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Abstract. The linear discriminant analysis based on the generalized singular value decompo-
sition (LDA/GSVD) has been introduced to circumvent the nonsingularity restriction inherent in
the classical LDA. The LDA/GSVD provides a framework in which a dimension reducing trans-
formation can be effectively obtained for undersampled problems. In this paper, relationships be-
tween support vector machines (SVMs) and the generalized linear discriminant analysis applied
to the support vectors are studied. Based on the GSVD, the weight vector of the hard-margin
SVM is proved to be equivalent to the dimension reducing transformation vector generated by
LDA/GSVD applied to the support vectors of the binary class. We also show that the dimension
reducing transformation vector and the weight vector of soft-margin SVMs are related when a
subset of support vectors are considered. These results can be generalized when kernelized SVMs
and the kernelized LDA/GSVD called KDA/GSVD are considered. Through these relationships,
it is shown that support vector classification is related to data reduction as well as dimension
reduction by LDA/GSVD.
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1. Introduction. Support vector machines (SVMs) [28, 29] construct an optimal separating
hyperplane that maximizes the margin (i.e. the distance between the hyperplane and the near-
est data point of each class) by mapping the input space into a high dimensional feature space.
This mapping is implicitly determined by a kernel function. Training with SVMs has crucial
advantages including the ability to find the problem formulation as a quadratic convex function
minimization that is easier to solve [3, 2, 16, 28]. SVMs have demonstated state-of-the-art per-
formance in numerous application areas.

In Fisher’s Discriminant Analysis (FDA), a linear transformation is found which maximizes
the trace of the between-class scatter matrix and minimizes the trace of the within-class scatter
matrix [6, 5]. Although LDA is conceptually simple and has been used in many application ar-
eas, it has a critical limitation: it requires the within-class scatter matrix to be nonsingular. To
overcome the nonsingularity restriction, recently, linear discriminant analysis based on the gener-
alized singular values decomposition (LDA/GSVD) has been introduced [9, 10]. The generalized
singular value decomposition (GSVD) has been studied extensively in the numerical linear alge-
bra literature [26, 19, 11], and numerical algorithms for computing the GSVD have been widely
investigated [27, 18, 4, 1]. The GSVD has been applied to a wide variety of interesting problems
including signal processing [7, 24, 22, 15], the positive definite generalized eigenvalue problem
[23], the generalized total least squares problem [25], the least squares problem with Tikhonov
regularization [8], the constrained least squares problems [7], and the generalized linear model
regression problem [17].

In this paper, a mathematical relationship between the hard-margin SVM and LDA/GSVD
applied to the support vectors is illustrated. The relationship between the ��� -norm soft-margin
SVM and LDA/GSVD on a subset of the support vectors is also presented. These results can
be generalized when kernelized SVMs and the kernelized LDA/GSVD called KDA/GSVD are
considered. Through these relationships, it is shown that support vector classification is related
to data reduction as well as dimension reduction by LDA/GSVD.

The following notations will be used in the paper. For a matrix �����	��

� , range �������������������������� for some ��� �!�#" and null( � ) = �%$&� �!�'���($)��*+" . Assume that we are given a
data set �,�'� ��

� with - classes,

�.�0/21 �43�3�3 1 �65 �7/ �8�93�3�3:�<; 5 �'� �	

�4=
where the > th column 1@? of the matrix � denotes the > th data item, the columns of submatrix ��A
belong to class B , for BC�ED�3�3�3�- . In addition, let FGA be the set of data items that belong to class
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B , �9A the number of items in class B , � A the centroid vector which is the average of all the data in
class B , and � the global centroid vector.

2. Linear and Kernel Discriminant Analysis based on the GSVD and Support Vector

Machines. The goal of linear discriminant analysis (LDA) is to find a dimension reducing trans-
formation that minimizes the scatter within each class and maximizes the scatter between classes.
The within-class scatter matrix

���
, the between-class scatter matrix

���
, and the mixture scatter

matrix
� � are defined as ��� � ;�

A
	9� �?���
�� � 1 ?�� � A � � 1 ?�� � A ��� =
��� � ;�

A
	9� �9A ��� A � �@� ��� A � �@��� =
� � � ��

A
	9� � 1 A � �@� � 1 A � �@�����
In addition, ����� �"! � ��� � � ;�

A
	9� �?#�$
%�'& 1 ?�� � A & (( and ����� �)! � ��� ��� ;�
A*	9� � A & � A � � & (( �

Defining the matrices + � �-, �8� � � �/.0� � = ����� = �C; � ��;�.0�;21 �43 �	

� = (2.1)

where .@A#�-, D = ���)� = D 1 � �43 � � 
 � ,+ � �5,76 � � ��� � � �@� = ���)� = 6 � ;+����; � �@� 1 �'� � 
 ; = (2.2)

and +
� �5, 1 � � � = 1 ( � � = �)��� = 1 � � � 1 �'� �	

� = (2.3)

we have ��� �
+ � + �� = ��� �

+ � + �� = and
� � �

+
�
+
�� �

Assume that 8 � � �	
 9 denotes the transformation that maps a vector in an : dimensional
space to a vector in an ; dimensional space. In the reduced dimensional space obtained by the
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TABLE 2.1
Generalized eigenvalues � A ’s and eigenvectors � A ’s from the GSVD. The superscript � denotes

the complement.

� A � A � A9������	
�� � A belongs to

D�
 B�
�
 1 0 � null(
���

) � null(
���

) �

�� D�
 B�
�
���� D�� � A�� * *���� A�� D � ��� A�� * null(

���
) � � null(

�2�
) �


�� �!� D�
 B�
#" 0 1 0 null(
���

) � � null(
���

)

"�� D�
 B�
 � any value any value any value null(
�2�

) � null(
�2�

)

dimension reducing transformation 8 , a scatter matrix
�

becomes 8 � � 8 . When
���

is nonsin-
gular, minimizing trace � 8 � ��� 8�� and maximizing trace � 8 � ��� 8�� is commonly approximated
by maximizing

$ � � 8,�!� ����� �)! �:� 8 � ��� 8,�&% � � 8 � ��� 8,�:� � (2.4)

It is well known that the columns of 8 that maximizes $ � � 8�� are the leading ; eigenvectors of� % �� ���
, where ; � ���('*) �

+ � ��� ���+',) � � % �� ��� �-
�- � D [6] and this provides the foundation of the
classfical LDA.

In Fisher’s discriminant analysis (FDA) which is a special case of LDA for two-class prob-
lems, when

���
is singular, the dimension reducing transformation 8 is a vector . which is given

as

.E� � % �� � � � � � ( ���
When the number of features is larger than the number of the data points ( :/� � ), the clas-

sical FDA cannot be applied since
�2�

is singular. Linear discriminant analysis with the general-
ized singular value decomposition (LDA/GSVD) [9] circumvents this nonsingularity restriction
so that it can effectively reduce dimension even when : �-� which we call undersampled for
multi-class problems, and it also provides the solution for under-sampled binary class problems
as well.

We briefly review the generalized singular decomposition (GSVD).
THEOREM 2.1 (C.C. Paige and M.A. Saunders [19]: Generalized Singular Value Decom-

position (GSVD)). Suppose two matrices with the same number of columns, 0 � ��� ;21 
(3 and
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0 � � � ; � 
(3 , are given. Then there exist orthogonal matrices � � � � ;21 
 ;21 and � � � � ; � 
 ; � ,
and a nonsingular matrix � �'� 3 
(3 such that� �� 0 �� � �5,�� � * 1 and � �� 0 �� � �5,�� � * 1 =
where

� � � ����� �
	 � * �
�
�� " 
" �" -#� � 
 � ��������� �������� �������� % � % �

and

� � � ��� * � 	 �
� �
� �� " - ( � "�� 
" �" " � 
 � ��������� �������� �������� % � % � =

"�� ���(',) ��� 0 �0 ��� � = 
 ��" � ���(',) � 0 � ��� ��� �&� ���(',) � 0 � ��� ���(',) � 0 � � � " =	 � � �@B!�#"4� � ��$ � = ���)� = � �%$ � � and

	 � �&� B!�'"#� � ��$ � = ���)� = � �%$ � �
for which

D�� � �%$ �)(�3�3�3*( � ��$ � � * =* �#� �%$ � 
�3�3�3,
 � ��$ � ��D =
and

� (A � � (A � D,+�-/.�B ��D = ����� = 
 � � �
Proof. See Paige and Saunders [19].
In the LDA/GSVD algorithm, the GSVD of the matrix �

+ � =
+ � � � is computed, where

+ �
and

+ �
are defined in Eqn. (2.1) and Eqn. (2.2), respectively. Then from the GSVD, the generalized
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singular vectors � are obtained which satisfy

� � ��� � � � �
+ � + �� � �

������ � �
	
��
	 �

* � % � % � * � % �
�
����� (2.5)

and

� � ��� � � � �
+ � + �� � � ������ * �

	
��
	 �

� � % � % � * � % �
�
����� = (2.6)

where the subscripts in � and * denote the order of identity and zero matrices, respectively,
and the order of each matrix is denoted by its subscript. From Eqn. (2.5) and Eqn. (2.6), the
generalized eigenvalues and eigenvectors obtained by the GSVD are classified as shown in Table
2.1 [20]. The LDA/GSVD takes the leading - � D generalized eigenvectors and these include all
the eigenvectors in null(

���
) � null(

���
) � and null(

���
) ��� null(

�2�
) � .

To discuss the relationship between linear and nonlinear discriminant analysis and SVMs, let
us first review the hard-margin SVM. The decision rule for binary classification in a hard margin
SVM is given by � B " � � + � � �:� with + � � � � . � � � � (2.7)

based on the following optimization problelm. The training data � 1 A =�� A � with � A � � � D = � D " forD�
 B�
 � , + � � � is obtained by solving an optimization problem called the hard-margin SVM

��� '�
	 � D� . � .
� � "�� � A
� . � 1 A*� ��� (,D = B ��D = �)��� = � � (2.8)

The dual formulation of Eqn. (2.8) is

� ���� ��
A*	9�
� A � D� ��

A 	 ? 	9��� A � ? � A � ? 1 � A 1 ?
� � "�� ��

A*	9� � A � A#�.* = � A�( * = B � D = ����� = � � (2.9)
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Then, the weight vector of the hard-margin SVMs is

. � ��
A
	9� � A � A 1 A = (2.10)

where � A , D 
 B 
 � , are solutions of Eqn. (2.9). Hence, in the expression for the weight vector
only data points that have corresponding nonzero � are involved, and these are called the support
vectors.

3. Relationship between Hard-margin Support Vector Classifier and Generalized Lin-

ear Discriminant Analysis on Support Vectors. In the rest of this paper, let us assume that the
data set has only two classes in studying the relationships between SVM and LDA/GSVD applied
to the support vectors. Dsenote the data set of support vectors as matrix � :� � /�� �93�3�3 ��� 5 � / � � � ( 5 �'� � 
 � =
where � ? denotes the > th column of the matrix � , FGA the set of column indices that belong to the
class B , � A (7D the number of columns in � A , B(� D = � , and columns of submatrices � � and � (
are support vectors which belong to classes 1 and 2, respectively. We also assume that the two
centroid vectors are linearly independent.

Now we apply the LDA/GSVD to the set of support vectors, � . Then the dimension reducing
transformation .0�'�!�@
 � will be obtained from applying the GSVD to the matrix pair �

+ � =
+ � � ,

where + � �5, � � � � � = ����� = ��� 1 � � � = ��� 1 $ � � � ( = ����� = ��� � � ( 1 �'� � 
 � (3.1)

and + � �5,76 � � � � � � �@� = 6 � ( � � ( � �@� 1 �'� ��
 ( = (3.2)

where � � and � ( are the centroid vectors and � a global centroid vector for all support vectors.
Following the notation of Theorem 2.1, we have���(',) �

+ � ��� " � 
 and ���(',) �
+ � ��� 
���� = (3.3)

where

"�� ���(',) � � + ��+
�� �	� =
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 is the number of infinite generalized singular values, and � is the number of finite nonzero
generalized singular values.

The vectors in null(
���

) � null(
���

) do not convey any discriminant information among the
classes and those in null(

�2�
) � � null(

���
) make the within class relationship more remote without

changing the trace of the between class scatter. Therefore, 
 � � leading generalized eigenvectors
that belong to null(

���
) � null(

�2�
) � or null(

���
) � � null(

�2�
) � are chosen in LDA/GSVD. We already

know the following inequality,


���� � ���+',) �
+ � � 
�- � D =

where - is the number of classes. Since we assume that the two centroid vectors are linearly
independent, we have


 ��� � ���('*) �
+ � � � - � D0�

Note that for binary class problems, the LDA/GSVD solution is the single leading generalized
singular vector.

Since ���(',) �
+ � �(�ED and 
 � � � D , one of the following two cases are possible: If 
 � * ,

the solution vector . from LDA/GSVD comes from null(
���

) � � null(
���

) � . If 
����* , then since

 � D and �'��* , the solution vector . from LDA/GSVD comes from null(

���
) � null(

���
) � . In

the following, we show that the solution vector . always belongs to null(
� �

) � null(
���

) � . Let
us denote the number of different support vectors as � . The results are shown by considering the
following two cases: �

��� Case I � : ( � and � (��
Case II � : � D or � � � � (3.4)

First, let us consider Case I: : ( � and � (�� . The rank of

+ �
is 1 since the vectors � � � � and � ( �� are linearly dependent for two class problems, dim( . � � "
	@� � � � ) = ���('*) � ��� �	� ���('*) �

+ � + �� �	�D . For the rank of

+ �
, the following theorem can be found.

LEMMA 3.1. [Rank of

+ �
on the Support Vectors] For

+ � � 3 �	
 � shown in Eqn. (3.1)

and defined on the support vectors � A , for B	� D = ����� = � which are the training vectors for which

� A��� * in the hard-margin SVM shown in Eqn. (2.9) in a binary classification problem, we have���+',) �
+ � � 
 � � ' � � � D = : � D%� � (3.5)
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Proof. If � � : , then ���(',) �
+ � �!
 � � D since the columns of

+ �
are linearly dependent.

If � ( : , ���(',) � ��� � � ���(',) �
+ � + �� � � ���(',) �

+ � � 
 : � D since all support vectors lie on the
hyperplanes, i.e.

. � � A � � ��� D0� (3.6)

Now the following result regarding rank �:�
+ � =

+ � � � � can be obtained.
LEMMA 3.2 (Relationship between Rank of

+ �
and Rank of �

+ � =
+ � � � defined on the Sup-

port Vectors). For

+ �
and

+ �
shown in Eqn. (3.1) and Eqn. (3.2), respectively, and defined for

the support vectors � A , for B!� D = ����� = � , for which the corresponding � A �� * in the hard-margin

SVM, shown in Eqn. (2.9), we have

" � ���(',) � � + ��+
�� � � � ���(',) �

+ � ��� D0� (3.7)

Proof. By Lemma 3.1,

+ �
is rank deficient. Therefore, we only need to show that appending

+ �
increses the rank by one. Suppose � � ���(��� � � "
	@� + � � , i.e., there are scalars � A for which��� � �G� �

A ��
 1 � A � �	� � ��� � � �
A ��

�
� A � �
� � ������� (3.8)

From Eqn. (3.6), we have

. � �	� � � D � �
for B�� F � and . � �
� � D � �

for B�� F ( �
In addition,

. � ��� � � D � �
and . � ����� D � �

Using the fact ��� � � � � ( � ��� � ������
 � and multiplying . � to Eqn. (3.8), we obtain � � ( 
 � ��*
which is a contraction. Therefore, ��� � � is linearly independent from the columns of

+ �
. The

same result holds for ��� � � and since rank(

+ �
) = 1, the Lemma holds.

From Lemma 3.2 and Theorem 2.1, we have


�� " � ���+',) �
+ � �!��D and � � ���(',) �

+ � � � ���(',) �
+ � � � " � D � 
 � * � (3.9)

Therefore, the solution vector . from LDA/GSVD belongs to null(
���

) � null(
���

) � since 
 �� *
in Eqn. (2.6). Accordingly, we have� � ��� � � ��� D * � % � * � % �

� �� (3.10)
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and � � ��� � � ��� * � � % � * � % �
� �� = (3.11)

where the subscripts in � and * denote the order of identity and zero matrices. From Eqn. (3.10)
and Eqn. (3.11), the generalized eigenvalues and eigenvectors obtained by GSVD in two-class
problems are classified as shown in Table 3.1. The table illustrates that the single generalized
eigenvector for binary class problems belongs to null(

���
) � null(

���
) � .

Next, let us consider the Case II, i.e. :0��D or � � � . When :0� D , the input data items are
scalars and the result is obvious. When � � � , there is only one representative support vector for
each class. Hence, the centroid vectors of two classes, � � and � ( , are the two different support
vectors among all possibly duplicated support vectors. By definition of

+ �
and

+ �
in Eqn. (2.1)

and Eqn. (2.2), respectively,

+ �
will be an : -by- � zero matrix. Again, the solution vector .

from LDA/GSVD belongs to null(
�2�

) � null(
���

) � since 
 �� * in Eqn. (2.5)-Eqn. (2.6). The
following relations can be obtained:� � ��� � � � �

+ � + �� � � � D * � % � � (3.12)

and � � ��� � � � �
+ � + �� � � � * * � % � � = (3.13)

where the subscripts in * denote the order of the zero matrix. It is shown that the solution vector
. obtained by applying LDA/GSVD to the support vectors is the only vector which belongs
to null(

���
) � null(

���
) � for both Case I and Case II. The above results are summarized in the

following theorem.
THEOREM 3.3 (Dimension Reduction by LDA/GSVD on Support Vectors of Binary Classes).

Consider only the set of support vectors � A , for B ��D = �)��� = � , for which the corresponding � A��� *in the hard-margin SVM, Eqn. (2.9), for a binary classification problem. Then, null(
���

) �
null(

���
) � = � .�" , where . is the solution vector obtained by LDA/GSVD on these support vec-

tors.

Proof. By Lemma 3.2, 
�� " � ���('*) �
+ � � � D and � � ���(',) �

+ � � � 
 � D � D � * ,
since ���+',) �

+ � � ��D . Therefore, the solution vector . obtained by LDA/GSVD is the only vector
which belongs to null(

���
) � null(

���
) � .
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TABLE 3.1
Generalized eigenvalues � A ’s and eigenvectors � A ’s from the GSVD when

���
and

���
are built

on support vectors in binary class problems for Case I, i.e. :/� D and � � �
. See Section 3 for

the notations. The superscript � denotes the complement.

� A � A � A#� � ��	
�� � A belongs to

B �,D 1 0 � null(
���

) � null(
���

) �
� 
 B 
�" 0 1 0 null(

���
) � � null(

���
)

" � D 
 B�
 � any value any value any value null(
�2�

) � null(
���

)

We illustrate a simple case of : � � and � � � . Then, ���+',) �
+ � ����D , "�� ���(',) �

+ � � �&D � � ,

�� � � D(��D , � � D � 
'�.* , and� � ��� � � � �

+ � + �� � � � D * � (3.14)

� � ��� � � � �
+ � + �� � � � * D � � (3.15)

Clearly the leading generalized eigenvector belongs to null(
� �

) � null(
���

) � .
In the following theorem, it is shown that the weight vector . from the hard-margin SVM

belongs to null(
���

) � null(
���

) � . Therefore, it provides a relationship between the hard-margin
SVM and the LDA/GSVD on the support vectors.

THEOREM 3.4 (Relationship between the Hard-margin SVM and Generalized Linear Dis-
criminant Analysis on Support Vectors). Consider the set of support vectors � A , for B � D = ���)� = � ,
for which the corresponding � A ���* in the hard-margin SVM, Eqn. (2.9), for a binary classifica-

tion problem. Then, the weight vector .E��� A � A � A � A is the single vector in null(
���

) � null(
���

) �
where

���
and

���
are the scatter matrices for the support vectors.

Proof. Consider the support vectors, � A �'���@
 � , D�
 B�
 � . Then they lie on the hyperplanes,
i.e.

. � � A � � ��� D =
where . ��� �A*	9� � A � A � A , � A � * , D 
 B 
 � , is the solution to the quadratic programming
problem of Eqn. (2.9), and

� �7� � � � � � ( � 
 � � . � � . Define a matrix � � , � � � ( 1 � � �	
 �
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whose columns � A are the support vectors and � � and � ( contain support vectors for class 1 and
class 2, respectively. Let � denote the global centroid vector for all support vectors, and � � and� ( the centroid vectors for classes 1 and 2 respectively. Then, the weight vector . satisfies the
following equations: � � . � � � � . = (3.16)

where . is the vector of 1’s and

�6�-, � D = 3�3�3 = � D� ��� �� 1 D = 3�3�3 = D� ��� ��
�

1 � ��� � 
 � �
Then, � � � � � � � � � � � and

��� �
+ � + �� = (3.17)

where

+ � � , � � � � � = �)��� = ��� 1 � � � = ��� 1 $ � � � ( = ����� = ��� 1 $ �
�
� � ( 1 � �!�	
 � . Now, we will show� � . ��� ��� � ��� � . � ��� . . Applying � to Eqn. 3.16, we obtain� � � . � � � � � � .� � � � � � � � � ( � ( � � � � �

� � � � � � � � ( � ( � � � ( � � � � � � � � � � . � (3.18)

Therefore, � � .E� � � � � � � � � � � .� � � ��� � � � � � � ( � � � � ( �� � � � � ( � � ( � � � � 
 � � (3.19)

Applying
���

to . and using

� � � . � � D � �
and � � ( . � D � � =

we obtain ��� . � � � � � � � �@� � � � � �@� � .
� � ( ��� ( � �@� � � ( � �@� � .� � � � � � ( � � � � �@� 
 � � � � � � ( � � ( � �@� 
 �
� � � � � ( ��� ( � � � � 
 � �

(3.20)
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FIG. 3.1. Classification results of HARD data set (left) and HARD-SVs data set that consists

of only the support vectors of HARD data set (right). The dotted line presents the boundaries,

i.e. . � � � � � � D . The solid line presents a separation line of the hard-margin SVM and the

dashed line presents that of MLDC/GSVD. In the figure shown on the right side, the solid line is

(not shown) identical to the dashed line.

Since
� � . � � ��� � ��� � . � ��� . � � � � � ( � � ( � � � ��
 � and � � �� � ( , ��� . �.* and

�2� . �� * . The
weight vector . of the hard-margin SVM belongs to null(

���
) � null(

���
) � . By Theorem 3.3, the

weight vector . of the hard-margin SVM is equivalent to the dimension reducing transformation
vector generated by LDA/GSVD applied to the support vectors. This relationship holds for � 3 . ,
where � �� * is a scale factor.

In the following Section, a relationship between the ��� -norm soft-margin SVM and LDA/GSVD
applied to a subset of the support vectors is presented.

4. Relationship between the �	� -norm Soft-margin SVM and Generalized Linear Dis-

criminant Analysis on a Subset of Support Vectors. In the primal formulation of the ��� -norm
soft-margin SVM [28, 29], the margin is maximized and the training error is minimized simulta-
neously by solving the following optimization problem:

� � '�
	 � � 	 � D� . � . ��� �� A
	9� � A
� � "�� � A � . � 1 A*� ��� (�D � � A = � A ( * = B ��D = ����� = : = (4.1)
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where 1 A represents an input vector, � A9� � D according to whether 1 A is in the positive or negative
class, : is the size of the training data, and � is a parameter that controls the trade-off between
margin and classification error represented by slack variables

� A ’s.
The corresponding dual quadratic programming problem can be written as

� ���� � ��
A
	9�
� A � D� ��

A 	 ? 	9� � A � ? � A � ? 1 � A 1 ? =
� � "�� ��

A
	9�
� A � A#�.* = *�
 � A�
 � = B � D = �)��� = � =
(4.2)

where � A are the solutions of the dual formulation. This formulation shows that the influence of
a single training example is limited by � . Then, the decision rule is given by � B " � �!+ � � �:� with+ � � ����. � ��� � = (4.3)

where .E� � �A
	9� � A � A 1 , � is chosen so that � A + � 1 A ����D for all B with *�� � A�� � . According to
the Karush-Kuhn-Tucker (KKT) conditions, optimal solutions � and � . = � = � � satisfy

� A/, � A � . � 1 A � � � � D � � A 1 � * and
� A � � A � � � � * = B �,D = ���)� = : � (4.4)

These conditions can be rewritten as�
�
�
��
�
�
�

� Case 1: � A + � 1 A��)(,D = B + � A#�.*
Case 2: � A + � 1 A�� � D = B + * � � A�� �
Case 3: � A + � 1 A�� 
,D = B + � A#� � � (4.5)

The second and third cases occur when
� A<� * and

� A � * respectively. The slack variable can
have a non-zero value only when � A � � . If � A ��* (Case 1), then 1 A is not a support vector. If*�� � A�� � (Case 2), then 1 A is the support vector with

� A9� * . If � A#� � (Case 3), then 1 A is the
support vector with

� A�� * .
The following theorem shows that the solution . of soft-margin SVMs is equivalent to the

dimension reducing transformation vector generated by LDA based on the generalized singular
value decomposition.

THEOREM 4.1 (Relationship between � � -norm Soft-margin SVM and Generalized Linear
Discriminant Analysis on a Subset of Support Vectors). Consider a subset of support vectors � A ,
for B ��D = ����� = � , for which * � � A�� � in the �	� -norm soft-margin SVM, Eqn. (4.2), for a binary
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classification problem. The weight vector . � � A � A � A � A belongs to null(
���

) � null(
�2�

) � where���
and

���
are scatter matrices defined for the subset of the support vectors.

Proof. Since all of the support vectors � A with *�� � A�� � lie on the boundaries, they satisfy
. � � A�� � � � D and with � A �� * we have . � � �A
	9� � A � A � A . Also � � A " , D 
 B 
 � and*�� � A�� � , are the solution to the QP problem Eqn. (4.2). Therefore, the arguments used in the
proof of Theorem 3.3 hold for this subset of support vectors.

Nonlinear extension of LDA/GSVD using kernel functions was also developed in [21]. The
kernelized discriminant analysis based on the generalized singular value decomposition (KDA/GSVD)
can reduce the data dimension significantly allowing extraction of nonlinear features regardless
of the nonsingularity of the scatter matrix in either the input space or feature space. Consider a
nonlinear feature mapping

�
that maps the input data to a feature space where the mapped data

may be linearly separable. The superscript
�

denotes the corresponding vector or matrix com-
puted in the feature space. The between-class scatter matrix and within-class scatter matrix in the
feature space are defined as���� �

+
�� �
+
�� � � and

� �� �
+
�� �
+
�� � � =

respectively, where+
�� �5, � � � �:� � � � � = ���)� = � � ��� 1 � � � � � = � � ��� 1 $ � � � � �( = ����� = � � ��� � � � �( 1

and +
�� �-,76 � � ��� � � � � � � = 6 � ( � � �( � � � � 1 =� � � and � �( are the centroid vectors for each class and � � is a global centroid vector for the subset

of support vectors in the feature space.
Let � represent a vector in . � � "
	@� � ��� �:�(� . � � " 	@� � � � 1 � �#3�3�3 � � 1 � � � , i.e., � � � �A � A � � 1 A �for some � A , B � D = 3�3�3 = � . Then,

�
+
�� ����� ��� 0 �� ������ and �

+
�� ����� � � 0 �� ������ =

where �� �5, � � = ����� = � � 1 � ,

� 0 �� � A ? � 6 � ?� �� �$
�� 	 � 1 � � = 1 A � � 6 � ?� ��
3 	9� 	 � 1 � 3 = 1 A�� = for D�
 B�
 � = D�
 >�
 -

� 0 �� � A ? � 	 � 1 � A = 1 ? � � D��
 �� ��
�� 	 � 1 � � = 1 A � = for D�
 B�
 � = D�
 >�
 � =
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The � ? and ��
 are the number of data points in the class > and + respectively. By computing
the GSVD of the matrix pair � 0 �� = 0 �� � , we can obtain the generalized singular vectors 8 � ���� 
�� ; % ��� . Then the reduced representation of the a data point � can be computed by

���	� � 8 � � �
���� 	 � 1 � � = � �...
	 � 1 � � = � �

� ��� �
The reduced representation of all the training data points can be computed by

� � � 8 � � � 	 ��� � = ��� =
where

	 � � � = ��� is a ��� � kernel matrix. In particular, if � and � are column vectors in �	� , then
	 � � � = ����� 	 ��� � = � � is a row vector in �!� , and

	 � � = � is an �	�4� matrix.
Now, we discuss the relationship between the nonlinear ��� -norm soft-margin SVM and ker-

nelized discriminant analysis based on the generalized singular value decomposition (KDA/GSVD)
[21]. Consider a nonlinear feature mapping

� � � � that maps the input data to a feature space where
the mapped data may have a linearly separable structure. Without knowing the feature mapping
� � � � or the feature space explicitly, we can work on the feature space through a kernel function,
as long as the problem formulation depends only on the inner products between data points in the
feature space and not on the data points themselves. The dual formulation with a kernel function,
i.e.

	 � 1 � A = 1 ? � � � � 1 A ��� � � 1 ? � = (4.6)

is

� ���� ��
A
	9�
� A � D� ��

A 	 ? 	9� � A � ? � A � ? 	 � 1 � A = 1 ? �
� � "�� ��

A
	9�
� A � A#�.* = *�
 � A�
 � = B � D = �)��� = � �
(4.7)

Then the decision rule is given by � B " � � + � � � � with+ � � � � ��
A
	9�
� A � A 	 � 1 � A = � � � � = (4.8)

where
�

is chosen so that � A + � 1 A � � D for all B with *�� � A � � . The Karush-Kuhn-Tucker
(KKT) conditions in Eqn. (4.5) can be applied. Then, the relationship between the nonlinear
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�C� -norm soft-margin SVM and kernelized discriminant analysis on a subset of support vectors
follows.

THEOREM 4.2 (Relationship between the Nonlinear ��� -norm Soft-margin SVM and Ker-
nelized Discriminant Analysis on Subset of Support Vectors). Consider the subset of support

vectors � A , for B	� D = ����� = � , for which * � � A � � in the nonlinear �	� -norm soft-margin SVM,

Eqn. (4.7), for a binary classification problem. The weight vector �. � � A � A � A � � � A � of the non-

linear �C� -norm soft-margin SVM, where
� � 3 � is a nonlinear feature mapping, belongs to null(

� ��
)

� null(
� ��

) � where
� ��

and
� ��

are the scatter matrices for the subset of support vectors in the

feature space.

Proof. Consider the subset of support vectors for which * � � A � � . Note that all � data
points 1 � ��� lie on the boundary, i.e. �. � � � � � � � � � D where �. � � �A
	9� � A � A � � � A � and a
nonlinear feature mapping

� � 3 � that maps the input data to a feature space. The � � A " , B � D = ���)� = �and * � � A � � , are the solution to the QP problem Eqn. (4.7). The same procedure as that
in the proof of Theorem 4.1 is applied considering only the subset of support vectors that satisfy* � � A � � in the feature space. Since

� �� �. � � � �� � � �� ���. � � ��
�. � � � � � ( � � �( � � � � � 
 � and� � � �� � �( ,

� ��
�. � * and

� ��
�. �� * . The weight vector �. of the nonlinear � � -norm soft-margin

SVM belongs to null(
� �� ) � null(

� �� ) � .
5. Results and Discussion. To illustrate the relationships shown in this paper, a small arti-

ficial classification problem is used. The perfectly separable data set (HARD) consists of eleven
two-dimensional data points

�.� � � � � � � � � � � � �

� � � D � � � � � � � � �'� ( 
 � �
for which the class index vector � is

�6�0/ � D � D � D � D � D D D D D D D 5 � �'� � � 
 � �
With the hard-margin SVM, it can be found that the support vectors are the 5th, 6th, and 11th

data points. The HARD-SVs data set consists of the support vectors and the corresponding class
index. A SOFT data set is also prepared by adding a data point � � = � � to the positive class of the
HARD data set, which now becomes a non-linearly separable classification problem. Using the�C� -norm soft-margin SVM, the support vectors are found to be the 1st, 2nd, 4th, 6th, and 12th
data points when � � D�* � * . Among those support vectors, the 1st, 2nd, 4th and 6th data points
lie on the boundary, i.e. . � � � � ��� D where . � � �A*	9� � A � A 1 A , * � � A�� � . These data points
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FIG. 4.1. Classification results of SOFT data set (left) and SOFT-SVs data set that contains

the subset of support vectors that satisfy * � � � � (right). The dotted line presents the

boundaries, i.e. . � � � � � � D . The regularization parameter � is set to 10.0. The solid line

presents a separation line of the � � -norm soft-margin SVM and the dashed line presents that of

MLDC/GSVD. In the figure shown on the right side, the solid line is (not shown) identical to the

dashed line.

constitute SOFT-SVs data set that contains the subset of support vectors that satisfy * � � � � .
For the 12th data point, � � ( � � .

The above results show the relationships of the weight vector from SVMs and the LDA/GSVD
solution. To further visualize the separating hyperplane obtained by the LDA/GSVD, the bias
term

�
also needs to be determined. For determining

�
, we used the marginal linear discriminant

classifier based on the GSVD, called MLDC/GSVD [14]. In MLDC/GSVD, a negative class is
defined as a class that has smaller mean value in the projected space between two classes, i.e.� � % � � � $ . The centroid vectors of the training set in the reduced dimensional space are computed
by

� � % � D� % �
A ��
�� . � 1 A = � � $ � D� $ �

A �$
�� . � 1 A =
where F % and F $ are the sets of the indices of the data set � that belong to the negative class
and positive class, and � % and � $ the number of data items in the negative class and the positive
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class, respectively. Then, the parameter
�

is determined from
� � � D� � � ���A ��
 � � . � 1 A � � � � 'A �$
�� � . � 1 A � � � (5.1)

In summary, a classifier to discriminate two classes is obtained by � B "'� � . � � � � � , where .
comes from LDA/GSVD and

�
from Eqn. (5.1). When the projected points of two classes are

overlapped such that

� ���A �$
 � � . � 1 A �-� � � 'A ��
 � � . � 1 A � =
� � � . � � is used.

Fig. 3.1 shows the relationship between the hard-margin SVM and the LDA/GSVD applied
on the support vectors. Fig. 4.1 visualizes a relationship between ��� -norm soft-margin SVM and
MLDC/GSVD on the subset of support vectors that satisfy *�� � � � .

For nonlinear classification by a kernel function, a marginal kernelized discriminant classifier
based on the generalized singular value decomposition (MKDC/GSVD) is used [12]. A threshold
value of the kernelized discriminant is

��� � � D� � � � �A �$
 � � 	 � 1 � A = ��� $ � � � ��� 'A ��
 � � 	 � 1 � A = ��� $ � �:� =
where

	 � 1 � � = � � is a D � : kernel vector, $ � is the nonlinear dimension reducing transforma-
tion vector obtained by the kernel discriminant analysis based on the generalized singular value
decomposition (KDA/GSVD) [21]. The negative class has smaller mean value in the projected
space between the two classes. Then, the class of a new test point � can be assigned by+ � � � � � 	 � � � = ��� $ � � � � � (5.2)

Notice that there is no condition � A�� A � * in the decision function of MKDA/GSVD. Even
though the results presented in Theorem 4.2 hold, the decision boundary ( + � � � �8� * ) may not
match with the decision boundary ( + � � ���.* ) of the nonlinear ��� -norm soft-margin SVM.

Fig. 4.2 visualizes the relationship between the nonlinear ��� -norm soft-margin SVM and
MKDC/GSVD on the support vectors that satisfy � � � � � � � . The tolerance for support
vectors � was set to ��� D�* %
	 . The radial basis function (RBF) kernel

	 � 1 � A = 1 ? ��� ! ��� � ��
 & 1 A �1 ? & ( � was used. The solid contour that presents a decision boundary of the nonlinear ��� -norm
soft-margin SVM approximately matches the dashed contour from MKDC/GSVD. Since the
separating hyperplane + � � �2��� �A
	9� � A � A 	 � 1 � A = � � � �

is affected by the data points with the
condition � A!� � as well as those with * � � A � � , the same separating hyperplanes may not
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be produced. In Fig. 4.2 and Fig. 4.3, different radial basis function (RBF) kernel parameters
and the regularization parameters were tested. It can be recognized that the decision boundary
( + � � � ��� * ) may not match with the decision boundary ( + � � � � * ) of the nonlinear ��� -norm soft-
margin SVM in the bottom right graph of Fig. 4.3. However, the decision boundaries ( + � � � ���.* )
that were shown in Figs. 4.2 and 4.3 are very similar to ( + � � ��� * ) or reasonably close when the
subset of support vectors are used.

6. Conclusions and Discussion. We have shown the mathematical relationship that the pa-
rameter � , which determines the separating hyperplane in the hard margin support vector classi-
fier, is the same as the dimension reducing transformation � obtained when the generalized linear
discriminant analysis, based on the generalized singular value decomposition (LDA/GSVD), is
applied to the support vectors. In addition, we have also shown that the parameter � from the soft
margin �	� norm support vector classifier is the same as the dimension reducing transformation �

obtained when the LDA/GSVD is applied to a certain subset of the support vectors. These results
can also be generalized when a kernel function is introduced into the SVM and the LDA/GSVD
formulations, which allows the methods to be applied to nonlinear problems. By extending the
LDA/GSVD to compute the parameter

�
that provides the separating hyperplane . � � � with � ,

the results provide an interesting relationship between the Support Vector Classification methods
and Linear Discriminant Analysis, which is a dimension reduction method.

If we can predict the support vectors in the hard margin SVM or the subset of the of support
vectors with * � � � � , the weight vector . of the support vector machines can be estimated
by LDA/GSVD. The pseudo support vectors obtained by boundary data point hunting algorithms
presented in [13] may produce a dimension reducing transformation vector which is similar to the
weight vector of the �	� -norm soft-margin SVM. It is possible to interpret a classification problem
as a problem to search a subset of data points that can yield an accurate decision boundary, i.e.
a data reduction problem. This study may provide new insights regarding the generalized LDA
and provide a new direction in designing a classifier and data reduction method based on the
generalized LDA.
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FIG. 4.2. Classification results of SOFT data set (left side) and SOFT-SVs data set that

contains the subset of support vectors that satisfy *�� � � � (right side). The solid contour

presents a decision boundary of the nonlinear ��� -norm soft-margin SVM and the dashed contour

presents that of MKDC/GSVD. The dotted line presents the boundaries, i.e. � �A
	9� � A � A 	 � 1 � A = � � �� � � D . The radial basis function (RBF) kernel parameter and the regularization parameter

are 
 � * � � and � � D�* � * for upper figures and 
 � * � D and � � D�* � * for lower figures,

respectively.
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FIG. 4.3. Classification results of SOFT data set (left side) and SOFT-SVs data set that

contains the subset of support vectors that satisfy *�� � � � (right side). The solid contour

presents a decision boundary of the nonlinear ��� -norm soft-margin SVM and the dashed contour

presents that of MKDC/GSVD. The dotted line presents the boundaries, i.e. � �A
	9� � A � A 	 � 1 � A = � � �� � � D . The radial basis function (RBF) kernel parameter and the regularization parameter

are 
 � * � * D and � � � * � * for upper figures and 
 �0* � * D and � � � * � * for lower figures,

respectively.


