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Summary

Thereliability and data rate of wireless communication have traditionally been limited
by the presence of multipath fading in wireless channels. However, dramatic performance
improvements can be obtained by the use of multiple transmit and receive antennas.
Specifically, multiple antennas increase reliability by providing diversity gain, namely
greater immunity to deep channel fades. They also increase data rates by providing

multiplexing gain, i.e., the ability to multiplex multiple symbolsin one signaling interval.

Harvesting the potential benefits of multiple antennas requires the use of specialy
designed space-time codes at the transmitter front-end. Space-time codes introduce
redundancy in the transmitted signal across two dimensions, namely multiple transmit
antennas and multiple signaling intervals. In this work, we focus on linear space-time
codes, which linearly combine the real and imaginary parts of their complex inputs to

obtain transmit vectors for multiple signaling intervals.

We aim to design optimum linear space-time codes. Optimality metrics and design
principles for space-time codes are shown to depend strongly on the codes’ function in the
overal transmitter architecture. We consider two cases, depending on whether or not the

space-time code is complemented by a powerful outer error-control code.

XV



In the absence of an outer code, the multiplexing gain of a space-time code is
measured by its rate, while its diversity gain is measured by its raw diversity order. To
maximize multiplexing and diversity gains, the space-time code must have maximum
possible rate and raw diversity order. We show that there is an infinite set of maximum-
rate codes, amost all of which aso have maximum raw diversity order. However, different
codes in this set have different error rate for a given input alphabet and SNR. Therefore,
we develop analytical and numerical optimization techniques to find the code in this set
which has the minimum union bound on error rate. Simulation results indicate that
optimized codes yield significantly lower error rates than unoptimized codes, at the same

datarate and SNR.

In a concatenated architecture, a powerful outer code introduces redundancy in the
space-time code inputs, obtaining additional diversity. Thus, the raw diversity order of the
gpace-time inner code is only alower limit to the total diversity order of the concatenated
transmitter. On the other hand, we show that the rate of the space-time code places an
upper limit on the multiplexing ability of the concatenated architecture. We conclude that
space-time inner codes should have maximum possible rate but need not have high raw
diversity order. In particular, the serial-to-parallel converter, which introduces no
redundancy at all, is a near-optimum space-time inner code. This claim is supported by

simulation results.

On the receiver side, we generalize the well known sphere decoder to develop new
detection algorithms for stand-al one space-time codes. These new algorithms are extended

to obtain efficient soft-output decoding algorithms for space-time inner codes.

XVi



CHAPTER 1

I ntroduction

Wirelesscommunicatiorsystemffer mobility to usersandflexibility of deployment
to serviceproviders.To gain widespreadcceptancahesesystemsnustalsobe designed
to achieve high datarate,while maintaininglow errorrate.Achieving thesetwin goalsis
challengingbecausavirelesschannelsarenot only noisy, but alsocausea uniqueform of
distortion known as multipath fading. A signaltransmittedon the wirelesschannelgets
scatteredand reflectedfrom different obstaclesn the wirelesservironment,and hence
takes multiple pathsto the recever. At the recever, thesemulti-path signalscombine
constructvely or destructvely dependingon their phaseand delay which in turn are
functionsof random,time-varying factorslike the speedand position of the scatterers,
relative to the transmitterandrecever. Consequentlythe receved signalenvelopefades,
i.e., it varieswith time in a randomfashion.With a sufficient numberof scatterersn the
wirelesservironment,the Rayleighfading[1] modelgivesthe distribution of thereceved
signal enelope at ay given time instant.

Oneconsequencef envelopefadingis that the instantaneousignal-to-noiseenegy
ratio (SNR)attherecevervariesrandomlywith time. Evenif theaveragereceved SNRis
high, theinstantaneouseceved SNR sometimesiropslow during a so-calleddeep fade.

In a deepfade,errorsoccurwith high probability Oneway to reducethe errorrateis to



use conventional error correction codes [2]. If these codes are sufficiently long, they can
use the relatively noise-free symbols received in periods of high received SNR to recover
the symbols lost during a deep fade. However, when fading is slow, deep fades persist for
long durations of time, often exceeding the length of one communication packet. In this
case, the entire packet is subject to low SNR, and so error correction codes are not very

effective. New techniques are required to prevent high error rates due to fading.

1.1 The Benefits of Multiple Antennas

One solution to the problem of deep fades is to use multiple antennas at the transmitter
and receiver. The only extra infrastructure required are the antennas themselves, and the
power to run the antennas and the supporting RF circuitry. In return, dramatic benefits are
obtained.

Suppose there are ¢ transmit and r receive antennas. Counting the number of transmit-
receive antenna pairs, we see that there are ¢ communication links between transmitter
and receiver. Further, if the antennas are placed far enough from each other, fading occurs
independently on each link. If even one of the ¢r links is not passing through a deep fade,
one can sustain communication between transmitter and receiver, with careful system
design. Thus, multiple antennas offer ¢r-fold fade resistance to deep fades. Thisis known
as the diversity gain [3] of multiple antennas, and reflects the fact they can significantly

reduce error rates.



In addition to diversity gain, multiple antennas also furnish multiplexing gain. More
precisely, the transmitter sends ¢ symbols and the receiver obtains » symbols in every
signaling interval across the channel. Thus, one can multiplex min(¢, ) information
symbols for every channel use, and hence obtain min(¢, ) times the capacity of a single
antenna channel [4][9].

In order to harness the potential diversity and multiplexing gains of multiple antennas,
the transmitter and receiver should be optimally designed. The novelty in the design
problem is that multiple antennas result in a multiple-input, multiple-output (MIMO)
fading channel between transmitter and receiver.

We assume that the MIMO channel is a narrowband channel, i.e., signals transmitted
in different time instants do not interfere. Further, the receiver knows the MIMO channel,
but the transmitter does not. For such a channel, the basic principles of optimum receiver
design are well known [6][7]. Therefore, one can adopt a two-step approach to system
design for MIMO channels. First, the transmitter is designed assuming the optimum
receiver is used. Then, given the transmitter, the known principles of optimum receiver

design are implemented. Following this approach, we first discuss transmitter design.

1.2 A Brief Survey of MIMO Transmitter Design Approaches

The diversity and multiplexing gains of multiple antennas reflect their ability to
increase the reliability and data-carrying capacity of communication, respectively. The
historical evolution of transmitter design for MIMO channels can broadly be split into two
distinct paths, depending on whether the primary goal of transmitter design is to increase

reliability or capacity. We briefly survey past research in these two directions.



1.2.1 Reliability-Based Approach: Space-Time Codes
Thereliability-based approach aimsto harness the diversity benefit of MIMO channels

to reduce the error rate. In this approach, high data rate is a secondary goal. As mentioned
earlier, the diversity gain of MIMO channels comes because there are ¢r independently
fading links between transmitter and receiver. To harvest the diversity gain, each
information symbol must be spread across all the available transmit antennas.
Conventional forward error correction codes [2] only introduce redundancy across
multiple signaling intervals. In a MIMO setting, redundancy must be spread across the
multiple transmit antennas and across multiple signaling intervals. Codes which do so are
called space-time codes [3]. Space-time codes aim to introduce redundancy as cleverly as
possible, so asto exploit transmit diversity and reduce error rate.

The cleverness of the redundancy introduced by a space-time code is quantified by its
raw diversity order, which is the diversity gain obtained when the inputs to the space-time
code are independent from one code block to another (i.e., when there is no outer code).
Clearly, a high raw diversity order is desirable. It is easy to show [3] that the maximum
possible raw diversity order of any space-time code operating over a ¢-input, r-output
Rayleigh fading MIMO channel is¢r. Thisis known as full raw diversity order.

To our knowledge, the first codes to obtain full raw diversity order were delay-
diversity techniques, which are summarized in [8]. These were later extended to obtain
space-time trellis codes [3], which also guarantee full raw diversity order. Arguably the

most elegant of all known space-time codes is the Alamouti code [9], which obtains full



raw diversity order, but works only when the number of transmit antennas is two.
Subsequently, space-time codes based on orthogonal designs [10] generalized the
Alamouti code to obtain full raw diversity order for any number of transmit antennas.
While aiming to achieve full raw diversity order, the space-time code should introduce
redundancy not only cleverly, but aso efficiently. The efficiency is measured by the rate of
the space-time code, which is defined as the number of information symbols transmitted
by the code per signaling interval. Since it is desirable to transmit more information and
less redundancy, high rate is desirable. All the codes mentioned above have rate one,
except the non-Alamouti orthogonal designs, which have arate less than one. In some of
the early space-time code literature, a rate of one was referred to as full rate, and space-

time codes with rate one were considered optimum.

1.2.2 Capacity-Based Approach

In parallel with the development of space-time codes, there was intense information
theoretic study of MIMO fading channels. This line of work was pioneered by [4][5],
which showed that the data-carrying capacity of a¢-input, r-output MIMO channel at high
SNR roughly equals min(z, r) log(SNR), which is min(z, r) times the capacity of a scalar
channel. Naturaly, there was a quest for transmitter architectures which approach this
enormous capacity. The V-BLAST architecture [5][11] was the first attempt to do so. The
implicit space-time code in a V-BLAST transmitter is a serial-to-parallel (S/P) converter,
which takes in ¢ complex symbols every signaling interval and transmits one on each
available antenna. Note that there is no attempt to introduce redundancy in order to obtain

raw diversity order.



In retrospect, the second maor step in the capacity-based approach was the
development of linear dispersion, or simply, linear space-time codes [12]. In each block,
these codes take in afinite number of complex input symbols, and use them to generate the
transmit signals for a finite number of signaling intervals, called the code length. The
defining feature of linear space-time codes is that each output symbol is some linear
combination of the inputs and their complex conjugates.

Many reliability-based space-time codes like the Alamouti codes fall under the
category of linear codes. However, the primary goal of linear space-time codes, as
developed in [12], was not to obtain full raw diversity order, but to achieve the capacity of
the MIMO fading channel. It was proved [12][13][14] that linear space-time codes with
rate less than min(¢, r) do not achieve the capacity of a ¢-input, r-output Rayleigh fading
channel. Consequently, min(z, r) is called full rate, and capacity-based design aims to
develop space-time codes with at least full rate. Note the sharp contrast with the early

reliability-based space-time codes, which considered rate one acceptable.

1.3 Unifying the Reliability and Capacity Approaches

It is useful to view the two transmitter design approaches in terms of the metrics they
use to measure the goodness of a given space-time code. The reliability approach
considers rate and raw diversity order to be valuable, and aims to design space-time codes
which maximize both. However, raw diversity order is considered a more valuable asset
than rate. Space-time codes with the same rate and raw diversity order do not necessarily
have the same error rate, for a given uncoded input aphabet. Thus, one can think of rate

and raw diversity order as broad performance metrics. The more precise performance



metric used by the reliability-based approach is the actual error rate, given the SNR and
input alphabet to the space-time code. For analytical convenience, the union bound on the
error rate is also used [3] as a performance metric.

In contrast to the reliability-based approach, the capacity-based approach considersthe
rate of a space-time code as a more valuable asset than raw diversity order. The inputs to
the space-time code are assumed to be coded by an outer error correction code, which is
designed to achieve maximum possible datarate for a given SNR. This maximum datarate
is then defined to be the capacity of a space-time code and is used as the precise
performance metric to compare space-time codes.

Naturally, a lot of research has gone into unifying the two approaches to transmitter
design. One way to do so is to analyze space-time codes developed from one approach
using the metric of the other approach. For example, the capacity of the reliability-based
delay diversity techniques was computed in [15]. Similarly, in[14][16], the capacity of the
Alamouti code and other orthogonal designs was computed. In particular, it was shown
that the Alamouti code for the 2-transmit antenna case loses capacity when there is more
than one receive antenna, but achieves maximum possible capacity when there is only one
receiver antenna

The example of the Alamouti code illustrates that it is possible for the same space-time
code to be good in both the reliability and capacity senses. Continuing along the same
theme, capacity-maximizing linear space-time codes which also have high raw diversity

order were found in [17], using approximate numerical techniques. Also, the generalized



layered space-time architecture [18] proposed space-time codes that could trade-off rate
and raw diversity order, depending on whether data rate or error rate was deemed more
important.

The culmination of the unified design approach was the development of linear
complex field (LCF) codes [19][20], aso known as threaded algebraic codes [21][22].
LCF codes of length greater than or equal to the number of transmit antennas are
guaranteed to achieve full raw diversity order, irrespective of the rate. The only restriction
is that the input alphabet to the space-time code should be a lattice alphabet, i.e., the real
and imaginary parts of each complex input symbol should be integers.

Of particular interest are L CF codes of rate equal to the number of transmit antennast,
and length greater than or equal to ¢. These codes are three-way optimal. First, they have
rate ¢ greater than or equal to full rate min(¢, r), and are also guaranteed to have full raw
diversity order ¢r. Thus, they satisfy the broad optimality criteria of the reliability and
capacity based approaches. Further, they also are optimum with respect to the precise
performance metric of the capacity-based approach, i.e., they achieve the capacity of the ¢-
input, r-output MIMO fading channel [20][22]. The only missing link is whether LCF
codes are optimum with respect to the precise performance metric of the reliability-based
approach, namely whether they achieve minimum word error rate or union bound for a

given input alphabet and SNR.



1.4 Contributions of This Work to Transmitter Design

In Chapters 4-6, we show that L CF codes do not achieve the minimum possible union
bound, and develop codes that do so. Our approach is as follows. We first show that LCF
codes are not the only full-rate, full raw diversity linear codes. In fact, full raw diversity
order is surprisingly easy to achieve. Given any rate, we identify an infinite set of linear
space-time codes, which aso includes LCF codes. With probability one, any randomly
picked code from this set achieves full raw diversity order. In particular, space-time codes
with rate ¢t and full raw diversity order ¢r are easy to find. However, the ultimate goal isto
not only achieve these two broad properties, but also to optimize the union bound on error
rate.

To perform union bound optimization, we first try some analytical techniques. We
present a general structure for linear space-time codes that would guarantee the minimum
union bound at any SNR and for any input alphabet. However, codes with this structure
exist only when either the rate or the raw diversity order (equivalently length) of the space-
time code is low. Therefore, our analytical techniques do not solve the union bound
optimization problem in general. This forces the use of approximate numerical techniques
in order to obtain rate-¢, full raw diversity order space-time codes, which also have near-
minimum union bound. Simulation results show that these optimized codes achieve
significantly lower error rate than L CF codes, for the same data rate and SNR. Further, like
the LCF codes, the optimized codes can also be shown to achieve the capacity of the
MIMO fading channel. Thus, they are jointly optimum with respect to the broad and

precise performance metrics of both the capacity-based and reliability-based approaches.



In Chapter 7, we take a step back, and investigate whether it is really necessary to use
space-time codes which are jointly optimum with respect to both the reliability- and
capacity-based approaches. We point out that the two approaches implicitly assume two
sharply different transmitter architectures. Given the actual architecture employed, one
needs to design space-time codes that are optimum only with respect to the corresponding
approach. Our optimized space-time codes, which are jointly optimum with respect to
both approaches, are still optimum codes to use in either architecture, but might be a case
of overkill. We now describe the two architectures, and why only one approach holds for
each of them.

The first architecture contains a stand-alone space-time code, whose inputs are
independent from one block to the next. Since there is no powerful outer code, this
transmitter operates far away from capacity, and so the capacity of the space-time code is
not a meaningful measure of actual performance. In contrast, the reliability-based
approach is ideally suited to analyze and design such stand-alone space-time codes. In
particular, one should aim to achieve full rate and full raw diversity order broadly, and
more precisely to obtain minimum possible union bound. The jointly optimum codes we
developed earlier are explicitly designed to minimize the union bound, and are hence
optimum stand-al one space-time codes. The fact that they also have full outage capacity is
unimportant, when one evaluates them as stand-al one space-time codes.

On the other hand, consider a concatenated transmitter architecture where the space-
time code acts as an inner code, whose inputs are obtained from a powerful outer code.
Even if the space-time inner code has low raw diversity order, the outer code can exploit

the full diversity benefit of the channel by coding across different space-time code blocks.
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Thus, unlike a good stand-alone space-time code, a good space-time inner code does not
need full raw diversity order. This observation implies that the reliability-based approach,
with its insistence on high raw diversity order, is not meaningful for designing space-time
inner codes.! In other words, good space-time inner codes do not need to be good stand-
alone space-time codes. In particular, LCF codes and the codes that we obtained by
numerically optimizing the union bound might be trying to do too much, in trying to be
both good stand-alone and good inner space-time codes.

Since the outer code helps the whole concatenated transmitter to approach capacity,
the capacity of the space-time code is a meaningful metric, hence the capacity-based
approach is ideally suited to analyze space-time inner codes. We proceed to search for
optimum space-time inner codes by focusing solely on the capacity.

We define the multiplexing order of a space-time code, and use it to show that arate-R
linear space-time code achieves at most afraction R/ min(¢, r) of the capacity of az-input,
r-output Rayleigh fading channel. We aso present methods to construct space-time codes
that actually achieve this fraction of the channel capacity. The conclusion is that space-
time codes with rate less than full rate result in a huge capacity loss, but space-time codes
with full rate (or more) can be constructed to avoid this capacity |oss.

The crux of the above observations is that good space-time inner codes should have at
least full rate, irrespective of their raw diversity order. In particular, a conjecture by Telatar
[4] implies that the rate-+ S/P converter achieves the capacity of the MIMO fading

channel, in spite of itslow raw diversity order. Thus, in order to optimize capacity, one can

1. It is well known (see, for example, [17]) that space-time codes that achieve capacity are not
necessarily good with uncoded inputs. Our contribution here is only to state that as a fundamental
difference between two different transmitter architectures, and to conclude that different design
approaches should be adopted for the two architectures.

11



use the S/P converter instead of the rate-¢, full raw diversity order, union-bound optimized
codes found in the first half of this work. The advantage of the S/P converter as an inner
code is that it is computationally simple to decode. Its disadvantage is that, unlike the
more sophisticated optimized codes, it relies on the outer code to provide diversity, and
hence does not work well with weak outer codes. However, if the outer code is powerful

enough, we conclude that the S/P converter is preferable as an inner code.

1.5 Receiver Design for MIMO Channels

Choosing a particular transmitter architecture fixes the data rate and the structure of
the transmitted signal. The task of the receiver is to undo the noisy MIMO channel’s
distortion, and accurately estimate the transmitted signal. The optimum receiver is the one
that minimizes the probability of estimation error. Clearly, the structure of the optimum
receiver depends on the coding scheme employed by the transmitter. We now describe the
optimum receiver structure for the two transmitter architectures considered in thiswork. In
each case, note that the structure of the optimum receiver is easy to find. The challengeis

to devel op efficient algorithms to implement the known receiver structure.

1.5.1 Receiver Design for Stand-Alone Space-Time Codes

First, consider the case of a with a stand-alone space-time code, whose inputs are
drawn from a discrete input al phabet, independently for each code block. In this case, it is
well known [7] that error probability is minimized by using a maximum likelihood (ML)
detector at the receiver to estimate the space-time code input in each block. To implement

the ML detector, one can think of the combination of a linear space-time code and the
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MIMO fading channel as a single effective MIMO channel, which is also linear. ML
detection amounts to a problem of estimating the linear effective channel’s input, given its
output.

For SISO channels with inter-symbol interference, the Viterbi algorithm implements
ML equalization using the trellis as a graphical tool. Similarly, for linear MIMO channels,
we develop the class of tree-pruning algorithms, which are based on the realization that
ML detection amounts to a search for the cheapest leaf node on the detection tree. The
basic principles of tree-pruning algorithms are ssimple, and were introduced in [7][23][24].
However, the earlier presentations were developed for different tree-search problems, and
had features peculiar to the respective problem. For example, [24] assumes that the code-
input alphabet is a possibly infinite lattice. We state the basic principles of tree-pruning
algorithms for the specific case of the MIMO detection problem. Also, we point out that
these basic principles can be implemented in multiple ways, yielding a wide variety of
tree-pruning algorithms. The depth-first tree-search version of the algorithm isidentical to
the popular sphere decoder [25-30], which is a well-established MIMO detection
algorithm. We also develop new tree-pruning algorithms, which require more memory

than the sphere decoder, but are more suited to parallel, low-latency implementations.

1.5.2 Receiver Design for Concatenated Transmitters

When the transmitter employs the concatenation of the outer code with an inner space-
time code, the optimum receiver must ideally treat the combination of the outer and inner
codes as a joint code, and perform ML detection for the joint code. However, this is

impractical when the outer code has a large code length. Instead, one follows the turbo
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principle [31], and uses an iterative receiver, where soft-output decoders for the inner and
outer codes iteratively exchange probabilistic information. In most MIMO transmitters,
the outer codes is an algebraic code, for which soft-output decoders are well known [32].
The remaining task is to develop soft-output decoders for the inner space-time code, or
equivalently, for the linear effective channel corresponding to the inner space-time code.
Recall that the sphere decoder is a detection algorithm, which produces hard outputs.
In [33], the sphere decoder was extended to obtain the list sphere decoder, which produces
soft outputs by generating alist of hard outputs, instead of just one. We first suggest a new
list generation mechanism, that produces the same soft outputs as the method used in [33],
but requires lesser computation. Second, we use the list generation mechanism to obtain
soft-output extensions of all tree-pruning detection algorithms. Simulation results are

shown to illustrate the computational efficiency of our new soft-output algorithms.

1.6 Organization of This Work

A substantial portion of this work, namely Chapters 2-10 focuses on transmitter
design. In Chapter 2, we present the channel model and introduce linear space-time codes.
The subsequent discussion is divided into the design of stand-alone space-time codes,
followed by the design space-time inner codes.

Chapters 3-6 contain our discussion of stand-alone space-time codes. In Chapter 3, we
rederive well-known expressions for the union bound, raw diversity order and coding gain
of space-time codes. In Chapter 4, we use a random code selection argument to show that
full rate, full raw diversity codes are aplenty. In Chapter 5, we explore analytical

techniques to optimize the union bound. These techniques are shown to work for some
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codes, but not for al. Consequently, in Chapter 6, we develop approximate numerical
techniques to optimize full rate full raw diversity codes. We present simulation results to
illustrate the benefits of numerical optimization.

Chapter 7 begins our discussion of space-time codes as inner codes by pointing out
that the union bound and raw diversity order do not faithfully reflect goodness of inner
codes. In Chapter 8, we review information-theoretic analysis of Rayleigh fading
channels, focussing in particular on the notion of outage capacity. We introduce the
multiplexing order and show that it is equal to min(¢, r). In Chapter 9, we extend the
information-theoretic analysis to analyze space-time inner codes. We show that the rate of
a space-time code is an upper bound on its multiplexing order, but its raw diversity order is
alower bound on the achievable diversity order. Thisanaysisisvalidated by simulationin
Chapter 10, where we also develop broad design rules for space-time inner codes.

Chapters 11 and 12 discuss the design of computationally efficient receivers for
MIMO channels. In Chapter 11, we develop new tree-pruning detection agorithms, which
are optimum receivers for a transmitter employing a stand-alone space-time code. In
Chapter 12, we discuss the iterative receiver structure, which is near-optimum when the
transmitter employs a concatenated coding scheme. Specifically, we extend the detection
algorithms developed in Chapter 11 to obtain soft-output decoders for linear MIMO
channels.

Chapter 13 summarizes the conclusions from this work and discusses areas of future

research.
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CHAPTER 2

Channel Model and Introduction to Space-Time Codes

An expertis someonavho knows moreandmoreaboutlessandlessifill
he knavs almost eerything about almost nothingl Unknown

In this chapter we describethe multiple-input, multiple-output (MIMO) channel
modelthatwill beusedin therestof thiswork. We motivatespace-timeodesasa method
of hanestingthe potentialdiversity benefitof MIMO channelsTherateandraw diversity
orderareintroducedastwo codeparametershatdeterminehe data-carryingcapacityand
errorcorrectingcapability of space-timecodes.Finally, we describethe specialclassof

linear space-time codes, which will be the focus of the remainder of tris w

2.1 Static-Fading Channel Model for Multiple Antenna Systems

We considera wirelesscommunicatiorsystemwherethe transmitterandrecever are
equippedwith ¢ andr antennasespectiely. In signalinginterval 2, a¢ x 1 complex vector
x;, Is transmittedacrossthe MIMO wirelesschannelyielding anr x 1 comple receved

vectory,. In this work, we model the MIMO channel as

* linear, i.e.,eachrecevedsignalis a sumof scaledcopiesof the signalstransmitted

from all the transmit antennas, and adeitivhite Gaussian noise\(#GN).
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» flat-fading or narrowband i.e., thereis nointerferenceébetweersymbolstransmit-
ted at different signalingintervals. In contrast,frequeng-selectve or wideband
channelshave intersymbolinterference and require different designmethodolo-

gies [6]. Frequengcselectve channels will not be considered in thigriu

» quasi-statioor slow-fadingi.e.,thechanneresponseoesnotvary over oneblock
of communicationlIn practice,wirelesschannelsvary with time becauseof the
movementof transmittey recever or scatterersn the vicinity. Accordingto the
guasi-staticassumptionthe channelvaries so slowly over one communication
block thatit canbetreatedasconstantOtherpossiblechanneimodelsarethe fast
fadingandblock fadingmodels.The fast (or ergodic) fadingmodelassumeshat
thechannelariesindependentlyrom onesignalingintenal to the next. The block
fadingassumptions a compromisebetweernhe slow andfastextremes Here,the
channelis invariantin small blocks lasting a few signalingintervals, but varies
independentlyrom oneblock to the next. In block fadingchannelseachcommu-
nication block, say a codevord, spansmultiple channelblocks. Thesedifferent
fadingassumption$fave differentinformation-theoretiamplications[4] andcor-
respondingdesignmethodologieg6]. We restrictoursehesto quasi-statidading

in this work.
The input-output relation for a lingdlat-fading, quasi-static MIMO channel is
v = Hx;, + ng, (1)

wherethe r x 1 noisevectorn; consistsof independentcircularsymmetric,zero-mean

complex Gaussian randomaviables of arianceN,,.
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The r x ¢t channel matrix H is random. We will assume that the transmitter does not
know H, but the recelver knows it exactly. This is a cruciad and commonly made
assumption. If the transmitter knows the channel, pre-coding techniques can be used to
simplify system design by converting the MIMO channel to a bank of scalar channels
without loss of capacity [6]. However, in most practical systems, the transmitter does not
know the channel. In fact, even the receiver often depends on known training symbols
from the transmitter in order to estimate the channel. We assume sufficient training, so that
the receiver can be assumed to know the channel perfectly. This is realistic except when
the channel varies too fast, or when packet-length constraints force short training
sequences. Analysis and system design for channels which are unknown to both
transmitter and receiver can be found in [6][34][35], but is not considered in this work.

In addition to channel knowledge at transmitter and receiver, another crucial
performance and design-determining factor is the distribution of the random channel
matrix H. Note that the element &;; of H denotes the scalar channel between the ;™
transmit antenna and the ;™" receive antenna. If the antennas are placed far enough apart, it
is both valid and convenient to assume that the coefficients h;; are independent [1].
Further, the Rayleigh fading assumption is often made, namely each A;; is assumed to be a
complex, zero-mean, circularly symmetric Gaussian random variable of unit variance. For
the most part, this work focuses on Rayleigh fading channels. However, some results do
hold for more general distributions, as will be explicitly stated where applicable.

Finally, the signal-to-noise energy ratio (SNR) is defined as the ratio of the average

received signal energy to the average noise energy, namely
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2.2 The Benefits of Using Multiple Antennas

With a well-designed communication system, the use of multiple antennas can

simultaneously enable higher datarates and lower error rates, at the same SNR.

2.2.1 The Multiplexing Advantage of Multiple Antennas

In every signaling interval across the MIMO fading channel of (1), one can transmit ¢
complex symbols, and receive r complex symbols. Intuitively, one expects the MIMO
channel to be able to multiplex min(¢, r) Symbols in one signaling interval, and
consequently carry roughly min(z, r) [5] times as much data as a single-input, single-
output (SISO) channel. This claim will be rigorously proved in Chapter 8 through the

discussion of multiplexing order.

2.2.2 The Diversity Advantage of Multiple Antennas

The diversity order of any communication system measuresitsreliability at high SNR.
When a well-designed communication system transfers data across any channel, the
probability of error P,(S) is typically a decreasing function of the SNR S. The diversity

order d of the communication system is defined as

logP,(S)

5=- lim - ?3)

S .« log
The diversity order of the channel is defined as the diversity order of the best possible

communication system that can be used for that channel. The diversity order represents
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the asymptotic slope of alog-log plot of error probability vs. SNR. At high SNR, the error

probability goes to zero as SNR™, hence a high diversity order is desirable.

For an AWGN channel, error probability can be made to decrease exponentially with
SNR using capacity-achieving codes. Consequently, the diversity order of AWGN
channels is infinite. In contrast, the diversity order of a ¢-input, r-output Rayleigh fading
channel is

3¢, r) = tr, (4)
aswe will see in Chapter 8. The finite diversity order ¢r places a fundamental limit on the
maximum reliability of communication across a MIMO Rayleigh fading channel.
Intuitively, fading channels are error-prone because the random channel coefficients
occasionally have low energy, even though their average energy is one. Roughly, when a
channel coefficient ;; has small energy, we say it is undergoing a deep fade. MIMO
channels have tr independently fading coefficients {,;} representing ¢r independent links
between transmitter and receiver. Ideally, communication fails only if al links fail. Thus,
MIMO channels have a ¢r-fold resistance to deep fades, as quantified by the diversity

order tr in (4).

Harvesting the diversity benefit of multiple receive antennas is conceptually easy. It
only requires optima combining of all available information at the receiver [7]. On the
other hand, the diversity benefit of multiple transmit antennas can be obtained only if each
information symbol is, in some sense, spread across all available transmit antennas. This
was considered conceptually difficult before the introduction [3] of space-time codes,

which we discuss in the next section.
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2.3 Introduction to Space-Time Codes

Space-time codes can be thought of as atransmitter front-end, bridging asingle stream
of coded or uncoded data with a bank of multiple transmit antennas. As shown in Fig. 1,
the input to the transmitter front-end is a serial stream of bits, which are either uncoded, or
are obtained from an outer code. The coded/uncoded bits are modulated to obtain complex
symbols from a finite alphabet, say a QAM or PSK constellation. We will see in later
chapters that the presence or absence of the outer code is a crucial factor in determining
performance metrics and design criteriafor the space-time code.

In one block of encoding, the space-time code takes in a K x 1 complex vector u
containing modul ated complex symbols, and produces¢ x 1 transmit vectorsxy, xg, ..., Xy
for N signaling intervals. Equivalently, the output of the space-time code is the ¢ x N
complex matrix X = [x1, X9, ..., Xy]. The number of signaling intervals per block, namely
N, is called the length of the space-time code. We will assume that N isfinite.

Space-time codes spread information over multiple signaling intervals, just like
conventional error correction codes for scalar channels. However, space-time codes also
spread information across the multiple transmit antennas. In other words, they introduce
redundancy across space and time. The amount of redundancy introduced by a space-time
code is quantified by its rate, and the effectiveness of the redundancy is quantified by the

raw diversity order. We now discuss these two important parameters of a space-time code.

B

Modulation Space-Time
—P (from bits to —» pCOde

complex outputs) j)))

Fig. 1. Block Diagram of transmitter with space-time code as front end.

Input Bits
Coded/Uncoded

Bank of ¢
Tx antennas
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2.3.1 Rate of a Space-Time Code

The rate of a space-time code is defined as the number of complex input symbols that
it encodes per signaling interval. Since we have assumed K inputs in a block lasting N
signaling intervals, we get arate of R = K/ N. High rate is desirable, because it indicates
that alarge fraction of the transmitted symbols carry actual information, not redundancy.

Viewed differently, suppose each input symbol to the space-time code is drawn from a
QAM (or PSK) constellation of size 2°. Then, each symbol carries b bits of information.
Assuming a pulse shape with zero excess bandwidth, the information rate transmitted by a
rate R space-time code with 2°-QAM input symbolsis Rb b/ s/ Hz. Thus, for the same
input constellation, space-time codes with higher rate transmit at a higher data rate.
Conversely, to achieve the same data rate, high rate codes can use a smaller constellation.

Another useful view of rate is obtained by considering the effective channel formed by
the combination of the space-time code and the MIMO fading channel. The rate is the
number of complex inputs multiplexed by the effective channel per signaling interval.

Again, high rate implies more multiplexing and is desirable.

2.3.2 Raw Diversity Order of a Space-Time Code

The raw diversity order of a space-time code measures the degree to which it exploits
transmit diversity in order to provide fade resistance. In particular, it is the diversity order
of a communication system where uncoded bits are fed to the transmitter shown in Fig. 1,
and the receiver does optimum maximum-likelihood decoding. Note that by assuming
uncoded inputs, the raw diversity order measures the diversity obtained by the space-time

code alone, without help from an outer code.
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In order to compute the raw diversity order of a space-time code, one must, in
principle, obtain an expression for the error probability with a given input aphabet, and
use it to compute the limit (3). However, the raw diversity order is more conveniently
obtained using the rank rule, developed in [3]. Given an input aphabet U containing all
possible inputs u to the space-time code, one obtains the codebook X of all possiblet x N
space-time code output matrices X. The rank rule, which we will rederive in Chapter 3,
states that the raw diversity order of a space-time code with codebook X is equal to the
product of the number of receive antennas r and the minimum rank of all pairwise

differences from the codebook X. In other words,

— min N
o, r, X) = "X O rank(X - X). (5)

Each difference matrix X - X' hasdimension ¢ x N, and arank of at most min(¢, N). Thus,

3¢, r, X) < rmin(¢, N), (6)
with equality if and only if every pairwise difference between valid code matrices has full
rank. In particular, if the code has length N > ¢ and full-rank difference matrices, we get

the maximum possible, or full, raw diversity order, namely ¢r.

2.4 Linear Space-Time Codes

In this section, we discuss the encoding process of a space-time code. We have said
that the output of the space-time codeisthe¢ x N transmit matrix X whose columns x;, xo,
...,Xy are the transmit vectors over the space-time coding block. Equivalently, one can
also say that the output is the composite transmit vector x of dimension Nt x 1, given by x

=[x,%, x5, ..., xn" 1% In other words, x is formed by placing the columns of X one below
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the other This stackingof columnsis denotedx = vec(X), and the inverserelationis
denotedX = mat(x). In generala space-timecodecanobtainx by any operationon the
inputvectoru. However, in thiswork, we focuson linear space-timeodesalsoknown as
linear dispersion codes [12], whereeachoutputsymbolis somelinearcombinationof the
input symbolsand their complex conjugates.In other words, a linear space-timecode
obtains its composite transmiatorx according to the rule

x = Mju + Myu*, (7)
whereu* denoteshe comple conjugateof u. M; andM, arecomplex N¢ x K matrices.

To represent (7) more compactiye use the compteto-real transformations [4]

=m0 A=l | ®
for complex vectorsb and matriced. Now, the encoding rule (7) becomes
x =Mu, 9)
where theNt x 2K real matrixM is given by
M = Re(M;) + Re(M,) - Im(M;) + Im(M,) (10)

Im(M,) + Im(M,)  Re(M;) - Re(My)|

M is called theencoding matrix of the linear ST code, and completely specifies the code.

2.4.1 The Effective Channel for Linear Space-Time Codes

Linear space-timecodesalso have a simplerelationbetweenthe codeinput u at the
transmitter andthe receved vectorsin theblocky;, ys, ...,yn. Fromthe MIMO channel
equation(1), we have y; = Hx; + n;. Now, we assembleéhe compositereceve vectory =

[y1% yob, ....yn 1%, and the composite noiseatorn = [n; ", n,T, ....nxT1%. Clearly
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(11)

where we have defined the block diagonal transfer matrix G. Now, we only need to apply
the complex-to-real transformation (8) to (11) and substitute x = Ma from (9) to obtain
§y=Gx+h =GMa +n. (12)
Equation (12) is the input-output relationship of the effective channel formed by the
combination of the linear ST code and the underlying MIMO fading channel, as shown in
Fig. 2. From (12), the effective channel isreal and has dimensions 2Nr x 2K. Remarkably,
it is linear and memoryless, just like the underlying MIMO fading channel (1). The
linearity of the effective channel makes the analysis and design of linear space-time codes
easy, as we will see in chapters Chapter 3 and Chapter 9. The tractability of the effective

channel is the primary reason for the general popularity of linear space-time codes.

The linearity of the effective channel also enables the design efficient decoding
algorithms for linear space-time codes, as we will see in Chapter 11 and Chapter 12.
However, these efficient decoding agorithms work well only when the columns of the
effective channel matrix are linearly independent. To intuitively see the need for this

restriction, suppose there were no noise n. Then, the input & can be obtained from y =

B

rxt
. Linear . MIMO : Stack Composite
Code-input__y| gpace-Time . Channel = Received —» Output
Code Vectors y

BReAC A

Fig. 2. Effective channel formed by combination of ST code and MIMO fading channel.
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GMau through inversion (or pseudo-inversion) of the effective channel matrix, only if the
2K columns of the G M are linearly independent. Now, the columns are linearly dependent
when GM has rank equal to 2K. On the other hand, the rank of GM is at most equa to
the rank of G, which in turn is at most equal to the minimum dimension of G, namely
min(2Nr, 2Nt). Thus, linear independence of columns requires 2K < min(2Nr, 2Nt).
Dividing both sides by 2N, we see that the rate R of the linear space-time code should
satisfy

R =K/N <min(t, r) (13)

in order for the efficient decoding techniques to apply.

The value min(t, r) is called full rate of alinear space-time code. From (13), we see
that full rate is the maximum rate possible if one also wants efficient decoding. As already
mentioned, the rate of a space-time code measures its multiplexing ability. A space-time
code operating at full rate multiplexes min(¢, r) symbols per signaling interval, which is
equal to the multiplexing ability of the fading channel itself. Rate greater than full rateis
possible in theory, but it complicates decoding without increasing the possible
multiplexing gain. Consequently, space-time codes are typically designed to have full rate,

but not more.

2.4.2 Strictly Linear Space-Time Codes

A sub-class of linear space-time codes is that of strictly linear space-time codes, for

which the matrix M, in (7) is 0. The encoding relation is thus
X = Mu, (14)

and the effective channel transfer function is
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y = GMu + n. (15)
For strictly linear space-time codes, the encoding matrix M and the effective channel
matrix GM are both complex, and have dimensions Nt x K and Nr x K respectively. The
restriction to strict linearity makes analysis simpler. Heuristically, the best strictly linear
space-time codes are found to achieve roughly the same error rate as the best linear space-
time codes. However, there is definitely aloss of generality. In particular, no strictly linear

space-time code has the elegant properties of the linear Alamouti code (see Section 2.5.2).

2.4.3 Modulation for Linear Space-Time Codes

We close our introduction to linear space-time codes with a remark about the
separation of modulation and space-time coding. The modulation process in Fig. 1 just
puts a unique, reversible label on the input bits. In general, a space-time code can reverse
the label and work with the bits directly if it wants, and so the exact choice of the
modulation labels is inconsequential. However, alinear space-time code can only perform
linear combinations of the modulated complex symbols. Now, the choice of the
modulation aphabet affects the codebook of the linear space-time code, and hence the
performance. ldeally, one should jointly design the modulation alphabet and encoding
matrix together, but the joint design problem is analytically daunting. In this work, we
adopt a ssimpler, sub-optimum alternative [20][40][17], namely we assume QAM or PSK

modulation, and then design only the encoding matrix of the linear space-time code.
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2.5 Examples of Space-Time Codes

In this section,we presentllustrative examplesof a few space-timecodesWe begin
by discussingimportantlinear space-timecodes,and end the sectionby discussinga

representate example of non-linear space-time codes.

2.5.1 The Serial-to-Parallel Converter (SPC)

The S/Pcorverteris the simplestspace-timecode.In onesignalinginterval, it takesin
¢t complex symbols,andtransmitsoneon eachof thet availabletransmitantennasThus,
the codelength N is 1, the numberof inputsK is ¢, andrateis K/ N = t. The transmit
vector x; is equalto the ¢ x 1 input vectoru. All non-zerodifferencesbetweencode
outputsarenon-zerat x 1 vectors,which have rankone.Thus,from therankrule (5), the
S/Pcorverterhasaraw diversity orderequalto the numberof receve antennas. In spite
of its low raw diversity order the S/P corverter is an attractve inner code, when a
powerful outer codeis presentaswe will seein Chapte©. The V-BLAST transmitter

architecture [5][11] emplgs the S/P corerter as inner code.

2.5.2 The Alamouti Code

The Alamouti code[9] assumeshattherearet = 2 transmitantennasilt takesin the
inputvectoru = [ us]”T containingK = 2 complex symbols,andobtainsthe codematrix

for N = 2 signaling interals, gven by

. (16)
Us u1D
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It is easy to check that if distinct transmit matrices X and X' correspond to input vectors u
and u', then the difference matrix X — X' has determinant |ju — w'|[2, which is clearly non-
zero, implying that al differences X — X' are full rank. Thus, from the rank rule (5), the
raw diversity order of the Alamouti code isrmin(¢, N) = 2r, which is equal to the full raw
diversity order. On the other hand, since K = N = 2, the Alamouti code hasarate K/N = 1.

Thisisequal to full rate min(z, ) if and only if thereis exactly r = 1 receive antenna.

Beyond rate and raw diversity order, the Alamouti code has one additional feature,
namely that the transmit matrix X always has orthogonal columns, irrespective of the input
u. The effect of this property isthat the effective channel matrix discussed in Section 2.4.1
always has orthogonal columns, irrespective of the fading channel matrix H. Hence, clever

signal processing (see[9]) at the receiver can diagonalize the effective channel, giving

y' = [Hl|lfu +n, (17)
where |[H|| 72 is the squared Frobenius norm (or the energy) in the channel matrix H, and
n' IS a noise vector containing independent zero mean complex Gaussian noise terms of

variance N,. The symbols u; and us in u can now be independently decoded, from the

corresponding symbols of the effective received vector y'.

Linear space-time codes for which the effective channel can be diagonalized to the
form (17) are called orthogonal designs [10]. In addition to simple parallel decoding,
orthogonal designs also guarantee full raw diversity order. However, it was shown in [10]
that all other orthogonal designs have rates less than that of the Alamouti code, namely

one. Their low rate isthe major drawback of orthogonal designs.
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2.5.3 Linear Complex Field Codes

Thefirst full rate,full raw diversity space-timecodewasdevelopedin [21] for ¢ = 2
transmitantennasand » > 2 receve antennasusing numbertheoreticideas.The same
ideaswere extendedto obtainlinear comple field codes(LCF) codes(see[19][20][22]
and the referencegherein), that guarantedull raw diversity order for any numberof
transmitantennasfor all QAM modulatedinputs. Thoughthey are often presentecdas
layeredor threadedcodes,LCF codesare essentiallylinear space-timecodes.Given the
numberof transmitantennas andthe codelengthV, LCF codesexist for any numberof
codeinputs per block satisfyingK < Nt (or equivalently ary rateR = (K/ N) < t). For
convenience we first presentthe LCF encodingmatrix assuminghat K = Lt, for some
integerL < N. Theassumptiorwill berelaxedlater The encodingmatrix is parametrized
by two unit-magnitudecomplex numbersa andp. The parameten determineshe N x L

matrix C, according to

1 2 _
¢,y = —— exp E—jﬁn(n—l)(l—l)%al 1 (18)

JN
The parametep determineshet x ¢ diagonalmatrix Dg = diag(1, B, ..., Bh). LetR, be

the matrix formed byyclically rotating the rars of thet x ¢ identity matrixn times, i.e.,

R, =

0 In] . (19)

I 0

t—n

With these definitions, the encoding matrix of LCF code parametrizacabyp is

R,D R.D R,D
My(a,p=| ‘210 22710 | Far T (20)
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The parameters a and B specify the code and determine its codebook, and hence the raw
diversity order. It was shown in [19][20][22] that if a is chosen to be an algebraic integer
[37], the LCF code My ;(a, al) achieves raw diversity order min(z, N)r for all QAM input
constellations. In particular, LCF codeswith N > ¢ and K = N¢ simultaneously achieve rate
¢ and full raw diversity order. To our knowledge, no other codes with this property have

been proposed. However, we will seein Chapter 4 that such codes are aplenty.

Finally, the assumption K = L¢ was made only for convenience. Given any N¢ x Lt
encoding matrix, one can puncture some of the inputs by removing the corresponding
columns of the encoding matrix. By puncturing, one can obtain any value of K between 0

and Nt, while still maintaining the raw diversity order of min(z, N)r.

2.5.4 Space-Time Turbo Codes

Space-time turbo codes [38] consist of a binary turbo code, whose output bits are
interleaved, modulated, S/P converted, and transmitted on multiple antennas. The
interleaver between the outer code and the S/P converter is designed with an additional
constraint [38] to ensure full raw diversity order. However, when the turbo code length
runs into a few hundred bits, the constraint is loose enough to be ignored, and the
interleaver can be arbitrarily chosen without affecting raw diversity order. Then, the
combination of the turbo code and the interleaver can be thought of as an outer code,
which feeds coded symbols to the inner-space time code, which is only a S/P converter.
This separation is convenient because the S/P converter is alinear space-time code, and is
therefore more amenable to analysis. We will revisit this separated coding architecture in

Chapter 7.
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2.5.5 Time-Varying Linear Precoders

Time-varying linear precoders (TVLP), introduced in [15], were designed specifically
for tall MIMO channels, with more transmit than receive antennas. They are strictly linear
space-time codes, except that their encoding matrix varies from block to block, i.e., the
matrix M; depends on the block index /. Consider the example of length 1 code blocks
with one complex input each, with M; = i; ., 4 ;» Namely the (I mod #)** column of the ¢ x ¢
identity matrix. Essentiadly, every signaling interval, the code takes in one input symbol,
and transmits it on just one antenna. The antenna for transmission is chosen in cyclic
round-robin fashion. Since only one antenna transmits at any given signaling interval, the
effective channel isatime-varying r x 1 channel, which makes decoding simple. However,
the simplicity does not come at the cost of diversity. It is easy to show that awell-designed
outer code can get full diversity order by decoding soft-outputs from the inner space-time
decoder. TVLP codes were probably the first space-time codes to be rigorously analyzed
from both diversity and capacity points of view. They have since been overshadowed by
linear dispersion codes, particularly because of their dependence on an outer code in order
to get diversity. However, their elegance and ease of implementation makes them

noteworthy.

2.5.6 Space-Time Trellis Codes

We close this section by discussing space-time trellis codes [3], which are not linear
gpace-time codes. Consequently, the effective channel is not linear, and analysis and

decoding of space-time trellis codes tends to be complicated.
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Space-time trellis codes are, in one sense, the space-time extension of trellis coded
modulation (TCM) for AWGN channels [39]. For every signaling interval %, they maintain
a state s, containing information about previous inputs and outputs. The state s, along
with the current input u;, determines the transmit vector x; for that signaling interval.
Typically, the state is just a collection of the L previous inputs, namely s;, = [up_1, up-9,
..., up 1. L isthe called the memory of the code. One can represent this encoding process
on a trellis, with values of s, connected to possible next states s;.; through branches,
which are labelled based on the corresponding code input u; and output vector x;. The
initial state s, is pre-determined, and is called the all-zero state. After encoding N - L
inputs, or equivalently walking across as many trellis stages, the code stops taking inputs,
and inserts L termination symbols in order to force the state sy, to be the all-zero state
again. This termination [3] ensures that the raw diversity order of the space-time trellis
codeis equal to min(¢, L)r. By making L > ¢, full raw diversity order can be obtained. The
next block starts again from the all-zero state, and is independent of the inputs and outputs
over the current block.

Note that the output x;, is not just a linear combination of the inputs {u;} over one
block, therefore ST trellis codes are not linear. In fact, the input u;, isjust alabel for the
input bits at time k. Therefore, ST trellis codes can be thought of as taking in bits, and
performing joint modulation and coding, as described in Section 2.4.3. Further, the output
symbols of a ST trellis code usually belong to a QAM or PSK constellation, thus
controlling the peak-to-average power ratio of the transmitted signal. The disadvantage of
space-time trellis codes is that when the memory L > ¢ is large, the trellis has too many

states, making decoding cumbersome.
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Table 1. A List of Important Linear Space-Time Codes.

Number of Code Number of Rate Raw
Code Tx Antennas | Length Inputs Diversity
¢ N K KIN Order
S/P converter Anyt 1 t t r
Alamouti 2 2 2 1 2r
LCF code Any ¢ Any N Any K/N min(¢, N)r
K <Nt

To our knowledge, space-time trellis codes are the only significant non-linear codes in
the literature. There are some algebraic space-time codes [40], which take in bits and
produce complex symbols. However, many of these can be split into a combination of a
finite-field outer code and a linear inner space-time code. Interestingly, there is one code
[41] that actually does independent modulation first, and then does a non-linear operation
on the modulated complex symbols, without using them merely as labels. This code lacks
any generic structure, but can be hand-crafted to outperform linear codes for some channel
dimensions and input constellations, according to [41].

The three most important codes for the rest of this work are the S/P converter, the

Alamouti code and the LCF code. These are summarized in Table 1, for convenience.

2.6 Importance of Rate and Raw Diversity Order: Example

We now present an example to illustrate that high rate and raw diversity order are
crucial in order to achieve good performance. This observation explains the research focus
on obtaining full rate, full raw diversity linear space-time codes, both in the literature and
in this work. We compare three linear space-time codes operating over a 2-input, 2-output

Rayleigh fading channel: the S/P converter, the Alamouti code and a linear complex field



code, whose encoding matrix is given by M o(exp(j0.5), exp(71.0)) in (20). In the present
example the channel dimensions are ¢ = r = 2, hence full rate and full raw diversity order
are min(¢, r) = 2 and ¢r = 4 respectively. The S/P converter has full rate of ¢ = 2, but raw
diversity order of only r = 2, from Table 1. On the other hand, the Alamouti code has rate
one (half of full rate), but full raw diversity order. The L CF code has both full rate and full
raw diversity order.

The performance of these codes is compared at 4 bits/s/Hz. In order to achieve this
datarate, each input symbol to the S/P converter and the L CF code is drawn independently
from a4-QAM input alphabet. On the other hand, the Alamouti code has half the symbol
rate of the other two codes, and consequently hasto use a 16-QAM input a phabet. Frames
consisting of 100 signaling intervals (corresponding to 100/ N = 50 coded blocks for the
length-two Alamouti and L CF codes) are transmitted across the Rayleigh fading channel.

The channel is constant over one frame, but varies independently from one frame to the

107
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Fig. 3. Performance of three space-time codes over a 2-input, 2-output Rayleigh fading
channel at4 b/ s/ Hz.
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next. The receiver does optimum maximum likelihood decoding, which will be discussed
in Section 3.1. A frame error is said to occur if one or more symbols in the frame are
decoded erroneoudly. The resulting frame error rate is plotted against SNR in Fig. 3.

The higher rate of the /P converter enablesit to use asmaller constellation, and hence
achieve a lower error rate at low SNR, when compared to the low-rate Alamouti code.
However, the full raw diversity order of the Alamouti code leads to a steeper error rate
curve than the low diversity S/P converter. Hence, at higher SNR, the Alamouti code
outperforms the S/P converter. The LCF code has both full rate and full raw diversity

order, hence it outperforms both the other codes.

2.7 Summary

In this chapter, we described the linear, frequency non-selective, slow-fading MIMO
channel model (1) used in the remainder of this work. We outlined the multiplexing and
diversity benefits of MIMO fading channels, and motivated space-time codes as a
transmitter-front end used to harness the available transmit diversity. We defined, and
discussed the importance of, the rate and raw diversity order of a space-time code. We
defined linear space-time codes. We derived an expression for the encoding process, and
for the effective channel formed by the combination of a linear space-time code and the
MIMO fading channel. Finally, we presented examples of popular space-time codes.

In the next few chapters, we will assume uncoded inputs to the space-time code, and
address the design of linear space-time codes to minimize the error rate, given the channel
dimensions, length and rate of the space-time code. Subsequently, the design of space-

time inner codes, whose inputs are obtained from an outer code, will be discussed.
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CHAPTER 3

Performance Metrics for Stand-Alone Space-Time Codes

In this chapter, we study the performance of space-time codes with uncoded inputs,
when the receiver performs optimum maximum likelihood decoding. The system under
consideration is shown in Fig. 4. Uncoded input bits are modulated to obtain complex
symbols belonging to a countable alphabet. These symbols are encoded by the space-time
code to obtain transmit vectors, which are transmitted across a Rayleigh fading channel.
The received signals are fed to a maximum likelihood (ML) decoder which estimates the
input symbols to the space-time code.

Analysis of the error rate of the communication system of Fig. 4 is part of the standard
literature of space-time codes, notably [3][8]. The error rate itself is difficult to obtain in
closed form, but the union bound on error rate can be easily derived. Further analysis of
the union bound at high SNR yields two new performance metrics, namely the raw
diversity order and the coding gain. In subsequent chapters, we will take up each

performance metric one at atime, and aim to design space-time codes that optimize it.

)4

. Xt Optimum
Uncoded Modulation | % Space-Time | . Rayleigh - ML i
Bit —Pp > . . .
s (ex. QAM, PSK) Code cfk?grgr;]gel . Decoder [—P»

j t (minimum WER)

Fig. 4. Transmitter with a stand-alone space-time code and optimum receiver.
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3.1 An expression for the Word Error Rate

In this section, we will derive an expression for the error rate of the system shown in
Fig. 4. The expression will be shown to be intractable, motivating the derivation of more
tractable bounds and approximations.

Recall that each space-time code block lasts N signaling intervals. In one block, the
input to the space-time codeisa K x 1 complex input vector u, drawn randomly from an
input alphabet U. Till the beginning of Chapter 7, we assume that U is discrete or
countable, i.e., its elements can be indexed by the natural numberst. For example, U can
be the set of al K x 1 lattice vectors, namely vectors whose entries have integer real and
imaginary parts. Another example is the smaller set of all K x 1 vectors whose symbols
belong to a 16-QAM alphabet. Given the input vector u, the space-time code uses some
encoding rule to obtain the ¢ x N transmit matrix X. The columns of X are transmitted
across the MIMO fading channel over N signaling intervals, and received on r receive
antennas. The received vectors constitute the columns of an r x N receive matrix Y. From
the linear memoryless Rayleigh-fading channel model of (1), we get

Y=HX+N. (21)

Given the receive matrix Y and the channel H, the task of the decoder is to estimate the
code input vector u. Whenever the decoder’s estimate of the input vector iswrong, a word
error is said to occur. The probability of word error, called the word error rate (WER),
clearly depends on the decoder algorithm used to produce the estimate (see Chapter 11).

The decoder that has the minimum WER is the maximum likelihood (ML) decoder. The

1. All finite sets are countable. Not all infinite sets are countable. For example, the infinite set of all
rational numbers is countable, while the set of al real numbersis not.

38



ML decoder uses the conditional probability density function (pdf) p,,(Y | H,u'), which
intuitively refl ects! the probability of receiving the matrix Y if the actual transmit vector
were u'. For AWGN noise with each noise symbol having a variance N,,, the conditional
pdf is given by

1 Y -BX'|, D
N expld N L,
(T!V ) 0 o O

pD//zu(Y/ H,u') = (22)

where X' isthe transmit matrix corresponding to the input vector u'.

A vector u; DU issaid to be morelikely than another vector uy DU if py | (Y 1 Hyuy) >

Py (Y IH,up). The ML decoder outputs the most likely vector in 7, namely

argmax
u du

u =

Py (Y ITHW). (23)

Theword error rate of the ML decoder isthe probability that w isdifferent from the actual
input vector u. Note that the word error event depends on three random variables, the
actual input vector u 07, the random channel matrix H, and the noise matrix N. Let £,
denote the event that a word error occurs, conditioned on the input vector being one
specific u 0, and let Pr(E,) denote the probability of the event Z,. Averaging Pr(E,)

over the pdf p(u) of the input vector u, we get the word error rate of the ML decoder
WERy, = g P (WPr(Ey). (24)
ullu

The expression (24) for the word error rate is intractable because Pr(%,) cannot easily be
computed in closed form. In the next section, we will obtain the union bound on WER by

breaking up the conditional word error event £, into the union of multiple events.

1. The intuitive interpretation is not exact because Y is a continuous random variable. The pdf
directly gives probabilities only for discrete random variables.
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3.2 The Union Bound on the Word Error Rate

Let £,(u’) denote the pairwise error event, that some u' # u is more likely than the

actual transmit vector u. Now, £, occursif any u' # u ismore likely than u, implying

Fu= U E@). (25)

u'zu

Clearly, Pr(Z,) can be bounded by the sum of pairwise error probabilities (PEP), as

Pr(E)s Y PrZa). (26)

u 7u

Substituting (26) in (24) gives the union bound on the word error rate

WERy, € g pg(w) Z Pr(E,("). (27)
uTu

uZu

The reason for using the union bound is that the pairwise error probability for each
pair (u, u') is easy to analyze. In particular, a Chernoff bound on the PEP can be obtained
by averaging out the random variables determining the pairwise error event, namely the
Rayleigh fading channel matrix H and the noise matrix N. For convenience, the standard

derivation [3][8] is reproduced in Appendix A. Thefinal expressionis

(X -X) (X -X)
iN, 0’

Pr(E,w)) < det™ H, + (28)

whereX and X' are the transmit matrices corresponding to u and u’ respectively.

One final manipulation will prove useful to explicitly show the effect of the signal-to-
noise energy ratio (SNR) on the union bound. Recall from (2) that the SNR isdefined as S
= E[||Hx,|[?1/ »N,. Since each term in the Rayleigh fading channel matrix H is an
independent unit-energy complex Gaussian, it is easy to show that E[|[Hxy|[?]1/r is equal to

the average transmit energy E., = E[||x;||?]. Thus, we can substitute N = E,./ S in (28),
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and substitute, in turn, for the PEP Pr(Z,(u’")) into the union bound expression (27). This
gives the final expression for the union bound on the word error rate of a space-time code
with input aphabet U and output aphabet X operating over a ¢-input, r-output Rayleigh

fading channel at SNR S, namely

, ~H
)(X-x)"0

4E, (29)

O _
WERy, < g pow Z det"’EIt+S(X X
ulu u 7u U

An alternative representation of the same union bound will prove useful in the sequel.
Each ¢ x N difference matrix X - X' has min(¢, N) ordered singular values, say A\; = Ag >
<2 Apin(e, Ay 2 0. The number of non-zero singular valuesis equal to therank of X - X'. In

terms of the non-zero singular values, the determinant in (29) above can be written as

rank(X-X") 0 }\2

[ a+s i 0 (30)

JX-X)(X-X)"0
|:|=
AL 0 AERD

4Etx O

L]
det (T, +
0

Substituting (30) in (29) yields the equivalent representation of the union bound

rank(X—X’)D )\? D"'
ullu uZu il:ll 0 4EtxD

We will use (29) and (31) interchangeably, for ease of presentation. Note that the
codebook X of a space-time code determines the pairwise differences, and hence the union

bound on WER. Now, we focus on the impact of X on the WER at high SNR.

3.3 The Raw Diversity Order

Recall from Section 2.2.2 that the diversity order of any communication system is the
asymptotic slope of alog error rate vs. log SNR plot. Also, in Section 2.3.2, we briefly

introduced the raw diversity order of the space-time code with uncoded inputs, i.e., the
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raw diversity order of a space-timecodeis the diversity order of the communication
systenmof Fig. 4. We now proceedo obtaintheraw diversityordet usingtheunionbound.

By definition, the rev diversity order is the limit

. logWERy,
&t nX) = SIITWW . (32)

The unionboundexpressiornprovidesan upperboundon theword errorrate,andhencea
lower boundon the raw diversity order It is easyto shav thatthe lower boundis, in fact,

tight. So, one can replace the WER in (32) by the union bowidggi

1 rank(X—X’)D }\? D_r
3t r, X)=- lim —=1 A+S——10 . 33
CERY S _ « logS ogu;u pﬂ(u)uzi |_| 0 4E. 0O (33)

u =1 tx

At high SNR,the‘1 + ' termin eachproductis negligible, andthe SNR exponentin each
productis equalto -rankX - X')r. While summingup over all pairs(u, u') andaveraging
over the input probabilities p¢(u), the term with the maximum exponentdominates.
Consequentlythe raw diversity orderis equalto p,;,r, Wherep,,;, iS the minimum rank

of pairwise diferenceX - X' between transmit matrices. Thus, we get

_ .. min N
ot n )= rg ¢XranI(X X), (34)

as statedin (5) of Section2.3.2. Since differencematriceshave dimensiont x N, their
maximum possible rank tain(¢, N). Using this &ct in (34), we get the rank rule [3][8].
Rank Rule: The maximumraw diversity orderof alengthN space-timeodeoper-
ating over a t-input, r-output Rayleighfading channelis equalto rmin(¢, N). This
upperboundis achievedif andonly all pairwisedifferenceX - X' betweertransmit

matrices hee full rank, equal tenin(z, N).
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3.4 The Coding Gain of Space-Time Codes

At high SNR, a plot of log(WER) vs. log(SNR) is a straightline. The raw diversity
orderis the slopeof the asymptoteTwo codeswith the sameraw diversity orderachiese
the sameasymptoticslope, but could differ in the offset (or horizontal shift) of their
asymptotesThe coding gain of aspace-timeodeis anapproximataneasuref the offset
of the asymptote.

Assumethattheinputalphabetl is notonly discrete put alsofinite. Let |1 | denotethe

cardinality ofll. Then, the inner sum in the union bound (27) can be bounded by

S Pr(Ey@) < (U|-1) FEPr(E, W), (35)

uZu
just by usingthe fact that eachterm Pr(Z,(u')) is lessthanthe maximum,andthereare
(|U] - 1) suchterms.Now, the unionboundis the averageof the left handsizeoveru, and

consequently it cannokeeed the maximum of the right hand sideraa. This gves

WERyy, < M (U -1 M pr(£,)). (36)

Intuitively, the right handside of (36) is obtainedwheneachpairwiseerror eventoccurs
with the sameprobability as the worst case, or most probable,pairwise error event.
Finally, substitutingfor the PEPPr(Z,(u')) from (28) in (36), we gettheworst-caseupper

bound on the wrd error rate,

rank(X-X") 0 )\2 D"”
— _ max max i

i=1
At high SNR,the ‘1 + ’ termin the productscan be negglected,in comparisorwith the

SNR-dependenterm. Also, the termswith the maximum power of SNR, which is by
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definition equal to the raw diversity order, will clearly dominate at sufficiently high SNR.

Using these high-SNR trends, we get the approximation

rank(X-X") 2 -r

max OA O

UBwc = (U -1) 87350 w#u G—o>0 . (39)
kX -X) = pin 1y EtxD]

Note that the maximum is taken only over those error events which have the minimum
rank difference matrix, since these dominate at high SNR. The reciprocal of this

maximum, namely

. rank(X-X') 2 r
min OA; O

Yo = uzu U0 , (39
rank(X - X') = Prin il:ll HE tx[]

is caled the coding gain of the space-time code. The coding gain complements the raw
diversity order as a measure of code performance at high SNR. The raw diversity order
measures the minimum rank, or equivalently, the minimum number of non-zero singular
values among all difference matrices. From (39), it is easy to see that the coding gain

accounts for the actual value of these singular values.

3.5 Comparison of Performance Metrics

In this chapter, we have used bounds and approximations on the word error rate to
obtain three performance metrics for a space-time code. The union bound is the most
comprehensive of the three performance metrics, and reflects the actual word error rate
most closely. One feature of the union bound, obvious from the expression (31), is that it

depends on the SNR. At low SNR, it is well known the union bound is a loose bound on



the word error rate, and is therefore not useful. However, as the SNR increases, the union
bound becomes tighter. The SNR dependence also makes the union bound somewhat
cumbersome as a performance metric, since it needs to be computed afresh for every SNR.

In contrast to the union bound, the raw diversity order and coding gain are SNR-
independent, but are meaningful only when the SNR is asymptotically high. Note that
neither of them completely describes the word error rate by itself. The raw diversity order
gives the slope, and the coding gain attempts to quantify the offset of the word error rate
vs. SNR asymptote. Of these, the raw diversity order is clearly the more important. Thisis
because a low-diversity code has a shallower asymptote than a high-diversity code, and
has dramatically higher error rates as the SNR increases. In contrast, the effect of alower
coding gain manifests itself in only a shift of the asymptote, and the resultant error rate
penalty saturates at high SNR. Further, the coding gain is a pessimistic performance
metric, giving often undue importance to the worst-case error event. Thus, it does not
exactly measure the offset of the asymptote, but only approximatesit.

One special feature of the raw diversity order isthat it can be computed easily for any
space-time code using the rank rule. This analytical tractability is one of the reasonsfor its
popularity as a design metric.

The three performance metrics derived in this chapter quantitatively measure the
goodness of a stand-alone space-time code. Space-time codes with low union bound, or
high raw diversity order and coding gain, are desirable. In the next few chapters, we will
focus on strictly linear space-time codes, and discuss methods of finding codes which

optimize the performance metrics derived here.
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CHAPTER 4

Optimization of Raw Diversity Order by Random Code Selection

In Chapter 3, we saw that a space-time code of length N, operating over a ¢-input, r-
output Rayleigh fading channel can obtain at most a raw diversity order of rmin(¢, N). In
order to achieve this upper bound, the space-time code must satisfy the rank rule. In this
chapter, we show that the rank rule is satisfied by almost any strictly linear code whose
encoding matrix has orthonormal columns. Thus, the raw diversity order is an easy
performance metric to optimize. However, high raw diversity order alone does not
guarantee minimum error rate. Consequently, a search for linear space-time codes with

minimum union bound is taken up in subsequent chapters.

4.1 The Rank Rulefor Strictly Linear Space-Time Codes

In this section, we rederive the rank rule for the specific case of strictly linear space-
time codes. Recall from Section 2.4.2 the encoding process of a strictly linear space-time
code with encoding matrix M. Given an input vector u drawn from the countable input
alphabet U, the¢ x N transmit matrix X = mat(Mu) is obtained. The columns of X are the
transmit vectors in one block. The discrete input alphabet U and the N¢ x K complex
encoding matrix M determine the codebook X of the space-time code, and hence the

performance metrics derived in Chapter 3, specifically the raw diversity order.
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From Section 3.3, the raw diversity order of a space-time code is equal to the product
of the number of receive antennas and the minimum rank of pairwise differences between
valid transmit matrices. In the specific case of strictly linear space-time codes, if X and X'
are transmit matrices corresponding to two distinct inputsu and u’, we have

X - X' = mat(Mu) - mat(Mu’') = mat(M(u —u')). (40)
Let us define the input difference alphabet D as the set of all differences between distinct

input vectors, i.e.,

D={d=u-u:uzuw 0U. (41)
If 7 is countable, then the difference alphabet D is also countable.! From (41), it is clear
that every difference X - X' between transmit matrices is equal to mat(Md) for somed [
D. Consequently, the raw diversity order of astrictly linear space-time code with encoding
matrix M and input different alphabet 2 operating over a¢-input, r-output Rayleigh fading

channel is given by

3t,r, M, D) =r M7 rank(matMd)). (42)

Clearly, the maximum value of the raw diversity order d(t, r, M, D) iS rmin(¢, N).
According to the rank rule, this maximum raw diversity order is achieved if and only if
mat(Md) is full rank for all d O D. Given ¢, r and D, optimizing the raw diversity order
amounts to choosing an encoding matrix M so that the rank rule is obeyed. The main
result of this chapter isthat arandomly chosen M almost always does the job, aslong as it

has orthonormal columns. Thisis stated rigorously in the following theorem.

1. Thedifference alphabet is equivalent to the set of ordered pairs of vectorsfrom the input al phabet.
For finite input alphabets, the difference alphabet is also finite, hence countable. For infinite input
alphabets, one can invoke Cantor’s delightful diagonal trick [44], to prove the countability of the
difference alphabet.
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Theorem 1. Let adtrictly linear space-time code of length N encode K x 1 com-
plex input vectors belonging to a countable input alphabet U, with K < Nt. Suppose
the encoding matrix M is uniformly picked from the set M(Nt, K) of all Nt x K
matrices with orthonormal columns. With probability one, the space-time code with
encoding matrix M achieves raw diversity order of rmin(¢, N), when operating over

at-input, r-output Rayleigh fading MIMO channel.

The intuition behind the above theorem is as follows. In order to obey the rank rule, the
matrix M has to satisfy a countable number of constraints, namely that mat(Md) be full
rank for each of the countably many difference vectors d. On the other hand, M is drawn
randomly from the continuous set M(Nt, K). The continuity of M(INt, K) gives a lot of
freedom in the choice of M, making it easy to satisfy the countable number of constraints.
As an analogy, note that a random variable drawn uniformly from the interval [0, 1] is
amost certainly not equal to 1/n for any integer n. Thisis because the countable set {1/n:
n=1,2,3, ..} isof negligible measure when compared to the continuous set [0, 1]. Inthe

remainder of this chapter, we will prove Theorem 1 and discussitsimplications.

4.2 The Uniform Distribution on a Continuous Set

In this section, we rigoroudly discuss what we mean by uniformly picking a random
matrix with orthonormal columns, and also offer a practical method to implement this
uniform picking. As defined in the theorem statement, let M(Nt, K) be the set of Nt x K
complex matrices whose columns are orthonormal, namely,

MNt, K) = {M: M'M = I}, (43)

where Iy isthe K x K identity matrix.
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M(Nt, K) is called the Seifel manifold [43], and has associated with it a differential

volume element, dM, and consequently an associated volume
VNt K) = [aqnt, k) AM. (44)

One can define the Haar measure for the volume element dM in M(Nt, K) as p(M)dM,
where p(M) = 1/ V(Nt, K) is the probability density function (pdf) corresponding to the
Haar measure. Note that the pdf p(M) is the same for all M O M(N¢, K), hence the Haar
measureis also called the uniform measure. The Haar measure of any measurabl e subset A

of M(Nt, K) is defined as

M) = [ p (M)A (45)

We say that arandomly generated matrix M has been picked uniformly from M(Nt, K),
if its pdf is equal to p(M). In practice, such a matrix can be generated by doing Q-L
decomposition of a Rayleigh fading matrix of the same dimension. This follows from the
following property of Rayleigh fading matrices, which is well known in random matrix

theory, and is quite easy to prove [43].

Proposition 1. Consider a random Rayleigh fading matrix G of dimension m x n,
with m = n. Let G = QL be its Q-L decomposition of G. Then, Q is uniformly dis-

tributed over M(m, n).

Rayleigh fading matrices are easy to generate, using standard methods to generate
Gaussian random variables. Thus, Proposition 1 offers a practical method to generate a

random matrix M which is uniformly distributed matrix M{Nt, K).

1. The Q-L decomposition can be done by a Gram Schmidt orthonormalization of the columns of G.
One can think of the Q-L decomposition as atransformation of the random matrix G to the pair (Q,
L).
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4.3 Proof of Theorem 1

Having defined the uniform distribution, we now proceed to prove Theorem 1. We
need to show that if M is picked uniformly from M(N¢, K), mat(Md) has full rank for all d
0 D, with probability one. We first show that for any one difference vector d 0O D,
mat(Md) is full rank with probability one, and then extend the result to all the difference
vectors using the countability of the alphabet D. The following rotational invariance

property [43] of uniform distributions over M(Nt, K) will prove useful.

Proposition 2. Let M be arandom matrix drawn from MNt, K). Then, the distribu-
tion of M isuniform if and only if the transformed matrix ©M has the same distribu-
tion as M, for all unitary Nt x Nt matrices ©.
Intuitively, the transformation ©M reindexes the el ements of the set M(Nt, K) from which
M is drawn. Proposition 2 says that the uniform distribution is the one and only
distribution which looks alike at every element of the set M(Nt, K), and is therefore,
invariant to all reindexing of elements.
Of particular interest is the uniform distribution over the set M(Nt, 1), which contains
all Nt x 1 complex vectors with unit Euclidean norm. The following lemmas present two

randomly generated vectors that are uniformly distributed over the set M(V¢, 1).

Lemma 1. For any d # 0, if the matrix M is picked uniformly from M(Nt, K), the

random vector v = Md/ ||d|| is uniformly distributed over the set M(Nt, 1).

Proof: Since M O M(Nt, K), it satisfies MM = I;. Using this, we obtain [Md|? =

d"M"Md = ||d|]2. Consequently, the squared norm of v = Md/ ||d|| is

Ivi? = [Md|[2/ |[d|? = Id]?/ |d]]® = 1. (46)
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Thus, the random vector v aways has unit norm, and so belongs to the set M(N¢, 1).
It remains to prove that it is uniformly distributed on M(N¢, 1). Let © be any unitary
Nt x Nt matrix. Now, from Proposition 2, M' = ©M has the same distribution as M.
Consequently, v' = M'd/ ||d|| has the same distribution as v = Md/ ||d||. But clearly
v' = Ov. Thus, for any unitary matrix ©, v' = ©v has the same distribution as v.
Again invoking Proposition 2, we see that v is uniformly distributed over M(Nt, 1),

which completes the proof.

Lemma 2. Let G be a Rayleigh distributed random matrix of dimension ¢ x N. Then

the vector w = vec(G)/ ||G|| - is uniformly distributed over the set M(N¢, 1).

Proof: Let g = vec(G) bethe Nt x 1 vector formed by stacking the columns of G one
below the other. Since G is a Rayleigh fading matrix, the entries of g are indepen-
dent, unit-variance Gaussian random variables. In this casg, it is well known [15]
that g/ ||g]| is uniformly distributed on M(N¢, 1). Clearly, |ig]l = [IG]l Thus, the uni-

formly distributed vector (g/ ||g]]) equals w = vec(G)/ ||G||» completing the proof.

The above two lemmas lead to the proof of the following.

Lemma 3. For any d # 0, if the matrix M is picked uniformly from M(Nt, K), the ¢ x

N matrix mat(Md) has full rank min(¢, N) with probability one.

Proof: Consider the random vectors v = Md/ ||d|| and w = vec(G)/ ||G|| s where G is
at x N Rayleigh fading matrix. From Lemma 1 and Lemma 2, both these vectors are
uniformly distributed over M(Nt, 1) and are therefore equal in distribution. Conse-

quently, the matrices mat(v) = mat(Md)/ ||d|| and mat(w) = G/||G|| - are also equal

51



in distribution. Multiplying by the constant ||d||, the random matrix mat(Md) is

equal in distribution to ||d||G/ ||G]| - In particular,
Pr(mat(Md) has full rank) = Pr(||d[|IG/ |G|l has full rank). (47)
Now, ||d|| (G/||G||,») hasfull rank if and only if G itself has full rank. Therefore,

Pr(mat(Md) has full rank) = Pr(G hasfull rank). (48)

Rayleigh fading matrices are known [4] to have full rank with probability one.
Applying thisto the matrix G and substituting in (48), we see that mat(Md) has full

rank with probability one. This proves the lemma.

Lemma 3 presents the first part of the proof, that a uniformly chosen encoding matrix
M almost certainly satisfies the rank rule for any one difference vector d. Now, we extend

this to all the difference vectors and complete the proof of Theorem 1.

Proof of Theorem 1: Let G denote the event that a random encoding matrix M, uni-
formly chosen from M(Nt, K), achieves raw transmit diversity order min(¢, N), and
hence raw diversity order rmin(¢, N). We want to show that G occurs with proba-
bility one. From the rank rule, G occurs if and only if mat(Md) has full rank for all

difference vectorsd O D. Thus,

G= N Ga (49)
aoo

where G4 denotes the event that mat(Md) has full rank. Lemma 3 proves that the
probability of G4 is one. Further, since the input alphabet U is countable, so is the
difference alphabet D. A basic theorem of probability (see, for example [44]) is that
the intersection of countably many probability one events also has probability one.

Applying thisto (49), we see that G has probability one, completing the proof.
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4.4 Implications of Theorem 1. Diversity |Is Easy

Theorem 1 holds for any ¢-input, r-output Rayleigh fading channel, any code length N,
and also for any countable input alphabet U. The only restriction is that the number of
inputs K < Nt, since otherwise one cannot find K Nt x 1 orthonormal columns for M.
Equivalently, Theorem 1 holds as long as the rate R = K/ N of the code is less than or

equal to ¢.

4.4.1 Full-Rate Full-Diversity Codes Are Aplenty

Consider a space-time code with rate equal to full rate min(z, r) and length N > ¢. Since
min(¢, r) < ¢, the rate restriction is satisfied. Consequently, Theorem 1 applies, implying
that almost any code with an orthonormal encoding matrix obtains full raw diversity order
of ¢r. In other words, full rate, full raw diversity codes are aplenty. This is a surprising
result, since a high rate amounts to low fractional redundancy, and hence little elbow room
for the designer to introduce redundancy cleverly. However, Theorem 1 suggests that
maximizing raw diversity order requires almost no cleverness, since almost any random
encoding matrix does so. Since no cleverness is required, even the low fractional

redundancy implied by full rate is sufficient to guarantee full raw diversity.

4.4.2 Linear Complex Field Codes as a Special Case

The only full rate, full raw diversity codes proposed in the literature are the linear
complex field (LCF) codes [20][22], which were discussed in Section 2.5.3. For all rates
less than or equal to ¢, LCF codes guarantee araw diversity order of rmin(¢, N) for lattice-

based input alphabets 1. LCF codes are also strictly linear codes. Their encoding matrix,
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given in (20) of Section 2.5.3 has orthonormal columns, and a specia structure based on
number-theoretic arguments. Theorem 1 can be viewed as an extension of LCF codes in
two ways. Firgt, it holds for any countable input aphabet, which is more general than the
lattice input alphabet used in LCF codes. Second, it shows that no specia number-
theoretic structure is required, since almost any encoding matrix with orthonormal

columns gets the same (maximum) raw diversity order.

4.5 The Need for Optimizing Other Performance Metrics

The raw diversity of a space-time code determines only the asymptotic slope of aword
error vs. SNR curve, but does not completely determine the actual word error rate.
Different codes with the same raw diversity order often have significantly different error
rates. To illustrate this fact, we present simulation results comparing two complex linear
space-time codes operating over a 2-input, 2-output Rayleigh fading channel. Both codes
have full rate, namely R = min(z, r) = 2 and length N = 2. The first code is an LCF code
whose 4 x 4 encoding matrix is given by M 5(exp(j0.5), exp(j1.0)) in (20). For the second
code, the encoding matrix was randomly generated from the set M(4, 4) of all 4 x 4
matrices with orthonormal columns using the method of Proposition 1.

In each space-time code block, the K = NR = 4 input symbols to both space-time codes
are randomly and independently drawn from a 4-QAM constellation. Since two such
symbols are transmitted per signaling interval, the data rate is 4 b / s/ Hz. Frames
consisting of 50 coded blocks (or equivalently 50N = 100 signaling intervals) are

transmitted across the Rayleigh fading channel.X The Rayleigh fading channel is constant

1. For the second code, the same random encoding matrix was used for al frames.
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over one frame, but varies independently from one from to the next. The receiver performs
optimum ML decoding using a sphere decoder (see [25] and Chapter 11). A frame error is
said to occur if one or more symbols in the frame are decoded erroneously.

The resulting frame error rate is plotted against SNR for the two codesin Fig. 5. The
LCF code is guaranteed to achieve full raw diversity order, namely ¢r = 4. Theorem 1
predicts that with probability one, the random code should also achieve full raw diversity
order. Fig. 5 confirms this prediction, since the curves for both codes are visually seen to
have the same asymptotic slope. However, the random code does not achieve the same
frame error rate as the LCF code. It needs about 0.5 dB more SNR than the LCF code to
achieve the same frame error rate. This observation leaves open the possibility that the
error rate can be reduced below that of the LCF code using another optimized complex

linear space-time code.
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Fig. 5. Performance of LCF and random linear space-time codes over a 2-input, 2-
output Rayleigh fading channel at 4 bits/ s/ Hz.
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4.6 Summary

In this chapter, we have shown that all encoding matrices with orthonormal columns
have the same (optimum) raw diversity order. However, simulation results show that the
raw diversity order alone does not guarantee that the minimum possible error rate is
achieved. In other words, high raw diversity order is a loose performance metric: it is
necessary but not sufficient to guarantee low error rates. The looseness of the raw diversity
order motivates us to look at the other performance metrics derived in Chapter 3, namely
the union bound and coding gain. Thiswill be the topic of the next two chapters.

The raw diversity order is an integer-valued function of the continuous-valued
encoding matrix, and is consequently easy to optimize. On the other hand, we will see in
the next chapter that optimizing the continuous-valued union bound is a more daunting

problem.
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CHAPTER 5

Analytical Results on Optimization of the Union Bound

In this chapter, we aim to find strictly linear space-time codes that minimize the union
bound on word error rate. Most of the discussion will be focussed on the specific case
where the encoding matrix has orthonormal columns. Our goal is to analytically find an
orthonormal-column encoding matrix that achieves the minimum union bound among all
such matrices. We will derive the orthogonal differences bound, and use it to obtain
optimum encoding matrices of some specific dimensions. Unfortunately, for all other
matrix dimensions, we will see that the bound cannot be used solve the union bound
optimization problem. In particular, the bound is not useful to optimize full rate, full raw

diversity order codes, forcing us to resort to numerical optimization in the next chapter.

5.1 The Union Bound for Strictly Linear Space-Time Codes

We begin this section by rederiving the union bound specifically for strictly linear

gpace-time codes. Recall from (29) the union bound for a general space-time code

SO (X-X)(X-X)"0
pyw) det” I, +S 0. (50)
ugu uz;tu o 4E 0

For a strictly linear space-time code we already saw in (40) that X - X' = mat(M(u —u')).

Thus, the union bound (50) becomes
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g Py S det"’EIt+ Smat(Md)Ll(glat(Md)) g (51)

zu

O

where d = u - u'. Assembling al the terms with the same difference vector d = u - u'’

together, we obtain a simpler expression for the union bound, namely

mat(Md)(mat(Md))
AE,

0
Pyg(S, D, M= % pgd)det %It+S (52)

a0o
where D ={d =u -u': u Zu 0U} istheinput difference aphabet familiar from (41).

Equivalently, writing each determinant in terms of the singular values of mat(Md), we get

rank(Md) )\2 |:|_r

PUB(S, @, M) = Z p@(d) |_| D]-"'S
dOD 1=1

4Etx|] . (53)

Note that the union bound above depends on the SNR, the input difference aphabet and
the Nt x K encoding matrix M. In this chapter, we will focus specifically on encoding
matrices with orthonormal columns, i.e., matrices belonging to the set M(Nt, K) = {M:
MM = I} . From the previous chapter, almost all matricesin M(N¢, K) have the optimum
raw diversity order, namely rmin(¢, N). However, we will see that the matrices differ
significantly in the union bound. Our goal isto find an optimum matrix M 0 M(N¢, K), i.e.,

onethat has the minimum possible value of Pyg(S, D, M).

An alternative representation of the encoding matrix M will prove useful for the
analysis. Let the orthonormal columns of M be the vectorsm;, my, ..., mg. Thei'" folded

column of M is defined to be the ¢ x N matrix M; obtained by reshaping the i column m,.

1. For ease of notation, we do not explicitly include the channel dimensions as parameters.
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In other words, M; = mat(m;). Clearly, there is a unique correspondence between the
folded columns {M;} and the encoding matrix M. In particular, M 0 M(Nt, K) if and only

if its columns are orthonormal, or equivalently, if and only if the folded columns satisfy

tI‘(Ml*Mj) = mi*mj = 61] (54)
K
Finally, snceMd = Z m,d;, we see that
i=1
K K
mat(Md) = Z mat(m;)d; = Z M;d;. (55)
i=1 i=1

Substituting for mat(Md) from (55) in (53), we get the union bound as a function Pyg(S,
D, {M;}) of the folded columns of M. Thus, the optimization problem isto find K matrices

{M,} of dimension ¢ x N satisfying (54) that minimize the union bound (53).

5.2 There Are Infinitely Many Optimum Encoding Matrices

In this section, we will show that there are infinitely many choices of {M;} that
minimize the union bound. First, note that the union bound (53) is a bounded, continuous
function of {M;}. Also, the set of all matrices {M;} satisfying (54) is bounded and closed.
It isawell-known result in function theory that a bounded, continuous function has a point
of minimum in any closed, bounded set. Consequently, there is at least one optimum
choice of the folded columns{M,}. The following remark shows that this optimum choice

isnot unique. (A dlightly different version of the same result can be found in [12][17].)

Remark 1.  Suppose two sets of folded columns {M;} and {M;'} arerelated by

M;' = QM;Q, (56)
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where Q; and Q, are some two unitary matrices of dimensions ¢ x ¢ and N x N

respectively. Then, these two sets have the same union bound (53), irrespective of D.
Proof: For any difference vector d, we see from (55) that

K K
mat(M'd) = Z M;'d;, and mat(Md) = Z M;d;. (57)
1=1 i1=1
From the above, the assumed relation (56) between {M;} and {M;,'} yields
mat(M'd) = Qmat(Md)Q,- (58)

By assumption, the matrices Q; and Q, are unitary rotation matrices. Multiplication
by them does not change the singular values of a matrix. Consequently, the singular
values of mat(M'd) and mat(Md) are identical for al d. Since the union bound (53)

depends only these singular values, M' and M have the same union bound.

Given any encoding matrix M, one can obtain infinitely many encoding matrices M’ with

the same union bound, smply by choosing Q; and Q,. and transforming the columns as

shown in (56). Since at least one optimum encoding matrix is guaranteed to exist, we can

find infinite other optimum encoding matrices, using this column transformation.

5.3 The Orthogonal Differences (OD) Bound

We now derive an expression for the least union bound that can be achieved by any

encoding matrix. Later, we will use this expression to solve the union bound optimization

problem. Consider the determinant in each term constituting the union bound, namely

min(t, N)
S HO S ,2
detl, + 4————Etxmat(Md)(mat(Md)) H= .|-|1 %L+4—-—Etxxim. (59)
1=
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Now, the sum of the squared singular values of any matrix is equal to the energy in that

matrix. Thus, the singular values {A;} of the matrix mat(Md) satisfy the sum constraint

min(z, N) )
Y A = matMa)]l,? = [Md]. (60)
i =1

Under the sum constraint (60), it is easy to show? that the determinant (59) is maximized if

and only if each A\;2 equals [Md|[?/min(¢, N). Using this fact, we get the bound

2 in(¢, N)
simaj® "

5 B0 <
det], + 4Etxmat(Md)(mat(Md)) o= %ﬂ‘ " 4E, min(¢, N)[ o
Substituting the above in (52) gives the orthogonal differences (OD) bound
—rmin(t, N)
. S||Md||2 O] rmin
Pyg(S, D, M= p@(d)%ﬁwtxmin(t, Mo )

aTo
One problem with the OD bound is the term ||[Md|| on the right hand side, which in general
depends on the encoding matrix M. Consequently, the OD bound (62) merely bounds
Pyg(S, D, M) by another function of M. Thisis not very useful because the new bounding
function is amost as intractable as the original function itself. However, for encoding
matrices with orthonormal columns, the OD bound is particularly useful. To see this, note
that |[Md|| = ||d|| for all M O M(Nt, K). Consequently, the terms |[Md|| become independent
of M, hence the OD bound gives a benchmark against which all matrices in M(Nt, K) can
be compared. Also, note that the OD bound is achieved if and only if the min(¢, N)

singular values of mat(Md) are equal, for al difference vectorsd O D. Equivalently, either

1. The sum constraint (60) fixes the arithmetic mean of the terms in the terms constituting the
product (59). Based on this observation, one can prove (61) using the geometric inequality, which
says that the geometric mean of a collection of termsis at most equal to the arithmetic mean, with
equality if and only if all the terms are equal.
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the rows or columns of mat(Md), whichever are fewer in number, should be orthogonal.
Reverting to the folded columns representation of the encoding matrix, we sum up the OD

bound bel ow.

Remark 2. The union bound (53) of any set of K folded columns {M,} satisfying

(54) satisfies the orthogonal differences bound

2 —rmin(¢, N)
siaj® 0

4E, min(¢, N)g

O
Pyg(S, D, {M;}) 2 po(d)L +
dgﬂ) O

(63)

with equality if and only if the ¢ x N matrix mat(Md) has equal singular values for

all d O D. Equivaently, representing conjugate transpose by *, mat(Md) must satisfy
mat(Md)*mat(Md) = (|d|[>/N) Iy, if¢ >N, (64)

mat(Md)matMd)* = (|d|?/¢) I, ift<N. (65)

The OD bound above can be thought of as a sufficient condition for optimality. If a set

of K folded columns {M,} achievesthe OD bound (63) with equality, it is guaranteed to be
optimal, since no other choice can do better. We will find such optimum sets in the next
section for some values of ¢, N and K. On the other hand, the OD bound is not a necessary
condition for optimality. In other words, there is no guarantee that there is some set of K
folded columns {M;} that actually achieves the OD bound with equality. In fact, for awide
range of ¢, N and K, we will see in a subsequent section that the OD bound is in fact

unreachable.
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5.4 Solution to Union Bound Optimization br Some Special Cases

In this section, we will construct optimum encoding matrices for space-time codes
whose parameters satisfy K < max(¢/N, N/t). The crucial step is the following sufficient

condition for the folded columns {M,} in order to achieve the OD bound.

Lemma 4.Any set of K folded columns{M,} that satisfies

MM, = =

. 1 .
i M= NélJIletZN, MLM_] = 7 6ith|ft<N (66)

achieves the OD bound, irrespective of the input difference alphabet .

Proof: For convenience, we will prove this assuming ¢ = N. In this case, from (64),
the OD bound is achieved if and only if mat(Md)*mat(Md) = (||d|[>/N) Iy. We need

to show that (66) suffices to ensure this. This follows from straightforward substitu-

K
tion. Note that since mat(Md) = Z M;d;, we have
i=1
K K ‘ .
mat(Md)*matMd)= 5 Y d; d;M; M,. (67)
i=1 j=1
Substituting (66) in (67), we get
K K 1
matMd)*matMd) = 5y di*djﬁ &;In = (1] N) Ty, (68)
i=1j=1

which is the required condition in (64). This proves the lemma.

For convenience, we will say that

Definition 1. The folded columns {M,} are strongly orthogonal if they satisfy

(66).
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Note that the strong orthogonality of (66) is a stronger restriction on the folded columns
{M;} than (54), which isimposed by the orthogonality of the encoding matrix. Condition
(54) only requires that when i # j, the matrix Mi*Mj have trace zero. On the other hand,
strongly orthogonality requiresthat all the elements of Mi*Mj beidentically zero, when¢ >

N.

Lemma 4 says that in order to achieve the OD bound, it is sufficient to find K folded
columns {M;} of dimension ¢ x N that are strongly orthogonal. Now, we will construct
such folded columns, assuming K < max(¢/N, N/t). Take the case ¢t = N, and consider the
collection of all the¢ x 1 columns of the matrices{M;} . Clearly, the condition Mi*MJ- =(Iy
/N) &;;in (66) holdsif and only if that all these columns are mutually orthogonal, and each
column has norm 1/ N. Now, a simple counting argument can be used. The number of
required orthogonal columnsis NK, since there are K matrices with N columns each. Now,
NK orthogonal columns of dimension¢ x 1 existif and only if NK <¢, or K < (¢/N). Inthe
caset < N, the same argument applies, except that we will interested in making all the Nt
rows of {M,} mutually orthogonal. Again, that is possible if and only if K < (N/t). The

following proposition formally combines these two statements.

Proposition 3. Given (¢, N, K), one can find a set of K strongly orthogonal folded

columns{M;} of dimension¢ x N, if and only if

N
ry ). (69)

K< max(z%. ,
Suppose the condition (69) is satisfied. If ¢ > N, any set of NK orthogonal ¢ x 1 vec-
tors can be used as the columns of {M;}. Conversely, if ¢ <N, any set of tK orthog-

onal 1 x N vectors can be used as the rows of {M,}.



Proposition 3 gives a constructive method to obtain strongly orthogonal folded columns,
which are then guaranteed to achieve to achieve the minimum possible union bound,
according to Lemma 4. In the following, we will give examples of optimum encoding

matrices found using Proposition 3.

5.4.1 Optimum Encoding Matrices for K=1 input

We first consider the case where the number of space-time code inputsis K = 1. In this
case, the encoding matrix is just an Nt x 1 vector m of norm one, and there is just one
folded column, namely mat(m). Note that K = 1 satisfies the condition K < max(¢/N, N/
¢) for al ¢ and N. From Proposition 3, mat(m) can be chosen to achieve the OD bound. In

particular, the following remark presents the form of m that minimizes the union bound.

Remark 3. Let m be the encoding matrix of a strictly linear space-time code

encoding one complex input in N signaling intervals across ¢-input, r-output Ray-

leigh fading channel. Then, the union bound on word error rate is minimum if
mat(m) has orthogonal columnsif ¢ > N, and orthogonal rowsif ¢ <N.

An interesting observation relates to the encoding matrix of the linear complex field

(LCF) codes, given in (20) of Section 2.5.3. By inspection, it is easy to see that each

folded column of the encoding matrix has orthogonal rows or columns, implying that L CF

codes are optimum for the single-input case. Thisis stated in the following.

Corollary 1. When the number of code inputsis one, linear complex field codes

yield the minimum union bound, for all SNR and for all input symbol alphabets.
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5.4.2 An Optimum Encoding Matrix for t=4, N=K=2

Now, we consider the example of length N = 2 with K = 2 inputs operating over at =
4-input channel, with an arbitrary number of outputs. Note that this combination satisfies
the condition (69) of Proposition 3, and so, we can find K = 2 folded columns M; and Mo,
which achieve the OD bound. To do so, we need to pick NK = 4 orthogonal vectors of
dimension4 x 1 (in general, ¢ x 1) to use as the columns of M; and M,. For example, we
can pick them as proportional to the columns of the identity matrix. Scaling these to

ensure each 4 x 2 (¢t x N) folded column has energy one, we get the following.

10 00
1101 1100

== ,and My = — ) (70)
" 2loo 2~ 210
00 01

The encoding matrix M of dimension 8 x 2 (Nt x K) corresponding to these folded

columns achieves the minimum possible union bound among all matricesin M8, 2).

5.4.3 How Special are the Special Cases: A Rate-Diversity View

Proposition 3 solves the union bound optimization problem only when K < max(¢/ N,
N /t). We will now see that this is a very restrictive condition. From the rank rule, the
maximum raw diversity order of alength-N space-time code is d = rmin(¢, N). Two cases
arise, depending on the relation between N and ¢.

If N >¢, disequal tothefull raw diversity order, namely ¢r. However, in this case, N >
¢t also implies that max(¢ /N, N/t) = N/t. Now, Proposition 3 solves the optimization
problem only when the number of space-time code inputs K < N /¢, implying that the rate

K/ N can at most equal 1/¢. Clearly, thisisafar cry from the full rate, namely min(z, r).
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On the other hand, N < ¢ leads to a less-than-full diversity order of 5 = Nr. Now,
Proposition 3 holds only when K < ¢/ N. In other words, the rate K/ N should be |ess than
or equal to t/N2. Substituting N = &/ r, the maximum rate for which Proposition 3 applies
is¢r?2/8%. The following remark sums up the extent to which K < max(¢/N, N/¢) restricts

the rate and raw diversity order, for which the optimization problem is solved.

Remark 4. There is a trade-off between the rate and raw diversity of the
optimum space-time codes that can be found by Proposition 3. From the rank rule,
the raw diversity order & always belongs to the set {r, 2r, ...,tr}. If one ams to
achieve araw diversity order of 8, then the maximum rate of the optimum space-time

code that can be found using Proposition 3 equals
Ry oy = tr2/ 3% (71)
Recall from the last chapter that there is no fundamental tradeoff between rate and raw
diversity order. In particular, linear space-time codes can simultaneously have any rate up
to ¢t and any raw diversity order upto ¢r. However, Proposition 3 finds the optimum
encoding matrix only for space-time codes with the narrow range of rates and diversities

given by Remark 4. In particular, it does not find the optimum matrix for the holy grail of

code design, namely codes with both full rate and full raw diversity order.

The fundamental problem here is that strongly orthogonal folded columns cannot be
found for K > max(¢ / N, N /t). We notice a loophole in Lemma 4, which says strong
orthogonality of folded columns is only a suficient condition for achieving the optimum

OD bound. Therefore, one might hope to achieve the OD bound, even when the folded
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columns are not strongly orthogonal. However, we will now show that, for a wide class of
difference aphabets, strong orthogonality isin fact a necessary condition for reaching the

OD bound, implying that the OD bound is unreachable when K > max(¢/N, N/ t).

5.5 The OD Bound Is Unreachable for Many Code Parameters

Recall that the input difference alphabet D is aset consisting of K x 1 complex vectors.
In this section, we focus on a phabets D with the following separability properties:
(i) Foreveryintegeri {1, 2, ..., K}, thereisadifference vector d O D such that

only itsi*h element d; is non-zero, but all other elements are zero.

(i) For every pair of distinct integers (i, j) 0{1, 2, ..., K}, there are some two vec-
torsd’' and d” in D such that their i*? andj*" elements are non-zero, but all other ele-

ments are zero. Further, the non-zero elements satisfy Imag(di’dj'*di"dj"*) # 0.

Properties (i) and (ii) essentially mean that there are difference vectors of Hamming
weight one and two respectively, and the positions of the non-zero elements can be
arbitrarily chosen. The condition Imag(d;'d; "d;"d;"") # 0 in property (ii) is one way of
ensuring that d' and d" are not proportional, hence d" does place some new constraint

(that was not already placed by d') on the choice of the encoding matrix.

A wide class of difference alphabets have both the above properties. For example,
consider the case where each of the K inputs to a space-time code is drawn independently
from a complex QAM or PSK constellation. The difference alphabet 9 is just a cross-

product of K copies of the individual symbol difference alphabet, consisting of the set of
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al pairwise difference between valid QAM or PSK signals, respectively. It is easy to
check that this alphabet satisfies both (i) and (ii). Having defined the alphabet properties,

we can proceed to prove the following necessary condition.

Lemma 5. Suppose the input difference alphabet D to a strictly linear space-time
code has properties (i) and (ii) above. Then, the orthogonal differences bound (63) is
achieved only if the K folded columns {M;} of the encoding matrix are strongly

orthogonal, i.e., they satisfy (66), repeated below for convenience

MM, = ]%%.IN ift>N, MM = % 5,1, if t <N, (72)

Proof: For simplicity, we will prove for the case ¢ = N. In this case, (64) states that
the OD bound is achieved if and only if mat(Md)*mat(Md) = (|d|2/N) Ly for all d
0 D. We will show that thisis possible only if {M,} satisfies (72).

First, since D satisfies property (i), there is a difference vector d such that only the
symbol d; is non-zero. In this case, mat(Md) = M;d;, and so mat(Md)*mat(Md) =
|d;[>M,"M;. On the other hand, (64) requires mat(Md)*mat(Md) = (||d|2/N) Iy =

(Id;[2/ N) 1y. Equating the two expressions, we see that M; should satisfy
M,'M; = (1/N) I, for all i. (73)

Next, we will use the fact that D also satisfies property (ii). For any pair (i, j), con-
sider the difference vector d' where only the two elements d;' and d; are non-zero.

Clearly, mat(Md') = M;d;" + M;d;'. From this, we get

mat(Md')*mat(Md’)

(M;d;' + Mid,)" (M;d; + Mid,) (74)

|di’|2Mi*Mi + |d_], |2M_]*M_] + dl’*dJ'MlxMj + dl'd_]’*M_]*Ml(75)
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We anyway need M;'M; = M;'M; = (1/N) Iy from (73). Using this, (75) becomes
mat(Md')*mat(Md') = Iy (ld,'[* + ldg'2)/N + d;"d/M;' M, + d;d"M;'M;.  (76)

Note that (|d;'[* + |do'[?) = ||d'|?. Thus, if mat(Md')*mat(Md’) in (76) is to satisfy

(64), it is necessary that M; and M; satisfy

d;"d;M;"M, + d;'d;"M;"M; = 0. (77)
Applying the above argument to the other difference vector d”, which is guaranteed
to exist by property (ii), it is aso necessary that

d;""d{'M;' M; + d;"d/"M; M = 0. (78)

i M;

Solving (77) and (78) as simultaneous equations, we get Imag(d;'d; d;"d,"" )M, M,

= 0. Since property (ii) assures us that Imag(d;d; d;'d;") # 0, thisimplies

M;'M; =0 (79)

for al distinct pairs (i, 7). To sum up, we see that the two necessary conditions for the

OD bound to be reached are (73) and (79). Clearly, these two amount to Mi*Mj =

1

N %Ly, as claimed in (72). This proves the lemma.

The above lemma states that under the stated conditions, the OD bound is achieved

only if the K folded columns {M,} are strongly orthogonal. On the other hand, Proposition

3 of the last section says that K strongly orthogonal folded columns cannot be found if K >

max(t/N, N/t). Combining these two, we get the following result.

Remark 5.  Consider a strictly linear space-time code of length N with K inputs
operating over a t-input, r-output Rayleigh fading channel. If K > max(¢/ N, N/t)

and the input difference alphabet D has the separation properties (i) and (ii), thenitis

70



impossible to find an encoding matrix with orthonormal columns that achieves the

orthogonal differences bound (53).

The result stated in Remark 5 is not surprising. Recall that in order to achieve the OD
bound, the folded columns {M;} should be chosen so that mat(Md) has equal singular
values for all difference vectors d O D. Thus, each difference vector d 0 D imposes a
(possibly new) constraint, that should be accounted for while choosing {M;}. Suppose ¢
and N arefixed. As K increases, the number of constraints on {M,} increasesin two ways.
Firstly, a greater number of folded columns, namely K, needs to be chosen from the fixed
set of al ¢ x N matrices. Secondly, the number of difference vectorsin D, and hence the
number of constraints to be satisfied by the chosen matrices {M,} increases. The previous
section suggested that as long as K < max(t / N, N/ t), the constraints imposed by the
difference vectors still leaves some freedom in the choice of {M;}. On the other hand,
Remark 5 says that if K > max(¢t / N, N/ t), the constraints overwhelm the available

freedom, and the orthogonal differences bound cannot be satisfied.

5.6 Summary and Conclusions

We began this chapter by deriving an expression (52) for the union bound on word
error rate, which was a sum over the difference alphabet D. The orthogonal differences
bound was obtained by bounding each term in the union bound by its lowest possible
value, which is reached when mat(Md) has equal singular values. For the special case K <
max(¢ / N, N/ t), we constructively obtained encoding matrices which achieve the OD
bound, thus solving the optimization problem. However, the requirement K < max(¢/N, N

/t) was shown to limit either the rate or the raw diversity order of the space-time code.
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Since both high rate and raw diversity order are desirable, we would like to find space-
time codes that minimize the union bound for the case K > max(¢ /N, N/t). However, for
this case, we showed that the OD bound is unreachable for awide class of input alphabets.
This class includes the common input aphabet, consisting of independently modulated
QAM input symbols. The fact that the OD bound is unreachable implies that al the
individual terms in the union bound summation cannot simultaneously be minimized.
Instead, optimum encoding matrices (infinite of which exist according to Section 5.2)
optimally trade off the various terms in order to minimize the sum. In order to find these
optimum encoding matrices, we will develop approximate numerical optimization
techniques in the next chapter. We close this chapter by stating an interesting open

problem. This can be skipped without affecting the readability of subsequent chapters.

5.6.1 Optimum Modulation for Space-Time Codes: An Open
Problem

As discussed in Section 2.4.3, modulation (mapping bits to complex input symbols)
and space-time encoding should ideally be designed jointly. However, joint design is
analytically difficult, and has not yielded fruitful resultsin the literature, to the best of our
knowledge. Instead, the standard simplifying assumption is that modulation and space-
time code are done independently. Further, the modulation aphabet is typically some
standard alphabet like QAM or PSK. In this section, we will argue that even if the
modulation is done independently, one can minimize the achievable union bound by
carefully selecting the modulation al phabet.

First, take the case of codeswith K < max(¢t/N, N/t). We have seen that the OD bound
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—rmin(¢, N)

Sld)* O
4E, min(t, N)q ’

OJ
pof) L+ (80)

dOoD

can be achieved in this case. Crucially, by carefully choosing the input al phabet D, one can
minimize the OD bound (80). More precisely, given the size and the energy of the input
alphabet (thus fixing the data rate and transmit energy respectively), the modulation
problem is to find the input aphabet U whose corresponding difference alphabet
minimizes the right hand side of (80) above. Note that (80) depends only on the Euclidean
distance ||d|| between input vectors. Thus, the problem stated above is similar to the lattice

coding [45][46] problem, hence we expect that |attice coding ideas can be used here.

In the case K > max(¢/ N, N/t), the modulation problem becomes more complicated,
because the OD bound may or not may not be reachable, depending on the choice of the
input aphabet. Note that Remark 5 proves that the orthogonal differences bound is
unreachable only for difference alphabets satisfying the separation properties (i) and (ii).
If these properties are not satisfied, the OD bound could potentially be reached. Thus, the
modulation problem for the case K > max(t / N, N/ t) would have to address both the
reachability of the OD bound, and the choice of the input al phabet to reduce the OD bound
itself. An aternative would be to not use the OD bound, but derive an expression for the
lowest achievable union bound and minimize it directly.

We believe the optimization of the input alphabet could be a productive area of future
research. However, for the rest of this work, we will assume that some choice of the input

alphabet has been made, and aim to optimize the encoding matrix alone.
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CHAPTER 6

Numerical Optimization of the Union Bound and Coding Gain

The answer to the Great Question of Life, the Universe, and Everythingis. . . Forty-two.
[0 Douglas Adams, The Hithhiker's Guide to the Galaxy

Try to prove by induction, construction, contradiction, or obfuscation. If all elsefails, prove by MATLAB.
[0 Old Jungle Saying

In the previous chapter, we saw the analytical difficulty of obtaining encoding matrices
for linear space-time codes that minimize the union bound. In this chapter, we will resort
to an approximate numerical solution, obtained by viewing union bound optimization as a
constrained optimization problem. We develop an optimization algorithm and use it to
obtain space-time codes with near-optimum union bound, and consequently lower error
rate than unoptimized codes. We also propose heuristic techniques to speed up the

numerical algorithm. A truncated version of these results was presented in [42].

6.1 Code Design as a Constrained Optimization Problem

We begin this chapter by stating code design as a constrained optimization problem.
The primary optimization metric or cost function is the union bound, but we will also

consider coding gain. The constraint isto fix the transmit energy.
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From (31) in Chapter 3, we see that the union bound on the word error rate of a strictly
linear space-time code with input alphabet U operating over a ¢-input, r-output Rayleigh

fading channel is

mat(Md)(mat(Md))HE.

AE tx O (81)

U
det ”%It+s

In the remainder of this chapter, we will assume that each input symbol to the space-time

u

code, i.e., each element of the K x 1 input vector u is drawn uniformly from afinite, zero-
mean al phabet with average energy one. Also, different symbols are drawn independently
of each other. Under these assumptions, we now proceed to derive convenient
representations of the transmit energy constraint, and computationally simple expressions

for the union bound and the coding gain.

6.1.1 The Optimization Constraint

Note that the union bound (81) depends on the average transmit energy per signaling
interval. Since the composite transmit vector x = Mu contains N transmit vectors, the

average transmit energy is

Eyy = 3 Elll?] =  B[Mul?). (82

2=

We have assumed that each element of u is zero-mean, has unit energy and is independent
of the other elements. It is easy to see that this implies E[[Mul|?] = [M]|,2, giving E, =
(|| }-2/N . Thus, the average transmit energy is proportional to the energy |[M]|| 72 of the N¢
x K encoding matrix M. One way to ensure fair comparison across different encoding
matricesisto just substitute £, = ||M||72/N into the union bound expression, and perform

unconstrained optimization to seek matrices minimizing the union bound. Instead, we
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choose to explicitly constrain the energy of M to be equal to the number of columns,

namely K. Thus, we now seek an encoding matrix satisfying the energy constraint

IM]|,2 = trace(M M) = K (83)
that minimize the union bound. Note that this fixes the average transmit energy to be E, =
K/N, whichisalso therate of the space-time code. The advantage of an explicit constraint
is that only one term in the cost function now depends on the encoding matrix. Also, this
form enables easy comparison with existing space-time codes like the LCF codes, al of

which assume normalized energy for M.

Another way to view the energy constraint isthat we are now only interested in finding

optimum encoding matrix in the constraint set

L(Nt, K) = {Nt x K matrices M: trace(M M) = K}. (84)
Placing further constraints on the encoding matrix yields smaller constraint sets. For
example, consider the set M(INt, K) analyzed in the previous two chapters, containing all
Nt x K matrices with orthonormal columns. Note that all matricesin M(Nt, K) have energy

K, but not all energy K matrices have orthonormal columns. Thus,
MNt, K) O LNt, K) (85)
holds, with equality if and only if K = 1.
Reducing the size of the constraint set makes the search space smaller, and the
optimization search faster. On the other hand, it removes some potentially optimum
matrices from consideration. In the case of M(Nt, K), we will show by simulation that the

acceleration of the search does not come at the cost of optimality. In fact, all the optimum

matrices we obtained by numerical methods will turn out to be in the set M(N¢, K).
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6.1.2 Optimization Metrics: Union Bound and Coding Gain

Having discussed the optimization constraint, we now proceed to obtain easy-to-
compute expressions for the optimization metrics, namely the union bound and coding
gain. In the union bound expression (81), we can now substitute the following
consequences of our assumptions so far. Firstly, because each symbol alphabet is finite,
the input alphabet has a finite size |U | < ». Secondly, since each symbol is drawn
uniformly, p(u) is aways 1/|U| for al the valid input vectors to the space-time code.

Thirdly, because of the energy constraint E;, = K/ N. Using these, (81) becomes

-1
Pup(S. W=7 ¥

lul

5 det_r%t+ZZ—‘I§(mat(Md)(mat(Md))H)E, (86)

U u #u
whered =u -u'.

The computation of (86) involves a double sum over the input alphabet, but can be
made more efficient using two simple observations. Firstly, note that the summand
depends only on the difference vector d = u — u'. Thus, al pairs (u, u') with the same
difference vector make the same contribution to the union bound, and can be treated
identically. (Thiswas done in Chapter 5 too, except we did not explicitly use the finiteness
of the input alphabet.) Secondly, if two difference vectors d; and d, are proportional by a
unit-magnitude complex number, i.e., if dy = %, then it is easy to see that
mat(Mdy)(mat(Md,))* = mat(Md;)(mat(Md;))". Consequently, d; and d, make the
same contribution to (86). In other words, two difference vectors which are proportional
and have the same magnitude, are equivalent with respect to the union bound, and can be
said to belong to the same equivalence class. Combining these two observations, one

evaluates the union bound over a compressed difference alphabet C, consisting of one
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representative vector from each equivalence class of difference vectors. Associated with
each d O (C is a multiplicity term ngq, containing the number of pairs (u, u') whose

differenceis equivalenttod, i.e., u —u’ = ¢/d. Then, the union bound (86) becomes

Pug(S. M) = & | gnddet EIt+NSmat(Md)(mat(Md)) (87)
d

0 4K 4E,

Equivalently, writing each determinant in terms of the singular values of mat(Md) gives

rank(mat(Md)) NS. o
Pyg(S, M) = T | %nd M %Hﬁ A (88)
d i=1
In addition to the union bound, we will aso consider the coding gain as an

optimization metric. In the above notation, it is easy to see that the coding gain (39) is

given by
. rank(mat(Md))
min 2
ca rank(mat(Md)) = Ppin il:ll D‘rK o

Both the union bound and the coding gain depend on the encoding matrix M. However,
only the union bound depends on the SNR S. The coding gain implicitly assumes

asymptotically high SNR.

6.1.3 Constrained Optimization Problem Statement

We can now precisely state the optimization problem.
Code Design Problem Statement: Given the number of transmit antennas ¢, the
number of receive antennas r, the code length N, the number of inputs K, the finite

input alphabet U, and the SNR S, find an Nt x K complex encoding matrix M
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belongingto the constraintset S(V¢, K) that hasthe optimumvalue of the chosen

optimization metric.

The optimizationmetricis eitherthe union bound(87)(88) or the codinggain (89). The
formerneeddo be minimized,while the latter needso be maximized.The constraintset
S(Nt, K) is somewell-chosersubsebf the enegy constrainedset L(Nt, K) (84). Therest

of this chapter is d@ted to solving the alve problem.

6.2 Numerical Solution to the General Optimization Problem

In this section,we proposean approximatenumericalsolution to the optimization
problem. The numerical solution proceedsin two stages,namely random searchand
gradientdescensearchlin thefirst stagealarge number sayN,,,q, Of encodingmatrices
is generatedrom the constraintset. The matrix with the bestoptimizationmetricis picked
astheinitial matrix M© for the secondstage namelytheiterative gradientdescenstage.
In iteration, the matrix M) is computedoy makinga slight, well chosenshift to the
previous matrix M%~1, androunding off the resultantmatrix backto the closestmatrix in

the constraint set. In otherowds, each iteration of gradient descent is

M"Y - Mt 4 AGD), (90)
i ~ (k1)
M® = N M~ Mg, (91)

where (90) performs the shift operation and (91) rounid$hefresult.
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The iterative process is repeated till either a pre-determined number of iterations Nyq
have been performed, or the process converges, i.e, [[M® - M* V|, falls below a
threshold e. Typical values are Nyanq = 10000, Ngq = 2500 and € = 1075, We now fill in
precise details about the gradient descent step, particularly the choice of the shift A%®~D,

and the nature of the rounding-off operation in each iteration.

6.2.1 The Shift Operation in Iterative Gradient Descent

There are some dlight differences in the shift matrices for union bound and coding gain
optimization. We first take up the union bound, which from (87), is a smooth, continuous
analytic function of the elements of M. It can be differentiated with respected to each

element of M, yielding functions

0

amij

8i(S, M) = Pyg(S, M). (92)

Expressions for g;(S, M) are computed in Appendix B. In iteration % of gradient descent,

the shift matrix A%*~1 is assembled, according to

AFD, = g (8, MED), (93)
In other words, each element of A%~ is proportional of the derivative of Pyg(S, M) with
respect to the corresponding element of M, evaluated at M = M*~D. The negative sign in
the constant of proportionality, —u, forces a move opposite to the gradient, since we are
interested in decreasing the value of the union bound. The constant p itself is chosen

heuristically. It istypically around 0.1.
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Now, we turn our attention to the other possible optimization metric, namely the
coding gain. Here, computing the shift matrix is complicated by the fact that the coding
gain (89) is not always an analytic function of the elements of M, i.e., at some values of M,
its gradient is different along different directions. The reason is that yog(M) is the point-

wise minimum of many smooth, continuous functions, namely

rank(Md) EIV)\-ZDr
- i
Ya(M) = | Eﬁ% , (94)
1 =1

for each difference vector d O (.

In any iteration %, consider the calculation of the coding gain yog(M*™1) by taking
the minima of yg(M%™1). Two cases arise. Either there is exactly one function y,(M*~D)
which is less than all the other functions, or there are multiple functions with the same
minimum value. In the former case, the coding gain yoq(M) is equal to the anaytic
function y,(M) in a neighborhood around M*~1 and is therefore itself analytic at M*~1),

In this case, one can define the shift matrix for gradient descent by

&1 _, 9 (k-1)
AT =1 om;; YoM ). (95)

Note that, in contrast to the shift matrix for the union bound (93), there is no negative sign
here. Thisis because the coding gain needs to be maximized, while the union bound needs
to be minimized. The shift attempts to maximize the coding gain by moving along the

gradient, which is by definition, the direction in which yog(M) increases most rapidly.

The problem with the coding gain arises in the second case, where there are multiple
coincident minima at the point M*~, say y;(M*~D) = yo(M*D) = .. y,(M*™D), Each of

these functions has its own gradient, or equivaently, a distinct direction of maximum
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increase. Consequently, it is not clear which is the direction of maximum increase for the
minimum of these functions, ycq(M). One way to do this is to move along a direction
which has equal projections on the gradients of all the {y,(M*~D)}. Thisis possible if and
only if the individual gradients are linearly independent. On the other hand, when the
gradients of the individual functions are linearly dependent, the only thing we could think

of was to stop the gradient descent process.

6.2.2 The Rounding Off Operation in Iterative Gradient Descent

Recall that the rounding off operation needs to find the matrix M), which is at the

(k-1)

minimum Euclidean distance to the shifted matrix M , among al matrices in the

constraint set S(V¢, K). This computation, would of course, depend on the constraint set
itself. We will state, without proof, the computation formula, for each constraint set.
For the energy-constrained set 4(INt, K), the closest matrix is obtained by just scaling

r(k—1)

M to have energy K. Thus,

SNt, K) = {M: M|, =K} 0 M® = JE k-1

a2

On the other hand, the constraint set M(Nt, K) requires the columns to be orthonormal, or

(96)

equivalently it requires the singular values of M®’ to be equal. The rounding off here is

r(e—1)

done by just normalizing the singular values of M i.e.,

MNE K) = {M: MEM =Ty 0 M® = L gvC, 97
(Nt, K) = { K} TR (97)

(k-1) 1

where M - UDVDisthe singular value decomposition of M~
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6.2.3 The Complexity of Numerical Optimization

One main concern about the above numerical algorithm is its high computational
complexity. The main reason for this complexity is the intractable nature of the metrics
themselves. For example, the union bound, in principle, needs a sum over all pairwise
input difference vectors, whose number increases exponentially with the data rate. More
precisaly, sincelogy|U | information bits are transmitted N signaling intervals, the data rate
of the space-time code, in b/s'Hz is given by R, = logy|U |/ N. Given the required data rate
Ry, the input aphabet size necessary to achieve the data rate, for a space-time code of
length N, is || = 2" ® . Ideally, one would like both high data rate, and alarge length N,
S0 as to achieve high raw diversity order rmin(¢, N) of the space-time code. Both factors
lead to an exponential increase in the input alphabet size |U|. Now, the size of the
difference alphabet Dis roughly the square of the input alphabet size. Using the structure
in the union bound, and the proportionality of certain inputs, we obtained the compressed
difference aphabet (. This reduces the number of terms in the sum for the union bound
(88). However, even the compressed aphabet ( has size exponentia in the data rate and
code length, and hence, the computation of the union bound or the coding gain is a
computationally daunting task.

The numerical algorithms compound the computational problem by requiring repeated
summations over the alphabet (. In the random search stage, the union bound needs to be
computed for N,,,q random matrices. In the gradient descent stage, the gradient matrix
needs to be computed, again requiring a sum over the alphabet C. Note that the coding gain
isonly marginally easier to compute than the union bound. Each vector d O C still needs to

be processed, though the processing is simpler than the union bound, as seen by
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comparing (89) to (88). The main advantage of the coding gain is that it is SNR-
independent, while the union bound is SNR-dependent. Therefore, the coding gain needs
to be optimized just once, whereas the union bound has to be re-optimized for every SNR.
The price paid for the simplicity is that the coding gain reflects performance less faithfully
than the union bound, since it focuses only on the worst case error event (see Chapter 3).
The main argument in favor of using the optimization algorithm is that it needs to be
implemented just once. Once an optimum encoding matrix has been found for a given
SNR, transmitter design is complete. The optimized encoding matrices so obtained
significantly outperform un-optimized matrices, as confirmed by simulation results in the

next section.

6.3 A Case Study of Union Bound Optimization: t=r=N=2,K=4

In this section, we run the numerical optimization algorithm for a specific optimization
problem. We seek to optimize the union bound of a strictly linear space-time code
encoding K = 4 complex inputs in blocks of length N = 2 signaling intervals over a
Rayleigh fading channel with ¢ = 2 inputs and r = 2 outputs. Each of the four inputs is
drawn independently from a Gray-coded 4-QAM constellation, normalized to ensure unit
energy. Thisis the same setup as the example discussed in Section 4.5 to illustrate that a
randomly generated code yields the same full raw diversity order as an LCF code, but
suffers a higher error rate than the LCF code. We now seek to further reduce the error rate
by optimizing the union bound, with the SNR fixed at 23 dB. Note that the space-time
codes under consideration have rate K/ N = 2, which is equal to the full rate min(z, r) of

the channel. Thus, the problem can be viewed as one of further optimizing linear space-



time codes which aready have full rate and full raw diversity order. The results of
numerical optimization for this specific example are aso used to support some conjectures

about optimum matrices for the general optimization problem.

6.3.1 Optimum Matrices Have Orthonormal Columns

First, the numerical optimization algorithm was used to search for optimum encoding
matrices in the general energy constrained set £(4, 4), consisting of all 4 x 4 matrices with
energy K = 4. Just to ensure convergence, the number of random matrices generated and
the number of gradient descent iterations were both large, namely N,,,q4 = 200000 and
Ngq = 60000 respectively. The matrix M, obtained at the end of the search had a union
bound of 1.386 x 107 at SNR 23 dB. In particular, the singular values of M, were found
to be 1.0166, 1.0030, 0.9974 and 0.9927. We notice that these singular values are almost
identical, indicating that M, is almost unitary, i.e., its columns are nearly orthonormal.

This leads to the following conjecture.

Conjecture 1.If the K inputs to alinear space-time code of length N operating over
a t-input, r-output Rayleigh fading channel are drawn independently from a QAM
constellation, the union bound is minimized by choosing an Nt x K encoding matrix

with orthonormal columns.

An approximate justification of the conjecture is obtained by considering the

orthogonal differences bound derived in Chapter 5, namely

— 1 ’N)
NSs|Ma)? g
Pyg(S, M) 2 dg@ pod) H+ M0 : (98)
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We now argue that the OD bound is optimized by an encoding matrix M with orthonormal
columns. Let the singular value decomposition of the encoding matrix be M = USV".
Since U has orthonormal columns, |[Md|2 = |[USV d||? =||[SV"d|{? for al d, hence U can
be chosen arbitrarily without affecting any term in the orthogonal differences bound.
Choosing the K x K unitary matrix V rotates the difference aphabet D. More precisely,

defining the rotated alphabet D' = {V"d, d 07}, the OD bound becomes

NS”Sd,HZ D—rmin(t, N)

pp\Vd') EL + o . (99)
d'ga)’ %L 4Kmin(t, N)U

Note that the diagonal elements of the K x K diagonal matrix S are the singular values of
M, whose sguared sum should equal the energy of M, namely K. The effect of these
singular values on the OD bound (99) is that they scale the corresponding elements of the
vectors in D'. The core of our argument is that it is optimal to scale al the elements
identically. This is because the original difference aphabet 9 is a cross-product of
individual QAM aphabet difference symbols, and is therefore roughly symmetric in
space, i.e., the difference vectors in D are distributed roughly uniformly in K-dimensional
complex space. Consequently, the rotated alphabet D' is aso symmetric. In particular,
each of its elements behaves roughly identically. Therefore, it is intuitively appealing to
treat all these elements identically. Hence, we conjecture that all the singular valuesin S

should be equal, implying that M should have orthonormal columns,

Conjecture 1 motivates a repeat of the optimization algorithm, restricting the search to
the smaller orthonormal-column constraint set M(4, 4). In the first phase, N, ,,q = 10000
random matrices were generated, and the best one was used to initialize gradient descent

with Ngq = 10000 iterations. This resulted in a matrix My, with a union bound 1.384 x
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107 at 23 dB SNR. Comparing the results of the two searches, we see that M4, 4) yields
about the same union bound as £(4, 4) (1.386 x 1074). The advantage is that the search
proceeds much faster in the smaller constraint set M(4, 4), since only 20000 total matrices

were generated as against 260000 for L(4, 4).

6.3.2 A New Constraint Set for Length Two, Rate £ Codes

Continuing with the approach of accelerating the search by focussing on smaller
constraint sets, we now present a new constraint set for codes of length N = 2 with K = 2¢
inputs. The encoding matrix of such codes has dimension Nt x K = 2t x 2¢. The proposed
constraint set A(2¢, 2¢) contains all 2¢ x 2¢ matrices of the form
| S

. , (100)
Q _ elT[/ 4Q

where, isthet x ¢ identity matrix, and Q is some ¢ x ¢ unitary matrix, i.e, Q' Q =QQ" =
I,. It iseasy to check that all matrices of the form (100) are unitary, i.e., their columns are
orthonormal. Also, any matrix in A(2t, 2¢t) is completely specified by the ¢ x ¢ unitary
matrix Q. Consequently, A(2¢, 2¢) is a small subset than M(2¢, 2¢), which contains all 2¢ x

2t unitary matrices.

When the encoding matrix M belongs to A(2t, 2t), the encoding process can be
visualized as follows. The input vector to the code u has dimension 2¢ (= K) x 1. Split it
into two ¢ x 1 halves, according u” = [u;" uy']. Then, using the structure (100) of the

encoding matrix, the composite transmit vector x = Mu is given by

1| wg+ ein/4u2
:/—i g ) (101)
Q(u,—e u,)
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Equivalently, the encoder first scales the second half of the input vector to obtain uy' =
'™ 4u,. In the first signaling interval, the transmit vector is u; + uy'. In the second
signaling interval, the difference u; — uy' is rotated by a unitary matrix Q to obtain the

second transmit vector Q(u; — uy'). A detailed description of how the structure (100) was

obtained can be found in Appendix C.

Note that the example under consideration does have N = 2. Therefore, the
optimization algorithm was run' for the constraint set A{4, 4). After generating only Niand

= 3000 random matrices, and N4 = 1000 gradient descent iterations, the encoding matrix

1 0 o4 o
« 110 1 0 , el ,
M5202 4=—|0.4456 -0.8952 -0.4456eV* 0.8952¢i3™ 4 (102

V2|0.8052i -0.4456 —-0.8952¢74 0.4456¢i%
was obtained. The corresponding union bound at 23 dB was equal to 1.380 x 1074, which
isthe least among the matrices examined in this example. Thus, anong the constraint sets
examined for this problem, A(4, 4) yielded the best result fastest. We conjecture that for

any general ¢, optimum matrices for length 2, rate t codes can be found in A(2¢, 2t).

6.3.3 Optimizing Union Bound Reduces Error Rate

We now present simulation results to confirm that union bound optimization servesits
ultimate purpose, namely the reduction of the error rate of space-time codes. The
simulation in Section 4.5 is repeated, but now, the optimized encoding matrix M*2,2,2 IS

compared to the LCF and random codes. The frame error rate is plotted against SNR in

1. Generating a random matrix in A((2¢, 2¢) amounts to generating the random ¢ x ¢ unitary matrix
Q. Also gradient descent is performed on Q. Thus, the gradient matrix is calculated with respect to
the elements of Q. Rounding off the shifted matrix to the nearest ¢ x ¢ unitary matrix follows (97).
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Fig. 6. Performance of three length-2, full-rate complex linear space-time codes over a
2-input, 2-output Rayleigh fading channel at4 b/ s/ Hz.

Fig. 6. The LCF code was already seen to have a 0.5 dB performance advantage over the
randomly generated code with orthonormal columns. The optimized code obtains a further

advantage of 1.25 dB over the LCF code.

6.4 Another Case Study: t=r=2,N=3,K=6

We now present one more case study of union bound optimization, again for 2-input,
2-output Rayleigh fading channel. Now, we consider codes with rate R = 2 (note that this
isfull rate) and length N = 3. Again, we assume that each of the K = NR = 6 code inputsis
drawn from a 4-QAM input alphabet. Note that N # 2, so the constraint set A(2¢, 2t)
developed in the previous case cannot be used here.

We first performed a numerical search over all LCF codes, i.e.,, we tried different
values of the unit-magnitude complex numbers a and B of the LCF encoding matrix in
(20) of Section 2.5.3. For the choice a = exp(iT/ 4) and B = exp(iT/ 32) suggested in [20],

the union bound for this choice of parameters at 22.5 dB was computed to be 5.758 x
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1074, Instead, after computing the union bound for 1000 random values of o and B, we
found that the choice a = 0.575mand B = 0.1987 gives a union bound of 1.980 x 107 at
22.5 dB SNR. Then, instead of restricting the search to LCF code, we broadened the
search to all encoding matrices belonging to the constraint set M(6, 6), namely all 6 x 6
unitary matrices. The numerical optimization procedure (random search followed by

gradient descent) yielded the matrix

*
Mjs36=

i 1.1213e0-48000 764507278 0.7502e71-0717  0.3415e0927%  0.2240e0-9428  0.6092¢0-300%
0.6935¢71-5064  (,6893e70-5880i (0 3364 044791 (. 7437¢1-304% (. 6094e71-2322 (.9788e 0-9090i
1| 052606703970 0.6254¢70-8821i (764904154 0 2369e 152050 1 0556e 10312 (.7837¢0-971%
06678615201 074456031 08046015080 10935601428 0 4286012196 . ggo6e12070i | (103)
/\/:_')) 0.3317e—0.9406i 0.6814e_0'8321i 0.7207e0.371’7i 1.034860‘2891i 0.8535e1‘5501i 0.3412e0.7838i
0.6550e0-20661  0.7285e1-09700  0.7564e1-5465  0.3948¢70-056% (.7429¢71-21400  ( 899ge0-4201i

with union bound 1.549 x 107 at 22.5 dB SNR.

Itisclear that M*2, 2, 3, ¢ has the least union bound among all matrices considered. We
now present simulation results to confirm that this advantage also translates to alow word
error rate. Frames consisting of consisting of 50 space-time code blocks, corresponding to
50N = 150 signaling intervals over the channel were transmitted. As always, the channel is
assumed to be constant over one frame, but varies independently from one from to the
next. With ML decoding at the receiver, the resulting frame error rates of the three codes
are plotted against SNR in Fig. 7. The optimized code M*2, 2, 3, ¢ outperforms the
unoptimized L CF code suggested in [20] by nearly 2 dB, and the optimized L CF code by

0.5 dB at aframe error rate of 3 x 1072,

90



10°% | | | | | | | | |

._\

Q
R
T

FRAME-ERROR RATE

-

<
N
T

10—3 | | | | | | | | |
12 13 14 15 16 17 18 19 20 21 22
SNR (dB)

Fig. 7. Performance of three length-3, full-rate complex linear space-time codes over a
2-input, 2-output Rayleigh fading channel at4 b/ s/ Hz.
Before concluding, we state the result of optimization for length 2, full rate code

operating over a 3-input, 3-output Rayleigh fading channel, at an SNR of 19 dB with 4-
QAM inputs. Since N = 2, the constraint set A(6, 6) can be used for fast search. For

legibility, we present only the unitary portion Q in the general structure (100)

0.0228 + 0.1324i -0.2762 +0.9336; -0.1842 - 0.0096:

1 . . _ .
Q3, 3.9.6= — 0.0560 + 0.07081. 0.1545 + 0.09441. 0.7342 0.64811. ) (104)
J2|-0.9168 + 0.3651i  0.1364 + 0.0265i 0.0800 - 0.0226:

The above parameters correspond to a code with K = 6 inputs. As the number of inputs K
= NR increases, optimization becomes more computationally burdensome, primarily due
to the difficulty in the computation of the union bound. Beyond K = 10 inputs,

optimization isinfeasible, even for the smallest complex input alphabet, namely 4-QAM.
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6.5 Conclusions

In this chapter, we have discussed numerical optimization techniques to find encoding
matrices that minimize the union bound, given the channel dimensions, encoding matrix
dimensions and SNR. Simulation results show that such optimized codes yield a lower
error rate than other unoptimized codes with the same rate and raw diversity order.

The drawback of the numerical optimization algorithm developed here is its high
computational complexity for large code lengths and rates. One way to get around this
problem would be to obtain a new optimization metric that is a faithful indicator of actual
error rate, but is at the same time easier to compute than the union bound or the coding
gain. Obtaining such ametric is an open problem. Another important open problem in the
design of space-time codes is to analytically obtain a general structure for optimum
encoding matrices.

This chapter ends our discussion of space-time codes with uncoded inputs. We now
proceed to study the design of space-time inner codes, whose inputs are obtained from a
powerful outer code. The new design problem calls for a new set of performance metrics,

aswe will in the next chapter.
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CHAPTER 7

Introduction to Concatenated Space-Time Architectures

In Chapter 3, we derived performance metrics for stand-alone space-time codes,
whose inputs were obtained by modulating uncoded bits. In subsequent chapters, we
found linear space-time codes that optimize these performance metrics. In this chapter, we
begin the analysis of the concatenated architecture shown in Fig. 8. A powerful outer code
(such as turbo code [31] or LDPC [47][48]) produces coded bits, which are then
modulated to form the input symbols to a space-time inner code. In this chapter, we will
see that the optimized stand-alone space-time codes obtained in earlier chapters are not
necessarily optimum space-time inner codes. We also describe the design methodology

that will be used in subsequent chapters to find good space-time inner codes.

Effective Channel
r— — — — — - — T — 1
| I |
Source | orxt T _ Decision
Bits Powerful Modulation (9%} Space-Time | - Rayleigh - || Optimum Bits
—» Outer Code —P —W Ilfner Code fading Joint  —p
(ex. Turbo, LDPC) (ex. QAM, PSK) channel Decoder

¢

|

- - — -

Fig. 8. Concatenated transmitter with optimum receiver.
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7.1 The Need for New Performance Metrics

In this section, we will see that performance metrics derived for stand-alone space-
time codes in Chapter 3 do not accurately reflect goodness of a space-time inner codes. To
illustrate this fact, consider the case of the serial-to-parallel converter as a space-time
code. As discussed in Section 2.5.1, the S/P converter, as a stand-alone space-time code,
provides no transmit diversity while operating over a ¢-transmit, r-receive antenna
Rayleigh fading channel. Intuitively, the reason for the lack of diversity is that each input
symbol is transmitted from one transmit antenna alone. Consequently, if the signal from
any antenna is wiped out due to deep channel fades, the symbols transmitted from that
antenna cannot be recovered by the receiver, irrespective of how many other transmit
antennas are present.

On the other hand, consider the same S/P converter as an inner code in Fig. 8. A well-
designed outer code introduces redundancy across different signaling intervals and
different antennas. Even if signals from one transmit antenna get wiped out, the joint
decoder at the receiver can use the signals received from the other transmit antennas, and
exploit the redundancy introduced by the outer code to estimate the lost signals. Thus, in
the presence of a powerful outer code, each symbol does benefit from the presence of al ¢
transmit antennas.

The example of the S/P converter illustrates the fact that the performance metrics of
Chapter 3 do not accurately reflect actual error probabilities, in the presence of an outer
code. This observation motivates the need for a different analytical approach to the
concatenated architecture. We now present two possible approaches. The second one will

be used in the rest of thiswork.
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7.2 The Super-Code View of the Concatenated Architecture

The union bound and raw diversity order focus only on the space-time code, and fail to
account for the outer code. A more comprehensive picture is obtained by treating the
combination of the outer code and the space-time inner code as one large space-time
supercode. The length N of this supercode is the number of signaling intervals required to
transmit all the symbolsin one codeword of the powerful outer code. For a powerful code,
the length of the supercode satisfies N >> ¢. From the rank rule (Section 3.3), one can
achieve a diversity order of rmin(¢, N) = #r by ensuring that al pairwise differences
between the¢ x N transmit matrices have full rank.

The codebook of the supercode (i.e., the set of al valid transmit matrices) can be
directly analyzed to obtain exact or approximate expressions for the error probability of
the complete system in Fig. 8. The analysis can be performed either for idealized optimum
decoding [38], or for message-passing iterative decoding between soft-output decoders for
the space-time inner and the outer code [49][50]. The analytically obtained error rate (or
approximation thereof) can be used as a performance metric to evaluate and optimize both
the outer code and the space-time inner code, or one given the other.

The problem with this approach is that an expression for the error probability of the
supercode cannot always be found. Often, one needs to make some kind of idealized
approximation about the outer code. For example, the analysis in [49][50] assumes that
the outer code is a binary turbo or LDPC code of infinite length. The second design
approach, which we discuss next, takes these approximations all the way, and assumes an

ideal outer code.
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7.3 Using the Effective Channel to Design Space-Time Inner Codes

Instead of grouping together the outer code and inner codes, suppose one considers the
effective channel formed by the combination of the space-time code and MIMO fading
channel. This effective channel is shown in dotted linesin Fig. 8. One signaling interval of
the effective channel corresponds to one space-time code block, and lasts N signaling
intervals across the MIMO fading channel. The union bound and raw diversity order of
Chapter 3 measure the performance of the effective channel in one such block. In effect,
they measure the error probability of uncoded transmission across the effective channel.
However, in the concatenated architecture, the outer code codes across this effective
channel, and makes its inputs dependent from one block to the next.

Recall from Section2.4.1 that the choice of the space-time code completely
determines the effective channel. In order to design agood space-time inner code, we need
to quantify how well the effective channel responds to outer coding. Accounting for the
actual outer code, and obtaining an error probability expression is difficult. Instead, one
can replace the actual outer code by a hypothetical capacity-achieving outer code. Before
proceeding, we point out that this is actually a two-stage idealization. Firstly, actual outer
codes do not have the infinite length required to achieve capacity. Secondly, we will see
that achieving capacity requires that the inputs to the effective channel have a complex
Gaussian distribution. Thisis an idealization of the actual transmitter, where the effective
channel inputs are often QAM modul ated.

Assuming the idealized outer code, one can obtain the capacity of the effective
channel. This capacity depends on both the space-time inner code and the underlying

MIMO fading channel. In particular, it can be used as a metric to compare different space-
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time codes operating over the same MIMO fading channel. Also, it can be used as an
optimization metric to design space-time inner codes. The advantage of this capacity-
based approach is its simplicity. We will see that unlike the error probability of the
supercode, information-theoretic analysis of the effective channel is quite simple.
However, because of the implicit idealization of the outer code, the capacity-based
approach does not accurately measure the performance for a finite-length, non-ideal outer

code.

7.4 Organization of the Following Chapters

In the remainder of thiswork, we will use the capacity-based approach to obtain broad
design rules for space-time inner codes. Note that the capacity of the effective channel
depends not only on the space-time inner code, but also on the MIMO fading channel.

In the next chapter, we will review the rich literature on the information theoretic
analysis of Rayleigh fading MIMO channel alone. Because of fading nature of the
channdl, it will prove necessary to introduce a relatively new kind of capacity, namely
outage capacity.

In Chapter 9, we will extend the analysis to the space-time coded effective channel.
This extension is simple because, as discussed in Section 2.4.1, the effective channel for a
linear space-time code resembles the MIMO fading channel itself.

Combining the results of these two analyses, we obtain broad design rules for space-

time inner codes in Chapter 10.
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CHAPTER 8

Information Theoretic Analysis of MIMO Static Fading Channels

In this chapter, we provide an overview of information theoretic analysis of static
fading channels. Much of the discussion is drawn from the vast literature on the topic,
notably [6][4][5], athough some of the proofs are our own. Specifically, the notion of
outage probability and outage capacity of fading channelswill be introduced. A high-SNR
analysis of these quantities yields respectively the diversity order and multiplexing order
of fading channels. These asymptotic quantities reflect the diversity and multiplexing
abilities of fading channels, and will be used to analyze space-time inner codes in the next

chapter. In this chapter, we also discuss the multiplexing-diversity trade-off curve [36].

8.1 Outage Probability and Diversity Order

In this section, we introduce the notion of outage, and discuss the outage probability
and diversity order of MIMO fading channels. Recall, from (1), the quasi-static, linear
MIMO fading channel model y, = Hx;, + n;. The data rate of transmission, say R, bits/
s/ Hz, isgiven by the entropy rate of the channel input vector sequence x;. Recall that the
signal-to-noise energy ratio is given by S = E[||Hx|[?1/N,. Thus, the data rate and energy
fix the entropy and average energy of the transmit vectors {x;}. Given these, an optimal

encoder design should shape the distribution of the random vectors{x,} so asto maximize
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the mutual information between the channel input and output vectors. For a wide range of
SNRs, the optimum distribution® [4] is that the elements of x;, are mutually independent
zero-mean, complex Gaussian random variables with the same variance. For such an input

distribution, the mutual information at an SNR S and a channel matrix H is given by [4]
S
I(S, H) = logy det ., + ?HHEH b/s/Hz. (105)

I(S, H) is the available capacity corresponding to the channel matrix H, namely the
highest datarate that can be transmitted while maintaining zero error probability. Since the

channel matrix H is random, so is the available capacity.

If the transmitter knew the channel, it could adapt the data rate R, to be equal to the
available capacity I(S, H). However, in this work, we are concerned with the case where
the transmitter does not know the channel. Conseguently, it has to pick some data rate R,
without the guarantee of successful transmission. If I(S, H) = R, the error probability can
be made arbitrarily small with a well-chosen code. On the other hand, if I(S, H) < R, the
error probability cannot be made zero by any code. This event is called an outage. The
occurrence of an outage does not necessarily imply that an error will occur, only that the
error probability is non-zero. Thus, the probability of outage, called outage probability,
provides an upper bound on the lowest achievable error probability.

By definition, the outage probability is Pr[I(S, H) < R,]. In terms of the distribution
function of the random available capacity I(S, H) for an SNR S, namely

F(S, x) = Pr{I(S, H) < x], (106)

1. Actually, at this stage, the distribution optimization problem is ill-posed, since the transmitter
does not know the channel. Wewill return to thisissuein the next chapter, whilediscussing Telatar’s
conjecture.
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the outage probability is clearly equal to F(S, R,). For every value of the SNR S, we get a
different distribution function® F(S, x) depending on the statistical nature of the random
channel matrix H. For a wide variety of fading channels, the function F(S, x) can be
derived analytically. However, in this work, we are not interested in the exact expressions
for F(S, x), but only in its general behavior. In particular, we are interested in the behavior

of outage probability at high SNR, which we now discuss.

8.1.1 The Diversity Order of MIMO Channels

As the SNR S increases, it is clear from (105) that the available capacity I(S, H)
increases for every channel matrix H. Consequently, for any data rate R;, the outage
probability F(S, R;) decreases as the SNR increases. The diversity order quantifiesthe rate

of this decrease at high SNR. Formally, it is defined as

logF (S, R
3(Rp) = — lim M

S o o logS (107)

Intuitively, the diversity order is the asymptotic slope of a log-log plot of outage
probability vs. SNR. Clearly, a high diversity order represents a more rapid decrease of

error probability with SNR, asis desirable.

To get some intuition into the diversity order, consider the outage probability F(S, Ry)
asafunction of the SNR S, for agiven value of Ry,. Supposeitisinfinitely differentiablein

S. Then, one can expand F(S, R,) in aLaurent seriesin the powers of S, namely

F(S, Ry) = (108)

fiBy)  fiva(Ry)
i Si+1

1. Some textbooks define the distribution function of arandom variable X as Pr[X < x], instead of
Pr[X < x].We consistently use the latter definition.
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Note that the coefficients fi(R;) of the expansion (108) are functions of the data rate R,
Also, the coefficients corresponding to positive powers of S are all zero, since F(S, R;)
uniformly decreases as S increases. As S goes to infinity, the term with the highest power
of S dominates. Substituting F(S, Rp) = £(R,)/S* in (107), we see that the diversity order
isequal to i, namely the least power of (1/.S) that has a non-zero coefficient in the Laurent

series expansion of F(S, Ry).

From the above discussion, whenever the Laurent series expansion of F(S, R;) exists
and is known in closed form, it can be used to compute the diversity order. For example,
consider a 1-input, 1-output (scalar) Rayleigh fading channel. It is easy to show that the
outage probability at SNR S is Fy 1(S, R) = 1 - exp(—(ZRb - 1)/8). The first non-zero

. . . R
term in the Laurent series expansion is(2 °

- 1)/, implying that the diversity order of a
1-input, 1-output (scalar) Rayleigh fading channel is &(1, 1) = 1. Note that the diversity
order isindependent of the datarate Ry, aslong as0 < R, < .

The extension of the above result to general MIMO Rayleigh fading channels is more
complicated. The distribution function F, (S, x) of the available capacity of a z-input, r-
output Rayleigh fading channel is known [51]. However, its Laurent series expansion is
not known in closed form, and is therefore not useful in obtaining the diversity order.

Instead, one can directly compute the limit in (107) using the clever analysis of [36][51].

We do not reproduce the well-known steps here, but merely state the final result below.

Theorem 2. The diversity order d(¢, r) of a ¢-input, r-output Rayleigh fading

channel is equal to ¢ for al finite, non-zero data rates.

Note that the generalization &(¢, r) = ¢tr agrees with the special case &(1, 1) = 1 derived

above. Intuitively, this result is satisfying, since it confirms the intuitive notion of the
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diversity benefit of multiple antennas. With ¢ transmit and r receive antennas, there are tr
independent Rayleigh fading links, and we expect to get ¢r-times the fade resistance of any
one link, namely (1, 1) = 1. Also note that (¢, r) = ¢r agrees with the full raw diversity
order of a general space-time code derived in Chapter 3. Thisis to be expected. Both the
diversity order and full raw diversity order measure diversity with the best possible code.
The only difference is that the diversity order holds for continuous Gaussian-distributed
inputs, while the raw diversity order assumes a discrete input alphabet. The fact that the

two agree shows that the difference in input distributionsis not significant.

8.2 Outage Capacity and Multiplexing Order

The outage probability is an upper bound on the minimum possible error probability
for afading channel, at a fixed data rate. The outage capacity does the reverse, namely it
finds the maximum possible data rate for a fixed outage probability. More precisely, for a
given SNR S, as the data rate R}, increases, the outage probability F(S, R;) = Pr[I(S, H) <
R,] increases. The outage capacity is defined as the maximum data rate at which the
outage probability F(S, Ry) is less than some target value p,,. In other words, the outage
capacity for an SNR S and target outage probability p, is given by

C(S, p,) = sup{Ry: F(S, Rp) <p,}. (109)
Note that for any non-zero data rate, the outage probability F(S, R;) is strictly greater than
zero. Consequently, the Shannon capacity, which is defined as the maximum data rate
which guarantees zero error probability is zero for fading channels. Outage capacity

replaces Shannon capacity as a measure of the data-carrying ability of fading channels.
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F(S, x) A
) [ S —

Tolerable
outage probability p,

1 > X
CS,p)
Outage Capacity

Fig. 9. Sketchtoillustrate calculation of outage probability and outage capacity.

Instead of requiring zero error probability, atolerance limit of p, on the outage probability

is placed, and the corresponding maximum data rate is measured.

Pictorially, the outage capacity is just computed by looking up the value of x such that
F(S, x) = p,, as shown in Fig. 9. As SNR increases, we mentioned that the distribution
function F(S, x) decreases pointwise for al x. As shown graphically in the sketch of Fig. 9,
the distribution function moves down to a new position shown by the dotted curve.
Consequently, it is easy to see for the same value of p,, the outage capacity C(S, p,)

increases with the SNR S. We now quantify the rate of thisincrease at high SNR.

8.2.1 The Multiplexing Order of MIMO Fading Channels

The multiplexing order of afading channel is defined as

_C(S,p,)
H(p,) = Sl M TogS (110)

Intuitively, it is the asymptotic slope of a plot of outage capacity vs. log SNR. In other
words, at high SNR, every doubling of SNR increases the outage capacity by p(p,) bitss/
Hz. Clearly, a high multiplexing order represents a rapid increase of outage capacity with

SNR, and is therefore desirable.
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In theremaindeiof this sectionwe will shaw that,for awide classof #-input, -output
fading channelsthe multiplexing orderis equalto min(t, r), irrespectve of the target
outageprobabilitypol. An intuitive understandingf this resultis obtainedby analyzing
the dependencef available capacity(S, H) = log det(I, + (S/¢) HH") on SNRS. Note
thattherandomchanneimatrix H hasdimensiorr x ¢. If it hasfull rankof m = min(¢, r),
the matrix HH™ hasexactly m non-zerosingularvalues,say\y, As, ..., A,,. Writing the
determinant ofL. + (S/t) HH") in terms of these, we get the eguént expression

I(S, H) = log |—| %l > NE (111)
i=1
for available capacity Whenthe SNR S goesto «, the‘l + ' above canbe negglectedin

comparison to the second term, which is linea.ithus, at high SNR

m
I(S, H) = log S™ |'| 9‘5 =mlog$ + log [ D}%‘ (112)

i = i=1
From (112), the available capacity is roughly the sum mlogS and a constantterm,
independenof S. Therefore,it increaseasmlogS for all full-rank channelmatricesH.
Oneintuitively expectsthatthe outagecapacitybehaessimilarly to theavailablecapacity
implying that multiplexing orderis m = min(¢, r). This is made more precisein the

following theorem [52], which has not beenyed earlierto the best of our kmdedge.

Theorem 3. If thechannelmatrix H of a¢-input, r-outputfadingchannelhasfull
rankwith probability one,thenthe multiplexing orderu(p,) equalsn = min(, r) for

all0<p,<1.

1. Thoughthe multiplexing orderdoesnot dependon p,,, the outagecapacityclearly does.We will
discuss the influence pf, on outage capacity at high SNR, in Secdb
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Before proving the theorem, we point out one crucial difference between the diversity and
multiplexing orders. We saw that the diversity order depends strongly on the fading
statistics of the channel, and is consequently difficult to compute in general. In contrast,
the multiplexing order is easily computed to be min(¢, ) for a wide class of fading
channels, using Theorem 3. In particular, Rayleigh fading channels are known [4] to have

full rank with probability one, resulting in the following corollary.

Corollary 2. The multiplexing order of a¢-input, r-output fading channel is equal to

min(¢, r).

8.2.2 Proof that the Multiplexing Order is min(Z, r)

In this section, we prove Theorem 3. We first define

C(S. p,)
X(S, p,) = —, giving (113)
C(S, p,) = m logS +log X(S, p,). (114)

Dividing by logS and taking limit asthe S - o, the multiplexing order (110) reduces to

__logX(S, p,)
H(po) =m+ SIImOOTS'O . (115)

In order to show u(p,) = m, it suffices to show the second limit above vanishes, or
equivalently, that X(S, p,) isfinite and bounded away from zero as S - «. We first derive
amore convenient expression for X(S, p,). Substituting C(S, p,) = sup{Ry: F(S, Rp) < p,}
from (109) in the definition of X(S, p,), and using the fact that 2* is a strictly increasing

function, we get
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(S, H)
X(S, p,) = sup{«: Pr{ — < x} <Do}- (116)

(S, H)

It will prove useful to explicitly define S, H) = —. Substituting (111) for I(S, H),
IS H —m .

2 1

fiS, H) = o M E% + gg. (117)
i=1

Defining g(S, x) = Pr[A(S, H) < x], (116) can be rewritten as
X(S, p,) = sup{x: g(S, x) <p,}. (118)
First, we remark that X(S, p,) is a non-decreasing function of the SNR S. This follows

from the fact that S; > Sy 0 AS7, H) < Sy, H) O g(S1, x) = g(Sy, x) 0 X(Sy, p,) < X(Ss,

p,)- Now, we can prove the following lemmas, bounding X(S, p,) from above and bel ow.

Lemma6. For all p, < 1 and al SNR S > 1, X(S, p,) < X(1, p,) < .

Proof: Since X(S, p,) is anon-decreasing function of the S, we have X(S, p,) < X(1,
p,) foral SNR S > 1. It remains to prove X(1, p,,) < «. The random variable (1, H)
is area-valued transformation of the random elements of H, and is therefore awell-
behaved random variable with no point masses at infinity. For al well-behaved

random variables, the distribution function approachesone asx - « [53]. Thus,

lim g(1,x) = lim Pr{Al, H) <x] = 1. (119)

X - X —

The limiting value g(1, x) = 1 can be arbitrarily closely approached by increasing x.
More precisely, for dl p, < 1, thereis an X, < « such that g(1, x) > p, for al x > X,,.
From (118), thisimpliesX(1, p,) < X, < «, which proves the lemma. The condition S
> 1 was chosen arbitrarily in the lemma. Any non-zero value can be chosen as the

lower limit for S, since we are only interested in afinite upper bound for X(S, p,).
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Lemma 7. If H is full-rank with probability one, for al p, > 0, there is a corre-

sponding x, > 0 such that X(S, p,) = x, for al SNR S.
Proof: It iseasy to seethat g(S, x) is upper-bounded, according to
m m
Ef\i 10 A;
@S, x) = Pr{ I_l w3 + §D< x| <Pr |_| 7 <%l (120)
1=1 1=1
The latter quantity is obtained by substituting S = « in the definition of AS, H) in

(117). Therefore, we will denote it as g(«, x). Asx — 0, the limit of g(ew, x) is

lim g (e, x) (121)

1]

L
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1l |S
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~|>
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Equation (122) is the probability that at least one of the singular values A; is zero, or
that H is not full rank, which is zero by hypothesis. So, asx — 0, g(w, x) —» 0. Given
any p, > 0, thereisan x, > 0 such that g(e, x) < p, for al x < x(. Using g(S, x) < g(e,
x) <pgfor al x <x( in (118), we get X(S, p,) = x, > 0. This proves the lemma.

Proof of Theorem 3: Lemma 6 says that X1, p,) < «. Also, if H is full-rank with
probability one, Lemma 7 shows 0 < x, < X(S, p,). Combining the two, we get 0 < x, <
X(S, p,) <X, p,) < . Substituting the two bounds in (115), the limit involving X(S, p,)
is bounded above and below by zero. Thus, the second limit vanishes and we get u(p,) = m

= min(¢, r), proving the theorem.
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8.3 The Outage Capacity Asymptote

In non-fading channels, one can achieve zero error probability by operating below the
non-zero Shannon capacity. However, the outage phenomenon in fading channels results
in a fundamental trade-off between data rate, error probability and SNR. The outage
probability and outage capacity are obtained by fixing one of the two variables, namely the
data rate and error probability respectively. Correspondingly, their asymptotic variation
with SNR vyields the diversity and multiplexing orders, which quantify the diversity and
multiplexing benefits of MIMO channels. This leads one to seek an information theoretic
metric that measures diversity and multiplexing benefits simultaneously. In this section,
we argue that the outage capacity asymptote is one such metric. In the next section, we
will briefly discuss the more comprehensive multiplexing-diversity trade-off curve [36].

From (114), we have the expression C(S, p,) = m logS + log X(S, p,) for the outage
capacity. AsSS - o, the outage capacity approaches its asymptote

C(S, p,) = mlogS + a(p,), (123)

where a(p,) is given by the limit

apy) = Jim log X(S, p). (124)

Note that this limit is well-defined and finite, since X(S, p,) has a well-defined non-zero
limit from Lemma 6 and Lemma 7. From (123), the plot of the asymptote C(S, p,) vs. logS
isastraight line, whose slope is equal to the multiplexing order m. In this section, we will
focus on the zero-offset of the asymptote, namely a(p,). In particular, we will show that it
is higher for channels with higher diversity order. Thus, the outage capacity asymptote

contains information about both the multiplexing and diversity gains of MIMO channels.
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Intuitively, alower value of the target outage probability p,, places a stricter constraint
on the data rate, and reduces the outage capacity. Since a(p,) is the only part of the
asymptotic outage capacity that depends on p,, it must decrease as p, decreases. To
confirm this, note that X(S, p,) = sup{x: g(S, x) < p,} decreases with p,, for all SNR S.
Consequently, the limit a(p,) of log X(S, p,) aso decreases with p,,.

We will now argue that for channels with high diversity order, a(p,) decreases faster as
P, decreases. To see this, consider the sketches in Fig. 10. The upper sketch shows the
outage capacity asymptotes for outage probabilitiesp and ¢ < p. Both the asymptotes have
sope equal to the multiplexing order u, but different zero offsets a(p) and a(q)
respectively. The difference Ay = a(p) — a(g) represents the outage capacity loss incurred
by reducing the target outage probability from p to ¢q. The difference Ax represents the

SNR gap between the two capacity asymptotes. From the slope p, we see that

Ny/ D = . (125)

OUTAGE CAPACITY

> 1log(SNR)

log p

log (OUTAGE
PROBABILITY)

log g

> log(SNR)
Fig. 10. Sketch of outage capacity and outage probability asymptotes.
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We will now use the lower sketch to relate the SNR Ax to the diversity order 6. The
lower sketch shows the asymptotic plot of log outage probability versus log SNR for a
data rate R, in the high SNR region. By definition, the slope of this asymptote is the
diversity order 8. A reduction of the outage probability from p to ¢ requires a drop along
the y-axis of Az = log(p) — log(g). The corresponding increase in log SNR is equal to the
SNR gap Ax. From the slope of theline, it is clear that

Nz/Dx =3, (126)

Substituting Az = log(p) — log(q) in the above, we see that the SNR gap is

Ax = M ' (127)

From (127), the SNR gap Ax between outage capacity asymptotes for different outage
probabilities is inversely proportional to the diversity order 5. Thus, suppose one plots the
outage capacity asymptotes for different values of target outage probability. Then, the
higher the diversity order of the channel, the closer these asymptotes are. Viewed
differently, the higher the diversity order, the smaller the capacity loss incurred by

decreasing the target outage probability. Thisfollows by using (127) for Ax in (125) to get

Ay = a(p) - a(g) = %(logp —logq). (128)

The above analysis also gives a method to obtain outage capacity asymptotes for
different target outage probabilities. Suppose the zero offset a(p) of the outage capacity
asymptote for the target outage probability p is known. Then, for al lower target outage

probabilitiesq < p, (128) yields the following expression for the zero-offset a(g), namely

a(g) = %Iogq +a(p) - %Iogp. (129)
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It must be mentioned that the above expression is approximate. The actual capacity and
diversity plots approach the asymptotic straight lines sketched in Fig. 10, but are not

exactly straight lines themselves.

The approximation (129) shows qualitatively that the outage capacity is higher for
channels with higher diversity order. Fixing p, the first term (u / d) log(g) in (129)
dominates as the target outage probability ¢ decreases. If two channels have the same
capacity order p but different diversity orders say &; > &9, we have

log(q) (U/3;) >log(q) (L/dy), (130)
since log(g) < 0. Since this is the dominant term in the zero-offset, we see that the higher

diversity channel has a greater zero-offset, and hence, a higher asymptotic outage capacity

than the lower diversity channel, when g is sufficiently low.

In this section, we have shown that the zero-offset of the outage capacity asymptote
carries diversity information, and is higher for channels with a higher diversity order.
Unfortunately, the latter result is approximate, and holds only for low outage probabilities.
Its main implication is that the outage capacity asymptote carries information about both
the multiplexing and diversity gains of MIMO fading channels, in its slope and zero-offset

respectively.

8.4 The Multiplexing-Diversity Trade-Off Curve

In the previous section, we obtained a unified multiplexing-diversity picture by
studying the asymptotic outage capacity for different target outage probabilities. One can
perform a similar approximate analysis of the outage probability asymptotes at different

datarates. Similar conclusions are arrived at, namely the outage probability asymptotes at
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different data rates are packed closer together for channels with higher multiplexing order.
Also, channels with high multiplexing order have lower outage probabilities when the data
rate is high enough. Again, these results are instructive, but somewhat imprecise.

One reason for the vagueness of the above results is that the different data rates for
eval uating the outage probability asymptote are arbitrarily chosen. In [36] (see aso [54]),
an ingenious method of choosing the different data rates was suggested. Common sense,
and the multiplexing order discussion, tell us that the achievable data rate increases in
proportion to log SNR. Consequently, the different data rates are chosen not arbitrarily, but
according to Ry = gylogS, where the multiplexing gain g, quantifies how much
multiplexing we expect out of the MIMO channel. Now, the outage probability at SNR S
is given by F(S, g,logS). Smilar to the diversity order analysis, one can find the

asymptotic slope of log outage probability vs. log SNR, yielding the diversity gain

’ logF (S, g,,100S)
ga=—gm logS

(131)

Clearly, as the multiplexing gain g, increases, the data rate g, logS for any SNR
increases. Consequently, the outage probability F(S, g,,logS) increases. Substituting in
(131), we intuitively expect that the diversity gain g4 is a decreasing function of the
multiplexing gain g,,. The plot of g4 vs. g, gives a comprehensive picture of this

decrease, and is called the multiplexing-diversity tradeoff curve.

Given avalue of g, obtaining the corresponding value of g4 from (131) is a difficult
task. The computation depends strongly on the variation of the outage probability F(S, R)
with SNR, which depends strongly on the channel characteristics. For the specific case of

Rayleigh fading channels, the computation was performed in [36] to show the following.
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Theorem 4. Consider a Rayleigh fading channel with ¢ input and r outputs. The
multiplexing-diversity trade-off curve is a piecewise linear function connecting the

points (k, (¢ = k)r —k)), k=0, 1, ... min(, r).

In particular, Theorem 4 implies that for an integer value of the multiplexing gain g,,,, the

corresponding diversity gainisgiven by (¢ — g.,)(r — g.)-

The advantage of the trade-off curve is that it is a comprehensive metric, measuring
the multiplexing and diversity abilities of a fading channel at high SNR. In particular, it
encompasses the multiplexing and diversity orders. In order to compute the diversity
order, the data rate is kept fixed even as the SNR increases to infinity, hence the diversity
order is merely the diversity gain g4 when the multiplexing gain g,,, Set to 0. To verify this,
note that the diversity order ¢ is obtained for Rayleigh fading channels, both by directly
finding diversity order in Theorem 2 and by substituting g,,, = 0 in the expression g4 = (¢ -
gm)(r — g,,) of Theorem 4. Similarly, it is easy to see that multiplexing order of fading
channels is the multiplexing gain g, corresponding to zero diversity gain. Again, for
Rayleigh fading channels, this new formula gives the same multiplexing order min(z, r) as
the direct computation in Theorem 3. In other words, the multiplexing and diversity orders
are respectively the x- and y- intercepts of the trade-off curve.

The disadvantage of the trade-off curve is that it depends strongly on the fading
characteristics, and is difficult to compute analytically. In particular, researchers have been
unable to compute the trade-off curve for the effective MIMO channel formed by the
combination of linear space-time codes and Rayleigh fading channels. Instead, we will use
the simpler outage capacity asymptote to analyze the effective channel in the next chapter.

The analysis will be used to obtain simple design rules for space-time inner codes.
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CHAPTER 9

Information Theoretic Analysis of Space-Time Codes

In the last chapter, we discussed the information theoretic analysis of Rayleigh fading
MIMO channels. In this chapter, we extend the analysis to the effective channel formed by
the combination of the space-time code and the Rayleigh fading MIMO channel. We
discuss the outage probability and outage capacity of the effective channel, and the effect
of the rate and raw diversity order of a space-time code on its outage capacity asymptote.
This analysis will be used in the next chapter to obtain design rules for space-time inner

codes.

9.1 The Available Capacity of the Effective Channel

Consider alinear space-time inner code with K complex inputsin ablock of length IV,
operating over at-input, r-output Rayleigh fading channel. Let the 2N¢ x 2K real encoding
matrix of the space-time code be M. In Section 2.4.1, we discussed the effective channel
formed by the combination of the linear space-time code and the Rayleigh fading MIMO

channel. We obtained the input-output relation of the effective channel, namely
y=GMu +n. (132)
In what follows, we will be concerned with the transfer matrix GM of the effective

channel matrix, which we call H.¢ for convenience. In particular, we will study the effect
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of M on the behavior of H,g. Recall from (11) that the 2Nr x 2t matrix G is obtained by
applying the complex-to-real transformations (8) to the block diagona matrix G, which
just contains N copies of the channel matrix H on its diagonal. Thus, H g depends not
only on M, but also on the random fading channel matrix H through G . Consequently,

H, ¢ is also random.

As mentioned in Section 2.4.1, the effective channel strongly resembles the MIMO
fading channel (1). The only differences are that the transfer H, ¢ is real, and has different
dimensions, namely 2Nr x 2K, from the r x ¢ complex MIMO channel matrix H. After
accounting for these minor differences, the information-theoretic analysis in the previous
section extends to the effective channel. To begin, when the random fading channel matrix

isH, the available capacity of the effective channel at SNR S can be shown to be

0J ,\ ~ T
J(S, M, H) = =~ log det T, + 25 GMM™ G T b/ s/ Hz. (133)
2N 0 2 0

For clarity, we have chosen the notation J(S, M, H) to explicitly separate the fading and
encoding components of the effective channel matrix, H (or G ) and M respectively. From
the available capacity, one can define all the other quantities of the previous chapter. In
particular, the distribution function

G(S, M, x) = Pr[J(S, M, H) < x] (134)
of the available capacity at SNR S is used to obtain the outage probability corresponding
to adatarate Ry, namely G(S, M, Ry) = Pr[J(S, M, H) < R, ]. Correspondingly, the outage

capacity for afixed target outage probability p,, is defined as

D(S, M, p,) = sup{Ry: G(S, M, Rp) <p,}. (135)
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We will loosely call the outage probability and capacity of the effective channel as,

respectively, the outage probability and capacity of the space-time code itself.

9.2 The Outage Probability and Diversity Order of Space-Time Codes

In this section, we focus on the outage probability of space-time inner codes, which
gives an upper bound on the error probability with a capacity-achieving outer code. Thus,
the outage probability is analogous to the union bound of Chapter 3, which served as an
upper bound on the error probability when there is no outer code. In Chapter 5 and
Chapter 6, we discussed search strategies to find encoding matrices that minimize the
union bound. Extending the analogy, one possible approach to space-time inner code
design is to use outage probability as optimization metric. The optimization problem is

stated precisaly below.

Outage Probability Optimization Problem: The SNR S, data rate R, channel
dimensions r x ¢, channel fading statistics (for example, Rayleigh), and encoding
matrix dimensions 2Nt x 2K are given. Find the 2Nt x 2K encoding matrix M that
minimizes the outage probability G(S, M, Ry).

The outage probability optimization problem is open, primarily because of the
difficulty in obtaining a general closed form expression for G(S, M, R;). We do not
attempt to solve the problem here. Instead, we discuss a conjecture by Telatar [4], which
gives the lowest possible outage probability that can be achieved by any space-time code
operating on a given Rayleigh channel. We will subsequently discuss the conjecture’s

interesting implications for the design of space-time inner codes.
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9.2.1 Telatar’s Conjecture and Its Implications

Consider the information flow diagram of any space-time code, shown in Fig. 11. The
Space-time code encodes its input vector u to obtain the composite transmit vector x,
which is sent across the MIMO fading channel, yielding the composite receive vector y.
For notational clarity, we will use script variables to indicate random variables along with
their distributions. Thus, U represents the distribution of the random input vector u. Note
that the distribution U along with the encoding matrix M fixes the distribution X of the
composite transmit vector x. In particular, since the encoding matrix M is fixed, x is
known given u, and so the entropy H(X| 1) is zero. Thisisuseful in the following standard
information theoretic manipulation [55], which expands the mutual information I(, X ;

Y1H) in two different ways using the chain rule.

I(U, X5 9TH)

10U YTH) + 10X 911 H) (136)

I YTH) + I(U ; Y1 X, H) (137)
Now, I(U ; 71 X, H) = 0 because the Markovian nature of the chainin Fig. 11 ensuresthat Y

is conditionally independent of U given the intermediate variable X. Also,
IX; 91U H) < HXI U H) < HXIU). (138)

We aready saw that H(X/ U) iszero, implying I(X ; 1 U, H) = 0. Thus, the second termsin

the right hand sides of (136) and (137) are zero, giving

I(U; 9YTH) = I(X; Y1 H). (139)
Encoding Transmission
u > SpaclgTi me|[ » X » l\a/ICIrI\(}I% »
random variable random variable . random variable
representing u Code representing X fadmg channel representing y

Fig. 11. Information flow diagram for space-time coding.
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Now, for a given fading channel matrix H, the available capacity of the space-time
code is equal to (1/ML 1w 1H) b/ s/ Hz. The corresponding outage probability at a
data rate Ry, is Pr[(1/ N) I(U; Y1TH) < R,]. Substituting (139), we see that the outage
probability at a datarate Ry is equal to

Prl(1/N) I(X; Y1H) < Ry]. (140)
Note that the distribution X determines the distribution of ' given H, and hence the mutual
information (; 91H). Thus, the distribution X determines the outage probability (140).
Now, the encoding process places a constraint on the distribution X, since x has to be the
output of a linear space-time code with some encoding matrix M. If one relaxed this
constraint, and allowed some arbitrary distribution X, the best possible distribution yields a
lower bound on the outage probability of any space-time code. Telatar’s conjecture [4]

gives the optimum (outage probability minimizing) distribution X.

Conjecture 2.The outage probability (140) is minimized by adistribution X where
the N individual transmit vectors {x;} constituting the composite transmit vector x
have identical zero-mean Gaussian distributions, and are independent of each other.
The ¢ x ¢ covariance matrix ® of each transmit vector is of the form (NyS/ k) Dy,

where D, is the diagonal matrix

D, = diag(1, 1, .., 1,0,0,...0) (141)

R s ~F Os

1. The factor (1/ N) accounts for the fact that the signaling interval on the effective channel is N
times aslong as that on the MIMO fading channel.
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The number of ones, &, should be chosen to optimize the outage probability. Note
that the scaling (IV(S/ k) ensures that the total transmit energy isequal to NS, which
is consistent with an SNR S and noise energy Nj,.
The conjectured optimum distribution X ™ has independently distributed input vectors for
different signaling intervals across the fading channel. It uses only a well-chosen number
k of the inputs of the fading channel, and treats them identically. Note that the

corresponding outage probability is (140)
# S
Pr((1/N) I(X"; 9/H) < Ry] = Prilog, detH, + k—HDkHEE <Ryl (142)

Since this is conjectured to be the best possible distribution X *, (142) gives the
conjectured value of the lowest outage probability of any space-time code with any input

distribution. In particular, we get the conjectured lower bound
i S
G(S,M, R) > ”};n Prllog, detH, + EHDkHEH <Ry (143)

on how far the outage probability can be reduced. This is a powerful bound, since it is
independent of the codelength N and the number of code inputs K. The optimal number of
active inputs £ varies with the data rate. For awide range of data rates, the optimal number
of active channels % is equal to ¢. However, for low data rates, the optimal value of % is

lower than ¢ [4].
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9.2.2 Is the Serial to Parallel Converter Optimal?

Consider the serial to parallel converter as a space-time code. As described in
Section 2.5.1, it hasalength N = 1, takesin K = ¢ complex inputs and transmits them one
on each available input to the ¢-input, r-output MIMO channel. Thus, the effective transmit
vector x is equal to the input vector u, and the input-output relation for the effective
channel isy = Hu + n, which isidentical to that of the MIMO channel. If we chose the
distribution of u to be (NyS/ k) D,, for the optimally chosen %, it is easy to see that the S/P
converter achieves exactly the conjectured optimum outage probability in (143). Thus, if
Telatar's conjecture is true (it has so far not been proved or disproved, to our knowledge)
one can achieve optimum outage probability for any given rate by choosing the S/IP
converter as space-time code, and optimally choosing the number of ON antennas.

The optimality of the S/P converter can also be motivated from another viewpoint. The
famous data processing theorem of information theory [55] says that any form of coding
can at best achieve the fundamental information-carrying capacity of the channel. The
data processing theorem is not directly useful here because the Shannon capacity of the
channel with or without coding is zero. However, the basic philosophy of the data
processing theorem is that any kind of coding can only impair the information theoretic
limits of communication. Since the S/P converter does effectively no coding, the effective
channel is the same as the MIMO channel. Consequently, the S/P converter is expected to
be optimum in terms of outage probability and other information theoretic quantities.

The conjecture that the S/P converter is optimum poses an existential question for
space-time inner codes, i.e., it questions the need for any space-time inner code more

sophisticated than the simple S/P converter. We will return to thisissue in Chapter 10.
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While discussing Telatar’s conjecture, we have briefly touched upon the problem of
optimizing the input distribution to afading channel, with the objective of minimizing the
outage probability. This is, by its own right, an important open problem (recall the
discussion of the analogous open problem in Section 5.6.1 for the case of stand-alone
space-time codes). For the remainder of thiswork, we will return to the earlier assumption
that all input symbols are independent and have an identical complex Gaussian
distribution, for all the channels involved. For the specific case of the S/P converter, the
uniform distribution corresponds to Telatar’s conjectured optimum distribution (141) with
the number of active inputs & set to ¢. As stated earlier, the optimum % isindeed equal to ¢
for high data rates and high SNR. For all such SNR, the lower bound (143) becomes

G(S, M, Ry) > F(S, Ry), (144)
where F(S, R) is the outage probability of the MIMO fading channel, discussed in

Section 9.2 of the previous chapter.

9.2.3 The Achievable Diversity Order of Space-Time Codes

We now proceed to analyze the outage probability at high SNR. The diversity order of
the effective channel quantifies the asymptotic speed with which the outage probability

G(S, M, R;) decreaseswith SNR S. It is defined as

logG(S,M, R
X(By) = — lim 23 b)

S - o logS (145)

Note that x(Rp) is the diversity order of the space-time code corresponding to M with the
best possible outer code, hence we call it achievable diversity order of the space-time

code. At high SNR, the bound G(S, M, R;) = F(S, R;) from (144) holds, giving
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logF (S, R
X(Rp) < — lim 199F1S, &)

S o o logS (146)

The right hand side of (146) is just the diversity order ¢r of the Rayleigh fading channel
from Theorem 2 of the previous chapter. Thus, with the best possible outer code, a space-
time can achieve the diversity order of the Rayleigh fading channel. When this happens,
the space-time code is said to have full achievable diversity order. In particular, note that
the S/P converter has the same effective channel as the underlying MIMO channel itself,
hence its outage probability is equal to F(S, R;). Consequently, the S/P converter in fact
has full achievable diversity order ¢r. This is remarkable, since we saw in Section 2.5.1
that the raw diversity order of the /P converter isonly r. Thistrend in the S/P converter is

part of ageneral rule, stated below.

Remark 6. Any space-time code has two diversity-measuring quantities. The
raw diversity order measures the diversity order the space-time code with uncoded
inputs from a discrete alphabet. It is alower bound to the achievable diversity order,
namely the maximum diversity order achievable by the use of a well-chosen outer

code and (possibly continuous) input alphabet.

While the raw diversity order of a space-time code is easily calculated using the rank
rule, calculating the achievable diversity order for a general space-time code is an open
problem. Thisis not surprising, considering the difficulty in calculating the diversity order

of agenera MIMO fading channel, as discussed in Section 8.1.
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One case where the achievable diversity order can be calculated is when the space-
time code already has full raw diversity order #r. The achievable diversity order cannot be
any less, so it has got to be tr as well. Examples of such codes are the Alamouti code for ¢
= 2, and the L CF codes (see Section 2.5) for any number of transmit antennas.

For many other space-time codes, the achievable diversity order can be obtained by
inspection of the effective channel. One example of this is the S/P converter, where we
noted that the effective channel is the same as the MIMO fading channel, and hence, the
achievable diversity order is equal to the full diversity order. Another example is the

repetition code, discussed below.

Example 1. In every signaling interval across a ¢-input, r-output Rayleigh fading
channel, the repetition code takes in K = 1 complex input and repeats it on all ¢
channel inputs after scaling by (1/ ./¢) to preserve the energy. Thus, it has alength N
= 1. It is clearly a strictly linear space-time code whose encoding matrix has
dimension ¢ x 1, and equals M., = (1/v)[1, 1, ..., 117. The effective channel isan r
x 1 channel given by H,.., = HM,,. Each element of the effective channel is the
scaled sum of i. i. d. complex Gaussians, which can easily be shown to also be an
identical complex Gaussian random variable. Thus, the effective channel H,, is
statistically equivalent to an 1-input, r-output Rayleigh fading channel. From this,
we see that the diversity order of the effective channel, which is equal to the

achievable diversity order of the repetition code, is equal tor.

The repetition code is a pathological example. All the other space-time codes that we have

mentioned in thiswork can be shown to have full achievable diversity order.
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Rate and raw diversity order were two important factors in determining the
performance of stand-alone space-time codes. However, the S/P converter shows that even
with a low raw diversity order, a space-time code can achieve full diversity as an inner
code. Thus, high raw diversity order isnot crucial for a space-time code to be agood inner
code. On the other hand, analysis of outage capacity in the next section will show that high

rateiscrucial for a space-time inner code.

9.3 Multiplexing Order of Space-Time Codes Cannot Exceed the Rate

In this section, we analyze the outage capacity (135) of space-time codes at high SNR.

Specifically, we focus on the multiplexing order of space-time codes, defined as

. D(S,M, p,)
V(M, pO) = SI IT«,W . (147)

As discussed in the previous chapter, the multiplexing order represents the slope of the
outage capacity vs. log SNR asymptote. The analysis of multiplexing order of space-time
codes closely follows the derivation of the multiplexing order of MIMO fading channelsin
Section 8.2. One only needs to account for the statistical differences between the effective

channel matrix and the Rayleigh fading MIMO channels.

To begin, we write out the available capacity J(S, M, H) in terms of the singular values
of the effective channel matrix Hog = GM. Now, G has dimension 2Nr x 2N¢, hence its
rank cannot exceed its minimum dimension, namely min(2Nr, 2Nt) = 2Nmin(r, t).
Similarly, the rank of the 2Nt x 2K matrix M is at most 2Nmin(¢, K/ N). Now, the rank of
the product H,¢ = G M cannot exceed the ranks of either G or M. Combining the above

bounds, and noting that K/ N is by definition the rate R of the space-time code, we get
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rank(H,g) < 2Nn, where (148)

n = min(¢, r, R). (149)

Thematrix H H,' in the availablecapacityexpression(133) hasdimensior2Nr x 2Nr.
Let k; = Ky 2 ...2 Kgpn,- 2 0 beits orderedsingularvalues.From the rank bound(148), at
mostthe first 2Nn of thesesingularvaluesare non-zero.Rewriting the determinantn

(133) in terms of the non-zero singulalues, we get the egailent expression

J(S, M, H) = —10 |-| a 2N§

RSV T

[
KLH (150)

for the available capacity Note the similarity between this expression and the
correspondingxpression(111) for the available capacityof the Rayleighfadingchannel
H alone.In particular onecanusethe sameintuitive agumentusedthere,to estimatethe
multiplexing order of the effective channel.Supposea specificinstanceof the channel
matrix H.g hasrankp. Then,only thefirst p termsof the productin (150) remain.At high

SNR, one can mgiect the'l +’ in each term, and approximate tivaitable capacity by

p p
1l ] [ D
%vlog §2Nn |_| DZ—NZKiD = %V.logS + = log |_| 2N (151)
L Om2 0 w2’

The approximation(151) grows as(p/ 2N)logS indicatingthat the multiplexing order of
the effective channelis (p/ 2N). From (148), we know that the rank p is at most2Nn,
implying that the multiplexing orderis at mostr. In orderto meetthis upperbound,we
needto ensurehatthe ‘typical’ effective matrix hasfull rank.Thisimpreciseargumentis

now stated precisely in the follng theorem.
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Theorem 5. The multiplexing order of a rate-R linear space-time code, when
operating over at-input, r-output fading channel satisfies

v(S, M, p,) <n = min(t, r, R). (152)
If the effective channel matrix He = G M has full rank with probability one, then
the upper bound is achieved, giving a multiplexing order v(S, M, p,) =n.
Proof: The proof follows exactly along the lines of the proof of Theorem 3 in

Section 8.2.2. In particular, analogous to X(S, p,) defined in (113), we define

L2ND(S. M. p,)
Y(S, M, p,) = W , giving (153)

1

D(S, M, p,) =n logS + 5N

log Y(S, p,)- (154)

Dividing by logS and taking limit as S goes to infinity, we get

logY (S, M,
(S, M, p,)=n + —~ lim —> (5, M. po)

2N s . » logS (155)

First, following the proof of Lemma 6, it is easy to prove that Y(S, p,) < Y(1, p,) <
for al p, < 1. Thus, the limit involving Y(S, p,) on the right hand side of (155) is at

most zero, implying v(S, M, p,) < n. This provesthe first part of the theorem.

The proof of the second part follows the analogue of Lemma 7. Thus, if the effective
channel matrix isfull rank with probability one, one can adapt the proof of Lemma 7
to show that Y(S, p,) >y, > 0. Again, substituting in (155), the limit involving Y(S,
p,) isindeed equal to zero. This proves that, if the effective channel matrix is full

rank with probability one, the multiplexing order isn, as claimed in the theorem.
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According to Theorem 5, the rate of a space-time code places an upper bound on the
multiplexing order. Recall from Section 2.3.1 that the rate of a space-time codeis equal to
the number of symbols multiplexed by the effective channel per signaling interval. Thus,
the claim of Theorem 5 that the multiplexing order cannot exceed the rate is intuitively
easy to understand. However, the condition to achieve that upper bound, namely that the
effective channel matrix H ¢ = G M have full rank with probability one, is not direct and
tractable. In particular, it is not clear how the encoding matrix M should be chosen in order
to satisfy this condition. In the next section, we will assume a Rayleigh fading channel H,

and investigate how the encoding matrix M should be chosen to ensure afull-rank Hg.

9.4 Choosing an Encoding Matrix to Maximize Multiplexing Order

Suppose an encoding matrix M is chosen. Now, define the bad channel set B(M) to be

the set of all H which gives arank-deficient effective channel matrix, i.e.,

BM) = {H: G M isnot full rank} . (156)
Note that H¢ = GM is not full rank if and only if the random channel matrix H belongs
to the bad channel set B(M). Therefore, Pr(Hy is full rank) = Pr(H O BM)). If these
probabilities are one, then Theorem 5 assures us that the multiplexing order upper bound
is achieved (152). In this section, we seek conditions that the encoding matrix M should

satisfy in order to ensure Pr[H O B(M)] = 1, or equivalently Pr[H 0 B(M)] = 0.

1. In measure-theoretic terms, we seek conditions on M to ensure that the corresponding bad channel
set B(M) isaset of zero measure in the set of al Rayleigh fading channel matrices H.
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We will assume that the space-time code has rate R less than or equal to the full rate
min(¢, r). In particular, note that this means R < r, and consequently 2NR < 2Nr. Since the
rate is defined to be R = K/ N, we get 2NR = 2K < 2Nr. Thus, the assumption that R <
min(¢, r) implies that the 2Nr x 2K effective channel matrix H.¢ has at most as many
columns as rows. Consequently, the rank of Hg is equal to its column rank. In other
words, Hyg = GM does not have full rank if and only if its columns are linearly
dependent, i.e., there is some non-zero right nulling vector & O %2X such that G M = 0.

Thus, the bad channel set (156) can be written as

BM) = {H: G O K%K, suchthat & # 0, and G M1 = 0}. (157)

We will now use this representation to derive conditions to ensure Pr[H 00 B(M)] = 0.

Lemma 8. To achieve Pr[H 0O BM)] = 0, it is necessary to ensure that the encoding

matrix M has afull rank.

Proof: It is easy to see that the 2Nt x 2K M aso has at least as many rows as col-
umns. Itsrank is equal to its column rank. In particular, if it does not have full rank,
it has some non-zero right nulling vector uyy such that Muyy = 0. But this implies
G Muy; = 0 irrespective of G . Substituting in (157), every possible instance of the
channel matrix H belongs to the bad channel set, giving Pr[H 0 B(M)] = 1. We have
just shown that M not full rank O Pr[H O B(M)] = 1. Reversing the argument, Pr[H

0 B(M)] = 0 only if M has full rank, proving the lemma.

Lemma 8 provides a necessary condition on the encoding matrix M. In order to obtain
sufficient conditions, it will prove useful to split the analysis into two different cases,

depending on the relation between the number of inputs and outputs of the fading channel.
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9.4.1 Sufficient Conditions for the Case t<r

Lemma 9. Suppose ¢ < r. Then, to achieve Pr[H O B(M)] = 0, it is sufficient to

ensure that the encoding matrix M has full rank.

Proof: Consider some matrix H O B(M). By definition, Ga 0 82K, & # 0, GMu =
0. First, we will use the assumption that M isfull rank, and hencetw #0 0 Mua # 0.
Thus, H O BM) only if G has a non-zero right nulling vector M , or equivalently,
if G does not have full column rank. Now, the second assumption ¢ < r implies that
G has at most as many rows as columns. Thus, the column rank of G is aso its
overall rank. Combining the two arguments, H 00 B(M) [ G does not have full rank.
It is easy to show [4] that G does not have full rank if and only if H itself does not
have full rank. Consequently, Pr{H 0 B(M)] < Pr[G not full rank] = Pr[H not full
rank]. For Rayleigh fading matrices, the latter probability is known to be zero [4].

Thisimplies Pr[H O B(M)] = 0, proving the lemma.

Lemma 8 and Lemma 9 prove the following theorem, giving a simple necessary and

sufficient condition for achieving the multiplexing order upper bound of Theorem 5.

Theorem 6. Lett¢ <r. A linear space-time code with rate R < ¢ operating over a -
input, r-output Rayleigh® fading channel achieves the multiplexing order upper

bound n = min(¢, r, R) = R if and only if the encoding matrix M has full rank.

1. Therestriction to Rayleigh fading channelsis only for convenience. Lemma 8 holds irrespective
of the fading channel statistics. Lemma 9 only requires that the channel matrix have full rank with
probability one.
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All practical linear space-time codes employ full-rank encoding matrices in order to
guarantee unique decodability of the input signal. More precisely, the space-time code
produces the composite transmit vector x = Mua. If M is not full rank, the encoding
process is linearly irreversible, i.e., one cannot just perform a pseudo-inverse to get a
uniquely from x. Thus, a non-full rank M complicates decoding with no corresponding
benefit, and is therefore never used.

Theorem 6 states that merely using a full-rank encoding matrix M, for which there are
other sound reasons as described above, ensures that the multiplexing order upper bound,
equal to the rate, is achieved. Thus, when ¢ < r, we can think of the rate of a space-time

code asits multiplexing order.

9.4.2 Sufficient Conditions for the Caset>r

In the case ¢t > r, a full rank encoding matrix is not sufficient to achieve the
multiplexing order upper bound. Mathematically, the proof of Lemma 9 does not hold
because it assumes¢ < r. Intuitively, here is an example of afull rank encoding matrix that

does not achieve the multiplexing order upper bound.

Example 2. Let the Rayleigh fading channel have ¢ = 2 inputs and r = 1 output.
Consider a space-time code which takesin K = 2 complex inputs, say «; and u,, and

produces 2 x 1 transmit vectors x; and x, for N = 2 signaling intervals, according to

U

x= |1 = [U2 (158)
X2 0
0
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Note that thisis a (strictly) linear space-time code of rate R = 2/2 (K/N) = 1. The
multiplexing order upper bound of Theorem 5 ismin(2, 1, 1) (min(, r, R)), namely
one. The actual multiplexing order achieved by the code can be obtained by inspec-
tion. This code essentially uses the Rayleigh fading MIMO channel once every two
signaling intervals. Hence, it has exactly half the outage capacity of the 2-input, 1-
output Rayleigh fading channel for all SNR. Thus, the actual multiplexing order of
the space-time code is half, which is less than the upper bound one. However, it is
easy to see that the encoding matrix here does indeed have full rank. (Intuitively,
given x, we can get u, by just picking out the first two elements. So the encoding
matrix has to be full rank.) This example shows that a full rank encoding matrix is

not sufficient for achieving the upper bound.

Now, we will derive a new sufficient condition for the case ¢ > r. Consider the N

transmit vectors x;, x,, ..., X5 produced by the space-time code. Let X; be the set of all

values of the transmit vector x;. The linearity of the code imposes considerable structure

on X;. In particular, for a strictly linear space-time code, it is easy to see that X; is just a

linear subspace of the set of all ¢ x 1 complex vectors. For general linear space-time codes,

the space X; itself isnot linear, but the set of all transformed vectors x; isalinear subspace

of the set of all 2¢ x 1 real vectors. One can interpret X; as the column span of the rows of

the encoding matrix M corresponding to the x; . We now state a sufficient condition on the

spaces { X;}, which guarantees that the multiplexing order upper bound is achieved.

Theorem 7. Let¢ >r. Consider alinear space-time code of length N with rate R <
r operating over a ¢-input, r-output Rayleigh fading channel. Then, in order to

achieve the multiplexing order upper bound n = min(¢, r, R) = R, it iS necessary to
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use a full-rank encoding matrix M. Further, it is sufficient (though not necessary) to
ensure that each set X; of all possible x; is some non-zero subspace of alinear space

L; whose dimensions satisfies 1 < /; <r.

Proof: The fact that afull-rank encoding matrix is necessary follows from Lemma 8.
Now, we assume that M is full rank and proceed to prove the sufficient condition.
Forany HO B(M) = GMiu = G x =0 for some non-zero input .. Further, G x =

= Gx =0 = Hx; = 0 for al the transmit vectors x; corresponding to the composite
vector x. Note that since M isfull rank and & #0, x # 0, implying that at |east one x;
# 0. Consequently, H O B(M) O there is at least one x; # 0 such that Hx; = 0.

Defining the local bad channel set

B,(X;) = {H: Hx; = 0 for somex; 0 X;, x; # 0}, (159)
we seethat H O (M) O H O B,(X;) for some:. Thus, BM) O ﬁ B,(X;). Hence, to

=1

show Pr[H 0O B(M)] = 0, it suffices to show Pr[H O B,(X)] = (; fordliO{1,2, ..,
N}.
Now, by assumption X; O £;, acomplex linear space of dimension/; suchthat 1 </; <
r. Since L; isacomplex linear space, every vector in it can be written as the column

span of at x I; complex matrix B; with orthonormal columns. Every x; O X; isalso in

L;, S0 x; = B;u; for some non-zero u;. Substituting in (159), the local bad set now is

B;(X;) = {H: HB;u; = 0 for some u; # 0}. (160)
Define the transformed random matrix H;" = HB,;. Since B, has orthonormal col-
umns, it is easy to show [4] that H;' is a Rayleigh fading matrix of dimension r x [;.

Note that HB;u; = 0 = H;' haslinearly dependent columns = H;' does not have full
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rank, since /; < r. Thus, Pr[H O B,(X;)] = Pr[H;' not full rank]. Again using the fact
Rayleigh fading matrices have full rank with probability one[4], the latter quantity is
zero. We have just shown Pr[H O B;(X)1 =0 forali =1, 2, ..., N, implying Pr[H O
B(M)] = 0. Thus, the condition for achieving the upper bound in Theorem 5 holds,

completing the proof.

The sufficient condition presented above has an elegant intuitive interpretation. Note
that the dimension of the set X; represents the multiplexing rate of each individual transmit
vector x;. Now, the rate R of the space-time code, which is the average of al these
individual multiplexing rates, is by assumption less than or equal to the multiplexing order
of the fading channel, namely min(¢, r) = r. The condition 1 < /; <r requires that not only
the average rate, but each individual multiplexing rate should also be less than or equal to
the multiplexing order of the channel. Equivalently, the average multiplexing rate should
be distributed roughly uniformly among all the individual transmit vectors. In particular,
given a code which does not satisfy the sufficient condition, one can just redistribute the
rate across the individual transmit vectors and obtain a new code that does satisfy the
condition. Again, we come to the conclusion that it is easy to design a linear space-time

code which achieves a multiplexing order equal to its rate, as promised by Theorem 5.
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Example 3. We revisit Example 2 to illustrate the sufficiency condition derived in
Theorem 7. Note that the two transmit vectors x; = u and x, = 0 of the code in
Example 2 have dimensions 2 and 0 respectively. On the other hand, the condition in
Theorem 7 requires that both transmit vectors have dimension one. (In this case, r =
1, so the upper and lower bounds on /; are both one.) So, the code in Example 2 does
not satisfy the sufficiency condition, therefore it is not surprising that it does not

achieve the multiplexing order upper bound.

As promised in the discussion of Theorem 7, a sSimple rearrangement can satisfy the
sufficient condition, and yield a code that achieves the multiplexing order upper

bound. Consider the re-arranged code

x=|"1]=|0f (161)
X5 U,
0

which is obtained by just swapping the second and third elements of the composite
transmit vector x from (158). Now, both x;' and x,' have dimension one, and satisfy
the sufficient condition of Theorem 7. Consequently, we expect the rearranged code
to achieve a multiplexing order bound of » = min(2, 1, 1). Thisis easily verified by
inspection. The rearranged code uses only the first input of the 2-input, 1-output
Rayleigh fading channel (the second and fourth symbols of x’, which correspond to
the second input of the channel, are always zero). Thus, the effective channel is

equivalent a 1-input, 1-output Rayleigh fading channel, with multiplexing order one.
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Before closing this section, we emphasi ze that the dimensionality condition derived in
Theorem 7 is only a sufficient, and not a necessary condition. In other words, codes whose
spaces X; do not satisfy the dimension constraint could still achieve a multiplexing order
equal to the rate. For such codes, one can often tell by inspection whether or not the

effective channel has full rank with probability one, asillustrated below.

Example 4. Consider the rate-one Alamouti code (Section 2.5.2) operating over a 2-
input, 1-output Rayleigh fading channel. It is easy to see that the two transmit
vectors of the Alamouti code belong to spaces of dimension 2. Therefore, the
Alamouti code does not satisfy the sufficient condition of Theorem 7, namely that
the spaces X; have dimension less than or equal to r = 1. So, we are not sure if the
Alamouti code achieves the multiplexing order upper bound. However, we can use
the condition in Theorem 5 and try to find out if the effective channel is full rank
with probability one. From Section 2.5.2, the effective channel, after some receiver
signal processing, is given by y' = ||H||?2u +n'. In particular, the effective channel
matrix is ||H||f212, where I, is the 2 x 2 identity matrix. For Rayleigh fading
channels, |[H|| 72 is non-zero with probability one, implying that the effective channel
|[H| lez isfull rank with probability one. Then, we conclude that the Alamouti code

achieves the multiplexing order upper bound of » = min(2, 1, 1) = 1.

9.5 The Outage Capacity Asymptote

We have so far discussed the outage probability and outage capacity of space-time
codes, and the corresponding asymptotic slopes, namely the achievable diversity order and

the multiplexing order. In this section, we study the high-SNR outage capacity asymptote
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for space-time codes. As discussed in Section 9.5, the outage capacity asymptote carries
information about both the multiplexing and diversity aspects of fading channels.
Following the discussion in Section 9.2.1, we see that the outage capacity of a space-time
code cannot exceed that of the MIMO fading channel on which it operates. We aim to find
out how close the outage capacity asymptote of the space-time code is to this upper limit.

By definition, the multiplexing order is equal to the slope of the outage capacity
asymptote. A ¢-input, r-output Rayleigh fading channel has multiplexing order min(z, r).
On the other hand, a space-time code with rate R less than the full rate m = min(¢, r) hasa
multiplexing order of at most R. Thus, space-time codes with low rate have a shallower
outage capacity asymptote than the fading channel. In particular, at high SNR, they
achieve at most a fraction R/ min(¢, r) of the Rayleigh fading channel’s outage capacity.
Thus, low rate space-time codes suffer a dramatic capacity loss at high SNR.

Asdiscussed in Section 9.5, low diversity order leadsto alow zero offset of the outage
capacity asymptote. Consequently, if the achievable diversity order of a space-time codeis
less than the diversity order ¢r of the Rayleigh fading channel, the code suffers a constant
(offset) loss in the outage capacity asymptote. However, as mentioned earlier, even codes
like the S/P converter with low raw diversity order have full achievable diversity order,
implying that raw diversity order does not directly impact the outage capacity asymptote.
Most practical space-time codes have full achievable diversity order, irrespective of their
raw diversity order. There are codes which do not achieve full diversity order, and we will
see one such code in Section 9.5.1 below. However, these codes are usually contrived and
unnatural. We do not know of any practical space-time code that suffers an offset loss

because of low achievable diversity order.
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It isimportant to note the offset lossis only qualitatively related to the diversity order,
but is not completely determined by it. Consequently, we can only say that codes with low
achievable diversity order definitely suffer an offset loss. We cannot say the reverse,

namely that codes with full achievable diversity order have zero offset loss.

9.5.1 Outage Capacity Asymptote: Illustrative Example

We now present an example to illustrate the effect of rate and raw diversity order on
the outage capacity of space-time codes. We consider a Rayleigh fading channel with ¢ = 2
inputs, and either one or two outputs. We compare two rate-one space-time codes. the
Alamouti code, and the repetition code, discussed in Example 1. The 1% outage capacity
(i.e, p, = 0.01) is plotted vs. SNR in Fig. 12. The plots are obtained by generating many
random channel matrices, and computing the corresponding available capacity using
(105). Based on many such trials, a discrete approximation of the distribution function of
the available capacity is generated, and used to compute the outage capacity, as discussed

in Section 8.2.

Table 2: Multiplexing and Diversity Ordersfor ¢ = 2 inputs, r = 1 outputs.

Code Multiplexing Reasonin Achievable Reasonin
Order g Diversity Order 9
No code (also 1 min(t, r) 2 tr
S/P Converter)
Alamouti 1 Example 4 2 Raw diversity
(RateR =1) Order isaso 2
Repetition Code 1 min(¢, r, R) 1 Example 1
(RateR =1) Theorem 7 Div. Order =r
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Consider first the case of r = 1 output fading channel. The multiplexing and diversity
orders of the fading channel, and the Alamouti and repetition codes are tabulated in
Table 2. We see that both the Alamouti and repetition codes have the same multiplexing
order as the 1-input, 1-output Rayleigh fading channel, namely one. This is verified by
Fig. 12, where the asymptotic slopes of the Alamouti and repetition codes' capacity curves
matches that of the fading channel. In addition to full multiplexing order, the Alamouti
code also has full achievable diversity order, namely two. Due to its full diversity order, it
IS not expected to suffer a significant zero offset loss, when compared to the fading
channel. Remarkably, as observed in Fig. 12 and proven in [16], the capacity penalty of
the Alamouti code is zero when there is only one receive antenna. On the other hand, the
repetition code has an achievable diversity order of one, which isaloss from the channel’s
diversity order of two. The lower diversity order results in a lower zero-offset of the

capacity asymptote, and hence the constant capacity loss at high SNR seenin Fig. 12.

r=2
15 - RECEIVE
ANTENNAS

RECEIVE
ANTENNA

0 | | | |
%0 5 10 15 20 25 30 3 40 45

SNR (dB)

OUTAGE CAPACITY (bits/s/Hz)

Fig. 12. Outage capacity versus SNR at 1% outage, assuming ¢ = 2 transmit antennas.

138



Now, consider the case where the channel has ¢ = r = 2 outputs. The multiplexing and
diversity orders of the channel, and the Alamouti and repetition codes operating over the
channel, are tabulated in Table 3. The channel has a multiplexing order of two, while the
two rate-one codes have a multiplexing order of one. This agrees with Fig. 12, where the
outage capacity curve corresponding to the underlying channel has a slope that is twice as
steep as those corresponding to the two space-time codes. Consequently, both codes can
achieve at most 50% of the outage capacity of the 2-input, 2-output fading channel at high
SNR. The Alamouti code at least has full diversity order of four. The repetition code has
diversity order two, which isless than the diversity order of the channel. Consequently, the

repetition code suffers an additional offset loss when compared to the Alamouti code.

9.6 The Multiplexing-Diversity Trade-Off Curve: An Open Problem

In Section 8.4, we discussed the trade-off curve between multiplexing and diversity
gains for a Rayleigh fading MIMO channel. In principle, one can extend the same

definition (131) of diversity gain to the effective channel to obtain the diversity gain

logG(S, M, h_,l0gS)

hqM) = —SI i inoo 595 (162)
Table 3: Multiplexing and Diversity Ordersfor ¢ = 2 inputs, r = 2 outputs.
Code Multiplexing Reasonin Achievable Reasonin
Order 9 Diversity Order 9
No code (also 2 min(¢, r) = 2 4 ir=4
S/P Converter)
Alamouti 1 min(t, r, R) 4 Raw diversity
(RateR = 1) Theorem 6 Orderisaso 4
Repetition Code 1 min(¢, r, R) 2 Example 1
(RateR =1) Theorem 6 Div. Order =r
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The problem is again that there is no simple closed form expression for the distribution
function G(S, M, x) of the available capacity. Therefore, obtaining the multiplexing-
diversity trade-off curve for a general space-time code remains an open problem. We have
solved the problem partially here. By obtaining the multiplexing order (equal to min(z, r,
R) for most codes), we have found the multiplexing gain for zero diversity gain. The
achievable diversity, which is nearly aways tr, is equal to the diversity gain for zero
multiplexing gain. Thus, we have obtained two points on the trade-off curve, namely

(min(¢, r; R), 0) and (0, tr).

For some special space-time codes, the entire trade-off curve can be obtained. For
example, the S/P converter has the same trade-off curve as the ¢-input, r-output Rayleigh
fading channel, since its effective channel is equal to the latter. Another example is the
Alamouti code, which has the simple effective channel y' = ||H||72u + n'. Since the
multiplexing and diversity orders are one (because of rate one) and 2r respectively, the two
known points on the curve are (1, 0) and (0, 2r). In [36], the effective channel of the
Alamouti code was analyzed to show that the trade-off curve is in fact a straight line

joining these points.

9.7 Summary

In this chapter, we have adapted the information theoretic analysis of Chapter 8 to the
effective channel formed by the combination of a space-time code and MIMO fading
channel. In particular, we pointed out that the raw diversity order of a space-time code is
only a lower bound to the achievable diversity order, which is often equal to the full

diversity order of the channel. On the other hand, we showed that the multiplexing order
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of a space-time code is less than or equal to its rate. Most known linear space-time codes
have a multiplexing order equal to rate. The implications of these results on the outage
capacity asymptote were shown by discussion and example. In the next chapter, we will

use the analysis derived here to derive broad design rules for space-time inner codes.
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CHAPTER 10

Capacity-Based Design Rules for Space-Time Inner Codes

In the last chapter, we used information theory to analyze the maximum data rates and
minimum error rates that can be achieved by supplementing a space-time inner code with
the best possible outer code. In this chapter, we apply the results of that anaysis to

understand practical design issues for space-time inner codes.

10.1 The Importance of Using High Rate Inner Codes

We saw that the space-time codes with rate R less than the full rate min(z, r) have a
low multiplexing order, and hence lose a significant fraction of the outage capacity at high
SNR, when operating over at-input, r-output Rayleigh fading channel. Consequently, to
avoid capacity loss, it is clear that one must use space-time inner codes with full rate or
more. (Rate being equal to full rate alone does not always guarantee full multiplexing
order, but Theorem 6 and Theorem 7 show that most full-rate codes do have full

multiplexing order.)
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On the other hand, the raw diversity order isonly alower bound to achievable diversity
order, and does not directly impact any of the information-theoretic quantities described in
Chapter 9. Primarily, this is because a well-designed outer code can make up for the lack
of transmit diversity in the space-time inner code. Thisisillustrated by the example of the
S/P converter which has raw diversity order r, but full achievable diversity order of ¢r.

We conclude that in the presence of a powerful outer code, space-time inner codes
must be designed to have full rate, but need not have high raw diversity order. The design
rule is only a broad one. In particular, there is the issue of what precisely is a powerful
outer code. Note that the capacity analysis assumes infinite length outer codes, which are
designed to produce an optimal, continuous Gaussian distributed output. However, we
now present simulation results which show that the results of capacity analysis hold even

for sufficiently powerful binary codes like turbo [31] or LDPC [47][48] codes.

10.1.1 High-Rate Space-Time Inner Codes Are Better: Example

We compare two space-time inner codes operating over a 4-input 4-output Rayleigh-
fading channel, assuming the outer code is a binary turbo code. In each codeword, the
turbo code encodes 3200 input bits and produces 4800 bits per codeword, hence itsrateis

2/3. The turbo code has two parallel concatenated {1. %} convolutional codes.

1+D+D?+D%+D*

The input bits are fed directly to the first convolutional code to obtain the first parity
stream. On the other hand, the input bits are interleaved by a spread-20 interleaver before
being fed to the second convolutional code, the parity outputs of which are deinterleaved
to obtain the second parity stream. The parity streams from the two codes are punctured to

achieve rate 2 /3. For the first parity stream, only the bits in positions 0, 4, 8, ... are
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retained.For the secondparity stream,only the bits in positions2, 6, 10, ... areretained.
After this puncturing, 4800 output bits remain. Following the bit-interleared coded
modulationstratgy [56] (also[33]), theseoutputbits are interleaved using a spread24
interleaver, and Gray-mapped to compl®AM symbols for space-time encoding.

The space-timeinner codesconsideredare the serial-to-parallelcorverter and an
Alamouti-basedjeneralayeredspace-timeode(GLST)[18]. The GLST codeconsistof
two rate-oneAlamouti codesoperatingin parallel over groupsof two transmitantennas
each.lts rateis twice that of an Alamouti code,namelytwo. Also, its lengthN = 2. It is
easyto seethatpairwisedifferencebetweenGLST codematricesarefull rank,andhence
usingtherankrule, theraw diversityorderis rmin(¢, N) = 8. In contrastthe S/Pcorverter
has higher (full) rate af= 4, but lower rav diversity order ot = 4.

For afair comparisonyve fix the datarateof thetwo space-timennercodes Sincethe
GLST codehashalf therateof the S/Pcorverter it hasto useahigherconstellatiorsizeto
achieve thesamedatarate.In this casethe S/Pcorverterusesl 6-QAM modulationwhile
the GLST codeuses256-QAM modulation.Thus,both codestransmit16 inputsbits per
signalinginterval. Scalingby the rate 2 / 3 of the outer turbo code, the total datarate
achieved by the concatenated architectur#0i$7 bits/s/Hz.

At this datarate, it takes 3200/ 10.67 = 300 signalingintervals acrossthe Rayleigh
fadingchannelto transmitoneframe,i.e., all the 4800 outputbits of the turbo code.The
Rayleighfadingchannels assumedo be constanin oneframe,but variesindependently

from one frame to the re
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As an approximation to optimum decoding, the receiver does iterative decoding
between the outer turbo decoder and a soft-output list sphere decoder for the inner space-
time code [33] (see Chapter 12). Three turbo iterations are performed for each of the ten
iterations between the outer turbo decoder and the inner space-time decoder. A frame error
is said to occur when any of the 3200 input bits to the turbo code is incorrectly decoded.
Fig. 13 shows a plot of the frame error rate vs. SNR. Each point represents a reading of at
least 150 frame errors.

The multiplexing order of the S/P converter is equal to that of the 4-input, 4-output
Rayleigh fading channel, namely min(4, 4) = 4. In contrast, the multiplexing order of the
GLST code ismin(4, 4, 2) = 2 from Theorem 6 (the GLST encoding matrix has full rank).

We expect that the low multiplexing order of the latter code should lead to a loss of

1071

1072

FRAMES ERROR RATE

103

SNR (dB)

Fig. 13. Performance of S/P converter and GLST space-time inner codes with a turbo
outer code, over a 4-input, 4-output Rayleigh fading channel at 10.67 bits/s/Hz.
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capacity, and hence a loss of performance in the presence of the outer turbo code. Thisis
confirmed by the plot, which shows the high-rate S/P converter outperforming the low-rate

GL ST encoder by nearly 3.5 dB, in spite of the latter code’s higher raw diversity order.

For comparison, the outage probability is plotted against SNR, with the data rate fixed
at 10.67 bits/s/Hz. Note that even with a code-length of just 4800 bits, the performance
of the turbo code is within 3 dB of the outage probability curve at a word error rate of
1073, This indicates that the results of outage analysis hold even for binary outer codes
with finite length. However, the actual word error rate curve with a turbo outer code is
shallower than the outage probability curve for the S/P converter, indicating that the turbo
codeis still not strong enough to get the full diversity order of the channel. We conjecture

that increasing the length of the turbo code will lead to full diversity order.

10.2 Isthe Serial-to-Parallel Converter an Optimum Inner Code?

The simulation result in the last section showed in a specific example that the S/P
converter outperforms the GLST code in the presence of a turbo outer code. In this
section, we discuss the merits and demerits of the general transmitter architecture shown
in Fig. 14. Coded bits from a binary outer code are interleaved and modulated to obtain

complex input symbols to the S/P converter, which serves as the space-time inner code.

rxt
Powerful Hag} Serial . Ravleigh
Data Finite-Field Interleaver Modulation [t ©'% To - Rayleig
e — — — fadin
Bits Outer Code (optional) (ex. QAM, PSK) Parallel : Channgel
(ex. Turbo, LDPC) Converter

Fig. 14. Concatenation of a binary outer code with the S/P converter space-time code.
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The architecture of Fig. 14 follows the same philosophy as the bit interleaved coded
modulation architecture [56], which bootstraps codes designed for BPSK to obtain good
performance for higher QAM modulation, hence avoiding the complicated design of
trellis coded modulation techniques. Analogously, the architecture of Fig. 14 does away
with sophisticated space-time inner coding, and exploits the fact that good binary codes
are easy to design and decode using iterative techniques. Thus, one merit of the
architecture is its simplicity. The question is whether this ssmplicity comes at the cost of
optimality.

With an ideal infinite-length outer code and a Gaussian alphabet, Telatar’'s conjecture
(see Section 9.2.2) impliesthat the S/P converter is an optimum inner code, i.e., it achieves
least outage probability given data rate, and most data rate given outage probability.
However, the practical concatenated architecture under consideration differsfrom thisidea
in two ways.

The first deviation is that the modulation alphabet is discrete (usually QAM).
Arguably, thisis not a very serious deviation. In other words, one might hope that even
with afinite alphabet, the S/P converter is an optimum inner code provided the outer code
has infinite length and can be optimally designed. We have no proof that thisis the case,
but we conjectureit is so.

However, the more serious deviation is that the outer code often has finite length, and
belongs to a certain family, say turbo codes. In particular, the length of the outer code
could serioudly affect the performance of the concatenated transmitter. In the extreme case
of no outer code (or effectively length one outer code), the diversity order achieved isthe

raw diversity order of the S/P converter, namely r. Given the actua length of the outer
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code, it is an interesting open question to determine how close to optimum the S/P codeiis,
as a space-time inner code. The family from which the outer code is drawn is aso
important. Since the outer code isthe only source of transmit diversity, it must have alarge
minimum distance. Thus, codes with large minimum distance, like turbo and LDPC codes,
are suitable outer codes in Fig. 14, but convolutiona and Reed Solomon codes are

unsuitable because of their low minimum distance.

10.3 The Alternative: Full-Rate, Full Raw Diversity Inner Codes

The S/P converter relies on the outer code to obtain diversity, and hence performs
poorly for low outer code lengths. A more robust concatenated architecture would use a
space-time inner code with full raw diversity order, and at least full rate. The raw diversity
order ensures good performance for low outer code lengths, and full rate ensures high
multiplexing order and consequently good performance for large outer code lengths. We
saw in Chapter 4 that full rate, full raw diversity space-time codes are aplenty. One such
inner space-time code can be used to replace the S/P converter in Fig. 14 in order to
increase robustness.

The disadvantage of using a full rate, full diversity space-time code is the decoding
complexity. In order to achieve full raw diversity, the inner space-time code must have
length N > ¢. Also, the rate satisfies R = min(t, r). Consequently, the number of space-time
code inputs per block satisfies

K = NR = tmin(¢, r). (163)
Recall from Section 2.4.1 that the effective channel of a linear space-time code has 2K

inputs in one block, and produces 2Nr outputs. Given the 2Nr outputs, the receiver has to
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produce hard or soft decisions about the 2K inputs in every space-time code block. We
have assumed in this work that thisis done optimally. While optimal decoding issimplein
principle, its complexity increases exponentially with the number of inputs 2K. Even with
simplified decoding strategies like sphere decoding [25][33] (also see Chapter 11), the
complexity increases in proportion to K2 [57][58]. Thus, to ensure low complexity, it is
desirable to keep K low. Attempting to achieve full diversity while simultaneously
maintaining at least full rate places a lower bound (163) on the number of inputs, and

hence on the complexity.

There is another subtle problem with the use of full diversity space-time codes as inner
codes in a concatenated configuration. We have assumed that the outer code is designed
independently of the inner code and the number of transmit antennas. In particular, let us
say it is a binary turbo code, designed assuming independent BPSK transmission of the
output bits over an AWGN channel. Instead, the bits are modulated into QAM symbols.
Let each QAM symbol contain nq bits. Then, K such symbols, carrying Kngq bits are
transmitted across the effective channel in one space-time code block. At the receiver, the
soft decisions produced for all these Knq bits are dependent. On the other hand, the
iterative decoder for the turbo code works well only when the soft decisions are
independent. For a larger value of K, the number of dependent bits Knq is larger, and
hence iterative decoding is more severely affected. Thus, for a long outer code, a full

diversity space-timeinner code might lead to poorer performance than the S/P converter.
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10.4 Design of Concatenated Architectures: An Open Problem

In this chapter, we have discussed the concatenated architecture for space-time
transmitters. Outage analysis suggests that space-time inner codes must have at least full
rate, and leaves open the choice of raw diversity order. We have listed the relative merits
and demerits of two possible choices of the inner code: the simple, but non-robust S/P
converter with low raw transmit diversity order; and robust, but computationally
demanding full raw diversity inner codes.

However, given constraints on the outer code length and computational complexity, it
is an interesting open problem to design the best possible combination of outer code and
inner space-time codes, namely the combination that minimizes error rate at a given data
rate, or maximizes data rate given the acceptable error rate. This is one of the most
important open problems in transmitter design for flat-fading MIMO channels.

This chapter concludes our discussion of transmitter design for MIMO channels. We

now move on to receiver design.
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CHAPTER 11

Tree-Pruning Detectors For MIMO Channels

In this work, we have so far focused on transmitter design for MIMO fading channels.
We now turn our attention to the design of MIMO recelvers. In contrast to transmitter
design, the choice of optimality metricsis not a significant issue in receiver design. Given
the transmitter structure, the data rate is automatically fixed. Consequently, the task of
receiver design is merely to ensure minimize error probability. Further, the structure of the
optimum receiver, namely the one that achieves minimum error probability, is often
obvious. However, the optimum receiver is often computation-intensive. In this chapter
and the next one, we present efficient algorithms to implement optimum or near-optimum
receivers.

Two transmitter architectures for MIMO channels have been discussed in thiswork: a
transmitter with a stand-alone linear space-time code; and the concatenation of an outer
error correction code with an inner linear space-time code. As one would expect, different
receiver structures need to be employed for each of these transmitters. In this chapter, we
discuss the design of receivers for stand-alone linear space-time codes. In the next chapter,

receiver design for concatenated transmitters will be discussed.
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As stated in Chapter 3, the input to a stand-alone space-time code is typically drawvn
from adiscrete alphabet, independently from block to block. Given the recelved signalsin
each space-time code block, the receiver employs a detection algorithm or detector to
estimate the space-time code input in that block. The popular successive cancellation (SC)
detector has low computational complexity, but leads to a high probability of estimation
error. It is well known [7] that the detector that minimizes the probability of estimation
error is the maximum likelihood (ML) detector. This fact was stated in Chapter 3, while
deriving the union bound. Further, in Chapter 6, the error rates for various space-time
codes with ML decoding at the receiver were shown. In this chapter, we present the ML
detection algorithm that was used to obtain the smulation results of Chapter 6.

Graphically, the ML detection problem can be interpreted as the search for the
cheapest leaf node in tree [7]. Sequential decoders like the Fano decoder and ZJ stack
decoder (see [59] for a survey) for convolutional codes are also based on a search for the
cheapest leaf node in a tree. Some attempts have been made to exploit this similarity, and
adapt sequential decoders to obtain efficient MIMO detection algorithms (see, for example
[60]). However, there are significant differences between the two problems. For instance,
the Fano branch metric (see, for example [2]) used in sequential decoding does not
naturally extend to the MIMO detection tree. More significantly, treesin MIMO detection
have much smaller depths compared to those in the sequential decoding problem.

Another approach to MIMO detection isto employ lattice search agorithms devel oped
in the computer science literature [24][28][29]. This approach yields the well-known
sphere decoder [25-30], which efficiently implements ML detection for MIMO channels,

when the transmit symbols belong to an integer lattice.
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In this chapter, we reinterpret the sphere decoder as essentially atree-search algorithm,
that seeks the cheapest leaf node in the detection tree. We review a simple strategy for
developing efficient tree-search a gorithms, which was suggested in a homework problem
of [7], and later extended in [23]. This basic strategy can be implemented in multiple
ways, yielding a class of tree-pruning agorithms. We show that the sphere decoder
belongs to this broad class of algorithms. We also derive a new tree-pruning algorithm
called the hybrid decoder, which requires higher memory than the sphere decoder, but
lends itself to high-speed paralel implementation. By placing limits on the memory
available to the hybrid decoder, one obtains the bounded stack hybrid decoder, which
allows one to control the worst-case computational complexity of the detection process, at

the cost of increasing error rate.

11.1 A Precise Statement of the Detection Problem

We begin the discussion by precisely stating the ML detection problem. We consider a
general linear memoryless M-input, P-output channel, whose input-output relation is
y=Hx +n. (164)
Note that the model (164) fits both the wireless fading channel (1) and the effective
channel (12) for a linear space-time code. The agorithms presented here work for any
channel of the form (164), but for illustrative simulation results, H will be assumed to be
a P x M Rayleigh fading channel. In keeping with the rest of this work, the transmitter
does not know H , but the receiver knows it accurately. The elements of the noise vector n

are independent, zero-mean complex Gaussian random variables of variance N,.
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The transmit aphabet or channel-input alphabet X, namely the set of all possible input
vectors x, is assumed to be finite. For convenience of presentation, we assume that each
element of x is drawn independently from a finite alphabet 4, known as the symbol
alphabet. For example, 4 could beaPAM, QAM or PSK alphabet. (Note that the symbols
could be real or complex.) Thus, X isequivalent to 4¥.

The linear MIMO channel (164) distorts the input vector x by causing different
symbols to interfere at the receiver. This distortion is similar to inter-symbol interference
(1Sl) in wideband single-input, single-output (SISO) channels [23]. To combat 1SI, SISO
receivers follow atwo-step procedure. First, awhitened matched filter (WMF) operates on
the received signal to leave an effective channel with a monic, causal transfer function.
Then, equalization algorithms are used to combat the ISl of the effective channel.
Analogously, to combat distortion caused by the MIMO channel (164), MIMO receivers
adopt a two-step procedure, namely spatial whitened matched filtering followed by

MIM O detection to combat the distortion of the effective channel.

11.1.1 Spatial Whitened Matched Filtering
The spatial whitened matched filter (SWMF) aims to make the channel-induced

interference spatially causal. However, to achieve causality, the receiver first has to decide
the spatial order of the input symbols. The seemingly natural choice is that x, isthe first
input symbol, followed by x,, and so on till x,,. However, the receiver can choose any
other permutation of these symbols as the spatia order of the input symbols. Choosing a
gpatial order amounts to choosing aM x M permutation matrix I obtained by permuting

the rows of the M x M identity matrix I,,, such that x = 'l x isthe spatially ordered input
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vector. Noting that MM 7T = I, for all permutation matrices, we see that x = N Tx, hence
Hx = HMTx. Substituting this relation in (164), the MIMO channel model takes the
form

y =Hx+n, (165)
where H' = H M T is the matrix obtained by permuting the columns of H.

With the chosen spatial order of input symbols, the SWMF achieves spatial causality
using the Q-L decomposition of H'. More precisaly, it obtains a P x M matrix Q with
orthonormal columns, and aM x M lower-triangular matrix L with positive real diagonal
elements, such that H' = QL. The Q-L decomposition can be performed only if there are
more channel outputs than inputs, i.e., P = M. Through the remainder of this chapter, we
assume this is the case. Under this assumption, the Q-L decomposition can be performed
using Gram Schmidt orthonormalization of the columns of H'.

After Q-L decomposition, the SWMF multiplies the received vector y by Q", the
conjugate transpose of Q. Substituting @ H' = Q QL = L in (165), the SWMF output is

y=Qy =Lx+n. (166)
It is easy to show that the effective noise vector n = Q n has independent, complex
Gaussian entries of variance N,. Note that the effective channel (166) is indeed spatially

causal, i.e.,, thei*h element of y, namely

i1
yi=lxi+ 5 Lpi+n, (167)
i=1

is a noisy scaled version of the current symbol «x;, with interference only from past

Symb0|Sx1, X9y vuey Xjq-
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The spatial causality of the effective channel greatly facilitates detection, namely the
task of estimating the ordered channel input vector x from the effective channel output y.
In this chapter, we will discuss a variety of detection algorithms, which exploit the spatial
causality of the effective channel. Before developing detection algorithms, we note that
their performance clearly depends on the effective channel’s transfer matrix L. Now, the
choice of the spatial order determines H' = HMT, and hence the transfer matrix L.
Consequently, the spatial order also determines the performance of detection algorithms.

We will discuss the performance of detection algorithms for two choices of the spatial
order. The first choice is the natural order, namely the permutation matrix I'l is the
identity matrix I, irrespective of the value of the MIMO channel matrix H . The second

ordering choiceisthe one used in the popular V-BLAST receiver [11], summarized below.

Remark 7. Given H, the V-BLAST receiver chooses a permutation matrix

mn VB(ﬁ) that maximizes the minimum value among /41, lo9, ..., Iy Thischoiceis

made in a greedy, sequential fashion as follows [11]. Of the M possible choices of

the first input (equivaently, the first row of HVB(ﬁ)), the V-BLAST receiver

chooses the input that maximizes the value of /;;. Given this choice, the second
input is chosen to maximize /99, and so on.

Obtaining the V-BLAST spatial order requires more computation than merely using

the natural order. In return, we will see that V-BLAST ordering increases the accuracy

and/or reduces the complexity of many detection algorithms. Computationally efficient

methods to obtain the V-BLAST spatial order are givenin [61].
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11.1.2 Swuccessive Cancellation and ML Detectors

Different detection algorithms, also known as detectors, can be used to obtain an
estimate x of the ordered input vector x, given y and L. The accuracy of a detector is
measured by itsword error rate (WER), namely the probability that x # x. The twin goals
of detector design are to achieve low WER and to maintain a low computational
complexity. However, there is a trade-off between these twin goals, as illustrated by the
two detectors discussed in this section, namely the successive cancellation (SC) and
maximum likelihood (ML) detectors.

The SC detector is analogous to the decision feedback equalizer used to combat 1Sl in
SISO channels [23]. The SC detector performs detection in M stages. In the it stage, «x; is
estimated from y;, after cancelling off the estimated interference from past symbols. More

precisely, the SC detector obtains the decision metric

i-1
, .SC
yi=yi— Y Lk (168)
i=1

using estimates {a‘cJS.C} from past stages. If these past estimates are accurate, then (167)
impliesy," = [;;x; + n;. Assuming this is the case, the SC detector obtains fcisc by dlicing
y;'/1;, 1.e., rounding it off to the nearest symbol in the symbol alphabet 4. Note that an SC
detector isjust a cascade of M dicers, and is therefore computationally simple. However,
it suffers from high WER, i.e., with high probability, £°C % x. Intuitively, the reason for
the high WER of the SC detector is that it estimates the symbol x; using y; alone, without

using the information contained about x; in future symbolsy; .1, ..., yar-
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In contrast to the SC detector, the ML detector optimally uses the available
information, and achieves the minimum WER among all possible detectors [7]. The ML
detector uses the conditional probability density function of y given that the unknown

channel-input vector issome z O X, namely

v — Lzl 2C
ply|z) = ;T exp D"yN—Lz"D. (169)
vy? 0 No O

The ML detector’s estimate %'~ is the vector in the transmit alphabet X with the

maximum value of p(y | z). Note that p(y | z) is a decreasing function of

J(z) = |ly - Le|?, (170)
which is called the ML cost function of z. Consequently, the ML detector’s estimate is the

least-cost vector in the input alphabet X, namely

b =BT J(z). (172)

While the ML detector has low WER, it incurs a heavy computational burden. For
instance, one way to implement ML detection is to compute the costs J(z) for all z O X,
and pick out the cheapest vector. However, there are often thousands of vectorsin X, and
such enumeration is impractical. Instead, we aim to develop less computation-demanding
algorithms to implement MIMO detection. To achieve this goal, it will prove useful to

represent the detection problem graphically, using the detection tree.
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11.2 ML Detection Isa Tree-Search Problem

In this section, we show that ML detection amounts to the search for the cheapest | eaf
node in the detection tree. We begin by describing the detection tree itself. The tree starts
with the left-most node, or root. It consists of M stages, one for each input symbol. The
root node is connected to |4 | child nodes, one for each value of the first symbol z;. Each of
these nodes is connected to |4 | child nodes depending on z,, and so on. Thus, for each
possible channel-input vector z [ X, there is a unique path through the tree that begins at
the root and ends at one of the right-most nodes, known as leaf nodes. As an illustrative
example, the detection tree for the case of M = 2 inputs with an input alphabet of 4 =
{+1} isshown in Fig. 15. The bold-faced label below each node of depth one shows the

choice of z;. The label for the leaf nodes shows the corresponding choice (z1, z5).

(+1,+1)
Cost 28

Fig. 15. lllustration of the detection tree for a channel with M = 2 inputsand 4= {+1} .
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In terms of the detection tree, the ML cost function JJ(z) can be interpreted as the sum
of N branch costs, one for each branch on the path corresponding to z. More precisely,
consider the branch in the ;™ stage, connecting the nodes (z4, z, ..., z;_1) and (zq, 29, ..

"

z;). If its cost is defined as

2

B(Zl, 29y wiry Zi) = ’ (172)

i—-1
J=1

it is easy to see from (170) that J(z) = ||y — Lz|{? isjust the sum B(z;) + B(zq, z9) + ... +
B(Zl, 29y winy ZN).

An intuitive interpretation of the branch cost is obtained by splitting (172) as ly;' -
L;:z;%, wherey,' = y; - Z 3‘_:11lijzj is the cancellation residue used by the SC detector. In
other words, B(z1, 29, ..., 2;) represents the cost of choosing the symbol z;, after cancelling
out interference in y; from the already chosen symbols z4, zo, ..., z;_;. Extending this
interpretation, the cost of a node is defined as the cost of all the choices it represents, i.e.,

it isthe sum of the costs of all the branches connecting that node to the root node, namely
i
C(zq, 29, ..., 2;) = Z B(zq, 29, ..., 2;). (173)
j=1

Equivaently, node costs can be defined recursively as
C(zq, 29, ..., 2;) = Cl(zq, 29, ..., 2;-1) + B(z1, 29, ..., 2), (174)
with the root node defined to have cost zero. Clearly, the cost of the leaf node
(21, 29, ..., 23p) 1S equal to the ML cost function J(z). For illustration, each branch in
Fig. 15 islabeled with its branch cost formula (172) after substituting the values of z; and

z9 corresponding to the branch. For illustration, we have arbitrarily assigned some values

to the branch costs. The corresponding node costs are shown below the node |abels.
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Having defined branch and node costs on the detection tree, we now revisit the
detectors described in the previous section. Each detector outputs an estimate from the
transmit alphabet X, or equivalently aleaf node on the tree.

The SC detector starts from the root node and always moves forward on the cheapest
available branch, till aleaf nodeis reached. The leaf node so obtained isthe SC detector’s
output. In the example of Fig. 15, the SC detector first takes the cheapest branch to reach
the node (- 1), and then again takes the cheapest branch forward to reach the leaf node
(-1, +1), whose cost is 20.

Since the cost of each leaf node is equal to the ML cost function, the ML detector’s
estimate is the cheapest leaf node in the detection tree. For instance, in the tree of Fig. 15,
the ML detector finds the cheapest leaf node, namely (+1, —1), whose cost is 10. Note that
the greedy SC detector, which stitches together locally cheap branches, does not
necessarily reach the cheapest leaf node in the tree. To implement ML detection, we need
atree-search algorithm that seeks out the cheapest node in the tree. In the next section, we
introduce the basic operations of tree-search algorithms, and also introduce a measure of
the computational complexity of such algorithms. We also present a simple search strategy
that enables the design of computationally efficient tree-search algorithms to implement

ML detection.

11.3 Introduction to Tree-Pruning Algorithms

Tree-search agorithms store and manipul ate the nodes of the detection tree. All tree-
search algorithms start at the root node of the tree. Subsequently, they access or visit other

nodes in the tree, by making forward moves on the tree's branches. More precisaly, tree-
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search algorithms treat a node as a data structure N, with five fields. The first two fields of
anode are label fields, namely the node’s depth i and its branch index history (z4, 29, ...,

z;). The third field isthe node’s cost C(zy, 29, ..., 2;). Fourth, the cancellation residue

Yisl =Vis1 ~ Z Liv1 2 (175)

Jj=1
is stored as a field, to facilitate computation of the costs of successor branches of N.
Finally, the cost B;,; of the branch on which the last forward move was made from the
node N is also stored as a field. If no forward move has yet been made from N, B,,; is

initialized to «. For example, the fields of the root node at the start of processing are: depth

0, no branch index history, cost 0.0, cancellation residuey;' = y;, and B; = .

If atree-search algorithm has aready visited node N and wishes to visit a child node M
of N, it only needs to compute and store the fields of the node M. Suppose the branch
connecting N to M has label z;,;. Then, the depth and branch index history of M are
clearlyi +1 and (zq, 29, ..., 2;41) respectively. The cancellation residuey;, ;' of N is used to
compute the branch cost B(z4, zg, ..., 2j+1) = [V;j+1' — li+1,i+12i+1|2- Then, the cost of M isthe
sum of the branch cost B(z4, z9, ..., z;4+1) @nd the cost of N. The cancellation residue y; o'
of M is obtained by the formula (175). Since no successor of M has been visited, the last-
forward-branch cost B, of M is set to «. Finally, the last-forward-branch cost B;,; of N
isupdated to B(z1, 29, ..., 2;+1), t0 reflect the latest forward move from N.

We use the number of nodes visited by an algorithm as a measure of its computational
complexity. This is a more tractable measure than implementation-dependent quantities
like the number of flops required, or the processing time. Now, any detector has to output

a valid vector in the alphabet X, hence the corresponding tree-search algorithm has to
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output a leaf node. Now, in order to reach a leaf node starting from the root node, the
algorithm hasto visit at least M nodes. The SC detection algorithm visits exactly M nodes,
and is therefore the tree-search algorithm of least complexity. However, as we have
already seen, the SC algorithm does not necessarily find the cheapest leaf node in the tree.
One way to find the cheapest leaf node is to run an exhaustive search algorithm, which
visits all the nodes in the tree. However, this is computationally daunting. For example, if
the MIMO channel has M = 8 inputs symbol alphabet 4 isa 16-QAM alphabet, there are a
total of (1 + |4+ ... +|AM) = 4,581,298,449 nodes in the tree. Visiting al these nodes is
clearly impractical.

In this chapter, we discuss tree-pruning (TP) algorithms, which find the cheapest |eaf
node without visiting al the nodes in tree. There are avariety of TP algorithms, but all of
them use the same strategy to avoid exhaustive search. In the remainder of this section, we
describe this basic strategy.

Consider a genie-aided tree-search algorithm, which knows only the cost C,,;, of the
cheapest leaf node :“:ML, but not its label. To implement ML detection, this genie-aided
algorithm must explore the tree and find out M Now, suppose this algorithm is at some
node N, and is seeking to move forward so as to visit new nodes. Note that branch costs
are non-negative, hence node costs are non-decreasing as one moves deeper into the tree.
Consequently, if achild M of N has cost greater than C,,;,,, then all its descendants also
have cost greater than C,,;,,. In particular, none of these descendants can be the cheapest
leaf node ™™ . Since the tree-search algorithm only aimsto find ML , Can avoid visiting
M and all its descendants. Note that the cost of M islessthan C,,;,, if and only if the cost of

the branch connecting M to N has cost less than the upper bound Uy = Cppin — Cn, Where
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Cy is the cost of the node N. Thus, a any node N, if the tree-search agorithm moves
forward only on branches with cost lesser than Uy, it automatically ensures that nodes
with cost greater than C,,;,, are never visited. Equivalently, the algorithm prunes out
branches with cost greater than Uy before aforward move from node N.

Like the above genie-aided algorithm, tree-pruning agorithms also implement pruning
of branches before any forward move. However, unlike the genie-aided algorithm, they do
not know the actual cost C,;,, of the cheapest leaf node. Instead, TP algorithms maintain a
threshold 7', which is an estimate of the cheapest |eaf node’s cost. At every node, branches
with cost greater than 7' - Cy are pruned before any forward move. The threshold 7' is
initialized as a finite quantity C,. Subsequently, the TP algorithm searches through the
tree, visiting only nodes with cost less than C,,. Note that if Cy < C,,;,, the TP agorithm
will finish searching through the tree without visiting any leaf node. When this happens,
the TP algorithm senses an erasure and restarts the search with a higher value of the initial
threshold C,. Eventually, C, is larger than C,,;,, and the TP algorithm visits some |eaf
node, say L. Then, the TP algorithm estimates that L isthe cheapest |eaf node, and tightens
the threshold to the cost of L. The tightening of the threshold helps the TP agorithm to
prune out more nodes later in the search process. As the process continues, the TP
algorithm visits cheaper and cheaper |eaf nodes. At the end of the search, the cheapest | eaf
node ™™ has been found.

The choice of theinitial threshold C is crucial. Ideally, we would like to avoid erasure
by choosing Cy, > C,,;,,- On the other hand, the lower the value of C, the fewer the number
of nodes visited. Thus, in order to both avoid erasures and minimize node visits, C,, should

be a good estimate of the actual value of C,,;,. To obtain this estimate, note that with high
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probability, M isthe actual transmit vector x, whose cost isthe noise energy |m|[%. Now,
though the noise energy is unknown, its average value, namely MN,, is known. Thus, one
good initia threshold is Cy = aMN,. The correction factor a accounts for the fact that the
noise energy will sometimes exceed its mean value. In spite of the correction factor,
erasures do occur at times. In this case, we suggest scaling the initial threshold C, by a
factor B before restarting the search. The values of a and 8 determine the number of nodes
visited by a TP algorithm, and must be chosen carefully. Heuristically, we have found that
a = 2.0 works well, when the number of channel inputs M islessthan or equal to 4. When
M > 4, we suggest a = 1.5. For both cases, we suggest B = 1.5. The actual computation-
minimizing values of a and B depend on the channel model, SNR, the symbol alphabet
and the value of N. Given all these parameters, the optimum values can be obtained by

trial-and-error.

To sum up, the basic computation-reduction strategy of TP agorithms has two

components, namely threshold maintenance and branch pruning.

» The threshold is an estimate of the cheapest leaf node’s cost. Threshold mainte-
nance involves two tasks. At the start of the search, the threshold is initialized
based on an statistical estimate of the cheapest leaf node cost. Second, whenever a

leaf node is reached, the threshold is tightened to the cost of the leaf node.

» Branch pruning is performed before every forward move, and ensures that nodes

with cost greater than threshold are not visited.

Using this two-fold strategy, TP algorithms efficiently find the cheapest leaf node,

provided theinitial threshold is higher than the actual cost of cheapest leaf node. If not, the
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TP agorithm senses an erasure, and iteratively increases the initial threshold till it is

greater than the cheapest |eaf node's cost.

The above basic strategy only defines the operations to be done before every forward
move, and when a leaf node is reached. It can be implemented in multiple ways. To see
this more clearly, note that if the TP algorithm has already visited multiple nodes, it needs
to choose one of these nodes as the site of the next forward move. Depending on how this
choice is made, we get multiple TP algorithms. For example, depth-fist TP agorithms
always choose the deepest of all available nodes to attempt the next forward move. In
contrast, breadth-fist TP algorithms choose one of the shallowest available nodes as the
site for the next move. In the next two sections, we develop precise depth-first and

breadth-first TP algorithms.

11.4 Depth-First Tree-Pruning: The Sphere Decoder

The depth-first tree-pruning algorithm that we develop in this section is aready well
known in the MIMO detection literature, by the name of the sphee decoder[25][26][27].
The sphere decoder presented in the literature often assumes that the symbol alphabet 4 is
a lattice aphabet containing real integers. Instead, we present a more general version,

where 4 is some finite, complex al phabet.

The operation of the sphere decoder proceeds in processing cycles. In each processing
cycle, the focus of operation is the deepest available node, called the currentnode At the
start of the search, the current node is the root node. In each processing cycle, the sphere
decoder checks to seeif the current node has any unpruned child branches. If so, it moves

forward on the cheapest branch to a child node, and the next processing cycle begins. If
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there are no unpruned child branches (this could be because the current nodeis aleaf node
with no child branches, in which case the threshold is first tightened), the sphere decoder
just moves back to the parent of the current node. In the next cycle, it looks for an
unpruned, unexplored child branch of the parent node. If there are such branches, it moves
forward on the cheapest one. Otherwise, it moves back again. Proceeding thus, the sphere
decoder explores the entire tree. When it finds that the root node has no remaining
unexplored branches, it recognizes that the search is complete. If no leaf node has been
visited, the sphere decoder detects erasure and repeats the search with a higher initial
threshold. Otherwise, it outputs the cheapest |eaf node visited, and quits.

In Fig. 16, we present a precise pseudocode for the sphere decoder. The variable i
represents the depth of the current node, i.e., the node from which aforward moveisbeing
attempted in that processing cycle. In addition to the current node N;, the sphere decoder
also stores the nodes Nq, No, ..., N;_; of depths 1, 2, ..., i respectively, which lie on the
path connecting N; to the root node. These are needed because the sphere decoder moves
to N,_; after exploring al the descendants of N;, then to N;_, after exploring all the
descendants of N;_;, and so on. For convenience, the root node is denoted N,. In each
processing cycle, the threshold is updated if N; is a root node. Then, the sphere decoder
executes a seek step, looking for unexplored, unpruned child branches of N;. If any are
found, it moves forward on the cheapest one, and visits N;,; for the next cycle. If no
branches are found, i is decrements and N,_; is the current node for the next processing
cycle. The other steps are self-explanatory, when read with the bold-faced comments

preceding them.
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Input 0 M X 1 complex vector y, M x M lower triangular matrix L. with non-negative, real
diagonal entries, finite symbol alphabet 4
Output [0 M x 1 complex vector X with elements in 4 such that |ly — LX ||2 is minimum

Start Up Cy = ANN,,, SomeLeafNodeVisitedFlag = OFF
Initialize Root Node

Root.depth = 0, Root.cost = 0.0, Root.y' =y1, Root.lastforwardcost =
Initialize Search T =C,

No.depth = Root,i =0 /* Deepest available node is root node, depth 0 */
Process Current Node
If current node is leaf node, tighten threshold and update ML decision

ifi==N
SomeLeafNodeVisitedFlag = ON /* Some leaf node visited, so no erasure */
T = N;.cost
& T
X =N,;.[zq1, 29, ..., 2x]
1=1—1 /* Leaf node processed, just move back */
endif

Seek Cheapest Unexplored, Unpruned Branch
LowerBound = Ni.lastforwardcost /% Do not reconsider explored branches */
UppperBound = T — N;.cost
Look for z* such that IN;-y" = L4, i+12|2 is minimum among all z in 4
such that
LowerBound < |N;.y" = 1;,1, i+12|2 < UpperBound

If possible, move forward on cheapest branch
if any z found in last step .
Move forward on branch labeled z* and visit child N;, {

1=1+1 /*Increment highest depth after forward move */
goto Process Current Node

endif

If forward move not possible, move back if possible

ifi>1
1=1-1 /* Move back by reducing depth*/
goto Process Current Node

endif

If backward move is also not possible, search is over. Repeat search or quit.
if SomeLeafNodeVisitedFlag = OFF
CO = BC 0 /* Erasure has occurred, expand threshold and repeat™®/

goto Initialize Search
else output X and quit

Fig. 16. Sphere Decoder: depth-first tree-pruning algorithm for efficient ML detection.

We close the discussion of the sphere decoder with some remarks about the seek step
in Fig. 16, which searches for the cheapest unpruned, unexplored branch for the next
forward move. By placing a lower bound equal to the cost of the last forward move, the

search is restricted only to those successor branches which have not already been
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explored. Further, since the cheapest unexplored branch is picked, the agorithm always
explores successor branches of any node in increasing order of cost. In principle, one can
explore successor branchesin any order. In fact, the origina sphere decoder [24] explored
branches in increasing order of their index value. However, exploring successor branches
in increasing order of cost enables the sphere decoder to visit cheap leaf nodes early, and
hence tighten the threshold. This leads to more effective pruning subsequently, and
reduces the overall number of nodes visited by the algorithm. Cost-based ordering of
branches was first suggested in [29], and has been almost universally adopted since.

For some symbol alphabets, there are simple ways to pick the cheapest unexplored
branch. For example, suppose the symbols are drawn from an 8-PAM a phabet, consisting
of all odd integers from -7 to +7. In the first move from node N;, one can obtain the
cheapest branch index by slicing yegr = N;.»'/ 1,41, 141, OF €quivalent rounding it off to the
nearest odd integer between -7 to +7. In every subsequent forward move, the symbol
corresponding to the cheapest unexplored branch alternates around the sliced value, unless
it exceeds the maximum limit of £7. For instance, y.¢ = 3.2, the cheapest branch index in
thefirst visitisz" = 3. In subsequent visits, the cheapest branch index alternates around the
central value of 3, taking on thevalues5, 1, 7, -1, -3, -5, and finally 7. This example can
extended to ageneral PAM alphabet containing all odd integersin the range [~z ax> Zmaxl»
as discussed in [30]. When the symbols are drawn from a complex QAM alphabet, [62]
suggests a look-up based ordering implementation. Such alphabet-specific
implementations are useful in reducing the complexity of the seek step, but they are not
essential. The efficiency of sphere decoding is primarily because of branch-pruning, and

threshold management.
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11.5 Modified Breadth-First Tree-Pruning: The Hybrid Decoder

In the last section, we discussed the sphere decoder, which is a depth-first tree-pruning
algorithm. In this section, we will develop a new tree-pruning algorithm, called the hybrid
decoder, which combines the features of breadth-first and depth-first tree search strategies.
A dlight modification to the hybrid decoder yields the bounded stack decoder, which
allows a flexible trade-off between the two conflicting goals of MIMO detector design,
low error rate and low computational complexity.

We first develop a purely breadth-first TP agorithm, and point out that it is inherently
defective. Recall that a breadth-first TP agorithm always picks the shallowest available
node as the site of the next forward move. In effect, it starts with the root node, and prunes
out all branches with cost less than the initial threshold C,,. Then, it successively makes
forward moves on all the unpruned successor branches, till it assembles a stack i,
containing all nodes of depth one with cost less than C,. Then, it visits the unpruned
successors of nodesin $;, till eventually it obtains a stack S, of nodes in the second level.
Thus, the breadth-first algorithm just generates stacks S; containing all nodes in depth i
with cost less than the threshold C,. The stacks are generated recursively, i.e., S;.1 IS
obtained by just visiting all the unpruned successors of all nodesin §;. Proceeding thus, the
algorithm eventually starts exploring the successors of nodesin Sy_;, which are leaf nodes
(if there are any leaf nodes with cost less than C,). Every time a leaf node is visited, it
tightens the threshold. Eventually, all the successors of nodesin $,,_; are explored, and the
algorithm finds the cheapest leaf node. Note that the threshold is tightened only towards

the end of all processing, while assembling S;,. While assembling all the earlier stacks, the
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threshold remains at itsinitial value C,. Consequently, the breadth-first algorithm visits all
non-leaf nodes whose cost isless than C,. In contrast, the sphere decoder visits leaf nodes
early, tightens the threshold, and visits fewer nodes subsequently.

We propose a modification to the breadth-first agorithm, to make it tighten the
threshold by seeking out cheap leaf nodes early. The modified algorithm, which we call
the hybrid decoder, is neither breadth-first nor depth-first, but a hybrid of the two. Similar
to the breadth-first algorithm, the hybrid decoder also starts with the stack 5, containing
only the root node, and recursively generates stacks §; for future levels. However, every
time it visits a new node, it not only adds the new node to stack §;, but also performs
successive cancellation starting from the new node. More precisely, suppose the hybrid
decoder takes up anode N;_; from stack ;_;, and adds its unpruned successor N; to stack
Si. After this, the breadth-first TP agorithm would proceed to visit the next unpruned
successor of N;_;. Instead, the hybrid decoder starts from N; and successively moves
forward on the cheapest unpruned successor branch of the current node. Thus, it visits
nodes N;.1, N;;9, ..., and adds them to stacks S;.1, S+, ... respectively. This forward
movement stops when either all successor branches of some N; get pruned out, or a leaf
node is reached. In the latter case, the algorithm tightens the threshold. After forward
movement stops, the hybrid search agorithm returns to node N;_; from stack §;_;, and
seeks its next unpruned successor. A precise pseudocode of the hybrid search algorithmis

shown below, in Fig. 17.
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Input 0 M X 1 complex vector y, M x M lower triangular matrix L. with non-negative, real
diagonal entries, finite symbol alphabet A
Output 0 M x 1 complex vector X with elements in 4 such that |ly — Lx || is minimum

Start Up Cy = AMN,, SomeLeafNodeVisitedFlag = OFF
Initialize Root Node
Root.depth = 0, Root.cost = 0.0, Root.y' =y1, Root.lastforwardcost =
Initialize Search T = C,, S, = { Root}
fori=1: N
Generate stack i from current stack i—1
while (§;_1 not empty)
N;-1 = Top node in §;_1
Seek Next BranchOf Top Node
Lower Bound = N;_;.lastforwardcost /* Remove explored branches */
Upper Bound = T — N;_;.cost /* Branch Pruning*/
Look for z; such that [N;_1.y" — [;;2; | is mlmmum among all z in 4
such that Lower Bound < |N;_1.5' — luz| < Upper Bound
if no branch found, goto Top Node Fully Explored
Visit new node, start successive cancellation
Move forward from N;_; on branch labeled z; to visit child N;
k=i
Push Next Node Push N, to stack S,
if (¢ < N)
Seek cheapest branch forward
UpperBound = (T — Np. cost)
2p4+1 = Index of cheapest successor branchof Ny,
if Ny = lpya, k+12k+1| < Upper Bound
Move forward from Nz on branch labeled z},,; to visit Np, 1
Increment &
goto Push Next Node
endif
else goto Successive Cancellation Done
endif
else
Leaf Node Reached, Tighten Threshold
SomeLeafNodeVisitedFlag = ON
T = Np.cost
X = Ng.[z1, 29, oy zyIt
goto Successive Cancellation Done
endelse
Successive Cancellation Done
goto Seek Next Branch Of Top Node
Top Node Fully Explored
Remove top node from §;_;
Loops till §;_; Empty endwhile
Loops till i=N endfor
Search Over. Repeat Search Or Quit
if (SomeLeafNodeVisitedFlag = OFF)
Cy= BC 0 /* Erasure has occurred, expand threshold*/
goto Initialize Search
endif
else Output X and Quit

Fig. 17. Hybrid search algorithm for efficient ML detection.
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The hybrid and sphere decoders have different movement patterns on the detection
tree. Therefore, the number of nodes visited by the two algorithms during the detection
process are different. In Section 11.7.3, we will see that the two algorithms visit roughly
the same number of nodes visited, though there are some small differences. Now, we
discuss the more significant differences between the two algorithms, namely their relative
suitability for high-speed parallel implementation, and their memory requirements.

The hybrid decoder is more suited to parallel implementation than the sphere decoder.
In each processing cycle, the sphere decoder moves one stage forward or backward from
the current node. Since all the processing is focused on just one node, implementation by
multiple processors needs some complicated management mechanism. In contrast, the
basic unit of updation for the hybrid decoder is not the node, but the stack. Now, while
assembling stack §;, different nodes from stack §;_; are extended, i.e., their unpruned
successors are visited, and successive cancellation is done on each of them. The extension
of different nodes in §;_; can be done simultaneously and independently by multiple
processors. For a thorough discussion of paralel implementations of tree-search
algorithms, we refer the reader to [63].

Comparing the memory requirement of the two algorithms, the sphere decoder has a
distinct advantage over the hybrid decoder. Recall that the sphere decoder only needs to
store the nodes Ny, Ny, ..., N; when it is currently at depth i. Since the largest depth isi =
M, the sphere decoder only needs N + 1 nodes of memory to cover the worst case. In
contrast, the hybrid decoder of Fig. 17 needs memory allocated for the stacks S, Sy, ---,
Syr- Memory allocation for the hybrid decoder is problematic for two reasons. Firstly, the

actual size of each stack §; is random, because it depend on the number of nodes of depth i
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with cost less than threshold, and node costs are random. Secondly, there are |4 nodesin
level i. Even if asmall fraction of these nodes have cost less than threshold, there could be
a few thousand nodes in §;. Thus, the memory requirement of the stack decoder is both

unpredictable and large.

11.5.1 The Bounded Stack Hybrid Decoder

One way to sidestep the unpredictable and large memory requirement of the hybrid
decoder isto simply restrict the maximum size of each stack to some fixed pre-determined
value, say S, .« nodes. This restriction yields what we call the bounded stack hybrid
decoder, and can be implemented by a simple change to the hybrid decoder algorithm of
Fig. 17. Before pushing anew node into a stack .5, we check the size of §,. If 5, has fewer
than S, nodes, the new node is added to . Otherwise, the cost of the new node is
compared to the cost of the costliest nodein §. If the new node has lower cost, it replaces
the costliest node in 5. On the other hand, if the new node has higher cost, it is discarded,
without being stored anywhere. Thus, the stack §, now contains only the cheapest S ..«
nodes of depth 2 with cost less than the threshold. If there are more than S, Sub-
threshold nodes, the other nodes are discarded.

Note that the descendants of the discarded nodes are not visited, even though their cost
is less than threshold. If one of these unvisited descendants is the cheapest leaf node, the
hybrid stack decoder will not find it. Thus, the bounded stack hybrid decoder does not
necessarily find the cheapest leaf node, even if there is no erasure. If the stack limit S, .«
is small, the memory required by the decoder is low. On the other hand, a small value of

Smax IMplies more sub-threshold nodes are discarded, hence increases the deviation from
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ML detection. In particular, if S, = 1, $; contains only the cheapest child of the root
node, S, contains only the cheapest child of §;, and so on. In other words, with a stack size
limit of one, the stack limited hybrid decoder reduces to the successive cancellation
detector. Thus, one can think of S, as a parameter that controls the WER-complexity
trade-off: as S, increases, the WER decreases but the complexity and the memory
requirement increase. However, we will seein Section 11.7.1 that even low values of S«

are sufficient to closely approach the error rate of ML detection.

11.6 The Complexity of Tree-Pruning Algorithms

We have presented two tree-pruning algorithmsthat perform ML detection, namely the
hybrid and sphere decoders. In this section, we make some general remarks about the
computational complexity of these agorithms. In the next section, simulation results are
presented to illustrate these remarks.

As aready mentioned, the computational complexity of tree-pruning algorithms is
measured by the number of nodes visited. The SC detector always visits exactly M nodes.
On the other hand, a tree-pruning agorithm visits al nodes, except those that are
eliminated by cost-based pruning at some stage. Note that the node costs are functions of
the effective channel output y and the lower-triangular transfer matrix L, both of which
are random. Therefore, the number of nodes visited by a tree-pruning algorithm is also
random. One way to quantify the computational complexity is to obtain the distribution of
the random number of nodes visited. However, the entire distribution is cumbersome to
obtain and analyze. Instead, one can analyze the mean of the distribution, namely the

average number of nodes visited, which gives the average complexity of a TP agorithm.
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Clearly, the average number of nodes visited by a TP algorithm depends on the details
of the algorithm itself. For example, the sphere and hybrid decoders differ in the number
of nodes visited for the same tree. However, for al tree-pruning algorithms, the average
number of node visits follows some genera trends. For instance, it is a function of the
distribution of L and y; the symbol alphabet 4; the MIMO channel dimensions P and M.
Further, the distribution of L depends both on the distribution of the MIMO channel
matrix H and the spatial order used by SWMF (natural or V-BLAST). The distribution of
y depends on the noise variance N, or equivaently the SNR S. Considering the number
of parameters involved, it is clear that precise analysis of the average number of node
visits for a given tree-pruning algorithm is difficult. To our knowledge, the only analytical
result [58] is a function U(P, M, A4, S) that upper bounds the average number of nodes
visited by a sphere decoder, for a Rayleigh fading channels with a PAM or QAM input
alphabet 4 and natural ordering of inputs. Though precise analysis is difficult, the broad

influence of the various parameters on the average complexity are summarized below.

Remark 8.  The average number of nodes visited by a tree-pruning algorithm, V,

shows the following tendencies.

(i) Asthe symbol aphabet size |4 | increases, V tends to increase.

(ii) Asthe number of channel inputs M increases, V tends to increase.
(iii) Asthe SNR S increases, V tends to decrease.

(iv) Asthe number of channel outputs P increases, V tends to decrease.

(v) Findly, V-BLAST spatial ordering of the channel inputs leads to alower value

of V, when compared to natural ordering of inputs.
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We now proceed to justify the claims in Remark 8. The total number of nodes in the
tree, namely (1 + |4| + ... + |4 M) increases with the alphabet size |4|. Pruning ensures that
not all these nodes are visited. However, it is clear that with more nodes in the tree, the
number of nodes visited tends to increase, justifying (i). It is worth pointing out that this
increase is typically not very sharp, i.e., even though the total number of nodes increases
roughly as |4M, V typically increases much more slowly as |4| increases.

As M increases, the total number of nodes in the tree increases exponentially. Even
more seriously, the expected value of the cheapest leaf node cost MN,, and hence the
typical value of the threshold, increases with M. Thus, as M increases, not only are there
more nodes in the tree, but fewer of them are pruned out. As aresult, V tends to increase
with M, as stated in (ii). Asthe SNR S increases, the noise variance N, decreases, leading
to lower thresholds, and hence alower value of V. Thisjustifies (iii).

Statements (iv) and (v) relate to the dependence of V on the distribution of the

effective channel matrix L. Substituting y = Lx + n in (173), we get the expression

k

C(Zl, 29, ...,Zk) = Z
1=1

-1

n;+ z lij(xj—zj)
Jj=1

2
(176)

for the cost of the node (z1, 29, ..., z;) @ depthi. Apart from the additive noise termsn;, we
see that every wrong node, i.e., every node (zq, 29, ..., 2;) that deviates from the actual

channel-input symbols (x4, x9, ..., x;), has a constant bias terms in the cost expression.

As the number of channel outputs P increases, the receiver has more observations of
the channel-input and hence higher received signal energy. Equivalently, agreater value of

P leads to a greater energy in each term of L, and hence increases the value of the bias
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terms in the cost of wrong nodes. Thus, as P increases, wrong nodes tend to have higher
cost, and are hence pruned out by tree-pruning algorithms, leading to a reduction in the
average number of nodes visited, as claimed in (iv).

Finally, given P, the receiver’s choice of the spatial order does not change the total
energy in L, but changes the distribution of the total energy among the various entries of
L. To see the effect of ordering on node costs, note from (176) that the cost of anode z; of
depth one is |nq + I11(x; - z7)]>. Recall that V-BLAST spatial ordering maximizes the
value of /1. Therefore, wrong nodes at depth one, i.e, nodes corresponding to z; # x4, tend
to have higher cost with V-BLAST order than with natural ordering. Further, given,4, V-
BLAST ordering next maximizes l5,, and hence increases the cost of wrong nodes of
depth two. Proceeding thus, it is easy to see that V-BLAST ordering increases the costs of
wrong nodes at lower depths, leading to more low-depth nodes being pruned out. Since
nodes at lower depths have a larger number of descendants, V-BLAST ordering, in effect,
leads to a greater number of nodes being pruned out, and hence a fewer number of nodes
visited. Thus, claim (v) holds for any tree-pruning algorithm. For the case of the sphere

decoder, the complexity reduction due to V-BLAST ordering was pointed out in [64].

11.7 The Performance of Tree-Pruning Algorithms

In this section, we present simulation results demonstrating the low error rate and low
average computational complexity of tree-pruning algorithms. In particular, these results
illustrate that tree-pruning algorithms result in dramatically lower error rates than the SC

detector, with only a moderate increase in computational burden.
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11.7.1 Comparison of the Error Rate of Detection Algorithms

We first compare the word error rates achieved by the various detectors, for the case of
an 8-input, 8-output Rayleigh fading channel and a 16-QAM al phabet. Since each of the
M = 8 transmit symbols carries logy(16) = 4 bits of information, the datarateis32 b/ s/
Hz. The WER achieved by abounded stack detector for stack size limitsof 1, 10 and 25 is
plotted against SNR in Fig. 18. Also shown is the WER achieved with unlimited stack
size, corresponding to ML detection. For each stack size, WER with natural ordering is
shown in dotted lines, and WER with V-BLAST ordering is shown in solid lines.

A stack size limit of one yields the successive cancellation detector, which has the
highest error rate. Note that V-BLAST ordering improves the performance of the SC
detector significantly, requiring 5 dB less SNR to achieve a WER of 1071, Roughly, this
improvement is because the V-BLAST ordering, which is a greedy ordering algorithm, is

ideally suited to the greedy SC detector. For a more precise discussion, see [11]. As the
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Fig. 18. Variation of bounded stack decoder performance with stack size for an 8-inpuit,
8-output Rayleigh fading channel at 32 b/s/Hz.
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stack size limit increases from one to ten, the error rate drops sharply. Remarkably, a stack
size of merely 25 nodes achieves almost identical performance to ML detection, which
corresponds to unlimited stack size.

To achieve a WER of 1072, ML detection needs 25 dB less SNR than V-BLAST
ordered SC detector. This dramatic performance improvement is primarily because of the
difference in diversity orders achieved by the ML and SC detectors. With ML detection,
the full raw diversity order of the S/P converter is achieved, as discussed in Chapter 3. In
contrast, the SC detector does not harvest the diversity benefit of multiple Rayleigh fading
channel outputs, and hence leads to dramatically higher WER at high SNR.

Finally, note that there is only one curve marked ML detection, indicating that the ML
detector’'s WER does not depend on the ordering choice. This is true in general, and is
easy to show formaly [7]. Intuitively, the SWMF output carries the same probabilistic
information about the channel-input, irrespective of the spatial order. Since the ML
detector optimally uses al the available information, ordering does not impact the WER of
the ML detector. However, we will now see that V-BLAST ordering does reduce the

number of nodes visited by atree-pruning algorithm, as claimed in Remark 8.

11.7.2 Average Computational Complexity of the Sphere Decoder

In this section, we illustrate some of the general remarks about the computational
complexity of tree-pruning algorithms with simulation results. For the system in
Section 11.7.1, namely an 8-input, 8-output Rayleigh fading channel with a 16-QAM

symbol alphabet, the average number of nodes visited by the sphere decoder is plotted
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against SNR in Fig. 19. To magnify the differences between the plots, we have plotted the
logarithm of the average number of nodes visited to the base M = 8. Recall that any tree-
pruning algorithm saves computation by a two-fold strategy: first, pruning ensures that
only nodes with cost less than threshold are visited; second, the initial threshold C, is
cleverly chosen as aMNO, and scaled by a factor 3 whenever erasure is detected. To
understand the contribution of each of these steps, we have plotted the average number of
nodes visited with only pruning, and no clever threshold initialization, i.e, with Cy = c.
(The threshold is still tightened, whenever a leaf node is reached). As seen from Fig. 19,
this step alone is sufficient to make the sphere decoder visit dramatically fewer nodes than
the total number of nodes in the tree, namely 4,581,298,449. With clever threshold
initialization, i.e., using a = B = 1.5, the average complexity reduces further, as seen in
Fig. 19. Both the above curves showed the average number of node visits with natural
ordering of inputs. When V-BLAST ordering is added on to the cleverly initialized sphere

decoder, the average number of nodes visited nearly halves.
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Fig. 19. Average complexity of sphere decoder for an 8-input, 8-output Rayleigh fading
channel at 32 b/s/Hz.
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Note that for all these cases, the average complexity reduces as the SNR S increases,
as expected from (iii) of Remark 8. Remarkably, at SNR = 24 dB, the V-BLAST ordered
sphere decoder visits only 10 nodes on the average, merely 25% more than the M = 8
nodes visited by the SC detector. In return, we see from Fig. 18 that the sphere decoder
achieves ML detection whose WER at 24 dB is around 5 x 107, which is only one
thousandth of the WER of nearly 5 x 1072 achieved the SC detector. Thus, when the SNR
is high, tree-pruning algorithms like the sphere decoder are a very attractive alternative to

the successive cancellation detection algorithm.

11.7.3 Comparison of the Hybrid and Sphere Decoders

In the last section, we used the sphere decoder as an example to illustrate the low
computational complexity of tree-pruning algorithms. In this section, we compare the
average number of nodes visited by the sphere decoder and the hybrid decoder.

It is instructive to first compare the movement pattern of the sphere and hybrid
decoders. From the algorithms in Fig. 16 and Fig. 17, it is clear that both decoders start
from the root node and roughly perform SC detection first, i.e., successively take the
cheapest branch forward. Suppose this procedure does lead to the cheapest leaf node.
Then, both decoders tighten the threshold to C,;,. Of course, the two decoders do not
know that the cheapest leaf node has already been found, and continue the search. The key
observation is that subsequently, both decoders will visit all the nodes in the tree with cost
lessthan C,,;,,, before the search terminates. In particular, note that if the SC detector does
find the cheapest leaf node, both the hybrid and sphere decoders visit exactly the same

number of nodes.
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However, the SC procedure at the beginning of hybrid and sphere decoding does not
aways find the cheapest leaf node. Sometimes, it reaches a leaf node which is not the
cheapest one. At other times, it terminates without reaching a leaf node, because all
branches of some node get pruned out. In this case, both decoders continue their search,
but in different sections of the tree. The sphere decoder looks to move forward from the
deepest available node, while the hybrid decoder visits a node of depth one, and attempts
successive cancellation starting from it. The decoder which finds the cheapest leaf node
sooner tightens the threshold to C,,;,,, and hence visits fewer nodes subsequently than the
other decoder.

Whether the sphere decoder finds the cheapest leaf node sooner than the hybrid
decoder depends on the distribution of the channel matrix L. For Rayleigh fading
channels, with natural ordering at the receiver, it iswell known [43] that theterm /;; has a
chi-squared distribution of degree 2(P - M +1), implying that as: increases, the coefficient
[;; tends to increase. Since the magnitude of /;; determines the reliability of stage i, we
conclude that early stages of the tree tend to be unreliable, i.e., wrong nodes do not have
significantly higher cost than the right node. However, the sphere decoder always searches
for the cheapest leaf node by moving forward from the deepest available node. In other
words, it believes that decisions made in the early stages of the decoding tree are correct,
and attempts to make the right decisions for later decisions. Since this assumption runs
counter to the actual statistical behavior of the channel, the sphere decoder isill-suited to
the case of unordered Rayleigh fading channels. On the other hand, V-BLAST ordering
increases the value of /;; for lower values of i, and makes the early stages more reliable.

Hence, the sphere decoder has low computational complexity with V-BLAST ordering.
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To sum up, we expect that the sphere decoder should have a significantly higher
average complexity than the hybrid decoder, when the receiver uses natural ordering of
inputs. With V-BLAST ordering of inputs, the sphere and hybrid decoders should visit
roughly the same number of nodes on the average. This prediction is confirmed in Fig. 20,
which shows the average number of node visits by the sphere and hybrid decoders for a
16-input, 16-output Rayleigh fading channel with 16-QAM input symbols. With natural
ordering of inputs, at low SNR, the hybrid decoder visits about 15-20% fewer nodes on the
average, when compared to the sphere decoder. With V-BLAST ordering, the differencein
the number of node visits is aimost negligible. With either ordering, the difference
between the number of node visitsis negligible at high SNR.

It isinstructive to compare the average number of nodes visited for the present system
with corresponding values for the system considered in Section 11.7.2. The former system
had 8 channel inputs and outputs with a 16-QAM alphabet. At an SNR of 21 dB, the

sphere decoder visits about 11 nodes on the average, as seen from Fig. 19. When the
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Fig. 20. Average number of nodesvisited by sphére gand hybrid decodersfor a 16-input,
16-output Rayleigh fading channel at 64 b/s/Hz.
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number of channel inputs and outputs increases to 16, Fig. 20 shows that the average
number of nodes visited increases to more than 100 at the same SNR. Extrapolating this
trend, one can see that the sphere decoder (or other tree-pruning agorithms) tend to

become impractically complex beyond afew tens of channel inputs.

11.8 Conclusions

When the transmitter consists of a stand-alone space-time code with a discrete input
alphabet, the receiver must perform ML detection in order to minimize the error
probability. In this chapter, we interpreted ML detection as a tree-search problem, and
discussed the class of tree-pruning algorithms, which efficiently solve the tree-search
problem. The tree-pruning algorithm that performs depth-first search is identical to the
well-known sphere decoder. We also developed the new hybrid search decoder, and its
non-ML variant, the bounded stack hybrid search decoder.

The computational burden of tree-pruning algorithms depends on the random channel
matrix and noise. Simulation results show that for typical MIMO channel dimensions, the
average computational complexity of tree-pruning algorithms is in the same order of
magnitude as the fixed computational complexity of the successive cancellation detector
used in the V-BLAST architecture. Thus, tree-pruning algorithms satisfactorily solve the
problem of designing optimum, computationally simple receivers for transmitters with

stand-alone linear space-time codes.
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CHAPTER 12

Soft-Output Decodersfor Linear MIMO Channels

In this chapter, we consider the design of receivers for the second transmitter
architecture considered in thiswork, namely the concatenation of an outer finite-field error
correction code with an inner space-time code (see Fig. 8). In order to minimize the error
probability, the receiver should ideally perform maximum likelihood decoding, treating
the concatenation of the outer and inner codes as one super-code. However, for large outer
code lengths, the optimum joint ML decoder has prohibitive computational complexity.

A near-optimum alternative is to perform iterative decoding, following the pattern of
turbo codes [31]. Here, probabilistic information is iteratively exchanged between soft-
output decoders for the inner space-time code and the outer code respectively, as shown in
Fig. 21. Heuristically, it iswell known that the estimates produced by the iterative decoder

after afew iterations are amost as reliable as those of the impractical joint decoder.

Extrinsic Information

S
. . Soft-Output Soft-Output
Received Signals Decoder for Decoder for Decoded
from ’ Inner Linear Outer — Daa
MIMO Channel Space-Time Error Correction
Code Code

A priori Information
Fig. 21. Structure of ageneral iterative receiver.
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To implement the iterative receiver structure of Fig. 21, soft-output decoders are
required for the outer code and inner space-time code. In this work, we have assumed that
the outer code is afinite-field code, for which soft-output decoders are well known [32]. In
this chapter, we develop soft-output decoders for a general linear space-time code, by a

simple extension of the detection agorithms devel oped in the previous chapter.

12.1 A Precise Problem Statement for Soft-Output MIM O Decoders

The receiver uses the spatial whitened matched filter described in Section 11.1.1 to
yield the spatially causal effective channel (166) y = Lx + n. Each symbol x; is obtained
by modulating a group of bits from the outer code. More precisely, the outer code
produces coded finite-field symbols, which are first broken down to bits, and then
interleaved. The interleaved bits are separated into groups containing |4 | bits each. Each
group then addresses a look-up table to read off a channel-input symbol belonging to the
alphabet 4. Thus, each channel-input symbol x; uniquely corresponds to a set of |4 | coded
and interleaved bits, say b; 1, b; 3, ..., b; |g)-

In the detection problem, we were not interested in the bit labels {b; ;}, but directly in
the symbols x;. However, soft-output MIMO decoders have to exchange probabilistic
information about the bits with the soft-output decoder for the outer code. More precisely,
the soft-output outer decoder provides the a priori log likelihood ratio (LLR) 4, , on each
input bitd; , k=1, 2, ..., |4]. The LLRisjust a convenient way of storing the probability
distribution of each bit, which is given by

bA;

plbip=b)= =— (177)
1+e oF
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for b = 0, 1. In return for the a priori information from the outer decoder, the soft-output
inner decoder provides extrinsic information to the outer decoder as follows. First, it uses
the effective channel output y and the a priori LLRs to compute the a posteriori LLR

o PE= U)o opbyy= Ly
%(bl E 0|y)D %(bl B 0, Y)D

(The second equality above is obtained using Bayes' rule.) From the a posteriori LLR, the

L (178)

soft-output decoder computes the extrinsic LLR E; j, = L; ;, — A; 5, Which is then passed on
to the outer decoder. The outer decoder then uses the extrinsic information to compute the

apriori information for the next iteration, and so on.

12.2 Soft-Output Decoding As a Tree-Search Problem

In this section, we interpret the soft-output decoding problem in terms of the detection
tree. The presence of a priori information can be accounted for by a slight change to the
previously defined branch and node costs. In the next section, we will extend the detection
algorithms of the previous chapter, to obtain soft-output tree-pruning algorithms.

First, we rephrase the soft-output decoding problem, to obtain a convenient node cost
function. Using the one-to-one correspondence between input bits and the transmit vector,

(178) for the a posteriori LLR becomes

O g p(y,z)0
;= Ly)g Box?, ,=1 O

L; ; =log = log ———Lk& 0. 179
Lk Cp(b; 1= 0,y)U %l Z p(y, Z)E (179)
ox, ik=

To compute (179) rigoroudly, the joint probability p(y, z) has to be computed for each
valid transmit vector z and added to the numerator or denominator, depending on the bit

label b'; 5, corresponding to z. In order to avoid the daunting computational requirements

188



of this task, the log-max approximation is usually made [32], replacing the sum by the

maximum of the summands. Thus, we get

Ly, =log (180)

ma
Born = Hogpym - Bo - g ply, 2. (18)

To compute the approximate L LR (181) for each bit b; ;,, one needsto find just two vectors
with different values of b; ;, with the maximum value of log p(y, z). Now, the function
-log p(y, z) can be thought of as a cost function associated with z. Decomposing it as

-log p(y | z)p(z) and substituting for the conditional probability p(y | z) from (169),

-logp(y,z) =-logp(ylz)-logp(z) (182)
L N K
- Mogrwo+ =L L S S Cogp, ). (189)
0 i=1lk=1

The first term in (183) independent of z and is cancelled out while calculating the
differencein (181). So, it can be ignored. The second term is just the detection problem’s
cost function J(z) divided by the noise energy N,. The last term is the a priori cost of the

bit labels {b'; ;} associated with the transmit vector z. From (177), we get

A.
~log p(b'; 1) = -A; 1" 1 — log(1+e ") (184)
The second term in (184) can be neglected without affecting the difference (181).

However, thefirst term -A; ,,b'; , alone could potentially be negative, whenthe LLRA; ;, is
positiveand b'; , = 1. In this case, to avoid negative a priori bit cost, we just add A; ,, to the

cost of both bit labels 0 and 1. Thus, we get the non-negative a priori bit cost function
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b';
Al T Ak AR+ (D) FAik

C'ip)=-A; b+ > >

(185)

Intuitively, C(b';;) can be thought of as the cost of disagreeing with the a priori
information. For example, if A;, > 0, we have a priori information that b;; = 1 with
certainty A, ;. Correspondingly, the cost C(1) is 0, whereas the opposite decision has cost

C(0) = A .

Substituting the a priori bit cost function C(b'; ) back in (182), we get the cost

function for every valid channel-input vector z [0 X, given by

P e 7
(Z)—To > > Cl - (186)
1=1k=1

Up to a constant independent of z, K(z) is equal to -log p(y, z). Substituting in (180), we

see that the task of the log-max soft-output decoder is to obtain the extrinsic information

min min

Eip=Lip-Aip~ %Dx,bi’k: oK(2) - %Dx,bi,k: 15K(2) — Ay (187)

for al symbolsi =1, 2, ..., M and bitindicesk =1, 2, ..., |4]| of each symbol.
We have now rephrased the soft-output decoding problem in the form (187). To
proceed, we note that the new cost function K(z) breaks up into non-negative branch costs

on the detection tree, namely

2 K

Bz, 29, .y 2)) = J—vl“o + 3 Oy, (189)
k=1

i—-1
y;— z lijz j
j=1
Note that the new branch costs are similar to the branch costs defined for the detection

problem. In fact, the first term is just a scaled version of the detection problem’s branch

cost (172), and the second term accounts for the a priori information. Similar to the
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detection problem, the branch costs are again non-negative. Further, these branch costs

can be used to define node costs, asin (173)(174).

Note that the cost of the leaf node corresponding to a channel-input vector z 0O X is
K(z). Thus, to evauate the soft-output (187) for abit b; ;, the log-max soft-output decoder
should find the two cheapest |eaf nodes which differ in the label b; ;. Clearly, the cheapest
leaf node in the tree is always one of the candidates, and it determines the sign of the LLR
L; . For example, if the bit label b*i]k of the cheapest leaf node is zero, the first term in
(187) contains the cheapest leaf node cost and is less than the second term, so that their
difference L; ;, is negative. In generd, thesign of L, ;, is (2b*i’k - 1). The magnitude of L; ;
is determined by the cost of the competing node for each bit, namely the cheapest |eaf
node whose bit label is different from b*i,k. Thus, to implement soft-output decoding, a
tree search algorithm should determine not only the cheapest leaf node, but also the

cheapest competitor for every bit.

12.3 Extension of MIMO detectorsto Obtain Lists

The tree-pruning algorithms of the previous chapter already find the cheapest |eaf node
in the tree. One expects that they can be easily extended to generate a list of cheap |eaf
nodes for soft-output generation. Such an extension was proposed for the sphere decoder
[33], yielding the list sphere decoder. In this section, we review the extension of [33] and
propose an improved extension procedure, which is applicable to all tree-pruning
algorithms. We will see that only the threshold initialization and threshold updation at |eaf
nodes need to be changed for a detector to produce lists. For the sake of simplicity, we will

specifically discuss extension of the sphere decoder.
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The list sphere decoder [33] was devel oped for the case of no apriori information, i.e.,
A;,=0.1tobtainsalist L of the N ,nq (Or fewer) cheapest leaf nodes with cost less than
theinitia threshold Cy = aMN,. Soft outputs are then calculated by taking the minimain
(187) over the list L instead of the entire transmit alphabet X. Sometimes, all the leaf
nodesin L might have the same value of some bit b; ;. Consequently, one of the minima
cannot be computed. In principle, one can iteratively increase C, and/or N, q till the list
L is large enough to furnish two cheap competitors for every bit. Instead, whenever all
nodes in L have the same hit label b*i’k, the list sphere decoder just outputs an
approximate extrinsic LLR of LmaX(Zb*i’k - 1), whereL . issome pre-determined value.

We aready saw that the competitor node only determines the magnitude of the
extrinsic information. What the approximation implies is that in the absence of a
competitor, the list sphere decoder guesses the magnitude to be L, ... If the initia
threshold C,, and the list size N,,,q are large enough, two competitors are found for most
bits, and the approximation needs to be done infrequently. Further, it does not significantly
affect performance because most fixed point implementations of iterative decoding
anyway clip the magnitudes of the a priori and extrinsic LLRs in order to avoid overflows
or underflows. Clipping aso helps to avoid the chaotic dynamics and sudden bursts of
errors, to which iterative decoding of finite length codesis prone [65]. If L,,., iSbe chosen
to be the clipping value, the approximate list sphere decoder produces exactly the same
output as an idea soft-output sphere decoder (which expands threshold to obtain

competitors for every bit) after clipping.
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In [33], the list sphere decoder was implemented by a change to the threshold updation
procedure of the original sphere decoder. Whenever aleaf node is reached, we first check
the size of thelist L. If L hasfewer than N, ,q candidates, the new leaf node is added to
L. Otherwise, the current leaf node replaces the costliest leaf node in £ only if it has a
lower cost. The threshold is never tightened.

We propose two modifications to the threshold updation procedure proposed in [33].
Firstly, the threshold can clearly be tightened to the maximum leaf node cost in L, if L is
full. Thisis because any subsequent leaf node with a cost greater than this threshold will
not be added to the list anyway, and hence one can avoid visiting al such leaf nodes
without affecting the final output.

Secondly, suppose K,,,;,, is the cost of the cheapest leaf nodein L, and A, and L.«
are respectively the maximum magnitude of the a priori LLRs {4, ;}, and the clipping
value for the output extrinsic LLR. Then, one can tighten the threshold to K ,,;,, + Appax +
L hax If the latter quantity is lower than the current threshold. The rationale behind thisis
as follows. Suppose aleaf node L' inthelist hascost K > K, + Apax + Lmax- T L' iSOt
one of the minima used in (187) to calculate the extrinsic information, we anyway do not
need it in the list. Even if it is one of the minima, we see that the resulting extrinsic
information would satisfy

|E; 1| = |& (K = Kipin) = A; | 2 [(K = Kipin)| = 14; 21 2 (K = Kipipy = Amax) > Linax: (189)
Since |E; 1| > Lyax. clipping would just reduce E; ;, to Lmax(zb*i,k - 1). Now, if L' had not
been added on the list, the closest competitor would not have been found, but the list
sphere decoder’s built in assumption would still have produced the same output

Lmax(2b*i,k - 1) asif L' had been there. Thus, leaf nodes with cost greater than K,;,, +

193



Aax T Limax do not change the ultimate output of the list sphere decoder, and can be
discarded by tightening the threshold t0 K i, + Amax + Lmax- 10 SUM Up, we propose the

following leaf node processing.

Leaf Node Processing if (CurrentNode is a leaf node)
if (L has fewer than N, 4 entries)
add CurrentNode to L
else
if (CurentNode.Cost < Maximum cost in L)
Replace costlier leaf node in £ by CurrentNode
if (Threshold > Maximum cost in L)
Threshold = Maximum cost in L
endif
endifelse
A pnax = Maximum value of |A; 4|
L ,2x = Cutoff value of output extrinsic information
if (Threshold > (CurrentNode.Cost + A 3¢ + Linax)
Threshold = CurrentNode.Cost + A .« + Liax
endif
endif

Fig. 22. Leaf node updation step that extends a detection algorithm to produce lists.

The list size N4 and the cutoff value L., should be chosen to optimally tradeoff
performance and complexity. Making either of them large would imply large lists, and
intensive computation, but would reduce the frequency of not finding the closest
competitor, and hence enable the decoder to produce nearly log-max outputs. The list size
N..nq Should increase with the data rate of operation. Values of the order of 100 were

suggested in [33]. We have found that L, of around 5.0 to 10.0 works well.

In addition to threshold updation, the threshold initialization of the sphere decoder
should also be changed, to enable the handling of a priori information. For the detection
problem, the initial threshold C, was chosen as aMNO to reflect the average cost of the
actual transmit vector. Now, the transmit vector could incur an additional a priori cost, if
some of the apriori LLRs arein error. To account for this, we propose to add an additional

term proportional to the average a priori LLR magnitude A (the mean of |A; ;| over all the
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NK hits). More precisely, we propose to use C0 = a’'MN, + 3MA. The constant o’ should
be larger than the a for the detector, because we wish to visit more leaf nodes than just the
cheapest one.The factor & represents the estimated number of a priori LLR errors per
branch, since we are allowing for a total a priori cost of dNA over a path of N branches.
Since a priori information comes for a reliable outer code, 6 should be relatively small.
Heuristically, we recommend o’ = 2.5 and 3 = 0.2.

With the new threshold initialization and the updation steps mentioned above, all the
tree-pruning detectors can be extended to provide soft outputs. No other change is

required.

12.4 Simulation Results

We now present simulation results to confirm the efficiency of tree-pruning soft-output
decoders, and the compl exity reduction obtained by using the proposed threshold updation
procedure. A rate-1/ 2 (4800, 2400) binary turbo code is used as the outer code. The
constituent codes are both punctured {11__1)1_502_____1'@);‘1)4 convolutional codes, and a spread-20
random interleaver was used in the turbo code. The coded bits are interleaved using a
spread-26 random interleaver, assembled into 4-bit symbols, and modulated to obtain 16-
QAM complex symbols. These are split into four streams and transmitted over a 4-input,
4-output Rayleigh fading channel, which remains constant over the entire frame, lasting
300 signaling intervals. Thus, the datarate is 2400/300 = 8 b/ s/ Hz. At the receiver, the
inner soft-output decoder does a maximum of 5 iterations with the outer turbo decoder.

Iterations were stopped when zero bit errors were detected. The turbo code itself does four

internal iterations for every iteration with the inner soft-output MIMO decoders.
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We compare three different soft-output decoding algorithms, namely list-generating
extensions of a sphere decoder and two bounded stack hybrid decoders of size limits thirty
nodes and ten nodes respectively. All these generated lists of maximum size N ,,q = 256,
and had clipping values of L., = 5.0. The threshold was initialized using a’ = 2.5 and & =
0.2. The average number of nodes visited per signaling interval is plotted, i.e, thisis the
sum of node visits over all the iterations with the outer code.

In Fig. 23, the plot on the left shows the frame error rate achieved by the different soft-
output decoding algorithms at different SNR. Recall that limiting the stack size limits the
memory requirement of the hybrid decoder, but leadsto an increasein error rate. However,
we saw in Section 11.7.1 that even for small stack size limits, the error rate penalty when
compared to ML detection is small. Similar results hold for the soft-output extension of

the bounded stack decoder, too. With a stack size limit of just 30 nodes, the bounded stack

10° 1000 | | | | | | | |

900

-
o
o

1071

Frame Error Rate
Average Number of Nodes Visited

| | | | | | | | 0 | | | | | | | |

11 115 12 125 13 13.5 14 145 15 155 11 115 12 125 13 135 14 14.5 15 15.5
SNR (dB) SNR (dB)

Fig. 23. Comparing FER and average number of nodes visited by different soft-output
decoders, for a4 x 4 Rayleigh fading channel, with arate 1/2 turbo outer code.
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hybrid decoder approaches the performance of the list sphere decoder within 0.05 dB.
However, when the stack size limit of 10 nodes, the performance loss widens to about 2.0
dB at aframe error rate of 1072,

The computational complexity of the decoders is shown on the right of Fig. 23. Note
that the proposed changes to the original list sphere decoder reduce the number of nodes
visited by around 40% for a wide range of SNR. Of course, the actual lists generated are
the same for both updations, and hence the FERs are the same for both sphere decoders on
the left plot. As expected, the bounded stack decoders have lower average complexity than

the list sphere decoder, in return for their higher error rate.

12.5 Conclusions

When the transmitter contains a concatenation of an outer code with a linear inner
space-time code, iterative receivers achieve near-optimum performance with acceptable
complexity. To implement an iterative receiver, soft-output decoders for the effective
channel of the linear space-time code are required. We developed soft-output decoders
using the detection tree introduced in Chapter 11, after correcting the branch costs to
include a priori information. Just as MIMO detection amounts to the search for the
cheapest leaf node in the detection tree, soft-output decoding amounts to generating a list
of the cheapest leaf nodes. In this chapter, we extended the tree-pruning detection
algorithms of the previous chapter to generate lists of leaf nodes, which are used to
generated soft outputs. Simulation results presented here show that the agorithms
presented here offer alow-complexity implementation of the near-optimum receiver for a

concatenated transmitter.
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CHAPTER 13

Conclusions and Future Work

In this work, we studied the design of near-optimum transmitters and |ow-complexity
receivers for communication across a linear, quasi-static frequency-flat Rayleigh fading

channel with ¢ inputs and r outputs.

13.1 Contributionsto Transmitter Design

On the transmitter side, we restricted attention to linear space-time codes. In
Chapter 2, the channel model and the encoding process of linear space-time codes were
described. A linear space-time code is completely specified by its encoding matrix.
Designing such a code amounts to choosing its encoding matrix to optimize some
performance metric that reflects the goodness of a space-time code. The choice of
meaningful performance metrics depends on the role of the space-time code in the overall
transmitter architecture. Two such architectures were considered. In the first architecture,
the space-time code is a stand-alone code, i.e,, its inputs are uncoded, and independent
from one space-time code block to another. The second architecture contains a powerful
outer code concatenated with the space-time inner code. Because of the outer code, the
inputs to the space-time inner code are dependent from block to block. Good stand-alone

Space-time codes are not necessarily good inner codes, and vice versa.
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Chapters 3-6 addressed the design of good stand-alone space-time codes with inputs
drawn from a discrete alphabet. Two broad parameters that determine the goodness of
stand-al one space-time codes are the rate and raw diversity order. The rate of a space-time
code measures the amount of redundancy introduced by the space-time code, and the raw
diversity order measures the effectiveness of the redundancy. High rate and high raw
diversity order are both desirable. In particular, it is desirable to use linear space-time
codes with full raw diversity order ¢tr and rate greater than or equal to full rate min(z, r).

Chapter 4 contains the first original contribution of this work. Here, a random code
selection argument was used to show that full raw diversity order is easy to achieve. More
precisely, amost any linear space-time code whose encoding matrix has orthonormal
columns satisfies the rank rule for optimal raw diversity order. In particular, space-time
codes with both full rate and full raw diversity order are aplenty. However, achieving full
raw diversity does not guarantee that a space-time code achieves the minimum error rate
possible, for a given data rate. Intuitively, one can think of rate and raw diversity order as
broad or coarse performance indicators of a stand-alone space-time code. In Chapters 5
and 6, we addressed the optimization of a precise or fine performance metric, namely the
union bound on the word error rate of a space-time code. The goa was to choose an
encoding matrix with minimum union bound, given the encoding matrix dimensions, SNR
and input alphabet (hence data rate).

In Chapter 5, we developed analytica tools to find encoding matrices with
orthonormal columns that minimize the union bound. However, these tools work only for
certain matrix dimensions. In particular, they can be used to optimize the union bound

only for codes with either low rate or low raw diversity order.
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In order to obtain optimum full rate, full raw diversity space-time codes, we devel oped
approximate numerical optimization techniques in Chapter 6. The underlying idea is to
treat encoding matrix design as a constrained optimization problem, which can be solved
by adapting the gradient descent algorithm. Simulation results show that numerically
optimized encoding matrices achieve significantly lower word error rates than other
unoptimized codes with the same rate and raw diversity order. The one major drawback of
numerical optimization is its computational complexity. We heuristically developed
methods to simplify and accelerate the optimization process. In particular, for codes of
length two and rate equal to the number of transmit antennas, we presented a special
structure for encoding matrices. By restricting the search to encoding matrices with this
structure, one can quickly find near-optimum encoding matrices.

To sum up the discussion of stand-alone space-time codes, we have shown that the
optimization of the raw diversity order is trivial, and presented numerical techniques for
optimizing the union bound.

Chapter 7 begins our discussion of the concatenated transmitter architecture, by
showing that the raw diversity order and union bound do not accurately reflect the
goodness of space-time inner codes. Instead, we use information theoretic metrics to
evaluate space-time inner codes, implicitly assuming that the best possible (infinite length)
outer code is used. The strategy is to first apply information theory to obtain the
performance of the best possible code over the Rayleigh fading MIMO channel of interest.
Then, we analyze the performance of a given space-time inner code operating over the
same Rayleigh fading channel, again assuming the best outer code. Comparing the two,

we estimate how close the given space-time inner code is to the best possible code.
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In Chapter 8, information theoretic analysis is applied to study the highest possible
datarates and least possible error probabilities of communication across a Rayleigh fading
MIMO channel. The outage probability and outage capacity were introduced. By
analyzing these two metrics at high SNR, the diversity and multiplexing orders were
computed. The diversity order of a¢-input, r-output Rayleigh fading channel is known to
be #r. We proved that the multiplexing order is min(¢, ) not only for Rayleigh fading
channels, but for al fading channels whose channel matrix is full rank with probability
one. The outage capacity asymptote was shown to contain information about both the
diversity and multiplexing aspects of the channel. It is less comprehensive than the
multiplexing-diversity tradeoff curve [36], but easier to compute and analyze.

Chapter 9 repeats the information theoretic analysis for the effective channel formed
by the combination of a space-time code and the Rayleigh fading channel. The
multiplexing order of a rate R linear space-time code operating over a ¢-input, r-output
Rayleigh fading channel is a most min(¢, r, R). We aso proved that this upper bound on
multiplexing order is achieved by most practical linear space-time codes. While the rate of
a linear space-time code is an upper bound on its multiplexing order, the raw diversity
order is alower bound on the achievable diversity order in the presence of an outer code.
In particular, the S/P converter, whose raw diversity order is only r, has full achievable
diversity order ¢r.

Chapter 10 used the information theoretic analyses in the previous chapters to develop
broad design rules for space-time inner codes, in the presence of a powerful outer code.
Space-time inner codes must have arate of at least full rate of min(t, r). Otherwise, their

low rate would result in low multiplexing order, and hence a loss of a significant fraction
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of fading channel’s capacity at high SNR. On the other hand, space-time inner codes need
not have high raw diversity order, since the outer code can achieve higher diversity by
coding across multiple space-time code blocks.

Just as rate and raw diversity order serve as coarse design metrics for stand-alone
space-time codes, the multiplexing and achievable diversity orders serve as coarse design
metrics for space-time inner codes. The analysis in Chapter 10 effectively solves the
coarse design problem. The outage probability offers an upper bound on achievable error
probability, and is thus analogous to the union bound for stand-alone space-time codes.
Conseguently, it can be used as fine optimization metric to find the optimum encoding
matrix for space-time codes. We pointed out that finding the encoding matrix with
minimum outage probability for general encoding matrix dimensions is an open problem.
However, we used Telatar’s conjecture to argue that S/P converter is one space-time code
that achieves minimum outage probability. This leads us to argue in favor of a simple
concatenated architecture consisting of a power outer code, with the S/P converter asinner
code. This architecture is simple to implement and optimal when the outer code has

infinite length.

13.2 Future Work on Transmitter Design

For stand-alone space-time codes, the advent of the full-rate, full raw diversity linear
complex field (LCF) codes in [19][20][22], and our proof of the commonness of such
codes, has solved the coarse design problem. Thus, we now have linear space-time codes

which are roughly good at near-infinite SNR. But the fine design problem, of finding
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codes that actualy minimize the error rate at finite SNR, is open. Approximate
optimization can be done numerically as indicated here, but there is the need for a more
analytically rigorous and/or computationally simple solution.

At the other end of the spectrum are space-time inner codes concatenated with infinite-
length, optimally designed outer codes. Information theoretic analysis of fading channels
and space-time codes is considerably mature. The notion of a trade-off between
multiplexing and diversity gains in fading channels, introduced in [36], has opened up the
new problem of computing the trade-off curve both for general MIMO fading channels,
and for space-time codes operating over these channels.

In our opinion, the more important open problems are practical. As indicated by the
example of the S/P converter, space-time codes that are optimum with an outer code could
be grossly sub-optimum in the absence of an outer code. Actual outer codes have finite
length and lie somewhere between the extremes of ideal outer code and no outer code.
Obtaining optimum space-time inner codes and corresponding outer codes for the
practical outer code lengths is a chalenging open problem, with immense practical

significance. Some recent work on this problem can be found in [49][50].

13.3 Contributionsto Receiver Design

Given the transmitter structure, the optimum receiver is the one that estimates the
transmitted data with minimum probability of error. We discussed optimum receiver

design separately for the two transmitter structures under consideration.
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In Chapter 11, we considered the case when the transmitter uses a stand-alone linear
space-time code. In this case, the optimum receiver performs maximum likelihood (ML)
detection, which can be implemented efficiently using tree-pruning algorithms. The basic
ideas of tree-pruning algorithms are aready present in the literature [7][23][24], and have
in fact been used to develop the sphere decoder (see, for example, [30]) for MIMO
detection. Our contribution was to explicitly state the rules of al tree-pruning algorithms.
We pointed out the sphere decoder is a depth-first tree-pruning algorithm. We aso
developed a new tree-pruning algorithm, namely the hybrid decoder, whose strategy is a
mix of the depth-first and breadth-first search strategies. The hybrid decoder is more suited
to high-speed parallel implementation, but uses up more memory. Limiting the memory of
the hybrid decoder yields a new sub-optimum algorithm that flexibly trades off memory
for error rate.

When the transmitter contains an outer code concatenated with the inner linear space-
time code, iterative receivers achieve near-optimum performance with redlistic
complexity. While soft-output decoders for (typically algebraic) outer codes are well
known, soft-output decoders for the inner space-time code are still being developed. In
[33], the hard-output sphere decoder was extended to obtain the soft-output list sphere
decoder. We proposed some changes to the extension procedure. The proposed changes
reduce the computational burden, without changing the output of the list sphere decoder.
Further, we generalized the extension procedure to obtain soft-output versions of all the

tree-pruning detection algorithms that were developed for stand-al one space-time codes.
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13.4 Future Work on Receiver Design

Tree-pruning algorithms solve the detection problem and soft-output decoding
problem with moderately low computational complexity. Obtaining even more efficient
algorithms, or proving that none exist, is an open problem. Even if the simplest possible
algorithms are found, their complexity could be unacceptable for some applications. For
such applications, it is an open problem to develop receivers that minimize the error rate,
while meeting the given complexity constraints.

More interestingly, in this work, the transmitter was designed assuming optimum
decoding at the receiver. If complexity constraints prevent the use of the optimum receiver,
it is beneficial to redesign the transmitter to best suit the actual sub-optimum receiver.
Recent work developed some near-optimum transmitters [67][68][69] for the case where
the receiver employs the sub-optimum successive cancellation decoder. However, more
extensive transmitter optimization for the successive cancellation decoder and other sub-

optimum decoders is an interesting area of future research.
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APPENDIX A

Derivation of Pairwise Error Probability of a Space-Time Code

Here, we derive an expression for the pairwise error probability Pr(Z,(u')). Recall that
Fa(u') occursif u' ismorelikely than u, i.e,, if PorgY 10') > pogq(Y/u). From (22), we see
that this occurs only if and only if |[Y - HX'||; < |[Y - HX||;, where X and X' are the
transmit matrices corresponding to u and u' respectively. Note that Y = HX + N, so the
event £, (u') depends on both the Rayleigh fading channel matrix H, and the noise matrix
N. For a given channel matrix H, the probability that [[Y - HX'||; < [[Y - HX]||; can be

obtained using standard AWGN analysis techniques, giving

JHX-X)|,0
B—

Pr(£,(u’) 1 H) = O, A-1
r(Fy(u QC aNe - (A-1)

where Q(.) denotes the standard Gaussian tail function. To get the PEP, we just need to
average the above over the random Rayleigh fading channel matrix H, i.e.,
Pr(Z,(u")) = [4Pr(E,(u’) | H) p,(H)dH. (A-2)

p+H) is the probability density function of the r x ¢ Rayleigh fading matrix H, given by
pyH) = —]t'rexp(—(||H||9r2). To facilitate the computation of (A-2), we use the Chernoff
Tt

bound Q(x) < exp(-x2/2) while substituting (A-1) in (A-2). Thus, we get
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OHX-X)|,°
B—

, 1 ol
Pr(E,(u")) < ntrfﬂeXp—D I, +Hl EdH. (A-3)

In order to simplify the above expression, we first expand the squared Frobenius norm as

, 2
IHX-X)|,

2 1 , N — *
IN, + 8], = tr(5- HX - X)X - X)'H' + HH). (A-4)

AN,
Then, defining the ¢ x ¢ matrix

_p ., X-X)(X-X)0

R=1 4N, , (A-5)
] 2 r
[HX-X)], 2 , ,
(A-4) becomes ———— +|H|.,.” =tr(HRH ) = z g; Rg;, (A-6)
4N, ¥ <
1=
where g; denotes the i column of H*. Substituting (A-6) into (A-3), we get
1 r
Pr(E,u) < < [yexp(- 5 g Re) dgidg,...dg, (A-7)
'r[ .

1=1

The vectors{g;} are independent and identically distributed, hence the integral splitsup as

0 0
Pr(Z,(u) < = Of exp(—gRg)dgl - (A-8)
U 0

Further, each g; isat¢ x 1 with unit-variance, zero-mean complex Gaussian entries, and so

the integral above is a standard integral which evaluatesto [4]

_g exp(-g(Rg)dg = detT([R) : (A-9)

Substituting (A-9) and (A-5) in (A-8), we get the desired expression

(X -X) (X -X)0f
iN, O

Pr(E,w)) < det. 5, + (A-10)
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APPENDIX B

Computing the Derivative of the Union Bound

Here, we compute the derivative of one representative term in the union bound (87)
with respect to the elements m;; of the Nt x K complex matrix M. For the purposes of this
appendix alone, it will prove useful to use C/C++ indexing of rows and columns, starting
from 0 instead of 1.

Definethe ¢t x N matrix D'= mat(Md). Now, defining the ¢ x ¢ matrix

—1+ M pp* ;
P =1+ ,2DD". (B-1)

it is easy that each term in the union bound (87) is given by 1/ (det (P'))". From the chain

rule, the derivative of theterm is

r 0
r+ 1(1):) am

0o o 1
omy; Rget” (P

E - det(P"). (B-2)

We need to only differentiate det(P') with respect to each element m;; of M. We will first
obtain the derivative of each term of P with respect to m;;. In particular, we will show that
only elements along one column of P’ have non-zero derivative. From (B-1), the (%, i

element of P’ isgiven by

I N I I *
Pr=%+ 35 Z d'end'1n -

n_

(B-3)
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Note that D' = mat(Md), and hence each element of D' is some linear combination of the

9 .. = 0.Using thisfact, the first
amij J

term d'y,,, can be treated as constant while differentiating with respect to m;, giving

elements of M. Further, for complex variables m;;,

N-1
o , _NS R
am, P = 2K 2 Ly din-
J n=0 i

(B-4)

Since D' = mat(Md), d';,, isthe (I + nIN)!" term of Md (recall that indexing starts from 0).
The key observation isthat it isalinear combination of elementsfrom (I + aN)" of M. So,
the derivative above is non-zero only if the row i to which m;; belongs, isequal to/ + nN,

or/=imod N, and n = [i/N], where[.] isthe standard integer floor function. Supposei is

indeed [ + nN, then d',,” is the i element of Md. Using 61?1 m0; = 2, itiseasy to see
ij
that ’i _d')," = 2d;" in this case. Using all these things, (B-4) becomes

tj

N-1

d , _NS ,
S PR =7 > Lknd=imod MO - li/N12d; , or (B-5)
g n=0
o , _NS , *
S PR = 5 Dk 1i/N1O = mod N) & - (B-6)

i

In words, when differentiating P’ with respect to m,;, theterm §; _ ; 1,,q ) @00ve indicates

ij!
that only the elements of column (: mod N) have non-zero derivative. Along this column
of P', the element in row £ has derivative proportional to the element in the same row, but

column [i/N] of D', asindicated by theterm d';, ;  n-
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Recall from (B-2) that we are interested in det(P'). Now, since only one column

0
dmij
of P’ has a non-zero derivative, we can replace each element in that column by its
0
iy
obtain the swapped matrix P;' by replacing column (i mod N) of P’ by column [i/N] of D’

derivative, and compute the determinant in order to get 3 det(P'). More precisely, we

= mat(Md). Then,

0 , NS
o, detP) =5

i

== det(P;)d; . (190)

Substituting this back in (B-2), we have obtained the derivative of each term in the union

bound (87) with respect to m;.
As an aside, note that one also assemble the N x N matrix

1o+ NS pripy ]
Q=1Iy+ 7z D'D. (B-7)

instead of the ¢ x ¢t matrix P’ of (B-1). Clearly, det(P’) = det(Q'), since both depend only
on the singular values of D'. However, when N < ¢, Q' is a smaller matrix and its

determinant is easier to compute. In order to obtain the gradient, we are interested in

a gt o..__ - aa det(@). (B-8)
mij det' (@) det” Q)

Following the same analysis as the case, we now obtain the swapped matrix Q;' by

replacing row [i/N] of P’ by row (i mod N) of D'. Then,

0

amJ

S

7 det(Q)d (191)

which completes the necessary computation.
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APPENDIX C

The Special Constraint Set for Length-2 Rate-# Codes

We describe the steps involved in deriving the constraint A{2¢, 2¢) for codes of length
N = 2 and rate ¢. The encoding matrix M has dimension 2¢ x 2¢. Consider the break-up of

the encoding matrix into the ¢ x ¢ submatrices as follows.

(C-1)

From this point, the final structure (100) was obtained by making a couple of assumptions,

neither of which has any theoretical basis, but seemed the right thing to do.

First, we assume that each of the ¢ x ¢ submatrices is unitary. Considering that the
ultimate goal is equal spread of information in all the output symbols, this seemed a fair
assumption. Note that the L CF encoding matrix for the same dimensions aso has unitary
submatrices. Now, any 2t x 1 difference vector d can be broken up as d = [d;T dyT1,
whered; and d, are both ¢ x 1 vectors. In this notation, it is easy to see that the difference

matrix mat(Md) is given by

1

mat(Md) = 7

[M;1d; + M;9dy Mg d; + Mgodsl. (C-2)

Separating out the first submatrix M;; aone, this becomes
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mat(Md) = %ZMll[dl + Mll*MIZdZ M11E1VI21d1 + M11E1V122d2]. (C-3)

The union bound depends on the singular values of mat(Md). Now, suppose a given set
{M;;} of submatrices achieves the optimum union bound. Consider the set of matrices
{M';}, where each M';; = M;;"M;;. Note that mat(M'd) = M;; mat(Md), hence
mat(M'd) and mat(Md) have the same singular values for all d. Consequently, the
submatrices {M,;} and {M';}} have the same union bound. However, by construction, M';;
= M;; My, = |;. Thus, when the submatrices are unitary, the first one can be chosen to be

the identity without loss of optimality. Choosing My = I, (C-3) becomes
mat(Md) = %2 [dy + Mypdy Myd; + Myyd,]. (C-4)

Our second assumption is that the encoding matrix M itself is unitary. This assumption
is roughly justified because optimum matrices anyway tend to have orthonormal columns
(see Section 6.3.1). We require MM = I,,. Comparing this with the corresponding
product based on (C-1), we that M'M = I, if and only if M"{;M;5 + M 9; My, = O.

SUbSUtU“ ng Mll = It! thISImp|IeSM22 = —M21M12. SUbSUtU“ ng in (C'4), we get
mat(Md) = %2 [d; + Myody Mayq(d; - Mypdy)]. (C-5)

At this point, there are just two ¢ x ¢ unitary matrices to choose, namely M5 and My;.
We took up the case ¢t = 2 and did a grid search to maximize the coding gain, when the
symbols in d; and dy are drawn arbitrarily from a QAM difference alphabet. The search
yielded the result that M ;9 = exp(jT/ 4)I,. Generalizing to arbitrary ¢, we get M9 = exp(jTt
/ 4)1,. Substituting M;; = I,, My, = exp(in/ 4)I,, Mgy = -My; M5 - —exp(jTi/ 4)My;, and

denoting M by Q, the assumed structure (C-1) becomes (100).
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