A STUDY OF THE STRENGTHENING OF GLASS BY IONIC DIFFUSION

A THESIS

Presented to

The Faculty of the Graduate Division

by

Arthur Vernon Petty, Jr.

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Ceramic Engineering

> Georgia Institute of Technology December 1972

A STUDY OF THE STRENGTHENING OF GLASS

BY IONIC DIFFUSION

ACKNOWLEDGMENTS

The author wishes to thank Glass Containers Corporation and the Georgia Institute of Technology for funds which made this investigation possible.

The author also wishes to express his appreciation to Dr. A. T. Chapman, project advisor and chairman of the reading committee, to Mr. S. R. Ali Zaidi, Project Director for Research and Development, Glass Containers Corporation, for his continued interest and support, to Dr. J. F. Benzel and Dr. J. K. Cochran for their suggestions while serving on the reading committee, and to Dr. Lane Mitchell, who provided a teaching opportunity in the School of Ceramic Engineering, Georgia Tech, which allowed the author time necessary to complete this thesis.

A special word of thanks is also due to Mr. Thomas Mackrovitch, who helped with the fabrication of needed equipment.

iii

TABLE OF CONTENTS

																	D	ane
ACKNOWLE	DGMENTS	• •	٠		٠	••	×.		•	·		•	•	٠	٠	٠	•	iii
LIST OF ?	TABLES		•		(.	• •		• •	•	•	•		•	•	•	•	.•.:	vi
LIST OF I	FIGURES	• •			20 0 8	• •				•			•	•		•	. v	iii
SUMMARY		• •	•		•		٠		•		•	•	•1		•	•	٠	ix
Ch ap ter																		
I.	INTRODU	CTI	ON		10 4 5 - 2	• •					2.40	3 9 3			•	•		l
II.	REVIEW	OF 1	THE	LI	rer.	ATUI	RE	• •	•		2545				3.00		•	2
	Introdu Technic Structu Mecha	uctio ues ral nis	on and Ana n	d Pi aly:	rope	ert: of	les th	of e 1	l Id Ion	on Ex	Ex ch	ch ian	ar Ige	ıg€ ?	9			
III.	PROCEDU	IRE	•	•••	•	•••	•			•	•	•	•	•	٠	•	•	18
	Introdu Pre-Exc Molten Sprayin Determi Diffusi Industr	hang Sali g Te nat: on S	on ge S echn Lon Stuc App	Samp aths niqu of dies plic	ole les Sti sti	Pre reng	e pa gth	rat	ior	ı								
IV.	RESULTS	ANI	D D	ISCU	JSS:	ION	5 .	•••	٠	3.	3 4 3	•	٠				٠	32
4	Ion Exc Ion Exc Industr Stren	hang hang ial gthe	ge U ge U A pi enin	Usin Usin plic ng S	ng M ng S at: Soda	Molt Satu ions a-Li	cen ara 3 O Lme	Sa ted f I Gl	lt Ac On ass	Ba lue Di	th ou ff	s s us	Sc ic	olu on	ti Fc	lor	15	
v.	CONCLUS	IONS	5	• •	8 • 8 8	•	٠	• •				•	•		•	•		64
APPENDIX	Α	• •			5 6 8 - 5	•	•	• •	•	•	•			•	•	•	•	67
APPENDIX	в	• •	•	• •	•		•		•	٠	٠	•	•	٠	•	•	٠	69
APPENDIX	с				•						•							85

iv

TABLE OF CONTENTS (Continued)

APPENDIX	D				•			•	•	•					(•)	•				•			•	Page 88
APPENDIX	Ε	٠	٠	•	٠	÷	•	٠	•		•	•	•	•		•	٠		5 8 0	٠	•	•		121
APPENDIX	F		٠	•	•			•	٠	•	•			ě	٠	٠	•	•	•	٠	•	٠	٠	124
BIBLIOGR	APHY	<u>r</u>	() •2	•		•	٠	•				•				•			S				73 9 2	127

LIST OF TABLES

	Table		Pa	ge
	l.	Composition of Kimble Flint Glass (Type R-6)	i	19
	2	Physical Properties of Kimble Flint Glass (Type R-6)		19
	3.	Experimental Time, Temperature and Compositions Investigated for Leaching in Molten Salt Baths	2	23
	4.	Properties of Various Salts Used	2	25
	5.	Experimental Time, Temperature and Compositions Investigated for Heat Treatment After Spraying With Saturated Aqueous Solutions	2	27
	6.	Average Room Temperature Modulus of Rupture (Pounds Per Square Inch) for Soda-Lime Glass Rods Leached in Molten KNO3	3	34
	7.	Flame Photometry for Rods Leached in Molten KNO_3 at 750°F.		39
	8.	Average Modulus of Rupture (Pounds per Square Inch for Soda-Lime Glass Rods Sprayed with a Saturated Solution of KNO3 and then Heat Treated) 	49
	9.	Flame Photometry Data for Rods Sprayed with KNO3 and Heat Treated at 750°F	Ę	55
1	0.	Average Modulus of Rupture Values for Acid-Etched Soda-Lime Glass Rods Treated with KNO3 at 750 F. for 4 Hours and Abraded	6	50
1	1.	Modulus of Rupture Values Determined for "As Received" Rods	e	58
1	2.	Modulus of Rupture of Soda-Lime Glass Rods Leached in KNO3 at Various Times and Temperatures	7	70
1	3.	Modulus of Rupture of Soda-Lime Glass Rods Leached in KNO ₃ at 750°F. for 4 Hours	8	34

LIST OF TABLES (Continued)

Table		Page
14.	Modulus of Rupture for Soda-Lime Glass Rods Sprayed With a Saturated Aqueous Solution of KNO ₃ and Heat Treated at Various Temperatures and Times	89
15.	Modulus of Rupture Values for Acid-Etched Soda- Lime Glass Rods Treated With KNO3 at 750°F. for 4 Hours and Abraded	

LIST OF FIGURES

Figur	e F	'age
1.	Stress-Strain Curves for Crystalline Solids and Glass	4
2.	Crowding from Exchange of K ⁺ for Na ⁺ Ions in Glass. (After Nordberg [1])	9
3.	Average Modulus of Rupture as a Function of Time for Soft Glass Rods Leached in KNO ₃ at 675°, 825°, and 1000°F.	35
4.	Scanning Electron Micrograph Showing Surface Attack of Soda-Lime Glass Leached in LiNO ₃ at 1000 ⁰ F. for 5 Minutes (X5000)	40
5.	Photomicrograph Showing a Cross Section of Soda- Lime Glass Rod Leached in LiNO ₃ at 1000°F. for 12 Hours (X60)	41
6.	Scanning Electron Micrographs Showing Surface Attack of Soda-Oime Glass Rods After Spraying With LiNO ₃ Solution and Heat Treating for 15 Minutes at 600°F.	47
7.	Average Modulus of Rupture As a Function of Time for Soda-Lime Glass Rods Sprayed With a Saturated Solution of KNO ₃ and Heat Treated Above M. P. of Salt	50
8.	Scanning Electron Micrographs of Surface Attack for Soda-Lime Glass Rods Suspended Above Molten KNO ₃ at 1000°F. for 1 Hour	54

viii

SUMMARY

A typical soft glass (Kimble Type R-6) containing 68.0 weight per cent SiO_2 , 15.5 weight per cent Na_2O , 11.5 weight per cent MgO, BaO, CaO, and 5.0 weight per cent minor oxides was chosen as the base glass. Several techniques were used to exchange K⁺¹ and/or Li⁺¹ ions for Na⁺¹ ions near the surface of glass rods. Depending on the temperature used, relative to the strain point of the glass, both Li⁺¹ for Na⁺¹ and K⁺¹ for Na⁺¹ can result in the formation of a compressive layer on the surface of the glass. Since glass always breaks in tension, this layer of compressive forces will substantially increase the net effective strength of the glass.

For Li^{+1} - Na⁺¹ ion exchange, a variety of lithium salts were used, and the effects of time, temperature, and surface condition were studied, using both molten salt baths and spraying techniques. In all cases where measurable Li^{+1} - Na⁺¹ ion exchange took place, severe surface cracking and decomposition resulted. Thus no net strength increases were possible.

The best results were obtained using K^{+1} - Na⁺¹ ion exchange. The optimum temperature for treatment was determined to be about 750°F. Leaching glass rods in molten KNO₃ salt baths at this temperature resulted in strength increases

ix

of as much as 167 per cent for four hours of heat treatment. Spraying saturated aqueous solutions of KNO_3 on the surface of rods followed by heat treatment above the melting point of the salt at 750° F., gave strength increases up to 100 per cent over the "as received" rods.

Techniques giving significant strength increases were considered for possible incorporation into existing production line facilities.

х

CHAPTER I

INTRODUCTION

Glass, defined as an inorganic material that has been produced by fusion and subsequent cooling, the fused mass becoming rigid without crystallization, is one of the most important products of the ceramic industry today. Its use as a building material, as a container product, and as an ornamental material is increasing year by year. The need for improved methods of strengthening glass becomes more and more critical as the requirements and specifications set by industry, science, and everyday life become more demanding.

The purpose of this study is to explore the chemical strengthening achieved by alkali ion diffusion between the sodium⁺¹ ions found in a typical soda-lime glass and other species of monovalent alkali ions brought into contact with the surface of such glass during heat treatment. The effects of temperture, time, and species and concentration of foreign alkali ions were investigated. The more promising techniques of strengthening soda-lime glass found were investigated as to possible incorporation in existing production line facilities.

CHAPTER II

REVIEW OF THE LITERATURE

Introduction

Glass has a combination of desirable properties which constitute a unique asset for many modern-day needs when compared to other available materials (1). These include:

- 1) Transparency
- 2) Hardness
- 3) Good durability
- 4) Low cost
- 5) Relative light weight
- 6) Ease of forming

7) Nondeformability.

One drawback in using glass for many applications, however, is its lack of strength.

The low strength of glass is caused by the inability to be plastically deformed at low temperatures. Since there is no plastic flow at ambient temperatures, there can be no ductile elongation to dissipate stresses or grain boundaries to stop crack propagation (2). A minute surface flaw, under relatively low stresses, can initiate cracks which propagate to failure. In metals and other crystalline solids, plastic flow takes place due to imperfections in the crystal lattice causing slip and twinning. Since glass is a noncrystalline solid, no such long range lattice defects occur. Once the elastic limit has been exceeded, glass will break with no measurable sign of plastic flow. Stress-strain curves shown in Figure 1 are typical of a crystalline solid, such as metal, and a non-crystalline solid such as glass (3).

From studies (1) of inter-atomic forces, backed up by strengths obtained on fibers drawn under almost ideal laboratory conditions, an intrinsic strength of about two million pounds per square inch is possible for glass; however, surface flaws markedly reduce this strength, often to less than one per cent of this value.

Surface flaws in glass are caused in several ways:

- A critical gradient in temperature when a glass is cooled in the soft state during molding, annealing, and/or tempering.
- Surfaces in contact with dies, molds, and extruders during fabrication.
- 3) Abrasion.
- 4) The effects of moist air, water, gases, and chemicals in contact with the surfaces of the glass.

Several techniques for increasing the strength of glass will be covered in the following discussion. The most promising appears to be ion exchange, whereby monovalent,

Figure 1. Stress-Strain Curves for Crystalline Solids and Glass.

alkali ions present in the glass are replaced by other monovalent, alkali ions having a different atomic size. Under certain conditions this will result in the formation of compressive forces on the surface of the glass. Several methods of obtaining ion exchange will be discussed along with the theory and structural analysis of exchange mechanisms.

Techniques and Properties of Ion Exchange

The several methods of strengthening glass depend on one of two mechanisms (1). First, surface flaws may be removed from the glass. This in itself is useless unless the surface is then protected from further abrasion and/or contact with the atmosphere.

In the second method, compressive forces are induced in the surface of the glass. When ordinary glass cools, the surface cools first since it is in direct contact with the surrounding air at lower temperature. As it rapidly cools, it solidifies and forms a shell around the uncooled glass inside. It also contracts and plastically deforms the hot interior. Later, as the inside glass cools, it shrinks, thus putting compressive forces on the surface. This condition results, to some extent, when glass of any composition cools. In ordinary applications, glass never breaks in compression, but always in tension. Therefore, in order to cause failure in glass having a surface layer in

compression, enough force must be applied to not only exceed the elastic limit of the bulk glass, but also to overcome the compressive forces on the surface. If the thickness of the compressive surface layer or the magnitude of the compressive forces in the layer can be increased, the glass can be greatly strengthened. As long as this layer of compressive forces is not penetrated by scratching, abrasion, or reaction with the environment, the glass remains strong.

Several techniques are available to achieve a layer of compressive forces on the surface. They differ in feasibility of application and in maximum strength increase possible. (Articles having sharp re-entrant angles cannot be physically tempered since these sharp angles will serve as weak spots, but they can be chemically tempered. Also, physical tempering produces strength increases limited to about 25,000 pounds per square inch, while chemical strengthening can yield increases of well over 100,000 pounds per square inch [4].) These strengthening techniques range from thermal tempering, based solely on heat treatment and cooling rate for the bulk glass, to chemical treatment in which the composition of the surface layer is altered. This may be done by coating the bulk glass with a second glass composition having a lower coefficient of thermal expansion. On cooling, even under almost equilibrium conditions, the bulk glass will contract more than the surface layer, therefore putting the surface in compression. Of course

the thickness of the secondary glass coating and the compositional differences between the bulk and surface glass can be used to control both the thickness and magnitude of the compressive layer.

Another way of obtaining strength increases for twophase glasses such as the borosilicates, involves the selective etching away of one phase to the desired depth. Additional heat treatment to collapse the etched portion and fill the voids leaves the bulk glass unchanged but leaves the surface deficient with respect to one of the two phases. In the case of two-phase borosilicate glasses, etching removes the boron-rich phase from the surface. After heat treatment, the boron-rich bulk glass has a higher coefficient of thermal expansion than the silica-rich surface layer. On cooling, compressive forces will build up at the surface due to the difference in thermal expansion of the different compositions of glass.

A third method results from changing the composition of the glass surface by exchanging cations contained in the bulk glass with other ions having a different ionic size or surface to charge ratio. This is one of the newer and more promising ways of strengthening glass.

In "ion stuffing" or ion exchange, foreign ions, having a different ionic radius from the ions present in the base glass, are diffused into the surface of the glass. If the foreign ions have a larger ionic radius than the alkali

ions present in the base glass and if the diffusion process takes place at a temperature below the strain ponnt of the glass, as they diffuse into the glass surface, they replace smaller ions and are crowded into the existing silicate framework. This crowding of the ionic sites in the glass, as shown in Figure 2, puts compressive forces in the area of exchange. In order to be an effective way of strengthening glass, "ion stuffing" must proceed to a sufficient depth so that abrasion or minute surface cracks will not penetrate the compressive layer.

The strain point of glass is defined as the temperature at which the viscosity of the glass is $10^{14.5}$ poises. Below this temperature, readjustment of the silicon-oxygen structure is very sluggish. Above the strain point for a particular glass composition, the speed at which readjustment proceeds, and therefore at which the glass reaches structural equilibrium, becomes significant.

If the foreign ions have a smaller ionic radius than the ions present in the base glass and the diffusion is carried out above the strain point of the glass, the silicate structure is allowed to readjust and accommodate the smaller ions without allowing stresses to be set up in the layer of exchange. In effect this simply changes the composition of the surface layer. In the case of monovalent alkali ion exchange, the replacement of one alkali species by another alkali species having a smaller ionic radius will, in general,

Figure 2. Crowding from Exchange of K⁺ for Na⁺ Ions in Glass. (After Nordberg(1))

produce a glass having a lower coefficient of thermal expansion. On cooling the glass from above the strain point the interior, large ion rich glass, will contract more than the smaller ion rich surface, again creating a layer of compressive forces on the surface.

In the case where Li⁺¹ is exchanged for Na⁺¹ in the base glass by immersion in molten lithium salts above the strain point of the glass, further heat treatment can also be employed to crystallize very low thermal expansion, transparent eycryptite crystals on the surface, placing it under very high compressive stress (2).

Crystallization of glasses by controlled heat treatment to form a fine grain structure can also increase strength (2). A nucleating agent is employed to create many small nuclei leading to numerous, fine-grained crystals. These composites may be transparent, and yet crystalline enough to stop crack propagation at grain boundaries. The crystallized glasses, also known as glass-ceramics, can be further strengthened by chemical ion exchange treatments, and these have been shown to possess strengths above 200,000 pounds per square inch even after abrasion and with less variability than with ordinary glass. These glass-ceramics can be made transparent, translucent, or opaque in selected spectral regions, by proper choice of crystal size and composition.

Besides greatly increasing the strength of glass articles, ion exchange also gives another benefit. It has been reported (5) that the chemical durability of glass, having undergone ion exchange, is in many cases, better than that of the base glass. It has been suggested that the leachability of ion-exchanged alkali oxide-alumina-silica glasses decreases due to compressive stresses at the surface.

Structural Analysis of the Ion Exchange Mechanism

According to Kistler (6), silicate glasses consist of an irregular network of silicon and oxygen atoms with very strong and highly directed bonds. Within the structure of this network may also occur certain other atoms such as aluminum which contrast with the silicon atoms in being trivalent and probably possessing bonds which are less strongly directed. Embedded in and surrounded by this very strong and elastic network are monovalent and divalent ions which represent points of mechanical weakness in the structure and the possibility of internal movement, either by migration under the influence of an electrical potential or by diffusion.

At any temperature below the annealing temperature, it is unlikely that a diffusion of atoms in the network structure of silicon, oxygen, and aluminum will take place rapidly enough to produce an equilibrium structure in an

observable time, unless the glass devitrifies. Divalent metallic ions are not known to diffuse at such temperatures, therefore, diffusion in glass is restricted to monovalent metallic ions (6).

Even though diffusion of silicon, oxygen and aluminum ions is greatly restricted below the annealing point, for temperatures above the strain point and approaching the annealing point, internal stresses within the glass are fairly rapidly relieved. This is accomplished as the angles between adjoining silicon-oxygen tetrahedral units sharing a common oxygen atom change without disrupting the individual silicon-oxygen bonds.

When a glass cools from its melt, each alkali ion finds itself encased in a silicate network that conforms to its ionic diameter (6). Any diffusion of these ions must be over strong potential barriers, placed on it by the surrounding network ions and electroneutrality requires that, except for a very few ions per unit volume, each cavity vacated by an ion must shortly be filled by another ion of the same electric charge. Below the strain point, if the only ions present near the vacated site are of a different species, the network will have to stretch if the ion is larger, or be put under tension if the ion is smaller. Above the strain point, the network will readjust to an equilibrium state as diffusion takes place.

Since one ion cannot move into a new position until the ion ahead of it has moved out, the mobility of an ion must be strongly dependent on the other ions in the glass (6). Therefore, both the composition of the glass and the foreign alkali ions introduced into the structure of this glass, effect the rate of diffusion. If a specimen of glass is placed in a mixture of monovalent metallic ions, the diffusion of one of these ion species must depend on the others present. One ion species will always diffuse preferentially.

At high ion concentrations, the paths of diffusion into the glass may become saturated at or near the surface of the glass. When saturation occurs, any increase in the number of available foreign ions will have little or no effect on the rate of diffusion (6).

Since the rate of diffusion is dependent, up to a certain point, on the concentration of the foreign alkali ions available, it is desirable that an excess of these ions be present at all times. Because of this, molten salt baths are often used. Since monovalent ions are always desired and the salts must melt below the strain point of the glass, nitrate salts are usually employed. These salts are melted and the temperature is stabilized to maintain the molten state. Melting points for the alkali nitrates range from 507° F. for lithium nitrate to 633° F. for potassium nitrate (7).

The rate of diffusion is also effected by temperature; however, there are restrictions on the temperatures which can be used (8). Since the success of ionic diffusion strength increases depends on the increase of compressive forces in the surface layer of the glass, the temperatures used must be below the annealing temperatures of the particular base glass where large ions are to be exchanged for smaller ions. If the temperature reaches the annealing range, the forces set up will be almost immediately relieved by a reordering of the network structure. This places a restriction on the melting point of the salt bath. In the case of small ions being exchanged for larger ions in the base glass, the melting point of the salt does not pose such a problem.

When nitrate salt baths are used, the upper limit of temperatures is also set by the thermal stability of the salt (8). The thermal decomposition of alkali nitrates above a certain temperature causes chemical attack to the glass surface.

Since the rate of diffusion approximately follows Fick's Diffusion Law (6), (doubling the depth of diffusion requires a four fold increase in time), the thickness is greatly dictated by time. However, since the layer must be thick enough to protect the glass from abrasion, some type of compromise must be made. It is generally accepted (6), that a thickness of fifty microns is a minimum.

Strengthening by ion exchange can be carried out on ordinary soda-lime glass, using potassium salts. In this process, potassium ions (ionic radius 1.33 Å) replace sodium ions (ionic radius 0.98 Å) in the base glass. It has been generally concluded (6) that the time for diffusion is too long to be practical for typical industrial applications. Time can be decreased by increasing temperature, but a point of diminishing returns results. As at higher temperatures, the silicate structure readjusts faster to relieve stresses.

Fortunately, ion diffusion in other glasses is much higher than in the soda-lime systems. The introduction of alumina greatly speeds up the diffusion process (6). No entirely satisfactory explanation for this has been offered, but Burggraaf and Cornelissen (9) have pointed out that it may have something to do with the well-known effect of alumina in decreasing the number of non-bridging oxygen ions in the network.

Exchanging (6) sodium (ionic radius 0.98 Å) for lithium (ionic radius 0.68 Å) ions is much more effective than exchanging potassium (ionic radius 1.33 Å) for sodium (ionic radius 0.98 Å). This is due to the small ionic sizes involved in the sodium for lithium exchange.

The potassium ion occupies a volume so much larger (about 2.5 times as large) than the sodium ion that if a portion of the sodium ions in a soda-lime glass are replaced

by potassium, a noticeable expansion should occur. Similarly, if lithium replaces sodium (lithium has one-third the volume of sodium), a significant contraction should take place. It is anticipated, then, that exposing a soda-lime glass to a melt of either potassium or lithium salt at a temperature where diffusion can take place should produce very large stresses between the surface of the glass and the interior. Compressive strength of glass is much greater than tensile strength and it can be anticipated that exposure of a soda-lime glass to a potassium salt bath does not destroy a glass as rapidly as exposure to lithium ions. Dipping glass into a lithium nitrate melt for only a few minutes produces a dense white matte surface which microscopic examination shows to be covered by innumerable cracks (10).

Because of cracks on the initial glass surface, micro- and macrodiscontinuities, the exchange of Li^{+1} for Na⁺¹ in the glass surface does not proceed homogeneously over the contact phase between glass and melt. Channels and depressions may form in the glass, and in this manner the process of diffusion is enhanced. The formation of depressions causes an increase in the surface area of the glass. On cooling, the glass develops a rough surface with cuts and cohesion cracks (11).

It has been found (1) that the Li⁺¹ for Na⁺¹ ion exchange takes place so rapidly that there is no problem

in obtaining sufficient compression layer depths in a reasonable amount of time. For example (4), at 400° C., the rate of Na⁺¹ - Li⁺¹ exchange is about ten times greater than that of K⁺¹ - Na⁺¹ exchange. Therefore, in order to obtain adequate depth of exchange, an article made of soda-alumina-silica glass must be treated in the molten potassium nitrate at temperatures $100-150^{\circ}$ C. higher than the corresponding lithia-alumina-silica glass which is treated in molten sodium nitrate.

The rapid diffusion of Na⁺¹ for Li⁺¹ and the resulting strength increase, although easily achieved in the laboratory is limited by economic factors for commercial application, except for specialty products, due to the high cost of lithium raw materials relative to sodium batch components.

CHAPTER III

PROCEDURE

Introduction

A typical commercially available container type glass (Kimble Type R- 6^*) having the composition listed in Table 1, was chosen as a base glass for all experimental work. Samples of this glass were treated by several different ionic exchange methods using both lithium and potassium salts. The following sections will include a description of pre-exchange sample preparation, techniques involving both leaching in molten salt baths and the spraying of aqueous solutions on the surface of glass samples, strength determinations, diffusion studies, and the influence of surface condition on strength.

Pre-Exchange Sample Preparation

As shown in Table 1, type R-6 glass contains approximately 16 weight per cent of exchangeable, monovalent, alkali ions. Some thermal properties of this glass are listed in Table 2.

^{*}A superior soda-lime glass for laboratory ware, containers and tubing where chemical durability requirements are not strict. Complies with Federal Specification DD-G-541 for Type II glass.

Constituent	% of Composition
Si0 ₂	68.0%
B203	1.5%
Al ₂ ⁰ 3	3.0%
BaO	2.0%
CaO	5.5%
MgO	4.0%
Na20	15.5%
K ₂ O	0.5%

Table 2. Physical Properties of Kimble Flint Glass (Type R-6)

Property	Temperature (^o F.)
Strain Point	900 ⁰
Annealing Point	970 ⁰
Softening Point	1290 ⁰

In order to insure maximum possible uniformity, a large quantity of this glass in four foot canes, approximately five millimeters in diameter from a single lot was used throughout the experiment. The canes were cut into six inch test specimens and using an oxy-acetylene torch a bead was formed at one end of each rod by which they could be suspended inside a furnace during treatment. Both plain rods and rods with a bead were tested to see if the nonuniform heating used to form the bead had any affect on the strength. It was determined that intense heating of one end of each rod, although causing severe stresses to be set up in the immediate area, had no measurable effect on modulus of rupture values determined from three point loading applied near the center of the rod.

The condition of the surface has a significant effect on the measured strengths of rods broken in this manner. For any strengthening process to be of practical importance (1), it is necessary that the resulting strength be retained during service of the article. For this reason, test rods are usually subjected to scratch or tumble abrasion to simulate actual "in use" conditions prior to determining the strength. Strength values thus obtained are usually lower than those for unabraded samples but with less spread between the individual values than for unabraded samples. What is more important is that these strength values more nearly reflect the glass strength during later use where

abrasion is almost certain to occur. The majority of rods tested in this investigation were not subjected to such standard abrasion, but no special precautions were made in handling the rods either before or after treatment. It can therefore be assumed that the rods were subjected to normal abrasion through contact with adjacent rods and apparatus, and through contact with the atmosphere, water, and handling.

No effort was made to improve the glass surface prior to treatment for the majority of rods. It is assumed that if any of the techniques discussed in this paper were incorporated into production line facilities, treatment would be given to rods soon after fabrication and which had virgin surfaces. This might change the magnitude of strength increases reported here, but it should not seriously alter any trends noted.

A sample group of 25 "as received" rods was broken using three point loading on an Instron Universal Test Machine and the modulus of rupture was determined for each rod. This group served as a standard for comparison with later groups of treated rods.

Molten Salt Baths

Following examples found in the literature, a variety of treatments were tried in which sample groups of rods were leached in molten salt baths. Rods were suspended by their head from a 304 stainless steel place which had holes drilled

in it and submerged in a one liter stainless steel beaker containing the molten salt bath. The rods were leached at severaltemperatures for varying lengths of time in a variety of potassium and lithium salts. In some cases, surface attach was so rapid and severe that tests were discontinued after a short period of time. In other cases, strength increases were noted and tests were continued up to as long as 15 hours. The salt bath compositions and experimental conditions for these experiments are summarized in Table 3. A detailed discussion of the particular temperatures, times of leaching, and the particular salts used will be found in the results section. Some properties (7) of the various salts used are given in Table 4.

An electric globar furnace was used throughout the experiment. A chromel-alumel thermocouple was connected to a Leeds and Northrup strip-chart recorder for continuous temperature monitoring. The thermocouple was sealed inside a borosilicate glass tube to protect it from the salt vapors. The recorder was checked periodically with a potentiometer to insure accurate temperature measurement. The furnace reached equilibrium quickly and the temperature remained essentially constant $\pm 10^{\circ}$ F. over indefinite periods of time.

During all experiments, the beaker was first filled with salt crystals and heated until melting took place. Additional salt was then added to fill the beaker to within

Experimental Time, Temperature and Compositions Investigated for Leaching in Molten Salt Baths. Table 3.

111 HOTICH 104	• 0110 001				-	
Salt Bath Composition	Temperature (^O F.)			Time (Minutes)		
KN03	675	120	240	360	480	720
KN03	825	120	240	360	480	720
KN03	1000	120	240	360	480	ı
KN03	750	540	ì	ı	ī	ĩ
EINO3	600	150				
LINO3	1000	1	C)	Ŋ		
$_{\rm L1NO3}$ + KHSO ₄	(See Appe	ndix E)				
50% L1NO ₃ + $50%$ NaNO ₃	745	5				
50% Lino ₃ + $50%$ Nano ₃	540	12				
50% Lino ₃ + $50%$ Nano ₃	435	Ъ	10	20	30	
50% N1NO ₃ + $50%$ NaNO ₃	405	10	20	30		
LICL	1150	5	10			
50% L1C1 + 50% NaNO ₃	650	Ŋ			ii.	

Table 3. Continued

lt Bath Composition	Temperature (^O F.)		ţΜ)	Time nutes)		
Licl + 50% NaSO4	800	Ъ		2		
Lino ₃ + 95% nano ₃	350	ß	10	20		
$LINO_3 + 90\% NaNO_3$	350	2	10	20		
Lino ₃ + 95% $\text{NH}_{\mu}\text{NO}_3$	310	20				
1103 + 90% NH + 103	310	20	45	60	75	90
$1100_3 + 75\% \text{ NH}_4\text{NO}_3$	310	18	36	54	72	90
$L_{1}NO_3 + 50\% NH_4NO_3$	335	18	36	60	75	
$L_{1}NO_3 + 25\% NH_4NO_3$	445	18	36	54		240
LINO ₃ + 40% NH4NO ₃	400	30	60	120	240	006
)		2				

Table 4. Properties of Various Salts Used

Salt	Melting (^O C.)	Point (^o F.)	Molecular Weight	Density (gms/cc)	Boiling E (°c.)	Point (^S F.)
Potassium Nitrate (KNO ₃)	334	633	11.111	2.11	a [*] 400	d* 752
Sodium Nitrate (NaNO ₃)	306.8	584	84.99	2.26	d* 380	d* 716
Lithium Nitrate (LiNO ₃)	264	507	68.94	2.38	d* 600	d*1112
Lithium Sulfate (Li ₂ SO4)	856	1573	109.94	2.22	860	1580
Potassium Bisulfate (KNSO ₄)	d [*] 190	a [*] 374	120.17	L	d*1/2K2S	+ 200
Lithium Chloride (LiCl)	614	1137	42.39	2.07	1325	2417
Ammonlum Nitrate (NH_4NO_3)	169.6	337	80.04	1.725	210	410
Potassium Pyrosulfate (K ₂ S ₂₀₇)	300	572	254.33	2.51	ۍ ۲	יש* ס

*d = decomposes

one inch of the top. In all cases, the molten salt was allowed to reach equilibrium before immersion of the glass rods.

After leaching, the glass rods were removed from the furnace and allowed to air cool. Warm tap water was used to remove salts adhering to the rods. The rods were then rinsed in distilled water and allowed to dry before testing.

Spraying Techniques

During later stages of the research, saturated aqueous solutions of several salts were sprayed on the surface of rods preheated to approximately 300°F. in a small electric furnace. Again the rods were suspended from a stainless steel plate and rotated as a fine mist of the salt solution impinged on the surface. On hitting the hot surface of the rods, the water instantly evaporated, leaving a continuous coating of the salt adhering to the rods.

The coated rods were heat treated at temperatures above the melting points of the various salt coatings. Table 5 summarizes the temperatures, heat treating times, and various salts used in these experiments.

After heat treatment, the rods were removed from the furnace and cleaned using the procedure outlined in the molten salt bath section.
Table 5.	Experimental T Treatment Afte	ime, Temperat r Spraying Wi	ure and th Satu	Composi rated Aq	tions ueous	Investige Solutions	ated fo.	r Heat	
Saturated Solutic	Aqueous on	Temperature (oF.)			im)	Time nutes)			
LINO3	2	600	15	30 30	60				
LiN03		1050	540						
KN03		660	15	30	60	120	240	720	1440
EONN 3		740	15	30	60	120	240	720	1440
KN03		800	15	30	60	120	240	720	1440
KN03		850	15	30	60	120	240	720	1440
KN03.		1000	15	30	60	120			
×					42 	14 17			

Determination of Strength

All rods were broken on an Instron Universal Testing Machine using a three point loading jig at a crosshead speed of 0.5 cm. per minute and the modulus of rupture calculated using the following equation:

$$M.R. = \frac{8PL}{\pi D3}$$
(1)

where:

M.R. = Modulus of Rupture in pounds per square inch.

P = Breaking load in pounds.

L = Length of span in inches.

D = Diameter of the rod at the point of fracture. Rod diameters were measured with standard micrometers measuring to \pm 0.0001 inches. An attempt was made to measure all rods exactly at the point of fracture; however, on fracture, some rods broke in many small pieces and the exact point of breakage was difficult to determine. Several of the "as received" rods were measured at several points and the diameter did not vary more than 0.0005 inches on any one rod. Therefore, for rods not measurable exactly at the break, the error introduced was probably small.

Although all rods were broken in the same manner throughout the experiment, the technique used did not meet the ASTM requirements relating to span length and loading rate. Since relative strength increases or decreases were

all that was desired, this does not pose any serious problem. The reader should keep in mind, however, that the values tabulated in the data should be related to the "as received" standards and not to absolute values for the strength of this type glass which might be available in the literature.

Diffusion Studies

Flame photometry was used to trace the extent of ion exchange for those techniques which produced substantial increases in the modulus of rupture. In this experiment, treated rods were etched in a 12% hydrofluoric acid solution. The depth of the sample removed was determined for each rod by measuring the diameter before etching and noting the weight of the material removed. By removing successive layers of rod and examining for Na⁺¹ and Li⁺¹ of K⁺¹, it was possible to determine the depth to which exchange was achieved.

Industrial Applications

Throughout the experimental work the primary objective was to develop a technique which could be adapted easily and inexpensively into existing production line facilities. As stated in the literature, it was soon verified that the expense and time involved in strengthening soda-lime glass by replacing the Na⁺¹ in the surface layer with K^{+1} would be prohibitive for the majority of high volume production

involving this type of glass. Considerable effort was therefore spent in investigating possible techniques for Li⁺¹ ion exchange above the strain point of the glass.

After investing considerable time in experimental techniques for Li^{+1} ion exchange, and gaining only extremely limited success, attention was again focused on K^{+1} ion exchange. The technique of spraying rods with aqueous solutions of potassium salts was a result of this. Although all rods examined earlier in the experiment were sprayed after preheating to 300°F , an investigation was made to determine the maximum allowable preheat temperature to see if this technique could be applied to objects cooled in a lehr.

A limited effort was also made to look at strength increases possible using this technique on a glass having a virgin surface. Glass rods were treated for three minutes in a solution of 42 per cent by volume of HF, 50 per cent by volume H₂SO4, and 8 per cent by volume H₂O. After removal from the etching solution, some of the rods were rinsed in distilled water and immediately tested for modulus of rupture determination with a minimum of handling. Another group of rods was rinsed, preheated to the maximum allowable temperature, and sprayed with a saturated solution of potassium nitrate. These rods were then heat treated under conditions of temperature and time which gave maximum strength increases, as determined through earlier

experimentation.

After heat treatment, half of the rods were tested for modulus of rupture. The remaining half, along with an equal number of "as received" rods were abraded for thirty seconds by rolling the rods over a piece of glass coated with 120 grit silicon carbide. The two groups were then broken and the modulus of rupture determined. This was used to determine the magnitude of residual strength increase for the group of rods having undergone potassium⁺¹ ion diffusion.

CHAPTER IV

RESULTS AND DISCUSSION

The primary objective of this research was to study methods of strengthening a typical soda-lime glass through the exchange of monovalent, alkali ions at or near the surface of the glass. The exchange of both K⁺¹ and Li⁺¹ for the Na⁺¹ present in the soda-lime glass composition was investigated using primarily two techniques. The first of these involved leaching the glass rods in a variety of molten potassium and lithium salt baths. Also, saturated aqueous solutions of several salts were sprayed on the surface of rods and the rods were heat treated above the melting points of these salts. The effect of these treatments on the strength of glass rods was evaluated by three point modulus of rupture determination. A discussion of techniques and results will follow.

The combined results of these studies were used in considering the potential of ion exchange as a means of strengthening soda-lime glass articles in existing production line facilities.

Ion Exchange Using Molten Salt Baths

Initially, a sample group of twenty-five "as received" rods was broken and the modulus of rupture was determined for each rod. These results are listed in Appendix A. The average modulus of rupture for this group of rods was 21,600 pounds per square inch. This value was used throughout the investigation as a basis on which to compare treated rods. (It should be noted that this value does not agree with values found in the literature for this type of glass. This is due to the fact that ASTM procedures were not followed in breaking the rods. Reference is made to the procedure section where the technique for breaking rods is discussed.) Potassium Ion Exchange

The first series of experiments was run using pure molten potassium nitrate (KNO₃) as the salt bath. Sample groups of approximately 20 rods each were leached from two hours to twelve hours in baths at 675°F., 825°F., and 1000°F. The average modulus of rupture for each of these combinations is given in Table 6 and is shown graphically in Figure 3. Tabulated data for the individual rods in each group is given in Appendix B, Table 12.

The rods leached in KNO₃ at 675[°]F. became stronger with increasing leaching time, up to the maximum tested time (12 hours). This increase in strength was most rapid during the initial four hours and then slowed down. Assuming that for relatively thin surface layers, the

Soda-Lime Gla	s Rods Leached in Molten KNO3.	
Leaching Time	Leaching Temperature (^O F.)	
(Hours)	675 325	1000

1000	21,600	44,700	31,400	18,000	25,500	1
aching Temperature (VF.) 825	21,600	54,800	55,500	54,000	53,800	53,300
	21,600	34,400	45,800	49,900	56,500	61,300
aching Time (Hours)	0	CJ	4	9	8	12

Average Room Temperature Modulus of Rupture (Pounds per Square Inch) for Table 6.

Figure 3. Average Modulus of Rupture as a Function of Time for Soft Glass Rods Leached in KNO_3 at 675°, 825°, and 1000°F.

increase in strength is directly proportional to the thickness of the layer of K⁺¹ ion exchange, then according to Fick's Law of Diffusion, in order to double the strength increase the leaching time would have to be multiplied by a factor of four. From Table 6, it can be seen that the strength increased about 11,000 pounds per square inch for the two hour period from two to four hours of leaching at 675°F. The increase in strength during the next eight hour period was about 14,000 pounds per square inch. When the magnitude of the calculated standard deviation of these measurements is taken into account, the above assumption (that strength increase is directly proportional to the thickness of exchange as explained by the Fick model) gives a reasonable estimate of the relation between strength increase and time, at least during early stages of the diffusion process.

Table 6 shows that the rods leached in KNO₃ at 825^oF. underwent a large strength increase of about 33,000 pounds per square inch during the first two hours. However, at four hours the strength had leveled off and was decreased slightly thereafter. This is probably the result of two independent effects. At this elevated temperature, approaching the strain point of the glass, compressive forces built up at the surface of the glass are certainly going to be gradually relieved by a reorientation of bond angles within the glass structure. Eventually an equilibrium will be

between compressive forces built up through diffusion and the relieving of these forces by internal atomic movement. It should also be noted that about 752°F., KNO₃ begins decomposing into oxides which cause surface attack. This would counteract strength increases due to ion diffusion.

At 1000^oF. there was initially a moderate strength increase, but this was quickly offset by surface attack from decomposition products.

The results suggested an optimum temperature for K^{+1} ion exchange would be between 675 and 825°F. A temperature of 750°F. was selected to verify this. This temperature is just below the decomposition point for KNO₃ and therefore the highest temperature at which strength increases resulting from ion diffusion would not be at least partially offset by surface attack. These results are tabulated in Appendix B, Table 13. The rods treated for four hours at 750°F had an average modulus of rupture of 57,600 pounds per square inch. This represents a 167 per cent increase in strength over the "as received" rods. The only timetemperature combination tested which gave a larger strength increase was at 675°F. and here twelve hours of leaching were required instead of four to reach the same level of average strength.

Flame photometry was used to measure the change in alkali content in molten KNO_3 at $750^{O}F$. to determine the depth and degree of diffusion of potassium⁺¹ ions into the

glass rods. The data collected is given in Table 7.

Table 7 shows that 97.9 per cent of the monovalent alkali ions present in the base glass are sodium⁺¹ and 2.1 per cent are potassium⁺¹. For rods leached 15 minutes and 2 hours only limited exchange took place and this was essentially confined to the outermost 10 microns of the surface. For rods leached for 20 hours, considerable exchange was noted. Fifty per cent of the sodium⁺¹ ions were replaced by potassium⁺¹ in the outer 11 microns of surface. Significant exchange extended down to a depth of about 20 microns but below 20 microns, little increase in the amount of potassium⁺¹ was found.

Lithium Ion Exchange

A pure lithium nitrate bath was used in an attempt to exchange lithium⁺¹ ions for sodium⁺¹ ions in the base glass. Initially a bath temperature of 1000°F. was used since treatment above the annealing point of the glass was desired. At this temperature, extreme surface attack was evident after only five minutes of leaching. Preheating the rods to 1000°F. and immediately transferring them to the bath, also at 1000°F., failed to reduce the attack. Examination of the surface of rods treated in this manner, using both reflected light and scanning electron microscopes, revealed severe surface attack, Figure 4. A cross sectional view of a rod leached in lithium nitrate at 1000°F. for 12 hours, Figure 5, shows that the attack extends at least a millimeter into the glass

Time of Leach	Surface Analy	Layer zed	Per Cent of Monovalent, Ions Present	Total Alkali t
			%Na ⁺¹	%K+1
"As Received" (No Leach)	0-22 M	icrons	97.9	2.1
15 Minutes	0-11 M	icrons	96.3	3.7
	11-36 M	icrons	97.6	2.4
	36-49 M	icrons	97.7	2.3
2 Hours	0-7 M	icrons	95.2	4.8
	7-16 M	icrons	97.2	2.8
	16-28 M	icrons	97.5	2.5
	28-51 M	icrons	97.7	2.3
20 Hours	0-11 M	icrons	48.4	51.6
	11-19 M	icrons	88.4	11.6
	19-44 M	icrons	97.5	2.5

Table 7. Flame Photometry for Rods Leached in Molten KNO_3 at 750 F.

Figure 4. Scanning Electron Micrograph Showing Surface Attack of Soda-Lime Glass Leached in LiNO₃ at 1000°F. for 5 Minutes (X5000).

Figure 5. Photomicrograph Showing a Cross Section of Soda-Lime Glass Rod Leached in LiNO₃ at 1000°F for 12 Hours (X60). rod.

X-ray powder diffraction showed the presence of several lithium silicate and silica phases in attacked surfaces. It is interesting to note that the primary phases found were $\text{Li}_2\text{Si}_2\text{O}_5$ and α -cristobalite. Although β -eucriptite $(\text{Li}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot2\text{SiO}_2)$ was mentioned in the literature as a primary devitrification product on the surface of glass leached in LiNO_3 , none was detected. It is assumed that this is due to the limited amount of aluminum present in the base glass.

Flame photometry analysis of samples leached in LiN0₃ showed that as far down into the glass as cracking and devitrification occurred, essentially 100 per cent of the sodium⁺¹ present in the base glass had been replaced by lithium⁺¹.

Etching the glass rods in a combination of hydrofluoric and sulfuric acids prior to heat treatment in contact with molten LiNO₃ failed to reduce surface attack. It was hoped that acid etching would improve the glass surface enough to prevent uneven ion exchange from causing surface attack. Evidently this is not possible, since removing as much as 0.5 millimeter of the surface failed to prevent rapid and severe attack.

Mixed Alkali Ion Exchange

Several experiments were run with mixtures of ${\rm LiNO}_3$ and ${\rm NaNO}_3$ to see what effect reducing the lithium

concentration would have on surface attack. It was hoped that the presence of large amounts of $NaNO_3$ in the bath would slow the diffusion process down to the extent that the surface attack could be avoided. A 50 per cent LiNO2 and 50 per cent NaNO3 salt bath was first tried. At 405°F. there was no surface attack visible under the reflected light microscope after 10 minutes of leaching. After 20 minutes small areas of surface attack became evident. At 30 minutes, a fairly complete pattern of cracks covered the surface of the rods. As the temperature of the bath was increased, the attack became significantly more rapid and severe. At 540°F., there was well-developed surface attack after 12 minutes of leaching. At 745°F., only two minutes were required to produce severe attack. This agrees with the results of Botvinkin and Denisenko (11) who found that the surface cracking evidently occurs on cooling the glass, due to unequal diffusion rates around surface cracks and imperfections, and for a given degree of exchange, is not effected by the composition of the salt bath. Using baths containing 5 weight per cent LiNO3 and 95 weight per cent NaNO3, and exposing rods for only 5 minutes at 350°F. caused noticeable surface attack and great decrease in the modulus of rupture compared to the as received rods.

Several other combinations of alkali salts were used in forming molten salt baths for leaching. All combinations tried, except for those involving NH4NO3, a discussion of

which will follow, caused varying degrees of surface attack after short periods of exposure to glass rods. A discussion of these studies is summarized in Appendix C.

A series of experiments was carried out using NH_4NO_3 and $LiNO_3$ baths. The NH_4NO_3 was used to lower the melting point of the bath to see if surface attack could be prevented by leaching at lower temperatures. Rods were leached in a 5 weight per cent $LiNO_3$ - 95 weight per cent NH_4NO_3 solution for twenty minutes at $310^{\circ}F$. and no attack resulted. For a 10 weight per cent $LiNO_3$ - 90 weight per cent NH_4NO_3 solution at $310^{\circ}F$., no attack was noted after 1.5 hours of leaching. Rods treated in 25 weight per cent $LiNO_3$ - 75 weight per cent NH_4NO_3 and 50 weight per cent $LiNO_3$ - 50 weight per cent NH_4NO_3 solutions at $335^{\circ}F$. for 1.5 hours showed no attack.

Rods were leached in a 60 weight per cent $\text{LiNO}_3 - 40$ weight per cent NH4NO₃ solution at 405°F . for up to 15 hours and no surface attack occurred on any of the rods submerged in the salt baths. It is interesting to note, however, that certain areas of these rods above the surface of the bath showed significant cracking. It is assumed that the vapor pressure of the LiNO₃ is substantially higher at this temperature than that of NH4NO₃ and it has already been shown that LiNO₃ in combination with other salts cause severe surface attack in short periods of time at this temperature.

A sample rod treated in the $LiNO_3$ - NH_4NO_3 bath at

 405° E for 15 hours was analyzed for Li⁺¹ ion exchange using atomic absorption. The outer 20 microns contained 11.6 per cent Na⁺¹ and 0.0516 per cent Li⁺¹. The outer 175 microns contained 11.2 per cent sodium⁺¹ and 0.0103 per cent Li⁺¹. It can be easily shown that the higher percentage of Na⁺¹ in the outer 20 microns is due to an excess of sodium⁺¹ on the surface of the glass. This indicates that there was little replacement of Li⁺¹ for Na⁺¹ even after 15 hours of leaching at this temperature and essentially all of the exchange took place in the outer 20 microns. The slow rate of Li⁺¹ ion diffusion into this sample was probably due to the low leaching temperature and the large, polarizable NH₄⁺¹ ion blocking the paths of diffusion at the surface of the glass.

The $\rm NH_4NO_3$ salt is very unstable and beging to boil just above 405°F. so increasing the temperature to speed up diffusion was not possible. Thus, at 405°F. the diffusion of lithium⁺¹ in LiNO₃ - NH4NO₃ systems is so slow that it would be infeasible even if devitrification and surface cracking could be avoided.

Ion Exchange Using Saturated Aqueous Solutions

An alternative approach for industrial application would be to spray the surface of glass with an aqueous solution of alkali salts and then heat treat the rods above the melting point of the salt. This also appears to be more

feasible for incorporation into existing production line facilities.

Lithium Ion Exchange

A saturated aqueous solution of $LiNO_3$ was prepared and sprayed on the surface of glass rods preheated to $300^{\circ}F$. in a small electric kiln. On striking the heated surface of the glass rods, the water evaporated leaving a continuous coating of the nitrate salt adhering to the surface of the rods. The coated rods were then transferred to a Globar furnace in equilibrium at $600^{\circ}F$. Severe surface attack was evident on rods heat treated for only two minutes. Scanning electron micrographs, Figure 6, show the crack pattern on the surface of the rods after 15 minutes.

Heat treating such rods well above the strain point failed to improve the surface to any noticeable degree. Further heat treatment to temperatures above the softening point of the glass also failed to improve the surface of the rods. Evidently as the surface of the glass became fluid, the surface cracks were sealed over, thus trapping small amounts of LiNO₃ salt inside. Continued heating caused melting and vaporization of these salts which caused the diameter of the rods to increase greatly. After cooling, microscopic examination showed that this was due to a layer of bubbles trapped just below the surface of the glass.

Rods sprayed with an aqueous LiNO_3 solution and heat treated at 1050° F., well above the strain point of the glass,

also showed surface attack. Evidently this higher temperature only speeded up the attack.

Potassium Ion Exchange

A saturated aqueous solution of KNO_3 was prepared and sprayed on a series of glass rods preheated to 300°F . These rods were heat treated at temperatures ranging from 660°F . to 1000°F . and for times varying from 15 minutes to 24 hours. The modulus of rupture was determined for 20 to 25 rods for each combination of test conditions. These results are tabulated in Appendix D. The average modulus of rupture values are listed in Table 8 and plotted graphically in Figure 7.

The trends found here were closely correlated to those found for rods leached in KNO_3 molten salt baths. The groups heat treated at 660°F. showed increasing strength with time of leaching. The maximum strength obtained over the time span covered occurred at the maximum leaching time (24 hours). This is a strength increase of 38,500 pounds per square inch or an 85 per cent increase over "as received" rods. It can be seen from Figure 7 that nearly 90 per cent of this strength increase had been reached after only four hours. This would seem to indicate that for spraying, after four hours of leaching, the available K⁺¹ ions contained in the salt adhering to the surface had been depleted. When an excess of available K⁺¹ ions are available, as in the case of large molten salt baths, a large strength increase occurs

age Modulus of Rupture (Pounds per Square Inch) for Soda-Lime Glass, Sprayed with a Saturated Aqueous Solution of KNO ₃ and then Heat ted.
Average Rods Sp Treated
Table 8.

E		ormoll	(⁰) an 11 an		
Time (Minutes)	660	740 740	880	850	1000
0	21,600	21,600	21,600	21,600	21,600
15	25,500	30,800	30,700	39,100	26,800
30	27,900	31,900	32,700	36,200	23,800
60	28,900	34,800	39,400	35,900	25,700
120	27,500	37,700	38,800	34,900	20,900
240	35,100	42,500	31,900	32,900	t
720	34,200	42,100	28,800	27,300	I
1440	38,500	41,100	27,400	24,300	ĩ

Average Modulus of Rupture As A Function of Time for Soda-Lime Glass Rods Sprayed With a Saturated Solution of KNO_3 and Heat Treated Above M.P. of Salt. Figure 7.

after four hours of leaching (see Figures 3 and 7). Comparing similar temperatures ($650^{\circ}F$. vs. $675^{\circ}F$.) at the 12 hour mark, the rods leached in the molten salt bath had more than twice the strength increase shown by those having only the surface coated with KNO₂ salt.

For the rods sprayed with KNO_3 and heat treated at 740°F. , the maximum strength increase occurred after four hours. The average strength of 42,500 pounds per square inch represents approximately a 100 per cent strength increase over "as received" rods. For heat treating times greater than four hours, Figure 7 shows a slight decrease in average strength values. This decrease could easily be due to normal statistical variations. Standard deviations calculated for groups in this region are around 7,000 pounds per square inch. Since 740°F. is below the decomposition temperature for KNO_3 , this decrease in strength cannot be attributed to surface attack by decomposition products; however, it could be due partially to readjustment of atomic positions in the structure, thus relieving some of the stress between surface and interior.

Rods treated at 800° F. showed a maximum strength after one hour and for those treated at 850° F. after only 15 minutes. At neither of these temperatures, did the maximum average strength reach that obtained for rods treated at 740° F. At this point, temperatures were above the decomposition temperatures for the KNO₃ salt and the limited

strength increase can be explained by the countereffect of surface attack.

Here again, the maximum average strength for sprayed rods was only half that for rods leached in a molten KNO3 salt bath. It can be seen that the rate of strength increase during the initial hour of treatment was very similar for sprayed and leached rods (see Figures 3 and 7). From this and other comparisons, it appears that surface attack by decomposition products is more prevalent in the vapor phase than in the liquid. The nitrates have rather high vapor pressures at elevated temperatures and treatment above 752°F. for extended periods of time probably reduces the amount of salt adhering to the surface of the rods substantially. After 12 hours of heat treatment, the average strength of rods sprayed with KNO2 and treated at 800°F. had dropped to approximately 28,000 pounds per square inch or only slightly above the "as received" strength (Figure 7). For rods leached in KNO_3 molten salt baths, after 12 hours, the strength had dropped only slightly to 53,000 pounds per square inch (Figure 3).

For rods treated at 1000^oF. strength increases reached a maximum almost instantly and then rapidly dropped off to below the "as received" strength (Figure 7). Here, not only was the temperature above the strain point of the glass, but surface attack was plainly evident after one hour

of treatment. To verify this attack by the vapor phase, a group of "as received", unsprayed rods were suspended above a KNO_3 molten salt bath, but not in contact with it, and treated at $1000^{\circ}F$. After only one hour of treatment, removal from the furnace, cooling, and washing, the rods were covered with a dense white matte coating, similar in appearance to the rods attacked by $LiNO_3$. Figure 8 shows scanning electron micrographs of the surface of one of these rods.

It again appears that a temperature of approximately 750° F. would be optimum for treating rods sprayed with an aqueous solution of KNO₃. This is the maximum temperature possible, therefore allowing maximum diffusion rates, without exceeding the thermal decomposition temperature of the KNO₃ salt.

Flame photometry studies run on rods sprayed with KNO_3 and heat treated at $750^{\circ}F$. are summarized in Table 9. This table shows that although some exchange did take place in rods heat treated for 15 minutes and 2 hours, it was confined to the outer 10 microns of surface. For rods heat treated for 20 hours, there is evidence that exchange occurred at least to a depth of 25 microns, to some limited degree, but probably not to the extent required to develop significant compression of the surface. The high sodium⁺¹ content of the outer 10 microns of rods heat treated for 20 hours and no explanation can be offered.

Time of Leach	Surface Layer Analyzed	Per Cent of Monovalent, Ions Present	Total Alkali
52		%Na ⁺¹	%K ⁺¹
15 Minutes	0-8 Microns	93.7	6.3
	8-17 Microns	97.5	2.5
	17-64 Microns	97.6	2.4
2 Hours	0-10 Microns	91.1	8.9
	10-25 Microns	97.2	2.8
	25-48 Microns	97.9	2.1
20 Hours	0-11 Microns	97.9	2.1
	11-25 Microns	96.5	3.5
	25-40 Microns	96.8	3.2
	40-63 Microns	97.6	2.4

.

Table 9	Flame	Pho	otometry	Dat	a	for	Rods	Sprayed	with	KNO3
	and He	eat	Treated	at	75	O'F.	8			2

Industrial Applications of Ion Diffusion For Strengthening Soda-Lime Glass

After extensive experimentation, no acceptable method of Li^{+1} ion exchange was found for strengthening soda-lime glass. Evidently, as stated in the literature, large amounts of Al_2O_3 are required in a soda-lime glass to prevent surface attack during the $Na^{+1} - Li^{+1}$ ion exchange. Therefore, this discussion will be limited to $Na^{+1} - K^{+1}$ exchange.

For exchange using KNO2 salt, whether sprayed on the glass surface or melted to form a molten salt bath, 750°F. appears to be the optimum temperature for treatment. The depth of exchange was determined using diffusion studies where flame photometry was used to measure the change in alkali content of the glass. These studies showed that treatments using molten salt baths gave a much thicker layer of diffusion than when salt was sprayed on the surface of the glass, and heat treated above the melting point of the salt. Therefore, increased or more extensive compressive forces are present on the surface of soda-lime glass leached in molten salt baths. Of course the thicker layer of compression is desirable since, if abrasion from subsequent handling penetrates the layer in which exchange has taken place, its effect is nullified. However, the great cost of containing and maintaining large molten salt baths for treatment will probably remain intolerable for any but limited and specialized production items.

Therefore, the approach of applying KNO3 to glass surfaces by spraying, followed by heat treatment at elevated temperatures, above the melting point of the salt and approaching the temperature at which thermal decomposition takes place may be the only economically feasible technique. To further evaluate this technique, an effort was made to determine the maximum temperature at which the rods could be preheated before spraying with the saturated aqueous solution of KNO2 without causing thermal cracking of the glass due to the temperature gradient between the interior and surface of the rod. Obviously this would depend on the size, shape, and wall thickness of the glass body being sprayed and therefore it is impossible to assign a single quantitative number. For the 5 millimeter rods used in this study, a temperature of about 550°F. appeared to be the maximum. For thicker walled objects and for those less symmetrical in shape, the maximum temperature would obviously be less than 550°F.

From the above study it can be seen that if the KNO3 was sprayed on the surface during cooling in a lehr in a typical production line facility, the rods would have to be reheated to a higher temperature in order to speed up the rate of diffusion to a reasonable level.

One approach to increase the temperature at which the KNO_3 is applied would be to find a carrier for the KNO_3 with a lower heat of vaporization than water. This would

slow down the heat loss from the surface of the glass, and thus increase the temperature at which the KNO_3 could be applied without causing thermal shock.

If the KNO3 were sprayed on glass during the cooling process, it is assumed that the surface condition might be considerably better than for the rods tested in this study. Some surface imperfections would be present due to thermal gradients between surface and interior during fabrication and from contact with dies, molds, or extruders, but abrasion and contamination from atmospheric gases, probably the cause of a majority of serious surface flaws, would be extremely limited.

To test the possible effects of surface condition on strengths attainable and depth of diffusion, a group of rods were etched in a hydrofluoric-sulfuric acid solution. The rods were placed in the acid and gently agitated for 30 seconds, removed, and the acid washed off with distilled water. Measurements showed that approximately 200 microns were removed from the glass surface. Half the etched rods were immediately heated to 550°F. and sprayed with a KNO₃ solution. These rods were then heat treated at 750°F. for four hours.

Five rods, etched but not sprayed, were tested and their modulus of ruptures determined. Five other rods, etched but not sprayed, were abraded using 120 grit silicon carbide. The silicon carbide was spread over the surface of

a large glass sheet, wet, and the rods rolled over the surface using a tilting and rocking motion for 30 seconds. These rods were also tested and their modulus of ruptures determined.

After heat treatment the remaining rods were divided into two groups. Five rods were broken and five others were abraded in the manner described above and then broken. These results are tabulated in Appendix E and summarized in Table 10. This table shows that the strength increase of the acid-etched rods was about 62 per cent over the "as received" rods. The rods sprayed and heat treated at 750°F. showed a strength increase of 125 per cent (see Table 10) or slightly better than rods not acid-etched and treated for four hours at 740°F. and shown in Figure 7. However, for the abraded rods, the strengths of both groups were reduced to the same level, and well below the strengths of "as received" rods.

Perhaps the abrasion treatment these rods were exposed to exceeded the abuse they would have received from handling and exposure to the atmosphere, but in any case, the compressive forces developed during heat treatment offered no improved resistance to abrasion over the untreated rods. This indicates the compressive layer was not deep enough to resist penetration during abrasion.

Since the thickness of the layer in which exchange took place was limited, an effort was made to determine

Table	10.	Average Modulus	of Rupture Values	for Acid-Etched
		Soda-Lime Glass	Rods Treated with	KNO at 750°F.
		for 4 Hours and	Abraded	3

-

Treatment	Average Modulus of Rupture (Pounds Per Square Inch)
"As Received" Rods (No Treatment)	21,600
"As Received" Rods Acid Etched for 30 Seconds	35,000
"As Received" Rods Acid-Etched for 30 Seconds and Abraded with 120 Grit Silicon Carbide	16,700
"As Received" Rods Acid-Etched for 30 Seconds, Sprayed with KNO ₃ , and Heat Treated for 2 Hours at 750°F.	48,600
"As Received" Rods Acid-Etched for 30 Seconds, Sprayed with KNO ₃ , Heat Treated for ³ 2 Hours at 750 [°] F. and Abraded	, 15,600

18

whether or not the available K+1 ions were exhausted from the salt deposited on the glass surface. The salt remaining on the surface of a rod heat treated for four hours at 750° F. was removed and flame photometry was used to determine the ratio of alkali ion species in the salt. This analysis showed that the salt contained a $Na^{+1} - K^{+1}$ ratio of only 0.11. The Na⁺¹ - K⁺¹ ratio which started at zero, increased during heat treatment. This would cause the rate of K+1 ion diffusion into the glass to decrease somewhat. However, with almost 90 per cent of the available monovalent, alkali ions remaining in the salt being K^{+1} , there is no indication that equilibrium had been reached after 4 hours. Evidently, there is no transport mechanism available to carry the Na⁺¹ ions away from the glass surface in the rods sprayed with a thin coating of KNO2 as there is in the large molten salt bath. This would cause a build-up of Na⁺¹ ions at the surface of the glass thus greatly interferring with K^{+1} ion diffusion into the glass.

Theoretical calculations shown in Appendix F, show that the maximum thickness of diffusion for the average amount of KNO_3 sprayed on the surface of a glass rod was 40.6 microns. Since it is doubtful that all the available $K^{\pm 1}$ diffused into the glass and since the literature reported that a minimum of 50 microns were required, the results reported above are not surprising. Total exchange is certainly not required in order to build up a compressive

layer and for partial or incomplete exchange, the depth of diffusion could theoretically exceed 50 microns. Flame photometry studies showed that the layer of diffusion for treatment at this temperature and time was only approximately 10 to 15 microns.

If the amount of $K^{\pm 1}$ contained in the coating of KNO_3 initially deposited on the glass is insufficient to generate a compressive layer thick enough to resist penetration, or if a build-up of Na⁺¹ ions on the surface of the glass interferes with the diffusion process, the only alternative would be to repeat the spraying, followed by additional heat treatment in cycles, until a layer of sufficient thickness was reached. This would obviously be out of the question for commercial use unless a technique was developed for spraying the salt on the surface of the glass at or near 750°F. without causing thermal shock. Even if this were the case, the disadvantages of using a molten salt bath would soon be exceeded.

In conclusion, the prospects of strengthening sodalime glass having a composition similar to the one tested in this study seem remote, at least as an economical addition to existing production line facilities. Several avenues of study not covered in this investigation which could lead to exchange techniques with commercial potential include:

> Slight modifications of glass composition, resulting in an increased Al₂O₃ content and
therefore improving the possibility of Li⁺¹ ion exchange.

- 2) The use of other potassium salts with higher thermal stabilities allowing heat treatment at higher temperatures.
- 3) The use of an electrical potential to speed up $K^{\pm 1}$ ion diffusion after spraying the potassium salt on the surface.
- 4) Spraying the heated rods with molten KNO_3 rather than an aqueous solution of the nitrate salt.
- 5) Treat in molten salt baths at elevated pressure to increase decomposition temperature and therefore heat treatment temperature.
- 6) Try an Al^{+3} Li^{+1} salt combination.

CHAPTER V

CONCLUSIONS

1. For $K^{\pm 1}$ ion exchange in soda-lime glass, using KNO_3 salts, the optimum temperature to use was found to be $750^{\circ}F$. This is the maximum temperature possible before decomposition of the KNO_3 salts cause surface attack which, at least partially, offsets further strength increases due to ion exchange.

2. The largest strength increase found for soda-lime glass rods leached in molten KNO_3 salt was 167 per cent which occurred after four hours of heat treatment at $750^{\circ}F$.

3. For rods leached in molten KNO_3 salt baths at 750°F., approximately 20 hours were required for the thickness of the layer of ion exchange to approach 50 microns.

4. Spraying soda-lime glass rods with a saturated aqueous solution of KNO_3 followed by heat treatment at temperatures above the melting point of the nitrate, but below the temperature at which decomposition of the salt occurs, resulted in strength increases of as much as 100 per cent over the "as received" strength.

5. When rods were sprayed with aqueous solutions of KNO_3 and heat treated, even after 2 hours at $750^{\circ}F.$, exchange was limited to the outer 10 microns.

6. For rods sprayed with aqueous solutions of KNO_3 and heat treated at 750°F., abrasion of the surface reduced the strength to a level equivalent to that of "as received" rods abraded in the same manner. This indicates that the layer in which ion exchange took place was so thin that it was easily penetrated by the abrasion.

7. No suitable technique was found for exchanging a significant amount of Li⁺¹ for Na⁺¹ ions in soda-lime glass which did not severely attack the surface of the glass.

APPENDICES

- - -

APPENDIX A

DETERMINATION OF THE "AS RECEIVED" STRENGTH FOR SODA-LIME GLASS RODS

In order to determine the effectiveness of various strengthening techniques, twenty-five "as received" rods were broken using three point loading on an Instron Universal Test Machine and the modulus of rupture calculated for each rod. These results, the average modulus of rupture, and the standard deviation are given in Table 11.

Rod Number	Load (Pounds)	Diameter (Inches)	Modulus of Rupture (Pounds per Square Inch)
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35.2 37.1 30.8 31.9 32.8 37.9 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0	0.2009 0.1996 0.1992 0.1981 0.1996 0.1996 0.1992 0.1961 0.1989 0.2010 0.1964 0.2029 0.1964 0.2005 0.1959 0.2003 0.1988 0.1983 0.1983 0.1983 0.1971 0.1983 0.2000 0.1954 0.1957 0.1995	22,200 23,800 19,900 20,900 11,700 21,000 25,600 19,400 21,100 25,000 19,900 26,300 20,600 17,100 20,600 24,000 15,900 24,500 29,200 22,000 20,500
	Average	Modulus of Rupt Standard Deviat	ture = $21,600$ tion = $3,800$

Table 11. Modulus of Rupture Values Determined for "As Received" Rods

APPENDIX B

DETERMINATION OF STRENGTH FOR SODA-LIME GLASS RODS LEACHED IN MOLTEN KNO3 BATHS

Sample groups of about twenty glass rods were leached in 100 per cent potassium nitrate molten salt baths at temperatures of 675° F., 825° F., and 1000° F. for times ranging from two to twelve hours. The modulus of rupture for the rods, along with an average modulus and standard deviation for each group, is tabulated in Table 12.

Analysis of this data indicated that the optimum temperature for treatment would be around 750° F. Table 13 gives the data obtained for a group of ten rods leached in KNO₃ for 4 hours at 750° F.

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19	0.1990 0.1989 0.1990 0.2024 0.2007 0.1978 0.2003 0.2005 0.2018 0.1994 0.1993 0.1990 0.2017 0.2003 0.1992 0.1969 0.1999 0.2017 0.2000 Average	36.4 40.1 50.5 39.1 42.8 37.3 45.1 45.4 40.8 25.3 42.4 52.4 38.7 69.5 41.0 43.6 37.7 57.2 31.7 Modulus of Rupture Standard Deviation	29,500 32,500 40,900 30,100 33,800 35,800 35,900 31,700 20,400 34,200 42,500 30,100 55,200 33,100 36,500 30,100 44,500 25,300 = 34,400 = 7,400

Table	12.	Modulus c	of	Rupture of Soda-Lime	Glass	Rods	Leached
		in KNO ₃ a	at	a) 675°F for 2 Hours		8 - 1990 1	

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.1999 0.1997 0.2013 0.2005 0.2038 0.2010 0.2055 0.1987 0.2032 0.1979 0.2003 0.1978 0.2028 0.2056 0.1993 0.2012 0.1976 0.1945 0.1983 0.2016 Average	86.4 45.2 49.1 68.1 43.3 89.9 45.6 66.7 58.4 59.3 44.4 69.7 73.9 42.8 43.1 53.0 47.2 80.1 54.4 41.7 e Modulus of Ruptur	69,100 36,200 38,400 53,900 32,600 70,700 33,500 54,300 44,400 48,800 35,200 50,100 56,500 31,400 34,800 41,500 39,000 69,400 44,500 32,500 re = 45,800
		Standard Deviatio	

Table 12. Continued. b) 675°F.for 4 Hours Leaching

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 10 11 12 12 10 11 12 12 10 11 12 12	0.1999 0.2034 0.1948 0.2002 0.2005 0.1994 0.2008 0.1965 0.1987 0.2035 0.2030 0.2005 0.2006 0.1977 0.1999 0.2059 0.1983 0.1997	66.9 565.8 71.6 775.0 455.0 455.0 459.0 40.0 59.4 376.0 59.4 376.0 59.4 356.0 52.2	53,400 43,100 56,800 57,100 61,400 37,000 51,300 70,200 54,800 59,800 30,500 47,100 62,700 31,200 45,400 50,400 42,600
	Average	Modulus of Ruptur	e = 49,900
		Standard Deviatio	n = 10,600

Table 12. Continued. c) 675°F. for 6 Hours Leaching

Specimen Number	Diameter (Inches)	Load (lbs)	Modulus of Rupture (psi)
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 7 8 9 10 11 2 3 4 5 10 11 12 2 3 4 5 10 11 12 2 3 12 11 2 3 12 11 2 3 12 2 3 11 2 3 12 2 3 12 1 2 3 12 12 12 12 12 12 12 12 12 12 12 12 12	0.1940 0.1980 0.1957 0.1979 0.1961 0.2005 0.2014 0.1985 0.1974 0.2000 0.1980 0.2042 0.1968 0.2051 0.2001 0.2001 0.2007 0.1985	44.5 61.6 73.9 74.3 64.1 35.2 84.3 83.4 71.5 79.9 84.7 88.7 60.2 53.7 71.8 83.8 70.8	38,900 50,600 62,900 61,100 54,200 37,900 65,800 68,100 59,200 63,700 69,600 66,500 50,400 39,700 57,200 66,100 57,700
	Average	Modulus of Rup	ture = 56,500
		Standard Devia	tion = 11,400

Table 12. Continued. d) 675°F. for 8 Hours Leaching

Specimen NumberDiameter (Inches)Load (1bs)Modulus of Rupture (ps1)L0.194069.060,30020.205187.364,60030.201799.877,60040.198478.063,70050.204784.562,80060.195852.144,30070.199468.855,40080.199177.862,90090.195975.063,600100.204757.242,600110.201186.968,800120.202589.668,800130.196775.763,500140.196975.963,400150.195979.067,100160.198364.152,400Average Modulus of Rupture = 61,300Standard Deviation = 8,600				
L 0.1940 69.0 60,300 2 0.2051 87.3 64,600 3 0.2017 99.8 77,600 4 0.1984 78.0 63,700 5 0.2047 84.5 62,800 6 0.1958 52.1 44,300 7 0.1994 68.8 55,400 8 0.1991 77.8 62,900 9 0.1959 75.0 63,600 10 0.2047 57.2 42,600 11 0.2011 86.9 68,200 12 0.2025 89.6 68,800 13 0.1967 75.7 63,500 14 0.1969 75.9 63,400 15 0.1959 79.0 67,100 16 0.1983 64.1 52,400 Average Modulus of Rupture = 61,300 Standard Deviation = 8,600	S p ecimen Number	Diameter (Inches)	Lo a d (lbs)	Modulus of Rupture (psi)
	L 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6	0.1940 0.2051 0.2017 0.1984 0.2047 0.1958 0.1994 0.1991 0.1959 0.2047 0.2011 0.2025 0.1967 0.1969 0.1959 0.1983 Average	69.0 87.3 99.8 78.0 84.5 52.1 68.8 77.8 75.0 57.2 86.9 89.6 75.7 75.9 79.0 64.1 Modulus of Ruptur Standard Deviatio	$\begin{array}{rcl} 60,300\\ 64,600\\ 77,600\\ 63,700\\ 62,800\\ 44,300\\ 55,400\\ 62,900\\ 63,600\\ 42,600\\ 68,200\\ 68,800\\ 63,500\\ 63,400\\ 67,100\\ 52,400\\ e= 61,300\\ n= 8,600 \end{array}$

Table 12. Continued. e) 675°F. for 12 Hours Leaching

S pe cimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)	
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 8 9 11 2 8 9 11 11 2 8 9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1965 0.2005 0.1996 0.1972 0.2002 0.1966 0.1971 0.2022 0.1999 0.2023 0.2015 0.1989 0.2020 0.2032 0.1978 0.2006 0.1968 0.1969 0.1991 0.2003 Average	41.5 64.6 65.3 74.1 58.4 54.0 58.3 68.8 60.5 82.0 84.0 65.3 95.0 92.2 60.0 75.5 83.9 84.3 64.8 70.8 Modulus of Ruptu Standard Deviati	$\begin{array}{rcl} 34,900\\ 41,100\\ 52,400\\ 61,700\\ 46,500\\ 45,400\\ 48,500\\ 53,100\\ 48,400\\ 63,200\\ 65,500\\ 52,900\\ 73,600\\ 70,100\\ 49,500\\ 59,700\\ 69,400\\ 41,000\\ 59,700\\ 69,400\\ 41,000\\ 52,400\\ 56,200\\ \end{array}$ $\operatorname{tre} = 54,800$ $\operatorname{tre} = 9,900$	

Table 12. Continued. f) 825°F. for 2 Hours Leaching.

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17	0.1981 0.1978 0.1969 0.2019 0.1975 0.1973 0.1982 0.2028 0.1963 0.2005 0.1980 0.1991 0.1996 0.1971 0.1989 0.1972 0.1984	64.1 67.2 62.5 79.6 62.1 53.9 75.9 61.8 72.7 72.3 62.7 67.6 75.7 69.5 72.3 80.8 56.1	52,600 55,400 52,200 61,700 51,500 44,700 62,200 47,300 61,300 57,300 51,500 54,600 60,700 57,900 58,700 67,200 45,900
8	Average	Modulus of Rupt Standard Deviat	ure = 55,500 ion = 6,100

Table 12. Continued. g) 825°F. for 4 Hours Leaching.

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.2007 0.1973 0.1979 0.2027 0.1974 0.1972 0.2001 0.1965 0.1971 0.1998 0.1966 0.1971 0.1999 0.1978 0.2022 0.1991 0.1999 0.2017 Average	62.3 57.9 79.4 68.3 71.1 64.6 71.3 67.4 73.9 64.1 51.6 66.7 67.4 68.5 69.0 66.0 56.0 73.9 Modulus of Ruptu:	49,200 48,100 65,300 52,300 59,000 53,700 56,800 56,700 61,600 51,200 43,300 55,600 53,800 56,400 53,300 53,400 44,700 57,500 re = 54,000
		Standard Deviatio	n = 5,400

Table 12. Continued. h) 825°F. for 6 Hours Leaching.

W2

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.1978 0.1970 0.2016 0.1997 0.1992 0.1982 0.2011 0.1998 0.2014 0.1990 0.1978 0.2028 0.1972 0.2014 0.2007 0.1999 0.1989 Average	63.0 62.8 73.6 54.9 64.6 45.4 63.0 77.6 70.0 60.4 67.6 61.1 71.3 80.8 79.9 71.3 73.7 Modulus of Rupture	51,900 52,400 57,300 44,000 52,100 37,200 49,400 62,100 54,700 48,900 55,700 46,700 59,300 63,100 63,100 56,900 59,800 e = 53,800
		Standard Deviation	n = 6,900

Table 12. Continued. i) 825°F. for 8 Hours Leaching.

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 16 7 8 9 10 11 2 3 4 5 16 7 8 9 10 11 2 3 12 1 12 1 12 12 12 11 12 12 11 12 12 11 11	0.2030 0.2005 0.1979 0.2034 0.2025 0.2024 0.1968 0.2017 0.1973 0.1984 0.2017 0.2056 0.1962 0.1989 0.2020 0.1998 0.1999 0.1995 0.2040 0.2021 Average	73.7 62.5 70.9 72.7 70.4 74.4 62.0 53.0 63.9 68.5 67.6 63.2 58.8 68.1 67.6 61.8 73.4 67.8 70.7 80.8 Modulus of Rupt Standard Deviat	56,200 $49,500$ $58,400$ $55,100$ $54,100$ $57,300$ $51,900$ $41,200$ $53,100$ $52,600$ $46,500$ $49,700$ $52,300$ $49,400$ $58,600$ $54,500$ $53,000$ $62,400$ ure = 53,300 ion = 4,600

Table 12. Continued. j) 825°F. for 12 Hours Leaching.

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 17 18 19	0.1997 0.2001 0.1971 0.1976 0.1999 0.1992 0.1984 0.1982 0.1975 0.1991 0.2009 0.2008 0.2008 0.1987 0.1980 0.1980 0.1985 0.1985 0.1987	65.5 58.8 55.8 53.6 549.3 54.2 53.0 57.7 49.1 34.1 51.4 60.1 67.0 51.0 62.4	52,500 46,800 46,500 36,100 42,100 46,800 40,200 44,400 42,400 51,000 35,500 36,300 50,500 27,800 42,200 49,400 53,200 41,600 50,800
	Average	Modulus of Rupt Standard Deviat	sure = $44,700$ sion = $6,100$

Table 12. Continued. k) 1000°F. for 2 Hours Leaching

Table 12. Continued. 1) 1000°F. for 4 Hours Leaching

Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Ru p ture (psi)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 12 11 12 13 14 15 10 11 12 12 11 11	0.1979 0.2005 0.2037 0.1969 0.1967 0.1975 0.1963 0.2047 0.1976 0.2061 0.1966 0.1989 0.1965 0.1984 0.1981 0.1981 0.1958 0.1974	37.7 15.8 52.9 40.8 37.9 40.1 44.2 45.5 43.7 56.4 30.1 40.2 37.8 42.2 34.4 37.7 38.2 22.7	31,100 12,500 39.900 34,100 31,800 33,200 37,300 33,900 36,200 41,100 25,300 32,600 31,800 35,900 26,500 31,000 32,400 18,900
-)	Average	Modulus of Ruptur	re = 31,400
		Standard Deviatio	pn = 6,800

Specimen Number	Diameter (Inches)	Load (1bs)	Mc	odulus o Rupture (psi)	f
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 8 9 10 11 2 8 8 11 12 8 11 12 11 11	0.2001 0.2040 0.2003 0.2022 0.1980 0.1960 0.1979 0.2011 0.2030 0.2038 0.1997 0.2060 0.2047 0.1997 0.1994 0.1977 0.1967 0.1992 0.1989 Average	21.9 18.7 18.6 32.9 22.6 25.6 24.6 22.7 24.1 16.8 10.5 22.9 24.6 20.1 59.2 59.0 27.0 26.7 Modulus of Ruptu Standard Deviati	re = on =	17,400 14,000 14,400 25,400 18,600 21,700 20,200 17,800 18,400 12,900 8,400 16,700 18,300 16,200 19,800 19,800 21,800 21,600 18,000 3,800	

Table 12. Continued. m) 1000°F. for 6 Hours Leaching

and a support of the state of t			
Specimen Number	Diameter (Inches)	Load (1bs)	Modulus of Rupture (psi)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.2021 0.1964 0.2019 0.1991 0.1964 0.1990 0.1999 0.1976 0.2008 0.2000 0.2030 0.2010 0.2031 0.1984 0.1976 0.2011 0.1960 0.1998 0.2058	29.5 38.0 40.3 37.0 34.8 33.2 32.3	22,800 32,000 31,200 29,900 29,400 27,400 25,800 26,700 31,700 21,300 23,000 23,000 25,000 25,800 25,000 25,000 25,700 28,400
	Average	Modulus of Ruptu	are = 25,500
		Standard Deviati	ion = 4,300

Table 12. Continued. n) 1000°F. for 8 Hours Leaching

Rod Number	Load (Pounds)	Diameter (Inches)	Modulus of Rupture (Pounds Per Square Inch)
1 2 3 4 5 6 7 8 9 10	78.0 73.8 79.6 109.0 108.0 92.9 89.9 80.9 97.6 77.3	0.1998 0.1994 0.2001 0.2000 0.1981 0.1974 0.1958 0.1999 0.1969 0.1997	49,800 47,400 50,600 69,200 70,400 61,500 61,000 51,600 65,100 49,400
•	Average	Modulus of Ruptur Standard Deviatio	re = $57,600$ on = $8,800$

Table 13. Modulus of Rupture of Soda-Lime Glass Rods Leached in ${\rm KNO}_3$ at $750^{\rm O}{\rm F.}$ for 4 Hours

APPENDIX C

RESULTS FOR SODA-LIME GLASS LEACHED IN A VARIETY OF LITHIUM SALT BATHS

In addition to those lithium salt baths discussed in detail in the body of this paper, experimental work was done with several other salt baths. All of these baths caused severe surface attack of rods or posed other serious problems and are included here only for completeness.

An attempt was made to duplicate some diffusion studies summarized in a Russian paper (11). This paper described diffusion using a combination of lithium nitrate and potassium bisulfate (KHSOL) as the molten salt bath. The Russians postulate that a series of decomposition reactions take place in the KHSO4 on heating, releasing "superactive" water and acid sulfates capable of melting or dissolving the surface layer of glass. The siliceous surface layer does not mix with the molten salts after melting, and a "perfect" surface is formed between the two immiscible liquids. Thus surface attack is minimized, and in principle, the surface of the treated glass can actually be better than that of the untreated surface. Thus it is possible to expect a lithium-rich surface layer of substantial thickness to be quickly obtained, along with an improved glass surface after treatment.

According to the authors (11), the reactions proceed roughly as follows:

Since the introduction of additives occurs at a comparatively high temperature, the unstable bisulfates (e.g. of potassium) decompose immediately into pyro-sulfate and water:

$$2KHSO_4 \rightarrow K_2S_2O_7 + H_2O$$

Pyrosulfate is also unstable:

$$K_2S_2O_7 \rightarrow SO_3 + K_2SO_4$$

The double salt K_2SO_4 - KHSO_4, which later decomposes to potassium sulfate sulfurous gas, and water shows greater stability at the treatment temperature. The highly active water formed by these reactions can dissolve silica, i.e. cause cleavage of SiO bonds and transform silica from skeleton into molecular form.

The appearance of the silica hydrate and the presence of alkali-metal sulfates make feasible reactions which form silicates of lithium, sodium, and potassium. The initial temperature for these reactions is $1100 - 1200^{\circ}$ C., but the presence of highly reactive water in the melt favors the formation of silicate in the temperature region of 580-600°C., corresponding to the softening of the glass:

 $(Me)_2SO_4 + H_2O + nSiO_2 \rightarrow (Me)_2O.nSiO_2 + H_2O + SO_3$

A factor contributing to the feasibility of this reaction is the lithium silicate glass composition of the surface layer with a softening point that is 60° lower than the treatment temperature. This is actually highly viscous liquid.

Upon the interaction of silicates and sulfates of alkali metals, we observe the limited mutual solubility of these salts and as a consequence, the phenomenon of liquefaction. Two immixable liquids are formed which have an extremely small degree of surface tension, and a boundary which represents an ideal plane. The distribution that is valid for immixable liquids determines the normal diffusion process of $sodium^{+1}$ from the glass and of lithium⁺¹ into the glass.

An additional result of these processes is that the surface defects disappear and the strength of the treated glass increases markedly.

Attempts to duplicate this work using KHSO_4 were made and this technique may very well warrant additional study; however, the formation of large quantities of SO_3 present serious problems. Not only is the gaseous form of SO_3 highly toxic, but the SO_3 also dissociates in water to form sulfuric acid (H_2SO_4) which makes containing the reaction extremely difficult. Considerable work was done without finding a safe way to carry out the experiment. As a laboratory curiosity, this technique is interesting, but it is doubtful that it could ever be incorporated into mass production facilities.

In addition to work done in trying to duplicate the Russian article described above, exchange was tried using several other lithium salts. Primarily, LiCl, alone and in combination with Na₂SO₄ or NaNO₃ was tested. In all cases, leaching soda-lime glass rods in these baths produced notable surface attack after only 5 minutes of leaching.

APPENDIX D

DETERMINATION OF STRENGTH FOR SODA-LIME GLASS RODS SPRAYED WITH KNO_3 AND HEAT TREATED

Sample groups of about twenty-five soda-lime glass rods were preheated to 300° F., sprayed with a saturated aqueous solution of potassium nitrate, and then heat treated at temperatures of 660° , 740° , 800° , 850° , and 1000° F., for times ranging from 15 minutes to 24 hours. The modulus of rupture was calculated for each rod and is presented in Table 14 along with the average modulus and standard deviation for the individual groups.

			Contraction of the second s
Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 134 5 6 7 8 9 0 112 12 1 12 12 12 12 12 12 12 12 12 12	40.0 48.9 42.1 39.155805648561047.6 386.05648561047.6 43.6 43.6 43.6 43.6 58.1047.6 31.6 49.6 4 33.4 38.3 33.4 38.3 33.4 38.3 33.4 33.4	0.1985 0.1990 0.1980 0.1995 0.1995 0.1986 0.1974 0.1977 0.1982 0.1982 0.1991 0.1986 0.1991 0.1969 0.1981 0.1973 0.1980 0.1975 0.1975 0.1975 0.1965 0.1994 0.1978	26,100 31,700 27,700 27,800 25,500 25,600 37,600 18,300 27,200 28,200 17,200 26,400 31,800 16,100 24,500 24,500 24,500 23,100 20,500 28,900 24,500 32,900 21,600 22,100
	Averag	e Modulus of Ruptu	ure = 25,500
		Standard Deviat:	ion = 5,600

Table 14. Modulus of Rupture for Soda-Lime Glass Rods Sprayed With a Saturated Aqueous Solution of KNO₃ and Heat Treated at Al) 660° for 15 Minutes

Table 14. Continued. A2) 660°F. for 30 Minutes.

Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32.2 50.7 38.2 31.3 54.3 27.3 54.3 27.3 54.3 27.3 54.3 27.3 54.3 54.4 54.4 54.4 54.4 54.4 54.4 54	0.1981 0.2023 0.1939 0.1935 0.1996 0.1981 0.1982 0.1996 0.1982 0.1973 0.1973 0.1983 0.1981 0.1976 0.2017 0.1971 0.1979 0.2020 0.1989 0.1989 0.1987 0.1992 0.1972 0.1977 0.1977 0.1971	21,100 31,300 26,700 22,100 35,100 22,300 17,800 35,300 27,700 21,200 34,700 35,600 32,100 26,400 29,800 24,300 21,300 30,500 26,300 35,100 30,100 31,900 26,200 23,200 28,300
	Average	Modulus of Rupture	= 27,900
		Standard Deviation	= 5,300

Rod Number	Load		Diameter	e.	Modulus d Rupture	of e
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 2 3 4 5 8 9 0 11 2 2 3 4 15 1 2 2 3 4 1 5 8 9 0 11 2 2 3 4 1 5 8 9 0 11 2 2 3 4 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2	36.90 511.0 524 364 364 364 365 3454 344 363 454 363 454 19 96 5.0 3454 344 44 44 44 44 45 5.0 3454 3454 3454 45 5.0 3454 3454 3454 3454 3454 3454 3454 345	Average	0.1938 0.2021 0.2029 0.1988 0.2029 0.1965 0.2006 0.1953 0.1972 0.1950 0.1975 0.1950 0.2004 0.1975 0.1970 0.1973 0.1973 0.1973 0.1973 0.1973 0.1973 0.1970 0.1973 0.1960 0.1978 0.1969 Modulus of	Rupture	25,800 32,100 31,200 30,000 23,000 26,600 30,400 25,300 29,200 24,100 41,500 26,200 30,700 22,800 28,900 29,500 28,900 29,500 26,500 33,400 30,400 = 28,900	
			Standard De	eviation	= 4,300	

Rod Number	Load	Diameter	r Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 2 8 9 0 11 1 2 8 9 0 11 1 8 9 0 11 1 8 9 0 11 1 1 8 9 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35.0 35.4 37.5 49.1 52.8 40.1 526.3 31.7 64 32.9 530.0 537.2 540.3 532.0 532.0 537.5 540.3 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 532.0 540.0 52.0 540.0 52.0 535.0 540.0 52.0 540.0 52.0 540.0 52.0 540.0 52.0 540.0 52.0 540.0 52.0 540.0 52.0 540.0 54	0.2015 0.2002 0.1963 0.2004 0.1992 0.1987 0.1986 0.1988 0.1955 0.1980 0.1987 0.2002 0.1993 0.2004 0.1995 0.1995 0.1995 0.1992 0.2006 0.2006 0.2006 0.2011 0.1989 0.1952	21,900 22,500 25,300 26,300 38,200 27,400 20,100 27,100 34,900 34,400 30,500 25,600 29,000 24,300 20,700 24,300 32,500 32,500 32,500 32,500 32,300 32,300 23,700 35,900 22,800 33,100
	A	verage Modulus of	Rupture = 27,500
		Standard De	viation = 5,300

-

Rod Number	Load		Diamete:	r N	Nodulus of Rupture
12345678901123456789012222345	69.557389349544178427037960 5416426316301554955495549554955495549554955495549554	A	0.1984 0.2022 0.1971 0.2008 0.1947 0.1946 0.1984 0.1957 0.1981 0.1981 0.1981 0.1983 0.1993 0.1993 0.1978 0.1931 0.1983 0.1999 0.1999 0.1999 0.1986 0.1990 0.1960 0.1976	1	45,400 8,600 33,800 35,500 30,300 36,000 30,300 37,000 28,200 37,100 47,200 33,300 36,200 35,400 28,900 40,200 36,700 36,200 37,100 36,200 37,100 36,200 37,100 37,100 37,100 37,100 37,100 37,100 37,100 36,200 37,100 36,200 37,100 36,200 37,100 36,200 36,200 37,100 36,200 37,100 36,200 37,100 36,200 37,800 36,200 33,800 32,
		Average	Modulus of	Rupture =	35,100

Standard Deviation = 4,800

Rod Number	Load	Diameter	Modulus of Rupture
1234567890112345678901222345	38.7 32.2 42.6 42.8 44.5 40.3 41.9 555.3 556.7 49.3 555.7 64.1 84.5 59.7 556.3 64.4 Average	0.1975 0.2013 0.1971 0.1948 0.1965 0.1956 0.2011 0.1986 0.1956 0.1956 0.1956 0.1962 0.1966 0.1973 0.1983 0.1999 0.2016 0.1998 0.2001 0.1985 0.2032 0.1985 0.2032 0.1985 0.2032 0.1989 0.2014 0.2004 ge Modulus of Rupt	$\begin{array}{rcrcrc} 25,700\\ 20,200\\ 28,400\\ 29,500\\ 30,000\\ 29,200\\ 25,300\\ 27,300\\ 28,600\\ 34,400\\ 37,700\\ 45,100\\ 33,100\\ 22,300\\ 36,500\\ 30,500\\ 39,900\\ 54,900\\ 39,900\\ 54,900\\ 38,100\\ 55,500\\ 27,100\\ 35,100\\ 36,100\\ 42,700\\ 40,900\\ \end{array}$ ure = 34,200 ion = 8,900
8			

Ta	b1	e	14	1 11
				-

Rod Number	Load	Diameter	Modulus of Rupture
12345678901123456789011234567890122234	45.4 58.8 74.8 71.6 43.9 43.9 43.9 43.9 43.9 11.8 51.6 61.8 54.4 84.5 43.9 51.6 61.8 54.6 51.6 51.6 51.6 51.6 51.6 51.8 51.6 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8	0.1973 0.2019 0.2005 0.2025 0.1998 0.1947 0.2011 0.1964 0.1989 0.1976 0.2004 0.1958 0.1977 0.1983 0.1944 0.1985 0.1943 0.1943 0.1961 0.1956 0.1981 0.1995 0.1981 rage Modulus of Ruptu Standard Deviati	$\begin{array}{rcl} 30,200\\ 36,500\\ 47,000\\ 41,700\\ 45,800\\ 30,200\\ 30,200\\ 30,700\\ 30,100\\ 24,500\\ 74,100\\ 30,700\\ 57,400\\ 42,600\\ 40,400\\ 35,000\\ 35,500\\ 35,500\\ 35,900\\ 58,000\\ 29,900\\ 33,200\\ 29,900\\ 33,200\\ 29,100\\ 26,900\\ 39,300\\ are = 38,500\\ and and an $

					2 1.111.111.111.111
Rod Number	Load		Diameter	r	Modulus of Rupture
1 234567890 11234567890 121234 1567890 12222 24	33.107985394455565565565565565565565565565565565565		0.1987 0.2006 0.2036 0.1965 0.2017 0.1970 0.1990 0.1996 0.1996 0.1998 0.1960 0.2035 0.1969 0.1969 0.1969 0.1995 0.2019 0.1995 0.2019 0.1968 0.1967 0.1952 0.1956 0.1987 0.1980		21,500 30,400 32,500 28,200 28,200 28,500 33,700 36,300 42,900 22,600 38,900 26,500 41,700 23,900 18,700 42,600 34,000 29,900 31,600 36,700 36,700 36,700 36,700 36,700 36,200
		Average	Modulus of	Rupture	= 30,800
			Standard De	eviation	= 7,100

Table 14. Continued. B1) 740°F. for 15 Minutes.

	1.00			
110	n	0		
10	D I	e	1.4	+ -
			-	

Continued. B2) 740°F. for 30 Minutes.

Rod I Number	Load	Diameter	Modulus of Rupture
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 25 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 25 \\ 16 \\ 17 \\ 18 \\ 25 \\ 16 \\ 17 \\ 18 \\ 25 \\ 16 \\ 17 \\ 18 \\ 25 \\ 16 \\ 17 \\ 18 \\ 25 \\ 17 \\ 18 \\ 25 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	54.0 52.1 41.4 51.6 42.1 45.1 28.0 43.3 55.2 55.3 57.7 55.5 57.7 55.5 57.7 55.5 57.7 55.5 57.7 55.5 57.7 55.5 57.7 55.5 55.5 57.7 55.5	0.1958 0.2001 0.1974 0.2028 0.2028 0.2027 0.1962 0.2038 0.2031 0.1993 0.2005 0.1974 0.1997 0.1988 0.2020 0.1969 0.2020 0.1969 0.2020 0.1984 0.1974 0.1974 0.1974 0.1974 0.1985 0.2003 0.1994 0.1997	36,700 33,200 27,400 37,700 25,700 26,500 26,500 26,400 37,600 22,500 31,300 23,500 41,000 36,800 37,000 29,400 44,400 38,300 33,200 36,500 37,900 31,400 34,700 32,000
	Average	Modulus of Rupture Standard Deviation	= 31,900 = 6,900

Ta	b.	le	14	+	

. Continued. B3) 740⁰F. for 1 Hour.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
4 46.6 0.1982 5 38.7 0.1974 6 50.7 0.2033 7 54.2 0.2007 8 73.4 0.2019 9 40.5 0.1963 10 51.2 0.1978 11 54.7 0.2000 12 54.7 0.1975 13 35.4 0.2012 14 47.7 0.1977 15 65.8 0.1964 16 48.6 0.2001 17 41.2 0.1969 18 40.1 0.1975 19 73.7 0.1989 20 49.6 0.2022 21 56.3 0.2003 22 55.4 0.2011 23 56.1 0.2016 24 57.2 0.1964 25 64.2 0.2030	44,700 31,400 44,700 30,600 25,700 30,800 34,200 45,500 32,000 33,800 34,900 36,300 22,200 31,500 44,400 30,900 27,500 26,600 47,800 30,600 35,800 35,800 35,800 35,800 35,800 39,200					
Average Modulus of Rupture Standard Deviation	= 34,800 = 6,700					
Т	a	b	1	е	14.	
---	---	---	---	---	-----	--

Rod Number	Load		Diameter	r M	odulus of Rupture
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 1 2 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 1 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2	61.6 417.6 95.38 50.3 94.4 78 54 70 29 5.2 95.3 8 5 56 7 54 7 57 57 5 3 55 4 96 4 .1 4 .1 56 7 5 3 5 5 4 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Average	0.1954 0.2000 0.2007 0.1967 0.2015 0.1967 0.1962 0.2024 0.1976 0.1974 0.1979 0.2008 0.1974 0.1979 0.2008 0.1972 0.1963 0.2011 0.1963 0.2011 0.1987 0.1996 0.1954 0.1954 0.1974 0.1974 0.1965 0.2031 0.2004 Modulus of	Rupture =	42,100 26,600 36,300 44,900 23,400 33,800 28,900 44,600 58,200 37,400 34,200 34,200 34,200 34,900 31,100 44,100 33,700 46,700 40,900 23,300 49,400 39,800 40,400 47,000
			Standard De	eviation =	8,800

Rod Number	Load	Diameter	Modulus of Rupture
123456789011234567890112345678901222345	60.0 67.1 82.7 37.0 60.9 54.0 69.3 66.7 80.1 74.6 77.0 73.6 50.4 62.0 356.4 98.4 97.5 44.9 59.6 98.4 99.56 80.4 99.56 80.4 99.56 98.4 99.56 98.4 99.56 99.59.0 59.	0.1995 0.2001 0.2008 0.1960 0.1998 0.1991 0.1958 0.1995 0.2020 0.1979 0.2000 0.1979 0.1981 0.1996 0.1995 0.1995 0.1995 0.1995 0.1997 0.1996 0.1996 0.1998 0.1998 0.1991 0.2006 0.2013	38,600 42,700 52,200 25,100 39,000 36,600 47,200 42,900 49,100 68,700 48,200 48,300 29,800 39,800 24,000 47,100 63,100 43,200 30,100 44,500 33,900 58,700 31,500 36,900
	Average	e Modulus of Rupture	= 42,500
		Standard Deviation	= 11,000

Table 14. Continued. B5) 740°F. for 12 Hours.

Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	65.5 65.3 69.35 41.5 69.4 763.5 165.8 100.5 60.5 61.6 62.4 652.3 61.5 62.3 61.5 62.4 578.2 61.5 599.8 62.5 62.4 1 579.5 62.4 599.8 62.5 699.5 61.5 699.5 61.5 600.5 7 652.3 61.5 652.3 61.5 652.3 61.5 652.3 61.5 652.3 61.5 7 652.3 61.5 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.3 61.5 7 652.5 7 652.5 61.5 7 652.5 61.5 7 652.5 61.5 7 652.5 655.5 655.5 655.5 655.5 655.5 655.5 655.5 7 655.5 7 655.5 7 655.5 7 655.5 7 655.5 7 655.5 655.5 655.5 655.5 655.5 7 7 655.5 7 7 555.5 655.5 7 7 555.5 655.5 7 7 555.5 655.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 7 555.5 555	0.1990 0.2010 0.2010 0.2030 0.2017 0.1981 0.1983 0.2003 0.1994 0.1977 0.2110 0.1938 0.1974 0.1974 0.1974 0.1972 0.2013 0.1968 0.1971 0.1988 0.1975 0.1990	42,400 41,000 43,600 25,300 46,300 41,700 40,000 41,400 44,000 44,000 44,700 46,000 41,000 27,400 38,800 45,600 39,000 41,300 39,700 51,500 38,700 40,200

Table 14. Continued. B6) 740°F. for 12 Hours.

Average Modulus of Rupture = 42,100

Standard Deviation = 7,800

		<pre></pre>	22.25		
Rod Number	Load		Diamete:	r	Modulus of Rupture
1234567890112345678901222345	73.0 50.7 76.4 5594.8 566.4 56.4 5594.4 80.7 50.7 50.3 24.4 80.7 50.7 50.3 24.4 559.4 44.8 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7	Average	0.1971 0.1963 0.1998 0.1960 0.1985 0.1980 0.1984 0.1960 0.2003 0.1986 0.1972 0.1988 0.1975 0.1988 0.1975 0.1988 0.1978 0.2012 0.1989 0.1979 0.2000 0.1993 0.1971 0.1991 0.1980 0.2016 Modulus of	Rupture	48,700 34,200 47,400 51,800 37,400 36,300 39,000 44,000 44,000 47,900 30,200 50,500 46,100 38,700 32,500 48,100 37,100 47,500 40,100 = 41,100
			Standard De	eviation	= 7,400

Table 14. Continued. B7) 740°F. for 24 Hours.

		÷	-			10		
	9	n		0		11		
4	a	1.1		-	2.1.4	-		
-	_		_	~			-	

Continued. Cl) 800°F. for 15 Minutes.

Rod Number	Load		Diame	ter	Modulus of Rupture
123456789011234567890112345678901222345	45354355444359999474732946805 	Average	0.197 0.200 0.198 0.197 0.201 0.201 0.201 0.201 0.198 0.202 0.198 0.202 0.199 0.195 0.198 0.197 0.195 0.201 0.205 0.205 0.205 0.205 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.197 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.197 0.198 0.205 0.198 0.197 0.198 0.205 0.198 0.197 0.198 0.205 0.198 0.197 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205 0.198 0.205	1 6 2 0 8 6 4 8 9 7 3 8 0 5 1 5 0 0 8 3 0 1 8 5 0 0 0 8 3 0 1 8 5 0 0 0 8 3 0 1 8 5 0 0 8 3 0 0 1 8 5 0 0 8 0 5 1 5 0 0 8 0 5 1 5 0 0 8 0 5 1 5 0 0 8 0 5 1 5 0 0 8 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 5 1 5 0 0 0 5 1 5 0 0 0 5 1 5 0 0 0 5 1 5 0 0 0 1 5 0 0 0 1 5 0 0 0 1 5 0 0 0 0	29,000 37,800 21,300 37,200 32,300 22,400 33,400 33,700 29,500 31,200 30,100 23,800 32,900 29,000 31,300 27,000 38,500 32,600 32,600 36,300 30,600 32,800 31,800 30,600 32,800 31,800 30,600 32,800 31,800 30,700 = 30,700 = 4,500

Rod Number	Load	Diameter	Modulus of Rupture
1 2 34 56 7 8 9 10 11 12 13 14 56 7 8 9 10 11 12 13 14 56 7 8 9 10 11 12 13 14 56 20 12 20 21 22	47.7 43.8 35.0 257.4 59.0 63.6 51.0 47.3 68.6 39.0 45.0 49.6 334.0 45.0 45.0 48.0 45.1 51.0 48.0 51.0 48.0 51.0 48.0 51.0 48.0 51.0 48.0 51.0 49.0 51.0 49.0 51.0 40.0 51.0 40.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 5	0.1972 0.1974 0.2030 0.1936 0.1956 0.1987 0.2007 0.1967 0.2009 0.1954 0.2038 0.2013 0.1977 0.1994 0.1953 0.2019 0.1981 0.1990 0.1981 0.1970 0.1981 0.1970 0.1958 erage Modulus of Rupt Standard Deviat	31,700 29,100 21,400 53,600 39,100 38,800 17,000 42,300 32,500 32,200 28,500 31,100 45,300 25,500 23,300 39,100 29,500 33,100 26,800 32,100 37,800 30,200 ure = 32,700 ion = 8,300

Table 14. Continued. C2) 800°F. for 30 Minutes.

	1 7	10000	-	11
1.2	n	P	1.4	4
1 4	~ -		-	

Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 2 2 1 2 8 1 1 9 0 11 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49.5 41.9 64.2 59.3 88.0 46.1 71.1 66.7 73.4 90.5 60.7 73.4 90.5 63.5 63.5 63.1 65.3 41.5 63.1 54.6 63.1 54.6 63.1 54.6 63.1 54.6 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63	0.2001 0.1947 0.1976 0.1966 0.1995 0.2037 0.1986 0.2009 0.2014 0.2000 0.2022 0.1990 0.1987 0.1965 0.2009 0.1968 0.1970 0.2026 0.1970 0.2026 0.1984 0.1964 0.1990 0.1993 0.1980 age Modulus of Rupt	$\begin{array}{r} 31,500\\ 29,000\\ 42,500\\ 39,800\\ 54,300\\ 53,100\\ 30,000\\ 44,800\\ 41,700\\ 48,700\\ 45,300\\ 58,600\\ 35,500\\ 42,700\\ 27,400\\ 46,200\\ 27,700\\ 46,200\\ 27,700\\ 46,200\\ 27,700\\ 40,100\\ 41,400\\ 29,100\\ 35,300\\ 44,400\\ 26,600\\ \end{array}$
		Standard Deviat	ion = 9,000

Table 14. Continued. C4) 800°F. for 2 Hours.

Rod Number	Load		Diameter	c M	odulus of Rupture
1 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 21 22 23 4 56 7 8 90 21 22 22 22 22 22 22 22 22 22 22 22 22	72.0318512341306390597892395 666254636499706846555677465 74655774655577465	Average	0.1966 0.2012 0.1969 0.2016 0.1986 0.1984 0.1981 0.1993 0.1971 0.1993 0.1971 0.1991 0.1970 0.1984 0.1956 0.1986 0.2030 0.2019 0.2001 0.1960 0.1991 0.1976 0.2039 0.1948 0.1958 Modulus of	Rupture =	48,400 27,100 44,800 40,300 40,700 34,100 31,000 40,100 24,700 44,700 31,900 46,100 37,600 37,600 34,300 49,400 50,800 27,200 41,500 36,800 35,800 35,800 35,800 35,800 35,800 31,700 44,500 38,800
			Standard De	eviation =	7,300

Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 11 12 13 4 15 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 16 7 8 9 0 11 12 3 4 5 16 1 12 12 12 12 12 12 12 12 12 12 12 12 1	37.8 66.2 49.3 77.8 26.4 49.3 77.8 26.4 36.4 75.3 66.1 27.7 35.6 61.4 51.2 27.7 51.6 51.2 51.6 51.2 50.9 51.6 50.9 28.1 20.9 29.1 20.9 20.9 20.9 20.9 20.9 20.9 20.0 20.9 20.0 20.0	0.1980 0.1987 0.1955 0.1955 0.1963 0.2000 0.1990 0.1990 0.1977 0.1978 0.2018 0.1998 0.1998 0.1998 0.1994 0.1986 0.2035 0.2017 0.1989 0.2017 0.1989 0.2005 0.2022 0.2019 0.1995 0.1995 0.2001	24,900 43,100 33,300 30,400 18,100 22,800 24,200 40,500 46,100 32,700 21,800 42,900 29,900 32,000 40,700 27,500 34,500 39,400 32,500 31,800 32,500 31,800 32,700 18,600 26,200
	Avera	ge Modulus of Rupt Standard Deviat	ure = 31,900 ion = 7,700

Table 14. Continued. C5) 800°F. for 4 Hours.

Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 4 25	41.7 46.3 32.0 31.9 45.8 44.2 50.7 44.0 29.9 43.5 33.8 44.7 46.6 50.2 37.7 41.4 29.2 42.4 54.7 55.4 51.0 54.7 46.6 60.7 51.2 Avera	0.1985 0.2030 0.1956 0.1999 0.2000 0.1972 0.2015 0.1995 0.2000 0.1985 0.1966 0.1988 0.1961 0.1988 0.1961 0.1989 0.1964 0.1976 0.2001 0.1955 0.1987 0.1997 0.1955 0.1987 0.1997 0.1967 0.1958 0.1978 0.2035 0.2033	27,200 $28,200$ $21,800$ $20,400$ $29,200$ $29,400$ $31,600$ $28,300$ $19,100$ $28,400$ $22,700$ $28,600$ $31,600$ $32,500$ $25,400$ $27,400$ $18,600$ $29,000$ $35,600$ $35,500$ $34,200$ $37,200$ $30,800$ $36,800$ $31,100$ Here = 28,800
		Standard Deviat	ion = 5,300

Table 14. Continued. C6) 800°F. for 12 Hours.

Rod Number	Load	Diamete	r Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 1 2 1 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	37.8 41.9 318.59 38.124 38.9 38.9 38.9 48.4 49.155561726256 34.244 34.29 5554344.6256 54.54 34.244 54.54 34.54 34.244 49.5 54.54 34.54 54.54 34.556 34.244 49.556 34.566 34.5566 34.55666 34.55666 34.55666 34.556666 34.5566666666666666666666666666666666666	0.1972 0.1974 0.2039 0.1969 0.2019 0.2019 0.1957 0.2018 0.2037 0.1994 0.1994 0.1994 0.1995 0.1970 0.1984 0.1987 0.2017 0.1984 0.1987 0.2017 0.1984 0.1987 0.2017 0.1961 0.1978 0.2000 0.1977 0.1990 0.2007 0.1982 0.1976 0.1974	25,200 $27,800$ $21,000$ $23,200$ $26,000$ $28,600$ $26,000$ $30,100$ $25,000$ $27,600$ $25,200$ $26,000$ $33,000$ $36,400$ $29,300$ $21,600$ $29,900$ $34,000$ $30,800$ $24,800$ $28,300$ $15,400$ $29,000$ $32,700$ $29,000$ $Rupture = 27,400$ eviation = 4,500

		-		
110	n		0	1.1
T a		1	C	and an a

4. Continued. D1) 850⁰F. for 15 Minutes.

Rod Number	Load		Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 8 90 11 1 2 8 90 11 1 1 8 9 11 1 1 1 1 1 1 1 1 1 1 1 1 1	90.6 73.0 57.2 67.4 57.4 57.4 57.4 57.4 57.4 57.4 50.2 8 56 352.9 50.5 8 50.5 8 50.5 50.5 50.5 50.5 50.5	Average	0.2010 0.1978 0.1976 0.2016 0.1984 0.1984 0.1974 0.1998 0.2018 0.2008 0.1987 0.2022 0.2016 0.1987 0.2022 0.2016 0.1944 0.1983 0.1961 0.2015 0.1984 0.1950	57,000 $48,200$ $34,700$ $42,200$ $31,200$ $37,500$ $26,600$ $34,600$ $56,600$ $33,300$ $41,700$ $28,600$ $33,200$ $41,900$ $43,800$ $23,000$ $49,300$ $31,000$ $33,100$ $55,200$
			Standard Devi	ation = 10,000

Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 12 13 4 5 6 7 8 9 0 11 12 13 4 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 12 13 14 5 16 7 8 9 0 11 12 13 14 5 16 7 8 9 0 11 12 13 14 5 16 7 8 9 0 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44.0 45.1 72.2 40.8 16657.6 508.5 508.5 50.5 50.5 50.5 50.5 50.5 50	0.2009 0.2015 0.2011 0.1992 0.2021 0.2000 0.1994 0.2015 0.1967 0.2009 0.1988 0.1953 0.1960 0.2038 0.2007 0.2006 0.1968 0.2018 0.2018 0.1971 0.1971 0.1976 0.2018 0.1976 0.2018 0.1951 0.1968	27,700 28,100 45,300 26,400 27,900 39,300 37,100 31,400 39,200 31,800 35,100 43,900 36,400 31,800 42,200 43,400 42,200 43,400 42,100 41,700 38,400 37,100 32,600 35,100 38,900
	Aver	age Modulus of Rupt	ure = 36,200
		Standard Deviat	ion = 5,500

Table 14. Continued. D2) 850°F. for 30 Minutes.

אוכ	500	LT.	f	2 22	٦.	Unin	
\mathcal{D}	20	г.	TC)T.	1	nour.	•

Rod Number	Load	Diameter	Modulus of Rupture
1(3) $2(4)$ $3(6)$ $5(7)$ $6(9)$ $9(11)$ $10(12)$ $11(13)$ $12(14)$ $13(15)$ $14(17)$ $15(18)$ $16(19)$ $17(20)$ $18(22)$	59.0 53.8 61.1 45.6 79.4 66.7 768.8 45.6 38.4 358.6 66.0 55.6 66.3 54.2 57.2 Av	0.1987 0.2000 0.1972 0.1983 0.1978 0.1997 0.2019 0.1991 0.1988 0.1961 0.1982 0.1980 0.2004 0.1980 0.1983 0.1996 0.1988 verage Modulus of Ruptu Standard Deviati	38,400 34,100 29,200 40,000 30,100 42,800 49,200 44,400 24,600 32,800 23,000 38,500 41,700 43,400 32,300 34,900 29,700 37,200 are = 35,900 an = 7,100

Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 8 9 0 2 1 2 8 9 0 11 2 8 9 2 2 1 2 8 9 0 11 2 8 9 2 2 1 2 8 9 2 2 1 2 8 9 2 2 1 2 8 9 2 2 1 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	63.0 61.1 61.4 39.3 59.5 50.7 50.8 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7	0.1979 0.2017 0.2019 0.1980 0.1980 0.1970 0.1969 0.1955 0.1960 0.2019 0.1975 0.1974 0.2021 0.1975 0.1974 0.2021 0.1980 0.1980 0.1981 0.1983 0.1981 0.1983 0.1984 0.1987 0.1961 0.1979 0.1947 0.1930 0.1993	41,500 38,000 38,100 25,900 39,000 37,000 24,000 36,100 34,400 38,200 36,500 37,100 28,900 30,200 28,700 38,100 44,600 33,900 19,400 32,400 29,900 39,900 42,500 44,000 34,800
	Aver	age Modulus of Rupt Standard Deviat	ure = 34,900 ion = 6,200

Table 14. Continued. D4) 850°F. for 2 Hours.

Rod Number	Load		Diameter	с I	Modulus o Rupture	f
1 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 8 90 2 2 8 90 11 2 8 90 11 2 8 90 12 8 90 11 2 8 90 12 8 90 11 2 8 90 12 8 8 90 12 8 90 12 8 1 8 90 12 8 90 12 8 90 12 8 90 12 8 1 8 90 12 8 1 1 8 9 2 8 2 8 1 8 9 1 8 9 2 8 8 8 1 8 9 1 8 9 2 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	61.2 414.290.9721322999778678097770 5554648038745445770 5554648038745445770	verage M	0.1988 0.2030 0.1994 0.1985 0.2003 0.2034 0.1985 0.1983 0.2006 0.1971 0.1969 0.1989 0.1954 0.1975 0.1949 0.1975 0.1949 0.1975 0.1984 0.2006 0.1983 0.1950 0.1983 0.1953 0.1948 0.1941 0.2026	Rupture =	39,800 25,300 28,300 28,000 31,500 30,900 35,000 35,000 35,500 39,500 29,500 39,000 30,700 32,400 35,100 32,400 35,100 37,200 35,100 37,200 31,500 27,200 31,500 31,500 31,500 31,500 31,500 31,500 31,500 31,500 31,500 32,900 31,500 32,900 31,500 32,900 31,500 32,900 31,500 32,900 31,500 32,900 31,500 32,400 32,200 32	
	F	S	t a ndard De	eviation =	= 4,600	

Table 14. Continued. D5) 850°F. for 4 Hours.

Rod Number	Load		Diamet	cer	Modulus Ruptu:	of re
12345678901123456789012234 11213456789012234	524440931177401185983787524 068771177401185983787524 06875476 068771177401185983787524 06875476 075676 075676 07575476 07575476 07575476 07575476 07575476 07575476 07575476 07575476 07575476 07575476 07575476 07575476 07575476 075755476 07575776 0757576 0757576 0757576 0757576 0757576 0757576 07575776 07575776 07575776 07575776 07575776 07575776 07575776 07575776 07575776 07575776 07575776 07575776 07575776 07575776 07575776 075757776 07575776 07575777776 07575777777777777777777777777777777777	Average	0.1993 0.1966 0.2017 0.2026 0.1944 0.1986 0.1957 0.1958 0.1958 0.1958 0.1958 0.1958 0.1958 0.1958 0.1958 0.1958 0.1969 0.1969 0.1969 0.1987 0.2022 0.2007 0.1965 0.2022 0.2007 0.1965 0.2022 0.2007 0.1965 0.2022 0.2007 0.1965 0.2022 0.2007 0.1965 0.2022 0.2007 0.1965 0.2022 0.2007 0.1965 0.2022 0.1965 0.1965 0.1965 0.1958 0.2007 0.1958 0.2007 0.1968 0.2007 0.1968 0.2007 0.1968 0.2007 0.1968 0.2007 0.1968 0.2007 0.1968 0.2007 0.2007 0.1968	b b b b b b b b b b b b b b b b b b b	36,100 19,900 30,600 25,600 26,600 25,500 26,700 26,700 26,700 28,100 36,100 29,300 22,800 30,300 25,200 31,700 25,200 31,700 25,200 31,700 25,200 31,700 25,200 31,700 25,500 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 26,500 26,500 26,500 26,500 27,500 26,700 27,500 26,700 27,500 26,700 27,500 26,700 27,500 26,700 27,500 26,700 27,500 26,700 27,500 27,500 27,500 27,500 27,500 27,500 27,500 27,500 27,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 24,700 25,500 24,700 24,700 25,500 24,700 24,700 24,700 24,700 25,500 24,700 25,500 24,700 25,500 24,700 24,700 24,700 25,500 24,700 25,500 24,700 24,700 25,500 24,700 24,700 25,500 24,700 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 24,700 25,500 25,500 25,500 25,500 25,500 25,500 25,500 25,500 24,700 25,500 25,500 25,500 25,500 25,500 25,500 25,500 26,500	
				8		

Table 14. Continued. D6) 850⁰F. for 12 Hours.

Rod Number	Load	Diameter	Modulus of Rupture
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 1 5 6 1 7 8 9 0 2 1 2 3 4 2 5	35.2 40.0 32.7 32.7 33.4 32.7 33.4 32.7 33.4 35.2 29.0 37.7 35.6 35.6 35.6 Aver:	0.1973 0.1963 0.2000 0.1977 0.1962 0.1974 0.1950 0.2028 0.2015 0.1971 0.1969 0.1981 0.2023 0.1970 0.2005 0.2002 0.2006 0.1977 0.1980 0.1958 0.1996 0.1988 0.1997 0.1960 0.2006 age Modulus of Rupt	23,400 $27,600$ $21,700$ $21,400$ $22,200$ $26,400$ $24,100$ $22,000$ $23,500$ $25,500$ $18,600$ $24,500$ $27,700$ $30,200$ $28,900$ $24,400$ $24,400$ $21,400$ $21,400$ $22,100$ $24,200$ $31,000$ $23,100$ $24,100$ $25,100$ where = 24,300
		Standard Deviat	ion = 2,900

Table 14. Continued. D7) 850⁰F. for 24 Hours.

Rod Number	Load		Diamete	r M	lodulus of Rupture	
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 6 17 8 90 11 12 13 14 15 6 17 8 90 11 12 13 14 5 6 7 8 90 11 23 24 25	6 2 5 3 6 9 9 4 4 6 2 1 0 9 8 6 8 8 2 2 5 6 3 6 6 6 2 5 3 6 9 9 4 4 6 2 1 0 9 8 6 8 8 2 2 5 6 3 6 6 6 2 8 1 4 2 1 4 2 4 9 2 7 2 7 8 9 7 5 5 3 2 6 3 6 6 8 6 2 5 3 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5		0.1970 0.2000 0.1987 0.1987 0.1985 0.1967 0.1944 0.1991 0.1952 0.1976 0.2008 0.2016 0.1974 0.2020 0.2020 0.1987 0.2016 0.1989 0.2029 0.1987 0.2015 0.1974 0.2002		24,400 31,500 24,600 20,400 35,600 22,100 36,100 28,700 26,200 24,700 26,200 24,500 24,500 24,500 24,500 24,500 24,500 21,500 22,900 27,100 22,700 37,000	
		Average	Modulus of Standard D	Rupture = eviation =	= 26,800 = 5,500	

Table 14. Continued. El) 1000°F. for 15 Minutes.

						-
Rod Number	Load		Diame	ter	Modulus of Rupture	
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 8 2 8 2 2 2 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 2 8 1 1 1 1 1 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26.2326195454349807569495945 3333423313034041613243530 4444433243530 43440041613243530 434433243530		0.198 0.198 0.197 0.197 0.197 0.197 0.197 0.197 0.201 0.197 0.201 0.199 0.200 0.199 0.200 0.199 0.200 0.199 0.201 0.199 0.199 0.199 0.199 0.199	2312882552817577610437751	17,200 20,500 26,200 22,000 28,400 28,300 28,900 22,200 19,700 22,600 25,800 14,900 26,000 21,600 27,500 23,600 27,500 23,600 27,500 23,600 27,500 23,600 27,700 29,200 23,000 22,500 26,200	
		Average	Modulus (of Rupture	= 23,800	
			Standard	Deviation	= 4,100	

Table 14. Continued. E2) 1000⁰F. for 30 Minutes.

Та	ble	14.	

Continued. E3) 1000⁰F. for 1 Hour.

Rod Number	Load	Diameter	Modulus of Rupture
1 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	52.8 33.3 40.5 44.0 45.1 35.2 49.1 35.2 49.1 35.2 49.1 35.2 49.1 35.2 49.1 35.2 49.1 35.2 49.1 35.2 49.1 35.2 49.5 41.0 56.9 34.0 51.9 36.9 35.4 30.3 45.1 30.5 44.0 45.1 30.5 41.0 56.9 36.0 51.9 36.0 45.1 30.5 44.0 45.1 30.5 41.0 56.9 36.0 45.1 30.5 44.0 45.1 30.5 41.0 56.9 36.0 45.1 30.5 44.0 45.1 30.5 41.0 56.9 36.0 45.1 30.5 44.0 45.1 30.5 44.0 45.1 37.0 40.5 56.9 36.0 43.1 30.5 44.0 45.1 30.5 44.0 45.1 30.5 44.0 45.1 30.5 44.0 45.1 30.5 44.0 56.9 36.0 45.1 30.5 44.0 56.9 36.0 30.5 44.0 30.5 44.0 56.9 35.4 4.0 30.5 44.0 56.9 35.4 4.0 30.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 3.4 32.0 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 4.0 32.5 3.4 32.0 2 4.0 32.5 3.4 32.0 2 4.0 32.5 3.4 32.0 4.0 32.5 3.4 32.0 4.0 32.5 3.4 3.2 4.0 3.2 3.5 3.4 3.2 4.0 3.5 3.4 3.2 4.0 3.2 4.0 3.2 3.5 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.5 3.4 3.2 3.4 3.2 3.5 3.4 3.2 3.4 3.2 3.5 3.4 3.2 3.5 3.4 3.2 3.4 3.2 3.4 3.2 3.5 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.5 3.4 3.2 3.4 3.4 3.2 3.4 3.2 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	0.2018 0.1981 0.1997 0.1997 0.1974 0.1967 0.1994 0.2021 0.1981 0.1998 0.1971 0.1959 0.1974 0.1960 0.1974 0.1960 0.1984 0.2017 0.1989 0.1972 0.1978 0.1978 0.1978 0.1975 0.1991 0.1975 0.1991 0.1975 0.2000 age Modulus of Rupt	32,800 $21,800$ $30,600$ $25,900$ $29,200$ $30,200$ $22,700$ $30,400$ $23,100$ $26,900$ $24,600$ $27,900$ $24,600$ $27,900$ $24,800$ $33,900$ $22,600$ $28,500$ $22,000$ $20,600$ $23,300$ $25,900$ $16,900$ $21,600$ $21,200$ $28,200$ 400
		Standard Deviat	ion = 4,200

Rod Number	Load	Diameter	Modulus of Rupture
1234567890123456789012345	26.2 34.8 42.9 23.8 33.1 40.0 21.3 28.3 27.8 35.2 37.3 28.5 25.5 35.2 45.8 33.6 38.9 28.0 35.7 26.6 26.2 23.2 39.8 26.8 40.7 Average	0.2023 0.1993 0.1995 0.1994 0.1985 0.2012 0.2018 0.1999 0.1998 0.1959 0.1990 0.1980 0.1980 0.1986 0.1990 0.1976 0.1976 0.1976 0.1976 0.1951 0.2030 0.1983 0.2031 0.1983 0.2031 0.1984 0.2018 Modulus of Rupture Standard Deviation	16,200 $22,500$ $27,600$ $15,300$ $21,600$ $25,000$ $13,200$ $18,100$ $17,800$ $23,900$ $24,200$ $18,700$ $16,600$ $22,800$ $30,300$ $22,200$ $26,500$ $18,900$ $24,600$ $16,200$ $17,200$ $14,200$ $26,400$ $17,500$ $25,300$ $e = 20,900$ $h = 4,700$

APPENDIX E

DETERMINATION OF STRENGTH FOR SODA-LIME GLASS RODS, ACID ETCHED, SPRAYED WITH KNO3, HEAT TREATED, AND ABRADED

A group of soda-lime glass rods was etched in a hydrofluoric - sulfuric acid solution for 30 seconds. Half the rods were heat treated to 550°F., sprayed with a saturated aqueous solution of KNO₃, and heat treated at 750°F. for 4 hours. Modulus of rupture values were determined for both treated and untreated rods, with and without surface abrasion. This data is included in Table 15 along with the average modulus of rupture and standard deviation for each group.

Table	15.	Modulus of	Rupture	Values	for	Acid-E	tched	Soda-
		Lime Glass 4 Hours and	Rods Tre d Abradeo	eated w d.	ith K	NO3 at	750 ⁰ 1	F. for

Rod Number		Load (Pounds)	Diameter (Inches)	Modulus of Rupture (psi)
1 2 3 4 5		48.2 45.1 47.9 51.0 55.6		0.1950 0.1925 0.1945 0.1921 0.1930	33,200 32,200 33,200 36,800 39,500
			Average	Modulus of Rupt Standard Deviat	sure = 35,000 sion = 3,100
		(b) Etc	h, Abra	ded with 120 Gri	t SiC
1 2 3 4 5		22.7 23.8 23.6 23.8 21.6		0.1942 0.1897 0.1895 0.1946 0.1922	15,800 17,800 17,700 16,500 15,600
			Average	Modulus of Rupt Standard Deviat	sure = 16,700 sion = 1,000
	(c)	Etch, KN	0 ₃ Spra	y, Treat 2 Hours	at 750 ⁰ F.
1 2 3 4 5		73.9 57.2 64.8 64.6 77.4		0.1886 0.1925 0.1905 0.1970 0.1930	56,200 40,900 47,800 43,100 55,000
			Average	Modulus of Rupt Standard Deviat	ure = 48,600 ion = 6,900

(a) Etched in HF for 30 seconds

Rod Load		Diameter	Modulus of	
Number (Pounds)		(Inches)	Rupture (psi)	
1	23.4	0.1931	16,900	
2	19.9	0.1930	14,100	
3	23.1	0.1943	16,000	
4	23.6	0.1940	16,500	
5	19.9	0.1916	14,400	
	Average	e Modulus of Rup Standard Devia	ture = 15,600 tion = 1,300	

(d) Etch, Heat Treat, Abraded

APPENDIX F

DETERMINATION OF THEORETICAL DEPTH OF DIFFUSION

In order to determine the maximum depth of diffusion for rods sprayed with KNO₃ and to serve as a check for the data obtained on these rods using flame photometry, calculations were made to find the number of potassium⁺¹ ions available in the sprayed coating and the maximum depth for which they could replace all the Na⁺¹ ions in the glass. In doing this, several important assumptions were made. It was assumed that (1) the sodium⁺¹ content was homogeneous throughout the rod; (2) complete exchange of sodium⁺¹ for potassium⁺¹ took place; and (3) the interior limit of diffusion into the rod was at a fixed boundary plane.

From the literature, the density (ρ) for Kimble (Type R-6) glass was found to be 2.53 grams per cubic centimeter. Knowing this, the moles of Na⁺¹ per cubic centimeter was calculated using equation (1):

$$\frac{\text{Moles Na}^{+}}{\text{cm}^{3} \text{ glass}} = \frac{(2.53 \ \frac{\text{gms}}{\text{cc}})(15.5\%\text{Na}_{2}^{0})(\frac{2\text{x}22.997 \ \text{gms Na}^{+}}{61.979 \ \text{gms Na}_{2}^{0})}{(22.997 \ \text{gm Na/mole})}$$

$$= 0.0127 \frac{\text{moles Na}^+}{\text{cc glass}}$$
(1)

124

A rod was weighed before and after spraying and the weight of KNO_3 adhering was 0.1164 grams. This was used in equation (2) to find the moles of available K^{+1} :

Moles of Available
$$K^+ = \frac{(0.1164 \text{ gms } \text{KNO}_3)(\frac{39.1 \text{ gms } \text{K'}}{101.1 \text{ gms } \text{KNO}_3})}{(39.1 \frac{\text{gms } \text{K}^+}{\text{mole } \text{K}^+})}$$

 $= 0.00115 \text{ moles } K^+$ (2)

The volume required for total replacement of Na^{+1} ions by available K^{+1} ions was determined in equation (3) by dividing the moles of available K^{+1} by the moles of Na^{+1} in the glass per cubic centimeter.

Volume of Diffusion =
$$\left(\frac{0.00115 \text{ moles } K^+ \text{ available}}{0.0127 \frac{\text{moles } Na^+}{cc}}\right)(0.0610 \frac{\text{in}^3}{cc})$$

$$= 0.00552 \text{ in}^3$$
 (3)

Knowing the total volume required, equation (4) was used to determine the diameter of interior diffusion boundary.

Volume of Diffusion =
$$\pi h(\frac{d_0}{2})^2 - \pi h(\frac{d_1}{2})^2$$

$$d_1 = 0.196 \text{ in.}$$
 (4)

where:

h = length of sprayed rod (in)

 $d_0 = outside diameter of rod (in)$

d_l = diameter of interior diffusion boundary (in). Finally this was used in equation (5) to determine

the thickness of the layer of diffusion:

$$\frac{(d_0 - d_1)}{2} \times (\frac{1000 \text{ mils}}{\text{in}}) \times (\frac{25.4 \text{ microns}}{\text{mil}}) = 40.6 \text{ microns}$$
(5)

Thus for the average amount of KNO₃ deposited on the surface of a glass rod, it would be possible to obtain complete exchange down through approximately 41 microns. Partial exchange could theoretically take place through a much thicker layer.

BIBLIOGRAPHY

LITERATURE CITED

- 1. Nordberg, M. E., Mochel, E. L., Garfinkel, H. M., and Olcott, J. S., "Strengthening by Ion Exchange," Journal of the American Ceramic Society, <u>47</u>, 215-219, (1964).
- Blum, S. L., "Strengthening of Glass," <u>Ceramics</u>, Ceramics Division of IIT Research Institute, No. 18, November-December 1968.
- 3. Kingery, W. D., Introduction to Ceramics, John Wiley & Sons, Inc., 1967, pp. 593-594.
- 4. Garfinkel, H. M., "Strengthening Glass by Ion Exchange," Part I, <u>The Glass Industry</u>, <u>50</u>, 28-31, (1969).
- 5. Rothermel, D. L., "Effect of Stress on Durability of Ion-Exchanged Surfaces," Journal of the American Ceramic Society, <u>50</u>, 574-577, (1967).
- 6. Kistler, S. S., "Stresses in Glass Produced by Nonuniform Exchange of Monovalent Ions," Journal of the American Ceramic Society, <u>45</u>, 59-63, (1962).
- 7. Chemical Rubber Company Handbook of Chemistry and <u>Physics</u>, 48th Edition, Robert C. Weast, Editor-in-Chief, The Chemical Rubber Co., Cleveland, Ohio, pp. B149-B242, (1967).
- 8. Bartholomew, R. F. and Koslowski, T. R., "Alkali Attack of Glass Surfaces by Molten Salts," Journal of the American Ceramic Society, <u>50</u>, 108-110, (1967).
- 9. Burggraaf, A. J. and Cornelissen, J., Physical and Chemical Glasses, 5, 123 (1964).
- 10. Siede, B., "Etching Effect of Lithium Nitrate on Glass," Ceramic Abstracts, 17, 178, (1938).
- 11. Botvinkin, O. K. and Denisenko, O. N., "Ion Exchange and Increasing the Strength of Glass," Translated from Izvestiya Akademic Nauk SSSR, Neorgonicheskiye, 2, 2029-2033, (1966).