intermittency at the small-

est scales, another important question is whether inferences of inertial-range behavior and

scaling constants in DNS can be affected quantitatively by resolution. For this latter issue

our main interest would be in velocity increment statistics at scale size r in the range iden-

tified empirically as showing behavior closest to classical inertial scaling, via (for example

Yeung et al. 2005), plots of the third-order longitudinal structure function normalized by

Kolmogorov variables. Figure 3.9 shows standardized PDFs of transverse velocity incre-

ments at r/η ≈ 2 and 17, which are in the dissipative and inertial ranges respectively, at

kmaxη ≈ 1.4, 2.8 and 5.5 for Rλ ∼ 240. The differences are seen to be small even for

r/η = 2, which is not surprising since even with the usual resolution kmaxη = 1.5 scales

down to r ≈ 2η are resolved. The implication of these results is that statistics in the iner-

tial range are not greatly affected by resolution, such that kmaxη ≈ 1.5 would be adequate

for such purposes even though the small scales are not captured perfectly. In other words

resolution at kmaxη ≈ 1.5 is sufficient for studies of scaling exponents in relations such as

〈∆ru
p〉 ∼ rζp in the inertial range (although statistics of local averages of dissipation at

these scales can still be affected by resolution).

3.3 Summary

Results at fixed Reynolds numbers but different grid resolutions indicate that moments of

dissipation and enstrophy are accurate up to fourth order if the product of highest resolvable

wavenumber (kmax) and Kolmogorov length scale (η) is at least 3, or equivalently if the grid

spacing (∆x) is not larger than η. This result is achieved despite the absence of an analytic

range in velocity structure functions at the corresponding order predicted by Yakhot &

Sreenivasan (2005). A Taylor-series expansion is used to quantify the degree of departure
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from analytic range in the structure functions at different orders and as a function of the

Reynolds number. This analysis leads to a resolution estimate (applicable to the structure

functions) which is not as restrictive as Yakhot & Sreenivasan (2005) at lower orders but

similar at higher orders. Effects of finite resolution on inertial-range statistics of velocity

increments are found to be relatively weak. Likewise, although use of the “standard”

resolution kmaxη ≈ 1.5 (as in most DNS aimed at reaching high Reynolds number) leads to

underestimation of high-order moments and the tails of PDFs of dissipation and enstrophy,

statements comparing the qualitative behaviors of these quantities still appear to be reliable.
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Table 3.1: DNS parameters: Taylor-microscale Reynolds number Rλ = u′λ/ν, number of
grid points N3, viscosity ν, resolution measured by kmaxη and ∆x/η, number of independent
realizations Nr and length of the simulation T normalized by eddy turnover time TE = L/u′.

Rλ 140 140 140 140 240 240 240

N3 2563 5123 10243 20483 5123 10243 20483

ν 0.0028 0.0028 0.0028 0.0028 0.0011 0.0011 0.0011

kmaxη 1.4 2.8 5.7 11.1 1.4 2.8 5.4

∆x/η 2.10 1.05 0.52 0.27 2.08 1.04 0.55

Nr 11 16 18 11 13 12 14

T/TE 10.0 7.2 8.5 6.0 9.4 5.4 5.4
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Table 3.2: Ensemble averaged moments of dissipation and enstrophy at Rλ ≈ 140 (top)
and 240 (bottom) with 90% confidence intervals.

Rλ ≈ 140

kmaxη 1.4 2.8 5.7 11.1

〈(ǫ′)2〉 2.53 ± 0.04 2.85 ± 0.07 2.77 ± 0.06 2.82 ± 0.08

〈(ǫ′)3〉 14.1 ± 0.6 21.5 ± 1.6 19.9 ± 1.4 20.7 ± 2.1

〈(ǫ′)4〉 153 ± 14 388 ± 58 341 ± 48 364 ± 81

〈ǫ4〉/〈ǫ2〉2 23.9 47.8 44.5 45.8

〈(Ω′)2〉 4.52 ± 0.09 5.19 ± 0.18 5.07 ± 0.19 5.20 ± 0.23

〈(Ω′)3〉 63.0 ± 3.1 100.0 ± 9.3 94.2 ± 9.9 97.6 ± 13.1

〈(Ω′)4〉 2022 ± 179 5315 ± 989 4920 ± 965 4751 ± 1200

〈Ω4〉/〈Ω2〉2 99.2 197.1 191.3 175.9

Rλ ≈ 240

kmaxη 1.4 2.8 5.4

〈(ǫ′)2〉 3.07 ± 0.05 3.17 ± 0.07 3.15 ± 0.06

〈(ǫ′)3〉 25.3 ± 1.3 29.1 ± 1.8 28.8 ± 1.7

〈(ǫ′)4〉 488 ± 53 696 ± 83 697 ± 89

〈ǫ4〉/〈ǫ2〉2 51.9 69.3 70.4

〈(Ω′)2〉 5.81 ± 0.13 5.99 ± 0.18 5.93 ± 0.12

〈(Ω′)3〉 133 ± 8 150 ± 14 142 ± 9

〈(Ω′)4〉 8364 ± 1017 11222 ± 1869 10211 ± 1503

〈Ω4〉/〈Ω2〉2 247.7 312.8 290.6
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Table 3.3: Ratios of moments of dissipation and enstrophy with different resolutions at
Rλ ≈ 140 and 240. Values differ slightly from those obtained using data in Table 3.2 since
ensemble average is perform after taking ratios for each realization.

Rλ 140 140 140 140 240 240 240

kmaxη 1.4 2.8 5.7 11.1 1.4 2.8 5.4

〈(Ω′)2〉/〈(ǫ′)2〉 1.8 1.8 1.8 1.8 1.9 1.9 1.9

〈(Ω′)3〉/〈(ǫ′)3〉 4.5 4.6 4.7 4.6 5.2 5.1 4.9

〈(Ω′)4〉/〈(ǫ′)4〉 13.3 13.8 14.1 12.7 17.2 15.7 14.5

(〈Ω4〉/〈Ω2〉2)/(〈ǫ4〉/〈ǫ2〉2) 4.2 4.2 4.2 3.7 4.8 4.4 4.1
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Figure 3.1: Ensemble-averaged moments of normalized dissipation rate and enstrophy:
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CHAPTER IV

INTERMITTENCY AND REYNOLDS NUMBER SCALING

4.1 Background

The notion of small-scale similarity originated with Kolmogorov (1941a). He suggested

that at high Reynolds numbers, the statistics of velocity differences over a distance r much

smaller than the integral scale (r ≪ L) are only a function of r, ν and 〈ǫ〉. For even higher

Reynolds numbers there is an intermediate range of scales (η ≪ r ≪ L), called the inertial

range, in which statistics of velocity increments depend only on r and 〈ǫ〉. Kolmogorov

(1941b) derived from the N-S equations an exact relation for the third-order structure

function in the inertial range (commonly referred to as the “four-fifths law”), namely

〈∆u3
r〉 = −(4/5)〈ǫ〉r. (4.1)

Since this relation is exact, it is often used as a direct test of inertial range scaling. In

figure 4.1 we show that in our recent Rλ ≈ 650 simulations there is good attainment of the

theoretical value 4/5 for the third-order structure function (lower curve on the left figure).

We also include vertical dashed lines to delimit the inertial range.

Following the reasoning behind Kolmogorov (1941a) (subsequently referred to as K41),

one could expect that in the inertial range the structure functions scale as

〈∆un
r 〉 = Cn(〈ǫ〉r)n/3 (4.2)

where Cn are universal constants. Attempts to test this scaling have shown that there are

significant departures from Eq. 4.2 especially for large n (see e.g. Frisch 1995, Sreenivasan

& Antonia 1997). Obukhov (1962) anticipated that these departures are partly due to the
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fluctuations of ǫ. Instead of using 〈ǫ〉 in Eq. 4.2, he suggested using local averages,

ǫr =
1

Vr

∫

Vr

ǫ(x)dx (4.3)

where Vr ∼ r3 is a volume of linear size r. The variable ǫr/〈ǫ〉 is random and its statistics

are functions of r/L according to Obukhov’s picture. Therefore, if one uses a local average

instead of the global average in Eq. 4.2 the structure functions are still expected to scale

as

〈∆un
r 〉 ∼ rζn (4.4)

although the exponents ζn may be anomalous, that is, different from the classical prediction

of n/3. Equation 4.1 implies that ζ3 = 1.

In figure 4.1 we show longitudinal structure functions normalized such that validity of

K41 would imply that all the curves present a plateau at intermediate scales. It is clear that

there is anomalous scaling for high-order moments. It was also suggested that anomaly is

also present for low order moments (e.g Chen et al. 2005). The exponents ζn in Eq. 4.4 can

be obtained by fitting a power law in the regions where the third-order structure function

shows a plateau. The result of this calculation is shown in figure 4.2 where we see that

departures from K41 are apparent. We also include the experimental data by Anselmet

et al. (1984). Good agreement between our simulations and experiments is observed despite

the mean shear present in the experiments.

As suggested by Obukhov, anomalous scaling may in part be due to the strong fluctua-

tions of ǫ. Indeed, the energy dissipation is highly intermittent as seen in figure 4.3 where

contours of ǫ/〈ǫ〉 at three arbitrary planes are shown. Very large localized fluctuations can

be of the order of 100 times the mean value or higher while large regions of space show

relatively weak activity.

More generally, small-scale intermittency can be characterized by the velocity gradient

tensor whose quadratic invariants are represented by the dissipation and enstrophy. Several
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theoretical arguments are known (L’vov & Procaccia 1996, He et al. 1998, Nelkin 1999)

implying that both dissipation and enstrophy should scale similarly at high enough Reynolds

numbers. However, almost all sources of available data (e.g Siggia 1981, Kerr 1985, Yeung

& Pope 1989, Sreenivasan et al. 1995, Chen et al. 1997a, Zhou & Antonia 2000) suggest

that enstrophy is more intermittent than dissipation. Evidence from both simulation and

experiment have included larger skewness and flatness factors, probability density functions

(PDFs) with wider tails, and larger intermittency exponents for local averages (ǫr and Ωr)

taken over a domain of linear size r in the inertial range. A better understanding of this

issue is important, in order to, say, avoid ambiguities in the choice of variable used to

represent the small scales (Sreenivasan & Antonia 1997), and to clarify the roles of local

straining versus rotation in the modeling of turbulent dispersion (Borgas & Yeung 2004).

In the rest of this Chapter we compare statistics of dissipation and enstrophy and address

their Reynolds number scaling. We recently found (Yeung et al. 2005) that for intermediate

values of ǫ and Ω the differences seen in the PDFs may be due to finite Reynolds number.

We first re-examine the PDFs with special focus on extreme events, which may have not

been reported in the literature before, followed by conditional statistics to help understand

the relation between ǫ and Ω. To characterize the extreme fluctuations, dissipation and

enstrophy are decomposed into longitudinal, transverse and cross-term gradients and their

scaling are studied in regions of high versus low enstrophy and dissipation.

4.2 Scaling of Dissipation and Enstrophy

Here we examine the issue of how the tails of the PDFs of dissipation and enstrophy behave

and compare with each other at increasing Reynolds number, given our latest understanding

of resolution effects on numerical simulation data as seen in Chapter 3. We present the

PDF data and use conditional sampling of velocity gradient contributions to investigate the

nature of extreme fluctuations at O(103) times the mean which are observed in our highest
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Reynolds number datasets but may not have been reported before in the literature.

Many studies in the past (Hosokawa 1991, Meneveau & Sreenivasan 1991, Bershadskii

et al. 1993) have suggested that the dissipation PDF fǫ can be well represented by a stretched

exponential fit of the form

fǫ(ǫ
′) ∼ exp[−bǫ(ǫ

′)cǫ ] , (4.5)

where the prefactor bǫ and exponent cǫ may depend on the Reynolds number. Stronger

intermittency at the tails of the PDF may be indicated by either a smaller prefactor or

smaller exponent with the other parameter held fixed. A similar functional form can also

been proposed (with prefactor bΩ and exponent cΩ) for fΩ, the PDF of enstrophy (Zhou et al.

2005a). Table 4.1 shows, for DNS data at different Reynolds numbers and grid resolutions,

the parameters which provide the best fits for the range 5 ≤ ǫ′, Ω′ ≤ 100, which covers

fluctuations large compared to the mean but yet is not greatly contaminated by sampling

noise.

Underestimation of PDF tails in simulations at kmaxη ≈ 1.4 as noted in Chapter 2 is

reflected in Table 4.1 by the decrease of the exponents with increasing kmaxη at a given

Reynolds number. Although the past literature (Ruetsch & Maxey 1991, Bershadskii et al.

1993, Zeff et al. 2003) suggested exponents not far from 1/2, data from our high-resolution

datasets suggest values close to 1/4 for both energy dissipation and enstrophy. In figure 4.4

we show the PDFs of dissipation and enstrophy from our high-resolution datasets at Rλ

140 and 240 (kmaxη ≈ 5.5 and 11 respectively). Very good agreement is seen with fits of

the form (dashed lines)

fǫ(ǫ
′) ∼ exp[−bǫ

′(ǫ′)1/4] (4.6)

with the exponent held fixed at 1/4 and Reynolds number dependence expressed solely by

the associated prefactor bǫ
′. Values of bǫ

′ and bΩ
′ are also shown in Table 4.1 where it is

clear that they both decrease with increasing Reynolds number or grid resolution but are
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about the same from kmaxη ≈ 3 onwards. Incidentally, the closeness of fit shown in the

figure (using Eq. 4.6) is virtually the same as that obtained using Eq. 4.5 (Table 4.1) for

moderately large fluctuations which are typical of measurements reported in the past. We

also note that Reynolds number dependence on the ratio between bǫ
′ and bΩ

′ is apparently

weak, which suggests if the PDFs fǫ and fΩ are to approach each other in this range of

values of ǫ′ and Ω′ with increasing Reynolds number then this approach must be very slow.

In figure 4.5 we compare dissipation and enstrophy PDFs in our datasets at highest

Reynolds numbers available (Rλ ≈ 390 and 650). Despite modest resolution at kmaxη ≈ 1.4

it is clear that the tails stretch very wide, towards ǫ and Ω several thousands times the

mean or higher. These extreme tails are not described well by fits of the forms of Eqs. 4.5

and 4.6 with parameters based on more moderate values of ǫ′ or Ω′. However, we find

that a uniformly good fit for essentially all values of ǫ′ can be obtained by using a double

stretched-exponential of the form

fǫ(ǫ
′) ∼ s1 exp[−t1(ǫ

′)1/4] + s2 exp[−t2(ǫ
′)1/4] (4.7)

(and similarly for fΩ(Ω′)). The best fit coefficients corresponding to the dashed lines in

Eq. 4.7 for dissipation and enstrophy are shown in Table 4.2. It is apparent from the

contrasts between the magnitudes of these parameters the second exponential is significant

primarily at the far tails. However, the most remarkable feature in this figure is that the

PDFs of ǫ and Ω appear to collapse onto each other at extremely large values of ǫ′ and

Ω′ — of order 1000 or greater, which is a data range of very rare events probably not

reported or at least not given much attention in the literature before. Furthermore, this

collapse appears to occur in the same way at Rλ ∼ 390 and 650 but is not observed at lower

Reynolds numbers. It is clear that further investigation is warranted, since this suggests

the possibility of a universal scaling of extreme events — such that high-order moments

of energy dissipation and enstrophy could scale similarly although low order moments may
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still differ at finite Reynolds numbers.

A question that arises from the observation above is whether those extreme values of ǫ′

and Ω′ of order 103 occur together, i.e., at the same locations in space. It should be noted

that two random variables can have the same PDF (i.e. be identically distributed) without

being related to each other. However, the correlation between dissipation and enstrophy

is known to be positive and increasing with Reynolds number (see e.g. Yeung et al. 2007,

for data inferable from studies of Langrangian cross-correlation functions). In Table 4.3 we

show the correlation coefficient obtained from the present datasets. It is clear that resolution

effects are weak but an approach towards an asymptotic value seems possible. Evidently, it

is reasonable to expect that likelihood for the largest values of dissipation and enstrophy to

be in close proximity to each other increases with Reynolds number. However, the question

of whether they coincide can be examined more directly via the conditional distribution of

the ratio ǫ′/Ω′ (or Ω/ǫ′) given the local value of ǫ′ or Ω′: if events of extreme ǫ′ and Ω′ are

collocated in space then a peak in the conditional PDF close to 1.0 is expected.

In figure 4.6 we show the conditional PDFs of the ratio ǫ′/Ω′ in the Rλ ∼ 650 simulation,

given a range of values of ǫ′ in geometric progression. In general, as ǫ′ increases smaller

values of ǫ′/Ω′ become less likely, and the conditional PDF shifts to the right. However,

as ǫ′ increases beyond the mean, the probability of large ǫ′/Ω′ first reaches a maximum

(lines D to G) and then eventually decreases. Furthermore at values of ǫ′ considered to

be extreme (lines H and I, in inset) the conditional PDF is seen to be forming a peak

in the neighborhood of ǫ′/Ω′ ≈ 1. This observation indicates that very large values of

dissipation are likely to be accompanied by similarly large enstrophy. In other words the

local mechanisms that cause extreme dissipation are likely to lead to extreme enstrophy as

well.

65



To test the converse of the scenario suggested above we examine in figure 4.7 the condi-

tional PDF of the ratio ǫ′/Ω′ again, now given Ω′ instead of ǫ′. At low values of conditioning

enstrophy the ratio ǫ′/Ω′ tends to be large, as expected. At conditioning enstrophy equal

to the mean (line D) the likelihood of small ǫ′/Ω′ is almost the same as in the unconditional

distribution (dashed line). This implies that events of stronger-than-average dissipation

are unlikely to develop in regions of small or average enstrophy. At very large enstrophy

(lines H and I) we see that the conditional PDF shifts steadily towards smaller values of

ǫ′/Ω′. This means, in contrast to statements made in the preceding paragraph, that intense

enstrophy is often not accompanied by intense dissipation. In other words the mechanisms

that cause extreme enstrophy either contribute less to dissipation or are subject to partial

cancellation by other competing effects.

Additional information can be obtained from the conditional averages of ǫ and Ω given

one another, as shown in figure 4.8. At low ǫ or Ω the conditional dependences are seen to be

relatively weak. A dashed line of slope 1 is drawn to indicate the limiting condition of large

ǫ and Ω being coincident. It can be seen that for ǫ > 〈ǫ〉 the behavior of 〈Ω|ǫ〉 is close to

this limit: i.e. large dissipation is most likely accompanied by large enstrophy, as discussed

above based on conditional PDFs in figure 4.6. On the other hand, 〈ǫ|Ω〉 falls below the

slope 1 line for Ω′ between 10 and 1000 which indicates enstrophy values in this range are

quite often accompanied by smaller values of the dissipation. However 〈ǫ|Ω〉 appears to

approach the slope 1 line again when Ω′ reaches higher than 1000, indicating that the most

extreme events of high enstrophy may be accompanied by events of extreme dissipation as

well. The trends noted are also consistent with the unconditional PDFs shown in figure 4.5,

namely that dissipation and enstrophy scale differently for ǫ′ and Ω′ in the range 10-1000

but possibly the same for extreme fluctuations greater than 1000 times the mean.

Although the discussion above based on single-point statistics indicate that events of
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extreme dissipation and enstrophy are, in general, not coincident, a significant overlap in

space is still possible (and, in fact, likely). A simple but direct test for such overlaps is to

examine the coordinate locations of either ǫ′ or Ω′ exceeding some threshold (h). Figure 4.9

shows a typical cluster of points above a normalized threshold h = 800, in an instantaneous

velocity field taken from our 20483 Rλ 650 simulation. Points of high ǫ′ and high Ω′ are

indicated by asterisks and open circles respectively, with a color map used to illustrate

intensity. A substantial overlap is indicated by the presence of asterisks placed in a circle,

especially in the core regions of the cluster shown. Recently Moisy & Jiménez (2004) studied

the geometry and spatial distribution of regions of high levels of dissipation and enstrophy

in detail. However, the threshold levels they used are much smaller that those presented

in this work. This can be explained by the fact that their Reynolds number was smaller

(Rλ ≈ 168) at which samples in the range where the PDFs collapse (see figure 4.5) do not

exist.

Although the results are difficult to quantify, it is clear that the size of clusters of the

type shown here decreases with the threshold level chosen. In practice we can estimate the

average volume of the cluster by first identifying a sub-domain that just completely encloses

the cluster (as in figure 4.9). A volume (Vh) can be defined by multiplying the number

of samples with ǫ′ > h within the sub-domain by the volume of a grid cell (nominally,

(∆x)3). Without making detailed assumptions (which would require further study) about

the topology of each cluster, a rough measure of linear size can be obtained as Λǫ(h) = V
1/3
h ,

and similarly ΛΩ for regions of high enstrophy. Our results suggest power-law dependences

of the form Λǫ ∼ h−0.54 and ΛΩ ∼ h−0.68 at threshold levels corresponding to extreme

events in the dissipation and enstrophy PDFs. While these relations involve proportionality

factors that (as expected) increase with the Reynolds number it is quite remarkable that

the exponents deduced from simulations at Rλ 400 and 650 simulations are nearly the same,
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thus suggesting a degree of asymptotic universality. Similar results are obtained also for

an alternative (and larger) estimate of linear size, as the maximum distance between any

two points with ǫ′ > h or Ω > h within the same cluster, with the best-fit exponents being

approximately -0.81 and -0.89.

It is important to note that regions of high ǫ or Ω are (especially in the case of worm

or filament-like vortex structures) likely to have at least one linear dimension significantly

shorter than the linear-size estimates considered above. For example although at h = 1000

in our Rλ 650 simulation Λǫ/η and ΛΩ/η typically lie in the range 10-50 and can certainly

be detected, capturing the shortest linear dimension may be questionable. In other words, a

simulation conducted at the “standard” grid resolution (kmaxη ≈ 1.5) with spacing ∆x ≈ 2η

is expected to detect certain characteristics of high-intensity clusters satisfactorily but at

the same time some of the details will not be fully captured.

4.3 Conditional Sampling of Velocity-Gradient Contributions

To characterize the nature of flow conditions in regions of extremely high dissipation and/or

enstrophy it is useful to distinguish between longitudinal velocity gradients, which con-

tribute to the dissipation only, and transverse gradients, which contribute to both. We

write

ǫ/ν = L + T + C ; Ω = T − C (4.8)

where, with the usual summation convention suppressed,

L = 2
∑

i=1,3

u2
i,i , T =

i6=j
∑

i,j=1,3

u2
i,j , and C =

i6=j
∑

i,j=1,3

ui,juj,i . (4.9)

with the term C representing cross-terms among different transverse components. It is well

known (e.g. Dhruva et al. 1997, Gotoh et al. 2002, Zhou et al. 2005b) that the PDF of

transverse gradients (hence T and C) presents wider tails than for longitudinal gradients

(L). While L and T are by definition always positive, the sign of C carries useful information
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on the local kinematics. A positive value of C contributes to higher dissipation via the off-

diagonal strain rates, whereas a negative value contributes to enstrophy via the difference

between off-diagonal velocity gradients. This suggests the conditional average of C should be

positive in strain-dominated regions of high dissipation but negative in rotation-dominated

regions of high enstrophy, and small if high values of ǫ and Ω occur simultaneously.

For incompressible isotropic turbulence with 〈ǫ〉 = ν〈Ω〉 it is readily shown that

〈L〉 = (2/5)〈ǫ〉/ν (4.10)

while the other two contributions can be written as

〈T 〉 = 2〈L〉; 〈C〉 = −〈L〉/2 . (4.11)

These relations suggest that two possible scenarios in which extreme events of dissipation

and enstrophy would scale similarly are (i) for Eqs. 4.10 and 4.11 to hold locally for the

largest fluctuations, or (ii) squares of transverse gradients to dominate overwhelmingly, i.e.

T ≫ (L, |C|). Conditional statistics presented below give support to scenario (i) but not

(ii).

Basic results including a resolution check on the averages of L, T and −C conditioned

upon the local dissipation rate are given in figure 4.10, using data from simulations at

Rλ ≈ 240 with three different values of the resolution parameter kmaxη. Since 〈C|ǫ〉 is

found to be negative for all ǫ we have plotted 〈−C|ǫ〉 instead. The data have been checked

to satisfy the requirement (from Eq. 4.9) that 〈L|ǫ〉 + 〈T |ǫ〉 + 〈C|ǫ〉 = ǫ/ν which however

may not (because of the use of logarithmic scales) be obvious from the figure. Except

for better capture of samples at large ǫ the effect of grid resolution on these quantities is

apparently weak (which is true for many conditional statistics in general, e.g. Yeung et al.

2006). A dashed line of slope 1 on logarithmic scales shows that the conditional average

of longitudinal gradients scales in almost the same way as in the unconditional result of
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Eq. 4.10, i.e.

〈L|ǫ〉 =
2

5
ǫ/ν (4.12)

for all values of ǫ. In Appendix A we provide a derivation which gives theoretical support to

this result. The other terms 〈T |ǫ〉 and 〈C|ǫ〉 follow a similar scaling with different coefficients

for ǫ′ about 4 or higher but approaches a constant in the limit of low ǫ. More detailed results

show that samples of C in regions of low ǫ are exclusively negative and contribute to a strong

(yet incomplete) cancellation in T + C. Such a cancellation, which corresponds to small

off-diagonal strain rates and may be accompanied by high local enstrophy, has a kinematic

origin, which can be seen by writing ǫ as 2νsijsij and noting that as ǫ tends to zero so must

each square term in this definition. For example, s2
12 = (u2

1,2 + u2
2,1 + 2u1,2u2,1) → 0 when

ǫ → 0 which implies, after taking conditional averages and adding different components,

that 〈T |ǫ′〉 → −〈C|ǫ′〉 as ǫ′ → 0.

Figure 4.11 shows corresponding data on the conditional averages from our highest

Reynolds number simulation (Rλ 650). Although many of the features are broadly similar

to those at lower Reynolds number (see preceding figure) there are significant differences

in the behavior of 〈−C|ǫ′〉 from about ǫ = 100〈ǫ〉 onwards, and in the comparison among

L, T and C in the limit of extreme dissipation. To understand this, we note that as ǫ/〈ǫ〉

increases from small to moderately large and ultimately extreme values the conditional

distribution of C changes from having negative samples only to having a small number of

positive samples, and ultimately a wide range of both positive and negative samples with

the conditional mean remaining negative. The “kink” seen in 〈−C|ǫ〉 at ǫ/〈ǫ〉 around 300

is a result of partial cancellation between positive and negative samples which also leads

to increased sampling noise persisting to very large dissipation. However, despite these

uncertainties it can be seen that the ratio of T : L : C becomes closer to the isotropic value

of 2 : 1 : −1/2 from ǫ/〈ǫ〉 ≈ 103 and upwards. This suggests that motions contributing to
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events of extreme dissipation are, within sampling uncertainty, close to isotropic in their

statistical properties.

For the nature of contributions from L, T and C in regions of low versus high enstrophy

we show conditional averages given enstrophy in figure 4.12. Since by definition Ω = T −C

it is not surprising that 〈C|Ω〉 is positive at low Ω (solid line with circles) and negative at

high Ω (dashed line). In the limit of very low Ω we observe T ≈ C (which can again be

explained by kinematics as Ω → 0) while L (which contributes only to ǫ) is nearly constant.

In a narrow range of Ω′ around unity the ratio between 〈T |Ω〉 and −〈C|Ω〉 is close to 4

as suggested by Eq. 4.11. Larger values of Ω′ up to about 400 are seen to be the result

of C approaching −T as the magnitudes of both terms increase. Remarkably, however, as

Ω′ approaches values of 1000 or higher the ratio between 〈T |Ω〉 and −〈C|Ω〉 becomes close

to 4 again. In other words, these results suggest that the local flow structure is close to

statistically isotropic in regions of extreme enstrophy, as it is for extreme dissipation as

noted above.

Finally, in figure 4.13(a,b,c) we compare directly the conditional averages of L, T and

C given dissipation, and given the enstrophy, replotted from Figures 4.11 and 4.12. Condi-

tioning on ǫ and Ω yields almost the same results, which is not surprising since T appears

in the same form in both ǫ = L + T + C and Ω = T − C. For both L and C it is clear

that averages conditioned on ǫ and on Ω are quite different in form, with agreement around

ǫ′ ≈ 1 and then again for ǫ from about 1000 and upwards. For regions of above-average ǫ

or Ω the greatest discrepancy between averages conditioned on ǫ versus those conditioned

on Ω is observed for ǫ and Ω ∼ around 200, which is consistent with observations noted in

figures 4.5, 4.11 and 4.12.
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4.4 Summary

A common indicator of intermittency in dissipation and enstrophy is in the wide tails in their

probability density functions (PDFs), which are well represented by stretched-exponential

fits in the range of values up to 100 times the mean. However data at the two highest

Reynolds numbers available (Rλ ≈ 390 and 650) reveal extreme fluctuations as large as

several thousands times the mean. We find that the PDF tails can be described as the sum

of two exponentials which dominate respectively in regions of moderate or high dissipation

and enstrophy. At extreme values of ǫ′ and Ω′ the PDFs appear to coincide within statistical

error, suggesting the possibility of a universal behavior of extreme fluctuations although

low order statistics may still differ. Results from conditional averaging indicate that large

dissipation is often accompanied by large enstrophy but intense enstrophy is not usually

accompanied by intense dissipation. However, in the range of “extreme” fluctuations noted

above very large dissipation and enstrophy appear to possess a significant degree of overlap.

The dimensions of clusters of points with dissipation or enstrophy above a certain threshold

suggest that they can be detected readily even with kmaxη only about 1.5, although some

of the details will not be fully captured. The nature of the extreme fluctuations is studied

further by decomposing (Eq. 4.9) both dissipation and enstrophy into longitudinal (L),

transverse (T), and cross terms (C). In general C is positive in strain-dominated regions,

negative in rotation-dominated regions, and small compared to L and T if large dissipation

and enstrophy occur simultaneously. In regions of extreme dissipation (more than 1000

times the mean) the ratio L:T:C is found to approach the value 2:1:-1/2 which is consistent

with a state of local isotropy.
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Table 4.1: Best fit coefficients for Eqs. 4.5 and 4.6 for the range 5 < ǫ′, Ω′ < 100.

Rλ kmaxη bΩ bǫ cΩ cǫ bΩ
′ bǫ

′ bΩ
′/bǫ

′

140 1.4 5.23 6.04 0.29 0.33 7.11 10.54 0.67

140 2.8 7.04 8.27 0.24 0.25 6.42 8.51 0.75

140 5.7 6.46 9.54 0.25 0.23 6.54 8.51 0.77

140 11.1 7.25 8.79 0.23 0.25 6.44 8.57 0.75

240 1.4 6.96 6.75 0.23 0.28 6.14 8.41 0.73

240 2.8 7.40 8.55 0.22 0.24 6.07 7.92 0.77

240 5.4 6.78 8.62 0.24 0.24 6.12 7.91 0.77

390 1.4 8.30 8.58 0.20 0.23 5.59 7.22 0.77

650 1.3 8.53 8.04 0.19 0.23 5.34 6.73 0.79
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Table 4.2: Best fit coefficients for Eq. 4.7 for data at Rλ ≈ 390 and 650 for ǫ′, Ω′ ≥ 5.

Rλ kmaxη variable s1 t1 s2 t2

390 1.4 ǫ′ 27.7 5.40 4.05 × 10−6 2.09

390 1.4 Ω′ 466.1 7.21 8.19 × 10−6 2.28

650 1.3 ǫ′ 14.2 5.03 1.04 × 10−6 1.84

650 1.3 Ω′ 177.5 6.59 0.79 × 10−6 1.85
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Table 4.3: Correlation coefficient between dissipation and enstrophy.

Rλ kmaxη ρ(ǫ, Ω)

140 1.4 0.50

140 2.8 0.51

140 5.8 0.51

140 11.1 0.51

240 1.4 0.52

240 2.8 0.53

240 5.4 0.53

390 1.4 0.54

650 1.3 0.55
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Figure 4.3: Spatial distribution of energy dissipation rate shown as elevated surfaces for
Rλ ≈ 650 (20483). Courtesy of Cristina Siegerist of NERSC.
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Figure 4.6: Conditional PDF of the ratio ǫ′/Ω′ given ǫ′ in the Rλ ≈ 650 simulation. Lines
A-I correspond to ǫ′ = 2n with n = −12,−9,−6,−3, 0, 3, 6, 9, 12 (note lines H and I are in
inset and plotted in different scales). Dashed lines correspond to the unconditional PDF.
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Figure 4.7: Same as figure 4.6, but conditioned on Ω′.
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dissipation.
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Figure 4.13: Conditional averages at Rλ ≈ 650 with kmaxη ≈ 1.4. From top to bottom:
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(c) −〈C|ǫ′〉/〈ǫ〉/ν (©) and −〈C|Ω′〉/〈Ω〉 (△). Dashed lines of slope 1.0 are included for
comparison.
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CHAPTER V

PASSIVE SCALARS

In this chapter we study the scaling of turbulent mixing of passive scalars. In addition to

Eqs. 2.1 and 2.2, we solve for the scalar fluctuations in the presence of an imposed mean

gradient (e.g. Pumir 1994, Overholt & Pope 1996, Brethouwer et al. 2003) according to the

advection-diffusion equation

∂φ

∂t
+ u·∇φ = −u·∇Φ + D∇2φ, (5.1)

where ∇Φ is the mean scalar gradient. The numerical scheme is the same as described in

Chapter 2. A spatially uniform ∇Φ allows the scalar fluctuations to remain homogeneous

and attain a statistically stationary state. This is made possible because of the destruction

of scalar variance by the molecular dissipation is balanced by production through the action

of velocity fluctuations on the mean gradient. Because Eq. 5.1 is linear, the magnitude of

∇Φ has no effect on normalized statistics of the scalar field.

The important non-dimensional parameter for a scalar is the Schmidt number Sc = ν/D

where D is the molecular diffusivity. For Sc ≤ 1 the smallest scale is given by the Obokhov-

Corrsin scale ηOC = ηSc−3/4 (Obukhov 1949, Corrsin 1951) and for Sc ≫ 1 it is the

Batchelor scale ηB = ηSc−1/2 (Batchelor 1959). For Sc > 1 less is known because more

resolution is needed to resolve up to ηB in both experiments and simulations. In our

simulations we resolve the scalars up to kmaxηB at least 1.5.

The rest of the Chapter is organized as follows. In the next Section we investigate the

scaling of the scalar spectrum with Reynolds and Schmidt number. We compare our results

with the theoretical predictions of Batchelor (1959) and Kraichnan (1968). In Section
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5.2 we examine the assumption that the mean scalar dissipation rate is independent of

molecular properties of the fluid and the scalar (i.e. ν and D). For this purpose we use

data from simulations and experiments and find theoretical limits in terms of Rλ and Sc

at which the mean scalar dissipation rate achieve an asymptotic state. In Section 5.3, we

study the scaling of intermittency for passive scalars with emphasis in Schmidt number

effects. Small-scale intermittency is characterized through the tail of the PDF of the scalar

dissipation, whereas inertial-convective intermittency is studied using scaling exponents of

three-dimensional local averages. Departures from local isotropy are investigated as both

Rλ and Sc vary through statistics of scalar gradient fluctuations parallel and perpendicular

to the imposed mean scalar gradient. We conclude the Chapter with a summary of the

findings, further analysis of the results and issues yet to be resolved.

5.1 Scalar Spectrum

The same ideas behind K41 has been extended to passive scalars with Sc ≤ 1 independently

by Obukhov (1949) and Corrsin (1951). Following Kolmogorov (1941a) they suggested there

is a range of scales much smaller than L but larger than diffusive scales for the scalars (i.e.

1/L ≪ k ≪ 1/ηOC) in which the dynamics are determined by the transfer rate of energy and

scalar through a cascade process—the inertial-convective range. One of the consequences

in this range is a scalar spectrum of the form

Eφ(k) = COC〈χ〉〈ǫ〉−1/3k−5/3 (5.2)

where 〈χ〉 = 2D〈∇φ · ∇φ〉 is the mean scalar dissipation rate. The existence of an inertial-

convective range requires high Rλ although as suggested by experiments and simulation

this condition seems to be weaker for scalars than for the velocity field (Sreenivasan 1996).

Our recent simulations at Rλ ≈ 650 (Yeung et al. 2005) show clear inertial-convective

scaling for Sc = 1/8 and 1 as seen in figure 5.1. The value of COC is represented by the
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height of the plateau at intermediate scales. Sreenivasan (1996) surveyed the available data

on the Obukhov-Corrsin constant and obtained a mean value of 0.4 from one-dimensional

spectra from experiments. Using isotropic relations one obtains COC = 0.67 for the three-

dimensional scalar spectrum which is shown in the figure as a dashed line. As can be

seen there is excellent agreement with experiments which supports the universality of the

constant. For Sc = 1 we also see a bump which is a consequence of viscous effects and may

also be regarded as a precursor for a k−1 Batchelor scaling (Yeung et al. 2002).

Batchelor (1959) studied scalars with Sc ≫ 1 and argued that for scales much smaller

than η, the scalar fluctuations are driven by the strain rate γ ≈ (〈ǫ〉/ν)1/2 which varies

slowly at these scales. Therefore, for Sc ≫ 1 there is a range of scales 1/η ≪ k ≪ 1/ηB,

—the viscous-convective range— where diffusivity is not important and the only relevant

parameters are γ, k and 〈χ〉. Dimensional arguments then yield

Eφ(k) = CB〈χ〉(ν/〈ǫ〉)1/2k−1. (5.3)

If Rλ is also large there is a k−5/3 inertial-convective range for scales 1/L ≪ k ≪ η.

Batchelor (1959) also showed that for Sc ≫ 1, high-wavenumbers scalar modes (k > 1/η)

tend to align to the compressive axis of the rate of strain tensor and are compressed to

scales of the order ηB where the thinning is balanced by diffusion effects. This compression

occurs at a time scale ∼ ln (D/ν)1/2/γ. The final expression for the spectrum is

Eφ(k) = CB〈χ〉(ν/〈ǫ〉)1/2k−1 exp[−CB(kηB)2]. (5.4)

Kraichnan (1968) modified Batchelor’s theory to take into account fluctuations in space and

time of the strain rate γ. The result of this analysis yields a spectrum of the form

Eφ(k) = CB〈χ〉(ν/〈ǫ〉)1/2k−1(1 + (6CB)1/2kηB) exp[−(6CB)1/2(kηB)]. (5.5)

It is clear that both Eq. 5.4 and 5.5 predict a k−1 scaling (Eq. 5.3) in the viscous-convective

range (1/η ≪ k ≪ 1/ηB). The DNS from Bogucki et al. (1997) at Rλ up to 77, show that
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Kraichnan’s prediction is more accurate than Batchelor’s although the highest Schmidt

number in their simulation was moderate (Sc = 7). We have performed simulations at very

high Sc (of order 1000) but low Rλ (≈ 8) to investigate further viscous-convective scaling

(Yeung et al. 2004). Because Batchelor scale is much smaller than Kolmogorov scale, high

Schmidt numbers are only attainable at the expense of low Reynolds numbers if one is to

resolve down to the smallest scales for the scalars. As shown in figure 5.2 we find that there is

a trend toward k−1 scaling with Sc. However, some concerns are present at Rλ ≈ 8 because

the range of scales where the energy cascade proceeds (through non-linear interactions) is

too narrow. Forcing applied at low wavenumbers can in fact affect dissipative scales and

the strain at scales smaller than η may not be accurately estimated by the high-Reynolds

number Kolmogorov prediction γ ∼ (〈ǫ〉/ν)1/2 as assumed by Batchelor. Even at Rλ ≈ 38,

the velocity field may not be considered completely developed for some purposes as it does

not exhibit an inertial range. This is shown in figure 5.3 where velocity spectra at Rλ ≈ 8,

38, 140 and 650 are presented. It is only at Rλ ≈ 140 that an inertial range is attained

(Yeung & Zhou 1997) and a wider separation of scales achieved.

We recently performed simulations of high-Sc mixing at Rλ ≈ 140 and Sc = 4 and 64 on

a 20483 grid at kmaxηB ≈ 5.5 and 1.4 respectively. . The un-normalized scalar spectra are

presented in figure 5.4 along with data for Sc = 1/8 and 1 at 2563. Consistent with results

at lower Rλ (see figure 5.2) the increase in high-wavenumber content with Sc appears to

support a trend towards k−1 scaling at intermediate scales.

In figure 5.5 we show data normalized according to Eq. 5.3 for a wide range of Reynolds

numbers (8 to 650) and Schmidt numbers (1/8 to 1024). It is interesting to note the degree

of universality at small scales (kηB & 0.1) which includes both low and high Schmidt

numbers. It has been suggested that other mechanisms (involving the strain rate γ used by

Batchelor 1959) are important in the mixing of scalars (Gibson 1968, Gibson et al. 1988).
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A consequence of this theory is the implication of a universal scaling (i.e. for any Sc) in

the viscous-diffusive range. Similar results has been reported by Bogucki et al. (1997) and

Antonia & Orlandi (2003) although the for narrower ranges for Rλ and Sc. For high-Sc

scalars a k−1 scaling is best observed at Rλ ≈ 140 (lines G and H) with about one decade

of scaling range. Scalars with low Schmidt numbers (1/8 and 1) at Rλ ≈ 650 (lines C and

D), show also an inertial-convective range (already seen in figure 5.1) given by k−2/3 under

the present normalization.

In figure 5.5 we also include the predictions in Eq. 5.4 and Eq. 5.5 with CB = 5.0 to fit

the DNS data. We note that this value is consistent with CB = 2
√

5 by Qian (1995) and

the results based on structure function in Borgas et al. (2004). It is clear that Batchelor’s

spectrum underpredicts the spectral content at high wavenumbers (kηB & 1) and that

Eq. 5.5 gives a better approximation even for scalars with Sc . 1. A careful examination of

the spectra presented in figure 5.5, suggests an increase in high-wavenumber content with

Reynolds number especially for Sc . 1 (see e.g. lines A and C). This effect, however, could

be incorporated in Kraichnan’s model with CB being a (weak) decreasing function of Rλ.

The variation of the CB with both Rλ and Sc was also observed in Yeung et al. (2002,

2004).

A basic premise in the phenomenology of turbulence, including the spectral results

analyzed above, is that the mean dissipation is independent of molecular processes (see e.g.

Sreenivasan & Antonia 1997, Sreenivasan 1998). In the case of the velocity field, the mean

energy dissipation rate should be independent of viscosity in the high-Reynolds number

limit. In the case of a passive scalar, the mean scalar dissipation rate should not depend on

either the viscosity of the fluid or the diffusivity of the scalar as long as both are sufficiently

small. Since the results in this Section rely on this assumption, the next subsection is

devoted to the scaling of the mean scalar dissipation rate with Rλ and Sc.

93



5.2 Dissipative Anomaly

After some fifty years of accumulated work (e.g. Batchelor 1953, Sreenivasan 1984, 1995,

1998, Zocchi et al. 1994, Kaneda et al. 2003) it has now become empirically clear that the

mean dissipation rate of turbulent energy away from the walls, 〈ǫ〉 ≡ ν
2

〈(

∂uj

∂ui
+ ∂ui

∂uj

)2 〉

, is

independent of the fluid viscosity, ν, as long as ν is small, or a suitably defined Reynolds

number is large. This property of turbulence (Taylor 1938, Kolmogorov 1941a), known

as the dissipative anomaly, has the consequence that the normalized energy dissipation,

i.e., the function f ≡ 〈ǫ〉L/u′3, where L and u′ are some viscosity-independent length and

velocity scales respectively, approaches an asymptotic constant in the limit of high Reynolds

numbers. This behavior of f is consistent with rigorous bounds for 〈ǫ〉 deduced from the

Navier-Stokes equations (Constantin 1994). In particular, a functional form motivated by

the results of Doering & Foias (2002), namely

f ≡ 〈ǫ〉L
u′3 = A(1 +

√

1 + (B/Rλ)2), (5.6)

where u′2 ≡ 〈u2〉, is found to provide, as seen in figure 5.6, a good fit for the Reynolds

number dependence of f . Here, L is the longitudinal integral length scale evaluated from

the energy spectrum function E(k) in wavenumber space as

L =
π

2u′2

∫ ∞

0

E(k)

k
dk . (5.7)

With this choice, the fit in figure 5.6 gives A ≈ 0.2 and B ≈ 92, yielding an asymptotic

value of 0.4 for f .

While the behavior shown in figure 5.6 is universal for all turbulent flows away from the

solid wall (see Sreenivasan 1995), it must be stressed that the coefficients A and B are not

universal, even if ones fixes the operational definitions of L and u′. They depend on the

type of flow, and, for a given flow, on detailed initial conditions—for example the geometry

of the grids in grid-generated turbulence and the nature of large-scale forcing in simulations.
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Similar issues can be explored for 〈χ〉 ≡ 2D
〈(

∂φ
∂xi

)2 〉

, which is the mean “dissipation”

rate of the scalar variance 〈φ2〉, φ being the fluctuating scalar and D its diffusion coefficient.

Specifically: (a) what is the “asymptotic” nature of 〈χ〉 when ν and D are both small? (b)

What is the analogue of equation (1.1) for 〈χ〉 as a function of Rλ and the Schmidt number

Sc (≡ ν/D)? Answering these questions is the goal of this Section. Aside from their intrinsic

interest, the findings are of practical value for reacting flows in which the products in the

fast-chemistry limit bear a direct proportion to χ (see, e.g., Bilger 2004, Sreenivasan 2004).

The questions outlined above are not entirely new, but the available data are scattered

in the literature and the effect of Schmidt number, especially for Sc ≫ 1, has received less

attention than warranted. Monin & Yaglom (1975) discussed (a) above, while both (a)

and (b) were addressed by Sreenivasan & Yeung (2000) at an earlier conference. A short

paper addressing some of these same issues (Xu et al. 2000) has also appeared. We believe,

however, that this work is the first comprehensive evaluation of the questions mentioned

above, besides incorporating new data from direct numerical simulations and presenting

related correlations. We provide a brief overview of numerical and experimental datasets

from various sources used in our discussion. Next, we present results and theoretical con-

siderations, which lead us to infer the circumstances under which the scalar dissipation

becomes independent of molecular properties, for Sc < 1 and Sc > 1.

5.2.1 The Data

As described in Chapter 1, we have accumulated a significant DNS database from sim-

ulations previously performed in which the Reynolds and Schmidt numbers were varied

independently. Table 5.1 lists the data from Yeung et al. (2004, 2002) and Yeung & Saw-

ford (2002). We have also included data from a 10243 resolution. In this Section, we use

data at Rλ from about 8 to about 390 while keeping Sc fixed at unity; similarly, we varied

Sc from 1/4 to 1024 for Rλ fixed at 8 as well as 38. These parameter combinations are
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shown in Table 5.1. The adequacy of numerical resolution in DNS is often expressed for

the velocity field by the non-dimensional parameter kmaxη. For high-Sc scalar fields, the

resolution requirement is expressed by kmaxηB, where ηB ≡ ηSc−1/2 is the Batchelor scale

(Batchelor 1959). For a given computational size, this requirement is met only by keeping

the Reynolds number appropriately low. For reference, we have included in Table 5.1 the

values of u′2, the scalar variance related to its spectral density Eφ through

φ′2 ≡ 〈φ2〉 =

∫ ∞

0
Eφ(k)dk, (5.8)

the integral scale for velocity, L, the integral scale for the scalar, Lφ, defined through the

relation

Lφ =
π

2〈φ2〉

∫ ∞

0

Eφ(k)

k
dk, (5.9)

as well as 〈ǫ〉, 〈χ〉, Rλ and Sc.

In addition to the present, we incorporate data from Overholt & Pope (1996), Bogucki

et al. (1997), Wang et al. (1999), and Watanabe & Gotoh (2004). All these studies were

for stationary isotropic turbulence though some of them differ in the method of forcing the

turbulence and in ways by which scalar fluctuations are maintained against scalar dissipa-

tion. Bogucki et al. (1997) forced both the velocity and scalar field by keeping the energy

constant in a few low-wavenumber modes. The forcing of the velocity field by Overholt &

Pope was the same as the present, as was manner of maintaining stationarity of the scalar

field through the mean gradient. Wang et al. maintained both the velocity and scalar fields

stationary by forcing wavenumbers with k < 3 such that the energy and scalar spectra

followed a k−5/3 power law. Watanabe & Gotoh forced both the velocity and scalar field

with Gaussian random solenoidal forces that were delta-correlated in time, and applied the

forcing in the wavenumber range 1 ≤ k ≤ 2. The relevant parameters from these references

are summarized in Tables 5.2 to 5.5, making sure (except when explicitly noted otherwise)

that they conform to the definitions used here.
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We also consider the experimental data from Mills et al. (1958), Yeh & Van Atta (1973),

Warhaft & Lumley (1978), Sreenivasan et al. (1980), Tavoularis & Corrsin (1981), Sirivat

& Warhaft (1983), Mydlarski & Warhaft (1998) and Antonia et al. (2000). Most of the

measurements were made at low Reynolds numbers and for nearly passive temperature

fluctuations in air (Sc ≈ 0.7) in decaying grid-turbulence, generated by heating either the

turbulence-generating grid itself, or an auxiliary screen placed downstream; the experimen-

tal configurations and conditions are succinctly summarized by Sreenivasan et al. (1980).

The recent experiments of Mydlarski & Warhaft (1998) stretch the Reynolds number range

substantially using the so-called active grid. The definitions of length and velocity scales

used in experiments are sometimes different from those of numerical simulations, which

complicates precise comparisons, though these differences do not appear to be critical. In

any case, we have provided a list of the different definitions used by the authors wherever

necessary or appropriate.

5.2.2 The Scaling of Scalar Dissipation

5.2.2.1 Unity Schmidt Number

In analogy to the energy dissipation rate, one can examine the Rλ-variation of 〈χ〉L/〈φ2〉u′.

No general results are known on bounds on scalar dissipation, comparable to those of

Doering & Foias (2002) for the energy dissipation, though Schumacher et al. (2003) studied

related issues with the assumption of rapid straining at small scales. The data culled from

Table 5.1 for Sc = 1, plotted in figure 5.7, indeed have the form

〈χ〉L
〈φ2〉u′ = A′(1 +

√

1 + (B′/Rλ)2) (5.10)

which is a direct extension of Eq. 5.6. For our own DNS data (circles in the figure) we

have A′ ≈ 0.4 and B′ ≈ 31. The value of B′ in Eq. 5.10 is significantly smaller than B in

Eq. 5.6, which suggests that the asymptotic value of the normalized scalar dissipation is
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attained faster in Rλ than the normalized energy dissipation. This is evident also from a

comparison of figures 5.6 and 5.7. In analogy with the energy dissipation, we expect the

form of the equation to be the same for all initial conditions, though the numerical values

could be different.

In plotting figure 5.7, we have used L as the relevant length scale because the ratio

Lφ/L is of the order unity for these data (0.7 ± 0.06). Further, instead of using L/u′ as

the indicator of the large-eddy time scale, one can consider the time scale K/〈ǫ〉, which is

used to define the so-called “mechanical-to-scalar time scale ratio” (rφ) often used in the

modeling of reacting flows (see, e.g., Fox 2003). (Some results on rφ were given in Yeung &

Sawford 2002). The time scales L/u′ and T are related from definitions as

L

Tu′ =
2

3
f, (5.11)

where f is given by Eq. 5.6. Because their ratio becomes a constant only for large Rλ, the

use of the time scale T , instead of L/u′, changes the form of the normalized data for low

Rλ but its constancy for high Reynolds numbers is assured, as seen from the inset to figure

5.7. The use of T as a time scale possesses an advantage as we shall see further below.

In summary, it appears from the data just considered that dissipative anomaly applies to

passive scalar fields as well. Following the idealized notion of cascades, the implication is also

that the time taken by the scalar variance to reach the dissipative scales is of the same order

as the time scale of the large eddies. In particular, the present evidence does not support

the idea of a cascade short-circuit (Villermaux et al. 2001), though it is possible that the

present homogeneous flows and the jet flow studied by Villermaux et al. could be different

in this respect. We have focused here on homogeneous flows partly because the large body

of data available allows definitive conclusions to be drawn, and partly because—based on

our experience with the energy dissipation (Sreenivasan 1995)—each inhomogeneous flow

has to be studied carefully on its own merit. While we do not expect a large qualitative
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difference, this is clearly work for the future.

5.2.2.2 Non-unity Schmidt Numbers

We can now plot available data for all Sc in a similar manner (figure 5.8). The data

for different conditions tend to approach constant values of the order unity for large Rλ,

though without collapsing, because of the additional parameter, Sc. There is, in particular,

no discernible order for low Rλ. Instead of examining the Rλ-variation, one may plot the

data against the microscale Péclet number

Pλφ ≡ u′λφ

D
= RλSc

λφ

λ
, (5.12)

where the scalar microscale λφ is defined through the relation

λ2
φ = 6D

〈φ2〉
〈χ〉 . (5.13)

That, too, does not collapse the data although the dependence on Sc emerges more clearly

(figure 5.9). This is not surprising because the Péclet number does not distinguish between

the case of low Sc and high Rλ on the one hand and that of high Sc and low Rλ on the

other—which are two different problems in mixing. Even if T were used instead of L/u′,

the data do not collapse against Rλ or Pλφ (see figures 5.10 and 5.11). While a reasonable

conclusion may still be that an asymptotic state is reached for large Rλ or Pλφ, this limit

is not the same for all the data.

For the data used in figure 5.7, the ratio Lφ/L is about 0.7±0.06, so it is reasonable to

assume that the scalar field is forced at essentially the same scale as the velocity field. As

shown in figure 5.12, the length scale ratio for our data depends on Sc, even if not very

strongly. (This dependence may seem surprising at first but the increasing importance with

Sc of the −1 part of Eφ(k) makes it quite plausible. There is practically no dependence on

Rλ for fixed Sc.) If Lφ/L is small compared to unity so that the scalar forcing occurs within
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the inertial range of the velocity field, the appropriate time scale for normalizing 〈χ〉/〈φ2〉

is not L/u′ or T , but their products with the factor (Lφ/L)2/3. This conclusion follows if we

assume that the characteristic time scale for the inertial range is given by the Kolmogorov

scenario, and that the time scale needed for scalar variance to reach the dissipative scales is

diminished because the forcing occurs in the inertial range at Lφ < L. It would thus seem

appropriate to multiply the ordinates in figures 5.8-5.11 by (Lφ/L)2/3. We have prepared

these plots but do not present them because they do not make a qualitative difference. We

surmise the reason to be that, while the length scale ratio is not strictly unity, its variation

is not sufficiently strong for it to matter in the present context.

To understand the Sc-dependence of φ2/〈χ〉T , we consider large Sc and small Sc sep-

arately. For the former case, we may approximate the scalar spectrum by (see Section

5.1)

Eφ(k) = COC〈χ〉〈ǫ〉−1/3k−5/3 (5.14)

below a crossover wavenumber and by

Eφ(k) = CB〈χ〉(ν/〈ǫ〉)1/2k−1 (5.15)

above the crossover. Here, COC is the Obukhov-Corrsin constant (Corrsin 1951) and CB

is the Batchelor constant (Batchelor 1959). The natural crossover scale is kη ∼ 1/η, where

η = (ν3/〈ǫ〉)1/4 is the Kolmogorov scale. By integrating the scalar spectrum it is then easy

to show that

〈φ2〉
〈χ〉 =

(3/2)COC

〈ǫ〉1/3k
2/3
0

[

1 −
(

k0

kη

)2/3
]

+ (1/2)CB

(

ν

〈ǫ〉

)1/2

ln (Sc), (5.16)

which can be written as

〈φ2〉
〈χ〉T = c1 f̃ + c2

ln(Sc)

Rλ
(5.17)

with

f̃ = f2/3 − c3

Rλ
, (5.18)
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where f comes from (5.6), c1 = COC , c2 = CB

√
15/3 and c3 =

√
15. It should be noted that

taking the crossover scale as a multiple of kη different from unity—as is indeed suggested

by the numerical constants COC and CB (determined, e.g., from the simulations of Yeung

et al. (2002)—does not alter any of the conclusions drawn here. The appearance of terms

of the form 1/Rλ and ln(Sc)/Rλ in Eq. 5.18 and and Eq. 5.17 is also in agreement with a

separate analysis by Borgas et al. (2004, ; see equation (15) therein).

The first term of (5.17) depends on both Rλ and the flow (through constants A and B

that are implicit in f), and the second term is a linear function of ln(Sc)/Rλ. The advantage

of using T instead of L/u′ is that the prefactor for the second term is a constant in the

former case instead of being a function of Rλ and of A and B in the latter. Equation 5.17

shows that the meaning of large Reynolds number for large Sc is that ln(Sc)/Rλ must be

small (in addition to the usual criterion that Rλ itself be large).

In simulations listed in table 5.1, it is generally the case that ln(Sc)/Rλ is not small

(as we shall discuss further below), and so the asymptotic state has not been reached.

Nevertheless, for some sets of data, the f̃ -term is small compared with the ln(Sc)/Rλ-term,

which suggests that the data for those cases may collapse if plotted against ln(Sc)/Rλ. This

is indeed the case, as shown infigure 5.13.

For Sc < 1, we can get an approximate spectrum from (5.14) but using the high-

wavenumber cut-off at the Obukhov-Corrsin scale (ηOC ≡ ηSc−3/4). Proceeding as before,

we integrate the spectrum using (1.1) for 〈ǫ〉 and obtain

〈φ2〉
〈χ〉T = c1

(

f2/3 −
√

15
1

RλSc1/2

)

. (5.19)

The first term is a function of both the flow geometry (or forcing scheme in simulations)

and Rλ, while the second is a linear function of the parameter (RλSc1/2)−1. However, since

the first term is in general not small, especially for high Rλ, the straight lines would depend

on flow features and Rλ. It is clear that the asymptotic state is attained only when RλSc1/2
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is large (in addition to Rλ being large)—this being different from the large-Sc case.

As an aside, it is worth remarking that (5.19) can be rewritten, using (5.6) for f , as

〈φ2〉
〈χ〉T ′ =

3

2
c1

(

1 − 15−1/6 1

RL′
1/3Sc1/2

)

, (5.20)

where a new time scale T ′ = L2/3/〈ǫ〉1/3 and a new Reynolds number RL′ = (u′L2/λ)/ν

have been introduced. To obtain this equation, we have also used the relation Rλf2/3 =

152/3RL′
1/3. The important feature of (5.20) is that it does not contain any flow-dependent

parameters (unlike (5.19) through f). If we now plot 〈φ2〉
〈χ〉T ′ against (RL′

1/3Sc1/2)−1 we expect

a straight line with a negative slope. In figure 5.14 we show all the relevant data and compare

the best fit (dotted line) with the line given by (5.20) (dash-dotted line with COC = 0.6 and

CB = 5). The comparison is not unreasonable. This scaling is a consequence of Obukhov-

Corrsin spectrum, according to which the scalar dissipation rate, when normalized by T ′,

should scale with RL′
−1/3Sc−1/2, thus independent of all other details. If we plot the data

using Rλ, or another time scale, then the dependencies on the flow and Rλ will reappear.

Finally, for Sc = 1, we can put Sc to unity in both estimates (5.17) and (5.19), the

corresponding form turns out to be the same:

〈χ〉T ′

〈φ2〉 =
2

3c1

(

1 − 15−1/6

RL′
1/3

)−1

. (5.21)

We can express Eq. 5.21 in terms of L/u′ and Rλ as 〈χ〉L/〈φ2〉u′ = 2f/[3 c1(f
2/3 −

√
15/Rλ)−1]. This functional form, although different from (5.10), can also be fitted to

compare with the DNS data. In figure 5.7 we included this theoretical prediction using

the values of A and B obtained from our DNS data. This trend of the curve is similar to

Eq. 5.10 though it yields a somewhat higher value than that observed for the data.
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5.2.2.3 Limits

The results of the preceding Section can be summarized as follows:

〈φ2〉
〈χ〉T

1

c1
= f2/3 − 1

Rλ
×



















c3 − c4 ln (Sc) Sc > 1

√
15 Sc−1/2 Sc < 1

(5.22)

where c4 = c2/c1. We are now interested in the limiting behaviors of 〈φ2〉
〈χ〉T ′ with respect to

Rλ and Sc. In particular, from the above equation it is easy to find the following results:

lim
Rλ→∞

〈φ2〉
〈χ〉T = c1(2A)2/3 0 < Sc < ∞, (5.23)

lim
Rλ→0

〈φ2〉
〈χ〉T = −c1

1

Rλ



















c3 − c4 ln(Sc) Sc > 1

√
15 Sc−1/2 Sc < 1,

(5.24)

lim
Sc→∞

〈φ2〉
〈χ〉T =

1

Rλ
c2 ln(Sc) Rλ < ∞, (5.25)

lim
Sc→0

〈φ2〉
〈χ〉T = − c1

√
15

RλSc1/2
Rλ < ∞. (5.26)

Some comments on these limits are now in order. According to (5.23), as Rλ approaches

infinity, the normalized scalar dissipation rate tends to a constant. As already remarked,

this constant is flow-dependent. However, the limiting behavior appears to be independent

of the diffusivity of the scalar. In figure 5.10, this is what would be expected for higher

Rλ. In the opposite limit of vanishing Rλ, Eq. 5.24 shows that the behavior at small Rλ

depends upon Sc (and this dependence is different for scalars with Sc greater or less than

unity). Moreover, 〈φ2〉/(〈χ〉T ) decreases for Sc < 1, while it increases for high Sc (the

numerical value depending on c1 and c2). This can also be seen in figure 5.10. For low-Sc
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scalars the normalized scalar dissipation increases as Rλ decreases, while high-Sc scalars do

the opposite. This limit presents no dependence on the flow (or forcing in DNS). The third

limit, Eq. 5.25, implies that no flow and forcing effects are felt when Sc is very high. This

feature cannot be tested here since the only high-Sc data available are our own, for which

a common forcing scheme was used. Finally, Eq. 5.26 suggests an Rλ-dependence, but no

flow-dependence, as Sc → 0.

We have seen that, according to the Obukhov-Corrsin scaling, there is a universal be-

havior of 〈χ〉/〈φ2〉 when normalized by T ′ and plotted against RL′ . This is seen in the

recast form of (5.22) as

〈φ2〉
〈χ〉T ′

2

3c1
= 1 − 15−2/3

RL′
1/3

×



















c3 − c4 ln (Sc) Sc > 1

√
15 Sc−1/2 Sc < 1.

(5.27)

Using this form of normalization and remembering that, because of the relation Rλf2/3 =

152/3RL′
1/3, one Reynolds number tends to infinity when the other does, we see that the

Rλ → ∞ limit preserves the asymptotic constancy even if it yields a different limit from

(3.12). The limit in this case is

lim
Rλ→∞

〈φ2〉
〈χ〉T ′ =

3

2
c1 ≡ 3

2
COC 0 < Sc < ∞. (5.28)

In particular, the constant 3
2COC is independent of the flow details and hence universal. The

replot of the data using this scaling, shown in figure 5.15, seems to confirm the conclusion.

The lack of strict universality could be due to, among other effects, contaminations from

the large scale details, especially taking into account the variety of flows we are analyzing.

5.2.2.4 The Overall Picture

Equations 5.17 and 5.21 can be used to address the following question: how close is a given

flow, characterized by given values of Rλ and Sc, to being asymptotic? To illustrate this
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point, we take the operational view that the asymptotic state is attained when the second

term in each of these equations, which depends on both viscosity and diffusivity, is 10%

of the respective first terms. A choice of some other similar percentage will not affect the

conclusions qualitatively, as we shall see.

In figure 5.16, we have plotted in the Rλ-Sc plane the condition just spelled out, imple-

menting it as follows. The full curve to the right side of the plot is the locus of points for

which the first term in Eq. 5.17 is 10 times larger than the log-term, while that to the left

is the locus for which the first term of Eq. 5.19 is 10 times the second one. The dash-dotted

lines mean that the Rλ-parts in the first term (which are small for large Rλ in any case) are

neglected. The horizontal dotted line represents the Rλ at which the asymptotic state for

〈ǫ〉 has been attained (at this Rλ the difference between Eq. 5.6 and its asymptotic value

is 10 times smaller than the latter). The behaviors bound the asymptotic state and, as

long as a point resides above these lines, it can be regarded, to this rough approximation,

as belonging to the asymptotic state. The diagram reinforces the statement that such an

asymptotic state is governed by both Reynolds and Schmidt numbers, and that the precise

criteria depend on whether Sc is large or small. The high-Rλ approximations (dash-dotted

lines in the diagram) are very close to the solid lines. The former only depend on the flow-

specific constant A (see Eq. 5.6). But, since A does not depend too strongly on the flow,

these limits can be regarded to provide the qualitative indication for all flows. Moreover, if

this diagram were redrawn using RL′ instead of Rλ (to make the result flow-independent),

the result would still look very similar.

Figure 5.16 also shows where all the data from our tables lie on this phase plane. It is

clear that all the high-Sc data from simulations are not asymptotic, as some of the older

experiments. This is not a new revelation but the diagram is the first attempt made to

quantify this feature.
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5.2.2.5 Other Correlations

We may write from dimensional considerations that

Eθ(k) = C〈χ〉〈ǫ〉−1/3k−5/3f(kη, Sc), (5.29)

and

Eθ(k) = C〈χ〉(ν/〈ǫ〉)1/2k−1f(kη, Sc), (5.30)

depending on whether Sc < 1 or Sc > 1. We can then integrate these expressions to obtain

〈φ2〉
〈φ2〉/〈χ〉

τφ
=

∫ ∞

0
f(kη, Sc)d(kηB) (5.31)

where τφ is equal to τη = (ν/〈ǫ〉)1/2 or τB = 〈ǫ〉−1/3ηB
2/3 depending on whether we use

Eq. 5.29 or 5.30. Following the arguments leading to Eq. 5.19, we may expect that the right

hand side is a function of Rλ and Sc. Or, using RL′ instead of Rλ, we have

〈φ2〉/〈χ〉
τφ

= F (RL′ , Sc). (5.32)

We may now naively expect that F will be in the form of power-laws in RL′ and Sc, and

hence write

〈φ2〉/〈χ〉
τφ

= αRL′
nScm. (5.33)

By an optimization procedure, we obtain n = 0.35 and m = 0.57 (when using τB) and

n = 0.36 and m = 0.23 (when using τη) as best fits to the data. This is confirmed in figure

5.17. The prefactor α in Eq. 5.33 is 1.55 for τB and 1.43 for τη (and the additive constants

in both cases are negligibly small).

Using the fact that τB = (ν/〈ǫ〉)1/2Sc−1/3 = T ′/(15 RL′
2Sc2)1/6, Eq. 5.33 can also be

written as

〈φ2〉
〈χ〉T ′ ∼ RL′

n−1/3Scm−1/3. (5.34)
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The closeness of the best estimate of 1/3 for n suggests that the Rλ-variation must indeed

be negligible. The weak power of Sc is qualitatively similar to a logarithmic dependence on

Sc as Sc → ∞.

5.2.3 Summary and Conclusions

In this Section we investigated the asymptotic independence of the scalar dissipation on

scalar diffusivity. One of the problems faced while attempting to understand the large-

Reynolds number behavior for non-unity Schmidt numbers is the lack of a suitable criterion

of what constitutes the asymptotic state. Without that rough guideline, one can come to

varying conclusions from simulations and experiments. In this Section we have arrived at

empirical criteria based on the analysis of existing data and summarized them in figure

5.16.

We wish to note that the flows analyzed here are homogeneous. This choice was delib-

erate because the situation with inhomogeneous flows is more complex. At the least, the

meaning of how high a Reynolds number is high enough depends on the flow. The presence

of solid boundaries introduces additional complexities: the role of viscosity in the boundary

layer is different from that in the jet (or wake) because the viscosity effects in the former

will not vanish at any Reynolds number (though Schmidt number effects may vanish at

high enough Sc). Our expectation is that the asymptotic independence discussed here will

hold for all flows far from a solid boundary, but that the rate at which this state is attained

will be different for different flows. And, as we have already noted, the asymptotic value of

the normalized scalar dissipation will depend on the flow.
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5.3 Intermittency and Anisotropy Scaling for Passive Scalars

5.3.1 Scalar Dissipation Rate

The mean scalar dissipation rate 〈χ〉, which was discussed at length in the previous Section,

is simply the first order moment of the distribution of χ. However, like the energy dissi-

pation, the scalar dissipation is an intermittent variable for which the first few moments

are not sufficient to characterize its behavior. In fact, as we will see in this Section, χ is

even more intermittent than ǫ. It is therefore necessary to study high-order moments of

χ or even the complete PDF, fχ. Fluctuations in energy-dissipation rates are important

in combustion problems in which, for example, reaction rates are proportional to χ and

extreme fluctuations can lead to local extinction/reignition of the flame (Sreenivasan 2004,

Bilger 2004). A useful way to characterize large fluctuations is by studying the tail of the

PDFs which are particularly wide for intermittent variables. In the case of passive scalars,

it is important to distinguish between Reynolds and Schmidt number effects as was done

previously in this Chapter.

In figure 5.18(a) we show the PDF of scalar dissipation normalized by its mean value

(χ′ ≡ χ/〈χ〉) at different Reynolds numbers with Sc = 1. As expected, as Rλ increases

(at fixed Sc) finer scales are present for both velocity and scalar fields and larger gradients

become more likely. Accordingly, we see that the tail of fχ widens at large Rλ. The scaling

of intermittency with Sc can be seen in 5.18(b) where we show the PDF of χ at Rλ ≈ 140

for a range of Sc. We can see wider tails for Sc = 1 than 1/8 and even wider for Sc = 4.

However, at Sc = 64 the PDF is almost coincident with that at Sc = 4. This phenomenon,

known as saturation of intermittency, was also observed at Rλ ≈ 8 in Yeung et al. (2004)

and Rλ ≈ 38 in Yeung et al. (2002) by studying moments of scalar gradients.

It has been suggested (Holzer & Siggia 1994, Overholt & Pope 1996) that the PDF of
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scalar dissipation can be approximated by a stretched exponential of the form

fχ(χ′) ∼ (χ′)−1/2 exp[−bχ(χ′)cχ ] (5.35)

which does in fact produce good fits to our data for all Rλ and Sc. In figure 5.19 and

Table 5.7 we show the parameters that provide the best fit in the range 1 < χ′ < 50.

Stronger intermittency is seen as smaller values of bχ and cχ. To help understand Reynolds

and Schmidt number scaling, in Table 5.7 we also include the resolution N , since as found

in Chapter 3, modest resolution leads to underestimation of the tails or equivalently, larger

exponents cχ. For a given Rλ and resolution N , the simulations are performed with 2 or 3

scalars (see the table) with the resolution criterion kmaxηB ≈ 1.5 applied to the scalar with

highest Schmidt number in the simulation. These scalars are identified in Table 5.7 with

an asterisk (*) next to the resolution. It is not surprising then, that for those scalars, the

coefficients may appear slightly larger than what the overall trend suggests.

For a fixed Schmidt number, we see in Table 5.7 that increasing Rλ leads to a smaller

exponent cχ consistent with an increased intermittency. For a fixed Reynolds number, on

the other hand, the data suggest that the exponents cχ approach an asymptotic value at

some Sc which is consistent with the saturation of intermittency mentioned above. For

Rλ ≈ 8, saturation occurs at Sc between 64 and 256 (Yeung et al. 2004), whereas for

Rλ ≈ 38 it occurs at Sc ∼ O(4) (Yeung et al. 2002). Taking into account the fact that

due to resolution effects, cχ for Sc = 1 at Rλ ≈ 140 may be overestimated, our recent

simulations suggest that saturation may occur at Sc ∼ O(1). We can also see that the

difference between the coefficients at Sc = 1/8 and 1 is smaller at high Rλ being almost

equal for Rλ ≥ 240.

In figure 5.19(b) we included cχ = 1/3 (dashed line) which was derived analytically for

large Péclet and Schimdt numbers under the so called Kraichnan model for the velocity

field in Eq. 5.1 (see e.g. Falkovich et al. 2001). The details of these calculations can be
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found, for velocity fields with different statistics, in Chertkov et al. (1998b,a), Gamba &

Kolokolov (1998) and Balkovsky & Fouxon (1999). As seen from the figure, DNS data does

not support this result as the asymptotic state at large Sc appears to depend on Rλ.

Intermittency of passive scalars at different scales can be studied using local averages

similar to that defined in Section 4.1 for energy dissipation (i.e. Eq. 4.3):

χr =
1

Vr

∫

Vr

χ(x)dx (5.36)

Using the concept of multipliers and multifractals (see e.g. Frisch 1995) we can expect a

scaling of the form

〈χq
r〉 ∼ r−νq (5.37)

Note that the exponents νq are all zero in the absence of scalar dissipation intermit-

tency. Prasad et al. (1988) found the (nontrivial) exponents in the inertial-convective range

(roughly for η < r < L) for Rλ ≈ 200 while Sreenivasan & Prasad (1989) found that in the

viscous-convective range at Rλ ≈ 150, the exponents are all zero (i.e. no intermittency).

However, the Sc scaling of this result is less understood. In figure 5.20 we show the mo-

ments 〈χq
r〉 for Sc = 4 and 64 at Rλ ≈ 140 on a 20483 grid. At this resolution, kmaxη is

approximately 11 which implies, according to our findings in Chapter 3, a very well resolved

velocity field. The exponents νq in Eq. 5.37 were obtained by fitting power laws shown as

dotted lines in figure 5.20. In figure 5.21 we show νq/(q − 1) (instead of νq) which are

equal to the “generalized” dimensions Dq defined by Hentschel & Procaccia (1983) and are

usually found in the literature. Data at the same Reynolds number and Sc = 1/8 and 1

are also included for comparison. We can see that there is a decrease of intermittency at

inertial-convective scales as Sc increases for Sc > 1. Although there may be some ambiguity

in the choice of the scaling range, the decrease in inertial-convective range intermittency

is robust to changes in the fitting interval. We also include results for energy dissipation
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at the same Rλ. It is clear from figure 5.21 that the exponents for scalar dissipation are

greater than those for energy dissipation (dashed line) indicating that χ is more intermit-

tent and less space filling than ǫ in agreement with results found in the literature (e.g.

Sreenivasan & Antonia 1997). Our results suggest that the scaling of intermittency of χ in

the inertial-convective range may behave similar to energy dissipation at very high Sc.

5.3.2 Scalar Gradients

An essential element in the phenomenology of Kolmogorov (1941a), and subsequent ap-

plications to passive scalars, is that at high Reynolds numbers the small scales become

locally isotropic. However, a large body of evidence from both experiments and simulations

(see summary in e.g. Sreenivasan 1991, Warhaft 2000) indicates that departures from local

isotropy persists even for very large Rλ. One measure of anisotropy is given by the skewness

of scalar gradients fluctuations parallel to the imposed mean gradient (∇‖φ) which accord-

ing to local isotropy concepts (reflectional symmetry) should vanish. In figure 5.22 we show

this quantity (denoted by µ3(∇‖φ)) as a function of Reynolds number for Sc = 1/8, 1, 4

and 64. At the highest Reynolds number in our simulations there is a persistent anisotropy

consistent with the data of Warhaft (2000) for moderately diffusive scalars. At Sc = 64,

however, µ3 appears to decrease with Rλ but an asymptotic value at high Rλ cannot be

ruled out from our data. Due to the difficulty in studying high-Sc scalars in both experi-

ments and simulations, less is known about the Sc scaling of anisotropy. Yeung et al. (2002)

studied the Sc scaling of gradients at Rλ ≈ 38 and found that there is a systematic decrease

of µ3(∇‖φ) when Sc was varied from 1/4 for 64. The same trend was found in (Yeung et al.

2004) as Sc was increased up to 1024 at fixed Rλ ≈ 8. In figure 5.23(a) we show µ3(∇‖φ)

from our database at Rλ ≈ 8 (Yeung et al. 2004), 38 (Yeung et al. 2002) and new results at

Rλ ≈ 140. For all Reynolds numbers, the data suggest that the skewness decreases with Sc

although as already pointed out in Yeung et al. (2004) careful examination of the results
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in figure 5.23(a) reveals a Reynolds number dependence. In particular, it is seen that at

high Reynolds numbers, the skewness decreases faster with Sc. A power law dependence

of the form Sc−β is found to represent the data at high Schmidt numbers reasonably well

although more data at Rλ ≈ 140 is highly desirable. Nonetheless, best fits to the data in

figure 5.23(a) for Sc ≥ 4 result in exponents β ≈ 0.27, 0.39 and 0.43 for Rλ ≈ 8, 38 and

140 respectively which imply a faster return to isotropy with Sc in high Reynolds number

flows.

In figure 5.23(b) we show the flatness factor (µ4) of ∇‖φ for the same cases as in part

(a) in the figure. It was also found in Yeung et al. (2002, 2004) that scalar gradients become

more intermittent as Sc increases but reach an asymptotic value in the high-Sc limit. Data

from our recent simulations at Rλ ≈ 140 support this conclusion and show that both the

asymptotic value for the flatness and the Sc necessary to attain this high-Sc limit, depend

on Rλ. The asymptotic value of µ4(∇‖φ) is found to be about 10, 13 and 20 at Rλ ≈ 8,

38 and 140 respectively. The ratio between flatness factors of scalar gradients fluctuations

parallel and perpendicular to the mean scalar gradient is shown in figure 5.24. Local isotropy

requires µ4(∇‖φ)/µ4(∇⊥φ) = 1 which is seen to be a better approximation as Sc increases.

5.4 Summary, Discussion and Further Questions

In this Chapter we have investigated the Reynolds and Schmidt number scaling of passive

scalars in isotropic turbulence with an imposed mean scalar gradient. Using our DNS

database with a wide range of Rλ and Sc we first addressed the scaling of the spectrum

for scalar fluctuations. We found that at high Rλ (650), inertial-convective range scaling

(Obukhov 1949, Corrsin 1951) is clearly seen for Sc = 1/8 and 1. A bump in the spectrum

similar to the energy spectrum is observed for Sc = 1 which may be a transition to k−1

scaling. At high Schmidt number, our data supports Batchelor k−1 scaling for Rλ ≈ 8, 38

and recent simulations at 140 for which high-Sc data are available. In the viscous-diffusive
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range, Kraichnan’s form of the spectrum is a better approximation than Batchelor’s which

suggests that fluctuations in the strain rate are important in mixing at scales smaller than η.

It was further found that the normalized scalar spectrum according to Batchelor’s scales

(i.e. Eq. 5.3) appears to present some universal features for all Sc studied here (including

scalars with Sc < 1). This result, which was also observed in Bogucki et al. (1997), implies

that other mechanisms involving the strain rate may play an important role in turbulent

mixing as suggested by Gibson (1968), Gibson et al. (1988). The study of alternative

mechanisms leading to a unified treatment of scalars capable of explaining, for example, the

collapse of the spectrum seen in figure 5.5, is an important task for the future.

A basic premise of Kolmogorov (1941a) is that the mean dissipation rate becomes in-

dependent of molecular properties when Rλ is sufficiently high. The same assumption is

needed for the mean scalar dissipation rate when Kolmogorov’s ideas are extended to pas-

sive scalars. We investigated this phenomenon, known as dissipative anomaly, and found

limits in terms of Rλ and Sc at which the mean scalar dissipation can be considered in-

dependent of molecular properties, namely ν and D. Different analytic expressions were

derived depending on whether Sc > 1 or Sc < 1.

Intermittency for scalars at small scales was found to increase with both Rλ and with

Sc although for sufficiently high Sc, indicators of intermittency such as high-order moments

of gradients and the PDF of scalar dissipation approach an asymptotic state. New simu-

lations at Rλ ≈ 140 (20483) with Sc = 4 and 64 support previous claims about saturation

of intermittency and show that the asymptotic state is reached at lower Sc when Rλ is

high. Departures from anisotropy are also found to decrease with Schmidt number and the

Reynolds number effect was discussed. In particular, it is found that return to isotropy

with Sc is faster in high Reynolds number flows.

Some further comments about the results found above are in order. In terms of the
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scaling of scalar dissipation, the findings can be summarized as follows:

(a) The mean scalar dissipation rate 〈χ〉 reaches an asymptotic state at large Rλ and Sc.

The higher the Sc, the higher the Rλ needed to reach the asymptotic state (see e.g.

figure 5.16).

(b) For a fixed Rλ the PDF of χ presents wider tails as Sc is increased (i.e. intermittency

increases with Sc) but saturates (reaches an asymptotic state) at some Sc. This

asymptotic state seems to require a higher value of Sc when Rλ becomes small (see

e.g. Table 5.7 and figure 5.23b).

(c) Intermittency in the inertial-convective range measured by scaling exponents of mo-

ments of local averages of χ decreases with Sc.

Clearly the Sc at which the asymptotic state is reached scales differently with Rλ ac-

cording to (a) and (b). This suggests that the mechanisms determining low-order moments

(a) such as the mean value are different from those determining high-order moments (b). As

was seen in Section 5.2, the mean scalar dissipation is determined by large scales through

a classical “cascade” process in the high Rλ and Sc limit (dissipative anomaly). The pro-

cesses leading to intermittency, on the other hand, are not completely understood and may

be due to a direct interaction between large and small scales (see e.g. Warhaft 2000). For

example, the phenomenon of saturation of intermittency (b) may be explained as follows.

Large scalar gradients are formed when a scalar blob is in proximity to another blob with

very different concentration. This could be realized by large scales bringing these two blobs

together from large distances (e.g. its integral length scale Lφ so that their concentration

is very different) at a time scale much shorter than that needed by diffusion processes to

smooth out scalar differences. A diffusive time scale TD for a scalar moving a distance of

the order of Lφ, would scale as TD ∼ L2
φ/D. Large gradients will form if a flow time scale
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(e.g. Lφ/u′) is much shorter than this diffusive time scale, i.e. Lφ/u′ ≪ TD. Decreas-

ing diffusivity (increasing Sc) would not lead to stronger gradients since according to this

mechanism, the scalar gradient is determined by large scales bringing together two scalar

blobs. Using the definitions above, the condition for asymptotic state can be re-written as

Rλ
2Sc(Lφ/L) ≫ 1. However, in our simulations the ratio Lφ/L scales as Sc−α with α ≪ 1

(see figure 5.12). Therefore, we can ignore this variation and write

Rλ
2Sc ≫ 1 (5.38)

This condition should be met in order for the mechanism suggested above to generate large

gradients. If this is not met, for example for large D (low Sc), sharp fronts are smoothed out

by diffusivity and a reduction of intermittency is seen as Sc is decreased. To test Eq. 5.38

we observe that at Rλ ≈ 8 saturation of intermittency occurs at Sc ∼ 64 which implies

Rλ
2Sc ∼ O(5000). Meeting this condition at Rλ ≈ 38 would imply a Schmidt number of

about 78 which is not far from O(64) found from our DNS data. We stress that given the

crude approximations made in this analysis, condition Eq. 5.38 gives reasonable results. At

Rλ ≈ 140, according to this estimate, saturation would occur at Sc ∼ O(0.25) which cannot

be ruled out as a possibility using our DNS data. Simulations at the Reynolds numbers

presented in this work with both higher and lower Sc scalars would be desirable. This is

especially so for Rλ ≈ 140.

It is interesting that although small-scale intermittency, as measured by high-order

moments of χ, reaches an asymptotic state at high Sc (b), there is a decrease of intermittency

in the inertial-convective range (c). These results suggest that the trend (c) is not a result

of large fluctuations of χ being less likely but a change in its geometric distribution. In

particular, it may imply a more even distribution in space of high-dissipation structures at

scales between L and η. In figure 5.25 we show three-dimensional volume renders of scalar

dissipation rate at Rλ ≈ 140 on a 20483 grid for Sc = 4 and 64. Qualitatively, in addition
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to finer scales, we see that the large scale structure of regions of high χ, is more evenly

distributed in space at Sc = 64 consistent with smaller exponents νq. The characterization

of these structures (as done in Chapter 4 for energy dissipation and enstrophy) should help

clarify the role of these large scales in the scaling of intermittency with Sc. It would be

interesting in particular to address the role of large scales in the asymptotic state reached

in the high-Sc limit.
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Table 5.1: DNS data in our own simulations: including Yeung et al. 2002 for Rλ 8, Yeung
et al. 2004 for Rλ 38-240, and results at Rλ 390 and 650.

Rλ N u′ L 〈ǫ〉 ν Sc φ′ Lφ 〈χ〉
8 128 1.122 1.498 2.537 0.159 1 1.029 1.174 1.410

8 128 1.122 1.498 2.537 0.159 8 1.667 0.847 1.656

8 128 1.122 1.498 2.537 0.159 64 2.208 0.613 1.670

8 128 1.144 1.518 2.588 0.159 4 1.384 0.944 1.449

8 128 1.144 1.518 2.588 0.159 16 1.739 0.765 1.434

8 128 1.144 1.518 2.588 0.159 32 1.897 0.691 1.404

8 256 1.197 1.575 2.697 0.159 64 2.570 0.661 2.177

8 256 1.197 1.575 2.697 0.159 128 2.737 0.601 2.141

8 256 1.197 1.575 2.697 0.159 256 2.895 0.550 2.103

8 512 1.182 1.576 2.760 0.159 256 3.161 0.555 2.494

8 512 1.182 1.576 2.760 0.159 512 3.321 0.511 2.455

8 512 1.182 1.576 2.760 0.159 1024 3.471 0.473 2.416

38 64 1.625 1.077 2.822 0.025 0.25 1.029 0.935 2.106

38 64 1.625 1.077 2.822 0.025 0.5 1.197 0.838 2.285

38 64 1.625 1.077 2.822 0.025 1 1.355 0.751 2.397

38 256 1.589 1.007 2.802 0.025 0.25 1.108 0.994 2.240

38 256 1.589 1.007 2.802 0.025 1 1.433 0.801 2.500

38 256 1.589 1.007 2.802 0.025 4 1.716 0.649 2.568

38 256 1.584 1.064 2.665 0.025 4 1.758 0.628 2.720

38 256 1.584 1.064 2.665 0.025 8 1.893 0.566 2.724

38 256 1.584 1.064 2.665 0.025 16 2.024 0.511 2.723

38 512 1.645 1.214 2.787 0.025 16 2.145 0.530 2.969

38 512 1.645 1.214 2.787 0.025 32 2.271 0.483 2.935

38 512 1.645 1.214 2.787 0.025 64 2.391 0.443 2.903

90 128 1.295 1.366 0.763 0.006546 0.125 1.601 1.102 2.573

90 128 1.295 1.366 0.763 0.006546 0.25 1.750 1.003 2.694

90 128 1.295 1.366 0.763 0.006546 1 2.017 0.829 2.835

140 256 1.404 1.095 1.169 0.0028 0.125 1.263 0.924 1.875

140 256 1.404 1.095 1.169 0.0028 1 1.458 0.731 1.934

240 512 1.480 1.164 1.201 0.0011 0.125 1.807 0.955 3.235

240 512 1.480 1.164 1.201 0.0011 1 1.943 0.827 3.245

390 1024 1.534 1.254 1.302 0.000437 0.125 1.641 0.896 2.579

390 1024 1.534 1.254 1.302 0.000437 1 1.714 0.819 2.588
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Table 5.2: DNS data from Watanabe & Gotoh (2004).

Rλ N u′ L 〈ǫ〉 ν Sc φ′ Lφ 〈χ〉

258 512 1.077 1.180 0.507 0.0006 1 1.421 0.407 1.116

427 1024 1.146 1.180 0.591 0.00024 1 1.407 0.413 1.196
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Table 5.3: DNS data from Overholt & Pope (1996). The integral scalar length in their

paper is taken to be Lφ = 〈φ2〉1/2
/β, which is reproduced here.

Rλ N u′ L 〈ǫ〉 ν Sc φ′ Lφ 〈χ〉

28 32 0.902 1.260 0.519 0.025 0.7 1.424 1.424 1.539

52 64 2.497 1.091 8.703 0.025 0.7 1.476 1.477 4.136

84 128 6.266 0.965 132.300 0.025 0.7 1.421 1.421 9.856

84 128 6.187 0.970 126.500 0.025 0.7 1.375 1.375 9.012
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Table 5.4: DNS data from Wang et al. (1999).

Rλ N u′ L 〈ǫ〉 ν Sc φ′ Lφ 〈χ〉

132 256 0.676 1.072 0.179 0.001 0.7 0.766 0.752 0.345

68 256 0.256 1.049 0.014 0.001 0.7 0.141 0.883 0.004

100 128 0.857 1.530 0.201 0.004 1 1.090 0.956 0.419

151 256 0.855 1.514 0.177 0.002 1 1.090 0.937 0.440

195 512 0.874 1.412 0.246 0.001 1 1.100 0.918 0.501
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Table 5.5: DNS data from Bogucki et al. (1997).

Rλ N u′ L 〈ǫ〉 ν Sc φ′ Lφ 〈χ〉

36 162 0.450 1.310 0.047 0.01 3 0.905 0.711 0.160

36 162 0.450 1.310 0.047 0.01 5 0.984 0.506 0.190

36 162 0.450 1.310 0.047 0.01 7 1.001 0.648 0.160

74 240 0.560 1.090 0.080 0.0033 3 1.010 0.715 0.260

74 240 0.560 1.090 0.080 0.0033 5 1.060 0.650 0.260

74 240 0.560 1.090 0.080 0.0033 7 1.080 0.642 0.270
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Table 5.6: Experimental data. The scalar integral length scale in Mydlarski & Warhaft

(1998) is Lφ = 〈φ2〉1/2
/β, β being the mean gradient.

Source Rλ u′ L 〈ǫ〉 ν Sc φ′ Lφ 〈χ〉

MKOC 22 0.0529 0.0157 0.016 1.5 0.72 0.075 0.0142 0.0199

YV 35 0.0872 0.02 0.0456 1.55 0.725 0.2776 0.0184 0.308

WL 45 0.121 0 0.0951 1.65 0.73 0.0687 0 0.01298

45 0.121 0 0.0951 1.65 0.73 0.1105 0 0.0558

STHC 34 0.1 0.014 0.0856 1.5 0.71 0.0549 0.0116 0.0203

34 0.1 0.014 0.0856 1.5 0.71 0.135 0.0111 0.132

TC 128 0.4227 0.044 1.94 1.5 0.71 0.1091 0.031 0.128

147 0.4889 0.051 2.65 1.5 0.71 0.1158 0.038 0.154

160 0.5441 0.057 3.42 1.5 0.71 0.1249 0.0435 0.1773

SW 26 0.0432 0.02 0.00531 1.65 0.7 0.02963 0.0156 0.00222

36 0.08 0.02 0.0393 1.65 0.7 0.0576 0.0164 0.0176

MW 85 0.1249 0.056 0.0314 1.6 0.71 0.249 0.052 0.124

140 0.1703 0.11 0.0418 1.55 0.69 0.4195 0.17 0.277

247 0.3162 0.17 0.164 1.5 0.67 0.5797 0.16 0.581

306 0.3018 0.3 0.0833 1.6 0.71 0.8944 0.33 0.799

407 1.0198 0.16 6.13 1.6 0.71 0.2828 0.079 0.466

582 0.7635 0.43 0.94 1.6 0.71 1.0344 0.29 1.74

731 1.2 0.4 3.88 1.5 0.67 1.4318 0.28 4.96

AZX 30 0.0594 0.0212 0.018 1.5 0.7 0.061 0 0.01

51 0.1125 0.0465 0.117 1.5 0.7 0.076 0 0.03

62 0.1809 0.0372 0.4 1.5 0.7 0.061 0 0.032

78 0.2657 0.0349 1.412 1.5 0.7 0.044 0 0.026
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Table 5.7: Best fit coefficients for Eq. 5.35 for the range 1 < χ′ < 50. Scalars with an
asterisk (*) next to the resolution correspond to those with kmaxηB ≈ 1.5 in each simulation.

Rλ Sc N bχ cχ

8 1 128 0.43 0.74

8 8 128 0.53 0.58

8 64 128* 0.55 0.55

8 256 512 0.65 0.49

8 512 512 0.73 0.46

8 1024 512* 0.65 0.49

38 0.25 256 0.49 0.63

38 1 256 0.69 0.48

38 4 256* 0.77 0.44

38 4 256 0.74 0.44

38 8 256 0.85 0.40

38 16 256* 0.85 0.40

38 16 512 0.89 0.40

38 32 512 0.79 0.42

38 64 512* 0.70 0.45

140 0.125 256 0.72 0.46

140 1 256* 0.73 0.43

140 4 2048 1.24 0.29

140 64 2048* 1.17 0.30

240 0.125 512 0.98 0.35

240 1 512* 1.05 0.33

400 0.125 1024 1.39 0.27

400 1 1024* 1.07 0.31

680 0.125 2048 1.63 0.24

680 1 2048* 1.71 0.23
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Figure 5.1: Compensated scalar spectrum according to Obukhov-Corrsin scaling in 20483

DNS at Rλ ≈ 650 and Sc = 1/8 (triangles) and 1 (circles). The dashed line at 0.67 is to
compare with experiments of Sreenivasan 1996.
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Figure 5.2: Un-normalized 3D spectra for scalars at Rλ ≈ 8. E(k) (chain-dotted line),
Eφ(k) for Sc = 64, 128, 256 from 2563 simulation (solid lines), and Eφ(k) for Sc = 256,
512, 1024 from 5123 simulation (dashed lines). The dotted line shows slope -1 for reference.
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Figure 5.3: Energy spectrum normalized according to Kolmogorov (1941a). Lines A-
D corresponds to Rλ ≈ 8 (5123), 38 (5123), 140 (2563) and 650 (20483). Dashed line
corresponds to a Kolmogorov constant of 0.6.
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Figure 5.4: Un-normalized 3D spectrum for scalars at Rλ ≈ 140. Lines correspond to
Sc = 1/8 (A) and 1 (B) at 2563 and Sc = 4 (C) and 64 (D) at 20483. The dotted line shows
slope -1 for reference.
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Figure 5.5: Normalized spectrum according to Batchelor’s Eq. 5.3. Lines correspond to
Sc = 1/8 (A) and 1 (B) at Rλ ≈ 140 (2563); Sc = 1/8 (C) and 1 (D) at Rλ ≈ 650 (20483);
Sc = 16 (E) and 32 (F) at Rλ ≈ 38 (5123); Sc = 4 (G) and 64 (H) at Rλ ≈ 140 (20483);
Sc = 256 (I), 512 (J) and 1024 (K) at Rλ ≈ 8 (5123). Dash-dotted and dashed lines are
Batchelor’s (Eq. 5.4) and Kraichnan’s (Eq. 5.5) predictions with CB = 6. Dotted line with
slope −2/3 corresponds to k−5/3 under the present normalization.
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Figure 5.6: Normalized energy dissipation rate from the direct numerical simulations of
isotropic turbulence. Solid line represents Eq. 5.6 with A ≈ 0.2 and B ≈ 92.
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Figure 5.7: Scalar dissipation rate normalized with L/u′ for Sc = 1. Symbols: ©, present
data; �, Wang et al. (1999); H, Watanabe & Gotoh (2004). Dotted line: Eq. 5.10 as the
best fit for the present data. Dash-dotted line: theoretical prediction of Eq. 5.21, which
will be described in Section 5.2.2.2. Inset shows the present data using the normalization
of T instead of L/u′, as well as Eq. 5.21. While the asymptotic constancy holds for both
normalizations, the direction of approach of this constancy is different.
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Figure 5.8: Scalar dissipation rate normalized with L/u′. Symbols: ©, present data;
H, Watanabe & Gotoh (2004); �, Wang et al. (1999); ♦, Overholt & Pope (1996); △,
Mydlarski & Warhaft (1998); ⋆, Tavoularis & Corrsin (1981); ⊳, Sirivat & Warhaft (1983);
◭, Sreenivasan et al. (1980); ⊲, Yeh & Van Atta (1973); ◮, Warhaft & Lumley (1978); N,
Mills et al. (1958); +, Antonia et al. (2000); ▽, Bogucki et al. (1997). The relative sizes of
symbols of the same type illustrate the relative magnitudes of Sc.
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Figure 5.9: Scalar dissipation rate normalized with L/u′. Symbols as in figure 5.8.
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Figure 5.10: Scalar dissipation rate normalized with T = K/〈ǫ〉. Symbols as in figure 5.8.
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Figure 5.11: Scalar dissipation rate normalized with T = K/〈ǫ〉. Symbols as in figure 5.8.
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Figure 5.12: Ratio of integral length scales for present data. The relative size of the
symbol illustrates the relative magnitude of Rλ.
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Figure 5.13: High Schmidt number scaling for low and moderate Reynolds numbers.
Symbols as in figure 5.8. Dotted line: best fit for data with Sc ≥ 1. Dash-dotted: Eq. 5.17
with COC = 0.6 and CB = 5. Inset is an expanded view near the origin. As in figure 5.8,
the relative size of the symbol illustrates the relative magnitude of Sc.
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Figure 5.14: Low Schmidt number scaling. Symbols as in figure 5.8. Dotted line: best fit
for data with Sc < 1. Dash-dotted: Eq. 5.20 with COC = 0.6 and CB = 5.
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Figure 5.15: Scalar dissipation rate normalized by T ′ = L2/3/〈ǫ〉1/3. Symbols as in figure
5.8. The relative size of the symbol illustrate the relative magnitude of Sc. Dotted line:
the limit 2

3COC
predicted by Eq. 5.28 with COC = 0.6.
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Figure 5.16: Theoretical limits for asymptotic state. See text for explanation on different
lines. Symbols as in figure 5.8.
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Figure 5.17: Scalar dissipation rate normalized with τB and τη for all data. Dotted lines
are best fits. Symbols as in figure 5.8. The relative size of the symbols illustrate the relative
magnitude of Sc.
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Figure 5.18: PDF of scalar dissipation. (a) Sc = 1, lines A-F correspond to Rλ ≈ 8, 38,
140, 240, 400 and 650. (b) Rλ ≈ 140, lines A-D Sc = 1/8, 1, 4 and 64.
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Figure 5.19: Best fit coefficients bχ (a) and cχ (b) in Eq. 5.35 at Rλ ≈ 8 (©), 38 (△),
140 (�), 240, 400 and 650. (b) Rλ ≈ 140, lines A-D Sc = 1/8, 1, 4 and 64. Dashed line
corresponds to 1/3.
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Figure 5.20: Moments 〈χq
r〉/〈χ〉q as a function of r/η for scalars with Sc = 4 (©) and 64

(△) at Rλ ≈ 140. From bottom to top, curves correspond to q = 1 to 6. Dotted lines show
the scaling range used to obtain the exponents νq.
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Figure 5.21: The scaling exponents for χr defined in Eq. 5.37 at Rλ ≈ 140 with Sc =
1/8 (©), 1 (△), 4 (�) and 64 (♦). Dashed line: exponents for the energy dissipation rate.
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Figure 5.22: Skewness of scalar gradient fluctuations parallel to the imposed mean with
Sc = 1/8 (©), 1 (△), 4 (�) and 64 (♦). Data at Rλ ≥ 140 correspond to simulations at
kmaxη ≈ 1.5.
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Figure 5.23: Skewness (a) and flatness (b) factors of scalar gradients fluctuations parallel
to the imposed mean at Rλ ≈ 8 (©), 38 (△) and 140 (�).
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Figure 5.24: Ratio of flatness factors of scalar gradients fluctuations parallel and perpen-
dicular to the imposed mean at Rλ ≈ 8 (©), 38 (△) and 140 (�).
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Figure 5.25: Three-dimensional volume renders for scalar dissipation rate normalized by
its mean χ′ for Sc = 4 (top) and 64 (bottom) at Rλ ≈ 140 (20483). Courtesy of Amit
Chourasia of SDSC.
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CHAPTER VI

ROTATING TURBULENCE

In this Chapter we study the effect of solid-body rotation on the scaling of turbulence which

is found in many problems in engineering (e.g. turbomachinery, reciprocating engines with

swirl) geophysics and astrophysics. The effects of rotation on the turbulence structure,

through the Coriolis term in the equations or motion, are known to be profound although not

completely understood. It is known, for example, that although the Coriolis term does not

appear explicitly in the kinetic energy budget equation it weakens the fundamental property

of an energy cascade from large to small scales. Therefore, solid-body rotation modifies the

scaling of turbulence through a coupling with the nonlinear interactions responsible for this

transfer. The simplest flow in which the effects of rotation can be isolated and studied more

clearly is the case of initially isotropic turbulence subjected to solid-body rotation.

In the next Section we give some background on the subject and the additional numerical

constraints that have to be considered in simulations. In Section 6.1 we focus on the scaling

of anisotropies developed due to the introduction of rotation. For this purpose we look

at the behavior of integral length scales, the anisotropy tensor (and its components) and

component spectra. In Section 6.2 we study the effect of rotation on intermittency through

moments of velocity gradients and the basic scaling of structure functions. The fundamental

Taylor-Proudman theorem for rapidly rotating flow is investigated in Section 6.4 and we

found a more accurate representation of the observed behavior with an alternative version

of the theorem which is derived here. The theoretical results are used to study further

anisotropy and the scaling of structure functions. The conclusions and further issues are

discussed in Section 6.5.
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6.1 Background and Numerical Simulations

In general, rotation gives rise to both Coriolis and centrifugal accelerations. However, if the

equations of motion are written in a rotating frame of reference only the Coriolis acceleration

is important. The Navier-Stokes equations in a such a frame can be written as:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
− 2ǫijkΩjuk + ν

∂2ui

∂xj∂xj
+ fi, (6.1)

where ǫijk is the alternating symbol and the vector Ω is the imposed rotation rate. (Note

that in this Chapter the symbol Ω stands for rotation rate and should not to be confused

with enstrophy in previous Chapters.) The numerical scheme to solve Eq. 6.1 is based on

a diagonal form of the system of equations in Fourier space which makes use of additional

auxiliary variables and allows us to integrate both viscous and rotation terms exactly via

integrating factors. The details of the algorithm and its implementation can be found in

Yeung & Zhou (1998).

We note that by non-dimensionalizing the Navier-Stokes equations in a rotating frame

using U and L as velocity and length scales, we obtain two nondimensional parameters:

UL/ν which is a large-scale Reynolds number and U/(ΩL) which is known as the Rossby

number and is a measure of inertia (nonlinear) to Coriolis effects. We note that the Rossby

number can also be thought of as a ratio of the rotation time scale (1/Ω) to turbulence time

scales. If we use a characteristic time for large scales (e.g. K/〈ǫ〉 where K is the turbulent

kinetic energy) then RoT = 〈ǫ〉/(2KΩ) is known as the turbulence Rossby number. The

micro Rossby number, obtained by using Kolmogorov time scale τη = (ν/〈ǫ〉)1/2, is defined

as Roω = 1/(2τηΩ).

It is well known that rotation can only affect turbulence by nonlinear mechanisms (e.g.

Cambon et al. 1997, Jacquin et al. 1990). Several features are known for this flow:

• The spectral transfer from large scales to small scales is reduced as rotation rate Ω
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increases. This implies that the dissipation rate (at small scales) is reduced too (e.g.

Morinishi et al. 2001, Yeung & Zhou 1998, Jacquin et al. 1990).

• The energy spectrum shows a steeper slope than -5/3 (K41). Several spectral slopes

from -2 to -3 were proposed in the literature (Baroud et al. 2002, Zeman 1994, Zhou

1995, Mahalov & Zhou 1996, Cambon et al. 2004) although the available data from

experiments and simulations is not conclusive.

• Anisotropy develops through nonlinear interactions modified by rotation. One way

anisotropy is observed is by the faster growth of length scales along the axis of rota-

tion (e.g. Cambon et al. 1997, Yeung & Zhou 1998). Although the Reynolds stress

tensor bij remains almost isotropic there are still anisotropies that can be studied by

splitting bij = be
ij + bz

ij where be
ij is the directional anisotropy while bz

ij is known as the

polarization anisotropy (Yang & Domaradzki 2004). Anisotropy at small scales has

also been observed (Yeung & Zhou 1998) although these are less known.

• There is a reduction of intermittency as measured by moments of velocity gradients

especially aligned with the rotation axis (Yeung et al. 2003).

Due to the increase in integral length scales it is necessary to check whether the periodic

boundary conditions in our simulations modify the results substantially. For this purpose

we have performed simulations with similar initial conditions and several rotation rates on

the usual (2π)3 domain and a larger (4π)3 domain. In order to keep the same resolution at

small scales when the linear size of the domain is doubled the number of grid points (and

the computation power required) increase by a factor of eight. Typical results for integral

length scales defined as

Lαα,β =
1

〈uαuα〉

∫ ∞

0
〈uα(x)uα(x + reβ)〉dr, (6.2)
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are shown in figure 6.1. Transverse length scales along the axis of rotation (β = 3 in our

simulations) grow when rotation is imposed while transverse length scales perpendicular to

it do not undergo significant changes. It is seen that a small domain (i.e. (2π)3) indeed tend

to suppress the growth of integral scales (line A in figure 6.1). When a larger domain is used

(i.e. (4π)3), it is clear that integral scales grow further although they do not approach a value

twice as large as in the (2π)3 domain. At lower Rλ we found that increasing the domain

further did not lead to a substantial increase in integral scales and a (4π)3 was adopted.

Another advantage of a larger domain is that statistical variability is substantially reduced

since a larger domain allows better sampling of the large scales which contain most of the

turbulence kinetic energy.

An additional constraint in simulations of rapidly rotating flows is that the time step

∆t in the integration scheme should be small enough to capture fast fluctuations imposed

by rotation. We verified in our simulations that the wave Courant number Ω∆t is much

less than unity (see e.g. Bartello 2002, Yeung & Xu 2004).

We have performed simulations of turbulence in a rotating frame with initial conditions

being stationary, isotropic turbulence at Rλ ≈ 240 aimed at extending previous results

(Yeung & Zhou 1998) and understanding the observations mentioned above. The rotation

vector in our simulations is defined as Ω = (0, 0, Ω) and such that the initial Rossby numbers

(at the time rotation is introduced) are Roω = 4, 1 and 1/4.

The energy and dissipation rates provide important information about global measures

of the state of the turbulence. In figure 6.2 we show the evolution of these quantities

for all rotation rates in our simulations. When rotation is imposed there is no noticeable

decrease in turbulent kinetic energy. On the other hand, the energy dissipation rate drops

significantly as is seen in figure 6.2(b). The higher the rotation rate, the larger the decrease

in 〈ǫ〉. This observation is consistent with a reduced spectral transfer and with previous
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results (Yeung & Zhou 1998).

6.2 Characterization of Anisotropy

To characterize anisotropy at large scales, integral length scales have been used extensively.

In figure 6.3 we show transverse integral scales along and perpendicular to the the axis of

rotation. In isotropic turbulence all six transverse components (see Eq. 6.2) are statistically

identical. A comparison between length scales along the axis of rotation (part (a) in the

figure) and perpendicular to it (part (b)) shows departures from isotropy at all Roω. How-

ever, we see that anisotropy is strongest at intermediate rotation rates (Roω = 1) consistent

with the results in Bartello et al. (1994) and Yang & Domaradzki (2004). Jacquin et al.

(1990) suggested three different regimes in terms of Rossby numbers. If RoT is large then

the rotation time scale is larger than all turbulent time scales and the effects of rotation are

very weak. At intermediate rotation rates (RoT > 1 but Roω < 1) the rotation modifies the

nonlinear interactions while at very large rotation rates (Roω small) the nonlinear terms are

completely damped. Therefore, it is at intermediate scales that rotation has the strongest

effects on the structure of the turbulence. Thus, the nonlinear interactions modified by

rotation seem to trigger the anisotropy at large scales.

As mentioned in Section 6.1, although the anisotropy tensor bij remains isotropic, it is

known that anisotropies develop at all scales. To characterize them it is useful to divide

the anisotropy tensor into different parts as follows. The second-order spectral tensor Ûij

is defined as

〈û∗
i (p, t)ûj(k, t)〉 = Ûijδ(k − p) (6.3)

and is related to the Reynolds stress tensor according to

Rij = 〈uiuj〉 =

∫

ℜ[Ûij(k)]dk (6.4)

where ℜ[. . . ] denotes the real part. It is now convenient to express the velocity field in the
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so-called Craya-Herring frame which is an orthonormal basis attached to the wavenumber

vector k (Craya 1958, Herring 1974). Due to incompressibility the velocity lies in a plane

perpendicular to k whose local frame may be defined as

e(1)(k) =
k × Ω

|k × Ω| , e(2)(k) =
k × e(1)

|k × e(1)| . (6.5)

With the additional introduction of the eigenvectors of the curl operator (Cambon & Jacquin

1989)

Ni(sk) = e
(2)
i (k) − ise

(1)
i (k), s = +1,−1 (6.6)

the real part of the second-order spectral tensor Eq. 6.3 becomes

ℜ[Ûij ] =
E(k)

4πk2
Pij +

(

e(k) − E(k)

4πk2

)

Pij + ℜ[ZNiNj ], (6.7)

where e(k) is the energy in a single mode k, E(k) is the usual three-dimensional spectrum

so that E(k)/4πk2 gives the average energy per mode in the shell of radius k = |k| and

Pij = δij − kikj/k2 is the solenoidal projection tensor. The vectors Ni are the orthogonal

basis and Z = Ûij(k, t)Ni(−k)Nj(−k)/2 is called the complex deviator. More details about

this representation can be found in Cambon et al. (1997), Cambon & Jacquin (1989) and

Herring (1974). Because the first term on the right-hand side characterizes a pure three-

dimensional isotropic state the other two terms represent departures from it. The Reynolds

stress tensor can be obtained by integrating Eq. 6.7 in wavenumber space according to

Eq. 6.4

〈uiuj〉 = q2 δij

3
+

∫
(

e(k) − E(k)

4πk2

)

Pijdk +

∫

ℜ[ZNiNj ]dk, (6.8)

from which it is trivial to obtain the anisotropy tensor bij = 〈uiuj〉/q2 − δij/3

bij =

∫
(

e(k) − E(k)

4πk2

)

Pijdk +

∫

ℜ[ZNiNj ]dk (6.9)

= be
ij + bz

ij . (6.10)
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The first term be
ij characterizes directional anisotropy as it is non trivial only if the spectrum

depends on both magnitude and direction of the wavenumber vector. It measures the

departure from a shell-averaged spectrum. The second term, bz
ij , denotes the departure

from a tensorial isotropic distribution on the plane perpendicular to the wavenumber vector

and is called polarization anisotropy (Cambon & Jacquin 1989). It is also important to note

that the information contained in be
ij and bz

ij is analogous to the descriptors suggested by

Kassinos & Reynolds (1994) in that they give information about both the componentiality

and the dimensionality of the flow (Mansour et al. 1991b, Morinishi et al. 2001).

The evolution of be
33 is shown in figure 6.4(a) (in an axisymmetric situation b11 and b22

are equal to −b33/2). We can see that the greatest anisotropy appears at an intermediate

rotation rate Roω = 1 (line B) which is consistent with the strongest anisotropy seen from

integral length scales. The increase in be
33 is related to the anisotropic distribution of energy

in wavenumber space. In particular, the positive value is consistent with a concentration of

energy in the equator, i.e. small k3 (Morinishi et al. 2001). The polarization anisotropy is

shown in figure 6.4(b). It becomes negative and the sum be
33 + bz

33 is close to zero as seen in

part (c) of the figure. The rapid oscillations in bz
33 occur in time scales of order O(1/Ω) and

are essentially due to the linear phase-scrambling effects (Mansour et al. 1991b) of rotation

which were also observed in Yeung & Zhou (1998) and Yang & Domaradzki (2004). We

can also see that the data does not support a trend towards a pure two-dimensional, two-

component state (2D-2C) which is characterized by b33 = −1/3, be
33 = 1/6 and bz

33 = −1/2.

It cannot be ruled out, however, that at asymptotically long times these values could be

reached. However, due to the increase in integral length scales the effect of the domain

size should be addressed if contamination from the imposed boundary conditions are to be

avoided. For reference, we mention that the values corresponding to a pure two-dimensional

three-component state (2D-3C) are b33 = be
33 = 1/6 and bz

33 = 0.
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To study anisotropic features at all scales it is useful to look at the spectra of different

velocity components which are shown in figure 6.5 for different rotation rates at t/TE,0 ≈ 4.5.

In isotropic turbulence, the three component spectra are equal and show a k−5/3 inertial

range seen as a plateau in figure 6.5(a). When rotation is introduced K41 phenomenology

has to be modified due to the additional length and time scales in the spectral process. At

low rotation rates (part (b)) the spectral slope is not very different from the non-rotating

case altough apparent departures from isotropy are seen at intermediate scales where we

see more energy in u3 than in the components perpendicular to Ω. This behavior can

be explained by a stronger reduction of energy transfer to components perpendicular to

the axis of rotation (Yeung & Zhou 1998). We also note, however, that at the lowest

wavenumbers the three component spectra are very close to each other consistent with an

isotropic Reynolds stress tensor. In the figure we include kΩ ≡ (Ω3/〈ǫ〉)1/2 below which,

according to Zeman (1994), the effects of rotation are important. Note that for intermediate

rotations (parts (b) and (c)) only part of the spectrum is affected whereas for strong rotation

(part (d)) all the spectrum is affected (kΩ > 103 and is not seen). At intermediate rotation

rates (Roω = 1) our data may be consistent with a (narrow) k−2 scaling as suggested by

Zhou (1995). The same behavior was observed for the three-dimensional spectrum (not

shown). This is consistent with previous results at lower Rλ from Yeung & Zhou (1998). At

high rotation rates (Roω = 1/4) the spectra evolves to a k−3 scaling as seen in figure 6.5(d).

This scaling, which holds better for components perpendicular to Ω, appears over a wider

range of scales than the k−2 at a higher Rossby number. The transition between k−2 and

k−3 was also observed in Yang & Domaradzki (2004). Although more elaborated derivations

exist (see e.g. Cambon et al. 2004) a k−3 spectrum can be derived by dimensional analysis if

we assume that, for a range of scales, Ω and k are the only relevant parameters. Comparison

of spectra at different rotation rates suggest that anisotropy is strongest at intermediate
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rotation rates (Roω = 1) and intermediate scales.

6.3 Intermittency and Structure

In previous simulations at a lower Reynolds number on a smaller domain, Yeung et al.

(2003) found that as Ω is increased, intermittency is reduced and velocity gradients become

less non-Gaussian. The results presented here support these conclusions at earlier times

as shown in Table 6.1. Initially (isotropic turbulence) the skewness and flatness factors of

longitudinal velocity gradients are known to have the values µ3 ≈ −0.55 and µ4 ≈ 6.81.

For low rotation rate (Roω = 4) there is no significant change in either µ3 or µ4. However,

at high rotation rates we see that at early times µ3 is close to zero and µ4 to 3 (which are

Gaussian values). The monotonic trend with Roω suggests that the reduced non-Gaussianity

is related to the damping of the nonlinear terms as opposed to the interaction of rotation

with the dynamics of the nonlinear transfer. The observed reduced spectral transfer (also

monotonic with Roω; see e.g. figure 6.2) indicates that, as rotation increases, the spectral

peak for velocity gradients would move to lower wavenumbers where the forcing (with

Gaussian statistics) has more influence. At later times both skewness and flatness factors

increase. It is not clear whether they will reach the same stationary state values before

rotation is introduced. Longer simulations have to be conducted although integral length

scales can grow to unacceptable levels. For gradients along the axis of rotation the same

drop in µ3 and µ4 was observed at early times although they seem to return to Gaussian

values later. In order to obtain better statistics ensemble averaging is desired. However, due

to the non-stationary nature of this flow this would require performing several simulations.

Intermittency is also commonly studied through structure functions (e.g. Monin & Ya-

glom 1975, Frisch 1995). If a scaling range exists, the exponents give useful information

about the structure of the flow. In the case of rotating turbulence we have to distinguish

between the direction along the axis of rotation (x3) and perpendicular to it. In figure 6.6
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we show the longitudinal structure function 〈(∆r3u3)
n〉/(〈ǫ〉r3)

n/3 (where r3 is a separation

in the x3 direction) for n = 2, 3, 6 and 8 at t/TE,0 ≈ 4.0. By careful examination of the

third order function with no rotation, we delimited the inertial range in which power laws

are to be sought. This range is indicated by the dashed vertical lines in figure 6.6. For

small distances, an analytic range is seen in the figure, for all rotation rates, as the struc-

ture functions approach r2n/3 (dashed-dotted lines). It is clear from figure 6.6(a) that the

local slope of second order structure functions in the scaling range increases monotonically

with Ω. The third order structure function, on the other hand, shows a decrease in its

normalized value at all scales. In addition, the scaling range (plateau) is reduced and it

changes signs at a smaller scale. As in Simand et al. (2000) and Morize et al. (2005) this

can be interpreted as a reduction of spectral transfer and even inversion for scales larger

than the zero-crossing of 〈(∆r3u3)
n〉. A scaling range is not clear and no power law can be

extracted unambiguously. The sixth and eighth order structure functions (figure 6.6c and

d) show an interesting feature which could not be seen in lower order moments. For inter-

mediate rotation rates, the data suggest the existence two scaling ranges. At small scales

9 . r/η . 30 structure functions approach a plateau consistent with K41 phenomenology.

At larger scales (30 . r/η . 300), however, the slope increases with rotation. This range

of scales coincides roughly with the inertial range for the non-rotating case (vertical dashed

lines). For reference, the figure also includes the scale rΩ ≈ 2π/kΩ for each rotation rate

(except for Ω = 0) as solid symbols. For Roω = 4 and 1, the sixth and eighth order struc-

ture functions are close to the non-rotating case for r < rΩ whereas for r > rΩ structure

functions deviate from the non-rotating case and exhibit the two scaling ranges mentioned

above. Therefore, the scale rΩ obtained from the wavenumber kΩ suggested by Zeman

(1994), appears to be a good indicator of influence of rotation in physical space. At strong

rotation rates (Roω = 1/4), all scales in our simulations are affected and no evidence of two
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different scalings was found.

In figure 6.7 we show the scaling exponents obtained by fitting a power law of the form

rζn in the “inertial range” delimited by the dashed lines in figure 6.6. As is well known,

the non-rotating case (circles) shows anomalous scaling, i.e. ζn < n/3. It is clear that

as the Rossby number decreases, the exponents increase monotonically. At the strongest

rotation the scaling exponents are not far from p/2 which was also observed in Baroud

et al. (2002) and Simand et al. (2000). The linear dependence of the exponents ζn with

n, yet anomalous (i.e. different from n/3), suggests a self-similar behavior of the flow

(Frisch 1995). It is important to note that this self-similar behavior appears only at scales

larger than some intermediate scale (within the “inertial range”). Below this length scale,

structure functions may still scale according to K41. A wider range of scales (i.e. higher

Reynolds number) is necessary to address this claim more conclusively. We note that for

isotropic turbulence, ζn = n/2 would imply a three-dimensional spectral slope of -2 (e.g.

Monin & Yaglom 1975). However, in a strongly anisotropic situation such as the present,

different scaling exponents in different directions may combine to give a different spectral

slope and have to be interpreted carefully (Cambon et al. 2004).

To characterize the internal structure of turbulent flows, many studies have investigated

the preferential alignments of different vectors which are known to be unrelated for Gaussian

fields (see e.g. Tsinober 1998). It is well-known, for example, that in isotropic turbulence

vorticity tends to align with the eigenvector associated with the middle eigenvalue of the

strain-rate tensor (e.g. Ashurst et al. 1987, Tsinober et al. 1992). In figure 6.8 (left panels)

we show, for different rotation rates, the PDF of the cosine of the angle between ω and

Λ2, the eigenvector associated with the middle eigenvalue λ2. Lines A in the figures are for

t/TE,0 = 0 which are the same for all Roω and correspond to the non-rotating (isotropic)

initial conditions. As already mentioned, initially there is a strong alignment between
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vorticity and the middle eigenvector showing strong departures from Gaussianity (horizontal

dashed line). For low rotation rates (Roω = 4), the effect of the Coriolis force on this

alignment is negligible. When a stronger rotation is imposed (Roω = 1), we see that there

is a fast reduction of non-Gaussianity at earlier times followed by a return to a state of

preferential alignment. At later times (line E), the alignment is even stronger than in the

non-rotating case. For the case with strongest rotation (Roω = 1/4), the reduction of non-

Gaussian features is more pronounced but the return to a preferential alignment is apparent.

Longer simulations are needed to address the asymptotic state of the PDF of cos(ω,Λ2).

The generation of enstrophy is known to be related to the process of vortex stretching

which appears as a source term in the evolution equation for enstrophy. This term, which

can be written as ωiWi (with Wi = ωjsij being the vortex stretching vector), shows that

the production of enstrophy depends on both the magnitude of the vectors (ω and W) and

their relative alignment. Moreover, the observed strong tendency to be parallel (as opposed

to anti-parallel) shows the predominance of enstrophy generation (as opposed to enstrophy

destruction). In figure 6.8 (right panels) we show the PDF of the angle between vorticity

and the vortex stretching vector. For low rotation rates, we see again a weak effect on this

alignment. For high rotation rates, we see a fast departure from the preferential alignment

in non-rotating turbulence (line A) and a trend towards reduction of non-Gaussianity (the

dashed line shows the PDF for strictly Gaussian fields as derived in Shtilman et al. 1993).

It is seen that the alignment between ω and W approaches an asymptotic state in a short

time scale whereas the alignment between ω and Λ2 continues to evolve for the entire lentgh

of the simulation. It is also noted that cos(ω,W) seems closer to the Gaussian prediction

than cos(ω,Λ2). Because the PDFs for Gaussian fields are symmetric, it is clear that the

mean value is zero. For example, cos(ω,W) which can also be thought of as the normalized

enstrophy production ωiWi/(|ω||W|), vanishes in that case. Our results at Roω = 1/4
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show that in fact strong rotation symmetrizes the PDF of cos(ω,W) reducing enstrophy

generation. This result is consistent with the reduced spectral transfer to small scales.

6.4 Theoretical Considerations

6.4.1 A Local Taylor-Proudman Theorem

An important theorem for rapidly rotating flows is the Taylor-Proudman theorem which

was originally obtained by neglecting the unsteady, nonlinear and viscous terms and taking

the curl of the Navier-Stokes equations in a rotating frame of reference. The result is (see

e.g. Greenspan 1968)

(Ω · ∇)u = 0 (6.11)

which simply says that there is no variation in the velocity (all components) along the

axis of rotation. That is to say, a two dimensional state. Although some two dimensional

patterns were observed in turbulent flows no clear demonstration of a Taylor-Proudman

theorem was found.

Using our DNS we compare the relative weight of the terms in Eq. 6.1 in figure 6.9

where we show the variance of the different contributions at different rotation rates and for

different components of the velocity. For the non-rotating case (part (a) in the figure), we

see that the local acceleration and the non-linear terms are the largest although the pressure

gradients are of the same order of magnitude. The viscous terms are small and, as is well-

known, their contribution decreases with Reynolds numbers. The forcing contribution in

Eq. 6.1 (not shown) is found to be smaller than the all the other terms. Figures 6.9(b)

and (c) show the contributions to the equations for u1 and u3 respectively for the strongest

rotation available (Roω = 1/4). The dominant terms in the equation for u1 are the rotation

term, pressure gradient and local acceleration. It is clear that at this low Rossby number

the non-linear terms are more than an order of magnitude smaller than e.g. rotation terms.

The viscous terms are three orders of magnitude smaller. Since the equation for the velocity
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component along the axis of rotation does not have an explicit contribution from the Coriolis

term, the local acceleration is balanced by pressure gradients as is seen in figure 6.9(c). As

expected, the unsteady term cannot be neglected in a turbulent flow which was a crucial

step to obtain Eq. 6.11. Keeping the three dominant terms in Eq. 6.1 and taking the curl

leads to

∂ω

∂t
≈ 2(Ω · ∇)u (6.12)

which, using our choice Ω = (0, 0, Ω), becomes

∂ωp

∂t
≈ 2Ω

∂up

∂x3
. (6.13)

It is clear that regions of small velocity gradients will be those with slow time variation of

vorticity. To examine this we computed the conditional expectation 〈u3,3|ω3,t〉 normalized

by their standard deviations. (For simplicity in notation, the argument after the comma in

subscripts denote differentiation with respect to that argument. For example, u3,3 denotes

∂u3/∂x3 and ω3,t denotes ∂ω3/∂t.) If Eq. 6.13 is a good approximation then we would find

a linear dependence of this quantity with the conditioning variable. In figure 6.10(a) we

show this conditional expectation at late times (t/TE,0 ≈ 4.5) for all rotation rates at an

initial Rλ ≈ 240. For non-rotating turbulence (line A) the conditional mean is far from

the prediction given by Eq. 6.13 since the non-linear terms in the Navier-Stokes equations

cannot be neglected. However, it is clear that as rotation increases, Eq. 6.13 becomes a

better approximation for a wider range of fluctuations. At Roω = 1/4 (line D), this range

extends to about ±2 standard deviations. Therefore, in order to have two-dimensional

features (i.e. small gradients along the axis of rotation) in addition to low Rossby numbers,

the quantity ω3,t should be small. At intermediate rotation rates, the contribution from

the other terms in Eq. 6.1 are not negligible although for very small values of ω3,t the

linear relation Eq. 6.13 may still be a good approximation. In figure 6.10(b) we show the

same quantity for even lower Rossby numbers (stronger rotation) at a lower initial Reynolds
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number. At the strongest rotation (line C) Eq. 6.13 is in excellent agreement with the data.

The results presented so far suggest a monotonic trend with Roω to a state governed by

Eq. 6.13.

A natural question now is regarding the volume occupied by regions where ω3,t is small.

To study this we show in figure 6.11(a) the PDF of ω3,t/σω3,t (with σω3,t the standard

deviation of ω3,t) at t/TE,0 ≈ 4.5. We can see that it presents wider tails at intermediate

rotation rates although the effect is weak. In part (b) of the figure, we show the same

PDF but using linear scales. At intermediate rotation rates (Roω = 4) the distribution

shows an increased probability of small values compared to the standard deviation. For the

strongest rotation, the core does not show the same narrow peak and values of order of the

standard deviation are even more likely than the non-rotating case. However, the results

discussed above were normalized by the instantaneous standard deviation which is different

at different rotations. To further compare the effects of the introduction of rotation with its

initial (isotropic) state, in figure 6.11(c) and (d) we show the PDF of ω3,t/σ
(t=0)
ω3,t where σ

(t=0)
ω3,t

is the standard deviation at the beginning of the simulation (which is the same for all cases).

We can see now that in terms of the initial distribution of ω3,t, large values become less likely

as rotation increases. In figure 6.11(d) we can also see that regions with very small time

variation of vorticity compared to the initial standard deviation are larger for intermediate

rotation rates (Roω = 1). Under both normalizations, our results suggest a non-monotonic

trend with Roω: small values of ω3,t occupy larger volumes at intermediate rotation rates.

Therefore, although Eq. 6.13 becomes a better approximation at small Rossby numbers,

it is at intermediate values of rotation at which larger regions of space contain small ω3,t.

Note however, that for our data at all rotation rates, |ω3,t|/σω3,t is smaller than 2 (which

limits the range where Eq. 6.13 is a good approximation; see figure 6.10(a)) over more than

95% of the space.
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A consequence of the results above is that there is no trend towards a Taylor-Proudman

state (i.e. Eq. 6.11). However, it is still possible to look for those regions in space where

it does hold, that is a local Taylor-Proudman theorem. The topology of ω3,t for late times

is shown in figure 6.12 for our Rλ ≈ 240 (10243) simulation. Non-rotating turbulence (top

on the figure) shows a wide range of scales where regions of large and small values of |ω3,t|

are evenly distributed in space. There is no difference between planes parallel (left) and

perpendicular (right) to the axis of rotation. As rotation rate increases, the data shows

the disappearance of fine structures monotonically with Roω which is consistent with a

reduced spectral transfer. However, we also see that the difference between planes parallel

and perpendicular to the axis of rotation is more pronounced at intermediate rotation rates

(Roω = 1). At this Rossby number, long structures along the axis of rotation are apparent,

consistent with increased integral length scales in that direction. Long structures aligned

with Ω were also observed (not show here) for the energy dissipation rate (Donzis et al.

2004). At the highest rotation rate in figure 6.12 we can see extended uniform regions with

ω3,t/σω3,t ∼ O(1) delimited by very low values of ω3,t arranged in thin but long regions.

It is useful also to study the statistics of the right hand side of Eq. 6.13. In figure 6.13

we show the PDF of velocity gradients in different directions. The non-rotating case (line

A) shows the known result that the PDF of transverse gradients (part (b)) exhibit longer

tails than longitudinal gradients (part (a)). Longitudinal gradients along the axis of rotation

(i.e. u3,3) show a strong Rossby-number dependence with wider tails at intermediate rotation

rates (Roω = 1). For stronger rotation rates (Roω = 1/4), we see that the PDF of u3,3 is

not far from Gaussian (included in the figure as a dashed line). The PDF of the transverse

gradient u3,1 on the other hand, shows almost no dependence on Roω rate maintaining

strong departures from Gaussianity at all rotation rates.
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6.4.2 A Proposed Mechanism for Mixing at Low Rossby Numbers

The modified Taylor-Proudman theorem (Eq. 6.13) suggests a mechanism for the observed

fact that properties are more uniform along Ω as discussed above (the same was observed for

passive scalars in Yeung & Xu 2004). If we write the equation for a component perpendicular

to the axis of rotation (e.g. x1) we obtain:

∂ω1

∂t
≈ 2Ω

∂u1

∂x3
. (6.14)

which simply says that a gradient of u1 along x3 will be accompanied by an increase in

vorticity in x1. This would clearly tend to mix the zones of different velocities that originally

generated vorticity making properties more uniform along the axis of rotation. The rate at

which this process happens clearly scales with ∼ 1/Ω. We can also see that the equation

for ω3

∂ω3

∂t
≈ 2Ω

∂u3

∂x3
. (6.15)

offers a different mechanism since the gradients ∂u3/∂x3 do not decrease by an increase

in ω3. However, large scale vortices aligned with Ω can be formed in regions with large

longitudinal velocity gradients along x3. These structures can indeed be seen on the left

panels in figure 6.12 for intermediate and strong rotations. The different nature of this

mechanism in different directions would clearly generate the kind of anisotropy observed

from our DNS data. We emphasize that at the highest rotation in the present simulation,

Eq. 6.13, which governs this process, is a good approximation in more than 95% of the

domain.

A more quantitative analysis can be done due to the linear nature of Eq. 6.13. If a

stable solution is perturbed with fluctuations of the form

ui = u∗
i e

ιsteιk·x (6.16)
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where u∗
i is the amplitude of the perturbation and the sign of the exponent s determines

whether a perturbation would grow, Eq. 6.14 can be written as

ιs(k2u
∗
3 − k2u

∗
3) = 2Ωu∗

1k3. (6.17)

Solving for ιs we obtain

ιs =
2Ωu∗

1

(k2/k3)u∗
3 − u∗

2

. (6.18)

It is clear from Eq. 6.16 that linearly unstable modes are those with ιs > 0 which according

to Eq. 6.18 implies

k3 < (u∗
3/u∗

2)k2 (6.19)

However, if the perturbation amplitude is assumed the same for all components (i.e. u∗
1 =

u∗
2 = u∗

3), then the most unstable modes are those with k3 ∼ k2 (but still k3 < k2). The same

linear stability analysis applied to Eq. 6.13 for p = 2 and 3, results in k3 ∼ k1 (k3 > k1) and

k1 ∼ k2 (k1 > k2) respectively being the most unstable modes. It is seen that the modified

Taylor-Proudman theorem in Eq. 6.13 suggests that perturbations of the form Eq. 6.16

with comparable wavenumbers will grow in the three directions. Therefore, for very strong

rotations (in which case Eq. 6.13 is a better approximation), linear perturbations of the

type in Eq. 6.16 do not appear to have any preferential direction. This is in agreement with

results in previous Sections in that the strongest anisotropies are found at intermediate

rotation rates and decrease as Ω is increased.

6.4.3 Refined Similarity Hypothesis at Low Rossby Numbers

In Section 6.3 we investigated the scaling of structure functions to obtain more information

about the behavior of the flow. We now would like to use Eq. 6.13 to help understand those

results. Note that one can integrate Eq. 6.13 along x3 from say x
(0)
3 to x

(0)
3 + r. The result

is

r3
∂(ωp)r3

∂t
≈ 2Ω(∆r3up) (6.20)
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where

(ωp)r3 =
1

r3

∫ x
(0)
3 +r3

x
(0)
3

ωp dr′3 (6.21)

is a one-dimensional local average and ∆r3up is a structure function, both along the axis of

rotation (x3). We can now take the n-th power and ensemble average to obtain:

〈(∆r3up)
n〉 ≈ 1

(2Ω)n

〈

(ω̇p)
n
r3

〉

rn
3 (6.22)

where, for simplicity, ω̇p stands for ∂ωp/∂t. It is interesting to compare this result to the

refined similarity hypothesis of Kolmogorov (1962) for isotropic turbulence:

〈(∆ru)n〉 = Cn〈ǫn/3
r 〉rn/3. (6.23)

We first note that although Eq. 6.22 is only valid for structure functions along the axis

of rotation they can be both longitudinal and transverse. Second, Eq. 6.22 was derived

from the Navier-Stokes equations as opposed to Eq. 6.23. The only known result from

the Navier-Stokes equations for isotropic turbulence is the third-order longitudinal struc-

ture function which scales linearly with r and for which the proportionality coefficient is

known (Kolmogorov 1941a, see Eq. 4.1). However, high order moments depart from results

following this reasoning and Eq. 6.23 was proposed instead although it cannot be derived

strictly from the governing equations and the prefactors Cn are not known a priori. For

rotating turbulence, on the other hand, all the coefficients are known and velocity differ-

ences are seen to depend on the (one dimensional) local average of the time variation of

vorticity instead of dissipation. For isotropic turbulence, Chen et al. (1997b) proposed a

refined similarity hypothesis for transverse structure functions which differ from longitudi-

nal ones in that they scale with local averages of enstrophy instead of dissipation. Both

longitudinal and transverse structure functions under strong solid-body rotation, however,

scale with vorticity along the axis of rotation. Is it clear that, as in Kolmogorov (1962),
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expression 6.22 connects small scale activity (through ω̇p) with the dynamics at other scales

(through ∆r3up).

As discussed in Section 6.3, there is a range of scales for which the scaling exponents are

approximately ζn = n/2 (see figure 6.7) consistent with Baroud et al. (2002) and Simand

et al. (2000). This would imply according to Eq. 6.22 that 〈(ω̇p)
n
r3
〉 ∼ r

−n/2
3 . We also

found that there is range of scales (for scales smaller than those in which we observe ζn =

n/2) in which the scaling predicted by K41 (i.e. ζn = n/3) may hold for intermediate

rotation rates (see again figure 6.7 and the text). In that range Eq. 6.22 implies 〈(ω̇p)
n
r3
〉 ∼

r
−2n/3
3 . The computation of both sides of Eq. 6.22 would be very useful to test the refined

similarity hypothesis for strongly rotating flows proposed here. Also, simulations at higher

Reynolds numbers are highly desirable to obtain wider scaling ranges and address more

unambiguously scaling exponents.

6.5 Conclusions, Discussion and Future Issues

In this Chapter we have investigated the scaling of initially isotropic turbulence subject to

solid-body rotation which is important in engineering, geophysics and astrophysics. Two

further constrains appear in simulations when the equations are solved in a rotating frame.

First, integral length scales grow along the axis of rotation and contamination from periodic

boundary conditions may be of some concern. To investigate this, simulations on larger

than usual domain sizes were performed. It was found that the size of the box was indeed

constraining the growth of integral length scales. Doubling the linear size of the domain

requires the use of twice as many grid points in each direction to keep the same resolution

at small scales, increasing the computational costs by a factor of eight. A domain of size

(4π)3 instead of the usual (2π)3 was found satisfactory. The second constraint is that for

strong rotation rates, the time step should be small enough as to capture fast fluctuations

due to the imposed rotation.
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We have performed simulations at 10243 resolution on larger than usual domains (i.e.

(4π)3) of initially isotropic turbulence at Rλ ≈ 240 and Roω = ∞ (no rotation), 4, 1 and

1/4. Integral length scales along the axis of rotation are larger than those perpendicular

to it indicating stronger correlation in that direction. The strongest anisotropy appears at

intermediate rotation rates (Roω = 1). To further characterize anisotropy we have computed

the anisotropy tensor bij and its components be
ij and bz

ij to evaluate the so-called directional

and polarization anisotropy. Although the Reynolds stress tensor remains isotropic, that

is bij = 0, the components be
ij and bz

ij both depart from zero when rotation is introduced.

Larger values of be
ij are found at Roω = 1. Since the initial Reynolds number is high enough

to display a (narrow) inertial range, velocity component spectra display a k−5/3 scaling

at t/TE,0 = 0. When rotation is introduced, energy content in the velocity component

parallel to Ω is larger than in the plane perpendicular to it at all scales. The difference

appears to be greatest at intermediate scales and at Roω = 1 and is consistent with reduced

spectral transfer to velocity components perpendicular to Ω. Since, following Jacquin et al.

(1990), rotation modifies the nonlinear interactions (the so-called coupling effect) only at

intermediate rotation rates, our results suggest that this coupling is responsible for the

anisotropies observed at all scales.

Intermittency was also found to be affected by solid-body rotation. Longitudinal velocity

gradients along the axis of rotation approach Gaussian statistics when rotation is introduced

and the effect is stronger at low Roω. At later times, departures from Gaussianity reappear.

Longer simulations and multiple realizations of the flow are desirable to address whether

the flow would return to the non-rotating values or will approach an asymptotic state which

scales with Roω. Those future simulations will have to address the issue of contamination

from boundary conditions since integral length scales are seen to continue to grow.

More information about the scaling of the flow was obtained by investigating the scaling
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of structure functions. As rotation increases the third-order structure function changes sign

at smaller scales indicating a reduced energy transfer and even a reversal at large scales. Two

scaling ranges were observed especially for the sixth and eighth order structure functions.

For scales in the range 9 . r/η . 30 the data appears to be consistent with Kolmogorov

(1941a) scaling, i.e. ζn = n/3. The second scaling range 30 . r/η . 300 displays anomalous

scaling although a self-similar behavior is still observed with scaling exponents ζn = n/2

consistent with recent experimental evidence. Simulations at higher Reynolds numbers and

a wider range of Rossby numbers would be desirable. While the former would allow for

wider scaling ranges, the latter would enable us to address more accurately the transition

to the two-scaling-range state.

Two dimensional features have been observed and compared with the Taylor-Proudman

theorem for rapidly rotating flows. We investigated this results using our DNS data and

proposed a local version of the theorem. Specifically, we derived Eq. 6.13 and tested its

validity as Roω is decreased. We found that at Roω = 1/4, our result is in good agreement

with DNS data in more than 95% of the domain. The implication is that the Taylor-

Proudman theorem Eq. 6.11 holds only when ωt,3 is small. By looking at its PDF, we find

that values close to zero are more likely at intermediate rotation rates. The topology of ωt,3

was also observed to present stronger anisotropies at this intermediate rotation rate. As

Roω is decreased, one observes the disappearance of small scales consistent with a reduced

spectral transfer.

Equation 6.13 also helps explain the mechanisms underlying the observed fact that

properties are more uniform along the axis of rotation. A theoretical result was obtained

for the scaling of both longitudinal and transverse structure functions along Ω. The final

expression, Eq. 6.22, which contains no unknown coefficients, was compared to classical

results by Kolmogorov (1962) derived from phenomenological arguments. It is interesting
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that Eq. 6.13 shows that the scaling of structure functions in one direction are determined by

the component of vorticity in that direction which, by definition, contains velocity gradients

only along the other two directions. It will be interesting to explore the implications of such

scaling on the componentiality and dimensionality of rapidly rotating flows.
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Table 6.1: Skewness (µ3) and flatness factor (µ4) of longitudinal velocity gradients per-
pendicular to the axis of rotation for three different rotations rates.

Initial Roω 4 1 1/4

t/TE,0 = 1.5 µ3 -0.56 -0.18 -0.05

µ4 7.00 3.94 3.07

t/TE,0 = 3.0 µ3 -0.60 -0.14 0.06

µ4 8.61 5.34 4.34

t/TE,0 ≈ 4.5 µ3 -0.62 -0.15 -0.07

µ4 8.52 7.07 6.03
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Figure 6.1: Transverse integral length scales parallel (a) and perpendicular (b) to the axis
of rotation for initial Roω ≈ 0.2 and Rλ ≈ 140. A: (2π)3, 2563; B: (4π)3, 5123.
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Figure 6.2: Evolution of turbulent kinetic energy (a) and mean energy dissipation rate
(b) normalized by their initial values. Initial Rλ ≈ 240. Line A: no rotation; lines B-D:
initial Roω = 4, 1 and 1/4.
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Figure 6.3: Transverse integral length scales as a function of time. Initial Rλ ≈ 240
(10243) in a (4π)3 domain. Line A: no rotation; lines B-D: initial Roω = 4, 1 and 1/4.
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Figure 6.4: Evolution of anisotropy measures be
33 (a), bz

33 (b) and b33 (c) for an initial
Rλ ≈ 240 (10243). Line A: no rotation; lines B-D: initial Roω = 4, 1 and 1/4.
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Figure 6.6: Longitudinal structure functions along x3 (axis of rotation) normalized ac-
cording to K41 at t/TE,0 ≈ 4.0: 〈(∆r3u3)

n〉/(〈ǫ〉r)n/3 with n = 2 (a), 3 (b), 6 (c) and 8 (d).
Initial Rλ ≈ 240 (10243). Symbols are ©: no rotation, △: Roω = 4, �: Roω = 1 and ♦:
Roω = 1/4. Vertical dashed lines: inertial range for the non-rotating case. Dashed-dotted
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Figure 6.7: Scaling exponents for longitudinal structure functions along the axis of rota-
tion. Symbols are ©: no rotation, △: Roω = 4, �: Roω = 1 and ♦: Roω = 1/4. Solid line:
p/3. Dashed line: p/2.
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Figure 6.8: PDFs of the cosine of the angle between ω and Λ2 (left panels) and ω and
W (right panels) for different rotation rates. Lines A to E correspond to t/TE,0 = 0, 0.6,
1.3, 2.2 and 4.4. Dashed lines are Gaussian results.
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Figure 6.9: Variance of terms in Eq. 6.1 for (a) u1 with no rotation, (b) u1 at Roω = 1/4
and (c) u3 at Roω = 1/4. Lines are local acceleration (A), non-linear terms (B), pressure
gradient (C), rotation term (D) and viscous term (E).
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Figure 6.10: Conditional mean 〈u3,3/σu3,3 |ω3,t/σω3,t〉 (σα is the standard deviation of
α). (a) Initial Reynolds number of Rλ ≈ 240 (10243) with A: no rotation, B-D increasing
rotation with Roω = 4, 1 and 1/4. (b) Initial Reynolds number of Rλ ≈ 38 (5123) with A:
no rotation, B-C: Roω = 1 and 1/16. Dashed lines: slope 1 (according to Eq. 6.13).
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Figure 6.11: PDF of ω3,t at t/TE,0 ≈ 4.5 normalized by the standard deviation σω3,t at
the same instant of time in log-linear (a) and linear-linear scales (b). Panels (c) and (d)

are the same as (a) and (b) but normalized by the initial standard deviation ω
(t=0)
3,t (at the

beginning of the simulations). A: no rotation, B-D increasing rotation with Roω = 4, 1 and
1/4. time. Dashed line: Gaussian distribution.
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Figure 6.12: Contours of |ω3,t|/σω3,t from DNS at Rλ ≈ 240 on a (4π)3 domain (20483).
Left: planes parallel to the axis of rotation. Right: planes perpendicular to axis of rotation.
From top to bottom: no rotation, Roω = 1 and 1/4. The color map is given in terms of
log10 (|ω3,t|/σω3,t).
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Figure 6.13: (a) PDF of u3,3 at t/TE,0 ≈ 4.5 normalized by the standard deviation σu3,3 .
(B) PDF or u3,1/σu3,1 at the same instant of time. A: no rotation, B-D increasing rotation
with Roω = 4, 1 and 1/4. time. Dashed line: Gaussian distribution.
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CHAPTER VII

CONCLUSIONS

In this thesis we have studied the scaling of turbulence and turbulent mixing using di-

rect numerical simulations, at up to 20483 resolutions of stationary isotropic turbulence at

Taylor-scale Reynolds numbers up to 650, and scalars with Schmidt numbers ranging from

1/8 to 1024. To achieve Reynolds numbers comparable or in some cases larger than those

found in typical experimental setups we have made use of the most powerful supercomput-

ers available to the research community capable of sustained performance in the Teraflop

range.

The velocity field is maintained in a stationary state by the addition of stochastic forcing

at the large scales. Stationarity in scalar fluctuations is obtained also, via production by an

imposed uniform mean gradient that acts against molecular dissipation. The tremendous

detail provided by our simulations allows us to compute quantities which are very difficult

to measure in experiments. In addition, the possibility of systematic variation of parameters

helps us address a number of important scaling issues, such as intermittency for the velocity

and scalar fields and the effects of solid body rotation.

The rest of this Chapter consists of two sections. First, we summarize the computa-

tional aspects of our CPU and memory intensive simulations followed by a discussion of

the physical understanding obtained from those simulations. In the last section we discuss

future work and challenges in terms of both the computing and the physics of turbulence.
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7.1 Principal Findings

7.1.1 Numerical and Computational Aspects

In Chapter 2 we described the pseudo-spectral method used in our direct numerical simu-

lations. In order to investigate the scaling of turbulence and turbulent mixing in different

physical regimes (e.g. higher Reynolds and Schmidt numbers or lower Rossby number in

rotating turbulence), high resolutions are needed with the consequent increase in compu-

tational power required. The parallel algorithm used to generate most of our database

was described. A new scheme has been developed based on a two-dimensional domain de-

composition in which each processor holds a pencil of data. To transpose the data across

processors, the pencils code requires twice as many collective communication calls as the

slabs code . However, fewer processors (of the order of
√

NP ) are involved in each communi-

cation. The pencils code has been benchmarked for resolutions up to 40963 on up to 32768

processors on BlueGene’s at SDSC and IBM Watson Research Center. We showed results

with resolutions ranging from 5123 to 40963 and with processor counts in the range 2048

to 32768 showing that the code presents good weak and strong scaling. For example, the

CPU time per step per processor for a 40963 is 20 secs on 32768 processors versus 39 secs

on 16384 processors which represents almost perfect strong scaling (see e.g. figure 2.3).

In our simulations velocity fields are saved at regular time intervals for post-processing

and/or checkpointing. Severe bottlenecks were observed when the original I/O scheme,

which consists of all processors writing simultaneously individual files, was used at large

processor counts. For example, writing restart files for a 40963 problem (which represents

768 GB of data) on 32768 processors took about 3 hours on BlueGene/W. A new scheme

using knowledge about the underlying architecture was developed to alleviate the bottle-

necks generated when many processors try to access shared resources (e.g. network, disks,

I/O nodes). In this scheme, processors are scheduled in batches so that these bottlenecks
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are minimized. This solution, which is particular to BlueGene’s architectures, reduced the

I/O time by a factor of more than 7 to about 25 minutes.

In addition to the computing issues mentioned above, we also discussed the importance

of initial conditions for very large simulations. For example, a 40963 simulation starting

from an initial Gaussian field with a given spectrum may take millions of CPU hours to

reach a stationary state. Therefore, it is important to reduce the transient time between the

start of the simulation and the attainment of a stationary state. We developed a new scheme

that uses an instantaneous velocity field from a lower resolution simulation. The rest of the

modes are initialized with a Gaussian field. The resulting Fourier coefficients are multiplied

by appropriate factors so that a “target” spectrum is obtained. This scheme also avoids

the initial decay of kinetic energy due to the lack of correlation between initial forcing and

velocity fields. Tests at lower resolutions indicate that a fully developed stationary state

can be reached in about one eddy-turnover time compared with 4 or 5 required by an

initialization with a Gaussian field.

In Chapter 3, we studied the effect of finite resolution in direct numerical simulations

on the study of intermittency in isotropic turbulence. We compared moments of both dissi-

pation and enstrophy at different resolutions (up to 20483) but the same Reynolds numbers

(140 and 240). It was found that simulations at the usual resolution criterion of kmaxη ≈ 1.5

underestimate high-order moments but a a value of kmaxη ≈ 3 (which corresponds to a grid

spacing equal to Kolmogorov length scale) appears to be sufficient to obtain grid indepen-

dent moments up to fourth order at Rλ ≈ 240. This result is achieved although no clear

analytic range was observed for structure functions at the corresponding order predicted

recently by Yakhot & Sreenivasan (2005). Using Taylor-series expansions, we quantify the

degree of departure from analytic range in structure functions as a function of order and

Reynolds number. Our predictions are less restrictive than Yakhot & Sreenivasan (2005)
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for low orders but similar for high orders. Inertial-range statistics were found to be weakly

dependent on resolution at the small scales. Ratios of normalized moments of the same

order (e.g. 〈(ǫ′)p〉/〈(Ω′)p〉) are also less dependent on resolution and may be inferred with

reasonable accuracy from simulations at kmaxη ≈ 1.5 (used in most DNS aimed at reaching

high Reynolds number).

7.1.2 Physical Understanding

In Chapter 4 we studied the scaling of intermittency at small scales through fluctuations in

energy dissipation and enstrophy. The tails of their PDFs are found to be well represented

by stretched-exponential fits for values up to 100 times the mean. However, our data at the

two highest Reynolds available (400 and 650) show the existence of extreme fluctuations of

the order of several thousand times the mean. The tails of these PDFs can be described

by a sum of two stretched exponentials which dominate respectively for intermediate and

very large values of dissipation and enstrophy. For extreme values, the PDFs of dissipation

and enstrophy coincide within statistical error suggesting a possible universal behavior of

very strong fluctuations although low order statistics may still differ. Conditional statistics

show that large values of dissipation are usually accompanied by large enstrophy although

the converse is not necessarily true. Nevertheless, at extreme values of dissipation and

enstrophy there is a significant degree of overlap. These extreme fluctuations appear in

clusters whose size depends on (decreases with) the value of the threshold used to define the

cluster. The nature of extreme fluctuations was studied further by decomposing dissipation

and enstrophy into longitudinal, transverse and cross terms. The relative contribution of

these components suggest a state of local isotropy but only in very intense regions (with

dissipation and enstrophy beyond 1000 times the mean) which may help understand the

similar scaling seen in the far tails of their PDFs.

The scaling of passive scalars was studied in Section 5 where we used our DNS database
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with Sc from 1/8 to 1024 and Rλ from 8 to 650. Results from our simulations at Rλ ≈ 650

(20483) and Sc = 1/8 and 1 show a clear k−5/3 inertial-convective scaling. This result

extends for about a decade for Sc = 1/8 and a slightly narrower range at Sc = 1 due to

a spectral bump around kη ≈ 0.1 (similar to the one observed for the velocity field) which

can be interpreted as a precursor of a k−1 scaling. The Obukhov-Corrsin constant obtained

from these results is in excellent agreement with experimental results. For weakly diffusive

scalars (Sc ≫ 1), our results at Rλ ≈ 8, 38 and 140 support a trend towards a k−1 scaling

as Sc is increased. Batchelor’s expression for the scalar spectrum is found to underestimate

the high wavenumber content at all Sc and Rλ. Kraichnan’s expression on the other hand,

which takes into account fluctuations of strain rates, provides a better representation of

the data. When normalized according to Batchelor scaling, the spectrum appear to show

some degree of universality at high wavenumbers (kηB & 0.1) for all Rλ and Sc including

both low and high Schmidt number scalars. This result suggests that mechanisms different

from those assumed by Batchelor and Kraichnan (which find theoretical support for high-Sc

scalars) may be involved in turbulent mixing.

A basic premise in the phenomenology of turbulence is the concept of dissipative anomaly,

where the mean dissipation rate is independent of viscosity at high Reynolds numbers. The

same assumption about the mean scalar dissipation rate also has an important role in the

extensions of K41 to passive scalars. The scaling of the mean scalar dissipation 〈χ〉 was

discussed in Section 5.2 using comprehensive data from DNS and experiments. It was found

that 〈χ〉 is independent of molecular properties if in addition to the Reynolds number be-

ing large, ln(Sc)/Rλ is small for Sc > 1 and RλSc1/2 is large for Sc < 1. We further

obtained limits which provide a basis for evaluating whether a given flow can be considered

in the asymptotic state in terms of Rλ and Sc. A new Reynolds number was proposed
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RL′ = (u′L2/λ)/ν which appears to provide a universal scaling for the mean scalar dissipa-

tion.

Scalar intermittency at small scales was investigated through the tail in the PDF of

scalar dissipation. Intermittency is found to increase with both Rλ and Sc but reaches an

asymptotic state in the high-Sc limit. This asymptotic state seems to require higher Sc

when Rλ is small. This was also observed from moments of scalar gradient fluctuations in

different directions. In the high-Sc limit, the flatness factor of gradients along the mean

scalar gradient approaches the value of 10, 12 and 20 for Rλ ≈ 8, 38 and 140 respectively.

A phenomenological argument was given which suggests that saturation of intermittency

occurs according to the condition Rλ
2Sc ≫ 1. Scaling exponents of local averages of

scalar dissipation show that intermittency at inertial-convective scales decreases with Sc

when Sc > 1. The skewness of scalar gradient fluctuations along the mean gradient was

used to address departures from local isotropy. Consistent with previous results, persistent

anisotropy is found at the highest Reynolds numbers achieved in our simulations. The less

understood scaling with Sc was also investigated at different Rλ. Anisotropy at small scales

decreases as Sc is increased and this return to isotropy is faster when Rλ is large.

In Chapter 6 we studied the effect of solid-body rotation on initially isotropic turbu-

lence. To control contaminations from boundary conditions we have performed simulations

on larger-than-usual domains. The initial Reynolds number was Rλ ≈ 240 (at 10243 reso-

lution) and three different microscale Rossby numbers (Roω = 4, 1 and 1/4) were imposed.

Departures from isotropy are observed at all scales and are strongest at intermediate rota-

tion rates. Results include unequal growth of integral scales (figure 6.1), non-zero values

of components of the anisotropy tensor (figure 6.4 and Eq. 6.10), and different scaling of

component spectra in different directions (figure 6.5). The spectral slope is close to -2 for

intermediate rotation rates but close to -3 for strong rotation. Intermittency was found to
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decrease monotonically with rotation rates at early times suggesting that it is caused by

the damping of nonlinear terms. The skewness and flatness factors of velocity gradients

approach Gaussian values at small times but departures from Gaussianity are apparent at

later times. Structure functions present anomalous scaling (i.e. departures from K41) al-

though at low Rossby numbers, the scaling exponents are linear in the order (i.e. ζn = n/2)

suggesting a self-similar state for a range of scales. At intermediate rotation rates two

scaling ranges are observed for high-order structure functions. At smaller scales, K41 scal-

ing (ζn = n/3) may still apply whereas at larger scales the scaling exponents behave as

ζn = n/2. The small-scale structure of rotating turbulence was further studied through

alignments between vorticity (ω) and the middle eigenvector of the strain-rate tensor (Λ2)

and between vorticity and the vortex stretching vector (W). At early times, the preferential

alignment between ω and Λ2 is reduced but it is restored at later times. On the other hand,

the reduction in alignment observed at early times between W and ω does not evolve in

time and approaches an asymptotic distribution not far from Gaussian predictions. This

implies a reduction of enstrophy generation through vortex stretching in rapidly rotating

flows. The classical Taylor-Proudman theorem was investigated for rotating turbulence.

An alternative version is proposed by keeping the unsteady terms in the governing equa-

tions which allows us to explain the observed homogeneity along the axis of rotation. A

refined similarity hypothesis similar to that proposed by Kolmogorov (1962) is suggested

implying that structure functions along the axis of rotation scale with local averages of the

time-derivative of vorticity.

7.2 Future Research Directions

In this concluding section, we discuss possible extensions to the research presented in this

work. As in the previous section we divide the discussion into computational issues and

those concerning the physical understanding.
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The computational power available to the research community has increased tremen-

dously over time allowing us to be close to achieving resolutions of 40963. As described in

this thesis, the original code had to be changed from a 1D to a 2D domain decomposition

(i.e. the slabs code and pencils code respectively) to make use of very large number of pro-

cessors. Issues such as I/O performance or even disk space have to be taken into account

for very large simulations. In this work we discussed a solution to poor I/O performance

on BlueGene’s architectures but similar issues may also arise in new or next-generation

machines. With the present pencils code a 40963 simulation at Rλ ≈ 1100 has been started

from initial conditions developed using the new scheme described in Chapter 2. Continuing

this simulation (which at present spans only a fraction of Kolmogorov time scale) is part of

future work. It is also desirable to include moderately diffusive scalars in such simulations

although memory and time constraints would increase. It is interesting to note that the

detailed study of passive scalars at Sc ∼ O(1) at these Reynolds numbers could also be

useful to improve models that can be used in, e.g., large-eddy simulation of engineering

devices at realistic conditions (see e.g. Peters 2000).

The scaling of intermittency is still an active field of study. Simulations have provided

valuable input for models and basic understanding. Accurate determination of, for example,

high-order moments is crucial to compare between competing theories. Our work presented

here provides resolution requirements which depend on the order of the moment. Our

results, however, were tested against data at Rλ ≈ 140 and 240. The influence of smaller

scales at higher Reynolds numbers is yet to be discovered. Our theoretical developments

relating structure functions and velocity gradients may be useful for experiments as well

and we hope they can help disentangle resolution effects from real trends.

Results on extreme fluctuations of dissipation and enstrophy observed at high Rλ provide

support for a universal behavior. The study of these strong fluctuations is important not

192



only from a theoretical standpoint but also for practical problems such as combustion and

dispersion. Therefore, it is necessary to obtain reliable statistics of strong fluctuations which

require very long simulations at higher-than-usual resolutions. The increase of available

computer power can help resolve these issues in the near future. Detailed studies comparing

the structure of extreme fluctuations (such as that by Moisy & Jiménez 2004, for moderate

fluctuation levels) can also provide further insight into the nature of intermittency at small

scales. The study of dissipation and enstrophy through different gradients (longitudinal,

transverse, and cross terms) proved to be useful to investigate the relation between them.

It will also be interesting to decompose gradients in frames of reference intrinsic to the

turbulent structure, such as the eigenframe of the strain-rate tensor or a system of axes

attached to the vorticity vector.

Besides characterizing intermittency, it will be very interesting to investigate its origins

(e.g. Li & Meneveau 2005). In particular, the role of large scales in the appearance of

extreme fluctuations is an interesting problem that has not been addressed carefully (e.g.

Sreenivasan 2004). This also raises the natural question about the origins of intermittency

for passive scalars and its relation with large scales.

An interesting problem with practical significance is the effect of intermittency on re-

acting flows. For example, it is important to address the role of extreme values of energy

dissipation, enstrophy and scalar dissipation on reaction rates. Local Damköhler numbers

(Da) can vary considerably in a given flow as values of dissipation are three or four orders

of magnitude larger than the mean. Thus, although reactions can be considered fast on

average, they may be fast in some regions and slow in others. Quantifying the effects of

intermittency in reacting flows using DNS with complex chemistry is an interesting and

important topic for future research.

Many issues about the scaling of turbulent mixing are still not completely understood.
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In particular, the good collapse of spectra at both low and high Schmidt number is an

interesting issue yet to be resolved. Mechanisms for mixing at small scales different from

those proposed by classical theories (by e.g. Obukhov, Corrsin, Batchelor, Kraichnan)

may be dominant. Detailed studies of small-scale mixing are therefore necessary. The

tremendous detail available in DNS suggests that it could be the best tool in this respect.

A crude estimate based on the assumption that large scales are responsible for strong

gradients in the scalar field yield the condition Sc ∼ 5000/Rλ
2 for the Schmidt number at

which intermittency attain an asymptotic level. This prediction is shown in in figure 7.1

where we also show our DNS database of turbulent mixing (above the dashed line the

estimate predicts that flow is in the asymptotic state). This rough guide could help design

simulations and experimental setups to address some of these fundamental issues. For

example, the study of mixing at very low Sc may give hints on the phenomenon of saturation

of intermittency as well as e.g. the scaling of the spectrum. However, since scalar integral

scales are larger at low Sc (see figure 5.12) larger domains may be necessary. We found

that the forcing scheme used in this thesis, produces an artificial “jump” in the spectrum

at k = kf in large domains. The reason for this effect is in the use of a Heavyside function

for the forcing (wavenumbers in the range k ≤ kf are forced with equal strength). Different

“shape” functions were tested to distribute the input of energy from the forcing among

low wavenumber modes. A smooth function of the form [cos(πk/kf ) + 1]/2 (with k ≤ kf )

eliminates the “jump” and can be used for these future simulations in large domains.

It would also be interesting to use DNS to study turbulence in conducting fluids (the

so-called magnetohydrodynamics or MHD). The coupling between velocity and magnetic

field fluctuations through the additional Lorentz force in the governing equations give rise to

a variety of new phenomena which is still to be understood. In particular, the k−5/3 scaling

observed in the spectrum of the magnetic field may give some hint about the underlying
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physics not only for conducting fluids but also for normal hydrodynamic turbulence. The

detailed interaction of fluctuations of the velocity and magnetic fields at different scales

may be worth exploring. The scaling of quantum turbulence which according to the current

understanding, can be thought of as a two-fluid model (one viscous normal fluid coexisting

with an inviscid superfluid) is also an interesting topic for future work.

Recent experimental data of the cosmic microwave background (CMB) radiation (e.g.

from the Wilkinson Microwave Anisotropy Probe or WMAP) have revealed that the ob-

served fluctuations of temperature (which are believed to be the remnant of the early uni-

verse) are themselves Gaussian. However, moments of temperature increments (structure

functions) show the same multiscaling behavior as in hydrodynamic turbulence (Bershadskii

& Sreenivasan 2002, 2003). A simulation of the so-called primordial turbulence (which is

estimated to have occurred ∼ 14 billion years ago) could help explain the scaling found not

only for structure functions but for the spectrum (Donzis et al. 2005a). In such a simulation

a spherical geometry with periodic boundary conditions may be the most appropriate in

which spherical harmonics should be used instead of the typical Fourier representation used

for isotropic turbulence.

We conclude this work with a positive note. It is an exciting time for the study of

turbulence using large scale numerical simulations. The computational power that allows

simulations at Reynolds and Schmidt numbers necessary to address long standing problems

are now available to the research community. And the trend to build even larger super-

computers shows no sign of decline or saturation. Simulations of isotropic turbulence at

asymptotically large Reynolds numbers, turbulent flows in complex geometries at reasonably

large Reynolds numbers or simulations including more physical processes (e.g. combustion,

or MHD) at realistic conditions may be only a decade away.
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APPENDIX A

A LOCAL ISOTROPY RESULT FOR LONGITUDINAL VELOCITY

GRADIENTS

We present here a theoretical derivation for Eq. (4.12) which is supported by the observed

behavior of the quantity 〈L|ǫ〉 as in Figs. 4.10 and 4.11. The starting point is that local

isotropy requires that the fourth-order tensor 〈ui,juk,l〉 take the form

〈ui,juk,l〉 = αδijδkl + βδikδjl + γδilδjk (A-1)

where the scalar coefficients α, β, γ can, with the use of incompressibility, be expressed in

terms of longitudinal and transverse velocity gradient variances (Pope 2000), 〈(u1,1)
2〉 and

〈(u1,2)
2〉. We propose that the same basic relation applies to conditional averages given a

scalar variable which is itself statistically homogeneous in space. Accordingly we write

〈ui,juk,l|ǫ〉 = α(ǫ)δijδkl + β(ǫ)δikδjl + γ(ǫ)δilδjk (A-2)

Contracting the subscripts i and j and using incompressibility gives

3α + β + γ = 0 (A-3)

where for brevity we henceforth omit the dependence on ǫ in α, β, γ in the notation. For

longitudinal gradients setting i = j = 1 gives

〈(u1,1)
2|ǫ〉 = α + β + γ (A-4)

whereas for transverse gradients setting i = 1 and j = 2 gives

〈(u1,2)
2|ǫ〉 = β . (A-5)
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By solving the above for α, β and γ, and using the simple isotropy results 〈L|ǫ〉 =

6〈(u1,1)
2|ǫ〉, 〈T |ǫ〉 = 6〈(u1,2)

2|ǫ〉, we can re-write Eq. (A-2) as

〈ui,juk,l|ǫ〉 = −〈L|ǫ〉
12

(δijδkl − 3δilδjk) +
〈T |ǫ〉

6
(δikδjl − δilδjk) . (A-6)

For the cross-terms, therefore, we have

〈u1,2u2,1|ǫ〉 =
1

4
〈L|ǫ〉 − 1

6
〈T |ǫ〉 (A-7)

and hence

〈C|ǫ〉 =
3

2
〈L|ǫ〉 − 〈T |ǫ〉 (A-8)

Since by definition 〈L|ǫ〉 + 〈T |ǫ〉 + 〈C|ǫ〉 = ǫ/ν substitution from Eq. (A-8) now produces

the result ǫ/ν = (5/2)〈L|ǫ〉 and hence Eq. (4.12) for the behavior of 〈L|ǫ〉 as claimed in

Eq. (4.12) and confirmed to within sampling error in our DNS data.

It should be noted that an exact result as shown here is available only for 〈L|ǫ〉 but

not 〈T |ǫ〉 or 〈C|ǫ〉 separately (which would have to involve additional assumptions not well

supported by the numerical data). Furthermore, whereas conditioning by the enstrophy

leads to a relation similar to Eq. (A-8), since the contributions of T and C to Ω are different,

no corresponding result can be derived for 〈L|Ω〉.
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APPENDIX B

SIMULATIONS OF THREE-DIMENSIONAL TURBULENT MIXING

FOR SCHMIDT NUMBERS OF THE ORDER 1000

P.K. Yeung, S. Xu, D.A. Donzis and K.R. Sreenivasan. Flow, Turbulence and Combustion

72 (2004), (333-347).

Abstract

We report basic results from newnumerical simulations of passive scalar mixing at

Schmidt numbers (Sc) of the order of 1000 in isotropic turbulence. The required high grid-

resolution is made possible by simulating turbulence at very low Reynolds numbers, which

nevertheless possesses universality in dissipative scales of motion. The results obtained are

qualitatively consistent with those based on another study (Yeung et al., Phys. Fluids

14 (2002) 4178-4191) with a less extended Schmidt number range and a higher Reynolds

number. In the stationary state maintained by a uniform mean scalar gradient, the scalar

variance increases slightly with Sc but scalar dissipation is nearly constant. As the Schmidt

number increases, there is an increasing trend towards k−1 scaling predicted by Batchelor

(Batchelor, J. Fluid Mech. 5 (1959) 113-133) for the viscous-convective range of the scalar

spectrum; the scalar gradient skewness approaches zero; and the intermittency measured

by the scalar gradient flatness approaches its asymptotic state. However, the value of Sc

needed for the asymptotic behavior to emerge appears to increase with decreasing Reynolds

number of the turbulence. In the viscous-diffusive range, the scalar spectrum is in better

agreement with Kraichnan’s (Kraichnan, Phys. Fluids 11 (1968) 945-953) result than with

Batchelor’s.
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APPENDIX C

HIGH SCHMIDT NUMBER SCALARS IN TURBULENCE:

STRUCTURE FUNCTIONS AND LAGRANGIAN THEORY

M. Borgas, B. L. Sawford, S. Xu, D.A. Donzis and P.K. Yeung. Physics of Fluids 16 (2004),

(3888-3899).

Abstract

We demonstrate the existence of Batchelor’s viscous-convective subrange using direct

numerical simulation (DNS) results to confirm the logarithmic dependence of the scalar

structure function on the separation for the scalar field generated by stationary isotropic

turbulence acting on a uniform mean scalar gradient. From these data we estimate the

Batchelor constant B̃θ ≈ 5. By integrating a piecewise continuous representation of the

scalar variance spectrum we calculate the steady-state scalar variance as a function of

Reynolds number and Schmidt number. Comparison with DNS results confirms the Rλ
−1

behavior predicted from the spectral integration, but with a coefficient about 60% too small.

In the large Reynolds number limit the data give a value of 2.5 for the mechanical-to-scalar

time scale ratio. The dependence of the data for the scalar variance on Schmidt number

agrees very well with the spectral integration using the values of the Batchelor constant

estimated from the structure function. We also carry out an exact Lagrangian analysis

of the scalar variance and structure function, explicitly relating the Batchelor constant to

the Lyapunov exponent for the separation of pairs of fluid particles within the turbulence

dissipation subrange. Our results, particularly for the scalar variance, illustrate explicitly

the singular nature of the zero diffusivity limit. For finite values of the Schmidt number
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and Reynolds number the viscous-convective subrange contribution to the variance can be

significant even at moderate values of the Reynolds number.
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APPENDIX D

SCALAR DISSIPATION RATE AND DISSIPATIVE ANOMALY IN

ISOTROPIC TURBULENCE

D.A. Donzis, K.R. Sreenivasan and P.K. Yeung. Journal of Fluid Mechanics 532 (2005),

(199-216).

Abstract

We examine available data from experiment and recent numerical simulations to explore

the supposition that the scalar dissipation rate in turbulence becomes independent of the

fluid viscosity when the viscosity is small and of scalar diffusivity when the diffusivity is

small. The data are interpreted in the context of semi-empirical spectral theory of Obukhov

and Corrsin when the Schmidt number, Sc, is below unity, and of Batchelor’s theory when

Sc is above unity. Practical limits in terms of the Taylor-microscale Reynolds number, Rλ,

as well as Sc, are deduced for scalar dissipation to become sensibly independent of molecular

properties. In particular, we show that such an asymptotic state is reached if RλSc1/2 for

Sc < 1, and if ln(Sc)/Rλ for Sc > 1.
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APPENDIX E

HIGH-REYNOLDS-NUMBER SIMULATION OF TURBULENT

MIXING

P.K. Yeung, D.A. Donzis and K.R. Sreenivasan. Physics of Fluids 17 (2005), (081703).

Abstract

A brief report is given of a new 20483 direct numerical simulation of the mixing of passive

scalars with uniform mean gradients in forced, stationary isotropic turbulence. The Taylor-

scale Reynolds number is close to 700 and Schmidt numbers of 1 and 1/8 are considered.

The data provide the most convincing evidence to date for the inertial-convective scaling.

Significant departures from small-scale isotropy are sustained in conventional measures.

Subject to some stringent resolution requirements, the data suggest that commonly observed

differences between the intermittency of energy and scalar dissipation rates may in part be

a finite-Reynolds-number effect.
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APPENDIX F

ACCELERATION AND DISSIPATION STATISTICS OF

NUMERICALLY SIMULATED ISOTROPIC TURBULENCE

P.K. Yeung, S.B. Pope, A.G. Lamorgese and D.A. Donzis. Physics of Fluids 18 (2006),

(065103).

Abstract

Direct numerical simulation (DNS) data at grid resolution up to 20483 in isotropic tur-

bulence are used to investigate the statistics of acceleration in a Eulerian frame. A major

emphasis is on the use of conditional averaging to relate the intermittency of acceleration to

fluctuations of dissipation, enstrophy, and pseudodissipation representing local relative mo-

tion in the flow. Pseudodissipation (the second invariant of the velocity gradient tensor) has

the same intermittency exponent as dissipation and is closest to log-normal. Conditional

acceleration variances increase with each conditioning variable, consistent with the scenario

of rapid changes in velocity for fluid particles moving in local regions of large velocity gra-

dient, but in a manner departing from Kolmogorov’s refined similarity theory. Acceleration

conditioned on the pseudodissipation is closest to Gaussian, and well represented by a novel

”cubic Gaussian” distribution. Overall the simulation data suggest that, with the aid of

appropriate parameterizations, Lagrangian stochastic modeling with pseudodissipation as

the conditioning variable is likely to produce superior results. Reduced intermittency of

conditional acceleration also makes the present results less sensitive to resolution concerns

in DNS.
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