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Summary

The reliability and data rate of wireless communication have traditionally been limited

by the presence of multipath fading in wireless channels. However, dramatic performance

improvements can be obtained by the use of multiple transmit and receive antennas.

Specifically, multiple antennas increase reliability by providing diversity gain, namely

greater immunity to deep channel fades. They also increase data rates by providing

multiplexing gain, i.e., the ability to multiplex multiple symbols in one signaling interval.

Harvesting the potential benefits of multiple antennas requires the use of specially

designed space-time codes at the transmitter front-end. Space-time codes introduce

redundancy in the transmitted signal across two dimensions, namely multiple transmit

antennas and multiple signaling intervals. In this work, we focus on linear space-time

codes, which linearly combine the real and imaginary parts of their complex inputs to

obtain transmit vectors for multiple signaling intervals.

We aim to design optimum linear space-time codes. Optimality metrics and design

principles for space-time codes are shown to depend strongly on the codes’ function in the

overall transmitter architecture. We consider two cases, depending on whether or not the

space-time code is complemented by a powerful outer error-control code.
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In the absence of an outer code, the multiplexing gain of a space-time code is

measured by its rate, while its diversity gain is measured by its raw diversity order. To

maximize multiplexing and diversity gains, the space-time code must have maximum

possible rate and raw diversity order. We show that there is an infinite set of maximum-

rate codes, almost all of which also have maximum raw diversity order. However, different

codes in this set have different error rate for a given input alphabet and SNR. Therefore,

we develop analytical and numerical optimization techniques to find the code in this set

which has the minimum union bound on error rate. Simulation results indicate that

optimized codes yield significantly lower error rates than unoptimized codes, at the same

data rate and SNR.

In a concatenated architecture, a powerful outer code introduces redundancy in the

space-time code inputs, obtaining additional diversity. Thus, the raw diversity order of the

space-time inner code is only a lower limit to the total diversity order of the concatenated

transmitter. On the other hand, we show that the rate of the space-time code places an

upper limit on the multiplexing ability of the concatenated architecture. We conclude that

space-time inner codes should have maximum possible rate but need not have high raw

diversity order. In particular, the serial-to-parallel converter, which introduces no

redundancy at all, is a near-optimum space-time inner code. This claim is supported by

simulation results.

On the receiver side, we generalize the well known sphere decoder to develop new

detection algorithms for stand-alone space-time codes. These new algorithms are extended

to obtain efficient soft-output decoding algorithms for space-time inner codes.
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CHAPTER 1

Introduction

Wirelesscommunicationsystemsoffer mobility to usersandflexibility of deployment

to serviceproviders.To gain widespreadacceptance,thesesystemsmustalsobedesigned

to achieve high datarate,while maintaininglow error rate.Achieving thesetwin goalsis

challengingbecausewirelesschannelsarenot only noisy, but alsocausea uniqueform of

distortionknown asmultipath fading. A signal transmittedon the wirelesschannelgets

scatteredand reflectedfrom different obstaclesin the wirelessenvironment,and hence

takes multiple pathsto the receiver. At the receiver, thesemulti-path signalscombine

constructively or destructively dependingon their phaseand delay, which in turn are

functionsof random,time-varying factorslike the speedand position of the scatterers,

relative to the transmitterandreceiver. Consequently, the receivedsignalenvelopefades,

i.e., it varieswith time in a randomfashion.With a sufficient numberof scatterersin the

wirelessenvironment,theRayleighfading[1] modelgivesthedistribution of thereceived

signal envelope at any given time instant.

Oneconsequenceof envelopefadingis that the instantaneoussignal-to-noiseenergy

ratio (SNR)at thereceivervariesrandomlywith time.Evenif theaveragereceivedSNRis

high, the instantaneousreceivedSNRsometimesdropslow duringa so-calleddeep fade.

In a deepfade,errorsoccurwith high probability. Oneway to reducethe error rateis to
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use conventional error correction codes [2]. If these codes are sufficiently long, they can

use the relatively noise-free symbols received in periods of high received SNR to recover

the symbols lost during a deep fade. However, when fading is slow, deep fades persist for

long durations of time, often exceeding the length of one communication packet. In this

case, the entire packet is subject to low SNR, and so error correction codes are not very

effective. New techniques are required to prevent high error rates due to fading.

1.1 The Benefits of Multiple Antennas

One solution to the problem of deep fades is to use multiple antennas at the transmitter

and receiver. The only extra infrastructure required are the antennas themselves, and the

power to run the antennas and the supporting RF circuitry. In return, dramatic benefits are

obtained.

Suppose there are t transmit and r receive antennas. Counting the number of transmit-

receive antenna pairs, we see that there are tr communication links between transmitter

and receiver. Further, if the antennas are placed far enough from each other, fading occurs

independently on each link. If even one of the tr links is not passing through a deep fade,

one can sustain communication between transmitter and receiver, with careful system

design. Thus, multiple antennas offer tr-fold fade resistance to deep fades. This is known

as the diversity gain [3] of multiple antennas, and reflects the fact they can significantly

reduce error rates.
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In addition to diversity gain, multiple antennas also furnish multiplexing gain. More

precisely, the transmitter sends t symbols and the receiver obtains r symbols in every

signaling interval across the channel. Thus, one can multiplex min(t, r) information

symbols for every channel use, and hence obtain min(t, r) times the capacity of a single

antenna channel [4][5].

In order to harness the potential diversity and multiplexing gains of multiple antennas,

the transmitter and receiver should be optimally designed. The novelty in the design

problem is that multiple antennas result in a multiple-input, multiple-output (MIMO)

fading channel between transmitter and receiver.

We assume that the MIMO channel is a narrowband channel, i.e., signals transmitted

in different time instants do not interfere. Further, the receiver knows the MIMO channel,

but the transmitter does not. For such a channel, the basic principles of optimum receiver

design are well known [6][7]. Therefore, one can adopt a two-step approach to system

design for MIMO channels. First, the transmitter is designed assuming the optimum

receiver is used. Then, given the transmitter, the known principles of optimum receiver

design are implemented. Following this approach, we first discuss transmitter design.

1.2 A Brief Survey of MIMO Transmitter Design Approaches

The diversity and multiplexing gains of multiple antennas reflect their ability to

increase the reliability and data-carrying capacity of communication, respectively. The

historical evolution of transmitter design for MIMO channels can broadly be split into two

distinct paths, depending on whether the primary goal of transmitter design is to increase

reliability or capacity. We briefly survey past research in these two directions.
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1.2.1  Reliability-Based Approach:  Space-Time Codes

The reliability-based approach aims to harness the diversity benefit of MIMO channels

to reduce the error rate. In this approach, high data rate is a secondary goal. As mentioned

earlier, the diversity gain of MIMO channels comes because there are tr independently

fading links between transmitter and receiver. To harvest the diversity gain, each

information symbol must be spread across all the available transmit antennas.

Conventional forward error correction codes [2] only introduce redundancy across

multiple signaling intervals. In a MIMO setting, redundancy must be spread across the

multiple transmit antennas and across multiple signaling intervals. Codes which do so are

called space-time codes [3]. Space-time codes aim to introduce redundancy as cleverly as

possible, so as to exploit transmit diversity and reduce error rate.

The cleverness of the redundancy introduced by a space-time code is quantified by its

raw diversity order, which is the diversity gain obtained when the inputs to the space-time

code are independent from one code block to another (i.e., when there is no outer code).

Clearly, a high raw diversity order is desirable. It is easy to show [3] that the maximum

possible raw diversity order of any space-time code operating over a t-input, r-output

Rayleigh fading MIMO channel is tr. This is known as full raw diversity order.

To our knowledge, the first codes to obtain full raw diversity order were delay-

diversity techniques, which are summarized in [8]. These were later extended to obtain

space-time trellis codes [3], which also guarantee full raw diversity order. Arguably the

most elegant of all known space-time codes is the Alamouti code [9], which obtains full
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raw diversity order, but works only when the number of transmit antennas is two.

Subsequently, space-time codes based on orthogonal designs [10] generalized the

Alamouti code to obtain full raw diversity order for any number of transmit antennas.

While aiming to achieve full raw diversity order, the space-time code should introduce

redundancy not only cleverly, but also efficiently. The efficiency is measured by the rate of

the space-time code, which is defined as the number of information symbols transmitted

by the code per signaling interval. Since it is desirable to transmit more information and

less redundancy, high rate is desirable. All the codes mentioned above have rate one,

except the non-Alamouti orthogonal designs, which have a rate less than one. In some of

the early space-time code literature, a rate of one was referred to as full rate, and space-

time codes with rate one were considered optimum.

1.2.2  Capacity-Based Approach

In parallel with the development of space-time codes, there was intense information

theoretic study of MIMO fading channels. This line of work was pioneered by [4][5],

which showed that the data-carrying capacity of a t-input, r-output MIMO channel at high

SNR roughly equals min(t, r) log(SNR), which is min(t, r) times the capacity of a scalar

channel. Naturally, there was a quest for transmitter architectures which approach this

enormous capacity. The V-BLAST architecture [5][11] was the first attempt to do so. The

implicit space-time code in a V-BLAST transmitter is a serial-to-parallel (S/P) converter,

which takes in t complex symbols every signaling interval and transmits one on each

available antenna. Note that there is no attempt to introduce redundancy in order to obtain

raw diversity order.
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In retrospect, the second major step in the capacity-based approach was the

development of linear dispersion, or simply, linear space-time codes [12]. In each block,

these codes take in a finite number of complex input symbols, and use them to generate the

transmit signals for a finite number of signaling intervals, called the code length. The

defining feature of linear space-time codes is that each output symbol is some linear

combination of the inputs and their complex conjugates.

Many reliability-based space-time codes like the Alamouti codes fall under the

category of linear codes. However, the primary goal of linear space-time codes, as

developed in [12], was not to obtain full raw diversity order, but to achieve the capacity of

the MIMO fading channel. It was proved [12][13][14] that linear space-time codes with

rate less than min(t, r) do not achieve the capacity of a t-input, r-output Rayleigh fading

channel. Consequently, min(t, r) is called full rate, and capacity-based design aims to

develop space-time codes with at least full rate. Note the sharp contrast with the early

reliability-based space-time codes, which considered rate one acceptable.

1.3 Unifying the Reliability and Capacity Approaches

It is useful to view the two transmitter design approaches in terms of the metrics they

use to measure the goodness of a given space-time code. The reliability approach

considers rate and raw diversity order to be valuable, and aims to design space-time codes

which maximize both. However, raw diversity order is considered a more valuable asset

than rate. Space-time codes with the same rate and raw diversity order do not necessarily

have the same error rate, for a given uncoded input alphabet. Thus, one can think of rate

and raw diversity order as broad performance metrics. The more precise performance
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metric used by the reliability-based approach is the actual error rate, given the SNR and

input alphabet to the space-time code. For analytical convenience, the union bound on the

error rate is also used [3] as a performance metric.

In contrast to the reliability-based approach, the capacity-based approach considers the

rate of a space-time code as a more valuable asset than raw diversity order. The inputs to

the space-time code are assumed to be coded by an outer error correction code, which is

designed to achieve maximum possible data rate for a given SNR. This maximum data rate

is then defined to be the capacity of a space-time code and is used as the precise

performance metric to compare space-time codes.

Naturally, a lot of research has gone into unifying the two approaches to transmitter

design. One way to do so is to analyze space-time codes developed from one approach

using the metric of the other approach. For example, the capacity of the reliability-based

delay diversity techniques was computed in [15]. Similarly, in [14][16], the capacity of the

Alamouti code and other orthogonal designs was computed. In particular, it was shown

that the Alamouti code for the 2-transmit antenna case loses capacity when there is more

than one receive antenna, but achieves maximum possible capacity when there is only one

receiver antenna.

The example of the Alamouti code illustrates that it is possible for the same space-time

code to be good in both the reliability and capacity senses. Continuing along the same

theme, capacity-maximizing linear space-time codes which also have high raw diversity

order were found in [17], using approximate numerical techniques. Also, the generalized
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layered space-time architecture [18] proposed space-time codes that could trade-off rate

and raw diversity order, depending on whether data rate or error rate was deemed more

important.

The culmination of the unified design approach was the development of linear

complex field (LCF) codes [19][20], also known as threaded algebraic codes [21][22].

LCF codes of length greater than or equal to the number of transmit antennas are

guaranteed to achieve full raw diversity order, irrespective of the rate. The only restriction

is that the input alphabet to the space-time code should be a lattice alphabet, i.e., the real

and imaginary parts of each complex input symbol should be integers.

Of particular interest are LCF codes of rate equal to the number of transmit antennas t,

and length greater than or equal to t. These codes are three-way optimal. First, they have

rate t greater than or equal to full rate min(t, r), and are also guaranteed to have full raw

diversity order tr. Thus, they satisfy the broad optimality criteria of the reliability and

capacity based approaches. Further, they also are optimum with respect to the precise

performance metric of the capacity-based approach, i.e., they achieve the capacity of the t-

input, r-output MIMO fading channel [20][22]. The only missing link is whether LCF

codes are optimum with respect to the precise performance metric of the reliability-based

approach, namely whether they achieve minimum word error rate or union bound for a

given input alphabet and SNR.



9

1.4 Contributions of This Work to Transmitter Design

In Chapters 4-6, we show that LCF codes do not achieve the minimum possible union

bound, and develop codes that do so. Our approach is as follows. We first show that LCF

codes are not the only full-rate, full raw diversity linear codes. In fact, full raw diversity

order is surprisingly easy to achieve. Given any rate, we identify an infinite set of linear

space-time codes, which also includes LCF codes. With probability one, any randomly

picked code from this set achieves full raw diversity order. In particular, space-time codes

with rate t and full raw diversity order tr are easy to find. However, the ultimate goal is to

not only achieve these two broad properties, but also to optimize the union bound on error

rate.

To perform union bound optimization, we first try some analytical techniques. We

present a general structure for linear space-time codes that would guarantee the minimum

union bound at any SNR and for any input alphabet. However, codes with this structure

exist only when either the rate or the raw diversity order (equivalently length) of the space-

time code is low. Therefore, our analytical techniques do not solve the union bound

optimization problem in general. This forces the use of approximate numerical techniques

in order to obtain rate-t, full raw diversity order space-time codes, which also have near-

minimum union bound. Simulation results show that these optimized codes achieve

significantly lower error rate than LCF codes, for the same data rate and SNR. Further, like

the LCF codes, the optimized codes can also be shown to achieve the capacity of the

MIMO fading channel. Thus, they are jointly optimum with respect to the broad and

precise performance metrics of both the capacity-based and reliability-based approaches.
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In Chapter 7, we take a step back, and investigate whether it is really necessary to use

space-time codes which are jointly optimum with respect to both the reliability- and

capacity-based approaches. We point out that the two approaches implicitly assume two

sharply different transmitter architectures. Given the actual architecture employed, one

needs to design space-time codes that are optimum only with respect to the corresponding

approach. Our optimized space-time codes, which are jointly optimum with respect to

both approaches, are still optimum codes to use in either architecture, but might be a case

of overkill. We now describe the two architectures, and why only one approach holds for

each of them.

The first architecture contains a stand-alone space-time code, whose inputs are

independent from one block to the next. Since there is no powerful outer code, this

transmitter operates far away from capacity, and so the capacity of the space-time code is

not a meaningful measure of actual performance. In contrast, the reliability-based

approach is ideally suited to analyze and design such stand-alone space-time codes. In

particular, one should aim to achieve full rate and full raw diversity order broadly, and

more precisely to obtain minimum possible union bound. The jointly optimum codes we

developed earlier are explicitly designed to minimize the union bound, and are hence

optimum stand-alone space-time codes. The fact that they also have full outage capacity is

unimportant, when one evaluates them as stand-alone space-time codes.

On the other hand, consider a concatenated transmitter architecture where the space-

time code acts as an inner code, whose inputs are obtained from a powerful outer code.

Even if the space-time inner code has low raw diversity order, the outer code can exploit

the full diversity benefit of the channel by coding across different space-time code blocks.
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Thus, unlike a good stand-alone space-time code, a good space-time inner code does not

need full raw diversity order. This observation implies that the reliability-based approach,

with its insistence on high raw diversity order, is not meaningful for designing space-time

inner codes.1 In other words, good space-time inner codes do not need to be good stand-

alone space-time codes. In particular, LCF codes and the codes that we obtained by

numerically optimizing the union bound might be trying to do too much, in trying to be

both good stand-alone and good inner space-time codes.

Since the outer code helps the whole concatenated transmitter to approach capacity,

the capacity of the space-time code is a meaningful metric, hence the capacity-based

approach is ideally suited to analyze space-time inner codes. We proceed to search for

optimum space-time inner codes by focusing solely on the capacity.

We define the multiplexing order of a space-time code, and use it to show that a rate-R

linear space-time code achieves at most a fraction R ⁄ min(t, r) of the capacity of a t-input,

r-output Rayleigh fading channel. We also present methods to construct space-time codes

that actually achieve this fraction of the channel capacity. The conclusion is that space-

time codes with rate less than full rate result in a huge capacity loss, but space-time codes

with full rate (or more) can be constructed to avoid this capacity loss.

The crux of the above observations is that good space-time inner codes should have at

least full rate, irrespective of their raw diversity order. In particular, a conjecture by Telatar

[4] implies that the rate-t S/P converter achieves the capacity of the MIMO fading

channel, in spite of its low raw diversity order. Thus, in order to optimize capacity, one can

1. It is well known (see, for example, [17]) that space-time codes that achieve capacity are not
necessarily good with uncoded inputs. Our contribution here is only to state that as a fundamental
difference between two different transmitter architectures, and to conclude that different design
approaches should be adopted for the two architectures.
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use the S/P converter instead of the rate-t, full raw diversity order, union-bound optimized

codes found in the first half of this work. The advantage of the S/P converter as an inner

code is that it is computationally simple to decode. Its disadvantage is that, unlike the

more sophisticated optimized codes, it relies on the outer code to provide diversity, and

hence does not work well with weak outer codes. However, if the outer code is powerful

enough, we conclude that the S/P converter is preferable as an inner code.

1.5 Receiver Design for MIMO Channels

Choosing a particular transmitter architecture fixes the data rate and the structure of

the transmitted signal. The task of the receiver is to undo the noisy MIMO channel’s

distortion, and accurately estimate the transmitted signal. The optimum receiver is the one

that minimizes the probability of estimation error. Clearly, the structure of the optimum

receiver depends on the coding scheme employed by the transmitter. We now describe the

optimum receiver structure for the two transmitter architectures considered in this work. In

each case, note that the structure of the optimum receiver is easy to find. The challenge is

to develop efficient algorithms to implement the known receiver structure.

1.5.1  Receiver Design for Stand-Alone Space-Time Codes

First, consider the case of a with a stand-alone space-time code, whose inputs are

drawn from a discrete input alphabet, independently for each code block. In this case, it is

well known [7] that error probability is minimized by using a maximum likelihood (ML)

detector at the receiver to estimate the space-time code input in each block. To implement

the ML detector, one can think of the combination of a linear space-time code and the
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MIMO fading channel as a single effective MIMO channel, which is also linear. ML

detection amounts to a problem of estimating the linear effective channel’s input, given its

output.

For SISO channels with inter-symbol interference, the Viterbi algorithm implements

ML equalization using the trellis as a graphical tool. Similarly, for linear MIMO channels,

we develop the class of tree-pruning algorithms, which are based on the realization that

ML detection amounts to a search for the cheapest leaf node on the detection tree. The

basic principles of tree-pruning algorithms are simple, and were introduced in [7][23][24].

However, the earlier presentations were developed for different tree-search problems, and

had features peculiar to the respective problem. For example, [24] assumes that the code-

input alphabet is a possibly infinite lattice. We state the basic principles of tree-pruning

algorithms for the specific case of the MIMO detection problem. Also, we point out that

these basic principles can be implemented in multiple ways, yielding a wide variety of

tree-pruning algorithms. The depth-first tree-search version of the algorithm is identical to

the popular sphere decoder [25-30], which is a well-established MIMO detection

algorithm. We also develop new tree-pruning algorithms, which require more memory

than the sphere decoder, but are more suited to parallel, low-latency implementations.

1.5.2  Receiver Design for Concatenated Transmitters

When the transmitter employs the concatenation of the outer code with an inner space-

time code, the optimum receiver must ideally treat the combination of the outer and inner

codes as a joint code, and perform ML detection for the joint code. However, this is

impractical when the outer code has a large code length. Instead, one follows the turbo
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principle [31], and uses an iterative receiver, where soft-output decoders for the inner and

outer codes iteratively exchange probabilistic information. In most MIMO transmitters,

the outer codes is an algebraic code, for which soft-output decoders are well known [32].

The remaining task is to develop soft-output decoders for the inner space-time code, or

equivalently, for the linear effective channel corresponding to the inner space-time code.

Recall that the sphere decoder is a detection algorithm, which produces hard outputs.

In [33], the sphere decoder was extended to obtain the list sphere decoder, which produces

soft outputs by generating a list of hard outputs, instead of just one. We first suggest a new

list generation mechanism, that produces the same soft outputs as the method used in [33],

but requires lesser computation. Second, we use the list generation mechanism to obtain

soft-output extensions of all tree-pruning detection algorithms. Simulation results are

shown to illustrate the computational efficiency of our new soft-output algorithms.

1.6 Organization of This Work

A substantial portion of this work, namely Chapters 2-10 focuses on transmitter

design. In Chapter 2, we present the channel model and introduce linear space-time codes.

The subsequent discussion is divided into the design of stand-alone space-time codes,

followed by the design space-time inner codes.

Chapters 3-6 contain our discussion of stand-alone space-time codes. In Chapter 3, we

rederive well-known expressions for the union bound, raw diversity order and coding gain

of space-time codes. In Chapter 4, we use a random code selection argument to show that

full rate, full raw diversity codes are aplenty. In Chapter 5, we explore analytical

techniques to optimize the union bound. These techniques are shown to work for some
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codes, but not for all. Consequently, in Chapter 6, we develop approximate numerical

techniques to optimize full rate full raw diversity codes. We present simulation results to

illustrate the benefits of numerical optimization.

Chapter 7 begins our discussion of space-time codes as inner codes by pointing out

that the union bound and raw diversity order do not faithfully reflect goodness of inner

codes. In Chapter 8, we review information-theoretic analysis of Rayleigh fading

channels, focussing in particular on the notion of outage capacity. We introduce the

multiplexing order and show that it is equal to min(t, r). In Chapter 9, we extend the

information-theoretic analysis to analyze space-time inner codes. We show that the rate of

a space-time code is an upper bound on its multiplexing order, but its raw diversity order is

a lower bound on the achievable diversity order. This analysis is validated by simulation in

Chapter 10, where we also develop broad design rules for space-time inner codes.

Chapters 11 and 12 discuss the design of computationally efficient receivers for

MIMO channels. In Chapter 11, we develop new tree-pruning detection algorithms, which

are optimum receivers for a transmitter employing a stand-alone space-time code. In

Chapter 12, we discuss the iterative receiver structure, which is near-optimum when the

transmitter employs a concatenated coding scheme. Specifically, we extend the detection

algorithms developed in Chapter 11 to obtain soft-output decoders for linear MIMO

channels.

Chapter 13 summarizes the conclusions from this work and discusses areas of future

research.
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CHAPTER 2

Channel Model and Introduction to Space-Time Codes

An expertis someonewhoknowsmoreandmoreaboutlessandless,till
he knows almost everything about almost nothing. Unknown

In this chapter, we describethe multiple-input, multiple-output (MIMO) channel

modelthatwill beusedin therestof thiswork. Wemotivatespace-timecodesasamethod

of harvestingthepotentialdiversitybenefitof MIMO channels.Therateandraw diversity

orderareintroducedastwo codeparametersthatdeterminethedata-carryingcapacityand

error-correctingcapabilityof space-timecodes.Finally, we describethe specialclassof

linear space-time codes, which will be the focus of the remainder of this work.

2.1 Static-Fading Channel Model for Multiple Antenna Systems

We considera wirelesscommunicationsystemwherethe transmitterandreceiver are

equippedwith t andr antennasrespectively. In signalinginterval k, a t × 1 complex vector

xk is transmittedacrosstheMIMO wirelesschannel,yielding an r × 1 complex received

vectoryk. In this work, we model the MIMO channel as

• linear, i.e.,eachreceivedsignalis asumof scaledcopiesof thesignalstransmitted

from all the transmit antennas, and additive white Gaussian noise (AWGN).
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• flat-fading, or narrowband, i.e., thereis no interferencebetweensymbolstransmit-

ted at different signaling intervals. In contrast,frequency-selective or wideband

channelshave intersymbolinterference,and requiredifferent designmethodolo-

gies [6]. Frequency-selective channels will not be considered in this work.

• quasi-staticor slow-fading, i.e., thechannelresponsedoesnotvaryoveroneblock

of communication.In practice,wirelesschannelsvary with time becauseof the

movementof transmitter, receiver or scatterersin the vicinity. According to the

quasi-staticassumption,the channelvaries so slowly over one communication

block that it canbetreatedasconstant.Otherpossiblechannelmodelsarethe fast

fadingandblock fadingmodels.The fast (or ergodic) fadingmodelassumesthat

thechannelvariesindependentlyfrom onesignalinginterval to thenext. Theblock

fadingassumptionis a compromisebetweentheslow andfastextremes.Here,the

channelis invariant in small blocks lasting a few signalingintervals, but varies

independentlyfrom oneblock to thenext. In block fadingchannels,eachcommu-

nication block, say a codeword, spansmultiple channelblocks. Thesedifferent

fadingassumptionshave differentinformation-theoreticimplications[4] andcor-

respondingdesignmethodologies[6]. We restrictourselvesto quasi-staticfading

in this work.

The input-output relation for a linear, flat-fading, quasi-static MIMO channel is

yk = Hxk + nk, (1)

wherethe r × 1 noisevectornk consistsof independent,circular-symmetric,zero-mean

complex Gaussian random variables of varianceN0.
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The r × t channel matrix H is random. We will assume that the transmitter does not

know H, but the receiver knows it exactly. This is a crucial and commonly made

assumption. If the transmitter knows the channel, pre-coding techniques can be used to

simplify system design by converting the MIMO channel to a bank of scalar channels

without loss of capacity [6]. However, in most practical systems, the transmitter does not

know the channel. In fact, even the receiver often depends on known training symbols

from the transmitter in order to estimate the channel. We assume sufficient training, so that

the receiver can be assumed to know the channel perfectly. This is realistic except when

the channel varies too fast, or when packet-length constraints force short training

sequences. Analysis and system design for channels which are unknown to both

transmitter and receiver can be found in [6][34][35], but is not considered in this work.

In addition to channel knowledge at transmitter and receiver, another crucial

performance and design-determining factor is the distribution of the random channel

matrix H. Note that the element hij of H denotes the scalar channel between the jth

transmit antenna and the ith receive antenna. If the antennas are placed far enough apart, it

is both valid and convenient to assume that the coefficients hij are independent [1].

Further, the Rayleigh fading assumption is often made, namely each hij is assumed to be a

complex, zero-mean, circularly symmetric Gaussian random variable of unit variance. For

the most part, this work focuses on Rayleigh fading channels. However, some results do

hold for more general distributions, as will be explicitly stated where applicable.

Finally, the signal-to-noise energy ratio (SNR) is defined as the ratio of the average

received signal energy to the average noise energy, namely
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S = . (2)

2.2 The Benefits of Using Multiple Antennas

With a well-designed communication system, the use of multiple antennas can

simultaneously enable higher data rates and lower error rates, at the same SNR.

2.2.1  The Multiplexing Advantage of Multiple Antennas

In every signaling interval across the MIMO fading channel of (1), one can transmit t

complex symbols, and receive r complex symbols. Intuitively, one expects the MIMO

channel to be able to multiplex min(t, r) symbols in one signaling interval, and

consequently carry roughly min(t, r) [5] times as much data as a single-input, single-

output (SISO) channel. This claim will be rigorously proved in Chapter 8 through the

discussion of multiplexing order.

2.2.2  The Diversity Advantage of Multiple Antennas

The diversity order of any communication system measures its reliability at high SNR.

When a well-designed communication system transfers data across any channel, the

probability of error Pe(S) is typically a decreasing function of the SNR S. The diversity

order d of the communication system is defined as

δ = − . (3)

The diversity order of the channel is defined as the diversity order of the best possible

communication system that can be used for that channel. The diversity order represents

E Hxk
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the asymptotic slope of a log-log plot of error probability vs. SNR. At high SNR, the error

probability goes to zero as SNR−δ, hence a high diversity order is desirable.

For an AWGN channel, error probability can be made to decrease exponentially with

SNR using capacity-achieving codes. Consequently, the diversity order of AWGN

channels is infinite. In contrast, the diversity order of a t-input, r-output Rayleigh fading

channel is

δ(t, r) = tr, (4)

as we will see in Chapter 8. The finite diversity order tr places a fundamental limit on the

maximum reliability of communication across a MIMO Rayleigh fading channel.

Intuitively, fading channels are error-prone because the random channel coefficients

occasionally have low energy, even though their average energy is one. Roughly, when a

channel coefficient hij has small energy, we say it is undergoing a deep fade. MIMO

channels have tr independently fading coefficients {hij} representing tr independent links

between transmitter and receiver. Ideally, communication fails only if all links fail. Thus,

MIMO channels have a tr-fold resistance to deep fades, as quantified by the diversity

order tr in (4).

Harvesting the diversity benefit of multiple receive antennas is conceptually easy. It

only requires optimal combining of all available information at the receiver [7]. On the

other hand, the diversity benefit of multiple transmit antennas can be obtained only if each

information symbol is, in some sense, spread across all available transmit antennas. This

was considered conceptually difficult before the introduction [3] of space-time codes,

which we discuss in the next section.
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2.3 Introduction to Space-Time Codes

Space-time codes can be thought of as a transmitter front-end, bridging a single stream

of coded or uncoded data with a bank of multiple transmit antennas. As shown in Fig. 1,

the input to the transmitter front-end is a serial stream of bits, which are either uncoded, or

are obtained from an outer code. The coded/uncoded bits are modulated to obtain complex

symbols from a finite alphabet, say a QAM or PSK constellation. We will see in later

chapters that the presence or absence of the outer code is a crucial factor in determining

performance metrics and design criteria for the space-time code.

In one block of encoding, the space-time code takes in a K × 1 complex vector u

containing modulated complex symbols, and produces t × 1 transmit vectors x1, x2, …, xN

for N signaling intervals. Equivalently, the output of the space-time code is the t × N

complex matrix X = [x1, x2, …, xN]. The number of signaling intervals per block, namely

N, is called the length of the space-time code. We will assume that N is finite.

Space-time codes spread information over multiple signaling intervals, just like

conventional error correction codes for scalar channels. However, space-time codes also

spread information across the multiple transmit antennas. In other words, they introduce

redundancy across space and time. The amount of redundancy introduced by a space-time

code is quantified by its rate, and the effectiveness of the redundancy is quantified by the

raw diversity order. We now discuss these two important parameters of a space-time code.

Input Bits
Coded/Uncoded

Modulation
(from bits to

complex outputs)

Space-Time
Code . .

 . 
.

Bank of t
Tx antennas

 Fig. 1. Block Diagram of transmitter with space-time code as front end.
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2.3.1  Rate of a Space-Time Code

The rate of a space-time code is defined as the number of complex input symbols that

it encodes per signaling interval. Since we have assumed K inputs in a block lasting N

signaling intervals, we get a rate of R = K ⁄ N. High rate is desirable, because it indicates

that a large fraction of the transmitted symbols carry actual information, not redundancy.

Viewed differently, suppose each input symbol to the space-time code is drawn from a

QAM (or PSK) constellation of size 2b. Then, each symbol carries b bits of information.

Assuming a pulse shape with zero excess bandwidth, the information rate transmitted by a

rate R space-time code with 2b-QAM input symbols is Rb b / s / Hz. Thus, for the same

input constellation, space-time codes with higher rate transmit at a higher data rate.

Conversely, to achieve the same data rate, high rate codes can use a smaller constellation.

Another useful view of rate is obtained by considering the effective channel formed by

the combination of the space-time code and the MIMO fading channel. The rate is the

number of complex inputs multiplexed by the effective channel per signaling interval.

Again, high rate implies more multiplexing and is desirable.

2.3.2  Raw Diversity Order of a Space-Time Code

The raw diversity order of a space-time code measures the degree to which it exploits

transmit diversity in order to provide fade resistance. In particular, it is the diversity order

of a communication system where uncoded bits are fed to the transmitter shown in Fig. 1,

and the receiver does optimum maximum-likelihood decoding. Note that by assuming

uncoded inputs, the raw diversity order measures the diversity obtained by the space-time

code alone, without help from an outer code.
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In order to compute the raw diversity order of a space-time code, one must, in

principle, obtain an expression for the error probability with a given input alphabet, and

use it to compute the limit (3). However, the raw diversity order is more conveniently

obtained using the rank rule, developed in [3]. Given an input alphabet U containing all

possible inputs u to the space-time code, one obtains the codebook X of all possible t × N

space-time code output matrices X. The rank rule, which we will rederive in Chapter 3,

states that the raw diversity order of a space-time code with codebook X is equal to the

product of the number of receive antennas r and the minimum rank of all pairwise

differences from the codebook X. In other words,

δ(t, r, X) = r rank(X − X′). (5)

Each difference matrix X − X′ has dimension t × N, and a rank of at most min(t, N). Thus,

δ(t, r, X) ≤ rmin(t, N), (6)

with equality if and only if every pairwise difference between valid code matrices has full

rank. In particular, if the code has length N ≥ t and full-rank difference matrices, we get

the maximum possible, or full, raw diversity order, namely tr.

2.4 Linear Space-Time Codes

In this section, we discuss the encoding process of a space-time code. We have said

that the output of the space-time code is the t × N transmit matrix X whose columns x1, x2,

…,xN are the transmit vectors over the space-time coding block. Equivalently, one can

also say that the output is the composite transmit vector x of dimension Nt × 1, given by x

= [x1
T, x2

T, …,xN
T]T. In other words, x is formed by placing the columns of X one below

min
X ≠ X′ ∈ X
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the other. This stackingof columnsis denotedx = vec(X), and the inverserelation is

denotedX = mat(x). In general,a space-timecodecanobtainx by any operationon the

inputvectoru. However, in thiswork, wefocuson linear space-timecodes,alsoknown as

linear dispersion codes [12], whereeachoutputsymbolis somelinearcombinationof the

input symbolsand their complex conjugates.In other words, a linear space-timecode

obtains its composite transmit vectorx according to the rule

x = M1u + M2u*, (7)

whereu* denotesthecomplex conjugateof u. M1 andM2 arecomplex Nt × K matrices.

To represent (7) more compactly, we use the complex-to-real transformations [4]

 = , and  = (8)

for complex vectorsb and matricesA. Now, the encoding rule (7) becomes

 = M , (9)

where the2Nt × 2K real matrixM is given by

M = . (10)

M is called theencoding matrix of the linear ST code, and completely specifies the code.

2.4.1  The Effective Channel for Linear Space-Time Codes

Linear space-timecodesalsohave a simplerelationbetweenthe codeinput u at the

transmitter, andthereceivedvectorsin theblock y1, y2, …,yN. FromtheMIMO channel

equation(1), we have yi = Hxi + ni. Now, we assemblethecompositereceive vectory =

[y1
T, y2

T, …,yN
T]T, and the composite noise vectorn = [n1

T, n2
T, …,nN

T]T. Clearly,

b̂
Re b{ }
Im b{ } Â

Re A{ } I– m A{ }
Im A{ } Re A{ }

x̂ û

Re(M1) + Re(M2)

Im(M1) + Im(M2)

− Im(M1) + Im(M2)

Re(M1) − Re(M2)
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y = x + n = Gx + n, (11)

where we have defined the block diagonal transfer matrix G. Now, we only need to apply

the complex-to-real transformation (8) to (11) and substitute  = M from (9) to obtain

 =  = M  + . (12)

Equation (12) is the input-output relationship of the effective channel formed by the

combination of the linear ST code and the underlying MIMO fading channel, as shown in

Fig. 2. From (12), the effective channel is real and has dimensions 2Nr × 2K. Remarkably,

it is linear and memoryless, just like the underlying MIMO fading channel (1). The

linearity of the effective channel makes the analysis and design of linear space-time codes

easy, as we will see in chapters Chapter 3 and Chapter 9. The tractability of the effective

channel is the primary reason for the general popularity of linear space-time codes.

The linearity of the effective channel also enables the design efficient decoding

algorithms for linear space-time codes, as we will see in Chapter 11 and Chapter 12.

However, these efficient decoding algorithms work well only when the columns of the

effective channel matrix are linearly independent. To intuitively see the need for this

restriction, suppose there were no noise . Then, the input can be obtained from =

H
0 …0 0

0
H

…

H0

…

0

…

x̂ û

ŷ Ĝx̂ n̂+ Ĝ û n̂

Code-input . .
 . 

. r × t
MIMO

 Fig. 2. Effective channel formed by combination of ST code and MIMO fading channel.

u
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M through inversion (or pseudo-inversion) of the effective channel matrix, only if the

2K columns of the M are linearly independent. Now, the columns are linearly dependent

when M has rank equal to 2K. On the other hand, the rank of M is at most equal to

the rank of , which in turn is at most equal to the minimum dimension of , namely

min(2Nr, 2Nt). Thus, linear independence of columns requires 2K ≤ min(2Nr, 2Nt).

Dividing both sides by 2N, we see that the rate R of the linear space-time code should

satisfy

R = K ⁄ N ≤ min(t, r) (13)

in order for the efficient decoding techniques to apply.

The value min(t, r) is called full rate of a linear space-time code. From (13), we see

that full rate is the maximum rate possible if one also wants efficient decoding. As already

mentioned, the rate of a space-time code measures its multiplexing ability. A space-time

code operating at full rate multiplexes min(t, r) symbols per signaling interval, which is

equal to the multiplexing ability of the fading channel itself. Rate greater than full rate is

possible in theory, but it complicates decoding without increasing the possible

multiplexing gain. Consequently, space-time codes are typically designed to have full rate,

but not more.

2.4.2  Strictly Linear Space-Time Codes

A sub-class of linear space-time codes is that of strictly linear space-time codes, for

which the matrix M2 in (7) is 0. The encoding relation is thus

x = Mu, (14)

and the effective channel transfer function is

Ĝ û

Ĝ

Ĝ Ĝ

Ĝ Ĝ
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y = GMu + n. (15)

For strictly linear space-time codes, the encoding matrix M and the effective channel

matrix GM are both complex, and have dimensions Nt × K and Nr × K respectively. The

restriction to strict linearity makes analysis simpler. Heuristically, the best strictly linear

space-time codes are found to achieve roughly the same error rate as the best linear space-

time codes. However, there is definitely a loss of generality. In particular, no strictly linear

space-time code has the elegant properties of the linear Alamouti code (see Section 2.5.2).

2.4.3  Modulation for Linear Space-Time Codes

We close our introduction to linear space-time codes with a remark about the

separation of modulation and space-time coding. The modulation process in Fig. 1 just

puts a unique, reversible label on the input bits. In general, a space-time code can reverse

the label and work with the bits directly if it wants, and so the exact choice of the

modulation labels is inconsequential. However, a linear space-time code can only perform

linear combinations of the modulated complex symbols. Now, the choice of the

modulation alphabet affects the codebook of the linear space-time code, and hence the

performance. Ideally, one should jointly design the modulation alphabet and encoding

matrix together, but the joint design problem is analytically daunting. In this work, we

adopt a simpler, sub-optimum alternative [20][40][17], namely we assume QAM or PSK

modulation, and then design only the encoding matrix of the linear space-time code.
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2.5 Examples of Space-Time Codes

In this section,we presentillustrative examplesof a few space-timecodes.We begin

by discussingimportant linear space-timecodes,and end the sectionby discussinga

representative example of non-linear space-time codes.

2.5.1  The Serial-to-Parallel  Converter (SPC)

TheS/Pconverteris thesimplestspace-timecode.In onesignalinginterval, it takesin

t complex symbols,andtransmitsoneon eachof the t availabletransmitantennas.Thus,

the codelengthN is 1, the numberof inputsK is t, andrate is K ⁄ N = t. The transmit

vector x1 is equal to the t × 1 input vector u. All non-zerodifferencesbetweencode

outputsarenon-zerot × 1 vectors,which have rankone.Thus,from therankrule (5), the

S/Pconverterhasa raw diversityorderequalto thenumberof receive antennasr. In spite

of its low raw diversity order, the S/P converter is an attractive inner code, when a

powerful outer codeis present,as we will seein Chapter9. The V-BLAST transmitter

architecture [5][11] employs the S/P converter as inner code.

2.5.2  The Alamouti  Code

The Alamouti code[9] assumesthat therearet = 2 transmitantennas.It takesin the

input vectoru = [u1 u2]T containingK = 2 complex symbols,andobtainsthecodematrix

for N = 2 signaling intervals, given by

X = . (16)
u1 u– 2

∗

u2 u1
∗
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It is easy to check that if distinct transmit matrices X and X′ correspond to input vectors u

and u′, then the difference matrix X − X′ has determinant ||u − u′||2, which is clearly non-

zero, implying that all differences X − X′ are full rank. Thus, from the rank rule (5), the

raw diversity order of the Alamouti code is rmin(t, N) = 2r, which is equal to the full raw

diversity order. On the other hand, since K = N = 2, the Alamouti code has a rate K ⁄ N = 1.

This is equal to full rate min(t, r) if and only if there is exactly r = 1 receive antenna.

Beyond rate and raw diversity order, the Alamouti code has one additional feature,

namely that the transmit matrix X always has orthogonal columns, irrespective of the input

u. The effect of this property is that the effective channel matrix discussed in Section 2.4.1

always has orthogonal columns, irrespective of the fading channel matrix H. Hence, clever

signal processing (see [9]) at the receiver can diagonalize the effective channel, giving

y′ = ||H||F
2u + n′, (17)

where ||H||F
2 is the squared Frobenius norm (or the energy) in the channel matrix H, and

n′ is a noise vector containing independent zero mean complex Gaussian noise terms of

variance N0. The symbols u1 and u2 in u can now be independently decoded, from the

corresponding symbols of the effective received vector y′.

Linear space-time codes for which the effective channel can be diagonalized to the

form (17) are called orthogonal designs [10]. In addition to simple parallel decoding,

orthogonal designs also guarantee full raw diversity order. However, it was shown in [10]

that all other orthogonal designs have rates less than that of the Alamouti code, namely

one. Their low rate is the major drawback of orthogonal designs.
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2.5.3  Linear Complex Field Codes

The first full rate,full raw diversity space-timecodewasdevelopedin [21] for t = 2

transmitantennasand r ≥ 2 receive antennas,using numbertheoreticideas.The same

ideaswereextendedto obtain linear complex field codes(LCF) codes(see[19][20][22]

and the referencestherein), that guaranteefull raw diversity order for any numberof

transmitantennas,for all QAM modulatedinputs. Thoughthey are often presentedas

layeredor threadedcodes,LCF codesareessentiallylinear space-timecodes.Given the

numberof transmitantennast andthecodelengthN, LCF codesexist for any numberof

codeinputs per block satisfyingK ≤ Nt (or equivalently any rate R = (K ⁄ N) ≤ t). For

convenience,we first presentthe LCF encodingmatrix assumingthat K = Lt, for some

integerL ≤ N. Theassumptionwill berelaxedlater. Theencodingmatrix is parametrized

by two unit-magnitudecomplex numbersα andβ. Theparameterα determinestheN × L

matrix C, according to

cnl = exp αl−1. (18)

Theparameterβ determinesthe t × t diagonalmatrix Dβ = diag(1, β, …, βt−1). Let Rn be

the matrix formed by cyclically rotating the rows of thet × t identity matrixn times, i.e.,

Rn = . (19)

With these definitions, the encoding matrix of LCF code parametrized byα andβ is

MN,L(α, β) = . (20)

1

N
--------- j2π

N
------ n 1–( ) l 1–( )– 

 

0 In

It n– 0

c11R0Dβ c12R0Dβ … c1LR0Dβ

c21R1Dβ c22R1Dβ … c2LR1Dβ

cN1RN 1– Dβ cN2RN 1– Dβ … cNLRN 1– Dβ

… … ……
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The parameters α and β specify the code and determine its codebook, and hence the raw

diversity order. It was shown in [19][20][22] that if α is chosen to be an algebraic integer

[37], the LCF code MN,L(α, αt) achieves raw diversity order min(t, N)r for all QAM input

constellations. In particular, LCF codes with N ≥ t and K = Nt simultaneously achieve rate

t and full raw diversity order. To our knowledge, no other codes with this property have

been proposed. However, we will see in Chapter 4 that such codes are aplenty.

Finally, the assumption K = Lt was made only for convenience. Given any Nt × Lt

encoding matrix, one can puncture some of the inputs by removing the corresponding

columns of the encoding matrix. By puncturing, one can obtain any value of K between 0

and Nt, while still maintaining the raw diversity order of min(t, N)r.

2.5.4  Space-Time Turbo Codes

Space-time turbo codes [38] consist of a binary turbo code, whose output bits are

interleaved, modulated, S/P converted, and transmitted on multiple antennas. The

interleaver between the outer code and the S/P converter is designed with an additional

constraint [38] to ensure full raw diversity order. However, when the turbo code length

runs into a few hundred bits, the constraint is loose enough to be ignored, and the

interleaver can be arbitrarily chosen without affecting raw diversity order. Then, the

combination of the turbo code and the interleaver can be thought of as an outer code,

which feeds coded symbols to the inner-space time code, which is only a S/P converter.

This separation is convenient because the S/P converter is a linear space-time code, and is

therefore more amenable to analysis. We will revisit this separated coding architecture in

Chapter 7.
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2.5.5  Time-Varying Linear Precoders

Time-varying linear precoders (TVLP), introduced in [15], were designed specifically

for tall MIMO channels, with more transmit than receive antennas. They are strictly linear

space-time codes, except that their encoding matrix varies from block to block, i.e., the

matrix Ml depends on the block index l. Consider the example of length 1 code blocks

with one complex input each, with Ml = il mod t, namely the (l mod t)th column of the t × t

identity matrix. Essentially, every signaling interval, the code takes in one input symbol,

and transmits it on just one antenna. The antenna for transmission is chosen in cyclic

round-robin fashion. Since only one antenna transmits at any given signaling interval, the

effective channel is a time-varying r × 1 channel, which makes decoding simple. However,

the simplicity does not come at the cost of diversity. It is easy to show that a well-designed

outer code can get full diversity order by decoding soft-outputs from the inner space-time

decoder. TVLP codes were probably the first space-time codes to be rigorously analyzed

from both diversity and capacity points of view. They have since been overshadowed by

linear dispersion codes, particularly because of their dependence on an outer code in order

to get diversity. However, their elegance and ease of implementation makes them

noteworthy.

2.5.6  Space-Time Trellis  Codes

We close this section by discussing space-time trellis codes [3], which are not linear

space-time codes. Consequently, the effective channel is not linear, and analysis and

decoding of space-time trellis codes tends to be complicated.
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Space-time trellis codes are, in one sense, the space-time extension of trellis coded

modulation (TCM) for AWGN channels [39]. For every signaling interval k, they maintain

a state sk, containing information about previous inputs and outputs. The state sk, along

with the current input uk, determines the transmit vector xk for that signaling interval.

Typically, the state is just a collection of the L previous inputs, namely sk = [uk−1, uk−2,

…, uk−L]T. L is the called the memory of the code. One can represent this encoding process

on a trellis, with values of sk connected to possible next states sk+1 through branches,

which are labelled based on the corresponding code input uk and output vector xk. The

initial state s0 is pre-determined, and is called the all-zero state. After encoding N − L

inputs, or equivalently walking across as many trellis stages, the code stops taking inputs,

and inserts L termination symbols in order to force the state sN to be the all-zero state

again. This termination [3] ensures that the raw diversity order of the space-time trellis

code is equal to min(t, L)r. By making L ≥ t, full raw diversity order can be obtained. The

next block starts again from the all-zero state, and is independent of the inputs and outputs

over the current block.

Note that the output xk is not just a linear combination of the inputs {uk} over one

block, therefore ST trellis codes are not linear. In fact, the input uk is just a label for the

input bits at time k. Therefore, ST trellis codes can be thought of as taking in bits, and

performing joint modulation and coding, as described in Section 2.4.3. Further, the output

symbols of a ST trellis code usually belong to a QAM or PSK constellation, thus

controlling the peak-to-average power ratio of the transmitted signal. The disadvantage of

space-time trellis codes is that when the memory L ≥ t is large, the trellis has too many

states, making decoding cumbersome.
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To our knowledge, space-time trellis codes are the only significant non-linear codes in

the literature. There are some algebraic space-time codes [40], which take in bits and

produce complex symbols. However, many of these can be split into a combination of a

finite-field outer code and a linear inner space-time code. Interestingly, there is one code

[41] that actually does independent modulation first, and then does a non-linear operation

on the modulated complex symbols, without using them merely as labels. This code lacks

any generic structure, but can be hand-crafted to outperform linear codes for some channel

dimensions and input constellations, according to [41].

The three most important codes for the rest of this work are the S/P converter, the

Alamouti code and the LCF code. These are summarized in Table 1, for convenience.

2.6 Importance of Rate and Raw Diversity Order: Example

We now present an example to illustrate that high rate and raw diversity order are

crucial in order to achieve good performance. This observation explains the research focus

on obtaining full rate, full raw diversity linear space-time codes, both in the literature and

in this work. We compare three linear space-time codes operating over a 2-input, 2-output

Rayleigh fading channel: the S/P converter, the Alamouti code and a linear complex field

Table  1: A List of Important Linear Space-Time Codes.

Code
Number of

Tx Antennas

t

Code
Length

N

Number of
Inputs

K

Rate

K/N

Raw
Diversity

Order

S/P converter Any t 1 t t r

Alamouti 2 2 2 1 2r

LCF code Any t Any N Any
K ≤ Nt

K ⁄ N min(t, N)r
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code, whose encoding matrix is given by M2,2(exp(j0.5), exp(j1.0)) in (20). In the present

example the channel dimensions are t = r = 2, hence full rate and full raw diversity order

are min(t, r) = 2 and tr = 4 respectively. The S/P converter has full rate of t = 2, but raw

diversity order of only r = 2, from Table 1. On the other hand, the Alamouti code has rate

one (half of full rate), but full raw diversity order. The LCF code has both full rate and full

raw diversity order.

The performance of these codes is compared at 4 bits/s/Hz. In order to achieve this

data rate, each input symbol to the S/P converter and the LCF code is drawn independently

from a 4-QAM input alphabet. On the other hand, the Alamouti code has half the symbol

rate of the other two codes, and consequently has to use a 16-QAM input alphabet. Frames

consisting of 100 signaling intervals (corresponding to 100 ⁄ N = 50 coded blocks for the

length-two Alamouti and LCF codes) are transmitted across the Rayleigh fading channel.

The channel is constant over one frame, but varies independently from one frame to the
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 Fig. 3. Performance of three space-time codes over a 2-input, 2-output Rayleigh fading
channel at 4 b / s / Hz.
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next. The receiver does optimum maximum likelihood decoding, which will be discussed

in Section 3.1. A frame error is said to occur if one or more symbols in the frame are

decoded erroneously. The resulting frame error rate is plotted against SNR in Fig. 3.

The higher rate of the S/P converter enables it to use a smaller constellation, and hence

achieve a lower error rate at low SNR, when compared to the low-rate Alamouti code.

However, the full raw diversity order of the Alamouti code leads to a steeper error rate

curve than the low diversity S/P converter. Hence, at higher SNR, the Alamouti code

outperforms the S/P converter. The LCF code has both full rate and full raw diversity

order, hence it outperforms both the other codes.

2.7 Summary

In this chapter, we described the linear, frequency non-selective, slow-fading MIMO

channel model (1) used in the remainder of this work. We outlined the multiplexing and

diversity benefits of MIMO fading channels, and motivated space-time codes as a

transmitter-front end used to harness the available transmit diversity. We defined, and

discussed the importance of, the rate and raw diversity order of a space-time code. We

defined linear space-time codes. We derived an expression for the encoding process, and

for the effective channel formed by the combination of a linear space-time code and the

MIMO fading channel. Finally, we presented examples of popular space-time codes.

In the next few chapters, we will assume uncoded inputs to the space-time code, and

address the design of linear space-time codes to minimize the error rate, given the channel

dimensions, length and rate of the space-time code. Subsequently, the design of space-

time inner codes, whose inputs are obtained from an outer code, will be discussed.
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CHAPTER 3

Performance Metrics for Stand-Alone Space-Time Codes

In this chapter, we study the performance of space-time codes with uncoded inputs,

when the receiver performs optimum maximum likelihood decoding. The system under

consideration is shown in Fig. 4. Uncoded input bits are modulated to obtain complex

symbols belonging to a countable alphabet. These symbols are encoded by the space-time

code to obtain transmit vectors, which are transmitted across a Rayleigh fading channel.

The received signals are fed to a maximum likelihood (ML) decoder which estimates the

input symbols to the space-time code.

Analysis of the error rate of the communication system of Fig. 4 is part of the standard

literature of space-time codes, notably [3][8]. The error rate itself is difficult to obtain in

closed form, but the union bound on error rate can be easily derived. Further analysis of

the union bound at high SNR yields two new performance metrics, namely the raw

diversity order and the coding gain. In subsequent chapters, we will take up each

performance metric one at a time, and aim to design space-time codes that optimize it.

Uncoded Modulation
Code . .

 . 
. r × t

Rayleigh

 Fig. 4. Transmitter with a stand-alone space-time code and optimum receiver.

Bits
(ex. QAM, PSK)

Space-Time
u

fading
channel

. . . .

Optimum

Decoder
ML

(minimum WER)

û
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3.1 An expression for the Word Error Rate

In this section, we will derive an expression for the error rate of the system shown in

Fig. 4. The expression will be shown to be intractable, motivating the derivation of more

tractable bounds and approximations.

Recall that each space-time code block lasts N signaling intervals. In one block, the

input to the space-time code is a K × 1 complex input vector u, drawn randomly from an

input alphabet U. Till the beginning of Chapter 7, we assume that U is discrete or

countable, i.e., its elements can be indexed by the natural numbers1. For example, U can

be the set of all K × 1 lattice vectors, namely vectors whose entries have integer real and

imaginary parts. Another example is the smaller set of all K × 1 vectors whose symbols

belong to a 16-QAM alphabet. Given the input vector u, the space-time code uses some

encoding rule to obtain the t × N transmit matrix X. The columns of X are transmitted

across the MIMO fading channel over N signaling intervals, and received on r receive

antennas. The received vectors constitute the columns of an r × N receive matrix Y. From

the linear memoryless Rayleigh-fading channel model of (1), we get

Y = HX + N. (21)

Given the receive matrix Y and the channel H, the task of the decoder is to estimate the

code input vector u. Whenever the decoder’s estimate of the input vector is wrong, a word

error is said to occur. The probability of word error, called the word error rate (WER),

clearly depends on the decoder algorithm used to produce the estimate (see Chapter 11).

The decoder that has the minimum WER is the maximum likelihood (ML) decoder. The

1. All finite sets are countable. Not all infinite sets are countable. For example, the infinite set of all
rational numbers is countable, while the set of all real numbers is not.
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ML decoder uses the conditional probability density function (pdf) pY ⁄U(Y|H,u′), which

intuitively reflects1 the probability of receiving the matrix Y if the actual transmit vector

were u′. For AWGN noise with each noise symbol having a variance N0, the conditional

pdf is given by

pY ⁄U(Y ⁄ H,u′) = exp , (22)

where X′ is the transmit matrix corresponding to the input vector u′.

A vector u1 ∈U is said to be more likely than another vector u2 ∈U if pY |U(Y|H,u1) >

pY ⁄U(Y|H,u2). The ML decoder outputs the most likely vector in U, namely

 = pY |U(Y|H,u′). (23)

The word error rate of the ML decoder is the probability that is different from the actual

input vector u. Note that the word error event depends on three random variables, the

actual input vector u ∈U, the random channel matrix H, and the noise matrix N. Let Eu

denote the event that a word error occurs, conditioned on the input vector being one

specific u ∈U, and let Pr(Eu) denote the probability of the event Eu. Averaging Pr(Eu)

over the pdf pU(u) of the input vector u, we get the word error rate of the ML decoder

WERML = pU(u)Pr(Eu). (24)

The expression (24) for the word error rate is intractable because Pr(Eu) cannot easily be

computed in closed form. In the next section, we will obtain the union bound on WER by

breaking up the conditional word error event Eu into the union of multiple events.

1. The intuitive interpretation is not exact because Y is a continuous random variable. The pdf
directly gives probabilities only for discrete random variables.

1

πN0( )tN
----------------------

Y HX′–– F
2

N0
------------------------------------

 
 
 

û maxarg
u′ U∈

û

u U∈
∑
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3.2 The Union Bound on the Word Error Rate

Let Eu(u′) denote the pairwise error event, that some u′ ≠ u is more likely than the

actual transmit vector u. Now, Eu occurs if any u′ ≠ u is more likely than u, implying

Eu = Eu(u′). (25)

Clearly, Pr(Eu) can be bounded by the sum of pairwise error probabilities (PEP), as

Pr(Eu) ≤ Pr(Eu(u′)). (26)

Substituting (26) in (24) gives the union bound on the word error rate

WERML ≤ pU(u) Pr(Eu(u′)). (27)

The reason for using the union bound is that the pairwise error probability for each

pair (u, u′) is easy to analyze. In particular, a Chernoff bound on the PEP can be obtained

by averaging out the random variables determining the pairwise error event, namely the

Rayleigh fading channel matrix H and the noise matrix N. For convenience, the standard

derivation [3][8] is reproduced in Appendix A. The final expression is

Pr(Eu(u′)) ≤ det−r , (28)

where X and X′ are the transmit matrices corresponding to u and u′ respectively.

One final manipulation will prove useful to explicitly show the effect of the signal-to-

noise energy ratio (SNR) on the union bound. Recall from (2) that the SNR is defined as S

= E[||Hxk||2] ⁄ rN0. Since each term in the Rayleigh fading channel matrix H is an

independent unit-energy complex Gaussian, it is easy to show that E[||Hxk||2] ⁄ r is equal to

the average transmit energy Etx = E[||xk||2]. Thus, we can substitute N0 = Etx ⁄ S in (28),

u ′ u≠
∪

u ′ u≠
∑

u U∈
∑

u ′ u≠
∑

It
X X′–( ) X X′–( )∗

4N0
----------------------------------------------+ 

 
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and substitute, in turn, for the PEP Pr(Eu(u′)) into the union bound expression (27). This

gives the final expression for the union bound on the word error rate of a space-time code

with input alphabet U and output alphabet X operating over a t-input, r-output Rayleigh

fading channel at SNR S, namely

WERML ≤ pU(u) det−r . (29)

An alternative representation of the same union bound will prove useful in the sequel.

Each t × N difference matrix X − X′ has min(t, N) ordered singular values, say λ1 ≥ λ2 ≥

…≥ λmin(t,N) ≥ 0. The number of non-zero singular values is equal to the rank of X − X′. In

terms of the non-zero singular values, the determinant in (29) above can be written as

det  = . (30)

Substituting (30) in (29) yields the equivalent representation of the union bound

WERML ≤ pU(u) . (31)

We will use (29) and (31) interchangeably, for ease of presentation. Note that the

codebook X of a space-time code determines the pairwise differences, and hence the union

bound on WER. Now, we focus on the impact of X on the WER at high SNR.

3.3 The Raw Diversity Order

Recall from Section 2.2.2 that the diversity order of any communication system is the

asymptotic slope of a log error rate vs. log SNR plot. Also, in Section 2.3.2, we briefly

introduced the raw diversity order of the space-time code with uncoded inputs, i.e., the

u U∈
∑

u ′ u≠
∑ It S X X′–( ) X X′–( )H

4Etx
-----------------------------------------------+

 
 
 

It S X X′–( ) X X′–( )H

4Etx
-----------------------------------------------+

 
 
 

1 S
λi

2

4Etx
------------+

 
 
 

i 1=

rank X X ′–( )

∏

u U∈
∑ 1 S

λi
2

4Etx
------------+

 
 
 

r–

i 1=

rank X X ′–( )

∏
u ′ u≠
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raw diversity order of a space-timecode is the diversity order of the communication

systemof Fig. 4. Wenow proceedto obtaintheraw diversityorder, usingtheunionbound.

By definition, the raw diversity order is the limit

δ(t, r, X) = − . (32)

Theunionboundexpressionprovidesanupperboundon theword errorrate,andhencea

lower boundon theraw diversityorder. It is easyto show that thelower boundis, in fact,

tight. So, one can replace the WER in (32) by the union bound, giving

δ(t, r, X) = − log pU(u) . (33)

At high SNR,the‘1 + ’ termin eachproductis negligible, andtheSNRexponentin each

productis equalto −rank(X − X′)r. While summingup over all pairs(u, u′) andaveraging

over the input probabilities pU(u), the term with the maximum exponent dominates.

Consequently, the raw diversityorderis equalto ρminr, whereρmin is theminimumrank

of pairwise differencesX − X′ between transmit matrices. Thus, we get

δ(t, r, X) = r rank(X − X′), (34)

as statedin (5) of Section2.3.2.Sincedifferencematriceshave dimensiont × N, their

maximum possible rank ismin(t, N). Using this fact in (34), we get the rank rule [3][8].

Rank Rule: Themaximumraw diversityorderof a lengthN space-timecodeoper-

ating over a t-input, r-outputRayleighfadingchannelis equalto rmin(t, N). This

upperboundis achievedif andonly all pairwisedifferencesX − X′ betweentransmit

matrices have full rank, equal tomin(t, N).

WERMLlog

Slog
-------------------------------

S ∞→
lim

S ∞→
lim

1
Slog

------------
u U∈
∑ 1 S

λi
2

4Etx
------------+

 
 
 

r–

i 1=

rank X X ′–( )

∏
u ′ u≠
∑

min
X′ ≠ X
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3.4 The Coding Gain of Space-Time Codes

At high SNR, a plot of log(WER) vs. log(SNR) is a straightline. The raw diversity

orderis theslopeof theasymptote.Two codeswith thesameraw diversityorderachieve

the sameasymptoticslope,but could differ in the offset (or horizontal shift) of their

asymptotes.Thecoding gain of aspace-timecodeis anapproximatemeasureof theoffset

of the asymptote.

AssumethattheinputalphabetU is notonly discrete,but alsofinite. Let |U | denotethe

cardinality ofU. Then, the inner sum in the union bound (27) can be bounded by

Pr(Eu(u′)) ≤ (|U | − 1) Pr(Eu(u′)), (35)

just by usingthe fact that eachterm Pr(Eu(u′)) is lessthanthe maximum,andthereare

(|U | − 1) suchterms.Now, theunionboundis theaverageof theleft handsizeover u, and

consequently it cannot exceed the maximum of the right hand side over u. This gives

WERML ≤ (|U| − 1) Pr(Eu(u′)). (36)

Intuitively, the right handsideof (36) is obtainedwheneachpairwiseerror event occurs

with the sameprobability as the worst case, or most probable,pairwise error event.

Finally, substitutingfor thePEPPr(Eu(u′)) from (28) in (36),we gettheworst-caseupper

bound on the word error rate,

UBWC  = (|U| − 1) . (37)

At high SNR, the ‘1 + ’ term in the productscanbe neglected,in comparisonwith the

SNR-dependentterm. Also, the termswith the maximumpower of SNR, which is by

u ′ u≠
∑ max

u′≠ u

max
u ∈ U

max
u′≠ u

max
u ∈ U

max
u′≠ u 1 S

λi
2

4Etx
------------+

 
 
 

r–

i 1=

rank X X ′–( )

∏
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definition equal to the raw diversity order, will clearly dominate at sufficiently high SNR.

Using these high-SNR trends, we get the approximation

UBWC ≈ (|U| − 1) S−δ(t, r, X) . (38)

Note that the maximum is taken only over those error events which have the minimum

rank difference matrix, since these dominate at high SNR. The reciprocal of this

maximum, namely

γCG = , (39)

is called the coding gain of the space-time code. The coding gain complements the raw

diversity order as a measure of code performance at high SNR. The raw diversity order

measures the minimum rank, or equivalently, the minimum number of non-zero singular

values among all difference matrices. From (39), it is easy to see that the coding gain

accounts for the actual value of these singular values.

3.5 Comparison of Performance Metrics

In this chapter, we have used bounds and approximations on the word error rate to

obtain three performance metrics for a space-time code. The union bound is the most

comprehensive of the three performance metrics, and reflects the actual word error rate

most closely. One feature of the union bound, obvious from the expression (31), is that it

depends on the SNR. At low SNR, it is well known the union bound is a loose bound on

max
u′ ≠ u

rank(X − X′) = ρmin

λi
2

4Etx
------------

 
 
 

r–

i 1=

rank X X ′–( )

∏

min
u′ ≠ u

rank(X − X′) = ρmin

λi
2

4Etx
------------

 
 
 

r

i 1=

rank X X ′–( )

∏
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the word error rate, and is therefore not useful. However, as the SNR increases, the union

bound becomes tighter. The SNR dependence also makes the union bound somewhat

cumbersome as a performance metric, since it needs to be computed afresh for every SNR.

In contrast to the union bound, the raw diversity order and coding gain are SNR-

independent, but are meaningful only when the SNR is asymptotically high. Note that

neither of them completely describes the word error rate by itself. The raw diversity order

gives the slope, and the coding gain attempts to quantify the offset of the word error rate

vs. SNR asymptote. Of these, the raw diversity order is clearly the more important. This is

because a low-diversity code has a shallower asymptote than a high-diversity code, and

has dramatically higher error rates as the SNR increases. In contrast, the effect of a lower

coding gain manifests itself in only a shift of the asymptote, and the resultant error rate

penalty saturates at high SNR. Further, the coding gain is a pessimistic performance

metric, giving often undue importance to the worst-case error event. Thus, it does not

exactly measure the offset of the asymptote, but only approximates it.

One special feature of the raw diversity order is that it can be computed easily for any

space-time code using the rank rule. This analytical tractability is one of the reasons for its

popularity as a design metric.

The three performance metrics derived in this chapter quantitatively measure the

goodness of a stand-alone space-time code. Space-time codes with low union bound, or

high raw diversity order and coding gain, are desirable. In the next few chapters, we will

focus on strictly linear space-time codes, and discuss methods of finding codes which

optimize the performance metrics derived here.
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CHAPTER 4

Optimization of Raw Diversity Order by Random Code Selection

In Chapter 3, we saw that a space-time code of length N, operating over a t-input, r-

output Rayleigh fading channel can obtain at most a raw diversity order of rmin(t, N). In

order to achieve this upper bound, the space-time code must satisfy the rank rule. In this

chapter, we show that the rank rule is satisfied by almost any strictly linear code whose

encoding matrix has orthonormal columns. Thus, the raw diversity order is an easy

performance metric to optimize. However, high raw diversity order alone does not

guarantee minimum error rate. Consequently, a search for linear space-time codes with

minimum union bound is taken up in subsequent chapters.

4.1 The Rank Rule for Strictly Linear Space-Time Codes

In this section, we rederive the rank rule for the specific case of strictly linear space-

time codes. Recall from Section 2.4.2 the encoding process of a strictly linear space-time

code with encoding matrix M. Given an input vector u drawn from the countable input

alphabet U, the t × N transmit matrix X = mat(Mu) is obtained. The columns of X are the

transmit vectors in one block. The discrete input alphabet U and the Nt × K complex

encoding matrix M determine the codebook X of the space-time code, and hence the

performance metrics derived in Chapter 3, specifically the raw diversity order.
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From Section 3.3, the raw diversity order of a space-time code is equal to the product

of the number of receive antennas and the minimum rank of pairwise differences between

valid transmit matrices. In the specific case of strictly linear space-time codes, if X and X′

are transmit matrices corresponding to two distinct inputs u and u′, we have

X − X′ = mat(Mu) − mat(Mu′) = mat(M(u −u′)). (40)

Let us define the input difference alphabet D as the set of all differences between distinct

input vectors, i.e.,

D = {d = u − u′: u ≠ u′ ∈U}. (41)

If U is countable, then the difference alphabet D is also countable.1 From (41), it is clear

that every difference X − X′ between transmit matrices is equal to mat(Md) for some d ∈

D. Consequently, the raw diversity order of a strictly linear space-time code with encoding

matrix M and input different alphabet D operating over a t-input, r-output Rayleigh fading

channel is given by

δ(t, r, M, D) = r rank(mat(Md)). (42)

Clearly, the maximum value of the raw diversity order d(t, r, M, D) is rmin(t, N).

According to the rank rule, this maximum raw diversity order is achieved if and only if

mat(Md) is full rank for all d ∈ D. Given t, r and D, optimizing the raw diversity order

amounts to choosing an encoding matrix M so that the rank rule is obeyed. The main

result of this chapter is that a randomly chosen M almost always does the job, as long as it

has orthonormal columns. This is stated rigorously in the following theorem.

1. The difference alphabet is equivalent to the set of ordered pairs of vectors from the input alphabet.
For finite input alphabets, the difference alphabet is also finite, hence countable. For infinite input
alphabets, one can invoke Cantor’s delightful diagonal trick [44], to prove the countability of the
difference alphabet.

min
d ∈ D
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 Theorem 1. Let a strictly linear space-time code of length N encode K × 1 com-

plex input vectors belonging to a countable input alphabet U, with K ≤ Nt. Suppose

the encoding matrix M is uniformly picked from the set M(Nt, K) of all Nt × K

matrices with orthonormal columns. With probability one, the space-time code with

encoding matrix M achieves raw diversity order of rmin(t, N), when operating over

a t-input, r-output Rayleigh fading MIMO channel.

The intuition behind the above theorem is as follows. In order to obey the rank rule, the

matrix M has to satisfy a countable number of constraints, namely that mat(Md) be full

rank for each of the countably many difference vectors d. On the other hand, M is drawn

randomly from the continuous set M(Nt, K). The continuity of M(Nt, K) gives a lot of

freedom in the choice of M, making it easy to satisfy the countable number of constraints.

As an analogy, note that a random variable drawn uniformly from the interval [0, 1] is

almost certainly not equal to 1 ⁄ n for any integer n. This is because the countable set {1 ⁄ n:

n = 1, 2, 3, …} is of negligible measure when compared to the continuous set [0, 1]. In the

remainder of this chapter, we will prove Theorem 1 and discuss its implications.

4.2 The Uniform Distribution on a Continuous Set

In this section, we rigorously discuss what we mean by uniformly picking a random

matrix with orthonormal columns, and also offer a practical method to implement this

uniform picking. As defined in the theorem statement, let M(Nt, K) be the set of Nt × K

complex matrices whose columns are orthonormal, namely,

M(Nt, K) = {M: M*M = IK}, (43)

where IK is the K × K identity matrix.
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M(Nt, K) is called the Steifel manifold [43], and has associated with it a differential

volume element, dM, and consequently an associated volume

V(Nt, K) = ∫M(Nt, K) dM. (44)

One can define the Haar measure for the volume element dM in M(Nt, K) as p(M)dM,

where p(M) = 1 ⁄ V(Nt, K) is the probability density function (pdf) corresponding to the

Haar measure. Note that the pdf p(M) is the same for all M ∈ M(Nt, K), hence the Haar

measure is also called the uniform measure. The Haar measure of any measurable subset N

of M(Nt, K) is defined as

µ(N) = ∫N p(M)dM. (45)

We say that a randomly generated matrix M has been picked uniformly from M(Nt, K),

if its pdf is equal to p(M). In practice, such a matrix can be generated by doing Q-L

decomposition of a Rayleigh fading matrix of the same dimension. This follows from the

following property of Rayleigh fading matrices, which is well known in random matrix

theory, and is quite easy to prove [43].

Proposition 1. Consider a random Rayleigh fading matrix G of dimension m × n,

with m ≥ n. Let G = QL be its Q-L1 decomposition of G. Then, Q is uniformly dis-

tributed over M(m, n).

Rayleigh fading matrices are easy to generate, using standard methods to generate

Gaussian random variables. Thus, Proposition 1 offers a practical method to generate a

random matrix M which is uniformly distributed matrix M(Nt, K).

1. The Q-L decomposition can be done by a Gram Schmidt orthonormalization of the columns of G.
One can think of the Q-L decomposition as a transformation of the random matrix G to the pair (Q,
L).
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4.3 Proof of Theorem 1

Having defined the uniform distribution, we now proceed to prove Theorem 1. We

need to show that if M is picked uniformly from M(Nt, K), mat(Md) has full rank for all d

∈ D, with probability one. We first show that for any one difference vector d ∈ D,

mat(Md) is full rank with probability one, and then extend the result to all the difference

vectors using the countability of the alphabet D. The following rotational invariance

property [43] of uniform distributions over M(Nt, K) will prove useful.

Proposition 2. Let M be a random matrix drawn from M(Nt, K). Then, the distribu-

tion of M is uniform if and only if the transformed matrix ΘM has the same distribu-

tion as M, for all unitary Nt × Nt matrices Θ.

Intuitively, the transformation ΘM reindexes the elements of the set M(Nt, K) from which

M is drawn. Proposition 2 says that the uniform distribution is the one and only

distribution which looks alike at every element of the set M(Nt, K), and is therefore,

invariant to all reindexing of elements.

Of particular interest is the uniform distribution over the set M(Nt, 1), which contains

all Nt × 1 complex vectors with unit Euclidean norm. The following lemmas present two

randomly generated vectors that are uniformly distributed over the set M(Nt, 1).

Lemma 1. For any d ≠ 0, if the matrix M is picked uniformly from M(Nt, K), the

random vector v = Md ⁄ ||d|| is uniformly distributed over the set M(Nt, 1).

Proof: Since M ∈ M(Nt, K), it satisfies M*M = IK. Using this, we obtain ||Md||2 =

d*M*Md = ||d||2. Consequently, the squared norm of v = Md ⁄ ||d|| is

||v||2 = ||Md||2 ⁄ ||d||2 = ||d||2 ⁄ ||d||2 = 1. (46)
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Thus, the random vector v always has unit norm, and so belongs to the set M(Nt, 1).

It remains to prove that it is uniformly distributed on M(Nt, 1). Let Θ be any unitary

Nt × Nt matrix. Now, from Proposition 2, M′ = ΘM has the same distribution as M.

Consequently, v′ = M′d ⁄ ||d|| has the same distribution as v = Md ⁄ ||d||. But clearly

v′ = Θv. Thus, for any unitary matrix Θ, v′ = Θv has the same distribution as v.

Again invoking Proposition 2, we see that v is uniformly distributed over M(Nt, 1),

which completes the proof.

Lemma 2. Let G be a Rayleigh distributed random matrix of dimension t × N. Then

the vector w = vec(G) ⁄ ||G||F is uniformly distributed over the set M(Nt, 1).

Proof: Let g = vec(G) be the Nt × 1 vector formed by stacking the columns of G one

below the other. Since G is a Rayleigh fading matrix, the entries of g are indepen-

dent, unit-variance Gaussian random variables. In this case, it is well known [15]

that g ⁄ ||g|| is uniformly distributed on M(Nt, 1). Clearly, ||g|| = ||G||F. Thus, the uni-

formly distributed vector (g ⁄ ||g||) equals w = vec(G) ⁄ ||G||F, completing the proof.

The above two lemmas lead to the proof of the following.

Lemma 3. For any d ≠ 0, if the matrix M is picked uniformly from M(Nt, K), the t ×

N matrix mat(Md) has full rank min(t, N) with probability one.

Proof: Consider the random vectors v = Md ⁄ ||d|| and w = vec(G) ⁄ ||G||F, where G is

a t × N Rayleigh fading matrix. From Lemma 1 and Lemma 2, both these vectors are

uniformly distributed over M(Nt, 1) and are therefore equal in distribution. Conse-

quently, the matrices mat(v) = mat(Md) ⁄ ||d|| and mat(w) = G/||G||F are also equal
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in distribution. Multiplying by the constant ||d||, the random matrix mat(Md) is

equal in distribution to ||d||G ⁄ ||G||F. In particular,

Pr(mat(Md) has full rank) = Pr(||d||G ⁄ ||G||F has full rank). (47)

Now, ||d|| (G ⁄ ||G||F) has full rank if and only if G itself has full rank. Therefore,

Pr(mat(Md) has full rank) = Pr(G has full rank). (48)

Rayleigh fading matrices are known [4] to have full rank with probability one.

Applying this to the matrix G and substituting in (48), we see that mat(Md) has full

rank with probability one. This proves the lemma.

Lemma 3 presents the first part of the proof, that a uniformly chosen encoding matrix

M almost certainly satisfies the rank rule for any one difference vector d. Now, we extend

this to all the difference vectors and complete the proof of Theorem 1.

Proof of Theorem 1: Let G denote the event that a random encoding matrix M, uni-

formly chosen from M(Nt, K), achieves raw transmit diversity order min(t, N), and

hence raw diversity order rmin(t, N). We want to show that G occurs with proba-

bility one. From the rank rule, G occurs if and only if mat(Md) has full rank for all

difference vectors d ∈ D. Thus,

G = Gd, (49)

where Gd denotes the event that mat(Md) has full rank. Lemma 3 proves that the

probability of Gd is one. Further, since the input alphabet U is countable, so is the

difference alphabet D. A basic theorem of probability (see, for example [44]) is that

the intersection of countably many probability one events also has probability one.

Applying this to (49), we see that G has probability one, completing the proof.

d D∈
∩



53

4.4 Implications of Theorem 1: Diversity Is Easy

Theorem 1 holds for any t-input, r-output Rayleigh fading channel, any code length N,

and also for any countable input alphabet U. The only restriction is that the number of

inputs K ≤ Nt, since otherwise one cannot find K Nt × 1 orthonormal columns for M.

Equivalently, Theorem 1 holds as long as the rate R = K ⁄ N of the code is less than or

equal to t.

4.4.1  Full-Rate Full-Diversity Codes Are Aplenty

Consider a space-time code with rate equal to full rate min(t, r) and length N ≥ t. Since

min(t, r) ≤ t, the rate restriction is satisfied. Consequently, Theorem 1 applies, implying

that almost any code with an orthonormal encoding matrix obtains full raw diversity order

of tr. In other words, full rate, full raw diversity codes are aplenty. This is a surprising

result, since a high rate amounts to low fractional redundancy, and hence little elbow room

for the designer to introduce redundancy cleverly. However, Theorem 1 suggests that

maximizing raw diversity order requires almost no cleverness, since almost any random

encoding matrix does so. Since no cleverness is required, even the low fractional

redundancy implied by full rate is sufficient to guarantee full raw diversity.

4.4.2  Linear Complex Field Codes as a Special  Case

The only full rate, full raw diversity codes proposed in the literature are the linear

complex field (LCF) codes [20][22], which were discussed in Section 2.5.3. For all rates

less than or equal to t, LCF codes guarantee a raw diversity order of rmin(t, N) for lattice-

based input alphabets U. LCF codes are also strictly linear codes. Their encoding matrix,
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given in (20) of Section 2.5.3 has orthonormal columns, and a special structure based on

number-theoretic arguments. Theorem 1 can be viewed as an extension of LCF codes in

two ways. First, it holds for any countable input alphabet, which is more general than the

lattice input alphabet used in LCF codes. Second, it shows that no special number-

theoretic structure is required, since almost any encoding matrix with orthonormal

columns gets the same (maximum) raw diversity order.

4.5 The Need for Optimizing Other Performance Metrics

The raw diversity of a space-time code determines only the asymptotic slope of a word

error vs. SNR curve, but does not completely determine the actual word error rate.

Different codes with the same raw diversity order often have significantly different error

rates. To illustrate this fact, we present simulation results comparing two complex linear

space-time codes operating over a 2-input, 2-output Rayleigh fading channel. Both codes

have full rate, namely R = min(t, r) = 2 and length N = 2. The first code is an LCF code

whose 4 × 4 encoding matrix is given by M2,2(exp(j0.5), exp(j1.0)) in (20). For the second

code, the encoding matrix was randomly generated from the set M(4, 4) of all 4 × 4

matrices with orthonormal columns using the method of Proposition 1.

In each space-time code block, the K = NR = 4 input symbols to both space-time codes

are randomly and independently drawn from a 4-QAM constellation. Since two such

symbols are transmitted per signaling interval, the data rate is 4 b / s / Hz. Frames

consisting of 50 coded blocks (or equivalently 50N = 100 signaling intervals) are

transmitted across the Rayleigh fading channel.1 The Rayleigh fading channel is constant

1. For the second code, the same random encoding matrix was used for all frames.



55

over one frame, but varies independently from one from to the next. The receiver performs

optimum ML decoding using a sphere decoder (see [25] and Chapter 11). A frame error is

said to occur if one or more symbols in the frame are decoded erroneously.

The resulting frame error rate is plotted against SNR for the two codes in Fig. 5. The

LCF code is guaranteed to achieve full raw diversity order, namely tr = 4. Theorem 1

predicts that with probability one, the random code should also achieve full raw diversity

order. Fig. 5 confirms this prediction, since the curves for both codes are visually seen to

have the same asymptotic slope. However, the random code does not achieve the same

frame error rate as the LCF code. It needs about 0.5 dB more SNR than the LCF code to

achieve the same frame error rate. This observation leaves open the possibility that the

error rate can be reduced below that of the LCF code using another optimized complex

linear space-time code.
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 Fig. 5. Performance of LCF and random linear space-time codes over a 2-input, 2-
output Rayleigh fading channel at 4 bits / s / Hz.
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4.6 Summary

In this chapter, we have shown that all encoding matrices with orthonormal columns

have the same (optimum) raw diversity order. However, simulation results show that the

raw diversity order alone does not guarantee that the minimum possible error rate is

achieved. In other words, high raw diversity order is a loose performance metric: it is

necessary but not sufficient to guarantee low error rates. The looseness of the raw diversity

order motivates us to look at the other performance metrics derived in Chapter 3, namely

the union bound and coding gain. This will be the topic of the next two chapters.

The raw diversity order is an integer-valued function of the continuous-valued

encoding matrix, and is consequently easy to optimize. On the other hand, we will see in

the next chapter that optimizing the continuous-valued union bound is a more daunting

problem.
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CHAPTER 5

Analytical Results on Optimization of the Union Bound

In this chapter, we aim to find strictly linear space-time codes that minimize the union

bound on word error rate. Most of the discussion will be focussed on the specific case

where the encoding matrix has orthonormal columns. Our goal is to analytically find an

orthonormal-column encoding matrix that achieves the minimum union bound among all

such matrices. We will derive the orthogonal differences bound, and use it to obtain

optimum encoding matrices of some specific dimensions. Unfortunately, for all other

matrix dimensions, we will see that the bound cannot be used solve the union bound

optimization problem. In particular, the bound is not useful to optimize full rate, full raw

diversity order codes, forcing us to resort to numerical optimization in the next chapter.

5.1 The Union Bound for Strictly Linear Space-Time Codes

We begin this section by rederiving the union bound specifically for strictly linear

space-time codes. Recall from (29) the union bound for a general space-time code

pU(u) . (50)

For a strictly linear space-time code we already saw in (40) that X − X′ = mat(M(u −u′)).

Thus, the union bound (50) becomes

u U∈
∑ det r– It S X X′–( ) X X′–( )H

4Etx
-----------------------------------------------+

 
 
 

u ′ u≠
∑
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pU(u) , (51)

where d = u − u′. Assembling all the terms with the same difference vector d = u − u′

together, we obtain a simpler expression for the union bound, namely

PUB(S, D, M) = pD(d) , (52)

where D = {d = u − u′: u ≠ u′ ∈U} is the input difference alphabet familiar from (41).

Equivalently, writing each determinant in terms of the singular values of mat(Md), we get

PUB(S, D, M) = pD(d) . (53)

Note that the union bound above depends on the SNR, the input difference alphabet and

the Nt × K encoding matrix M1. In this chapter, we will focus specifically on encoding

matrices with orthonormal columns, i.e., matrices belonging to the set M(Nt, K) = {M:

MHM = IK}. From the previous chapter, almost all matrices in M(Nt, K) have the optimum

raw diversity order, namely rmin(t, N). However, we will see that the matrices differ

significantly in the union bound. Our goal is to find an optimum matrix M ∈ M(Nt, K), i.e.,

one that has the minimum possible value of PUB(S, D, M).

An alternative representation of the encoding matrix M will prove useful for the

analysis. Let the orthonormal columns of M be the vectors m1, m2, …, mK. The ith folded

column of M is defined to be the t × N matrix Mi obtained by reshaping the ith column mi.

1. For ease of notation, we do not explicitly include the channel dimensions as parameters.

u U∈
∑ det r– It Smat Md( ) mat Md( )( )H

4Etx
---------------------------------------------------------------+

 
 
 

u ′ u≠
∑

d D∈
∑ det r– It Smat Md( ) mat Md( )( )H

4Etx
---------------------------------------------------------------+

 
 
 

d D∈
∑ 1 S

λi
2

4Etx
------------+

 
 
 

r–

i 1=

rank Md( )

∏
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In other words, Mi = mat(mi). Clearly, there is a unique correspondence between the

folded columns {Mi} and the encoding matrix M. In particular, M ∈ M(Nt, K) if and only

if its columns are orthonormal, or equivalently, if and only if the folded columns satisfy

tr(Mi
*Mj) = mi

*mj = δij. (54)

Finally, since Md = midi, we see that

mat(Md) = mat(mi)di = Midi. (55)

Substituting for mat(Md) from (55) in (53), we get the union bound as a function PUB(S,

D, {Mi}) of the folded columns of M. Thus, the optimization problem is to find K matrices

{Mi} of dimension t × N satisfying (54) that minimize the union bound (53).

5.2 There Are Infinitely Many Optimum Encoding Matrices

In this section, we will show that there are infinitely many choices of {Mi} that

minimize the union bound. First, note that the union bound (53) is a bounded, continuous

function of {Mi}. Also, the set of all matrices {Mi} satisfying (54) is bounded and closed.

It is a well-known result in function theory that a bounded, continuous function has a point

of minimum in any closed, bounded set. Consequently, there is at least one optimum

choice of the folded columns {Mi}. The following remark shows that this optimum choice

is not unique. (A slightly different version of the same result can be found in [12][17].)

Remark 1. Suppose two sets of folded columns {Mi} and {Mi′} are related by

Mi′ = QlMiQr, (56)

i 1=

K

∑

i 1=

K

∑
i 1=

K

∑
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where Ql and Qr are some two unitary matrices of dimensions t × t and N × N

respectively. Then, these two sets have the same union bound (53), irrespective of D.

Proof: For any difference vector d, we see from (55) that

mat(M′d) = Mi′di, and mat(Md) = Midi. (57)

From the above, the assumed relation (56) between {Mi} and {Mi′} yields

mat(M′d) = Qlmat(Md)Qr. (58)

By assumption, the matrices Ql and Qr are unitary rotation matrices. Multiplication

by them does not change the singular values of a matrix. Consequently, the singular

values of mat(M′d) and mat(Md) are identical for all d. Since the union bound (53)

depends only these singular values, M′ and M have the same union bound.

Given any encoding matrix M, one can obtain infinitely many encoding matrices M′ with

the same union bound, simply by choosing Ql and Qr and transforming the columns as

shown in (56). Since at least one optimum encoding matrix is guaranteed to exist, we can

find infinite other optimum encoding matrices, using this column transformation.

5.3 The Orthogonal Differences (OD) Bound

We now derive an expression for the least union bound that can be achieved by any

encoding matrix. Later, we will use this expression to solve the union bound optimization

problem. Consider the determinant in each term constituting the union bound, namely

 = . (59)

i 1=

K

∑
i 1=

K

∑

det It
S

4Etx
------------mat Md( ) mat Md( )( )H

+ 
  1

S
4Etx
------------λi

2
+ 

 

i 1=

min t N,( )

∏
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Now, the sum of the squared singular values of any matrix is equal to the energy in that

matrix. Thus, the singular values {λi} of the matrix mat(Md) satisfy the sum constraint

 = ||mat(Md)||F
2 = ||Md||2. (60)

Under the sum constraint (60), it is easy to show1 that the determinant (59) is maximized if

and only if each λi
2 equals ||Md||2 ⁄ min(t, N). Using this fact, we get the bound

≤ . (61)

Substituting the above in (52) gives the orthogonal differences (OD) bound

PUB(S, D, M) ≥ pD(d) . (62)

One problem with the OD bound is the term ||Md|| on the right hand side, which in general

depends on the encoding matrix M. Consequently, the OD bound (62) merely bounds

PUB(S, D, M) by another function of M. This is not very useful because the new bounding

function is almost as intractable as the original function itself. However, for encoding

matrices with orthonormal columns, the OD bound is particularly useful. To see this, note

that ||Md|| = ||d|| for all M ∈ M(Nt, K). Consequently, the terms ||Md|| become independent

of M, hence the OD bound gives a benchmark against which all matrices in M(Nt, K) can

be compared. Also, note that the OD bound is achieved if and only if the min(t, N)

singular values of mat(Md) are equal, for all difference vectors d ∈ D. Equivalently, either

1. The sum constraint (60) fixes the arithmetic mean of the terms in the terms constituting the
product (59). Based on this observation, one can prove (61) using the geometric inequality, which
says that the geometric mean of a collection of terms is at most equal to the arithmetic mean, with
equality if and only if all the terms are equal.
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the rows or columns of mat(Md), whichever are fewer in number, should be orthogonal.

Reverting to the folded columns representation of the encoding matrix, we sum up the OD

bound below.

Remark 2. The union bound (53) of any set of K folded columns {Mi} satisfying

(54) satisfies the orthogonal differences bound

PUB(S, D, {Mi}) ≥ pD(d) (63)

with equality if and only if the t × N matrix mat(Md) has equal singular values for

all d ∈ D. Equivalently, representing conjugate transpose by *, mat(Md) must satisfy

mat(Md)*mat(Md) = (||d||2 ⁄ N) IN, if t ≥ N, (64)

mat(Md)mat(Md)* = (||d||2 ⁄ t) It, if t < N. (65)

The OD bound above can be thought of as a sufficient condition for optimality. If a set

of K folded columns {Mi} achieves the OD bound (63) with equality, it is guaranteed to be

optimal, since no other choice can do better. We will find such optimum sets in the next

section for some values of t, N and K. On the other hand, the OD bound is not a necessary

condition for optimality. In other words, there is no guarantee that there is some set of K

folded columns {Mi} that actually achieves the OD bound with equality. In fact, for a wide

range of t, N and K, we will see in a subsequent section that the OD bound is in fact

unreachable.
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∑ 1 S d 2
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----------------------------------------+
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5.4 Solution to Union Bound Optimization for Some Special Cases

In this section, we will construct optimum encoding matrices for space-time codes

whose parameters satisfy K ≤ max(t ⁄ N, N ⁄ t). The crucial step is the following sufficient

condition for the folded columns {Mi} in order to achieve the OD bound.

Lemma 4.Any set of K folded columns {Mi} that satisfies

Mi
*Mj = δijIN if t ≥ N, MiMj

* = δijIt if t < N (66)

achieves the OD bound, irrespective of the input difference alphabet D.

Proof: For convenience, we will prove this assuming t ≥ N. In this case, from (64),

the OD bound is achieved if and only if mat(Md)*mat(Md) = (||d||2 ⁄ N) IN. We need

to show that (66) suffices to ensure this. This follows from straightforward substitu-

tion. Note that since mat(Md) = Midi, we have

mat(Md)*mat(Md) = di
*djMi

*Mj. (67)

Substituting (66) in (67), we get

mat(Md)*mat(Md) = di
*dj δijIN = (||d||2 ⁄ N) IN, (68)

which is the required condition in (64). This proves the lemma.

For convenience, we will say that

Definition 1. The folded columns {Mi} are strongly orthogonal if they satisfy

(66).
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Note that the strong orthogonality of (66) is a stronger restriction on the folded columns

{Mi} than (54), which is imposed by the orthogonality of the encoding matrix. Condition

(54) only requires that when i ≠ j, the matrix Mi
*Mj have trace zero. On the other hand,

strongly orthogonality requires that all the elements of Mi
*Mj be identically zero, when t ≥

N.

Lemma 4 says that in order to achieve the OD bound, it is sufficient to find K folded

columns {Mi} of dimension t × N that are strongly orthogonal. Now, we will construct

such folded columns, assuming K ≤ max(t ⁄ N, N ⁄ t). Take the case t ≥ N, and consider the

collection of all the t × 1 columns of the matrices {Mi}. Clearly, the condition Mi
*Mj = (IN

⁄ N) δij in (66) holds if and only if that all these columns are mutually orthogonal, and each

column has norm 1 ⁄ N. Now, a simple counting argument can be used. The number of

required orthogonal columns is NK, since there are K matrices with N columns each. Now,

NK orthogonal columns of dimension t × 1 exist if and only if NK ≤ t, or K ≤ (t ⁄ N). In the

case t < N, the same argument applies, except that we will interested in making all the Nt

rows of {Mi} mutually orthogonal. Again, that is possible if and only if K ≤ (N ⁄ t). The

following proposition formally combines these two statements.

Proposition 3. Given (t, N, K), one can find a set of K strongly orthogonal folded

columns {Mi} of dimension t × N, if and only if

K ≤ max( , ). (69)

Suppose the condition (69) is satisfied. If t ≥ N, any set of NK orthogonal t × 1 vec-

tors can be used as the columns of {Mi}. Conversely, if t < N, any set of tK orthog-

onal 1 × N vectors can be used as the rows of {Mi}.

t
N
----- N

t
-----
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Proposition 3 gives a constructive method to obtain strongly orthogonal folded columns,

which are then guaranteed to achieve to achieve the minimum possible union bound,

according to Lemma 4. In the following, we will give examples of optimum encoding

matrices found using Proposition 3.

5.4.1  Optimum Encoding Matrices for K = 1 input

We first consider the case where the number of space-time code inputs is K = 1. In this

case, the encoding matrix is just an Nt × 1 vector m of norm one, and there is just one

folded column, namely mat(m). Note that K = 1 satisfies the condition K ≤ max(t ⁄ N, N ⁄

t) for all t and N. From Proposition 3, mat(m) can be chosen to achieve the OD bound. In

particular, the following remark presents the form of m that minimizes the union bound.

Remark 3. Let m be the encoding matrix of a strictly linear space-time code

encoding one complex input in N signaling intervals across t-input, r-output Ray-

leigh fading channel. Then, the union bound on word error rate is minimum if

mat(m) has orthogonal columns if t ≥ N, and orthogonal rows if t < N.

An interesting observation relates to the encoding matrix of the linear complex field

(LCF) codes, given in (20) of Section 2.5.3. By inspection, it is easy to see that each

folded column of the encoding matrix has orthogonal rows or columns, implying that LCF

codes are optimum for the single-input case. This is stated in the following.

Corollary 1. When the number of code inputs is one, linear complex field codes

yield the minimum union bound, for all SNR and for all input symbol alphabets.
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5.4.2  An Optimum Encoding Matrix for t = 4, N = K = 2

Now, we consider the example of length N = 2 with K = 2 inputs operating over a t =

4-input channel, with an arbitrary number of outputs. Note that this combination satisfies

the condition (69) of Proposition 3, and so, we can find K = 2 folded columns M1 and M2,

which achieve the OD bound. To do so, we need to pick NK = 4 orthogonal vectors of

dimension 4 × 1 (in general, t × 1) to use as the columns of M1 and M2. For example, we

can pick them as proportional to the columns of the identity matrix. Scaling these to

ensure each 4 × 2 (t × N) folded column has energy one, we get the following.

M1 = , and M2 = . (70)

The encoding matrix M of dimension 8 × 2 (Nt × K) corresponding to these folded

columns achieves the minimum possible union bound among all matrices in M(8, 2).

5.4.3  How Special  are the Special  Cases:  A Rate-Diversity View

Proposition 3 solves the union bound optimization problem only when K ≤ max(t ⁄ N,

N ⁄ t). We will now see that this is a very restrictive condition. From the rank rule, the

maximum raw diversity order of a length-N space-time code is δ = rmin(t, N). Two cases

arise, depending on the relation between N and t.

If N ≥ t, δ is equal to the full raw diversity order, namely tr. However, in this case, N ≥

t also implies that max(t ⁄ N, N ⁄ t) = N ⁄ t. Now, Proposition 3 solves the optimization

problem only when the number of space-time code inputs K ≤ N ⁄ t, implying that the rate

K ⁄ N can at most equal 1 ⁄ t. Clearly, this is a far cry from the full rate, namely min(t, r).

1
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On the other hand, N < t leads to a less-than-full diversity order of δ = Nr. Now,

Proposition 3 holds only when K ≤ t ⁄ N. In other words, the rate K ⁄ N should be less than

or equal to t ⁄ N2. Substituting N = δ ⁄ r, the maximum rate for which Proposition 3 applies

is tr2 ⁄ δ2. The following remark sums up the extent to which K ≤ max(t ⁄ N, N ⁄ t) restricts

the rate and raw diversity order, for which the optimization problem is solved.

Remark 4. There is a trade-off between the rate and raw diversity of the

optimum space-time codes that can be found by Proposition 3. From the rank rule,

the raw diversity order δ always belongs to the set {r, 2r, …,tr}. If one aims to

achieve a raw diversity order of δ, then the maximum rate of the optimum space-time

code that can be found using Proposition 3 equals

Rmax = tr2 ⁄ δ2. (71)

Recall from the last chapter that there is no fundamental tradeoff between rate and raw

diversity order. In particular, linear space-time codes can simultaneously have any rate up

to t and any raw diversity order upto tr. However, Proposition 3 finds the optimum

encoding matrix only for space-time codes with the narrow range of rates and diversities

given by Remark 4. In particular, it does not find the optimum matrix for the holy grail of

code design, namely codes with both full rate and full raw diversity order.

The fundamental problem here is that strongly orthogonal folded columns cannot be

found for K > max(t ⁄ N, N ⁄ t). We notice a loophole in Lemma 4, which says strong

orthogonality of folded columns is only a sufficient condition for achieving the optimum

OD bound. Therefore, one might hope to achieve the OD bound, even when the folded
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columns are not strongly orthogonal. However, we will now show that, for a wide class of

difference alphabets, strong orthogonality is in fact a necessary condition for reaching the

OD bound, implying that the OD bound is unreachable when K > max(t ⁄ N, N ⁄ t).

5.5 The OD Bound Is Unreachable for Many Code Parameters

Recall that the input difference alphabet D is a set consisting of K × 1 complex vectors.

In this section, we focus on alphabets D with the following separability properties:

(i) For every integer i ∈ {1, 2, …, K}, there is a difference vector d ∈ D such that

only its ith element di is non-zero, but all other elements are zero.

(ii) For every pair of distinct integers (i, j) ∈ {1, 2, …, K}, there are some two vec-

tors d′ and d″ in D such that their ith and jth elements are non-zero, but all other ele-

ments are zero. Further, the non-zero elements satisfy Imag(di′dj′*di″dj″*) ≠ 0.

Properties (i) and (ii) essentially mean that there are difference vectors of Hamming

weight one and two respectively, and the positions of the non-zero elements can be

arbitrarily chosen. The condition Imag(di′dj′*di″dj″*) ≠ 0 in property (ii) is one way of

ensuring that d′ and d″ are not proportional, hence d″ does place some new constraint

(that was not already placed by d′) on the choice of the encoding matrix.

A wide class of difference alphabets have both the above properties. For example,

consider the case where each of the K inputs to a space-time code is drawn independently

from a complex QAM or PSK constellation. The difference alphabet D is just a cross-

product of K copies of the individual symbol difference alphabet, consisting of the set of
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all pairwise difference between valid QAM or PSK signals, respectively. It is easy to

check that this alphabet satisfies both (i) and (ii). Having defined the alphabet properties,

we can proceed to prove the following necessary condition.

Lemma 5. Suppose the input difference alphabet D to a strictly linear space-time

code has properties (i) and (ii) above. Then, the orthogonal differences bound (63) is

achieved only if the K folded columns {Mi} of the encoding matrix are strongly

orthogonal, i.e., they satisfy (66), repeated below for convenience

Mi
*Mj = δijIN if t ≥ N, MiMj

* = δijIt if t < N. (72)

Proof: For simplicity, we will prove for the case t ≥ N. In this case, (64) states that

the OD bound is achieved if and only if mat(Md)*mat(Md) = (||d||2 ⁄ N) IN for all d

∈ D. We will show that this is possible only if {Mi} satisfies (72).

First, since D satisfies property (i), there is a difference vector d such that only the

symbol di is non-zero. In this case, mat(Md) = Midi, and so mat(Md)*mat(Md) =

|di|
2Mi

*Mi. On the other hand, (64) requires mat(Md)*mat(Md) = (||d||2 ⁄ N) IN =

(|di|
2 ⁄ N) IN. Equating the two expressions, we see that Mi should satisfy

Mi
*Mi = (1 ⁄ N) IN, for all i. (73)

Next, we will use the fact that D also satisfies property (ii). For any pair (i, j), con-

sider the difference vector d′ where only the two elements di′ and dj′ are non-zero.

Clearly, mat(Md′) = Midi′ + Mjdj′. From this, we get

mat(Md′)*mat(Md′) = (Midi′ + Mjdj′)*(Midi′ + Mjdj′) (74)

= |di′|2Mi
*Mi + |dj′|2Mj

*Mj + di′*dj′Mi
*Mj + di′dj′*Mj

*Mi.(75)

1
N
----- 1

t
---
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We anyway need Mi
*Mi = Mj

*Mj = (1 ⁄ N) IN from (73). Using this, (75) becomes

mat(Md′)*mat(Md′) = IN (|d1′|2 + |d2′|2) ⁄ N + di′*dj′Mi
*Mj + di′dj′*Mj

*Mi. (76)

Note that (|d1′|2 + |d2′|2) = ||d′||2. Thus, if mat(Md′)*mat(Md′) in (76) is to satisfy

(64), it is necessary that Mi and Mj satisfy

di′*dj′Mi
*Mj + di′dj′*Mj

*Mi = 0. (77)

Applying the above argument to the other difference vector d″, which is guaranteed

to exist by property (ii), it is also necessary that

di″*dj″Mi
*Mj + di″dj″*Mj

*M = 0. (78)

Solving (77) and (78) as simultaneous equations, we get Imag(di′dj′*di″dj″*)Mi
*Mj

= 0. Since property (ii) assures us that Imag(didj
*di′dj′*) ≠ 0, this implies

Mi
*Mj = 0 (79)

for all distinct pairs (i, j). To sum up, we see that the two necessary conditions for the

OD bound to be reached are (73) and (79). Clearly, these two amount to Mi
*Mj =

δijIN, as claimed in (72). This proves the lemma.

The above lemma states that under the stated conditions, the OD bound is achieved

only if the K folded columns {Mi} are strongly orthogonal. On the other hand, Proposition

3 of the last section says that K strongly orthogonal folded columns cannot be found if K >

max(t ⁄ N, N ⁄ t). Combining these two, we get the following result.

Remark 5. Consider a strictly linear space-time code of length N with K inputs

operating over a t-input, r-output Rayleigh fading channel. If K > max(t ⁄ N, N ⁄ t)

and the input difference alphabet D has the separation properties (i) and (ii), then it is

1
N
-----
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impossible to find an encoding matrix with orthonormal columns that achieves the

orthogonal differences bound (53).

The result stated in Remark 5 is not surprising. Recall that in order to achieve the OD

bound, the folded columns {Mi} should be chosen so that mat(Md) has equal singular

values for all difference vectors d ∈ D. Thus, each difference vector d ∈ D imposes a

(possibly new) constraint, that should be accounted for while choosing {Mi}. Suppose t

and N are fixed. As K increases, the number of constraints on {Mi} increases in two ways.

Firstly, a greater number of folded columns, namely K, needs to be chosen from the fixed

set of all t × N matrices. Secondly, the number of difference vectors in D, and hence the

number of constraints to be satisfied by the chosen matrices {Mi} increases. The previous

section suggested that as long as K ≤ max(t ⁄ N, N ⁄ t), the constraints imposed by the

difference vectors still leaves some freedom in the choice of {Mi}. On the other hand,

Remark 5 says that if K > max(t ⁄ N, N ⁄ t), the constraints overwhelm the available

freedom, and the orthogonal differences bound cannot be satisfied.

5.6 Summary and Conclusions

We began this chapter by deriving an expression (52) for the union bound on word

error rate, which was a sum over the difference alphabet D. The orthogonal differences

bound was obtained by bounding each term in the union bound by its lowest possible

value, which is reached when mat(Md) has equal singular values. For the special case K ≤

max(t ⁄ N, N ⁄ t), we constructively obtained encoding matrices which achieve the OD

bound, thus solving the optimization problem. However, the requirement K ≤ max(t ⁄ N, N

⁄ t) was shown to limit either the rate or the raw diversity order of the space-time code.
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Since both high rate and raw diversity order are desirable, we would like to find space-

time codes that minimize the union bound for the case K > max(t ⁄ N, N ⁄ t). However, for

this case, we showed that the OD bound is unreachable for a wide class of input alphabets.

This class includes the common input alphabet, consisting of independently modulated

QAM input symbols. The fact that the OD bound is unreachable implies that all the

individual terms in the union bound summation cannot simultaneously be minimized.

Instead, optimum encoding matrices (infinite of which exist according to Section 5.2)

optimally trade off the various terms in order to minimize the sum. In order to find these

optimum encoding matrices, we will develop approximate numerical optimization

techniques in the next chapter. We close this chapter by stating an interesting open

problem. This can be skipped without affecting the readability of subsequent chapters.

5.6.1  Optimum Modulation for Space-Time Codes:  An Open
Problem

As discussed in Section 2.4.3, modulation (mapping bits to complex input symbols)

and space-time encoding should ideally be designed jointly. However, joint design is

analytically difficult, and has not yielded fruitful results in the literature, to the best of our

knowledge. Instead, the standard simplifying assumption is that modulation and space-

time code are done independently. Further, the modulation alphabet is typically some

standard alphabet like QAM or PSK. In this section, we will argue that even if the

modulation is done independently, one can minimize the achievable union bound by

carefully selecting the modulation alphabet.

First, take the case of codes with K ≤ max(t ⁄ N, N ⁄ t). We have seen that the OD bound
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pD(d) , (80)

can be achieved in this case. Crucially, by carefully choosing the input alphabet D, one can

minimize the OD bound (80). More precisely, given the size and the energy of the input

alphabet (thus fixing the data rate and transmit energy respectively), the modulation

problem is to find the input alphabet U whose corresponding difference alphabet

minimizes the right hand side of (80) above. Note that (80) depends only on the Euclidean

distance ||d|| between input vectors. Thus, the problem stated above is similar to the lattice

coding [45][46] problem, hence we expect that lattice coding ideas can be used here.

In the case K > max(t ⁄ N, N ⁄ t), the modulation problem becomes more complicated,

because the OD bound may or not may not be reachable, depending on the choice of the

input alphabet. Note that Remark 5 proves that the orthogonal differences bound is

unreachable only for difference alphabets satisfying the separation properties (i) and (ii).

If these properties are not satisfied, the OD bound could potentially be reached. Thus, the

modulation problem for the case K > max(t ⁄ N, N ⁄ t) would have to address both the

reachability of the OD bound, and the choice of the input alphabet to reduce the OD bound

itself. An alternative would be to not use the OD bound, but derive an expression for the

lowest achievable union bound and minimize it directly.

We believe the optimization of the input alphabet could be a productive area of future

research. However, for the rest of this work, we will assume that some choice of the input

alphabet has been made, and aim to optimize the encoding matrix alone.
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CHAPTER 6

Numerical Optimization of the Union Bound and Coding Gain

The answer to the Great Question of Life, the Universe, and Everything is. . . Forty-two.
 Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Try to prove by induction, construction, contradiction, or obfuscation. If all else fails, prove by MATLAB.
 Old Jungle Saying

In the previous chapter, we saw the analytical difficulty of obtaining encoding matrices

for linear space-time codes that minimize the union bound. In this chapter, we will resort

to an approximate numerical solution, obtained by viewing union bound optimization as a

constrained optimization problem. We develop an optimization algorithm and use it to

obtain space-time codes with near-optimum union bound, and consequently lower error

rate than unoptimized codes. We also propose heuristic techniques to speed up the

numerical algorithm. A truncated version of these results was presented in [42].

6.1 Code Design as a Constrained Optimization Problem

We begin this chapter by stating code design as a constrained optimization problem.

The primary optimization metric or cost function is the union bound, but we will also

consider coding gain. The constraint is to fix the transmit energy.
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From (31) in Chapter 3, we see that the union bound on the word error rate of a strictly

linear space-time code with input alphabet U operating over a t-input, r-output Rayleigh

fading channel is

pU(u) . (81)

In the remainder of this chapter, we will assume that each input symbol to the space-time

code, i.e., each element of the K × 1 input vector u is drawn uniformly from a finite, zero-

mean alphabet with average energy one. Also, different symbols are drawn independently

of each other. Under these assumptions, we now proceed to derive convenient

representations of the transmit energy constraint, and computationally simple expressions

for the union bound and the coding gain.

6.1.1  The Optimization Constraint

Note that the union bound (81) depends on the average transmit energy per signaling

interval. Since the composite transmit vector x = Mu contains N transmit vectors, the

average transmit energy is

Etx = E[||x||2] = E[||Mu||2]. (82)

We have assumed that each element of u is zero-mean, has unit energy and is independent

of the other elements. It is easy to see that this implies E[||Mu||2] = ||M||F
2, giving Etx =

||M||F
2 ⁄ N. Thus, the average transmit energy is proportional to the energy ||M||F

2 of the Nt

× K encoding matrix M. One way to ensure fair comparison across different encoding

matrices is to just substitute Etx = ||M||F
2 ⁄ N into the union bound expression, and perform

unconstrained optimization to seek matrices minimizing the union bound. Instead, we

u U∈
∑ det r– It Smat Md( ) mat Md( )( )H
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choose to explicitly constrain the energy of M to be equal to the number of columns,

namely K. Thus, we now seek an encoding matrix satisfying the energy constraint

||M||F
2 = trace(M*M) = K (83)

that minimize the union bound. Note that this fixes the average transmit energy to be Etx =

K ⁄ N, which is also the rate of the space-time code. The advantage of an explicit constraint

is that only one term in the cost function now depends on the encoding matrix. Also, this

form enables easy comparison with existing space-time codes like the LCF codes, all of

which assume normalized energy for M.

Another way to view the energy constraint is that we are now only interested in finding

optimum encoding matrix in the constraint set

L(Nt, K) = {Nt × K matrices M: trace(M*M) = K}. (84)

Placing further constraints on the encoding matrix yields smaller constraint sets. For

example, consider the set M(Nt, K) analyzed in the previous two chapters, containing all

Nt × K matrices with orthonormal columns. Note that all matrices in M(Nt, K) have energy

K, but not all energy K matrices have orthonormal columns. Thus,

M(Nt, K) ⊆ L(Nt, K) (85)

holds, with equality if and only if K = 1.

Reducing the size of the constraint set makes the search space smaller, and the

optimization search faster. On the other hand, it removes some potentially optimum

matrices from consideration. In the case of M(Nt, K), we will show by simulation that the

acceleration of the search does not come at the cost of optimality. In fact, all the optimum

matrices we obtained by numerical methods will turn out to be in the set M(Nt, K).
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6.1.2  Optimization Metrics:  Union Bound and Coding Gain

Having discussed the optimization constraint, we now proceed to obtain easy-to-

compute expressions for the optimization metrics, namely the union bound and coding

gain. In the union bound expression (81), we can now substitute the following

consequences of our assumptions so far. Firstly, because each symbol alphabet is finite,

the input alphabet has a finite size |U | < ∞. Secondly, since each symbol is drawn

uniformly, pU(u) is always 1 ⁄ |U | for all the valid input vectors to the space-time code.

Thirdly, because of the energy constraint Etx = K ⁄ N. Using these, (81) becomes

PUB(S, M) = , (86)

where d = u − u′.

The computation of (86) involves a double sum over the input alphabet, but can be

made more efficient using two simple observations. Firstly, note that the summand

depends only on the difference vector d = u − u′. Thus, all pairs (u, u′) with the same

difference vector make the same contribution to the union bound, and can be treated

identically. (This was done in Chapter 5 too, except we did not explicitly use the finiteness

of the input alphabet.) Secondly, if two difference vectors d1 and d2 are proportional by a

unit-magnitude complex number, i.e., if d2 = ejφd1, then it is easy to see that

mat(Md2)(mat(Md2))* = mat(Md1)(mat(Md1))*. Consequently, d1 and d2 make the

same contribution to (86). In other words, two difference vectors which are proportional

and have the same magnitude, are equivalent with respect to the union bound, and can be

said to belong to the same equivalence class. Combining these two observations, one

evaluates the union bound over a compressed difference alphabet C, consisting of one

1
U
--------

u U∈
∑ det r– It

NS
4K
--------- mat Md( ) mat Md( )( )H( )+ 

 
u ′ u≠
∑
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representative vector from each equivalence class of difference vectors. Associated with

each d ∈ C is a multiplicity term nd, containing the number of pairs (u, u′) whose

difference is equivalent to d, i.e., u − u′ = ejφd. Then, the union bound (86) becomes

PUB(S, M) = . (87)

Equivalently, writing each determinant in terms of the singular values of mat(Md) gives

PUB(S, M) = . (88)

In addition to the union bound, we will also consider the coding gain as an

optimization metric. In the above notation, it is easy to see that the coding gain (39) is

given by

γCG(M) = . (89)

Both the union bound and the coding gain depend on the encoding matrix M. However,

only the union bound depends on the SNR S. The coding gain implicitly assumes

asymptotically high SNR.

6.1.3  Constrained Optimization Problem Statement

We can now precisely state the optimization problem.

Code Design Problem Statement: Given the number of transmit antennas t, the

number of receive antennas r, the code length N, the number of inputs K, the finite

input alphabet U, and the SNR S, find an Nt × K complex encoding matrix M

1

U
-------- nddet r– It

NS
4K
---------mat Md( ) mat Md( )( )H

4Etx
---------------------------------------------------------------+

 
 
 

d C∈
∑

1

U
-------- nd 1

NS
4K
---------λi

2
+ 

  r–

i 1=

rank mat Md( )( )

∏
d C∈
∑

min
d ∈ C

rank(mat(Md)) = ρmin

N
4K
--------λi

2
 
  r

i 1=

rank mat Md( )( )

∏
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belongingto the constraintset S(Nt, K) that hasthe optimumvalueof the chosen

optimization metric.

The optimizationmetric is eitherthe union bound(87)(88)or the codinggain (89). The

formerneedsto beminimized,while the latterneedsto bemaximized.Theconstraintset

S(Nt, K) is somewell-chosensubsetof theenergy constrainedsetL(Nt, K) (84). Therest

of this chapter is devoted to solving the above problem.

6.2 Numerical Solution to the General Optimization Problem

In this section,we proposean approximatenumericalsolution to the optimization

problem. The numerical solution proceedsin two stages,namely randomsearchand

gradientdescentsearch.In thefirst stage,a largenumber, sayNrand, of encodingmatrices

is generatedfrom theconstraintset.Thematrixwith thebestoptimizationmetricis picked

astheinitial matrix M(0) for thesecondstage,namelytheiterative gradientdescentstage.

In iterationk, the matrix M(k) is computedby makinga slight, well chosen,shift to the

previousmatrix M(k−1), androunding off theresultantmatrix backto theclosestmatrix in

the constraint set. In other words, each iteration of gradient descent is

 = M(k−1) + ∆ (k−1), (90)

M(k) = || − M||F., (91)

where (90) performs the shift operation and (91) rounds off the result.

M̃
k 1–( )

argmin
M ∈S(Nt, K) M̃

k 1–( )
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The iterative process is repeated till either a pre-determined number of iterations Ngd

have been performed, or the process converges, i.e., ||M(k) − M(k−1)||F falls below a

threshold ε. Typical values are Nrand = 10000, Ngd = 2500 and ε = 10−6. We now fill in

precise details about the gradient descent step, particularly the choice of the shift ∆ (k−1),

and the nature of the rounding-off operation in each iteration.

6.2.1  The Shift  Operation in Iterative Gradient Descent

There are some slight differences in the shift matrices for union bound and coding gain

optimization. We first take up the union bound, which from (87), is a smooth, continuous

analytic function of the elements of M. It can be differentiated with respected to each

element of M, yielding functions

gij(S, M) = PUB(S, M). (92)

Expressions for gij(S, M) are computed in Appendix B. In iteration k of gradient descent,

the shift matrix ∆ (k−1) is assembled, according to

∆ (k−1)
ij = −µgij(S, M(k−1)). (93)

In other words, each element of ∆ (k−1) is proportional of the derivative of PUB(S, M) with

respect to the corresponding element of M, evaluated at M = M(k−1). The negative sign in

the constant of proportionality, −µ, forces a move opposite to the gradient, since we are

interested in decreasing the value of the union bound. The constant µ itself is chosen

heuristically. It is typically around 0.1.

mij∂
∂



81

Now, we turn our attention to the other possible optimization metric, namely the

coding gain. Here, computing the shift matrix is complicated by the fact that the coding

gain (89) is not always an analytic function of the elements of M, i.e., at some values of M,

its gradient is different along different directions. The reason is that γCG(M) is the point-

wise minimum of many smooth, continuous functions, namely

γd(M) = , (94)

for each difference vector d ∈ C.

In any iteration k, consider the calculation of the coding gain γCG(M(k−1)) by taking

the minima of γd(M(k−1)). Two cases arise. Either there is exactly one function γ0(M(k−1))

which is less than all the other functions, or there are multiple functions with the same

minimum value. In the former case, the coding gain γCG(M) is equal to the analytic

function γ0(M) in a neighborhood around M(k−1) and is therefore itself analytic at M(k−1).

In this case, one can define the shift matrix for gradient descent by

∆ (k−1)
ij = µ γ0(M(k−1)). (95)

Note that, in contrast to the shift matrix for the union bound (93), there is no negative sign

here. This is because the coding gain needs to be maximized, while the union bound needs

to be minimized. The shift attempts to maximize the coding gain by moving along the

gradient, which is by definition, the direction in which γCG(M) increases most rapidly.

The problem with the coding gain arises in the second case, where there are multiple

coincident minima at the point M(k−1), say γ1(M(k−1)) = γ2(M(k−1)) = … γL(M(k−1)). Each of

these functions has its own gradient, or equivalently, a distinct direction of maximum

Nλi
2

4K
-----------

 
 
 

r

i 1=

rank Md( )

∏

mij∂
∂
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increase. Consequently, it is not clear which is the direction of maximum increase for the

minimum of these functions, γCG(M). One way to do this is to move along a direction

which has equal projections on the gradients of all the {γl(M(k−1))}. This is possible if and

only if the individual gradients are linearly independent. On the other hand, when the

gradients of the individual functions are linearly dependent, the only thing we could think

of was to stop the gradient descent process.

6.2.2  The Rounding Off Operation in Iterative Gradient Descent

Recall that the rounding off operation needs to find the matrix M(k), which is at the

minimum Euclidean distance to the shifted matrix , among all matrices in the

constraint set S(Nt, K). This computation, would of course, depend on the constraint set

itself. We will state, without proof, the computation formula, for each constraint set.

For the energy-constrained set L(Nt, K), the closest matrix is obtained by just scaling

 to have energy K. Thus,

S(Nt, K) = {M: ||M||F
2) = K} ⇒ M(k) = . (96)

On the other hand, the constraint set M(Nt, K) requires the columns to be orthonormal, or

equivalently it requires the singular values of M(k) to be equal. The rounding off here is

done by just normalizing the singular values of , i.e.,

M(Nt, K) = {M: MHM = IK} ⇒ M(k) = , (97)

where  = is the singular value decomposition of .

M̃
k 1–( )

M̃
k 1–( )

K

M̃
k 1–( )

F

---------------------------- M̃
k 1–( )

M̃
k 1–( )

1

K
--------- ŨṼ∗

M̃
k 1–( )

ŨD̃Ṽ∗ M̃
k 1–( )
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6.2.3  The Complexity of Numerical  Optimization

One main concern about the above numerical algorithm is its high computational

complexity. The main reason for this complexity is the intractable nature of the metrics

themselves. For example, the union bound, in principle, needs a sum over all pairwise

input difference vectors, whose number increases exponentially with the data rate. More

precisely, since log2|U | information bits are transmitted N signaling intervals, the data rate

of the space-time code, in b/s/Hz is given by Rb = log2|U | ⁄ N. Given the required data rate

Rb, the input alphabet size necessary to achieve the data rate, for a space-time code of

length N, is |U | = . Ideally, one would like both high data rate, and a large length N,

so as to achieve high raw diversity order rmin(t, N) of the space-time code. Both factors

lead to an exponential increase in the input alphabet size |U |. Now, the size of the

difference alphabet D is roughly the square of the input alphabet size. Using the structure

in the union bound, and the proportionality of certain inputs, we obtained the compressed

difference alphabet C. This reduces the number of terms in the sum for the union bound

(88). However, even the compressed alphabet C has size exponential in the data rate and

code length, and hence, the computation of the union bound or the coding gain is a

computationally daunting task.

The numerical algorithms compound the computational problem by requiring repeated

summations over the alphabet C. In the random search stage, the union bound needs to be

computed for Nrand random matrices. In the gradient descent stage, the gradient matrix

needs to be computed, again requiring a sum over the alphabet C. Note that the coding gain

is only marginally easier to compute than the union bound. Each vector d ∈ C still needs to

be processed, though the processing is simpler than the union bound, as seen by

2
N Rb
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comparing (89) to (88). The main advantage of the coding gain is that it is SNR-

independent, while the union bound is SNR-dependent. Therefore, the coding gain needs

to be optimized just once, whereas the union bound has to be re-optimized for every SNR.

The price paid for the simplicity is that the coding gain reflects performance less faithfully

than the union bound, since it focuses only on the worst case error event (see Chapter 3).

The main argument in favor of using the optimization algorithm is that it needs to be

implemented just once. Once an optimum encoding matrix has been found for a given

SNR, transmitter design is complete. The optimized encoding matrices so obtained

significantly outperform un-optimized matrices, as confirmed by simulation results in the

next section.

6.3 A Case Study of Union Bound Optimization: t = r = N = 2, K = 4

In this section, we run the numerical optimization algorithm for a specific optimization

problem. We seek to optimize the union bound of a strictly linear space-time code

encoding K = 4 complex inputs in blocks of length N = 2 signaling intervals over a

Rayleigh fading channel with t = 2 inputs and r = 2 outputs. Each of the four inputs is

drawn independently from a Gray-coded 4-QAM constellation, normalized to ensure unit

energy. This is the same setup as the example discussed in Section 4.5 to illustrate that a

randomly generated code yields the same full raw diversity order as an LCF code, but

suffers a higher error rate than the LCF code. We now seek to further reduce the error rate

by optimizing the union bound, with the SNR fixed at 23 dB. Note that the space-time

codes under consideration have rate K ⁄ N = 2, which is equal to the full rate min(t, r) of

the channel. Thus, the problem can be viewed as one of further optimizing linear space-
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time codes which already have full rate and full raw diversity order. The results of

numerical optimization for this specific example are also used to support some conjectures

about optimum matrices for the general optimization problem.

6.3.1  Optimum Matrices Have Orthonormal Columns

First, the numerical optimization algorithm was used to search for optimum encoding

matrices in the general energy constrained set L(4, 4), consisting of all 4 × 4 matrices with

energy K = 4. Just to ensure convergence, the number of random matrices generated and

the number of gradient descent iterations were both large, namely Nrand = 200000 and

Ngd = 60000 respectively. The matrix ML obtained at the end of the search had a union

bound of 1.386 × 10−4 at SNR 23 dB. In particular, the singular values of ML were found

to be 1.0166, 1.0030, 0.9974 and 0.9927. We notice that these singular values are almost

identical, indicating that ML is almost unitary, i.e., its columns are nearly orthonormal.

This leads to the following conjecture.

 Conjecture 1.If the K inputs to a linear space-time code of length N operating over

a t-input, r-output Rayleigh fading channel are drawn independently from a QAM

constellation, the union bound is minimized by choosing an Nt × K encoding matrix

with orthonormal columns.

An approximate justification of the conjecture is obtained by considering the

orthogonal differences bound derived in Chapter 5, namely

PUB(S, M) ≥ pD(d) . (98)
d D∈
∑ 1 NS Md 2

4Kmin t N,( )
-----------------------------------+ 

 
rm– in t N,( )
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We now argue that the OD bound is optimized by an encoding matrix M with orthonormal

columns. Let the singular value decomposition of the encoding matrix be M = USV*.

Since U has orthonormal columns, ||Md||2 = ||USV*d||2 =||SV*d||2 for all d, hence U can

be chosen arbitrarily without affecting any term in the orthogonal differences bound.

Choosing the K × K unitary matrix V rotates the difference alphabet D. More precisely,

defining the rotated alphabet D ′ = {V*d, d ∈D}, the OD bound becomes

pD(Vd′) . (99)

Note that the diagonal elements of the K × K diagonal matrix S are the singular values of

M, whose squared sum should equal the energy of M, namely K. The effect of these

singular values on the OD bound (99) is that they scale the corresponding elements of the

vectors in D ′. The core of our argument is that it is optimal to scale all the elements

identically. This is because the original difference alphabet D is a cross-product of

individual QAM alphabet difference symbols, and is therefore roughly symmetric in

space, i.e., the difference vectors in D are distributed roughly uniformly in K-dimensional

complex space. Consequently, the rotated alphabet D ′ is also symmetric. In particular,

each of its elements behaves roughly identically. Therefore, it is intuitively appealing to

treat all these elements identically. Hence, we conjecture that all the singular values in S

should be equal, implying that M should have orthonormal columns.

Conjecture 1 motivates a repeat of the optimization algorithm, restricting the search to

the smaller orthonormal-column constraint set M(4, 4). In the first phase, Nrand = 10000

random matrices were generated, and the best one was used to initialize gradient descent

with Ngd = 10000 iterations. This resulted in a matrix MM with a union bound 1.384 ×

d ′ D ′∈
∑ 1 NS Sd′ 2

4Kmin t N,( )
-----------------------------------+ 

 
rm– in t N,( )
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10−4 at 23 dB SNR. Comparing the results of the two searches, we see that M(4, 4) yields

about the same union bound as L(4, 4) (1.386 × 10−4). The advantage is that the search

proceeds much faster in the smaller constraint set M(4, 4), since only 20000 total matrices

were generated as against 260000 for L(4, 4).

6.3.2  A New Constraint Set  for Length Two, Rate t  Codes

Continuing with the approach of accelerating the search by focussing on smaller

constraint sets, we now present a new constraint set for codes of length N = 2 with K = 2t

inputs. The encoding matrix of such codes has dimension Nt × K ≡ 2t × 2t. The proposed

constraint set N(2t, 2t) contains all 2t × 2t matrices of the form

, (100)

where It is the t × t identity matrix, and Q is some t × t unitary matrix, i.e., Q*Q = QQ* =

It. It is easy to check that all matrices of the form (100) are unitary, i.e., their columns are

orthonormal. Also, any matrix in N(2t, 2t) is completely specified by the t × t unitary

matrix Q. Consequently, N(2t, 2t) is a small subset than M(2t, 2t), which contains all 2t ×

2t unitary matrices.

When the encoding matrix M belongs to N(2t, 2t), the encoding process can be

visualized as follows. The input vector to the code u has dimension 2t (= K) × 1. Split it

into two t × 1 halves, according uT = [u1
T u2

T]. Then, using the structure (100) of the

encoding matrix, the composite transmit vector x = Mu is given by

. (101)

1
2

-------
It

Q

eiπ ⁄ 4It

− eiπ ⁄ 4Q

1

2
-------

u1 eiπ 4⁄ u2+

Q u1 eiπ 4⁄ u2–( )
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Equivalently, the encoder first scales the second half of the input vector to obtain u2′ =

eiπ ⁄ 4u2. In the first signaling interval, the transmit vector is u1 + u2′. In the second

signaling interval, the difference u1 − u2′ is rotated by a unitary matrix Q to obtain the

second transmit vector Q(u1 − u2′). A detailed description of how the structure (100) was

obtained can be found in Appendix C.

Note that the example under consideration does have N = 2. Therefore, the

optimization algorithm was run1 for the constraint set N(4, 4). After generating only Nrand

= 3000 random matrices, and Ngd = 1000 gradient descent iterations, the encoding matrix

M*
2,2,2, 4 = (102)

was obtained. The corresponding union bound at 23 dB was equal to 1.380 × 10−4, which

is the least among the matrices examined in this example. Thus, among the constraint sets

examined for this problem, N(4, 4) yielded the best result fastest. We conjecture that for

any general t, optimum matrices for length 2, rate t codes can be found in N(2t, 2t).

6.3.3  Optimizing Union Bound Reduces Error Rate

We now present simulation results to confirm that union bound optimization serves its

ultimate purpose, namely the reduction of the error rate of space-time codes. The

simulation in Section 4.5 is repeated, but now, the optimized encoding matrix M*
2,2,2 is

compared to the LCF and random codes. The frame error rate is plotted against SNR in

1. Generating a random matrix in N (2t, 2t) amounts to generating the random t × t unitary matrix
Q. Also gradient descent is performed on Q. Thus, the gradient matrix is calculated with respect to
the elements of Q. Rounding off the shifted matrix to the nearest t × t unitary matrix follows (97).

1
2

-------

1
0
0.4456

0
1

−0.8952i

eiπ ⁄ 4

0
−0.4456eiπ ⁄ 4

0
eiπ ⁄ 4

0.8952e i3π ⁄ 4

0.8952i −0.4456 −0.8952ei3π ⁄ 4 0.4456eiπ ⁄ 4
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Fig. 6. The LCF code was already seen to have a 0.5 dB performance advantage over the

randomly generated code with orthonormal columns. The optimized code obtains a further

advantage of 1.25 dB over the LCF code.

6.4 Another Case Study: t = r = 2, N = 3, K = 6

We now present one more case study of union bound optimization, again for 2-input,

2-output Rayleigh fading channel. Now, we consider codes with rate R = 2 (note that this

is full rate) and length N = 3. Again, we assume that each of the K = NR = 6 code inputs is

drawn from a 4-QAM input alphabet. Note that N ≠ 2, so the constraint set N(2t, 2t)

developed in the previous case cannot be used here.

We first performed a numerical search over all LCF codes, i.e., we tried different

values of the unit-magnitude complex numbers α and β of the LCF encoding matrix in

(20) of Section 2.5.3. For the choice α = exp(iπ ⁄ 4) and β = exp(iπ ⁄ 32) suggested in [20],

the union bound for this choice of parameters at 22.5 dB was computed to be 5.758 ×

SNR (dB)
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RANDOM

 Fig. 6. Performance of three length-2, full-rate complex linear space-time codes over a
2-input, 2-output Rayleigh fading channel at 4 b / s / Hz.
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10−4. Instead, after computing the union bound for 1000 random values of α and β, we

found that the choice α = 0.575π and β = 0.198π gives a union bound of 1.980 × 10−4 at

22.5 dB SNR. Then, instead of restricting the search to LCF code, we broadened the

search to all encoding matrices belonging to the constraint set M(6, 6), namely all 6 × 6

unitary matrices. The numerical optimization procedure (random search followed by

gradient descent) yielded the matrix

M*
2, 2, 3, 6 =

(103)

with union bound 1.549 × 10−4 at 22.5 dB SNR.

It is clear that M*
2, 2, 3, 6 has the least union bound among all matrices considered. We

now present simulation results to confirm that this advantage also translates to a low word

error rate. Frames consisting of consisting of 50 space-time code blocks, corresponding to

50N = 150 signaling intervals over the channel were transmitted. As always, the channel is

assumed to be constant over one frame, but varies independently from one from to the

next. With ML decoding at the receiver, the resulting frame error rates of the three codes

are plotted against SNR in Fig. 7. The optimized code M*
2, 2, 3, 6 outperforms the

unoptimized LCF code suggested in [20] by nearly 2 dB, and the optimized LCF code by

0.5 dB at a frame error rate of 3 × 10−2.

1

3
-------

1.1213e0.4800i

0.6935e−1.5064i

0.5260e−0.3970i

0.6678e1.5201i

0.3317e−0.9406i
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0.6254e−0.8821i
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0.6814e−0.8321i
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Before concluding, we state the result of optimization for length 2, full rate code

operating over a 3-input, 3-output Rayleigh fading channel, at an SNR of 19 dB with 4-

QAM inputs. Since N = 2, the constraint set N(6, 6) can be used for fast search. For

legibility, we present only the unitary portion Q in the general structure (100)

Q3, 3, 2, 6 = . (104)

The above parameters correspond to a code with K = 6 inputs. As the number of inputs K

= NR increases, optimization becomes more computationally burdensome, primarily due

to the difficulty in the computation of the union bound. Beyond K = 10 inputs,

optimization is infeasible, even for the smallest complex input alphabet, namely 4-QAM.
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 Fig. 7. Performance of three length-3, full-rate complex linear space-time codes over a
2-input, 2-output Rayleigh fading channel at 4 b / s / Hz.
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0.0228 + 0.1324i − 0.2762 + 0.9336i − 0.1842 − 0.0096i
0.0560 + 0.0708i 0.1545 + 0.0944i 0.7342 − 0.6481i
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6.5 Conclusions

In this chapter, we have discussed numerical optimization techniques to find encoding

matrices that minimize the union bound, given the channel dimensions, encoding matrix

dimensions and SNR. Simulation results show that such optimized codes yield a lower

error rate than other unoptimized codes with the same rate and raw diversity order.

The drawback of the numerical optimization algorithm developed here is its high

computational complexity for large code lengths and rates. One way to get around this

problem would be to obtain a new optimization metric that is a faithful indicator of actual

error rate, but is at the same time easier to compute than the union bound or the coding

gain. Obtaining such a metric is an open problem. Another important open problem in the

design of space-time codes is to analytically obtain a general structure for optimum

encoding matrices.

This chapter ends our discussion of space-time codes with uncoded inputs. We now

proceed to study the design of space-time inner codes, whose inputs are obtained from a

powerful outer code. The new design problem calls for a new set of performance metrics,

as we will in the next chapter.
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CHAPTER 7

Introduction to Concatenated Space-Time Architectures

In Chapter 3, we derived performance metrics for stand-alone space-time codes,

whose inputs were obtained by modulating uncoded bits. In subsequent chapters, we

found linear space-time codes that optimize these performance metrics. In this chapter, we

begin the analysis of the concatenated architecture shown in Fig. 8. A powerful outer code

(such as turbo code [31] or LDPC [47][48]) produces coded bits, which are then

modulated to form the input symbols to a space-time inner code. In this chapter, we will

see that the optimized stand-alone space-time codes obtained in earlier chapters are not

necessarily optimum space-time inner codes. We also describe the design methodology

that will be used in subsequent chapters to find good space-time inner codes.

Decision

Modulation
Inner Code . .

 . 
. r × t

Rayleigh

 Fig. 8. Concatenated transmitter with optimum receiver.

Bits

(ex. QAM, PSK)

Space-Time
{uk}
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. . . .
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Effective Channel
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7.1 The Need for New Performance Metrics

In this section, we will see that performance metrics derived for stand-alone space-

time codes in Chapter 3 do not accurately reflect goodness of a space-time inner codes. To

illustrate this fact, consider the case of the serial-to-parallel converter as a space-time

code. As discussed in Section 2.5.1, the S/P converter, as a stand-alone space-time code,

provides no transmit diversity while operating over a t-transmit, r-receive antenna

Rayleigh fading channel. Intuitively, the reason for the lack of diversity is that each input

symbol is transmitted from one transmit antenna alone. Consequently, if the signal from

any antenna is wiped out due to deep channel fades, the symbols transmitted from that

antenna cannot be recovered by the receiver, irrespective of how many other transmit

antennas are present.

On the other hand, consider the same S/P converter as an inner code in Fig. 8. A well-

designed outer code introduces redundancy across different signaling intervals and

different antennas. Even if signals from one transmit antenna get wiped out, the joint

decoder at the receiver can use the signals received from the other transmit antennas, and

exploit the redundancy introduced by the outer code to estimate the lost signals. Thus, in

the presence of a powerful outer code, each symbol does benefit from the presence of all t

transmit antennas.

The example of the S/P converter illustrates the fact that the performance metrics of

Chapter 3 do not accurately reflect actual error probabilities, in the presence of an outer

code. This observation motivates the need for a different analytical approach to the

concatenated architecture. We now present two possible approaches. The second one will

be used in the rest of this work.
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7.2 The Super-Code View of the Concatenated Architecture

The union bound and raw diversity order focus only on the space-time code, and fail to

account for the outer code. A more comprehensive picture is obtained by treating the

combination of the outer code and the space-time inner code as one large space-time

supercode. The length N of this supercode is the number of signaling intervals required to

transmit all the symbols in one codeword of the powerful outer code. For a powerful code,

the length of the supercode satisfies N >> t. From the rank rule (Section 3.3), one can

achieve a diversity order of rmin(t, N) = tr by ensuring that all pairwise differences

between the t × N transmit matrices have full rank.

The codebook of the supercode (i.e., the set of all valid transmit matrices) can be

directly analyzed to obtain exact or approximate expressions for the error probability of

the complete system in Fig. 8. The analysis can be performed either for idealized optimum

decoding [38], or for message-passing iterative decoding between soft-output decoders for

the space-time inner and the outer code [49][50]. The analytically obtained error rate (or

approximation thereof) can be used as a performance metric to evaluate and optimize both

the outer code and the space-time inner code, or one given the other.

The problem with this approach is that an expression for the error probability of the

supercode cannot always be found. Often, one needs to make some kind of idealized

approximation about the outer code. For example, the analysis in [49][50] assumes that

the outer code is a binary turbo or LDPC code of infinite length. The second design

approach, which we discuss next, takes these approximations all the way, and assumes an

ideal outer code.
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7.3 Using the Effective Channel to Design Space-Time Inner Codes

Instead of grouping together the outer code and inner codes, suppose one considers the

effective channel formed by the combination of the space-time code and MIMO fading

channel. This effective channel is shown in dotted lines in Fig. 8. One signaling interval of

the effective channel corresponds to one space-time code block, and lasts N signaling

intervals across the MIMO fading channel. The union bound and raw diversity order of

Chapter 3 measure the performance of the effective channel in one such block. In effect,

they measure the error probability of uncoded transmission across the effective channel.

However, in the concatenated architecture, the outer code codes across this effective

channel, and makes its inputs dependent from one block to the next.

Recall from Section 2.4.1 that the choice of the space-time code completely

determines the effective channel. In order to design a good space-time inner code, we need

to quantify how well the effective channel responds to outer coding. Accounting for the

actual outer code, and obtaining an error probability expression is difficult. Instead, one

can replace the actual outer code by a hypothetical capacity-achieving outer code. Before

proceeding, we point out that this is actually a two-stage idealization. Firstly, actual outer

codes do not have the infinite length required to achieve capacity. Secondly, we will see

that achieving capacity requires that the inputs to the effective channel have a complex

Gaussian distribution. This is an idealization of the actual transmitter, where the effective

channel inputs are often QAM modulated.

Assuming the idealized outer code, one can obtain the capacity of the effective

channel. This capacity depends on both the space-time inner code and the underlying

MIMO fading channel. In particular, it can be used as a metric to compare different space-
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time codes operating over the same MIMO fading channel. Also, it can be used as an

optimization metric to design space-time inner codes. The advantage of this capacity-

based approach is its simplicity. We will see that unlike the error probability of the

supercode, information-theoretic analysis of the effective channel is quite simple.

However, because of the implicit idealization of the outer code, the capacity-based

approach does not accurately measure the performance for a finite-length, non-ideal outer

code.

7.4 Organization of the Following Chapters

In the remainder of this work, we will use the capacity-based approach to obtain broad

design rules for space-time inner codes. Note that the capacity of the effective channel

depends not only on the space-time inner code, but also on the MIMO fading channel.

In the next chapter, we will review the rich literature on the information theoretic

analysis of Rayleigh fading MIMO channel alone. Because of fading nature of the

channel, it will prove necessary to introduce a relatively new kind of capacity, namely

outage capacity.

In Chapter 9, we will extend the analysis to the space-time coded effective channel.

This extension is simple because, as discussed in Section 2.4.1, the effective channel for a

linear space-time code resembles the MIMO fading channel itself.

Combining the results of these two analyses, we obtain broad design rules for space-

time inner codes in Chapter 10.
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CHAPTER 8

Information Theoretic Analysis of MIMO Static Fading Channels

In this chapter, we provide an overview of information theoretic analysis of static

fading channels. Much of the discussion is drawn from the vast literature on the topic,

notably [6][4][5], although some of the proofs are our own. Specifically, the notion of

outage probability and outage capacity of fading channels will be introduced. A high-SNR

analysis of these quantities yields respectively the diversity order and multiplexing order

of fading channels. These asymptotic quantities reflect the diversity and multiplexing

abilities of fading channels, and will be used to analyze space-time inner codes in the next

chapter. In this chapter, we also discuss the multiplexing-diversity trade-off curve [36].

8.1 Outage Probability and Diversity Order

In this section, we introduce the notion of outage, and discuss the outage probability

and diversity order of MIMO fading channels. Recall, from (1), the quasi-static, linear

MIMO fading channel model yk = Hxk + nk. The data rate of transmission, say Rb bits /

s / Hz, is given by the entropy rate of the channel input vector sequence xk. Recall that the

signal-to-noise energy ratio is given by S = E[||Hxk||2] ⁄ N0. Thus, the data rate and energy

fix the entropy and average energy of the transmit vectors {xk}. Given these, an optimal

encoder design should shape the distribution of the random vectors {xk} so as to maximize
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the mutual information between the channel input and output vectors. For a wide range of

SNRs, the optimum distribution1 [4] is that the elements of xk are mutually independent

zero-mean, complex Gaussian random variables with the same variance. For such an input

distribution, the mutual information at an SNR S and a channel matrix H is given by [4]

I(S, H) = log2 det b / s / Hz. (105)

I(S, H) is the available capacity corresponding to the channel matrix H, namely the

highest data rate that can be transmitted while maintaining zero error probability. Since the

channel matrix H is random, so is the available capacity.

If the transmitter knew the channel, it could adapt the data rate Rb to be equal to the

available capacity I(S, H). However, in this work, we are concerned with the case where

the transmitter does not know the channel. Consequently, it has to pick some data rate Rb

without the guarantee of successful transmission. If I(S, H) ≥ Rb, the error probability can

be made arbitrarily small with a well-chosen code. On the other hand, if I(S, H) < Rb, the

error probability cannot be made zero by any code. This event is called an outage. The

occurrence of an outage does not necessarily imply that an error will occur, only that the

error probability is non-zero. Thus, the probability of outage, called outage probability,

provides an upper bound on the lowest achievable error probability.

By definition, the outage probability is Pr[I(S, H) < Rb]. In terms of the distribution

function of the random available capacity I(S, H) for an SNR S, namely

F(S, x) = Pr[I(S, H) < x], (106)

1. Actually, at this stage, the distribution optimization problem is ill-posed, since the transmitter
does not know the channel. We will return to this issue in the next chapter, while discussing Telatar’s
conjecture.

Ir
S
t
----HH∗+ 

 
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the outage probability is clearly equal to F(S, Rb). For every value of the SNR S, we get a

different distribution function1 F(S, x) depending on the statistical nature of the random

channel matrix H. For a wide variety of fading channels, the function F(S, x) can be

derived analytically. However, in this work, we are not interested in the exact expressions

for F(S, x), but only in its general behavior. In particular, we are interested in the behavior

of outage probability at high SNR, which we now discuss.

8.1.1  The Diversity Order of MIMO Channels

As the SNR S increases, it is clear from (105) that the available capacity I(S, H)

increases for every channel matrix H. Consequently, for any data rate Rb, the outage

probability F(S, Rb) decreases as the SNR increases. The diversity order quantifies the rate

of this decrease at high SNR. Formally, it is defined as

δ(Rb) = . (107)

Intuitively, the diversity order is the asymptotic slope of a log-log plot of outage

probability vs. SNR. Clearly, a high diversity order represents a more rapid decrease of

error probability with SNR, as is desirable.

To get some intuition into the diversity order, consider the outage probability F(S, Rb)

as a function of the SNR S, for a given value of Rb. Suppose it is infinitely differentiable in

S. Then, one can expand F(S, Rb) in a Laurent series in the powers of S, namely

F(S, Rb) = + + …. (108)

1. Some textbooks define the distribution function of a random variable X as Pr[X ≤ x], instead of
Pr[X < x].We consistently use the latter definition.

F S Rb,( )log

Slog
--------------------------------

S ∞→
lim–

f i Rb( )

Si
-----------------

f i 1+ Rb( )

Si 1+
-------------------------
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Note that the coefficients fi(Rb) of the expansion (108) are functions of the data rate Rb.

Also, the coefficients corresponding to positive powers of S are all zero, since F(S, Rb)

uniformly decreases as S increases. As S goes to infinity, the term with the highest power

of S dominates. Substituting F(S, Rb) ≈ fi(Rb) ⁄ Si in (107), we see that the diversity order

is equal to i, namely the least power of (1 ⁄ S) that has a non-zero coefficient in the Laurent

series expansion of F(S, Rb).

From the above discussion, whenever the Laurent series expansion of F(S, Rb) exists

and is known in closed form, it can be used to compute the diversity order. For example,

consider a 1-input, 1-output (scalar) Rayleigh fading channel. It is easy to show that the

outage probability at SNR S is F1,1(S, Rb) = 1 − exp(−( − 1) ⁄ S). The first non-zero

term in the Laurent series expansion is ( − 1) ⁄ S, implying that the diversity order of a

1-input, 1-output (scalar) Rayleigh fading channel is δ(1, 1) = 1. Note that the diversity

order is independent of the data rate Rb, as long as 0 < Rb < ∞.

The extension of the above result to general MIMO Rayleigh fading channels is more

complicated. The distribution function Ft,r(S, x) of the available capacity of a t-input, r-

output Rayleigh fading channel is known [51]. However, its Laurent series expansion is

not known in closed form, and is therefore not useful in obtaining the diversity order.

Instead, one can directly compute the limit in (107) using the clever analysis of [36][51].

We do not reproduce the well-known steps here, but merely state the final result below.

 Theorem 2. The diversity order δ(t, r) of a t-input, r-output Rayleigh fading

channel is equal to tr for all finite, non-zero data rates.

Note that the generalization δ(t, r) = tr agrees with the special case δ(1, 1) = 1 derived

above. Intuitively, this result is satisfying, since it confirms the intuitive notion of the

2
Rb

2
Rb
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diversity benefit of multiple antennas. With t transmit and r receive antennas, there are tr

independent Rayleigh fading links, and we expect to get tr-times the fade resistance of any

one link, namely δ(1, 1) = 1. Also note that δ(t, r) = tr agrees with the full raw diversity

order of a general space-time code derived in Chapter 3. This is to be expected. Both the

diversity order and full raw diversity order measure diversity with the best possible code.

The only difference is that the diversity order holds for continuous Gaussian-distributed

inputs, while the raw diversity order assumes a discrete input alphabet. The fact that the

two agree shows that the difference in input distributions is not significant.

8.2 Outage Capacity and Multiplexing Order

The outage probability is an upper bound on the minimum possible error probability

for a fading channel, at a fixed data rate. The outage capacity does the reverse, namely it

finds the maximum possible data rate for a fixed outage probability. More precisely, for a

given SNR S, as the data rate Rb increases, the outage probability F(S, Rb) = Pr[I(S, H) <

Rb] increases. The outage capacity is defined as the maximum data rate at which the

outage probability F(S, Rb) is less than some target value po. In other words, the outage

capacity for an SNR S and target outage probability po is given by

C(S, po) = sup{Rb: F(S, Rb) < po}. (109)

Note that for any non-zero data rate, the outage probability F(S, Rb) is strictly greater than

zero. Consequently, the Shannon capacity, which is defined as the maximum data rate

which guarantees zero error probability is zero for fading channels. Outage capacity

replaces Shannon capacity as a measure of the data-carrying ability of fading channels.
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Instead of requiring zero error probability, a tolerance limit of po on the outage probability

is placed, and the corresponding maximum data rate is measured.

Pictorially, the outage capacity is just computed by looking up the value of x such that

F(S, x) = po, as shown in Fig. 9. As SNR increases, we mentioned that the distribution

function F(S, x) decreases pointwise for all x. As shown graphically in the sketch of Fig. 9,

the distribution function moves down to a new position shown by the dotted curve.

Consequently, it is easy to see for the same value of po, the outage capacity C(S, po)

increases with the SNR S. We now quantify the rate of this increase at high SNR.

8.2.1  The Multiplexing Order of MIMO Fading Channels

The multiplexing order of a fading channel is defined as

µ(po) = . (110)

Intuitively, it is the asymptotic slope of a plot of outage capacity vs. log SNR. In other

words, at high SNR, every doubling of SNR increases the outage capacity by µ(po) bits/s/

Hz. Clearly, a high multiplexing order represents a rapid increase of outage capacity with

SNR, and is therefore desirable.

1

po

C(S, po)

F(S, x)

x
Outage Capacity

 Fig. 9. Sketch to illustrate calculation of outage probability and outage capacity.
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In theremainderof thissection,wewill show that,for awideclassof t-input,r-output

fading channels,the multiplexing order is equal to min(t, r), irrespective of the target

outageprobability po
1. An intuitive understandingof this result is obtainedby analyzing

thedependenceof availablecapacityI(S, H) = log det(Ir + (S ⁄ t) HH*) on SNRS. Note

thattherandomchannelmatrix H hasdimensionr × t. If it hasfull rankof m = min(t, r),

the matrix HH* hasexactly m non-zerosingularvalues,sayλ1, λ2, …, λm. Writing the

determinant of(Ir + (S ⁄ t) HH*) in terms of these, we get the equivalent expression

I(S, H) = log . (111)

for availablecapacity. Whenthe SNR S goesto ∞, the ‘1 + ’ above canbe neglectedin

comparison to the second term, which is linear inS. Thus, at high SNR

I(S, H) ≈ log Sm = mlogS + log . (112)

From (112), the available capacity is roughly the sum mlogS and a constantterm,

independentof S. Therefore,it increasesasmlogS for all full-rank channelmatricesH.

Oneintuitively expectsthattheoutagecapacitybehavessimilarly to theavailablecapacity,

implying that multiplexing order is m = min(t, r). This is mademore precisein the

following theorem [52], which has not been proved earlier, to the best of our knowledge.

 Theorem 3. If thechannelmatrix H of a t-input, r-outputfadingchannelhasfull

rankwith probabilityone,thenthemultiplexing orderµ(po) equalsm = min(t, r) for

all 0 < po < 1.

1. Thoughthemultiplexingorderdoesnot dependon po, theoutagecapacityclearlydoes.We will
discuss the influence ofpo on outage capacity at high SNR, in Section8.3.
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Before proving the theorem, we point out one crucial difference between the diversity and

multiplexing orders. We saw that the diversity order depends strongly on the fading

statistics of the channel, and is consequently difficult to compute in general. In contrast,

the multiplexing order is easily computed to be min(t, r) for a wide class of fading

channels, using Theorem 3. In particular, Rayleigh fading channels are known [4] to have

full rank with probability one, resulting in the following corollary.

Corollary 2. The multiplexing order of a t-input, r-output fading channel is equal to

min(t, r).

8.2.2  Proof that  the Multiplexing Order is min(t, r)

In this section, we prove Theorem 3. We first define

X(S, po) = , giving (113)

C(S, po) = m logS + log X(S, po). (114)

Dividing by logS and taking limit as the S → ∞, the multiplexing order (110) reduces to

µ(po) = m + . (115)

In order to show µ(po) = m, it suffices to show the second limit above vanishes, or

equivalently, that X(S, po) is finite and bounded away from zero as S → ∞. We first derive

a more convenient expression for X(S, po). Substituting C(S, po) = sup{Rb: F(S, Rb) < po}

from (109) in the definition of X(S, po), and using the fact that 2x is a strictly increasing

function, we get

2
C S po,( )

Sm
---------------------

Xlog S po,( )
Slog

--------------------------------
S ∞→
lim
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X(S, po) = sup{x: Pr  < po}. (116)

It will prove useful to explicitly define f(S, H) = . Substituting (111) for I(S, H),

f(S, H) =  = . (117)

Defining g(S, x) = Pr[f(S, H) < x], (116) can be rewritten as

X(S, po) = sup{x: g(S, x) < po} . (118)

First, we remark that X(S, po) is a non-decreasing function of the SNR S. This follows

from the fact that S1 > S2 ⇒ f(S1, H) < f(S2, H) ⇒ g(S1, x) ≥ g(S2, x) ⇒ X(S1, po) ≤ X(S2,

po). Now, we can prove the following lemmas, bounding X(S, po) from above and below.

Lemma 6. For all po < 1 and all SNR S > 1, X(S, po) ≤ X(1, po) < ∞.

Proof: Since X(S, po) is a non-decreasing function of the S, we have X(S, po) ≤ X(1,

po) for all SNR S > 1. It remains to prove X(1, po) < ∞. The random variable f(1, H)

is a real-valued transformation of the random elements of H, and is therefore a well-

behaved random variable with no point masses at infinity. For all well-behaved

random variables, the distribution function approaches one as x → ∞ [53]. Thus,

 = Pr[f(1, H) < x] = 1. (119)

The limiting value g(1, x) = 1 can be arbitrarily closely approached by increasing x.

More precisely, for all po < 1, there is an Xo < ∞ such that g(1, x) > po for all x > Xo.

From (118), this implies X(1, po) ≤ Xo < ∞, which proves the lemma. The condition S

> 1 was chosen arbitrarily in the lemma. Any non-zero value can be chosen as the

lower limit for S, since we are only interested in a finite upper bound for X(S, po).
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Lemma 7. If H is full-rank with probability one, for all po > 0, there is a corre-

sponding xo > 0 such that X(S, po) ≥ xo for all SNR S.

Proof: It is easy to see that g(S, x) is upper-bounded, according to

g(S, x) = Pr ≤ Pr . (120)

The latter quantity is obtained by substituting S = ∞ in the definition of f(S, H) in

(117). Therefore, we will denote it as g(∞, x). As x → 0, the limit of g(∞, x) is

= (121)

= Pr . (122)

Equation (122) is the probability that at least one of the singular values λi is zero, or

that H is not full rank, which is zero by hypothesis. So, as x → 0, g(∞, x) → 0. Given

any po > 0, there is an x0 > 0 such that g(∞, x) < p0 for all x < x0. Using g(S, x) ≤ g(∞,

x) < p0 for all x < x0 in (118), we get X(S, po) ≥ xo > 0. This proves the lemma.

Proof of Theorem 3: Lemma 6 says that ³X(1, po) < ∞. Also, if H is full-rank with

probability one, Lemma 7 shows 0 < xo ≤ X(S, po). Combining the two, we get 0 < xo ≤

X(S, po) ³< X(1, po) < ∞. Substituting the two bounds in (115), the limit involving X(S, po)

is bounded above and below by zero. Thus, the second limit vanishes and we get µ(po) = m

= min(t, r), proving the theorem.
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8.3 The Outage Capacity Asymptote

In non-fading channels, one can achieve zero error probability by operating below the

non-zero Shannon capacity. However, the outage phenomenon in fading channels results

in a fundamental trade-off between data rate, error probability and SNR. The outage

probability and outage capacity are obtained by fixing one of the two variables, namely the

data rate and error probability respectively. Correspondingly, their asymptotic variation

with SNR yields the diversity and multiplexing orders, which quantify the diversity and

multiplexing benefits of MIMO channels. This leads one to seek an information theoretic

metric that measures diversity and multiplexing benefits simultaneously. In this section,

we argue that the outage capacity asymptote is one such metric. In the next section, we

will briefly discuss the more comprehensive multiplexing-diversity trade-off curve [36].

From (114), we have the expression C(S, po) = m logS + log X(S, po) for the outage

capacity. As S → ∞, the outage capacity approaches its asymptote

C(S, po) = mlogS + α(po), (123)

where α(po) is given by the limit

α(po) = log X(S, po). (124)

Note that this limit is well-defined and finite, since X(S, po) has a well-defined non-zero

limit from Lemma 6 and Lemma 7. From (123), the plot of the asymptote C(S, po) vs. logS

is a straight line, whose slope is equal to the multiplexing order m. In this section, we will

focus on the zero-offset of the asymptote, namely α(po). In particular, we will show that it

is higher for channels with higher diversity order. Thus, the outage capacity asymptote

contains information about both the multiplexing and diversity gains of MIMO channels.

S ∞→
lim
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Intuitively, a lower value of the target outage probability po places a stricter constraint

on the data rate, and reduces the outage capacity. Since α(po) is the only part of the

asymptotic outage capacity that depends on po, it must decrease as po decreases. To

confirm this, note that X(S, po) = sup{x: g(S, x) < po} decreases with po, for all SNR S.

Consequently, the limit α(po) of log X(S, po) also decreases with po.

We will now argue that for channels with high diversity order, α(po) decreases faster as

po decreases. To see this, consider the sketches in Fig. 10. The upper sketch shows the

outage capacity asymptotes for outage probabilities p and q < p. Both the asymptotes have

slope equal to the multiplexing order µ, but different zero offsets α(p) and α(q)

respectively. The difference ∆y = α(p) − α(q) represents the outage capacity loss incurred

by reducing the target outage probability from p to q. The difference ∆x represents the

SNR gap between the two capacity asymptotes. From the slope µ, we see that

∆y ⁄ ∆x = µ. (125)

 Fig. 10. Sketch of outage capacity and outage probability asymptotes.
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We will now use the lower sketch to relate the SNR ∆x to the diversity order δ. The

lower sketch shows the asymptotic plot of log outage probability versus log SNR for a

data rate Rb in the high SNR region. By definition, the slope of this asymptote is the

diversity order δ. A reduction of the outage probability from p to q requires a drop along

the y-axis of ∆z = log(p) − log(q). The corresponding increase in log SNR is equal to the

SNR gap ∆x. From the slope of the line, it is clear that

∆z ⁄ ∆x = δ. (126)

Substituting ∆z = log(p) − log(q) in the above, we see that the SNR gap is

∆x = . (127)

From (127), the SNR gap ∆x between outage capacity asymptotes for different outage

probabilities is inversely proportional to the diversity order δ. Thus, suppose one plots the

outage capacity asymptotes for different values of target outage probability. Then, the

higher the diversity order of the channel, the closer these asymptotes are. Viewed

differently, the higher the diversity order, the smaller the capacity loss incurred by

decreasing the target outage probability. This follows by using (127) for ∆x in (125) to get

∆y = α(p) − α(q) = . (128)

The above analysis also gives a method to obtain outage capacity asymptotes for

different target outage probabilities. Suppose the zero offset α(p) of the outage capacity

asymptote for the target outage probability p is known. Then, for all lower target outage

probabilities q < p, (128) yields the following expression for the zero-offset α(q), namely

α(q) = + α(p) − . (129)

p qlog–log
δ

-----------------------------

µ
δ
--- p qlog–log( )
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It must be mentioned that the above expression is approximate. The actual capacity and

diversity plots approach the asymptotic straight lines sketched in Fig. 10, but are not

exactly straight lines themselves.

The approximation (129) shows qualitatively that the outage capacity is higher for

channels with higher diversity order. Fixing p, the first term (µ ⁄ δ) log(q) in (129)

dominates as the target outage probability q decreases. If two channels have the same

capacity order µ but different diversity orders say δ1 > δ2, we have

log(q) (µ ⁄ δ1) > log(q) (µ ⁄ δ1), (130)

since log(q) < 0. Since this is the dominant term in the zero-offset, we see that the higher

diversity channel has a greater zero-offset, and hence, a higher asymptotic outage capacity

than the lower diversity channel, when q is sufficiently low.

In this section, we have shown that the zero-offset of the outage capacity asymptote

carries diversity information, and is higher for channels with a higher diversity order.

Unfortunately, the latter result is approximate, and holds only for low outage probabilities.

Its main implication is that the outage capacity asymptote carries information about both

the multiplexing and diversity gains of MIMO fading channels, in its slope and zero-offset

respectively.

8.4 The Multiplexing-Diversity Trade-Off Curve

In the previous section, we obtained a unified multiplexing-diversity picture by

studying the asymptotic outage capacity for different target outage probabilities. One can

perform a similar approximate analysis of the outage probability asymptotes at different

data rates. Similar conclusions are arrived at, namely the outage probability asymptotes at
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different data rates are packed closer together for channels with higher multiplexing order.

Also, channels with high multiplexing order have lower outage probabilities when the data

rate is high enough. Again, these results are instructive, but somewhat imprecise.

One reason for the vagueness of the above results is that the different data rates for

evaluating the outage probability asymptote are arbitrarily chosen. In [36] (see also [54]),

an ingenious method of choosing the different data rates was suggested. Common sense,

and the multiplexing order discussion, tell us that the achievable data rate increases in

proportion to log SNR. Consequently, the different data rates are chosen not arbitrarily, but

according to Rb = gmlogS, where the multiplexing gain gm quantifies how much

multiplexing we expect out of the MIMO channel. Now, the outage probability at SNR S

is given by F(S, gmlogS). Similar to the diversity order analysis, one can find the

asymptotic slope of log outage probability vs. log SNR, yielding the diversity gain

gd = . (131)

Clearly, as the multiplexing gain gm increases, the data rate gmlogS for any SNR

increases. Consequently, the outage probability F(S, gmlogS) increases. Substituting in

(131), we intuitively expect that the diversity gain gd is a decreasing function of the

multiplexing gain gm. The plot of gd vs. gm gives a comprehensive picture of this

decrease, and is called the multiplexing-diversity tradeoff curve.

Given a value of gm, obtaining the corresponding value of gd from (131) is a difficult

task. The computation depends strongly on the variation of the outage probability F(S, Rb)

with SNR, which depends strongly on the channel characteristics. For the specific case of

Rayleigh fading channels, the computation was performed in [36] to show the following.

F S gm Slog,( )log

Slog
---------------------------------------------

S ∞→
lim–
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 Theorem 4. Consider a Rayleigh fading channel with t input and r outputs. The

multiplexing-diversity trade-off curve is a piecewise linear function connecting the

points (k, (t − k)(r − k)), k = 0, 1, …,min(t, r).

In particular, Theorem 4 implies that for an integer value of the multiplexing gain gm, the

corresponding diversity gain is given by (t − gm)(r − gm).

The advantage of the trade-off curve is that it is a comprehensive metric, measuring

the multiplexing and diversity abilities of a fading channel at high SNR. In particular, it

encompasses the multiplexing and diversity orders. In order to compute the diversity

order, the data rate is kept fixed even as the SNR increases to infinity, hence the diversity

order is merely the diversity gain gd when the multiplexing gain gm set to 0. To verify this,

note that the diversity order tr is obtained for Rayleigh fading channels, both by directly

finding diversity order in Theorem 2 and by substituting gm = 0 in the expression gd = (t −

gm)(r − gm) of Theorem 4. Similarly, it is easy to see that multiplexing order of fading

channels is the multiplexing gain gm corresponding to zero diversity gain. Again, for

Rayleigh fading channels, this new formula gives the same multiplexing order min(t, r) as

the direct computation in Theorem 3. In other words, the multiplexing and diversity orders

are respectively the x- and y- intercepts of the trade-off curve.

The disadvantage of the trade-off curve is that it depends strongly on the fading

characteristics, and is difficult to compute analytically. In particular, researchers have been

unable to compute the trade-off curve for the effective MIMO channel formed by the

combination of linear space-time codes and Rayleigh fading channels. Instead, we will use

the simpler outage capacity asymptote to analyze the effective channel in the next chapter.

The analysis will be used to obtain simple design rules for space-time inner codes.
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CHAPTER 9

Information Theoretic Analysis of Space-Time Codes

In the last chapter, we discussed the information theoretic analysis of Rayleigh fading

MIMO channels. In this chapter, we extend the analysis to the effective channel formed by

the combination of the space-time code and the Rayleigh fading MIMO channel. We

discuss the outage probability and outage capacity of the effective channel, and the effect

of the rate and raw diversity order of a space-time code on its outage capacity asymptote.

This analysis will be used in the next chapter to obtain design rules for space-time inner

codes.

9.1 The Available Capacity of the Effective Channel

Consider a linear space-time inner code with K complex inputs in a block of length N,

operating over a t-input, r-output Rayleigh fading channel. Let the 2Nt × 2K real encoding

matrix of the space-time code be M. In Section 2.4.1, we discussed the effective channel

formed by the combination of the linear space-time code and the Rayleigh fading MIMO

channel. We obtained the input-output relation of the effective channel, namely

 = M  + . (132)

In what follows, we will be concerned with the transfer matrix M of the effective

channel matrix, which we call Heff for convenience. In particular, we will study the effect

ŷ Ĝ û n̂

Ĝ
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of M on the behavior of Heff. Recall from (11) that the 2Nr × 2t matrix is obtained by

applying the complex-to-real transformations (8) to the block diagonal matrix G, which

just contains N copies of the channel matrix H on its diagonal. Thus, Heff depends not

only on M, but also on the random fading channel matrix H through . Consequently,

Heff is also random.

As mentioned in Section 2.4.1, the effective channel strongly resembles the MIMO

fading channel (1). The only differences are that the transfer Heff is real, and has different

dimensions, namely 2Nr × 2K, from the r × t complex MIMO channel matrix H. After

accounting for these minor differences, the information-theoretic analysis in the previous

section extends to the effective channel. To begin, when the random fading channel matrix

is H, the available capacity of the effective channel at SNR S can be shown to be

J(S, M, H) = log det b / s / Hz. (133)

For clarity, we have chosen the notation J(S, M, H) to explicitly separate the fading and

encoding components of the effective channel matrix, H (or ) and M respectively. From

the available capacity, one can define all the other quantities of the previous chapter. In

particular, the distribution function

G(S, M, x) = Pr[J(S, M, H) < x] (134)

of the available capacity at SNR S is used to obtain the outage probability corresponding

to a data rate Rb namely G(S, M, Rb) = Pr[J(S, M, H) < Rb]. Correspondingly, the outage

capacity for a fixed target outage probability po is defined as

D(S, M, po) = sup{Rb: G(S, M, Rb) < po}. (135)

Ĝ

Ĝ

1
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We will loosely call the outage probability and capacity of the effective channel as,

respectively, the outage probability and capacity of the space-time code itself.

9.2 The Outage Probability and Diversity Order of Space-Time Codes

In this section, we focus on the outage probability of space-time inner codes, which

gives an upper bound on the error probability with a capacity-achieving outer code. Thus,

the outage probability is analogous to the union bound of Chapter 3, which served as an

upper bound on the error probability when there is no outer code. In Chapter 5 and

Chapter 6, we discussed search strategies to find encoding matrices that minimize the

union bound. Extending the analogy, one possible approach to space-time inner code

design is to use outage probability as optimization metric. The optimization problem is

stated precisely below.

Outage Probability Optimization Problem: The SNR S, data rate Rb, channel

dimensions r × t, channel fading statistics (for example, Rayleigh), and encoding

matrix dimensions 2Nt × 2K are given. Find the 2Nt × 2K encoding matrix M that

minimizes the outage probability G(S, M, Rb).

The outage probability optimization problem is open, primarily because of the

difficulty in obtaining a general closed form expression for G(S, M, Rb). We do not

attempt to solve the problem here. Instead, we discuss a conjecture by Telatar [4], which

gives the lowest possible outage probability that can be achieved by any space-time code

operating on a given Rayleigh channel. We will subsequently discuss the conjecture’s

interesting implications for the design of space-time inner codes.
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9.2.1  Telatar ’s  Conjecture and Its  Implications

Consider the information flow diagram of any space-time code, shown in Fig. 11. The

space-time code encodes its input vector u to obtain the composite transmit vector x,

which is sent across the MIMO fading channel, yielding the composite receive vector y.

For notational clarity, we will use script variables to indicate random variables along with

their distributions. Thus, U represents the distribution of the random input vector u. Note

that the distribution U along with the encoding matrix M fixes the distribution X of the

composite transmit vector x. In particular, since the encoding matrix M is fixed, x is

known given u, and so the entropy H(X|U) is zero. This is useful in the following standard

information theoretic manipulation [55], which expands the mutual information I(U, X ;

Y|H) in two different ways using the chain rule.

I(U, X ; Y|H) = I(U ; Y|H) + I(X ; Y|U, H) (136)

= I(X ; Y|H) + I(U ; Y|X, H) (137)

Now, I(U ; Y|X, H) = 0 because the Markovian nature of the chain in Fig. 11 ensures that Y

is conditionally independent of U given the intermediate variable X. Also,

I(X ; Y|U, H) ≤ H(X|U, H) ≤ H(X|U). (138)

We already saw that H(X ⁄ U) is zero, implying I(X ; Y|U, H) = 0. Thus, the second terms in

the right hand sides of (136) and (137) are zero, giving

I(U ; Y|H) = I(X ; Y|H). (139)

U
random variable
representing u

Encoding
by

Space-Time
Code

X
random variable
representing x

Y
random variable
representing y

Transmission
across
MIMO

fading channel

 Fig. 11. Information flow diagram for space-time coding.
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Now, for a given fading channel matrix H, the available capacity of the space-time

code is equal to (1 ⁄ N)1 I(U; Y|H) b / s / Hz. The corresponding outage probability at a

data rate Rb is Pr[(1 ⁄ N) I(U; Y|H) < Rb]. Substituting (139), we see that the outage

probability at a data rate Rb is equal to

Pr[(1 ⁄ N) I(X; Y|H) < Rb]. (140)

Note that the distribution X determines the distribution of Y given H, and hence the mutual

information (U; Y|H). Thus, the distribution X determines the outage probability (140).

Now, the encoding process places a constraint on the distribution X, since x has to be the

output of a linear space-time code with some encoding matrix M. If one relaxed this

constraint, and allowed some arbitrary distribution X, the best possible distribution yields a

lower bound on the outage probability of any space-time code. Telatar’s conjecture [4]

gives the optimum (outage probability minimizing) distribution X.

 Conjecture 2.The outage probability (140) is minimized by a distribution X * where

the N individual transmit vectors {xi} constituting the composite transmit vector x

have identical zero-mean Gaussian distributions, and are independent of each other.

The t × t covariance matrix Φ of each transmit vector is of the form (N0S ⁄ k) Dk,

where Dk is the diagonal matrix

Dk = . (141)

1. The factor (1 ⁄ N) accounts for the fact that the signaling interval on the effective channel is N
times as long as that on the MIMO fading channel.

diag(1, 1, …, 1, 0, 0, …,0){ {k 1s t−k 0s
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The number of ones, k, should be chosen to optimize the outage probability. Note

that the scaling (N0S ⁄ k) ensures that the total transmit energy is equal to N0S, which

is consistent with an SNR S and noise energy N0.

The conjectured optimum distribution X * has independently distributed input vectors for

different signaling intervals across the fading channel. It uses only a well-chosen number

k of the inputs of the fading channel, and treats them identically. Note that the

corresponding outage probability is (140)

Pr[(1 ⁄ N) I(X *; Y ⁄H) < Rb] = Pr[log2 det  < Rb]. (142)

Since this is conjectured to be the best possible distribution X *, (142) gives the

conjectured value of the lowest outage probability of any space-time code with any input

distribution. In particular, we get the conjectured lower bound

G(S, M, Rb) ≥ Pr[log2 det  < Rb] (143)

on how far the outage probability can be reduced. This is a powerful bound, since it is

independent of the codelength N and the number of code inputs K. The optimal number of

active inputs k varies with the data rate. For a wide range of data rates, the optimal number

of active channels k is equal to t. However, for low data rates, the optimal value of k is

lower than t [4].

Ir
S
k
----HDkH∗+ 

 
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9.2.2  Is  the Serial  to Parallel  Converter Optimal?

Consider the serial to parallel converter as a space-time code. As described in

Section 2.5.1, it has a length N = 1, takes in K = t complex inputs and transmits them one

on each available input to the t-input, r-output MIMO channel. Thus, the effective transmit

vector x is equal to the input vector u, and the input-output relation for the effective

channel is y = Hu + n, which is identical to that of the MIMO channel. If we chose the

distribution of u to be (N0S ⁄ k) Dk for the optimally chosen k, it is easy to see that the S/P

converter achieves exactly the conjectured optimum outage probability in (143). Thus, if

Telatar’s conjecture is true (it has so far not been proved or disproved, to our knowledge)

one can achieve optimum outage probability for any given rate by choosing the S/P

converter as space-time code, and optimally choosing the number of ON antennas.

The optimality of the S/P converter can also be motivated from another viewpoint. The

famous data processing theorem of information theory [55] says that any form of coding

can at best achieve the fundamental information-carrying capacity of the channel. The

data processing theorem is not directly useful here because the Shannon capacity of the

channel with or without coding is zero. However, the basic philosophy of the data

processing theorem is that any kind of coding can only impair the information theoretic

limits of communication. Since the S/P converter does effectively no coding, the effective

channel is the same as the MIMO channel. Consequently, the S/P converter is expected to

be optimum in terms of outage probability and other information theoretic quantities.

The conjecture that the S/P converter is optimum poses an existential question for

space-time inner codes, i.e., it questions the need for any space-time inner code more

sophisticated than the simple S/P converter. We will return to this issue in Chapter 10.
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While discussing Telatar’s conjecture, we have briefly touched upon the problem of

optimizing the input distribution to a fading channel, with the objective of minimizing the

outage probability. This is, by its own right, an important open problem (recall the

discussion of the analogous open problem in Section 5.6.1 for the case of stand-alone

space-time codes). For the remainder of this work, we will return to the earlier assumption

that all input symbols are independent and have an identical complex Gaussian

distribution, for all the channels involved. For the specific case of the S/P converter, the

uniform distribution corresponds to Telatar’s conjectured optimum distribution (141) with

the number of active inputs k set to t. As stated earlier, the optimum k is indeed equal to t

for high data rates and high SNR. For all such SNR, the lower bound (143) becomes

G(S, M, Rb) ≥ F(S, Rb), (144)

where F(S, Rb) is the outage probability of the MIMO fading channel, discussed in

Section 9.2 of the previous chapter.

9.2.3  The Achievable Diversity Order of Space-Time Codes

We now proceed to analyze the outage probability at high SNR. The diversity order of

the effective channel quantifies the asymptotic speed with which the outage probability

G(S, M, Rb) decreases with SNR S. It is defined as

χ(Rb) = . (145)

Note that χ(Rb) is the diversity order of the space-time code corresponding to M with the

best possible outer code, hence we call it achievable diversity order of the space-time

code. At high SNR, the bound G(S, M, Rb) ≥ F(S, Rb) from (144) holds, giving

G S M R, b,( )log

Slog
-----------------------------------------

S ∞→
lim–
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χ(Rb) ≤ . (146)

The right hand side of (146) is just the diversity order tr of the Rayleigh fading channel

from Theorem 2 of the previous chapter. Thus, with the best possible outer code, a space-

time can achieve the diversity order of the Rayleigh fading channel. When this happens,

the space-time code is said to have full achievable diversity order. In particular, note that

the S/P converter has the same effective channel as the underlying MIMO channel itself,

hence its outage probability is equal to F(S, Rb). Consequently, the S/P converter in fact

has full achievable diversity order tr. This is remarkable, since we saw in Section 2.5.1

that the raw diversity order of the S/P converter is only r. This trend in the S/P converter is

part of a general rule, stated below.

Remark 6. Any space-time code has two diversity-measuring quantities. The

raw diversity order measures the diversity order the space-time code with uncoded

inputs from a discrete alphabet. It is a lower bound to the achievable diversity order,

namely the maximum diversity order achievable by the use of a well-chosen outer

code and (possibly continuous) input alphabet.

While the raw diversity order of a space-time code is easily calculated using the rank

rule, calculating the achievable diversity order for a general space-time code is an open

problem. This is not surprising, considering the difficulty in calculating the diversity order

of a general MIMO fading channel, as discussed in Section 8.1.

F S Rb,( )log

Slog
--------------------------------

S ∞→
lim–
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One case where the achievable diversity order can be calculated is when the space-

time code already has full raw diversity order tr. The achievable diversity order cannot be

any less, so it has got to be tr as well. Examples of such codes are the Alamouti code for t

= 2, and the LCF codes (see Section 2.5) for any number of transmit antennas.

For many other space-time codes, the achievable diversity order can be obtained by

inspection of the effective channel. One example of this is the S/P converter, where we

noted that the effective channel is the same as the MIMO fading channel, and hence, the

achievable diversity order is equal to the full diversity order. Another example is the

repetition code, discussed below.

Example 1. In every signaling interval across a t-input, r-output Rayleigh fading

channel, the repetition code takes in K = 1 complex input and repeats it on all t

channel inputs after scaling by (1 ⁄ ) to preserve the energy. Thus, it has a length N

= 1. It is clearly a strictly linear space-time code whose encoding matrix has

dimension t × 1, and equals Mrep = (1 ⁄ √t)[1, 1, …, 1]T. The effective channel is an r

× 1 channel given by Hrep = HMrep. Each element of the effective channel is the

scaled sum of i. i. d. complex Gaussians, which can easily be shown to also be an

identical complex Gaussian random variable. Thus, the effective channel Hrep is

statistically equivalent to an 1-input, r-output Rayleigh fading channel. From this,

we see that the diversity order of the effective channel, which is equal to the

achievable diversity order of the repetition code, is equal to r.

The repetition code is a pathological example. All the other space-time codes that we have

mentioned in this work can be shown to have full achievable diversity order.

t
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Rate and raw diversity order were two important factors in determining the

performance of stand-alone space-time codes. However, the S/P converter shows that even

with a low raw diversity order, a space-time code can achieve full diversity as an inner

code. Thus, high raw diversity order is not crucial for a space-time code to be a good inner

code. On the other hand, analysis of outage capacity in the next section will show that high

rate is crucial for a space-time inner code.

9.3 Multiplexing Order of Space-Time Codes Cannot Exceed the Rate

In this section, we analyze the outage capacity (135) of space-time codes at high SNR.

Specifically, we focus on the multiplexing order of space-time codes, defined as

ν(M, po) = . (147)

As discussed in the previous chapter, the multiplexing order represents the slope of the

outage capacity vs. log SNR asymptote. The analysis of multiplexing order of space-time

codes closely follows the derivation of the multiplexing order of MIMO fading channels in

Section 8.2. One only needs to account for the statistical differences between the effective

channel matrix and the Rayleigh fading MIMO channels.

To begin, we write out the available capacity J(S, M, H) in terms of the singular values

of the effective channel matrix Heff = M. Now, has dimension 2Nr × 2Nt, hence its

rank cannot exceed its minimum dimension, namely min(2Nr, 2Nt) = 2Nmin(r, t).

Similarly, the rank of the 2Nt × 2K matrix M is at most 2Nmin(t, K ⁄ N). Now, the rank of

the product Heff = M cannot exceed the ranks of either or M. Combining the above

bounds, and noting that K ⁄ N is by definition the rate R of the space-time code, we get

D S M p, o,( )
Slog

--------------------------------
S ∞→
lim

Ĝ Ĝ

Ĝ Ĝ
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rank(Heff) ≤ 2Nn, where (148)

n = min(t, r, R). (149)

Thematrix HeffHeff
T in theavailablecapacityexpression(133)hasdimension2Nr × 2Nr.

Let κ1 ≥ κ2 ≥ …≥ κ2Nr ≥ 0 be its orderedsingularvalues.From the rank bound(148), at

most the first 2Nn of thesesingularvaluesare non-zero.Rewriting the determinantin

(133) in terms of the non-zero singular values, we get the equivalent expression

J(S, M, H) = log (150)

for the available capacity. Note the similarity between this expression and the

correspondingexpression(111) for theavailablecapacityof theRayleighfadingchannel

H alone.In particular, onecanusethesameintuitive argumentusedthere,to estimatethe

multiplexing order of the effective channel.Supposea specific instanceof the channel

matrix Heff hasrankρ. Then,only thefirst ρ termsof theproductin (150)remain.At high

SNR, one can neglect the‘1 + ’ in each term, and approximate the available capacity by

log  = logS + log . (151)

The approximation(151) grows as (ρ ⁄ 2N)logS indicatingthat the multiplexing orderof

the effective channelis (ρ ⁄ 2N). From (148), we know that the rank ρ is at most 2Nn,

implying that the multiplexing orderis at mostn. In orderto meetthis upperbound,we

needto ensurethatthe‘typical’ effective matrix hasfull rank.This impreciseargumentis

now stated precisely in the following theorem.
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 Theorem 5. The multiplexing order of a rate-R linear space-time code, when

operating over a t-input, r-output fading channel satisfies

ν(S, M, po) ≤ n = min(t, r, R). (152)

If the effective channel matrix Heff = M has full rank with probability one, then

the upper bound is achieved, giving a multiplexing order ν(S, M, po) = n.

Proof: The proof follows exactly along the lines of the proof of Theorem 3 in

Section 8.2.2. In particular, analogous to X(S, po) defined in (113), we define

Y(S, M, po) = , giving (153)

D(S, M, po) = n logS + log Y(S, po). (154)

Dividing by logS and taking limit as S goes to infinity, we get

ν(S, M, po) = n + . (155)

First, following the proof of Lemma 6, it is easy to prove that Y(S, po) ≤ Y(1, po) < ∞

for all po < 1. Thus, the limit involving Y(S, po) on the right hand side of (155) is at

most zero, implying ν(S, M, po) ≤ n. This proves the first part of the theorem.

The proof of the second part follows the analogue of Lemma 7. Thus, if the effective

channel matrix is full rank with probability one, one can adapt the proof of Lemma 7

to show that Y(S, po) > yo > 0. Again, substituting in (155), the limit involving Y(S,

po) is indeed equal to zero. This proves that, if the effective channel matrix is full

rank with probability one, the multiplexing order is n, as claimed in the theorem.

Ĝ
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According to Theorem 5, the rate of a space-time code places an upper bound on the

multiplexing order. Recall from Section 2.3.1 that the rate of a space-time code is equal to

the number of symbols multiplexed by the effective channel per signaling interval. Thus,

the claim of Theorem 5 that the multiplexing order cannot exceed the rate is intuitively

easy to understand. However, the condition to achieve that upper bound, namely that the

effective channel matrix Heff = M have full rank with probability one, is not direct and

tractable. In particular, it is not clear how the encoding matrix M should be chosen in order

to satisfy this condition. In the next section, we will assume a Rayleigh fading channel H,

and investigate how the encoding matrix M should be chosen to ensure a full-rank Heff.

9.4 Choosing an Encoding Matrix to Maximize Multiplexing Order

Suppose an encoding matrix M is chosen. Now, define the bad channel set B(M) to be

the set of all H which gives a rank-deficient effective channel matrix, i.e.,

B(M) = {H: M is not full rank}. (156)

Note that Heff = M is not full rank if and only if the random channel matrix H belongs

to the bad channel set B(M). Therefore, Pr(Heff is full rank) = Pr(H ∉ B(M)). If these

probabilities are one, then Theorem 5 assures us that the multiplexing order upper bound

is achieved (152). In this section, we seek conditions that the encoding matrix M should

satisfy in order to ensure Pr[H ∉ B(M)] = 1, or equivalently Pr[H ∈ B(M)] = 0.1

1. In measure-theoretic terms, we seek conditions on M to ensure that the corresponding bad channel

set B(M) is a set of zero measure in the set of all Rayleigh fading channel matrices H.

Ĝ

Ĝ

Ĝ
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We will assume that the space-time code has rate R less than or equal to the full rate

min(t, r). In particular, note that this means R ≤ r, and consequently 2NR ≤ 2Nr. Since the

rate is defined to be R = K ⁄ N, we get 2NR = 2K ≤ 2Nr. Thus, the assumption that R ≤

min(t, r) implies that the 2Nr × 2K effective channel matrix Heff has at most as many

columns as rows. Consequently, the rank of Heff is equal to its column rank. In other

words, Heff = M does not have full rank if and only if its columns are linearly

dependent, i.e., there is some non-zero right nulling vector ∈ R2K such that M = 0.

Thus, the bad channel set (156) can be written as

B(M) = {H:  ∈ R2K, such that ≠ 0, and M  = 0}. (157)

We will now use this representation to derive conditions to ensure Pr[H ∈ B(M)] = 0.

Lemma 8. To achieve Pr[H ∈ B(M)] = 0, it is necessary to ensure that the encoding

matrix M has a full rank.

Proof: It is easy to see that the 2Nt × 2K M also has at least as many rows as col-

umns. Its rank is equal to its column rank. In particular, if it does not have full rank,

it has some non-zero right nulling vector uM such that MuM = 0. But this implies

MuM = 0 irrespective of . Substituting in (157), every possible instance of the

channel matrix H belongs to the bad channel set, giving Pr[H ∈ B(M)] = 1. We have

just shown that M not full rank ⇒ Pr[H ∈ B(M)] = 1. Reversing the argument, Pr[H

∈ B(M)] = 0 only if M has full rank, proving the lemma.

Lemma 8 provides a necessary condition on the encoding matrix M. In order to obtain

sufficient conditions, it will prove useful to split the analysis into two different cases,

depending on the relation between the number of inputs and outputs of the fading channel.

Ĝ

û Ĝ û

û∃ û Ĝ û

Ĝ Ĝ



129

9.4.1  Sufficient Conditions for the Case t ≤ r

Lemma 9. Suppose t ≤ r. Then, to achieve Pr[H ∈ B(M)] = 0, it is sufficient to

ensure that the encoding matrix M has full rank.

Proof: Consider some matrix H ∈ B(M). By definition, ∈ R2K, ≠ 0, M =

0. First, we will use the assumption that M is full rank, and hence ≠ 0 ⇒ M ≠ 0.

Thus, H ∈ B(M) only if has a non-zero right nulling vector M , or equivalently,

if does not have full column rank. Now, the second assumption t ≤ r implies that

has at most as many rows as columns. Thus, the column rank of is also its

overall rank. Combining the two arguments, H ∈ B(M) ⇒ does not have full rank.

It is easy to show [4] that does not have full rank if and only if H itself does not

have full rank. Consequently, Pr[H ∈ B(M)] ≤ Pr[ not full rank] = Pr[H not full

rank]. For Rayleigh fading matrices, the latter probability is known to be zero [4].

This implies Pr[H ∈ B(M)] = 0, proving the lemma.

Lemma 8 and Lemma 9 prove the following theorem, giving a simple necessary and

sufficient condition for achieving the multiplexing order upper bound of Theorem 5.

 Theorem 6. Let t ≤ r. A linear space-time code with rate R ≤ t operating over a t-

input, r-output Rayleigh1 fading channel achieves the multiplexing order upper

bound n = min(t, r, R) = R if and only if the encoding matrix M has full rank.

1. The restriction to Rayleigh fading channels is only for convenience. Lemma 8 holds irrespective
of the fading channel statistics. Lemma 9 only requires that the channel matrix have full rank with
probability one.

û∃ û Ĝ û

û û

Ĝ û

Ĝ

Ĝ Ĝ

Ĝ

Ĝ

Ĝ
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All practical linear space-time codes employ full-rank encoding matrices in order to

guarantee unique decodability of the input signal. More precisely, the space-time code

produces the composite transmit vector = M . If M is not full rank, the encoding

process is linearly irreversible, i.e., one cannot just perform a pseudo-inverse to get

uniquely from . Thus, a non-full rank M complicates decoding with no corresponding

benefit, and is therefore never used.

Theorem 6 states that merely using a full-rank encoding matrix M, for which there are

other sound reasons as described above, ensures that the multiplexing order upper bound,

equal to the rate, is achieved. Thus, when t ≤ r, we can think of the rate of a space-time

code as its multiplexing order.

9.4.2  Sufficient Conditions for the Case t > r

In the case t > r, a full rank encoding matrix is not sufficient to achieve the

multiplexing order upper bound. Mathematically, the proof of Lemma 9 does not hold

because it assumes t ≤ r. Intuitively, here is an example of a full rank encoding matrix that

does not achieve the multiplexing order upper bound.

Example 2. Let the Rayleigh fading channel have t = 2 inputs and r = 1 output.

Consider a space-time code which takes in K = 2 complex inputs, say u1 and u2, and

produces 2 × 1 transmit vectors x1 and x2 for N = 2 signaling intervals, according to

x =  = . (158)

x̂ û

û

x̂

x1

x2

u1

u2

0

0
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Note that this is a (strictly) linear space-time code of rate R = 2 ⁄ 2 (K ⁄ N) = 1. The

multiplexing order upper bound of Theorem 5 is min(2, 1, 1) (min(t, r, R)), namely

one. The actual multiplexing order achieved by the code can be obtained by inspec-

tion. This code essentially uses the Rayleigh fading MIMO channel once every two

signaling intervals. Hence, it has exactly half the outage capacity of the 2-input, 1-

output Rayleigh fading channel for all SNR. Thus, the actual multiplexing order of

the space-time code is half, which is less than the upper bound one. However, it is

easy to see that the encoding matrix here does indeed have full rank. (Intuitively,

given x, we can get u, by just picking out the first two elements. So the encoding

matrix has to be full rank.) This example shows that a full rank encoding matrix is

not sufficient for achieving the upper bound.

Now, we will derive a new sufficient condition for the case t > r. Consider the N

transmit vectors x1, x2, …, xN produced by the space-time code. Let Xi be the set of all

values of the transmit vector xi. The linearity of the code imposes considerable structure

on Xi. In particular, for a strictly linear space-time code, it is easy to see that Xi is just a

linear subspace of the set of all t × 1 complex vectors. For general linear space-time codes,

the space Xi itself is not linear, but the set of all transformed vectors is a linear subspace

of the set of all 2t × 1 real vectors. One can interpret Xi as the column span of the rows of

the encoding matrix M corresponding to the . We now state a sufficient condition on the

spaces {Xi}, which guarantees that the multiplexing order upper bound is achieved.

 Theorem 7. Let t > r. Consider a linear space-time code of length N with rate R ≤

r operating over a t-input, r-output Rayleigh fading channel. Then, in order to

achieve the multiplexing order upper bound n = min(t, r, R) = R, it is necessary to

x̂i

x̂i
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use a full-rank encoding matrix M. Further, it is sufficient (though not necessary) to

ensure that each set Xi of all possible xi is some non-zero subspace of a linear space

Li whose dimensions satisfies 1 ≤ li �≤ r.

Proof: The fact that a full-rank encoding matrix is necessary follows from Lemma 8.

Now, we assume that M is full rank and proceed to prove the sufficient condition.

For any H ∈ B(M) ⇔ M = = 0 for some non-zero input . Further, = 0

⇔ Gx = 0 ⇔ Hxi = 0 for all the transmit vectors xi corresponding to the composite

vector x. Note that since M is full rank and ≠ 0, ≠ 0, implying that at least one xi

≠ 0. Consequently, H ∈ B(M) ⇒ there is at least one xi ≠ 0 such that Hxi = 0.

Defining the local bad channel set

Bi(Xi) = {H: Hxi = 0 for some xi ∈ Xi, xi ≠ 0}, (159)

we see that H ∈ B(M) ⇒ H ∈ Bi(Xi) for some i. Thus, B(M) ⊆ Bi(Xi). Hence, to

show Pr[H ∈ B(M)] = 0, it suffices to show Pr[H ∈ Bi(Xi)] = 0 for all i ∈ {1, 2, …,

N}.

Now, by assumption Xi ⊆ Li, a complex linear space of dimension li such that 1 ≤ li �≤

r. Since Li is a complex linear space, every vector in it can be written as the column

span of a t × li complex matrix Bi with orthonormal columns. Every xi ∈ Xi is also in

Li, so xi = Biui for some non-zero ui. Substituting in (159), the local bad set now is

Bi(Xi) = {H: HBiui = 0 for some ui ≠ 0}. (160)

Define the transformed random matrix Hi′ = HBi. Since Bi has orthonormal col-

umns, it is easy to show [4] that Hi′ is a Rayleigh fading matrix of dimension r × li.

Note that HBiui = 0 ⇔ Hi′ has linearly dependent columns ⇔ Hi′ does not have full

Ĝ û Ĝ x̂ û Ĝ x̂

û x̂

i 1=

N
∪
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rank, since li ≤ r. Thus, Pr[H ∈ Bi(Xi)] = Pr[Hi′ not full rank]. Again using the fact

Rayleigh fading matrices have full rank with probability one [4], the latter quantity is

zero. We have just shown Pr[H ∈ Bi(Xi)] = 0 for all i = 1, 2, …, N, implying Pr[H ∈

B(M)] = 0. Thus, the condition for achieving the upper bound in Theorem 5 holds,

completing the proof.

The sufficient condition presented above has an elegant intuitive interpretation. Note

that the dimension of the set Xi represents the multiplexing rate of each individual transmit

vector xi. Now, the rate R of the space-time code, which is the average of all these

individual multiplexing rates, is by assumption less than or equal to the multiplexing order

of the fading channel, namely min(t, r) = r. The condition 1 ≤ li �≤r requires that not only

the average rate, but each individual multiplexing rate should also be less than or equal to

the multiplexing order of the channel. Equivalently, the average multiplexing rate should

be distributed roughly uniformly among all the individual transmit vectors. In particular,

given a code which does not satisfy the sufficient condition, one can just redistribute the

rate across the individual transmit vectors and obtain a new code that does satisfy the

condition. Again, we come to the conclusion that it is easy to design a linear space-time

code which achieves a multiplexing order equal to its rate, as promised by Theorem 5.
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Example 3. We revisit Example 2 to illustrate the sufficiency condition derived in

Theorem 7. Note that the two transmit vectors x1 = u and x2 = 0 of the code in

Example 2 have dimensions 2 and 0 respectively. On the other hand, the condition in

Theorem 7 requires that both transmit vectors have dimension one. (In this case, r =

1, so the upper and lower bounds on li are both one.) So, the code in Example 2 does

not satisfy the sufficiency condition, therefore it is not surprising that it does not

achieve the multiplexing order upper bound.

As promised in the discussion of Theorem 7, a simple rearrangement can satisfy the

sufficient condition, and yield a code that achieves the multiplexing order upper

bound. Consider the re-arranged code

x′ =  = , (161)

which is obtained by just swapping the second and third elements of the composite

transmit vector x from (158). Now, both x1′ and x2′ have dimension one, and satisfy

the sufficient condition of Theorem 7. Consequently, we expect the rearranged code

to achieve a multiplexing order bound of n = min(2, 1, 1). This is easily verified by

inspection. The rearranged code uses only the first input of the 2-input, 1-output

Rayleigh fading channel (the second and fourth symbols of x′, which correspond to

the second input of the channel, are always zero). Thus, the effective channel is

equivalent a 1-input, 1-output Rayleigh fading channel, with multiplexing order one.

x1′

x2′

u1

0

u2

0
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Before closing this section, we emphasize that the dimensionality condition derived in

Theorem 7 is only a sufficient, and not a necessary condition. In other words, codes whose

spaces Xi do not satisfy the dimension constraint could still achieve a multiplexing order

equal to the rate. For such codes, one can often tell by inspection whether or not the

effective channel has full rank with probability one, as illustrated below.

Example 4. Consider the rate-one Alamouti code (Section 2.5.2) operating over a 2-

input, 1-output Rayleigh fading channel. It is easy to see that the two transmit

vectors of the Alamouti code belong to spaces of dimension 2. Therefore, the

Alamouti code does not satisfy the sufficient condition of Theorem 7, namely that

the spaces Xi have dimension less than or equal to r = 1. So, we are not sure if the

Alamouti code achieves the multiplexing order upper bound. However, we can use

the condition in Theorem 5 and try to find out if the effective channel is full rank

with probability one. From Section 2.5.2, the effective channel, after some receiver

signal processing, is given by y′ = ||H||F
2u + n′. In particular, the effective channel

matrix is ||H||F
2I2, where I2 is the 2 �× 2 identity matrix. For Rayleigh fading

channels, ||H||F
2 is non-zero with probability one, implying that the effective channel

||H||F
2I2 is full rank with probability one. Then, we conclude that the Alamouti code

achieves the multiplexing order upper bound of n = min(2, 1, 1) = 1.

9.5 The Outage Capacity Asymptote

We have so far discussed the outage probability and outage capacity of space-time

codes, and the corresponding asymptotic slopes, namely the achievable diversity order and

the multiplexing order. In this section, we study the high-SNR outage capacity asymptote
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for space-time codes. As discussed in Section 9.5, the outage capacity asymptote carries

information about both the multiplexing and diversity aspects of fading channels.

Following the discussion in Section 9.2.1, we see that the outage capacity of a space-time

code cannot exceed that of the MIMO fading channel on which it operates. We aim to find

out how close the outage capacity asymptote of the space-time code is to this upper limit.

By definition, the multiplexing order is equal to the slope of the outage capacity

asymptote. A t-input, r-output Rayleigh fading channel has multiplexing order min(t, r).

On the other hand, a space-time code with rate R less than the full rate m = min(t, r) has a

multiplexing order of at most R. Thus, space-time codes with low rate have a shallower

outage capacity asymptote than the fading channel. In particular, at high SNR, they

achieve at most a fraction R ⁄ min(t, r) of the Rayleigh fading channel’s outage capacity.

Thus, low rate space-time codes suffer a dramatic capacity loss at high SNR.

As discussed in Section 9.5, low diversity order leads to a low zero offset of the outage

capacity asymptote. Consequently, if the achievable diversity order of a space-time code is

less than the diversity order tr of the Rayleigh fading channel, the code suffers a constant

(offset) loss in the outage capacity asymptote. However, as mentioned earlier, even codes

like the S/P converter with low raw diversity order have full achievable diversity order,

implying that raw diversity order does not directly impact the outage capacity asymptote.

Most practical space-time codes have full achievable diversity order, irrespective of their

raw diversity order. There are codes which do not achieve full diversity order, and we will

see one such code in Section 9.5.1 below. However, these codes are usually contrived and

unnatural. We do not know of any practical space-time code that suffers an offset loss

because of low achievable diversity order.
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It is important to note the offset loss is only qualitatively related to the diversity order,

but is not completely determined by it. Consequently, we can only say that codes with low

achievable diversity order definitely suffer an offset loss. We cannot say the reverse,

namely that codes with full achievable diversity order have zero offset loss.

9.5.1  Outage Capacity Asymptote:  Illustrative Example

We now present an example to illustrate the effect of rate and raw diversity order on

the outage capacity of space-time codes. We consider a Rayleigh fading channel with t = 2

inputs, and either one or two outputs. We compare two rate-one space-time codes: the

Alamouti code, and the repetition code, discussed in Example 1. The 1% outage capacity

(i.e., po = 0.01) is plotted vs. SNR in Fig. 12. The plots are obtained by generating many

random channel matrices, and computing the corresponding available capacity using

(105). Based on many such trials, a discrete approximation of the distribution function of

the available capacity is generated, and used to compute the outage capacity, as discussed

in Section 8.2.

Table 2: Multiplexing and Diversity Orders for t = 2 inputs, r = 1 outputs.

Code
Multiplexing

Order
Reasoning

Achievable
Diversity Order

Reasoning

No code (also
S/P Converter)

1 min(t, r) 2 tr

Alamouti
(Rate R = 1)

1 Example 4 2 Raw diversity
Order is also 2

Repetition Code
(Rate R = 1)

1 min(t, r, R)
Theorem 7

1 Example 1
Div. Order = r
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Consider first the case of r = 1 output fading channel. The multiplexing and diversity

orders of the fading channel, and the Alamouti and repetition codes are tabulated in

Table 2. We see that both the Alamouti and repetition codes have the same multiplexing

order as the 1-input, 1-output Rayleigh fading channel, namely one. This is verified by

Fig. 12, where the asymptotic slopes of the Alamouti and repetition codes’ capacity curves

matches that of the fading channel. In addition to full multiplexing order, the Alamouti

code also has full achievable diversity order, namely two. Due to its full diversity order, it

is not expected to suffer a significant zero offset loss, when compared to the fading

channel. Remarkably, as observed in Fig. 12 and proven in [16], the capacity penalty of

the Alamouti code is zero when there is only one receive antenna. On the other hand, the

repetition code has an achievable diversity order of one, which is a loss from the channel’s

diversity order of two. The lower diversity order results in a lower zero-offset of the

capacity asymptote, and hence the constant capacity loss at high SNR seen in Fig. 12.
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 Fig. 12. Outage capacity versus SNR at 1% outage, assuming t = 2 transmit antennas.
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Now, consider the case where the channel has t = r = 2 outputs. The multiplexing and

diversity orders of the channel, and the Alamouti and repetition codes operating over the

channel, are tabulated in Table 3. The channel has a multiplexing order of two, while the

two rate-one codes have a multiplexing order of one. This agrees with Fig. 12, where the

outage capacity curve corresponding to the underlying channel has a slope that is twice as

steep as those corresponding to the two space-time codes. Consequently, both codes can

achieve at most 50% of the outage capacity of the 2-input, 2-output fading channel at high

SNR. The Alamouti code at least has full diversity order of four. The repetition code has

diversity order two, which is less than the diversity order of the channel. Consequently, the

repetition code suffers an additional offset loss when compared to the Alamouti code.

9.6 The Multiplexing-Diversity Trade-Off Curve: An Open Problem

In Section 8.4, we discussed the trade-off curve between multiplexing and diversity

gains for a Rayleigh fading MIMO channel. In principle, one can extend the same

definition (131) of diversity gain to the effective channel to obtain the diversity gain

hd(M) = . (162)

Table 3: Multiplexing and Diversity Orders for t = 2 inputs, r = 2 outputs.

Code
Multiplexing

Order
Reasoning

Achievable
Diversity Order

Reasoning

No code (also
S/P Converter)

2 min(t, r) = 2 4 tr = 4

Alamouti
(Rate R = 1)

1 min(t, r, R)
Theorem 6

4 Raw diversity
Order is also 4

Repetition Code
(Rate R = 1)

1 min(t, r, R)
Theorem 6

2 Example 1
Div. Order = r

G S M h, m Slog,( )log

Slog
------------------------------------------------------

S ∞→
lim–
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The problem is again that there is no simple closed form expression for the distribution

function G(S, M, x) of the available capacity. Therefore, obtaining the multiplexing-

diversity trade-off curve for a general space-time code remains an open problem. We have

solved the problem partially here. By obtaining the multiplexing order (equal to min(t, r,

R) for most codes), we have found the multiplexing gain for zero diversity gain. The

achievable diversity, which is nearly always tr, is equal to the diversity gain for zero

multiplexing gain. Thus, we have obtained two points on the trade-off curve, namely

(min(t, r, R), 0) and (0, tr).

For some special space-time codes, the entire trade-off curve can be obtained. For

example, the S/P converter has the same trade-off curve as the t-input, r-output Rayleigh

fading channel, since its effective channel is equal to the latter. Another example is the

Alamouti code, which has the simple effective channel y′ = ||H||F
2u + n′. Since the

multiplexing and diversity orders are one (because of rate one) and 2r respectively, the two

known points on the curve are (1, 0) and (0, 2r). In [36], the effective channel of the

Alamouti code was analyzed to show that the trade-off curve is in fact a straight line

joining these points.

9.7 Summary

In this chapter, we have adapted the information theoretic analysis of Chapter 8 to the

effective channel formed by the combination of a space-time code and MIMO fading

channel. In particular, we pointed out that the raw diversity order of a space-time code is

only a lower bound to the achievable diversity order, which is often equal to the full

diversity order of the channel. On the other hand, we showed that the multiplexing order
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of a space-time code is less than or equal to its rate. Most known linear space-time codes

have a multiplexing order equal to rate. The implications of these results on the outage

capacity asymptote were shown by discussion and example. In the next chapter, we will

use the analysis derived here to derive broad design rules for space-time inner codes.
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CHAPTER 10

Capacity-Based Design Rules for Space-Time Inner Codes

In the last chapter, we used information theory to analyze the maximum data rates and

minimum error rates that can be achieved by supplementing a space-time inner code with

the best possible outer code. In this chapter, we apply the results of that analysis to

understand practical design issues for space-time inner codes.

10.1 The Importance of Using High Rate Inner Codes

We saw that the space-time codes with rate R less than the full rate min(t, r) have a

low multiplexing order, and hence lose a significant fraction of the outage capacity at high

SNR, when operating over a t-input, r-output Rayleigh fading channel. Consequently, to

avoid capacity loss, it is clear that one must use space-time inner codes with full rate or

more. (Rate being equal to full rate alone does not always guarantee full multiplexing

order, but Theorem 6 and Theorem 7 show that most full-rate codes do have full

multiplexing order.)
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On the other hand, the raw diversity order is only a lower bound to achievable diversity

order, and does not directly impact any of the information-theoretic quantities described in

Chapter 9. Primarily, this is because a well-designed outer code can make up for the lack

of transmit diversity in the space-time inner code. This is illustrated by the example of the

S/P converter which has raw diversity order r, but full achievable diversity order of tr.

We conclude that in the presence of a powerful outer code, space-time inner codes

must be designed to have full rate, but need not have high raw diversity order. The design

rule is only a broad one. In particular, there is the issue of what precisely is a powerful

outer code. Note that the capacity analysis assumes infinite length outer codes, which are

designed to produce an optimal, continuous Gaussian distributed output. However, we

now present simulation results which show that the results of capacity analysis hold even

for sufficiently powerful binary codes like turbo [31] or LDPC [47][48] codes.

10.1.1  High-Rate Space-Time Inner Codes Are Better :  Example

We compare two space-time inner codes operating over a 4-input 4-output Rayleigh-

fading channel, assuming the outer code is a binary turbo code. In each codeword, the

turbo code encodes 3200 input bits and produces 4800 bits per codeword, hence its rate is

2 ⁄ 3. The turbo code has two parallel concatenated convolutional codes.

The input bits are fed directly to the first convolutional code to obtain the first parity

stream. On the other hand, the input bits are interleaved by a spread-20 interleaver before

being fed to the second convolutional code, the parity outputs of which are deinterleaved

to obtain the second parity stream. The parity streams from the two codes are punctured to

achieve rate 2 ⁄ 3. For the first parity stream, only the bits in positions 0, 4, 8, … are

1
1 D D4

+ +

1 D D2 D3 D4
+ + + +

--------------------------------------------------------,
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retained.For thesecondparity stream,only thebits in positions2, 6, 10, … areretained.

After this puncturing, 4800 output bits remain. Following the bit-interleaved coded

modulationstrategy [56] (also [33]), theseoutputbits are interleaved usinga spread-24

interleaver, and Gray-mapped to complex QAM symbols for space-time encoding.

The space-timeinner codesconsideredare the serial-to-parallelconverter and an

Alamouti-basedgenerallayeredspace-timecode(GLST) [18]. TheGLSTcodeconsistsof

two rate-oneAlamouti codesoperatingin parallelover groupsof two transmitantennas

each.Its rateis twice thatof anAlamouti code,namelytwo. Also, its lengthN = 2. It is

easyto seethatpairwisedifferencesbetweenGLSTcodematricesarefull rank,andhence

usingtherankrule, theraw diversityorderis rmin(t, N) = 8. In contrast,theS/Pconverter

has higher (full) rate oft = 4, but lower raw diversity order ofr = 4.

For a fair comparison,wefix thedatarateof thetwo space-timeinnercodes.Sincethe

GLSTcodehashalf therateof theS/Pconverter, it hasto useahigherconstellationsizeto

achieve thesamedatarate.In thiscase,theS/Pconverteruses16-QAM modulation,while

theGLST codeuses256-QAM modulation.Thus,bothcodestransmit16 inputsbits per

signaling interval. Scalingby the rate 2 ⁄ 3 of the outer turbo code,the total datarate

achieved by the concatenated architecture is10.67 bits ⁄ s ⁄ Hz.

At this datarate,it takes3200 ⁄ 10.67 = 300 signalingintervals acrossthe Rayleigh

fadingchannelto transmitoneframe,i.e., all the4800 outputbits of the turbocode.The

Rayleighfadingchannelis assumedto beconstantin oneframe,but variesindependently

from one frame to the next.
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As an approximation to optimum decoding, the receiver does iterative decoding

between the outer turbo decoder and a soft-output list sphere decoder for the inner space-

time code [33] (see Chapter 12). Three turbo iterations are performed for each of the ten

iterations between the outer turbo decoder and the inner space-time decoder. A frame error

is said to occur when any of the 3200 input bits to the turbo code is incorrectly decoded.

Fig. 13 shows a plot of the frame error rate vs. SNR. Each point represents a reading of at

least 150 frame errors.

The multiplexing order of the S/P converter is equal to that of the 4-input, 4-output

Rayleigh fading channel, namely min(4, 4) = 4. In contrast, the multiplexing order of the

GLST code is min(4, 4, 2) = 2 from Theorem 6 (the GLST encoding matrix has full rank).

We expect that the low multiplexing order of the latter code should lead to a loss of

 Fig. 13. Performance of S/P converter and GLST space-time inner codes with a turbo
outer code, over a 4-input, 4-output Rayleigh fading channel at 10.67 bits/s/Hz.
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capacity, and hence a loss of performance in the presence of the outer turbo code. This is

confirmed by the plot, which shows the high-rate S/P converter outperforming the low-rate

GLST encoder by nearly 3.5 dB, in spite of the latter code’s higher raw diversity order.

For comparison, the outage probability is plotted against SNR, with the data rate fixed

at 10.67 bits ⁄ s ⁄ Hz. Note that even with a code-length of just 4800 bits, the performance

of the turbo code is within 3 dB of the outage probability curve at a word error rate of

10−3. This indicates that the results of outage analysis hold even for binary outer codes

with finite length. However, the actual word error rate curve with a turbo outer code is

shallower than the outage probability curve for the S/P converter, indicating that the turbo

code is still not strong enough to get the full diversity order of the channel. We conjecture

that increasing the length of the turbo code will lead to full diversity order.

10.2 Is the Serial-to-Parallel Converter an Optimum Inner Code?

The simulation result in the last section showed in a specific example that the S/P

converter outperforms the GLST code in the presence of a turbo outer code. In this

section, we discuss the merits and demerits of the general transmitter architecture shown

in Fig. 14. Coded bits from a binary outer code are interleaved and modulated to obtain

complex input symbols to the S/P converter, which serves as the space-time inner code.

Modulation

. .
 . 

. r × t
Rayleigh

 Fig. 14. Concatenation of a binary outer code with the S/P converter space-time code.
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The architecture of Fig. 14 follows the same philosophy as the bit interleaved coded

modulation architecture [56], which bootstraps codes designed for BPSK to obtain good

performance for higher QAM modulation, hence avoiding the complicated design of

trellis coded modulation techniques. Analogously, the architecture of Fig. 14 does away

with sophisticated space-time inner coding, and exploits the fact that good binary codes

are easy to design and decode using iterative techniques. Thus, one merit of the

architecture is its simplicity. The question is whether this simplicity comes at the cost of

optimality.

With an ideal infinite-length outer code and a Gaussian alphabet, Telatar’s conjecture

(see Section 9.2.2) implies that the S/P converter is an optimum inner code, i.e., it achieves

least outage probability given data rate, and most data rate given outage probability.

However, the practical concatenated architecture under consideration differs from this idea

in two ways.

The first deviation is that the modulation alphabet is discrete (usually QAM).

Arguably, this is not a very serious deviation. In other words, one might hope that even

with a finite alphabet, the S/P converter is an optimum inner code provided the outer code

has infinite length and can be optimally designed. We have no proof that this is the case,

but we conjecture it is so.

However, the more serious deviation is that the outer code often has finite length, and

belongs to a certain family, say turbo codes. In particular, the length of the outer code

could seriously affect the performance of the concatenated transmitter. In the extreme case

of no outer code (or effectively length one outer code), the diversity order achieved is the

raw diversity order of the S/P converter, namely r. Given the actual length of the outer
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code, it is an interesting open question to determine how close to optimum the S/P code is,

as a space-time inner code. The family from which the outer code is drawn is also

important. Since the outer code is the only source of transmit diversity, it must have a large

minimum distance. Thus, codes with large minimum distance, like turbo and LDPC codes,

are suitable outer codes in Fig. 14, but convolutional and Reed Solomon codes are

unsuitable because of their low minimum distance.

10.3 The Alternative: Full-Rate, Full Raw Diversity Inner Codes

The S/P converter relies on the outer code to obtain diversity, and hence performs

poorly for low outer code lengths. A more robust concatenated architecture would use a

space-time inner code with full raw diversity order, and at least full rate. The raw diversity

order ensures good performance for low outer code lengths, and full rate ensures high

multiplexing order and consequently good performance for large outer code lengths. We

saw in Chapter 4 that full rate, full raw diversity space-time codes are aplenty. One such

inner space-time code can be used to replace the S/P converter in Fig. 14 in order to

increase robustness.

The disadvantage of using a full rate, full diversity space-time code is the decoding

complexity. In order to achieve full raw diversity, the inner space-time code must have

length N ≥ t. Also, the rate satisfies R ≥ min(t, r). Consequently, the number of space-time

code inputs per block satisfies

K = NR ≥ tmin(t, r). (163)

Recall from Section 2.4.1 that the effective channel of a linear space-time code has 2K

inputs in one block, and produces 2Nr outputs. Given the 2Nr outputs, the receiver has to
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produce hard or soft decisions about the 2K inputs in every space-time code block. We

have assumed in this work that this is done optimally. While optimal decoding is simple in

principle, its complexity increases exponentially with the number of inputs 2K. Even with

simplified decoding strategies like sphere decoding [25][33] (also see Chapter 11), the

complexity increases in proportion to K3 [57][58]. Thus, to ensure low complexity, it is

desirable to keep K low. Attempting to achieve full diversity while simultaneously

maintaining at least full rate places a lower bound (163) on the number of inputs, and

hence on the complexity.

There is another subtle problem with the use of full diversity space-time codes as inner

codes in a concatenated configuration. We have assumed that the outer code is designed

independently of the inner code and the number of transmit antennas. In particular, let us

say it is a binary turbo code, designed assuming independent BPSK transmission of the

output bits over an AWGN channel. Instead, the bits are modulated into QAM symbols.

Let each QAM symbol contain nQ bits. Then, K such symbols, carrying KnQ bits are

transmitted across the effective channel in one space-time code block. At the receiver, the

soft decisions produced for all these KnQ bits are dependent. On the other hand, the

iterative decoder for the turbo code works well only when the soft decisions are

independent. For a larger value of K, the number of dependent bits KnQ is larger, and

hence iterative decoding is more severely affected. Thus, for a long outer code, a full

diversity space-time inner code might lead to poorer performance than the S/P converter.



150

10.4 Design of Concatenated Architectures: An Open Problem

In this chapter, we have discussed the concatenated architecture for space-time

transmitters. Outage analysis suggests that space-time inner codes must have at least full

rate, and leaves open the choice of raw diversity order. We have listed the relative merits

and demerits of two possible choices of the inner code: the simple, but non-robust S/P

converter with low raw transmit diversity order; and robust, but computationally

demanding full raw diversity inner codes.

However, given constraints on the outer code length and computational complexity, it

is an interesting open problem to design the best possible combination of outer code and

inner space-time codes, namely the combination that minimizes error rate at a given data

rate, or maximizes data rate given the acceptable error rate. This is one of the most

important open problems in transmitter design for flat-fading MIMO channels.

This chapter concludes our discussion of transmitter design for MIMO channels. We

now move on to receiver design.
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CHAPTER 11

Tree-Pruning Detectors For MIMO Channels

In this work, we have so far focused on transmitter design for MIMO fading channels.

We now turn our attention to the design of MIMO receivers. In contrast to transmitter

design, the choice of optimality metrics is not a significant issue in receiver design. Given

the transmitter structure, the data rate is automatically fixed. Consequently, the task of

receiver design is merely to ensure minimize error probability. Further, the structure of the

optimum receiver, namely the one that achieves minimum error probability, is often

obvious. However, the optimum receiver is often computation-intensive. In this chapter

and the next one, we present efficient algorithms to implement optimum or near-optimum

receivers.

Two transmitter architectures for MIMO channels have been discussed in this work: a

transmitter with a stand-alone linear space-time code; and the concatenation of an outer

error correction code with an inner linear space-time code. As one would expect, different

receiver structures need to be employed for each of these transmitters. In this chapter, we

discuss the design of receivers for stand-alone linear space-time codes. In the next chapter,

receiver design for concatenated transmitters will be discussed.
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As stated in Chapter 3, the input to a stand-alone space-time code is typically drawn

from a discrete alphabet, independently from block to block. Given the received signals in

each space-time code block, the receiver employs a detection algorithm or detector to

estimate the space-time code input in that block. The popular successive cancellation (SC)

detector has low computational complexity, but leads to a high probability of estimation

error. It is well known [7] that the detector that minimizes the probability of estimation

error is the maximum likelihood (ML) detector. This fact was stated in Chapter 3, while

deriving the union bound. Further, in Chapter 6, the error rates for various space-time

codes with ML decoding at the receiver were shown. In this chapter, we present the ML

detection algorithm that was used to obtain the simulation results of Chapter 6.

Graphically, the ML detection problem can be interpreted as the search for the

cheapest leaf node in tree [7]. Sequential decoders like the Fano decoder and ZJ stack

decoder (see [59] for a survey) for convolutional codes are also based on a search for the

cheapest leaf node in a tree. Some attempts have been made to exploit this similarity, and

adapt sequential decoders to obtain efficient MIMO detection algorithms (see, for example

[60]). However, there are significant differences between the two problems. For instance,

the Fano branch metric (see, for example [2]) used in sequential decoding does not

naturally extend to the MIMO detection tree. More significantly, trees in MIMO detection

have much smaller depths compared to those in the sequential decoding problem.

Another approach to MIMO detection is to employ lattice search algorithms developed

in the computer science literature [24][28][29]. This approach yields the well-known

sphere decoder [25-30], which efficiently implements ML detection for MIMO channels,

when the transmit symbols belong to an integer lattice.
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In this chapter, we reinterpret the sphere decoder as essentially a tree-search algorithm,

that seeks the cheapest leaf node in the detection tree. We review a simple strategy for

developing efficient tree-search algorithms, which was suggested in a homework problem

of [7], and later extended in [23]. This basic strategy can be implemented in multiple

ways, yielding a class of tree-pruning algorithms. We show that the sphere decoder

belongs to this broad class of algorithms. We also derive a new tree-pruning algorithm

called the hybrid decoder, which requires higher memory than the sphere decoder, but

lends itself to high-speed parallel implementation. By placing limits on the memory

available to the hybrid decoder, one obtains the bounded stack hybrid decoder, which

allows one to control the worst-case computational complexity of the detection process, at

the cost of increasing error rate.

11.1 A Precise Statement of the Detection Problem

We begin the discussion by precisely stating the ML detection problem. We consider a

general linear memoryless M-input, P-output channel, whose input-output relation is

 =  + . (164)

Note that the model (164) fits both the wireless fading channel (1) and the effective

channel (12) for a linear space-time code. The algorithms presented here work for any

channel of the form (164), but for illustrative simulation results, will be assumed to be

a P × M Rayleigh fading channel. In keeping with the rest of this work, the transmitter

does not know , but the receiver knows it accurately. The elements of the noise vector

are independent, zero-mean complex Gaussian random variables of variance N0.

ỹ H̃ x̃ ñ

H̃

H̃ ñ
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The transmit alphabet or channel-input alphabet X, namely the set of all possible input

vectors , is assumed to be finite. For convenience of presentation, we assume that each

element of is drawn independently from a finite alphabet A, known as the symbol

alphabet. For example, A could be a PAM, QAM or PSK alphabet. (Note that the symbols

could be real or complex.) Thus, X  is equivalent to AM.

The linear MIMO channel (164) distorts the input vector by causing different

symbols to interfere at the receiver. This distortion is similar to inter-symbol interference

(ISI) in wideband single-input, single-output (SISO) channels [23]. To combat ISI, SISO

receivers follow a two-step procedure. First, a whitened matched filter (WMF) operates on

the received signal to leave an effective channel with a monic, causal transfer function.

Then, equalization algorithms are used to combat the ISI of the effective channel.

Analogously, to combat distortion caused by the MIMO channel (164), MIMO receivers

adopt a two-step procedure, namely spatial whitened matched filtering followed by

MIMO detection to combat the distortion of the effective channel.

11.1.1  Spatial  Whitened Matched Filtering

The spatial whitened matched filter (SWMF) aims to make the channel-induced

interference spatially causal. However, to achieve causality, the receiver first has to decide

the spatial order of the input symbols. The seemingly natural choice is that is the first

input symbol, followed by , and so on till . However, the receiver can choose any

other permutation of these symbols as the spatial order of the input symbols. Choosing a

spatial order amounts to choosing a M × M permutation matrix Π obtained by permuting

the rows of the M × M identity matrix IM, such that x = Π is the spatially ordered input

x̃

x̃

x̃

x̃1

x̃2 x̃M

x̃



155

vector. Noting that ΠΠT = IM for all permutation matrices, we see that = ΠTx, hence

= ΠTx. Substituting this relation in (164), the MIMO channel model takes the

form

 = H′x + , (165)

where H′ = ΠT is the matrix obtained by permuting the columns of H.

With the chosen spatial order of input symbols, the SWMF achieves spatial causality

using the Q-L decomposition of H′. More precisely, it obtains a P × M matrix Q with

orthonormal columns, and a M × M lower-triangular matrix L with positive real diagonal

elements, such that H′ = QL. The Q-L decomposition can be performed only if there are

more channel outputs than inputs, i.e., P ≥ M. Through the remainder of this chapter, we

assume this is the case. Under this assumption, the Q-L decomposition can be performed

using Gram Schmidt orthonormalization of the columns of H′.

After Q-L decomposition, the SWMF multiplies the received vector by Q*, the

conjugate transpose of Q. Substituting Q*H′ = Q*QL = L in (165), the SWMF output is

y = Q*  = Lx + n. (166)

It is easy to show that the effective noise vector n = Q* has independent, complex

Gaussian entries of variance N0. Note that the effective channel (166) is indeed spatially

causal, i.e., the ith element of y, namely

yi = liixi + lijxj + ni, (167)

is a noisy scaled version of the current symbol xi, with interference only from past

symbols x1, x2, …, xi−1.

x̃

H̃ x̃ H̃

ỹ ñ

H̃

ỹ

ỹ

ñ
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The spatial causality of the effective channel greatly facilitates detection, namely the

task of estimating the ordered channel input vector x from the effective channel output y.

In this chapter, we will discuss a variety of detection algorithms, which exploit the spatial

causality of the effective channel. Before developing detection algorithms, we note that

their performance clearly depends on the effective channel’s transfer matrix L. Now, the

choice of the spatial order determines H′ = ΠT, and hence the transfer matrix L.

Consequently, the spatial order also determines the performance of detection algorithms.

We will discuss the performance of detection algorithms for two choices of the spatial

order. The first choice is the natural order, namely the permutation matrix Π is the

identity matrix IM, irrespective of the value of the MIMO channel matrix . The second

ordering choice is the one used in the popular V-BLAST receiver [11], summarized below.

Remark 7. Given , the V-BLAST receiver chooses a permutation matrix

ΠVB( ) that maximizes the minimum value among l11, l22, …, lMM. This choice is

made in a greedy, sequential fashion as follows [11]. Of the M possible choices of

the first input (equivalently, the first row of ΠVB( )), the V-BLAST receiver

chooses the input that maximizes the value of l11. Given this choice, the second

input is chosen to maximize l22, and so on.

Obtaining the V-BLAST spatial order requires more computation than merely using

the natural order. In return, we will see that V-BLAST ordering increases the accuracy

and/or reduces the complexity of many detection algorithms. Computationally efficient

methods to obtain the V-BLAST spatial order are given in [61].

H̃

H̃

H̃

H̃

H̃
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11.1.2  Successive Cancellation and ML Detectors

Different detection algorithms, also known as detectors, can be used to obtain an

estimate of the ordered input vector x, given y and L. The accuracy of a detector is

measured by its word error rate (WER), namely the probability that ≠ x. The twin goals

of detector design are to achieve low WER and to maintain a low computational

complexity. However, there is a trade-off between these twin goals, as illustrated by the

two detectors discussed in this section, namely the successive cancellation (SC) and

maximum likelihood (ML) detectors.

The SC detector is analogous to the decision feedback equalizer used to combat ISI in

SISO channels [23]. The SC detector performs detection in M stages. In the ith stage, xi is

estimated from yi, after cancelling off the estimated interference from past symbols. More

precisely, the SC detector obtains the decision metric

yi′ = yi − lij (168)

using estimates { } from past stages. If these past estimates are accurate, then (167)

implies yi′ = liixi + ni. Assuming this is the case, the SC detector obtains by slicing

yi′ ⁄ lii, i.e., rounding it off to the nearest symbol in the symbol alphabet A. Note that an SC

detector is just a cascade of M slicers, and is therefore computationally simple. However,

it suffers from high WER, i.e., with high probability, ≠ x. Intuitively, the reason for

the high WER of the SC detector is that it estimates the symbol xi using yi alone, without

using the information contained about xi in future symbols yi+1, …, yM.
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In contrast to the SC detector, the ML detector optimally uses the available

information, and achieves the minimum WER among all possible detectors [7]. The ML

detector uses the conditional probability density function of y given that the unknown

channel-input vector is some z ∈ X, namely

p(y | z) = exp . (169)

The ML detector’s estimate is the vector in the transmit alphabet X with the

maximum value of p(y | z). Note that p(y | z) is a decreasing function of

J(z) = ||y − Lz||2, (170)

which is called the ML cost function of z. Consequently, the ML detector’s estimate is the

least-cost vector in the input alphabet X, namely

 = J(z). (171)

While the ML detector has low WER, it incurs a heavy computational burden. For

instance, one way to implement ML detection is to compute the costs J(z) for all z ∈ X,

and pick out the cheapest vector. However, there are often thousands of vectors in X, and

such enumeration is impractical. Instead, we aim to develop less computation-demanding

algorithms to implement MIMO detection. To achieve this goal, it will prove useful to

represent the detection problem graphically, using the detection tree.

1

πN0( )T
-------------------- y Lz––

2

N0
----------------------------

 
 
 

x̂ML

x̂ML argmin
z ∈ X
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11.2 ML Detection Is a Tree-Search Problem

In this section, we show that ML detection amounts to the search for the cheapest leaf

node in the detection tree. We begin by describing the detection tree itself. The tree starts

with the left-most node, or root. It consists of M stages, one for each input symbol. The

root node is connected to |A | child nodes, one for each value of the first symbol z1. Each of

these nodes is connected to |A | child nodes depending on z2, and so on. Thus, for each

possible channel-input vector z ∈ X, there is a unique path through the tree that begins at

the root and ends at one of the right-most nodes, known as leaf nodes. As an illustrative

example, the detection tree for the case of M = 2 inputs with an input alphabet of A =

{ ± 1} is shown in Fig. 15. The bold-faced label below each node of depth one shows the

choice of z1. The label for the leaf nodes shows the corresponding choice (z1, z2).

 Fig. 15. Illustration of the detection tree for a channel with M = 2 inputs and A = { ± 1} .
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In terms of the detection tree, the ML cost function J(z) can be interpreted as the sum

of N branch costs, one for each branch on the path corresponding to z. More precisely,

consider the branch in the ith stage, connecting the nodes (z1, z2, …, zi−1) and (z1, z2, …,

zi). If its cost is defined as

B(z1, z2, …, zi) = , (172)

it is easy to see from (170) that J(z) = || y − Lz||2 is just the sum B(z1) + B(z1, z2) + … +

B(z1, z2, …, zN).

An intuitive interpretation of the branch cost is obtained by splitting (172) as |yi′ −

liizi|
2, where yi′ = yi − lijzj is the cancellation residue used by the SC detector. In

other words, B(z1, z2, …, zi) represents the cost of choosing the symbol zi, after cancelling

out interference in yi from the already chosen symbols z1, z2, …, zi−1. Extending this

interpretation, the cost of a node is defined as the cost of all the choices it represents, i.e.,

it is the sum of the costs of all the branches connecting that node to the root node, namely

C(z1, z2, …, zi) = B(z1, z2, …, zi). (173)

Equivalently, node costs can be defined recursively as

C(z1, z2, …, zi) = C(z1, z2, …, zi−1) + B(z1, z2, …, zi), (174)

with the root node defined to have cost zero. Clearly, the cost of the leaf node

(z1, z2, …, zM) is equal to the ML cost function J(z). For illustration, each branch in

Fig. 15 is labeled with its branch cost formula (172) after substituting the values of z1 and

z2 corresponding to the branch. For illustration, we have arbitrarily assigned some values

to the branch costs. The corresponding node costs are shown below the node labels.
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Having defined branch and node costs on the detection tree, we now revisit the

detectors described in the previous section. Each detector outputs an estimate from the

transmit alphabet X, or equivalently a leaf node on the tree.

The SC detector starts from the root node and always moves forward on the cheapest

available branch, till a leaf node is reached. The leaf node so obtained is the SC detector’s

output. In the example of Fig. 15, the SC detector first takes the cheapest branch to reach

the node (− 1), and then again takes the cheapest branch forward to reach the leaf node

(− 1, + 1), whose cost is 20.

Since the cost of each leaf node is equal to the ML cost function, the ML detector’s

estimate is the cheapest leaf node in the detection tree. For instance, in the tree of Fig. 15,

the ML detector finds the cheapest leaf node, namely (+ 1, − 1), whose cost is 10. Note that

the greedy SC detector, which stitches together locally cheap branches, does not

necessarily reach the cheapest leaf node in the tree. To implement ML detection, we need

a tree-search algorithm that seeks out the cheapest node in the tree. In the next section, we

introduce the basic operations of tree-search algorithms, and also introduce a measure of

the computational complexity of such algorithms. We also present a simple search strategy

that enables the design of computationally efficient tree-search algorithms to implement

ML detection.

11.3 Introduction to Tree-Pruning Algorithms

Tree-search algorithms store and manipulate the nodes of the detection tree. All tree-

search algorithms start at the root node of the tree. Subsequently, they access or visit other

nodes in the tree, by making forward moves on the tree’s branches. More precisely, tree-
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search algorithms treat a node as a data structure N, with five fields. The first two fields of

a node are label fields, namely the node’s depth i and its branch index history (z1, z2, …,

zi). The third field is the node’s cost C(z1, z2, …, zi). Fourth, the cancellation residue

yi+1′ = yi+1 − li+1,jzj (175)

is stored as a field, to facilitate computation of the costs of successor branches of N.

Finally, the cost Bi+1 of the branch on which the last forward move was made from the

node N is also stored as a field. If no forward move has yet been made from N, Bi+1 is

initialized to ∞. For example, the fields of the root node at the start of processing are: depth

0, no branch index history, cost 0.0, cancellation residue y1′ = y1, and B1 = ∞.

If a tree-search algorithm has already visited node N and wishes to visit a child node M

of N, it only needs to compute and store the fields of the node M. Suppose the branch

connecting N to M has label zi+1. Then, the depth and branch index history of M are

clearly i + 1 and (z1, z2, …, zi+1) respectively. The cancellation residue yi+1′ of N is used to

compute the branch cost B(z1, z2, …, zi+1) = |yi+1′ − li+1,i+1zi+1|2. Then, the cost of M is the

sum of the branch cost B(z1, z2, …, zi+1) and the cost of N. The cancellation residue yi+2′

of M is obtained by the formula (175). Since no successor of M has been visited, the last-

forward-branch cost Bi+2 of M is set to ∞. Finally, the last-forward-branch cost Bi+1 of N

is updated to B(z1, z2, …, zi+1), to reflect the latest forward move from N.

We use the number of nodes visited by an algorithm as a measure of its computational

complexity. This is a more tractable measure than implementation-dependent quantities

like the number of flops required, or the processing time. Now, any detector has to output

a valid vector in the alphabet X, hence the corresponding tree-search algorithm has to

j 1=

i

∑
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output a leaf node. Now, in order to reach a leaf node starting from the root node, the

algorithm has to visit at least M nodes. The SC detection algorithm visits exactly M nodes,

and is therefore the tree-search algorithm of least complexity. However, as we have

already seen, the SC algorithm does not necessarily find the cheapest leaf node in the tree.

One way to find the cheapest leaf node is to run an exhaustive search algorithm, which

visits all the nodes in the tree. However, this is computationally daunting. For example, if

the MIMO channel has M = 8 inputs symbol alphabet A is a 16-QAM alphabet, there are a

total of (1 + |A | + … + |A |M) = 4,581,298,449 nodes in the tree. Visiting all these nodes is

clearly impractical.

In this chapter, we discuss tree-pruning (TP) algorithms, which find the cheapest leaf

node without visiting all the nodes in tree. There are a variety of TP algorithms, but all of

them use the same strategy to avoid exhaustive search. In the remainder of this section, we

describe this basic strategy.

Consider a genie-aided tree-search algorithm, which knows only the cost Cmin of the

cheapest leaf node , but not its label. To implement ML detection, this genie-aided

algorithm must explore the tree and find out . Now, suppose this algorithm is at some

node N, and is seeking to move forward so as to visit new nodes. Note that branch costs

are non-negative, hence node costs are non-decreasing as one moves deeper into the tree.

Consequently, if a child M of N has cost greater than Cmin, then all its descendants also

have cost greater than Cmin. In particular, none of these descendants can be the cheapest

leaf node . Since the tree-search algorithm only aims to find , can avoid visiting

M and all its descendants. Note that the cost of M is less than Cmin if and only if the cost of

the branch connecting M to N has cost less than the upper bound UN = Cmin − CN, where

x̂ML

x̂ML

x̂ML x̂ML
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CN is the cost of the node N. Thus, at any node N, if the tree-search algorithm moves

forward only on branches with cost lesser than UN, it automatically ensures that nodes

with cost greater than Cmin are never visited. Equivalently, the algorithm prunes out

branches with cost greater than UN before a forward move from node N.

Like the above genie-aided algorithm, tree-pruning algorithms also implement pruning

of branches before any forward move. However, unlike the genie-aided algorithm, they do

not know the actual cost Cmin of the cheapest leaf node. Instead, TP algorithms maintain a

threshold T, which is an estimate of the cheapest leaf node’s cost. At every node, branches

with cost greater than T − CN are pruned before any forward move. The threshold T is

initialized as a finite quantity C0. Subsequently, the TP algorithm searches through the

tree, visiting only nodes with cost less than C0. Note that if C0 < Cmin, the TP algorithm

will finish searching through the tree without visiting any leaf node. When this happens,

the TP algorithm senses an erasure and restarts the search with a higher value of the initial

threshold C0. Eventually, C0 is larger than Cmin, and the TP algorithm visits some leaf

node, say L. Then, the TP algorithm estimates that L is the cheapest leaf node, and tightens

the threshold to the cost of L. The tightening of the threshold helps the TP algorithm to

prune out more nodes later in the search process. As the process continues, the TP

algorithm visits cheaper and cheaper leaf nodes. At the end of the search, the cheapest leaf

node  has been found.

The choice of the initial threshold C0 is crucial. Ideally, we would like to avoid erasure

by choosing C0 > Cmin. On the other hand, the lower the value of C0, the fewer the number

of nodes visited. Thus, in order to both avoid erasures and minimize node visits, C0 should

be a good estimate of the actual value of Cmin. To obtain this estimate, note that with high

x̂ML



165

probability, is the actual transmit vector x, whose cost is the noise energy ||n||2. Now,

though the noise energy is unknown, its average value, namely MN0, is known. Thus, one

good initial threshold is C0 = αMN0. The correction factor α accounts for the fact that the

noise energy will sometimes exceed its mean value. In spite of the correction factor,

erasures do occur at times. In this case, we suggest scaling the initial threshold C0 by a

factor β before restarting the search. The values of α and β determine the number of nodes

visited by a TP algorithm, and must be chosen carefully. Heuristically, we have found that

α = 2.0 works well, when the number of channel inputs M is less than or equal to 4. When

M > 4, we suggest α = 1.5. For both cases, we suggest β = 1.5. The actual computation-

minimizing values of α and β depend on the channel model, SNR, the symbol alphabet

and the value of N. Given all these parameters, the optimum values can be obtained by

trial-and-error.

To sum up, the basic computation-reduction strategy of TP algorithms has two

components, namely threshold maintenance and branch pruning.

• The threshold is an estimate of the cheapest leaf node’s cost. Threshold mainte-

nance involves two tasks. At the start of the search, the threshold is initialized

based on an statistical estimate of the cheapest leaf node cost. Second, whenever a

leaf node is reached, the threshold is tightened to the cost of the leaf node.

• Branch pruning is performed before every forward move, and ensures that nodes

with cost greater than threshold are not visited.

Using this two-fold strategy, TP algorithms efficiently find the cheapest leaf node,

provided the initial threshold is higher than the actual cost of cheapest leaf node. If not, the

x̂ML



166

TP algorithm senses an erasure, and iteratively increases the initial threshold till it is

greater than the cheapest leaf node’s cost.

The above basic strategy only defines the operations to be done before every forward

move, and when a leaf node is reached. It can be implemented in multiple ways. To see

this more clearly, note that if the TP algorithm has already visited multiple nodes, it needs

to choose one of these nodes as the site of the next forward move. Depending on how this

choice is made, we get multiple TP algorithms. For example, depth-first TP algorithms

always choose the deepest of all available nodes to attempt the next forward move. In

contrast, breadth-first TP algorithms choose one of the shallowest available nodes as the

site for the next move. In the next two sections, we develop precise depth-first and

breadth-first TP algorithms.

11.4 Depth-First Tree-Pruning: The Sphere Decoder

The depth-first tree-pruning algorithm that we develop in this section is already well

known in the MIMO detection literature, by the name of the sphere decoder[25][26][27].

The sphere decoder presented in the literature often assumes that the symbol alphabet A is

a lattice alphabet containing real integers. Instead, we present a more general version,

where A  is some finite, complex alphabet.

The operation of the sphere decoder proceeds in processing cycles. In each processing

cycle, the focus of operation is the deepest available node, called the currentnode. At the

start of the search, the current node is the root node. In each processing cycle, the sphere

decoder checks to see if the current node has any unpruned child branches. If so, it moves

forward on the cheapest branch to a child node, and the next processing cycle begins. If
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there are no unpruned child branches (this could be because the current node is a leaf node

with no child branches, in which case the threshold is first tightened), the sphere decoder

just moves back to the parent of the current node. In the next cycle, it looks for an

unpruned, unexplored child branch of the parent node. If there are such branches, it moves

forward on the cheapest one. Otherwise, it moves back again. Proceeding thus, the sphere

decoder explores the entire tree. When it finds that the root node has no remaining

unexplored branches, it recognizes that the search is complete. If no leaf node has been

visited, the sphere decoder detects erasure and repeats the search with a higher initial

threshold. Otherwise, it outputs the cheapest leaf node visited, and quits.

In Fig. 16, we present a precise pseudocode for the sphere decoder. The variable i

represents the depth of the current node, i.e., the node from which a forward move is being

attempted in that processing cycle. In addition to the current node Ni, the sphere decoder

also stores the nodes N1, N2, …, Ni−1 of depths 1, 2, …, i respectively, which lie on the

path connecting Ni to the root node. These are needed because the sphere decoder moves

to Ni−1 after exploring all the descendants of Ni, then to Ni−2 after exploring all the

descendants of Ni−1, and so on. For convenience, the root node is denoted N0. In each

processing cycle, the threshold is updated if Ni is a root node. Then, the sphere decoder

executes a seek step, looking for unexplored, unpruned child branches of Ni. If any are

found, it moves forward on the cheapest one, and visits Ni+1 for the next cycle. If no

branches are found, i is decrements and Ni−1 is the current node for the next processing

cycle. The other steps are self-explanatory, when read with the bold-faced comments

preceding them.
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Input  M × 1 complex vector y, M × M lower triangular matrix L with non-negative, real
diagonal entries, finite symbol alphabet A
Output  M × 1 complex vector  with elements in A such that ||y − L ||2 is minimum

Start Up C0 = αNN0, SomeLeafNodeVisitedFlag = OFF
Initialize Root Node

Root.depth = 0, Root.cost = 0.0, Root.y′ = y1, Root.lastforwardcost = ∞
Initialize Search T = C0

N0.depth = Root, i = 0 /* Deepest available node is root node, depth 0 */
Process Current Node
If current node is leaf node, tighten threshold and update ML decision

if i == N
SomeLeafNodeVisitedFlag = ON /* Some leaf node visited, so no erasure */
T = Ni.cost

 = Ni.[z1, z2, …, zN]T
i = i − 1 /* Leaf node processed, just move back */

endif
Seek Cheapest Unexplored, Unpruned Branch

LowerBound = Ni.lastforwardcost /* Do not reconsider explored branches */
UppperBound = T − Ni.cost
Look for z* such that |Ni.y′ − li+1, i+1z|2 is minimum among all z in A

such that
LowerBound < |Ni.y′ − li+1, i+1z|2 ≤ UpperBound

If possible, move forward on cheapest branch
if any z* found in last step

Move forward on branch labeled z* and visit child Ni+1
i = i + 1 /*Increment highest depth after forward move */
goto Process Current Node

endif
If forward move not possible, move back if possible

if i > 1
i = i − 1 /* Move back by reducing depth*/

goto Process Current Node
endif

If backward move is also not possible, search is over. Repeat search or quit.
if SomeLeafNodeVisitedFlag = OFF

C0 = βC0 /* Erasure has occurred, expand threshold and repeat*/
goto Initialize Search

else output  and quit

 Fig. 16. Sphere Decoder: depth-first tree-pruning algorithm for efficient ML detection.

We close the discussion of the sphere decoder with some remarks about the seek step

in Fig. 16, which searches for the cheapest unpruned, unexplored branch for the next

forward move. By placing a lower bound equal to the cost of the last forward move, the

search is restricted only to those successor branches which have not already been

x̂ x̂

x̂

x̂
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explored. Further, since the cheapest unexplored branch is picked, the algorithm always

explores successor branches of any node in increasing order of cost. In principle, one can

explore successor branches in any order. In fact, the original sphere decoder [24] explored

branches in increasing order of their index value. However, exploring successor branches

in increasing order of cost enables the sphere decoder to visit cheap leaf nodes early, and

hence tighten the threshold. This leads to more effective pruning subsequently, and

reduces the overall number of nodes visited by the algorithm. Cost-based ordering of

branches was first suggested in [29], and has been almost universally adopted since.

For some symbol alphabets, there are simple ways to pick the cheapest unexplored

branch. For example, suppose the symbols are drawn from an 8-PAM alphabet, consisting

of all odd integers from −7 to +7. In the first move from node Ni, one can obtain the

cheapest branch index by slicing yeff = Ni.y′ ⁄ li+1, i+1, or equivalent rounding it off to the

nearest odd integer between −7 to +7. In every subsequent forward move, the symbol

corresponding to the cheapest unexplored branch alternates around the sliced value, unless

it exceeds the maximum limit of ±7. For instance, yeff = 3.2, the cheapest branch index in

the first visit is z* = 3. In subsequent visits, the cheapest branch index alternates around the

central value of 3, taking on the values 5, 1, 7, −1, −3, −5, and finally −7. This example can

extended to a general PAM alphabet containing all odd integers in the range [−zmax, zmax],

as discussed in [30]. When the symbols are drawn from a complex QAM alphabet, [62]

suggests a look-up based ordering implementation. Such alphabet-specific

implementations are useful in reducing the complexity of the seek step, but they are not

essential. The efficiency of sphere decoding is primarily because of branch-pruning, and

threshold management.
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11.5 Modified Breadth-First Tree-Pruning: The Hybrid Decoder

In the last section, we discussed the sphere decoder, which is a depth-first tree-pruning

algorithm. In this section, we will develop a new tree-pruning algorithm, called the hybrid

decoder, which combines the features of breadth-first and depth-first tree search strategies.

A slight modification to the hybrid decoder yields the bounded stack decoder, which

allows a flexible trade-off between the two conflicting goals of MIMO detector design,

low error rate and low computational complexity.

We first develop a purely breadth-first TP algorithm, and point out that it is inherently

defective. Recall that a breadth-first TP algorithm always picks the shallowest available

node as the site of the next forward move. In effect, it starts with the root node, and prunes

out all branches with cost less than the initial threshold C0. Then, it successively makes

forward moves on all the unpruned successor branches, till it assembles a stack S1,

containing all nodes of depth one with cost less than C0. Then, it visits the unpruned

successors of nodes in S1, till eventually it obtains a stack S2 of nodes in the second level.

Thus, the breadth-first algorithm just generates stacks Si containing all nodes in depth i

with cost less than the threshold C0. The stacks are generated recursively, i.e., Si+1 is

obtained by just visiting all the unpruned successors of all nodes in Si. Proceeding thus, the

algorithm eventually starts exploring the successors of nodes in SN−1, which are leaf nodes

(if there are any leaf nodes with cost less than C0). Every time a leaf node is visited, it

tightens the threshold. Eventually, all the successors of nodes in SM−1 are explored, and the

algorithm finds the cheapest leaf node. Note that the threshold is tightened only towards

the end of all processing, while assembling SM. While assembling all the earlier stacks, the
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threshold remains at its initial value C0. Consequently, the breadth-first algorithm visits all

non-leaf nodes whose cost is less than C0. In contrast, the sphere decoder visits leaf nodes

early, tightens the threshold, and visits fewer nodes subsequently.

We propose a modification to the breadth-first algorithm, to make it tighten the

threshold by seeking out cheap leaf nodes early. The modified algorithm, which we call

the hybrid decoder, is neither breadth-first nor depth-first, but a hybrid of the two. Similar

to the breadth-first algorithm, the hybrid decoder also starts with the stack S0 containing

only the root node, and recursively generates stacks Si for future levels. However, every

time it visits a new node, it not only adds the new node to stack Si, but also performs

successive cancellation starting from the new node. More precisely, suppose the hybrid

decoder takes up a node Ni−1 from stack Si−1, and adds its unpruned successor Ni to stack

Si. After this, the breadth-first TP algorithm would proceed to visit the next unpruned

successor of Ni−1. Instead, the hybrid decoder starts from Ni and successively moves

forward on the cheapest unpruned successor branch of the current node. Thus, it visits

nodes Ni+1, Ni+2, …, and adds them to stacks Si+1, Si+2, … respectively. This forward

movement stops when either all successor branches of some Nj get pruned out, or a leaf

node is reached. In the latter case, the algorithm tightens the threshold. After forward

movement stops, the hybrid search algorithm returns to node Ni−1 from stack Si−1, and

seeks its next unpruned successor. A precise pseudocode of the hybrid search algorithm is

shown below, in Fig. 17.
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Input  M × 1 complex vector y, M × M lower triangular matrix L with non-negative, real
diagonal entries, finite symbol alphabet A
Output  M × 1 complex vector  with elements in A such that ||y − L ||2 is minimum

Start Up C0 = αMN0, SomeLeafNodeVisitedFlag = OFF
Initialize Root Node

Root.depth = 0, Root.cost = 0.0, Root.y′ = y1, Root.lastforwardcost = ∞
Initialize Search T = C0, S0 = {Root}

for i = 1: N
Generate stack i from current stack i−1

while (Si−1 not empty)
Ni−1 = Top node in Si−1

Seek Next BranchOf Top Node
Lower Bound = Ni−1.lastforwardcost /* Remove explored branches */
Upper Bound = T − Ni−1.cost /* Branch Pruning*/
Look for zi such that |Ni−1.y′ − liizi|

2 is minimum among all z in A
such that Lower Bound < |Ni−1.y′ − liiz|2 ≤ Upper Bound

if no branch found, goto Top Node Fully Explored
Visit new node, start successive cancellation

Move forward from Ni−1 on branch labeled zi to visit child Ni
k = i

Push Next Node Push Nk to stack Sk
if (k < N)

Seek cheapest branch forward
UpperBound = (T − Nk. cost)
zk+1 = Index of cheapest successor branchof Nk
if |Nk.y′ − lk+1, k+1zk+1|2 < Upper Bound

Move forward from Nk on branch labeled zk+1 to visit Nk+1
Increment k
goto Push Next Node

endif
else goto Successive Cancellation Done

endif
else

Leaf Node Reached, Tighten Threshold
SomeLeafNodeVisitedFlag = ON
T = Nk.cost

 = Nk.[z1, z2, …, zN]T
goto Successive Cancellation Done

endelse
Successive Cancellation Done

goto Seek Next Branch Of Top Node
Top Node Fully Explored

Remove top node from S i−1
Loops till Si−1 Empty endwhile
Loops till i = N endfor
Search Over. Repeat Search Or Quit

if (SomeLeafNodeVisitedFlag = OFF)
C0 = βC0 /* Erasure has occurred, expand threshold*/
goto Initialize Search

endif
else Output  and Quit

 Fig. 17. Hybrid search algorithm for efficient ML detection.

x̂ x̂
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The hybrid and sphere decoders have different movement patterns on the detection

tree. Therefore, the number of nodes visited by the two algorithms during the detection

process are different. In Section 11.7.3, we will see that the two algorithms visit roughly

the same number of nodes visited, though there are some small differences. Now, we

discuss the more significant differences between the two algorithms, namely their relative

suitability for high-speed parallel implementation, and their memory requirements.

The hybrid decoder is more suited to parallel implementation than the sphere decoder.

In each processing cycle, the sphere decoder moves one stage forward or backward from

the current node. Since all the processing is focused on just one node, implementation by

multiple processors needs some complicated management mechanism. In contrast, the

basic unit of updation for the hybrid decoder is not the node, but the stack. Now, while

assembling stack Si, different nodes from stack Si−1 are extended, i.e., their unpruned

successors are visited, and successive cancellation is done on each of them. The extension

of different nodes in Si−1 can be done simultaneously and independently by multiple

processors. For a thorough discussion of parallel implementations of tree-search

algorithms, we refer the reader to [63].

Comparing the memory requirement of the two algorithms, the sphere decoder has a

distinct advantage over the hybrid decoder. Recall that the sphere decoder only needs to

store the nodes N0, N1, …, Ni when it is currently at depth i. Since the largest depth is i =

M, the sphere decoder only needs N + 1 nodes of memory to cover the worst case. In

contrast, the hybrid decoder of Fig. 17 needs memory allocated for the stacks S0, S1, …,

SM. Memory allocation for the hybrid decoder is problematic for two reasons. Firstly, the

actual size of each stack Si is random, because it depend on the number of nodes of depth i
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with cost less than threshold, and node costs are random. Secondly, there are |A |i nodes in

level i. Even if a small fraction of these nodes have cost less than threshold, there could be

a few thousand nodes in Si. Thus, the memory requirement of the stack decoder is both

unpredictable and large.

11.5.1  The Bounded Stack Hybrid Decoder

One way to sidestep the unpredictable and large memory requirement of the hybrid

decoder is to simply restrict the maximum size of each stack to some fixed pre-determined

value, say Smax nodes. This restriction yields what we call the bounded stack hybrid

decoder, and can be implemented by a simple change to the hybrid decoder algorithm of

Fig. 17. Before pushing a new node into a stack Sk, we check the size of Sk. If Sk has fewer

than Smax nodes, the new node is added to Sk. Otherwise, the cost of the new node is

compared to the cost of the costliest node in Sk. If the new node has lower cost, it replaces

the costliest node in Sk. On the other hand, if the new node has higher cost, it is discarded,

without being stored anywhere. Thus, the stack Sk now contains only the cheapest Smax

nodes of depth k with cost less than the threshold. If there are more than Smax sub-

threshold nodes, the other nodes are discarded.

Note that the descendants of the discarded nodes are not visited, even though their cost

is less than threshold. If one of these unvisited descendants is the cheapest leaf node, the

hybrid stack decoder will not find it. Thus, the bounded stack hybrid decoder does not

necessarily find the cheapest leaf node, even if there is no erasure. If the stack limit Smax

is small, the memory required by the decoder is low. On the other hand, a small value of

Smax implies more sub-threshold nodes are discarded, hence increases the deviation from
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ML detection. In particular, if Smax = 1, S1 contains only the cheapest child of the root

node, S2 contains only the cheapest child of S1, and so on. In other words, with a stack size

limit of one, the stack limited hybrid decoder reduces to the successive cancellation

detector. Thus, one can think of Smax as a parameter that controls the WER-complexity

trade-off: as Smax increases, the WER decreases but the complexity and the memory

requirement increase. However, we will see in Section 11.7.1 that even low values of Smax

are sufficient to closely approach the error rate of ML detection.

11.6 The Complexity of Tree-Pruning Algorithms

We have presented two tree-pruning algorithms that perform ML detection, namely the

hybrid and sphere decoders. In this section, we make some general remarks about the

computational complexity of these algorithms. In the next section, simulation results are

presented to illustrate these remarks.

As already mentioned, the computational complexity of tree-pruning algorithms is

measured by the number of nodes visited. The SC detector always visits exactly M nodes.

On the other hand, a tree-pruning algorithm visits all nodes, except those that are

eliminated by cost-based pruning at some stage. Note that the node costs are functions of

the effective channel output y and the lower-triangular transfer matrix L, both of which

are random. Therefore, the number of nodes visited by a tree-pruning algorithm is also

random. One way to quantify the computational complexity is to obtain the distribution of

the random number of nodes visited. However, the entire distribution is cumbersome to

obtain and analyze. Instead, one can analyze the mean of the distribution, namely the

average number of nodes visited, which gives the average complexity of a TP algorithm.
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Clearly, the average number of nodes visited by a TP algorithm depends on the details

of the algorithm itself. For example, the sphere and hybrid decoders differ in the number

of nodes visited for the same tree. However, for all tree-pruning algorithms, the average

number of node visits follows some general trends. For instance, it is a function of the

distribution of L and y; the symbol alphabet A ; the MIMO channel dimensions P and M.

Further, the distribution of L depends both on the distribution of the MIMO channel

matrix H and the spatial order used by SWMF (natural or V-BLAST). The distribution of

y depends on the noise variance N0, or equivalently the SNR S. Considering the number

of parameters involved, it is clear that precise analysis of the average number of node

visits for a given tree-pruning algorithm is difficult. To our knowledge, the only analytical

result [58] is a function U(P, M, A, S) that upper bounds the average number of nodes

visited by a sphere decoder, for a Rayleigh fading channels with a PAM or QAM input

alphabet A and natural ordering of inputs. Though precise analysis is difficult, the broad

influence of the various parameters on the average complexity are summarized below.

Remark 8. The average number of nodes visited by a tree-pruning algorithm, V,

shows the following tendencies.

(i) As the symbol alphabet size |A | increases, V tends to increase.

(ii) As the number of channel inputs M increases, V tends to increase.

(iii) As the SNR S increases, V tends to decrease.

(iv) As the number of channel outputs P increases, V tends to decrease.

(v) Finally, V-BLAST spatial ordering of the channel inputs leads to a lower value

of V, when compared to natural ordering of inputs.
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We now proceed to justify the claims in Remark 8. The total number of nodes in the

tree, namely (1 + |A | + … + |A |M) increases with the alphabet size |A |. Pruning ensures that

not all these nodes are visited. However, it is clear that with more nodes in the tree, the

number of nodes visited tends to increase, justifying (i). It is worth pointing out that this

increase is typically not very sharp, i.e., even though the total number of nodes increases

roughly as |A |M, V typically increases much more slowly as |A | increases.

As M increases, the total number of nodes in the tree increases exponentially. Even

more seriously, the expected value of the cheapest leaf node cost MN0, and hence the

typical value of the threshold, increases with M. Thus, as M increases, not only are there

more nodes in the tree, but fewer of them are pruned out. As a result, V tends to increase

with M, as stated in (ii). As the SNR S increases, the noise variance N0 decreases, leading

to lower thresholds, and hence a lower value of V. This justifies (iii).

Statements (iv) and (v) relate to the dependence of V on the distribution of the

effective channel matrix L. Substituting y = Lx + n in (173), we get the expression

C(z1, z2, …, zk) = (176)

for the cost of the node (z1, z2, …, zk) at depth i. Apart from the additive noise terms ni, we

see that every wrong node, i.e., every node (z1, z2, …, zi) that deviates from the actual

channel-input symbols (x1, x2, …, xi), has a constant bias terms in the cost expression.

As the number of channel outputs P increases, the receiver has more observations of

the channel-input and hence higher received signal energy. Equivalently, a greater value of

P leads to a greater energy in each term of L, and hence increases the value of the bias
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terms in the cost of wrong nodes. Thus, as P increases, wrong nodes tend to have higher

cost, and are hence pruned out by tree-pruning algorithms, leading to a reduction in the

average number of nodes visited, as claimed in (iv).

Finally, given P, the receiver’s choice of the spatial order does not change the total

energy in L, but changes the distribution of the total energy among the various entries of

L. To see the effect of ordering on node costs, note from (176) that the cost of a node z1 of

depth one is |n1 + l11(x1 − z1)|2. Recall that V-BLAST spatial ordering maximizes the

value of l11. Therefore, wrong nodes at depth one, i.e, nodes corresponding to z1 ≠ x1, tend

to have higher cost with V-BLAST order than with natural ordering. Further, given l11, V-

BLAST ordering next maximizes l22, and hence increases the cost of wrong nodes of

depth two. Proceeding thus, it is easy to see that V-BLAST ordering increases the costs of

wrong nodes at lower depths, leading to more low-depth nodes being pruned out. Since

nodes at lower depths have a larger number of descendants, V-BLAST ordering, in effect,

leads to a greater number of nodes being pruned out, and hence a fewer number of nodes

visited. Thus, claim (v) holds for any tree-pruning algorithm. For the case of the sphere

decoder, the complexity reduction due to V-BLAST ordering was pointed out in [64].

11.7 The Performance of Tree-Pruning Algorithms

In this section, we present simulation results demonstrating the low error rate and low

average computational complexity of tree-pruning algorithms. In particular, these results

illustrate that tree-pruning algorithms result in dramatically lower error rates than the SC

detector, with only a moderate increase in computational burden.
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11.7.1  Comparison of the Error Rate of Detection Algorithms

We first compare the word error rates achieved by the various detectors, for the case of

an 8-input, 8-output Rayleigh fading channel and a 16-QAM alphabet. Since each of the

M = 8 transmit symbols carries log2(16) = 4 bits of information, the data rate is 32 b / s /

Hz. The WER achieved by a bounded stack detector for stack size limits of 1, 10 and 25 is

plotted against SNR in Fig. 18. Also shown is the WER achieved with unlimited stack

size, corresponding to ML detection. For each stack size, WER with natural ordering is

shown in dotted lines, and WER with V-BLAST ordering is shown in solid lines.

A stack size limit of one yields the successive cancellation detector, which has the

highest error rate. Note that V-BLAST ordering improves the performance of the SC

detector significantly, requiring 5 dB less SNR to achieve a WER of 10−1. Roughly, this

improvement is because the V-BLAST ordering, which is a greedy ordering algorithm, is

ideally suited to the greedy SC detector. For a more precise discussion, see [11]. As the
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 Fig. 18. Variation of bounded stack decoder performance with stack size for an 8-input,
8-output Rayleigh fading channel at 32 b/s/Hz.
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stack size limit increases from one to ten, the error rate drops sharply. Remarkably, a stack

size of merely 25 nodes achieves almost identical performance to ML detection, which

corresponds to unlimited stack size.

To achieve a WER of 10−2, ML detection needs 25 dB less SNR than V-BLAST

ordered SC detector. This dramatic performance improvement is primarily because of the

difference in diversity orders achieved by the ML and SC detectors. With ML detection,

the full raw diversity order of the S/P converter is achieved, as discussed in Chapter 3. In

contrast, the SC detector does not harvest the diversity benefit of multiple Rayleigh fading

channel outputs, and hence leads to dramatically higher WER at high SNR.

Finally, note that there is only one curve marked ML detection, indicating that the ML

detector’s WER does not depend on the ordering choice. This is true in general, and is

easy to show formally [7]. Intuitively, the SWMF output carries the same probabilistic

information about the channel-input, irrespective of the spatial order. Since the ML

detector optimally uses all the available information, ordering does not impact the WER of

the ML detector. However, we will now see that V-BLAST ordering does reduce the

number of nodes visited by a tree-pruning algorithm, as claimed in Remark 8.

11.7.2 Average Computational Complexity of the Sphere Decoder

In this section, we illustrate some of the general remarks about the computational

complexity of tree-pruning algorithms with simulation results. For the system in

Section 11.7.1, namely an 8-input, 8-output Rayleigh fading channel with a 16-QAM

symbol alphabet, the average number of nodes visited by the sphere decoder is plotted
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against SNR in Fig. 19. To magnify the differences between the plots, we have plotted the

logarithm of the average number of nodes visited to the base M = 8. Recall that any tree-

pruning algorithm saves computation by a two-fold strategy: first, pruning ensures that

only nodes with cost less than threshold are visited; second, the initial threshold C0 is

cleverly chosen as αMN0, and scaled by a factor β whenever erasure is detected. To

understand the contribution of each of these steps, we have plotted the average number of

nodes visited with only pruning, and no clever threshold initialization, i.e, with C0 = ∞.

(The threshold is still tightened, whenever a leaf node is reached). As seen from Fig. 19,

this step alone is sufficient to make the sphere decoder visit dramatically fewer nodes than

the total number of nodes in the tree, namely 4,581,298,449. With clever threshold

initialization, i.e., using α = β = 1.5, the average complexity reduces further, as seen in

Fig. 19. Both the above curves showed the average number of node visits with natural

ordering of inputs. When V-BLAST ordering is added on to the cleverly initialized sphere

decoder, the average number of nodes visited nearly halves.
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 Fig. 19. Average complexity of sphere decoder for an 8-input, 8-output Rayleigh fading
channel at 32 b/s/Hz.
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Note that for all these cases, the average complexity reduces as the SNR S increases,

as expected from (iii) of Remark 8. Remarkably, at SNR = 24 dB, the V-BLAST ordered

sphere decoder visits only 10 nodes on the average, merely 25% more than the M = 8

nodes visited by the SC detector. In return, we see from Fig. 18 that the sphere decoder

achieves ML detection whose WER at 24 dB is around 5 × 10−5, which is only one

thousandth of the WER of nearly 5 × 10−2 achieved the SC detector. Thus, when the SNR

is high, tree-pruning algorithms like the sphere decoder are a very attractive alternative to

the successive cancellation detection algorithm.

11.7.3  Comparison of the Hybrid and Sphere Decoders

In the last section, we used the sphere decoder as an example to illustrate the low

computational complexity of tree-pruning algorithms. In this section, we compare the

average number of nodes visited by the sphere decoder and the hybrid decoder.

It is instructive to first compare the movement pattern of the sphere and hybrid

decoders. From the algorithms in Fig. 16 and Fig. 17, it is clear that both decoders start

from the root node and roughly perform SC detection first, i.e., successively take the

cheapest branch forward. Suppose this procedure does lead to the cheapest leaf node.

Then, both decoders tighten the threshold to Cmin. Of course, the two decoders do not

know that the cheapest leaf node has already been found, and continue the search. The key

observation is that subsequently, both decoders will visit all the nodes in the tree with cost

less than Cmin, before the search terminates. In particular, note that if the SC detector does

find the cheapest leaf node, both the hybrid and sphere decoders visit exactly the same

number of nodes.
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However, the SC procedure at the beginning of hybrid and sphere decoding does not

always find the cheapest leaf node. Sometimes, it reaches a leaf node which is not the

cheapest one. At other times, it terminates without reaching a leaf node, because all

branches of some node get pruned out. In this case, both decoders continue their search,

but in different sections of the tree. The sphere decoder looks to move forward from the

deepest available node, while the hybrid decoder visits a node of depth one, and attempts

successive cancellation starting from it. The decoder which finds the cheapest leaf node

sooner tightens the threshold to Cmin, and hence visits fewer nodes subsequently than the

other decoder.

Whether the sphere decoder finds the cheapest leaf node sooner than the hybrid

decoder depends on the distribution of the channel matrix L. For Rayleigh fading

channels, with natural ordering at the receiver, it is well known [43] that the term lii has a

chi-squared distribution of degree 2(P − M + i), implying that as i increases, the coefficient

lii tends to increase. Since the magnitude of lii determines the reliability of stage i, we

conclude that early stages of the tree tend to be unreliable, i.e., wrong nodes do not have

significantly higher cost than the right node. However, the sphere decoder always searches

for the cheapest leaf node by moving forward from the deepest available node. In other

words, it believes that decisions made in the early stages of the decoding tree are correct,

and attempts to make the right decisions for later decisions. Since this assumption runs

counter to the actual statistical behavior of the channel, the sphere decoder is ill-suited to

the case of unordered Rayleigh fading channels. On the other hand, V-BLAST ordering

increases the value of lii for lower values of i, and makes the early stages more reliable.

Hence, the sphere decoder has low computational complexity with V-BLAST ordering.
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To sum up, we expect that the sphere decoder should have a significantly higher

average complexity than the hybrid decoder, when the receiver uses natural ordering of

inputs. With V-BLAST ordering of inputs, the sphere and hybrid decoders should visit

roughly the same number of nodes on the average. This prediction is confirmed in Fig. 20,

which shows the average number of node visits by the sphere and hybrid decoders for a

16-input, 16-output Rayleigh fading channel with 16-QAM input symbols. With natural

ordering of inputs, at low SNR, the hybrid decoder visits about 15-20% fewer nodes on the

average, when compared to the sphere decoder. With V-BLAST ordering, the difference in

the number of node visits is almost negligible. With either ordering, the difference

between the number of node visits is negligible at high SNR.

It is instructive to compare the average number of nodes visited for the present system

with corresponding values for the system considered in Section 11.7.2. The former system

had 8 channel inputs and outputs with a 16-QAM alphabet. At an SNR of 21 dB, the

sphere decoder visits about 11 nodes on the average, as seen from Fig. 19. When the
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number of channel inputs and outputs increases to 16, Fig. 20 shows that the average

number of nodes visited increases to more than 100 at the same SNR. Extrapolating this

trend, one can see that the sphere decoder (or other tree-pruning algorithms) tend to

become impractically complex beyond a few tens of channel inputs.

11.8 Conclusions

When the transmitter consists of a stand-alone space-time code with a discrete input

alphabet, the receiver must perform ML detection in order to minimize the error

probability. In this chapter, we interpreted ML detection as a tree-search problem, and

discussed the class of tree-pruning algorithms, which efficiently solve the tree-search

problem. The tree-pruning algorithm that performs depth-first search is identical to the

well-known sphere decoder. We also developed the new hybrid search decoder, and its

non-ML variant, the bounded stack hybrid search decoder.

The computational burden of tree-pruning algorithms depends on the random channel

matrix and noise. Simulation results show that for typical MIMO channel dimensions, the

average computational complexity of tree-pruning algorithms is in the same order of

magnitude as the fixed computational complexity of the successive cancellation detector

used in the V-BLAST architecture. Thus, tree-pruning algorithms satisfactorily solve the

problem of designing optimum, computationally simple receivers for transmitters with

stand-alone linear space-time codes.
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CHAPTER 12

Soft-Output Decoders for Linear MIMO Channels

In this chapter, we consider the design of receivers for the second transmitter

architecture considered in this work, namely the concatenation of an outer finite-field error

correction code with an inner space-time code (see Fig. 8). In order to minimize the error

probability, the receiver should ideally perform maximum likelihood decoding, treating

the concatenation of the outer and inner codes as one super-code. However, for large outer

code lengths, the optimum joint ML decoder has prohibitive computational complexity.

A near-optimum alternative is to perform iterative decoding, following the pattern of

turbo codes [31]. Here, probabilistic information is iteratively exchanged between soft-

output decoders for the inner space-time code and the outer code respectively, as shown in

Fig. 21. Heuristically, it is well known that the estimates produced by the iterative decoder

after a few iterations are almost as reliable as those of the impractical joint decoder.

 Fig. 21. Structure of a general iterative receiver.
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To implement the iterative receiver structure of Fig. 21, soft-output decoders are

required for the outer code and inner space-time code. In this work, we have assumed that

the outer code is a finite-field code, for which soft-output decoders are well known [32]. In

this chapter, we develop soft-output decoders for a general linear space-time code, by a

simple extension of the detection algorithms developed in the previous chapter.

12.1 A Precise Problem Statement for Soft-Output MIMO Decoders

The receiver uses the spatial whitened matched filter described in Section 11.1.1 to

yield the spatially causal effective channel (166) y = Lx + n. Each symbol xi is obtained

by modulating a group of bits from the outer code. More precisely, the outer code

produces coded finite-field symbols, which are first broken down to bits, and then

interleaved. The interleaved bits are separated into groups containing |A | bits each. Each

group then addresses a look-up table to read off a channel-input symbol belonging to the

alphabet A. Thus, each channel-input symbol xi uniquely corresponds to a set of |A | coded

and interleaved bits, say bi,1, bi,2, …, bi,|A|.

In the detection problem, we were not interested in the bit labels {bi,j}, but directly in

the symbols xi. However, soft-output MIMO decoders have to exchange probabilistic

information about the bits with the soft-output decoder for the outer code. More precisely,

the soft-output outer decoder provides the a priori log likelihood ratio (LLR) Ai,k on each

input bit bi,k, k = 1, 2, …, |A |. The LLR is just a convenient way of storing the probability

distribution of each bit, which is given by

p(bi,k = b) = (177)e
bAi k,

1 e
Ai k,+

---------------------
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for b = 0, 1. In return for the a priori information from the outer decoder, the soft-output

inner decoder provides extrinsic information to the outer decoder as follows. First, it uses

the effective channel output y and the a priori LLRs to compute the a posteriori LLR

Li, k = log  = log . (178)

(The second equality above is obtained using Bayes’ rule.) From the a posteriori LLR, the

soft-output decoder computes the extrinsic LLR Ei,k = Li,k − Ai,k, which is then passed on

to the outer decoder. The outer decoder then uses the extrinsic information to compute the

a priori information for the next iteration, and so on.

12.2 Soft-Output Decoding As a Tree-Search Problem

In this section, we interpret the soft-output decoding problem in terms of the detection

tree. The presence of a priori information can be accounted for by a slight change to the

previously defined branch and node costs. In the next section, we will extend the detection

algorithms of the previous chapter, to obtain soft-output tree-pruning algorithms.

First, we rephrase the soft-output decoding problem, to obtain a convenient node cost

function. Using the one-to-one correspondence between input bits and the transmit vector,

(178) for the a posteriori LLR becomes

Li, k = log  = log . (179)

To compute (179) rigorously, the joint probability p(y, z) has to be computed for each

valid transmit vector z and added to the numerator or denominator, depending on the bit

label b′i,k corresponding to z. In order to avoid the daunting computational requirements

p bi k, 1 y=( )
p bi k, 0 y=( )
---------------------------------- 

  p bi k, 1 y,=( )
p bi k, 0 y,=( )
----------------------------------- 

 

p bi k, 1 y,=( )
p bi k, 0 y,=( )
----------------------------------- 

 
p y z,( )

z X b'i k, 1=,∈
∑

p y z,( )
z X b'i k, 0=,∈

∑
--------------------------------------------------

 
 
 
 
 
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of this task, the log-max approximation is usually made [32], replacing the sum by the

maximum of the summands. Thus, we get

 Li,k ≈ log (180)

= log p(y, z) − log p(y, z). (181)

To compute the approximate LLR (181) for each bit bi,k, one needs to find just two vectors

with different values of bi,k, with the maximum value of log p(y, z). Now, the function

−log p(y, z) can be thought of as a cost function associated with z. Decomposing it as

−log p(y|z)p(z) and substituting for the conditional probability p(y|z) from (169),

− log p(y, z) = − log p(y|z) − log p(z) (182)

= Nlog(πN0) + + . (183)

The first term in (183) independent of z and is cancelled out while calculating the

difference in (181). So, it can be ignored. The second term is just the detection problem’s

cost function J(z) divided by the noise energy N0. The last term is the a priori cost of the

bit labels {b′i,k} associated with the transmit vector z. From (177), we get

−log p(b′i,k) = −Ai,kb′i,k − log(1+ ). (184)

The second term in (184) can be neglected without affecting the difference (181).

However, the first term −Ai,kb′i,k alone could potentially be negative, when the LLR Ai,k is

positive and b′i,k = 1. In this case, to avoid negative a priori bit cost, we just add Ai,k to the

cost of both bit labels 0 and 1. Thus, we get the non-negative a priori bit cost function

max
z X b'i k, 1=,∈ 

  p y z,( )

max
z X b'i k, 0=,∈ 

  p y z,( )
------------------------------------------------------

max
z X b'i k, 1=,∈ 

  max
z X b'i k, 0=,∈ 

 

y Lz–
2

N0
------------------------ p b'i k,( )log–( )

k 1=

K

∑
i 1=

N

∑

e
Ai k,
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C(b′i,k) = −Ai,kb′i,k +  = . (185)

Intuitively, C(b′i,k) can be thought of as the cost of disagreeing with the a priori

information. For example, if Ai,k > 0, we have a priori information that bi,k = 1 with

certainty Ai,k. Correspondingly, the cost C(1) is 0, whereas the opposite decision has cost

C(0) = Ai,k.

Substituting the a priori bit cost function C(b′i,k) back in (182), we get the cost

function for every valid channel-input vector z ∈ X, given by

K(z) =  + . (186)

Up to a constant independent of z, K(z) is equal to −log p(y, z). Substituting in (180), we

see that the task of the log-max soft-output decoder is to obtain the extrinsic information

Ei,k = Li,k − Ai,k ≈ K(z) − K(z) − Ai,k (187)

for all symbols i = 1, 2, …, M and bit indices k = 1, 2, …, |A | of each symbol.

We have now rephrased the soft-output decoding problem in the form (187). To

proceed, we note that the new cost function K(z) breaks up into non-negative branch costs

on the detection tree, namely

B′(z1, z2, …, zi) =  + . (188)

Note that the new branch costs are similar to the branch costs defined for the detection

problem. In fact, the first term is just a scaled version of the detection problem’s branch

cost (172), and the second term accounts for the a priori information. Similar to the

Ai k, Ai k,+

2
--------------------------------

Ai k, 1–( )
b'i k, Ai k,+

2
-----------------------------------------------------

y Lz–
2

N0
------------------------ C b'i k,( )

k 1=

K

∑
i 1=

N

∑

min
z X bi k, 0=,∈ 

  min
z X bi k, 1=,∈ 

 

1
N0
-------- yi lijz j

j 1=

i 1–

∑–
2

C b'i k,( )
k 1=

K

∑
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detection problem, the branch costs are again non-negative. Further, these branch costs

can be used to define node costs, as in (173)(174).

Note that the cost of the leaf node corresponding to a channel-input vector z ∈ X is

K(z). Thus, to evaluate the soft-output (187) for a bit bi,k, the log-max soft-output decoder

should find the two cheapest leaf nodes which differ in the label bi,k. Clearly, the cheapest

leaf node in the tree is always one of the candidates, and it determines the sign of the LLR

Li,k. For example, if the bit label b*
i,k of the cheapest leaf node is zero, the first term in

(187) contains the cheapest leaf node cost and is less than the second term, so that their

difference Li,k is negative. In general, the sign of Li,k is (2b*
i,k − 1). The magnitude of Li,k

is determined by the cost of the competing node for each bit, namely the cheapest leaf

node whose bit label is different from b*
i,k. Thus, to implement soft-output decoding, a

tree search algorithm should determine not only the cheapest leaf node, but also the

cheapest competitor for every bit.

12.3 Extension of MIMO detectors to Obtain Lists

The tree-pruning algorithms of the previous chapter already find the cheapest leaf node

in the tree. One expects that they can be easily extended to generate a list of cheap leaf

nodes for soft-output generation. Such an extension was proposed for the sphere decoder

[33], yielding the list sphere decoder. In this section, we review the extension of [33] and

propose an improved extension procedure, which is applicable to all tree-pruning

algorithms. We will see that only the threshold initialization and threshold updation at leaf

nodes need to be changed for a detector to produce lists. For the sake of simplicity, we will

specifically discuss extension of the sphere decoder.
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The list sphere decoder [33] was developed for the case of no a priori information, i.e.,

Ai,k = 0. It obtains a list L of the Ncand (or fewer) cheapest leaf nodes with cost less than

the initial threshold C0 = αMN0. Soft outputs are then calculated by taking the minima in

(187) over the list L instead of the entire transmit alphabet X . Sometimes, all the leaf

nodes in L might have the same value of some bit bi,k. Consequently, one of the minima

cannot be computed. In principle, one can iteratively increase C0 and/or Ncand till the list

L is large enough to furnish two cheap competitors for every bit. Instead, whenever all

nodes in L have the same bit label b*
i,k, the list sphere decoder just outputs an

approximate extrinsic LLR of Lmax(2b*
i,k − 1), where Lmax is some pre-determined value.

We already saw that the competitor node only determines the magnitude of the

extrinsic information. What the approximation implies is that in the absence of a

competitor, the list sphere decoder guesses the magnitude to be Lmax. If the initial

threshold C0 and the list size Ncand are large enough, two competitors are found for most

bits, and the approximation needs to be done infrequently. Further, it does not significantly

affect performance because most fixed point implementations of iterative decoding

anyway clip the magnitudes of the a priori and extrinsic LLRs in order to avoid overflows

or underflows. Clipping also helps to avoid the chaotic dynamics and sudden bursts of

errors, to which iterative decoding of finite length codes is prone [65]. If Lmax is be chosen

to be the clipping value, the approximate list sphere decoder produces exactly the same

output as an ideal soft-output sphere decoder (which expands threshold to obtain

competitors for every bit) after clipping.
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In [33], the list sphere decoder was implemented by a change to the threshold updation

procedure of the original sphere decoder. Whenever a leaf node is reached, we first check

the size of the list L . If L has fewer than Ncand candidates, the new leaf node is added to

L . Otherwise, the current leaf node replaces the costliest leaf node in L only if it has a

lower cost. The threshold is never tightened.

We propose two modifications to the threshold updation procedure proposed in [33].

Firstly, the threshold can clearly be tightened to the maximum leaf node cost in L , if L is

full. This is because any subsequent leaf node with a cost greater than this threshold will

not be added to the list anyway, and hence one can avoid visiting all such leaf nodes

without affecting the final output.

Secondly, suppose Kmin is the cost of the cheapest leaf node in L , and Amax and Lmax

are respectively the maximum magnitude of the a priori LLRs {Ai,k}, and the clipping

value for the output extrinsic LLR. Then, one can tighten the threshold to Kmin + Amax +

Lmax, if the latter quantity is lower than the current threshold. The rationale behind this is

as follows. Suppose a leaf node L′ in the list has cost K > Kmin + Amax + Lmax. If L′ is not

one of the minima used in (187) to calculate the extrinsic information, we anyway do not

need it in the list. Even if it is one of the minima, we see that the resulting extrinsic

information would satisfy

|Ei,k| = |± (K − Kmin) − Ai,k| ≥ |(K − Kmin)| − |Ai,k| ≥ (K − Kmin − Amax) > Lmax. (189)

Since |Ei,k| > Lmax, clipping would just reduce Ei,k to Lmax(2b*
i,k − 1). Now, if L′ had not

been added on the list, the closest competitor would not have been found, but the list

sphere decoder’s built in assumption would still have produced the same output

Lmax(2b*
i,k − 1) as if L′ had been there. Thus, leaf nodes with cost greater than Kmin +
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Amax + Lmax do not change the ultimate output of the list sphere decoder, and can be

discarded by tightening the threshold to Kmin + Amax + Lmax. To sum up, we propose the

following leaf node processing.

Leaf Node Processing if (CurrentNode is a leaf node)
if (L  has fewer than Ncand entries)

add CurrentNode to L
else

if (CurentNode.Cost < Maximum cost in L )
Replace costlier leaf node in L  by CurrentNode
if (Threshold > Maximum cost in L )

Threshold = Maximum cost in L
endif

endifelse
Amax = Maximum value of |Ai,k|
Lmax = Cutoff value of output extrinsic information
if (Threshold > (CurrentNode.Cost + Amax + Lmax))

Threshold = CurrentNode.Cost + Amax + Lmax
endif

endif
 Fig. 22. Leaf node updation step that extends a detection algorithm to produce lists.

The list size Ncand and the cutoff value Lmax should be chosen to optimally tradeoff

performance and complexity. Making either of them large would imply large lists, and

intensive computation, but would reduce the frequency of not finding the closest

competitor, and hence enable the decoder to produce nearly log-max outputs. The list size

Ncand should increase with the data rate of operation. Values of the order of 100 were

suggested in [33]. We have found that Lmax of around 5.0 to 10.0 works well.

In addition to threshold updation, the threshold initialization of the sphere decoder

should also be changed, to enable the handling of a priori information. For the detection

problem, the initial threshold C0 was chosen as αMN0 to reflect the average cost of the

actual transmit vector. Now, the transmit vector could incur an additional a priori cost, if

some of the a priori LLRs are in error. To account for this, we propose to add an additional

term proportional to the average a priori LLR magnitude A (the mean of |Ai,k| over all the
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NK bits). More precisely, we propose to use C0 = α′MN0 + δMA. The constant α′ should

be larger than the α for the detector, because we wish to visit more leaf nodes than just the

cheapest one.The factor δ represents the estimated number of a priori LLR errors per

branch, since we are allowing for a total a priori cost of δNA over a path of N branches.

Since a priori information comes for a reliable outer code, δ should be relatively small.

Heuristically, we recommend α′ ≈ 2.5 and δ ≈ 0.2.

With the new threshold initialization and the updation steps mentioned above, all the

tree-pruning detectors can be extended to provide soft outputs. No other change is

required.

12.4 Simulation Results

We now present simulation results to confirm the efficiency of tree-pruning soft-output

decoders, and the complexity reduction obtained by using the proposed threshold updation

procedure. A rate-1 ⁄ 2 (4800, 2400) binary turbo code is used as the outer code. The

constituent codes are both punctured convolutional codes, and a spread-20

random interleaver was used in the turbo code. The coded bits are interleaved using a

spread-26 random interleaver, assembled into 4-bit symbols, and modulated to obtain 16-

QAM complex symbols. These are split into four streams and transmitted over a 4-input,

4-output Rayleigh fading channel, which remains constant over the entire frame, lasting

300 signaling intervals. Thus, the data rate is 2400 ⁄ 300 = 8 b / s / Hz. At the receiver, the

inner soft-output decoder does a maximum of 5 iterations with the outer turbo decoder.

Iterations were stopped when zero bit errors were detected. The turbo code itself does four

internal iterations for every iteration with the inner soft-output MIMO decoders.

1
1 D D4

+ +

1 D D2 D3 D4
+ + + +

--------------------------------------------------------,
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We compare three different soft-output decoding algorithms, namely list-generating

extensions of a sphere decoder and two bounded stack hybrid decoders of size limits thirty

nodes and ten nodes respectively. All these generated lists of maximum size Ncand = 256,

and had clipping values of Lmax = 5.0. The threshold was initialized using α′ = 2.5 and δ =

0.2. The average number of nodes visited per signaling interval is plotted, i.e., this is the

sum of node visits over all the iterations with the outer code.

In Fig. 23, the plot on the left shows the frame error rate achieved by the different soft-

output decoding algorithms at different SNR. Recall that limiting the stack size limits the

memory requirement of the hybrid decoder, but leads to an increase in error rate. However,

we saw in Section 11.7.1 that even for small stack size limits, the error rate penalty when

compared to ML detection is small. Similar results hold for the soft-output extension of

the bounded stack decoder, too. With a stack size limit of just 30 nodes, the bounded stack

 Fig. 23. Comparing FER and average number of nodes visited by different soft-output
decoders, for a 4 × 4 Rayleigh fading channel, with a rate 1/2 turbo outer code.
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hybrid decoder approaches the performance of the list sphere decoder within 0.05 dB.

However, when the stack size limit of 10 nodes, the performance loss widens to about 2.0

dB at a frame error rate of 10−2.

The computational complexity of the decoders is shown on the right of Fig. 23. Note

that the proposed changes to the original list sphere decoder reduce the number of nodes

visited by around 40% for a wide range of SNR. Of course, the actual lists generated are

the same for both updations, and hence the FERs are the same for both sphere decoders on

the left plot. As expected, the bounded stack decoders have lower average complexity than

the list sphere decoder, in return for their higher error rate.

12.5 Conclusions

When the transmitter contains a concatenation of an outer code with a linear inner

space-time code, iterative receivers achieve near-optimum performance with acceptable

complexity. To implement an iterative receiver, soft-output decoders for the effective

channel of the linear space-time code are required. We developed soft-output decoders

using the detection tree introduced in Chapter 11, after correcting the branch costs to

include a priori information. Just as MIMO detection amounts to the search for the

cheapest leaf node in the detection tree, soft-output decoding amounts to generating a list

of the cheapest leaf nodes. In this chapter, we extended the tree-pruning detection

algorithms of the previous chapter to generate lists of leaf nodes, which are used to

generated soft outputs. Simulation results presented here show that the algorithms

presented here offer a low-complexity implementation of the near-optimum receiver for a

concatenated transmitter.
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CHAPTER 13

Conclusions and Future Work

In this work, we studied the design of near-optimum transmitters and low-complexity

receivers for communication across a linear, quasi-static frequency-flat Rayleigh fading

channel with t inputs and r outputs.

13.1 Contributions to Transmitter Design

On the transmitter side, we restricted attention to linear space-time codes. In

Chapter 2, the channel model and the encoding process of linear space-time codes were

described. A linear space-time code is completely specified by its encoding matrix.

Designing such a code amounts to choosing its encoding matrix to optimize some

performance metric that reflects the goodness of a space-time code. The choice of

meaningful performance metrics depends on the role of the space-time code in the overall

transmitter architecture. Two such architectures were considered. In the first architecture,

the space-time code is a stand-alone code, i.e., its inputs are uncoded, and independent

from one space-time code block to another. The second architecture contains a powerful

outer code concatenated with the space-time inner code. Because of the outer code, the

inputs to the space-time inner code are dependent from block to block. Good stand-alone

space-time codes are not necessarily good inner codes, and vice versa.
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Chapters 3-6 addressed the design of good stand-alone space-time codes with inputs

drawn from a discrete alphabet. Two broad parameters that determine the goodness of

stand-alone space-time codes are the rate and raw diversity order. The rate of a space-time

code measures the amount of redundancy introduced by the space-time code, and the raw

diversity order measures the effectiveness of the redundancy. High rate and high raw

diversity order are both desirable. In particular, it is desirable to use linear space-time

codes with full raw diversity order tr and rate greater than or equal to full rate min(t, r).

Chapter 4 contains the first original contribution of this work. Here, a random code

selection argument was used to show that full raw diversity order is easy to achieve. More

precisely, almost any linear space-time code whose encoding matrix has orthonormal

columns satisfies the rank rule for optimal raw diversity order. In particular, space-time

codes with both full rate and full raw diversity order are aplenty. However, achieving full

raw diversity does not guarantee that a space-time code achieves the minimum error rate

possible, for a given data rate. Intuitively, one can think of rate and raw diversity order as

broad or coarse performance indicators of a stand-alone space-time code. In Chapters 5

and 6, we addressed the optimization of a precise or fine performance metric, namely the

union bound on the word error rate of a space-time code. The goal was to choose an

encoding matrix with minimum union bound, given the encoding matrix dimensions, SNR

and input alphabet (hence data rate).

In Chapter 5, we developed analytical tools to find encoding matrices with

orthonormal columns that minimize the union bound. However, these tools work only for

certain matrix dimensions. In particular, they can be used to optimize the union bound

only for codes with either low rate or low raw diversity order.
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In order to obtain optimum full rate, full raw diversity space-time codes, we developed

approximate numerical optimization techniques in Chapter 6. The underlying idea is to

treat encoding matrix design as a constrained optimization problem, which can be solved

by adapting the gradient descent algorithm. Simulation results show that numerically

optimized encoding matrices achieve significantly lower word error rates than other

unoptimized codes with the same rate and raw diversity order. The one major drawback of

numerical optimization is its computational complexity. We heuristically developed

methods to simplify and accelerate the optimization process. In particular, for codes of

length two and rate equal to the number of transmit antennas, we presented a special

structure for encoding matrices. By restricting the search to encoding matrices with this

structure, one can quickly find near-optimum encoding matrices.

To sum up the discussion of stand-alone space-time codes, we have shown that the

optimization of the raw diversity order is trivial, and presented numerical techniques for

optimizing the union bound.

Chapter 7 begins our discussion of the concatenated transmitter architecture, by

showing that the raw diversity order and union bound do not accurately reflect the

goodness of space-time inner codes. Instead, we use information theoretic metrics to

evaluate space-time inner codes, implicitly assuming that the best possible (infinite length)

outer code is used. The strategy is to first apply information theory to obtain the

performance of the best possible code over the Rayleigh fading MIMO channel of interest.

Then, we analyze the performance of a given space-time inner code operating over the

same Rayleigh fading channel, again assuming the best outer code. Comparing the two,

we estimate how close the given space-time inner code is to the best possible code.
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In Chapter 8, information theoretic analysis is applied to study the highest possible

data rates and least possible error probabilities of communication across a Rayleigh fading

MIMO channel. The outage probability and outage capacity were introduced. By

analyzing these two metrics at high SNR, the diversity and multiplexing orders were

computed. The diversity order of a t-input, r-output Rayleigh fading channel is known to

be tr. We proved that the multiplexing order is min(t, r) not only for Rayleigh fading

channels, but for all fading channels whose channel matrix is full rank with probability

one. The outage capacity asymptote was shown to contain information about both the

diversity and multiplexing aspects of the channel. It is less comprehensive than the

multiplexing-diversity tradeoff curve [36], but easier to compute and analyze.

Chapter 9 repeats the information theoretic analysis for the effective channel formed

by the combination of a space-time code and the Rayleigh fading channel. The

multiplexing order of a rate R linear space-time code operating over a t-input, r-output

Rayleigh fading channel is at most min(t, r, R). We also proved that this upper bound on

multiplexing order is achieved by most practical linear space-time codes. While the rate of

a linear space-time code is an upper bound on its multiplexing order, the raw diversity

order is a lower bound on the achievable diversity order in the presence of an outer code.

In particular, the S/P converter, whose raw diversity order is only r, has full achievable

diversity order tr.

Chapter 10 used the information theoretic analyses in the previous chapters to develop

broad design rules for space-time inner codes, in the presence of a powerful outer code.

Space-time inner codes must have a rate of at least full rate of min(t, r). Otherwise, their

low rate would result in low multiplexing order, and hence a loss of a significant fraction
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of fading channel’s capacity at high SNR. On the other hand, space-time inner codes need

not have high raw diversity order, since the outer code can achieve higher diversity by

coding across multiple space-time code blocks.

Just as rate and raw diversity order serve as coarse design metrics for stand-alone

space-time codes, the multiplexing and achievable diversity orders serve as coarse design

metrics for space-time inner codes. The analysis in Chapter 10 effectively solves the

coarse design problem. The outage probability offers an upper bound on achievable error

probability, and is thus analogous to the union bound for stand-alone space-time codes.

Consequently, it can be used as fine optimization metric to find the optimum encoding

matrix for space-time codes. We pointed out that finding the encoding matrix with

minimum outage probability for general encoding matrix dimensions is an open problem.

However, we used Telatar’s conjecture to argue that S/P converter is one space-time code

that achieves minimum outage probability. This leads us to argue in favor of a simple

concatenated architecture consisting of a power outer code, with the S/P converter as inner

code. This architecture is simple to implement and optimal when the outer code has

infinite length.

13.2 Future Work on Transmitter Design

For stand-alone space-time codes, the advent of the full-rate, full raw diversity linear

complex field (LCF) codes in [19][20][22], and our proof of the commonness of such

codes, has solved the coarse design problem. Thus, we now have linear space-time codes

which are roughly good at near-infinite SNR. But the fine design problem, of finding
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codes that actually minimize the error rate at finite SNR, is open. Approximate

optimization can be done numerically as indicated here, but there is the need for a more

analytically rigorous and/or computationally simple solution.

At the other end of the spectrum are space-time inner codes concatenated with infinite-

length, optimally designed outer codes. Information theoretic analysis of fading channels

and space-time codes is considerably mature. The notion of a trade-off between

multiplexing and diversity gains in fading channels, introduced in [36], has opened up the

new problem of computing the trade-off curve both for general MIMO fading channels,

and for space-time codes operating over these channels.

In our opinion, the more important open problems are practical. As indicated by the

example of the S/P converter, space-time codes that are optimum with an outer code could

be grossly sub-optimum in the absence of an outer code. Actual outer codes have finite

length and lie somewhere between the extremes of ideal outer code and no outer code.

Obtaining optimum space-time inner codes and corresponding outer codes for the

practical outer code lengths is a challenging open problem, with immense practical

significance. Some recent work on this problem can be found in [49][50].

13.3 Contributions to Receiver Design

Given the transmitter structure, the optimum receiver is the one that estimates the

transmitted data with minimum probability of error. We discussed optimum receiver

design separately for the two transmitter structures under consideration.
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In Chapter 11, we considered the case when the transmitter uses a stand-alone linear

space-time code. In this case, the optimum receiver performs maximum likelihood (ML)

detection, which can be implemented efficiently using tree-pruning algorithms. The basic

ideas of tree-pruning algorithms are already present in the literature [7][23][24], and have

in fact been used to develop the sphere decoder (see, for example, [30]) for MIMO

detection. Our contribution was to explicitly state the rules of all tree-pruning algorithms.

We pointed out the sphere decoder is a depth-first tree-pruning algorithm. We also

developed a new tree-pruning algorithm, namely the hybrid decoder, whose strategy is a

mix of the depth-first and breadth-first search strategies. The hybrid decoder is more suited

to high-speed parallel implementation, but uses up more memory. Limiting the memory of

the hybrid decoder yields a new sub-optimum algorithm that flexibly trades off memory

for error rate.

When the transmitter contains an outer code concatenated with the inner linear space-

time code, iterative receivers achieve near-optimum performance with realistic

complexity. While soft-output decoders for (typically algebraic) outer codes are well

known, soft-output decoders for the inner space-time code are still being developed. In

[33], the hard-output sphere decoder was extended to obtain the soft-output list sphere

decoder. We proposed some changes to the extension procedure. The proposed changes

reduce the computational burden, without changing the output of the list sphere decoder.

Further, we generalized the extension procedure to obtain soft-output versions of all the

tree-pruning detection algorithms that were developed for stand-alone space-time codes.
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13.4 Future Work on Receiver Design

Tree-pruning algorithms solve the detection problem and soft-output decoding

problem with moderately low computational complexity. Obtaining even more efficient

algorithms, or proving that none exist, is an open problem. Even if the simplest possible

algorithms are found, their complexity could be unacceptable for some applications. For

such applications, it is an open problem to develop receivers that minimize the error rate,

while meeting the given complexity constraints.

More interestingly, in this work, the transmitter was designed assuming optimum

decoding at the receiver. If complexity constraints prevent the use of the optimum receiver,

it is beneficial to redesign the transmitter to best suit the actual sub-optimum receiver.

Recent work developed some near-optimum transmitters [67][68][69] for the case where

the receiver employs the sub-optimum successive cancellation decoder. However, more

extensive transmitter optimization for the successive cancellation decoder and other sub-

optimum decoders is an interesting area of future research.
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APPENDIX A

Derivation of Pairwise Error Probability of a Space-Time Code

Here, we derive an expression for the pairwise error probability Pr(Eu(u′)). Recall that

Eu(u′) occurs if u′ is more likely than u, i.e., if pY/U(Y|u′) > pY/U(Y/u). From (22), we see

that this occurs only if and only if ||Y − HX′||F < ||Y − HX||F , where X and X′ are the

transmit matrices corresponding to u and u′ respectively. Note that Y = HX + N, so the

event Eu(u′) depends on both the Rayleigh fading channel matrix H, and the noise matrix

N. For a given channel matrix H, the probability that ||Y − HX′||F < ||Y − HX||F can be

obtained using standard AWGN analysis techniques, giving

Pr(Eu(u′)|H) = Q , (A-1)

where Q(.) denotes the standard Gaussian tail function. To get the PEP, we just need to

average the above over the random Rayleigh fading channel matrix H, i.e.,

Pr(Eu(u′)) = ∫H Pr(Eu(u′)|H) pH(H)dH. (A-2)

pH(H) is the probability density function of the r × t Rayleigh fading matrix H, given by

pH(H) = exp(−(||H||F
2). To facilitate the computation of (A-2), we use the Chernoff

bound Q(x) ≤ exp(−x2/2) while substituting (A-1) in (A-2). Thus, we get

H X X′–( ) F

2N0

-----------------------------------
 
 
 

1

πtr
-------
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Pr(Eu(u′)) ≤ ∫H exp dH. (A-3)

In order to simplify the above expression, we first expand the squared Frobenius norm as

 = tr( H(X − X′)(X − X′)*H* + HH*). (A-4)

Then, defining the t × t matrix

R = It + , (A-5)

(A-4) becomes  = tr(HRH*) = gi
*Rgi, (A-6)

where gi denotes the ith column of H*. Substituting (A-6) into (A-3), we get

Pr(Eu(u′)) ≤ ∫H exp(− gi
*Rgi) dg1dg2…dgr. (A-7)

The vectors {gi} are independent and identically distributed, hence the integral splits up as

Pr(Eu(u′)) ≤ . (A-8)

Further, each gi is a t × 1 with unit-variance, zero-mean complex Gaussian entries, and so

the integral above is a standard integral which evaluates to [4]

 = . (A-9)

Substituting (A-9) and (A-5) in (A-8), we get the desired expression

Pr(Eu(u′)) ≤ det. . (A-10)

1

πtr
-------

H X X′–( ) F
2

4N0
-------------------------------------- H F

2
+

 
 
 

–

H X X′–( ) F
2

4N0
-------------------------------------- H F

2
+

1
4N0
-----------

X X′–( ) X X′–( )∗
4N0

----------------------------------------------

H X X′–( ) F
2

4N0
-------------------------------------- H F

2
+

i 1=

r

∑

1

πtr
-------

i 1=

r

∑

1

πtr
------- g∗– Rg( )exp gd

G
∫ 

 
  r

g– ∗Rg( )exp gd
G
∫ π

det R( )
-------------------

It
X X′–( ) X X′–( )∗

4N0
----------------------------------------------+ 

  r
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APPENDIX B

Computing the Derivative of the Union Bound

Here, we compute the derivative of one representative term in the union bound (87)

with respect to the elements mij of the Nt × K complex matrix M. For the purposes of this

appendix alone, it will prove useful to use C/C++ indexing of rows and columns, starting

from 0 instead of 1.

Define the t × N matrix D′= mat(Md). Now, defining the t × t matrix

P′ = It + D′D′*. (B-1)

it is easy that each term in the union bound (87) is given by 1 ⁄ (det (P′))r. From the chain

rule, the derivative of the term is

 = − det(P′). (B-2)

We need to only differentiate det(P′) with respect to each element mij of M. We will first

obtain the derivative of each term of P′ with respect to mij. In particular, we will show that

only elements along one column of P′ have non-zero derivative. From (B-1), the (k, l)th

element of P′ is given by

p′kl = δkl + d′knd′ln*. (B-3)

NS
4K
---------

mij∂
∂ 1

detr P′( )
----------------------- 

  r

detr 1+ P′( )
------------------------------

mij∂
∂

NS
4K
---------

n 1=

N

∑
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Note that D′ = mat(Md), and hence each element of D′ is some linear combination of the

elements of M. Further, for complex variables mij, . Using this fact, the first

term d′kn can be treated as constant while differentiating with respect to mij, giving

p′kl = d′kn d′ln*. (B-4)

Since D′ = mat(Md), d′ln is the (l + nN)th term of Md (recall that indexing starts from 0).

The key observation is that it is a linear combination of elements from (l + nN)th of M. So,

the derivative above is non-zero only if the row i to which mij belongs, is equal to l + nN,

or l = i mod N, and n = [i ⁄ N], where [.] is the standard integer floor function. Suppose i is

indeed l + nN, then d′ln* is the ith element of Md. Using , it is easy to see

that d′ln* = 2dj
* in this case. Using all these things, (B-4) becomes

p′kl = d′knδ(l = i mod N)δn = [i ⁄ N]2dj
*, or (B-5)

p′kl = d′k, [i ⁄ N]δl = (i mod N) dj
*. (B-6)

In words, when differentiating P′ with respect to mij, the term δl = (i mod N) above indicates

that only the elements of column (i mod N) have non-zero derivative. Along this column

of P′, the element in row k has derivative proportional to the element in the same row, but

column [i ⁄ N] of D′, as indicated by the term d′k,[i ⁄ N].

mij∂
∂ mij 0=

mij∂
∂ NS

4K
---------

n 0=

N 1–

∑ mij∂
∂

mij∂
∂ m∗ij 2=

mij∂
∂

mij∂
∂ NS

4K
---------

n 0=

N 1–

∑

mij∂
∂ NS

2K
---------
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Recall from (B-2) that we are interested in det(P′). Now, since only one column

of P′ has a non-zero derivative, we can replace each element in that column by its

derivative, and compute the determinant in order to get det(P′). More precisely, we

obtain the swapped matrix Pi′ by replacing column (i mod N) of P′ by column [i ⁄ N] of D′

= mat(Md). Then,

det(P′) = det(Pi′)dj
*. (190)

Substituting this back in (B-2), we have obtained the derivative of each term in the union

bound (87) with respect to mij.

As an aside, note that one also assemble the N × N matrix

Q′ = IN + D′*D′. (B-7)

instead of the t × t matrix P′ of (B-1). Clearly, det(P′) = det(Q′), since both depend only

on the singular values of D′. However, when N < t, Q′ is a smaller matrix and its

determinant is easier to compute. In order to obtain the gradient, we are interested in

 = − det(Q′). (B-8)

Following the same analysis as the case, we now obtain the swapped matrix Qi′ by

replacing row [i ⁄ N] of P′ by row (i mod N) of D′. Then,

det(Q′) = det(Qi′)dj
*, (191)

which completes the necessary computation.

mij∂
∂

mij∂
∂

mij∂
∂ NS

2K
---------

NS
4K
---------

mij∂
∂ 1

detr Q′( )
----------------------- 

  r

detr 1+ Q′( )
-------------------------------

mij∂
∂

mij∂
∂ NS

2K
---------
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APPENDIX C

The Special Constraint Set for Length-2 Rate-t Codes

We describe the steps involved in deriving the constraint N(2t, 2t) for codes of length

N = 2 and rate t. The encoding matrix M has dimension 2t × 2t. Consider the break-up of

the encoding matrix into the t × t submatrices as follows.

M = . (C-1)

From this point, the final structure (100) was obtained by making a couple of assumptions,

neither of which has any theoretical basis, but seemed the right thing to do.

First, we assume that each of the t × t submatrices is unitary. Considering that the

ultimate goal is equal spread of information in all the output symbols, this seemed a fair

assumption. Note that the LCF encoding matrix for the same dimensions also has unitary

submatrices. Now, any 2t × 1 difference vector d can be broken up as d = [d1
T d2

T]T,

where d1 and d2 are both t × 1 vectors. In this notation, it is easy to see that the difference

matrix mat(Md) is given by

mat(Md) = [M11d1 + M12d2 M21d1 + M22d2]. (C-2)

Separating out the first submatrix M11 alone, this becomes

1

2
-------

M11

M21

M12

M22

1

2
-------
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mat(Md) = M11[d1 + M11
*M12d2 M11

∗M21d1 + M11
∗M22d2]. (C-3)

The union bound depends on the singular values of mat(Md). Now, suppose a given set

{Mij} of submatrices achieves the optimum union bound. Consider the set of matrices

{M′ij}, where each M′ij = M11
*Mij. Note that mat(M′d) = M11

*mat(Md), hence

mat(M′d) and mat(Md) have the same singular values for all d. Consequently, the

submatrices {Mij} and {M′ij} have the same union bound. However, by construction, M′11

= M11
*M11 = It. Thus, when the submatrices are unitary, the first one can be chosen to be

the identity without loss of optimality. Choosing M11 = It, (C-3) becomes

mat(Md) = [d1 + M12d2 M21d1 + M22d2]. (C-4)

Our second assumption is that the encoding matrix M itself is unitary. This assumption

is roughly justified because optimum matrices anyway tend to have orthonormal columns

(see Section 6.3.1). We require M*M = I2t. Comparing this with the corresponding

product based on (C-1), we that M*M = I2t if and only if M*
11M12 + M*

21M22 = 0.

Substituting M11 = It, this implies M22 = −M21M12. Substituting in (C-4), we get

mat(Md) = [d1 + M12d2 M21(d1 − M12d2)]. (C-5)

At this point, there are just two t × t unitary matrices to choose, namely M12 and M21.

We took up the case t = 2 and did a grid search to maximize the coding gain, when the

symbols in d1 and d2 are drawn arbitrarily from a QAM difference alphabet. The search

yielded the result that M12 = exp(jπ ⁄ 4)I2. Generalizing to arbitrary t, we get M12 = exp(jπ

⁄ 4)It. Substituting M11 = It, M12 = exp(jπ ⁄ 4)It, M22 = −M21M12 = −exp(jπ ⁄ 4)M21, and

denoting M21 by Q, the assumed structure (C-1) becomes (100).

1

2
-------

1

2
-------

1

2
-------
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