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SUMMARY

Seismic fragility models depict the structural failure probability under earthquakes and

play an essential role in planning mitigation strategies for, and prioritizing emergency

response after, a natural hazard. This dissertation concentrates on developing a new

generation of seismic fragility models for select concrete box-girder bridges in California

in terms of advanced numerical bridge models, comprehensive bridge component capacity

models, and robust seismic risk analysis methodologies. The dissertation first introduces

emerging modeling techniques that can improve the fidelity of numerical models. Most

importantly, an abutment backwall fracture model is proposed to eliminate an enormous

error due to excessive lateral supports from abutment foundations in conventional

abutment models. In the aspect of capacity models, seven damage states for columns are

established based on a newly developed column dataset with 198 laboratory tests. Next,

appropriate geometrical and material uncertainties are identified and applied in the finite

element bridge models. Furthermore, to ensure that the 352 virtual bridge realizations

meet the design criteria in California, three sampling techniques are proposed to correlate

different uncertainties. After acquiring seismic response demands of bridge components,

several methods of establishing a probabilistic seismic demand model (PSDM), relating

structural seismic demand and ground motion intensity measurement, are examined. A

new method called modified multiple adaptive regression splines (M-MARS) is proposed

to construct the PSDM. Following is the development of four-level fragility models, from

low-level component fragilities to high-level system fragilities. Ultimately, conclusions

are made based on the research findings and comparisons of results through a developed

bridge grouping method.

xxxi



CHAPTER 1

INTRODUCTION

1.1 Problem Description

Highway bridges play a crucial role in the transportation systems, yet past earthquakes

have demonstrated their vulnerability (Caltrans, 1994; Jibson and Harp, 2011).

Earthquake damage to highway bridges could cause significant disruption to the

transportation network, delay emergency response, and finally lead to casualties and

economic losses to communities. Therefore, understanding the seismic behavior of

highway bridges is valuable for pre-earthquake planning and post-earthquake responses.

Fragility analysis provides an approach for characterizing the seismic behavior of

highway bridges. A seismic fragility curve quantitatively depicts the vulnerability of

bridges with a conditional probabilistic measurement, which describes the probability that

the demand of a structural component or structural system exceeds a given capacity limit

state when subjected to a range of potential seismic events with a specified measure of

intensity (such as pseudo-spectral acceleration at 1.0 second, Sa1).

It is well recognized that California is a state exposed to high seismic risk by historical

earthquakes. To mitigate potential impacts, the California Department of Transportation

(Caltrans) has deployed the ShakeCast platform (Lin and Wald, 2008), developed by the

United States Geological Survey (USGS), to estimate earthquake damage to highway

bridges in California. The ShakeCast platform combines capabilities of ShakeMap – a

map showing the severity of a ground-shaking broadcast in nearly real-time after an

earthquake – with pre-established fragility models for each bridge in California inventory

to provide post-earthquake situational awareness of damage to the transportation network

and valuable guidance for prioritizing emergency response and inspection. It is also used
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as a planning tool to examine and mitigate the impacts of scenario earthquakes.

The operation of the ShakeCast platform posts the need for proper fragility models of

various bridge systems. The currently deployed fragility models in the ShakeCast platform

are HAZUS-based models developed in the 1990s (FEMA, 2003). By necessity, these early

models are too broad and simplified to achieve the full potential for Caltrans application

in terms of the following aspects. (1) The estimation of bridge seismic performance is

based on simplified two-dimensional analysis and compared to a limited set of damage

observations. (2) The bridge taxonomy is based on the limited data fields available in the

National Bridge Inventory (NBI) and considers only limited bridge parameters. (3) The

damage definitions were broadly classified as four bridge-system-level states, from minor

to complete, that can neither adequately account for Caltrans’ post-earthquake inspection

and repair strategies nor be readily tied to bridge downtime and repair cost estimates. (4)

This early framework is not well aligned with Caltrans seismic design philosophy or the

California bridge inventory.

1.2 Research Objectives and Scope

This research seeks to add to the existing body of knowledge of bridge seismic fragility

analysis. The intention is to improve upon the HAZUS fragility models for the ShakeCast

application. Specifically, it broadly outlines procedures being adopted for the development

of ’Generation-2 Fragility (g2F)’ models and illustrates the methodology for a select set of

modern box-girder concrete bridge classes. To achieve this goal, this study centers on

improving modeling fidelity in terms of demand model and bridge uncertainty sampling,

refining damage state definitions, advancing the regression methodologies for highly

nonlinear seismic demand data, and establishing multiple-stage fragility models.

This dissertation summarizes research advances in the following areas:

• Applied emerging numerical modeling techniques to capture the seismic response of

bridge columns with different failure modes, including calibration of the numerical models
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against laboratory tests;

• Developed an improved abutment modeling scheme and incorporated new backwall-

connection models to account for backwall fracture mechanism;

• Compiled a literature-based dataset summarizing the performance of 198 laboratory

column tests, including systematic characterization of specimen detailing, testing

parameters, and damage states as a function of load-displacement response. These column

designs were further grouped for different design eras and failure modes to support the

development of a family of capacity models;

• Developed an extensive analytically based column performance data set using the

validated column models for the same design era, and failure mode groupings noted

above. These analytical results are used to extend the literature-based experimental

findings, specifically for: 1) California bridge-column designs, 2) high damage state

performance, and 3) consideration of the effects of bent configuration and boundary

conditions;

• Facilitated Caltrans development of a new system of column capacity limit states

involving eight states (including ‘no observable damage’) for each of the design eras and

failure modes noted above. These models are based on combined findings from the

experimental and analytical data sets noted above;

• Facilitated Caltrans development of comparable eight-state capacity models for other

bridge components including abutment backwalls and shear keys and column keys;

• Developed and implemented several sampling constraints for generating realistic

virtual bridge realizations for demand analysis which reflect both bridge design policies

and observed California bridge inventory trends;

• Generated and completed three-dimension nonlinear finite-element analyses for

models of several Caltrans bridge classes, including capture of the seismic response of

individual bridge components;

• Adapted advanced statistical regression techniques to model probabilistic seismic
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demand models (PSDMs) for highly nonlinear seismic demand data;

• Generated internally-consistent sets of fragility curves for components, component

groups, bridge regions, and the overall bridge system. This included defining unique

bridge-system fragility curves conditioned on different component subgroups;

Although this study is primarily centered on modern box-girder bridges with ductile

seismic design details, it also considers some numerical modeling techniques and capacity

models applicable to bridges with pre-ductile design detailing.

1.3 Dissertation Outline

The remaining content of the dissertation is organized into the following chapters:

• Chapter 2 is an overview of existing literature regarding bridge seismic fragility

models, including the current state of practice and research studies on demand modeling

of bridge system(s), damage state system, development of probabilistic seismic demand

models (PSDM), as well as the development of bridge fragility.

• Chapter 3 presents the demand modeling methodologies for multiple

components/objects in the bridge system. Specifically, modeling procedures for columns

with flexural or shear failure modes and several abutment components are discussed.

Simulation results are compared against the experimental tests.

• Chapter 4 details the development of column capacity models. After first describing

the work in compiling the literature-based experimental dataset, the column bent

redundancy effect is identified and included in the column capacity model. In addition,

this chapter briefly discusses capacity models for other bridge components.

• Chapter 5 focuses on sampling procedures for bridge component details and

mixtures needed to create virtual bridge realizations which reflect authentic bridge design

in California. Of particular note, this chapter identifies realistic design constraints on

random sampling procedures – such as the specification of column-foundation designs to

be compatible with column-hinge capacities – and ultimately proposes a modified
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sampling procedure to account for such constraints.

• Chapter 6 outlines the statistical framework adopted for the development of

fragility models starting from a Probabilistic Seismic Demand Model (PSDM) coupled

with a Component Capacity Limit State (CCLS) model. This chapter outlines alternative

regression methods and adopts a hybrid strategy that is well suited to the handling of

highly nonlinear seismic demand data. This chapter also describes roll-up procedures

adopted for the development of component-group or system-level fragility models from

the base component models and outlines an innovative method to group bridges based on

system-level models.

• Chapter 7 summarizes the research and draws conclusions. Anticipated impacts of

the work and suggestions for future research are offered in this chapter as well.
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CHAPTER 2

LITERATURE REVIEW

Since 2008, the California Department of Transportation (Caltrans) has used the

ShakeCast (Lin and Wald, 2008) alerting system to provide early situational awareness to

emergency managers. ShakeCast uses a combination of ground-shaking maps – created in

nearly real-time by the United States Geological Survey (USGS), coupled with

pre-calculated bridge fragility models – to estimate the bridge damage rapidly. This

research outlines methods applicable to the development of fragility models for concrete

bridge types representing roughly 75% of California’s bridge inventory and demonstrates

these methods for a subset of concrete bridge classes. This chapter first reviews the

general framework for fragility modeling, then provides a more detailed look at existing

practices for the modeling and capacity definitions of two critical bridge components,

columns, and abutments. Subsequent chapters detail advances in modeling these

components better to support overall bridge seismic risk evaluation for California bridges.

2.1 Framework of Seismic Fragility Analysis

A seismic fragility model is specified under a seismic ground motion intensity. As

represented in Equation 2.1, a fragility model depicts the probability of a structure

reaching a damage state (DS) given an hazard intensity parameter, or Intensity

Measurement (IM).

Fragility = P (DS|IM). (2.1)

Expert opinion, empirical, and analytical analysis are three widely-used methods to

develop fragility curves. Expert opinion fragility curves are built using an estimation of its

percentiles provided by experts, which is highly subjective and primarily relies on the
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seismic experience of experts (ATC, 1985). Empirical models are developed based on the

damage level of past hazard events, offering an expected value to a database of structure

damage observations. Limitations of the empirical method include the scarcity of detailed

damage data along with the limited magnitude range and geographic regions where

damaging earthquake motions have been recorded (Basöz et al., 1999a; Basöz and

Kiremidjian, 1999b; Yamazaki et al., 1999; Shinozuka et al., 2000a).

Due to the limitations of the expert opinion and the empirical methods, analytical

fragility analysis is frequently adopted. Analytical fragility analysis is conducted with

numerical simulations accounting for uncertainties embedded in design parameters, such

as bridge geometry, materials properties, and ground motions. The fragility model in this

method represents the probability of conditional demand (D|IM ) exceeding capacity (C)

corresponding to a specific damage state:

Fragility = P (D ≥ C|IM). (2.2)

If the capacity is expressed as a cumulative probability function FC(·) and a structural

demand given an intensity measurement is assumed to have a probability density function

fD|IM(·), the above probability in can be written in a convolutional form:

P (D ≥ C|IM) =

∫ ∞
−∞

FC(x)fD|IM(x)dx (2.3)

Based on different methods of acquiring seismic demand values, analytical fragility

analysis is further categorized as elastic spectral method (Hwang et al., 2000), nonlinear

static analysis (or capacity spectrum method) (Dutta and Mander, 1998), and Nonlinear

Time History Analysis (NLTHA). Compared to the other two, NLTHA has been identified

as a more reliable method (Shinozuka et al., 2000b) in terms of prediction the structural

seismic demands.

The conditional probability distribution of seismic demand in Equation 2.2 is
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established by Probabilistic Seismic Demand Model (PSDM) through analysis of bridge

classes subjected to different ground motion intensities. Based on the way of selecting

ground motions, multiple methods for establishing PSDM using NLTHA were proposed.

Formulated by Vamvatsikos and Cornell (2002), Incremental Dynamic Analysis (IDA) is a

method that involves scaling each ground motion in a suite until it causes

structure-collapse. The scaling approach raises concerns about unrealistic ground motion

frequencies that might not be representative of the seismic hazard of the site.

Multiple-Stripe Analysis (MSA) is then proposed in the work by Jalayer (2003), and

further discussed by Baker (2015), to overcome the scaling issue in IDA. Unlike IDA that

only one suite of ground motion is scaling to all IM, MSA scales unique suite of ground

motions for each targeting IM. While many researchers used this method to study

structural fragility, this method requires a sufficient number of ground motions in a suite

to get a reliable estimation of failure probability. Moreover, both of IDA and MSA predict

failure probability at some specific IM, and cannot directly establish a continuous fragility

model.

Therefore, this research uses the cloud approach to establish PSDM due to its relatively

high accuracy and cost-efficiency compared to the other methods. Cloud approach conducts

NLTHA in a suite of ground motions which possesses nearly continuous IM, and then

generates the conditional demand probability distribution by regression analysis. By means

of regression, the continuity of the data is taken into account, thus minimizing the effect of

possible outliers.

Figure 2.1 demonstrates the basic procedure for developing fragility models and

implementation of these models into the ShakeCast platform. The first step is establishing

a proper ground motion suite for California earthquakes. The list of ground motions used

in this project was assembled by Caltrans using the NGA-2 database (see Appendix B).

Next, three-dimensional non-linear finite-element models for different Representative

Bridge System (RBS) are built within the research-grade finite element simulation
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Figure 2.1: Procedure for developing fragility models using the cloud method.

platform Open System for Earthquake Engineering Simulation (OpenSees) (McKenna

et al., 2000). NLTHA are carried out to obtain the maximum/average responses of

multiple pre-determined Engineering Demand Parameter (EDP).

Component capacity models establish the relationship between component damage

and one or more EDP’s. To develop such models, experimental results related to bridge

component capacities are collected and organized to create limit state thresholds for all

bridge components and corresponding damage definitions. Specifically, this research

compiles a dataset for laboratory column test specimens based on an extensive literature

review. The dataset summarizes specimen details and damage state values. To

complement the limited data for the high damage states, calibrated finite element models

are established to analyze the column till collapse, accounting for the effect of column

bent. The capacity models are ultimately developed considering different failure modes

and column bent effect.

A combination of PSDM and capacity models generates fragility models for different

components. A roll-up procedure is then applied to develop component-group and system
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fragility models.

In application, these fragility models will be assigned to each bridge in California

within the ShakeCast platform. Combined with the site-specific ground-motion hazard

determined by the USGS, the seismic damage risk for highway bridges can be estimated

for either individual events or on a uniform hazard basis.

2.2 Seismic Analysis of Bridge Components

The establishment of a demand model is critical, and the most computationally complex

step in fragility modeling. Among all the bridge components, the internal supports and

abutments are pivotal in the demand model due to their high nonlinearity and seismic

vulnerability.

2.2.1 Column Modeling

In modern ductile design, bridge design policies have evolved to ensure the columns are

flexural critical in most cases. But back to early design eras, bridge columns were usually

lightly confined and thus tended to have a shear failure or flexural-shear failure during

earthquake loading. As depicted in Figure 2.2, a column is defined as flexural critical

if the shear force is always smaller than its shear capacity, whereas the other two types

of columns would touch the shear capacity line during the increase of shear force. The

difference between flexural-shear and shear critical columns is that a flexural-shear column

triggers shear failure after its yield displacement (Ghannoum and Moehle, 2012).

Various models for shear capacity and modeling of shear columns are introduced in

the literature (Umehara, 1983; Priestley et al., 1994, 1996; Sezen, 2002; Elwood, 2002;

Giannini et al., 2008; Ghannoum and Moehle, 2012; Jeon et al., 2015) and design codes

(Elwood et al., 2007; Caltrans, 2015d, 2018; AASHTO, 2010; ACI, 2014). The easiest

approach to consider a shear behavior is using the Section Aggregator in OpenSees to

couple a shear behavior into a typical fiber section (Giannini et al., 2008). However, in
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Figure 2.2: Definition of flexural, flexural-shear, and shear columns.

this method, the shear behavior is only considered at the sectional level, and it is difficult

to develop the relationship between shear stress and shear deformation. Other approaches

focused on developing a relationship of shear force and shear displacement. Shear failure

can be captured using a “zero-length” spring (or a shear spring). There are a few methods

available to define a trigger condition of shear failure. Elwood (2002) proposed a shear

spring with a shear limit curve. Shear degradation is triggered when the demand value

reaches the shear capacity limit curve Vu, as shown in Figure 2.2, which was defined to

happen at a drift ratio of 1%. In addition, the axial limit curve can also be implemented to

consider the axial failure after the shear failure occurs using a shear-friction model so that

users can model the column from the initial state to the collapsed state. Ghannoum and

Moehle (2012) proposed a trigger condition relevant to a rotation angle in the plastic hinge

length.

Among these methods, defining a zero-length shear spring is the most straightforward

and thus has been widely used. The most important step for defining a shear spring is to

find the shear capacity for a column. There are many existing shear capacity models, but

most are used in building columns. Due to different ranges of axial load ratios between

building columns and bridge columns, three shear capacity models applicable to bridge

columns are introduced in the following.
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Model proposed by Priestley et al. (1994)

Priestley proposed a shear capacity model based on experimental tests of bridge piers. He

proposed a model with three terms, concrete Vc, steel Vs, and axial load VP . Priestley

pointed out the concrete shear capacity decreases as displacement ductility increases while

the steel term remains the same. Priestley indicated the compression angle as demonstrated

in Figure 2.3(a) was relative to the shear capacity, which also shows that the axial load term

is inversely proportioned to the compression depth of concrete c.

(a) (b)

Figure 2.3: Shear capacity model proposed by Priestley et al. (1994): (a) demonstration of
axial load term; and (b) amplification factor.

As the displacement ductility increases, the compression depth of concrete c will

decrease. Therefore, the axial load component increases as displacement increases.

Moreover, increasing column displacement could result in a larger shear capacity when a

large axial load situation exists. The model is finally represented in Equation 2.4, where k

is an amplification factor determined by Figure 2.3(b) and accounts for concrete material

softening; f ′co is the compression strength of concrete; Ag is the gross area of the

cross-sections; ks is a multiplier for steel transverse reinforcement area. As suggested by

Priestley et al. (1994), for circular section, ks = 1.571; for rectangular section, ks is the

number of total transverse reinforcement number in a layer. Ah, fyh, and s are the area,
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yield strength, and spacing of transverse reinforcement, respectively; Dc is the depth of

core concrete. In the calculation of steel term, cot 30◦ accounts for the assumption that the

shear crack is about 30 degrees. In the term for axial load P , M/VD is the component

shear span.

V = Vc + Vs + VP (2.4a)

Vc = k
√
f ′copsi · 0.8Ag (2.4b)

Vs = ks
AhfyhDc

s
cot 30◦ (2.4c)

VP =
D − c
2M

V

P (2.4d)

This model considers a shear crack angle in the transverse reinforcement term.

Additionally, the ductility modification term is separated into two parts, which indicates

that the shear span ratio may affect the member ductility. However, the determination of c

is not an easy practice in the calculation.

Model used in Caltrans (2015d)

Two terms named the concrete Vc and the steel Vs are considered in the Caltrans’ shear

capacity model. The axial load effect is accounted in the concrete term with a multiplier no

larger than 1.5. The steel term is approximately equal to the model proposed by Priestley
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et al. (1994).

V = Vc + Vs (2.5a)

Vc = vcAe ≤ 4
√
f ′copsi · 0.8Ag (2.5b)

Vs = ks
AhfyhDc

s
≤ 4
√
f ′copsi · 0.8Ag (2.5c)

vc = f1f2

√
f ′copsi (2.5d)

f2 = 1 +
P

2000Ag
< 1.5 (2.5e)

For f1, if calculate the shear capacity inside the plastic hinge region:

0.3 ≤ f1 = (ρsvfh)/0.15 + 3.67− µ ≤ 3.0 (2.5f)

ρsvfh ≤ 0.35 (2.5g)

If it is outside the plastic hinge region:

f1 = 3.0 (2.5h)

Material softening effects are considered in Equation 2.5d, where µ is the column

displacement ductility. However, as a model used for design, this model is more

conservative than other models.

Model proposed by Sezen (2002)

This model is adopted in ASCE specifications (Elwood et al., 2007) and other researchers’

works by the reason of its relatively high accuracy and easy implementation. Shear

capacity from steel is the same as the equations in Caltrans’ model, while concrete
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component additionally considers the shear span, axial load, and material properties.

V = k(Vc + Vs) (2.6a)

Vc = λ

(
6
√
f ′copsi
M
VD

√
1 +

P

6
√
f ′copsiAg

)
· 0.8Ag (2.6b)

Vs = ks
AhfyhDc

s
(2.6c)

In Equation 2.6, λ equals to 0.75 and 1.0 for light- and normal-weight aggregate

concrete respectively. Shear capacity degrades as displacement ductility increases,

following the coefficient k, which accounts for material softening, and possible geometry

nonlinearity.

Figure 2.4: Definition of coefficient k in the shear capacity model proposed by Sezen
(2002).

2.2.2 Abutment Modeling

There are two general types of abutments in California bridge inventory, seat abutment

and diaphragm abutment (Figure 2.5). The inclusion of bearings denotes seat abutments,

while an integral connection of the deck with the abutment wall is a defining deature of

diaphragm abutments.

Figure 2.6 and Table 2.1 summarize seat abutment type findings from an inventory
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(a) (b)

Figure 2.5: Examples of abutment in California bridges: (a) seat abutment, and (b)
diaphragm abutment.

analysis of a sample of California box-girder bridges within three design eras. Abutment

choice has evolved from prevailingly diaphragm-type abutments in earlier design eras to

seat-type abutments in over 98% of bridges designed since the 1990’s. As detailed in

Table 2.1, seat-abutment types B and C with the use of haunches on the backwall and/or

deck are limited mainly to bridges designed prior to the early 1970’s. Modern bridge

designs in California use either a stem wall or cantilever wall with a straight backwall

and no haunch on the deck resulting a relatively small gap between the deck and straight

backwall having mean value of approximately 2.1 inch.

Figure 2.6: Conceptual illustration of alternative seat-abutment designs used in California
box-girder bridges: A) stem wall support, B) pedestal support, C) free wall support and D)
cantilever. (Roblee, 2020e)
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Table 2.1: Seat-type abutment usage from inventory analysis of Caltrans box-girder bridge
class (Roblee, 2020e)

Year Bridge Built
Bridges w/
Seat-Type
Abutments

Proportion of Seat-Type Abutments by Design Type
Straight Backwall & Deck Haunch on Backwall and/or Deck

Total A B C D Total A B C D
>1991 98% 100% 82% 0% 0% 18% 0% 0% 0% 0% 0%
1973-1991 53% 94% 71% 0% 0% 23% 6% 5% 0% 0% 1%
<1973 30% 35% 6% 16% 0% 13% 65% 11% 22% 8% 24%

Previous studies regarding abutment modeling focused on the constitutive behavior of

abutment components, such as backfills, bearings, and shear keys; and on capturing the

overall abutment response.

For the backfill modeling, early Caltrans guidelines (Caltrans, 1990) had adopted an

approximate bilinear form and specified a unit-width stiffness value of 20.0 kips/in/ft and

truncation pressure value of 55.0 psi for modeling the passive resistance of abutment

backfills. However, the bilinear form does not fully account for the real nonlinear behavior

of backfills. Experimental studies (Caltrans, 1990; Maroney et al., 1993) showed that the

ultimate soil pressure occurred at displacements from 6 to 10% of the backwall height.

Subsequent studies (Nielson, 2005; Jeon et al., 2015b) used multi-linear models for

modeling backfills, where the initial stiffness and ultimate deformation of sandy and

clayey backfills were assumed to be within 20.0 kips/in/ft to 50.0 kips/in/ft, and 6 to 10%

of the backwall height, respectively. Further experimental and theoretical studies also led

to the use of hyperbolic curves to model backfills (Duncan and Mokwa, 2001; Shamsabadi

et al., 2007; Wilson and Elgamal, 2006; Shamsabadi and Yan, 2008), some of which were

applied in preliminary bridge-fragility feasibility analyses (Ramanathan, 2012). Current

Caltrans guidelines (Caltrans, 2019) retain the approximate bilinear form, but now specify

a unit-width stiffness value of 50.0 kips/in/ft and truncation pressure value of 35.0 psi,

along with wall-height scaling rules, for modeling the passive resistance of abutment

backfills meeting current material standards.

Other abutment components can be modeled at various degrees of sophistication. On

the simpler end, seismic responses of backfills and foundation piles or footings have been
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combined into a single simplified trilinear hysteresis model – with only the foundation

capacity acting in the active direction and the combination of foundation capacity and

backfill considered in the passive direction (Gehl et al., 2014). For bearings, various

models (e.g., for steel and elastomeric bearings) were proposed in Nielson (2005) due to

their distinctive constitutive behaviors revealed by experiments. Constitutive behaviors for

three different types of shear keys have been studied experimentally and analytically

(Megally et al., 2001, 2003), where the types are internal shear keys, external non-isolated

shear keys, and external isolated shear keys. The role of shear keys in bridges crossing

fault-rupture zones has been examined (Goel and Chopra, 2008), and the effects of

abutment-embankment interaction have also been investigated (Zhang and Makris, 2002;

Inel, 2002; Kotsoglou and Pantazopoulou, 2007; Taskari and Sextos, 2015). Other studies

have examined the vertical responses of abutment systems (Kavianijopari, 2011; Liang

et al., 2016). The vertical stiffness of an abutment was assumed to be contributed by the

bearings, embankments, and stem wall.

The aforementioned abutment components have been examined and applied in

numerical analyses. Figure 2.7 illustrates a conventional modeling scheme (Nielson, 2005;

Mangalathu, 2017; Mangalathu et al., 2016) which considers bearings, the gap and impact

between the abutment and deck, foundations, and backfills in the longitudinal direction;

and bearings, shear keys, and foundations in the transverse direction. The backwall and

the stem wall are connected rigidly and are represented with only one node. A spring with

a bilinear behavior is usually used to represent elastomeric bearings. Model verification

and detailed modeling techniques of other types of bearings can be found in a relevant

study (Nielson, 2005). The gap and impact spring is used to capture the gap between the

backwall and the deck, as well as energy dissipation during the impact process

(Muthukumar and DesRoches, 2006; Muthukumar, 2003). A multi-linear model is used to

capture the seismic responses of piles in the abutment foundations (Xie et al., 2021).

Different types of shear keys can be simulated by three backbone curves (Megally et al.,
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2001, 2003). The backfill is typically modeled using nonlinear springs with a hyperbolic

backbone (Shamsabadi et al., 2007; Shamsabadi and Yan, 2008; Xie et al., 2019) where

the passive resistance of the backfill depends on the mobilized soil height. Conventional

model responses for two backfill-height options will be examined and compared to those

for a new proposed model in later chapters. These options are taken as either the height of

the backwall only, or the total height of the abutment wall (backwall plus stem wall),

which serve to bracket and provide context for the responses of the proposed model.

Figure 2.7: Conventional abutment modeling schemes

Crucial damage mechanisms associated with abutment backwalls (Figure 2.8) were

observed in past earthquakes. To be specific, an abutment backwall in modern bridges is

designed to be a sacrificial component, which is intended to fail prior to the foundations

supporting the bridge and backwall (Caltrans, 2019). This design philosophy limits

demand on abutment foundations so as to avoid time-consuming foundation excavation

and repair, thus ensuring rapid post-earthquake repair actions and reduction of both direct

repair costs and downtime-induced indirect losses (Caltrans, 2017).

In a bridge with seat abutment, the bridge decks are supported by abutments through

bearings and restrained longitudinally by backwalls once the joint gaps are closed. The

backwall is a key component that significantly affects the interaction between backfills and

abutments, and the dynamic interplay of various bridge components changes dramatically

before and after the backwall fracture. In particular, abutment foundations are completely

engaged in the lateral support system before the backwall failure, whereas only the backfill
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(a) (b)

Figure 2.8: Examples of backwall damage (Jibson and Harp, 2011): (a) punching of the
Tubul bridge deck into the backwall of the north abutment, and (b) damage at the base of
the north abutment backwall of the El Bar bridge.

behind the backwall provides the primary lateral resistance once the backwall fails. As a

result, lateral responses of columns and bearings will be underestimated if the backwall

failure is not considered. Stefanidou et al. (2017) investigated soil-structure interaction

and seismic fragility assessment of bridges with backwalls using a numerical backwall

model that considered the flexural failure mechanism – the formation of a plastic hinge

at the backwall bottom. Taskari and Sextos (2015) considered an additional lower bound

case in the force transformer mechanism prior to and after backwall failure (i.e., backwall

completely breaks off).

Three drawbacks are inherent to the conventional abutment modeling scheme. First, it

does not account for a backwall fracture mechanism that is expected to significantly

impact the seismic performance of adjacent components, including abutment foundations,

bent columns, and deck displacements. Second, as a consequence of neglecting backwall

fracture, the entire backfill height is inaccurately assumed to contribute to passive

resistance. In fact, before backwall fracture, the full height of backfill behind the abutment

wall provides lateral support to the bridge system. However, after fracture, only the soil

behind the backwall contributes to lateral support of the deck. Therefore, it is imperative
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to separate the backfill behind the abutment wall into two parts to model their behaviors at

different stages of loading appropriately. Finally, bearing deformation in the longitudinal

passive-direction is limited to the size of the deck-abutment joint gap since the backwall

restrains further movement in that direction.

To this end, a holistic modeling scheme that can capture the shear failure mechanism

of abutment straight backwalls is required to more accurately simulate the seismic

performance of modern highway bridges with abutment straight backwalls.

2.3 Column Capacity Limit State Models

In addition to the establishment of probabilistic demand models, the development of

compatible capacity models (or CCLS) is essential to the definition of fragility models.

Since the column is the most critical component in the bridge system, this section

focuses on the existing practice of defining CCLS for columns. Table 2.2 provides a

summary of several recent column capacity models and Table 2.3 summarizes the values

for column capacity damage states for a couple of existing studies.

Table 2.2: Comparison of capacity model descriptions in existing works

DS2 (Slight/Minor) DS3 (Moderate) DS4 (Extensive) DS5 (Complete)
Year

Bridge
Built

FEMA (1999) All

Minor cracking &
spalling at hinges,

Column minor spalling
(Requires no more than

cosmetic repair)

Moderate (shear
cracks) cracking

& spalling of column
(Structurally sound)

Column degrading
without collapse -

shear failure
(Structurally unsafe)

Column collapse
(May lead to imminent

deck collapse)

Pan et al. (2007) All
Initiation of

yielding
Formation of
plastic hinge

Reach of
maximum moment

Crushing of
concrete when
concrete strain
equals -0.005

<1973 Cracking
Minor cover spalling

anywhere along
the column height

Large shear cracks;
major spalling;
exposed core;

confinement yielding

Loss of confinement;
longitudinal bar buckling
or rupture; core crushing

1973
to

1991
Cracking

Minor cover spalling
anywhere along

the column height

Major spalling;
exposed core;

confinement yielding

Loss of confinement;
longitudinal bar buckling

or rupture;
core crushing;

large residual drift

Ramanathan (2012);
and

Dukes (2013)

>1991 Cracking
Minor cover spalling

concentrated at the top
and bottom of the column

Major spalling;
exposed core;

confinement yielding

Loss of confinement;
longitudinal bar

buckling or rupture;
core crushing
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Hwang et al. (2001) used a model based on HAZUS (FEMA, 1999), in terms of

displacement ductility, with thresholds of 1.00, 1.20, 1.76, and 4.76 corresponding to the

first yielding of longitudinal reinforcement, column yielding, concrete strain reaching

-0.002, and maximum displacement ductility defined by Buckle and Friedland (1995),

respectively. Their damage states ranged from no damage to the complete state and were

calculated based on material properties. For the first three states, the section curvature

values were obtained and then converted to displacement ductility values using an

assumed plastic hinge length. As suggested by FEMA (1999), the total dispersion

(capacity and demand) was taken as 0.4 for fragility curves expressed in terms of SA; and

0.5 for those expressed in terms of PGA.

Choi and Jeon (2003) and Choi et al. (2004) defined column capacity limit states with

curvature ductility thresholds of 1.00, 2.00, 4.00, and 7.00, corresponding to five damage

states similar to the research by Hwang et al. (2001). The capacity model developed using

experimental tests of non-seismically designed columns. Also, lap-splice columns were

considered in these researches. Engineering judgment was needed when the damage state

thresholds for different experimental tests values were defined.

Similarly, Nielson (2005) used a column capacity model with median curvature

ductility values of 1.00, 1.58, 3.22, and 6.84 as thresholds of the damage states described

as minor spalling, moderate cracking (shear cracks) and spalling, degradation without

collapse, and collapse, respectively. These values were converted from the displacement

ductility model from Hwang et al. (2001).

Pan et al. (2007) assumed that shear failure would not happen in bridge columns and

defined five damage states with curvature ductility as the EDP. These critical limit states

were related to the column integrity, the initiation of yielding, formation of the plastic

hinge, reaching the peak moment, and crushing of concrete when the strain of concrete

equal to about 0.005. The damage state values in this research were obtained based on ten

numerical simulations of bridge columns, considering variation in material strength and
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dead loads.

Ramanathan (2012) and Dukes (2013) used curvature ductility in their research. Four

damage states were defined based on expert opinions from Caltrans design engineers and

maintenance personnel combined with consideration of limited experimental test data of

components. A set of Caltrans-specific damage states were proposed in their research.

However, follow-up work (DesRoches et al., 2012) found the column capacity values

extremely conservative and called for additional research to better define column capacity

models. A clear contribution of this capacity limit state system was the consideration of

column capacity varied from different design eras.

Mangalathu (2017) extended the column capacity limit states by considering

experimental test data for a total of 48 columns. Based on these tests, new column

capacity limit states were proposed using the same four damage state definitions as

Ramanathan (2012). However, these models combined different failure modes such as

flexural, shear, and lap-splice, so they did not differentiate between failure modes now

recognized to have very different capacity model values.

Several existing studies focused on post-1990 ductile designed columns (Kim and

Shinozuka, 2004; Banerjee and Shinozuka, 2007; Mackie et al., 2007; Kwon and

Elnashai, 2010) are also summarized in Table 2.3.

The following chapter will detail how this research investigation addressed these

issues by clearly separating column failure modes, extending the experimental dataset,

and enhancing the experimental findings with analytical simulations of column

performance for each failure mode.

2.4 Closure

This chapter first reviewed the various fragility modeling techniques, concluding that the

cloud method is the most efficient when used with analytic fragility analysis. In addition,

this section outlined key process steps needed to establish a fragility model using NLTHA.
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Table 2.3: Comparison of capacity model values in existing works

DS2
(Slight/Minor)

DS3
(Moderate)

DS4
(Extensive)

DS5
(Complete)

Engineering
Demand

Parameter

Year
Bridge
Built

Hwang et al. (2001)
Displacement

ductility All 1 1.2 1.76 4.76

Choi and Jeon (2003)
Curvature
ductility All 1 2 4 7

Kim and Shinozuka (2004)
(Bridge-I)

Displacement
ductility >1991 1.3 2.6 4.3 8.3

Kim and Shinozuka (2004)
(Bridge-II)

Displacement
ductility >1991 1.4 2.8 4.6 9.2

Nielson (2005)
Curvature
ductility All 1 1.58 3.22 6.84

Banerjee and Shinozuka (2007)
Rotational
ductility >1991 1.58 3.33 6.24 9.16

citetaddcap2007b
Displacement

ductility >1991 0.23 1.64 6.09 6.72

Kwon and Elnashai (2010)
Column top

displacement >1991 - 2.86 4.88 19.69

<1973 0.8 0.9 1 1.2
1973

to
1991

1 2 3.5 5
Ramanathan (2012)

and
Dukes (2013)

Curvature
ductility

>1991 1 4 8 12
<1973 0.8 2.3 5.2 8.8
1973

to
1991

1 5 8 11Mangalathu (2017)
Curvature
ductility

>1991 1 5 11 17.5

This chapter also outlined several important limitations of prior bridge-fragility modeling

now being addressed by this research, including the needs for: 1) consistent and calibrated

modeling of flexure, shear, and mixed flexure-shear column failure modes, 2) accurate

modeling of the abutment backwall fracture mechanism and its associated impacts on

overall bridge response, and 3) improved column capacity models, with clear separation

of failure modes and design eras, which consider a broader set of experimental results and

are supplemented by analytical simulations to account for a wider range of damage states.

Each of these recognized limitations is addressed in the following chapters.
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CHAPTER 3

ADVANCED FINITE ELEMENT MODELING OF BRIDGE COMPONENTS

Previous researchers have devoted considerable attention to accurate and effective

modeling of the seismic behavior of various bridge components, including the deck,

columns, and abutment. These efforts include modeling the structure in a realistic scheme,

capturing a proper failure mode, and simplifying the model to improve computational

efficiency. This chapter discusses the modeling techniques for developing a

three-dimensional nonlinear bridge model within finite element modeling platform

OpenSees (McKenna et al., 2000). The improvement of modeling fidelity through these

proposed techniques is illustrated using a two-span bridge (see Appendix A).

3.1 Superstructure

It is recommended by Nielson (2005) to model the deck elements in OpenSees using elastic

elements since the superstructure elements typically remain elastic during an earthquake.

Two alternative strategies for modeling the superstructure were proposed by Priestley et al.

(1996) as shown in Figure 3.1, grillage and spine, both of which model the superstructure

with stick elements. The spine model is a further simplification of the grillage model.

(a) (b)

Figure 3.1: Modeling scheme for bridge superstructure: (a) grillage, and (b) spine.

While saving some computational time, the spine model has a significant drawback.

The axial load is concentrated at the bridge centerline, and thus the force transfer to the

substructure is influenced by the transverse beam stiffness. The undesirable impacts
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become most notable in bents having a central column and include: 1) The center column

has a higher axial load than the others, and 2) external columns have an initial transverse

displacement at the base upon gravity loading. The central column’s high axial load

incorrectly estimates column strength degradation due to concrete crushing, notable

P-Delta effect, or shear failure. The initial transverse displacement amplifies the

transverse demand under a small ground motion intensity range, influences the regression

model, and ultimately overestimates the failure probability by about 0.1 to 0.2 g in terms

of median Sa1 of the column fragility models. The added modeling sophistication

increases computational time, but not significantly. Hence, this research has elected to use

the grillage scheme to model the superstructure. A simple comparison illustrates this

effect in the following subsection 3.5.2.

3.2 Internal Support Bents

California bridges have different internal support types, with the most common being single

column bent (isSB) and multi-column bents (isMB). Pier walls and shaft bents are also

common but are not considered herein.

3.2.1 Bents

As shown in Figure 3.2, the column bent is modeled using a combination of fiber-section

column elements and rigid links for connection to the superstructure. Column foundation

elements, including both lateral and rotational springs are discussed in subsection 3.2.6

and Figure 3.19. Separate lateral element models represent piles, spread footings, and the

soil loads applied to the sides of the pile cap or footing. The rotational element considers

rotation failure associated with either excessive axial pile displacement (i.e., geotechnical

failure) or foundation-to-column connection details (i.e., structural failure).

Columns in single-column bents are located at the bottom of the center cell, while in

multi-column bents, they are evenly spaced as a function of column and cell number. Note
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Figure 3.2: Typical modeling scheme for a bridge bent.

that all bridge models are constrained to have an odd number of cells. In this research, the

distance is assumed to follow a relationship in Table 3.1. For example, a bent with five

cells and two columns, the column spacing is 3.0 times the cell spacing, as illustrated in

Figure 3.2.

Table 3.1: Column spacing (times of cell spacing) with respect to the number of box-girder
cells and bent columns

Column Number
2 3 4

Cells

3 2.0 - -
5 3.0 1.5 1.0
7 4.0 2.5 2.0
9 5.0 3.0 2.0

11 - 4.0 3.0
13 - - 4.0

3.2.2 Flexural Columns

Columns are one of the most vulnerable components in a bridge system during

earthquakes. As presented in Figure 3.2, a column is simulated with force-based elements

along with zero-length section elements to account for strain-penetration effects at the two

ends of the column (Zhao and Sritharan, 2007). Cross-sections in the force-based element
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and the zero-length section element are fiber-based. Fiber cross-sections benefit from

allowing the specification of unique material properties for different locations across the

cross-section. Specifically, the concrete is simulated using different constitutive models in

cover (unconfined concrete) and core (confined concrete). Reinforcement is modeled with

hysteretic material accounting for reinforcement rupture and buckling.

Concrete

This research uses the Concrete02 material (Yassin, 1994) in OpenSees for modeling of

concrete. Compared to other materials available in OpenSees, Concrete02 is the most

stable and computationally-efficient. Although Concrete02 material applies the Kent-and-

Park concrete model (Kent and Park, 1971) having a linear descending branch, this research

adopts the Mander’s concrete model to achieve a better accuracy.

As suggested by Mander et al. (1988), the basic formula of the concrete constitutive

model is given by Equation 3.1 and Figure 3.3.

fc =
f ′ccxr

r − 1 + xr
, (3.1)

where f ′cc is the compressive strength of confined concrete (defined later).

x =
εc
εcc

(3.2)

defines the ductility of the concrete strain, where εc is the compressive concrete strain

normalized by εcc, the strain at peak stress (defined later).

r =
Ec

Ec − Esec
, (3.3)

is the parameter to define the relationship of the secant stiffness Esec = f ′co/εco and

tangent stiffness Ec = 57000
√
f ′copsi. Using the Concrete02 material inherently implies
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Figure 3.3: Stress-strain model for concrete in compression (Mander et al., 1988).

the constant value of r = 2 as a result of the assumption that the strain at peak strength is

defined by εco = 2f ′co/Ec. Denote y = fc/f
′
cc, Equation 3.1 simplifies into the following

form:

y =
2x

1 + x2
. (3.4)

For confined concrete, the compressive strength is related to the effective lateral

confining stress in the two directions of the section:

f ′lx = keρxfyh, (3.5a)

f ′ly = keρyfyh, (3.5b)

where ρx and ρy is the transverse reinforcement ratio; fyh is the transverse reinforcement
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strength; and ke is a confinement effectiveness coefficient defined by Equation 3.6:

ke =



(
1− s′

2ds

)2

1− ρcc
, for circular hoops confinement;

1− s′

2ds
1− ρcc

, for circular spirals confinement;

(
1−

n∑
i=1

(w′i)
2

6bcdc

)(
1− s′

2bc

)(
1− s′

2dc

)
1− ρcc

, for rectangular hoops.

(3.6)

where s′ is clear spacing of transverse reinforcements; ds, bc, and dc are the dimensions of

the confined concrete; wi is the clear distance of two adjacent longitudinal reinforcement

in rectangular sections; ρcc is the longitudinal reinforcement ratio of core concrete.

The effective lateral confining stresses then induce the confined concrete strength given
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by Chang and Mander (1994):

f ′cc = f ′co

[
1.0 + Ax

(
0.1 +

0.9

1 +Bx

)]
, (3.7a)

f ′max = max (f ′lx, f
′
ly), (3.7b)

f ′min = min (f ′lx, f
′
ly), (3.7c)

x =
f ′lx + f ′ly

2f ′co
, (3.7d)

q =
f ′min
f ′max

, (3.7e)

A = 6.8886− (0.6069 + 17.275q)e−4.989q, (3.7f)

B =
4.5

5

A
(0.9849− 0.6306e−3.8939q)− 0.1

− 5.0. (3.7g)

Figure 3.4 illustrates the enhancement of confined concrete strength f ′cc/f
′
co with

relationship to different parameters. Confinement strength ratio x is the ratio of lateral

confining stress to the unconfined concrete strength. x represents unconfined concrete, as

the plot indicates f ′cc/f
′
co = 1. As the confinement strength ratio increases, the

enhancement increases in a hyperbolic shape. The other parameter q indicates the

unbalance confinement in the two directions of the section. Unbalance confinement

decreases the enhancement of confined concrete, especially for the range of q < 0.5. In

real situations, the unbalanced ratios for wide sections are commonly larger than 0.5,

which causes a slight difference compared to a balanced confined section (regular

section).

As suggested by Priestley et al. (1996), the strain corresponding to peak stress for

confined concrete is given by Equation 3.8a; and the ultimate strain is given by

Equation 3.8b, where εsu is the transverse reinforcement strain at maximum tensile
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Figure 3.4: Compression strength enhancement of confined sections.

strength (defined later).

εcc = εco

[
1 + 5

(
f ′cc
f ′co
− 1

)]
, (3.8a)

εcu = εsp +
1.4ρsfyhεsu

f ′cc
. (3.8b)

Note that unconfined concrete is a special case when there is zero confining stress (x =

0) and thus Equation 3.1 to Equation 3.8 are all applicable to unconfined concrete.

Determination of the end of the linear degrading portion (residual strength) of the

Concrete02 material is an important part of defining the concrete material. In this

research, stress is assumed to be linear degrading after 2εco and degrading to zero strength

at the spalling strain εsp for unconfined concrete (Mander et al., 1988). Based on

Equation 3.4, 2εco corresponds to 0.8f ′co and therefore results in a spalling strain

εsp = 6εco for unconfined concrete with zero residual strength. Confined concrete is
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assumed to have 20% capacity remaining and then interpolate the corresponding residual

strain using εcu.

Reinforcement

Hysteretic material is selected to model the reinforcement behavior because it has good

stability, the capability to define a buckling branch, and compatibility with other possible

failure modes such as a lap-splice column (subsection 3.2.4). The material accounts for

strain hardening and reinforcement fracture on the tension side, while on the compression

side, the material reflects the buckling effect.

Tension parameters includes stress-strain values for yielding (εy, fy), ultimate strength

(εsu, fu), and fracture strain εf .

Figure 3.5: Stress-strain model for steel in tension.

While it is straightforward to define the yield point with yielding strength and initial

stiffness Es = 29 000 ksi, the ultimate strength point is defined differently in various

studies. Priestley et al. (1996) suggested that fu = 1.5fy for most reinforcement types and

indicated the ratio would decrease as the strength increases. Bozorgzadeh et al. (2006) use

a normal distribution which has 1.55 mean and ranges between 1.40 and 1.70 to define the
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ratio fu/fy. In this research, data in Paik et al. (2017) is analyzed, and a linear relationship

is proposed to define the ultimate strength as:

fu
fy

= −0.011fy + 2.067 (3.9)

Substituting the typical reinforcements strength in California bridges, 50.0 ksi to 78.0 ksi,

Figure 3.6: Linear model to estimate the steel ultimate strength.

the ratio derived from the model is 1.20 to 1.52, which is comparable to values used in

other existing research. Strain εsu corresponding to the ultimate strength is determined by

Equation 3.10 (Caltrans, 2019). Reinforcement sizes used in California bridge columns are

typically #11 or #14, and thus εsu = 0.060 is used in most of cases.

εsu =


0.090, for #10 bars or smaller;

0.060, for #11 bars or larger.
(3.10)

In order to determine the necking/degrading branch, it is assumed that the descending

line is passing through 30% tensile strain when the strength degrades to 80% of the ultimate

strength. This determines a linear descending model for the steel. Fracture strain is then

imposed to the Hysteretic material using the MinMax material in OpenSees, which models
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a sudden drops at the specified strain εf . An exponential relationship is developed based

on coupon test data in various studies (Priestley et al., 1996; Paik et al., 2017; Schoettler

et al., 2012; Bao et al., 2017):

εf
εy

= 2850 exp (−0.05fy) (3.11)

Figure 3.7: Exponential model to estimate the steel fracture strain.

Based on this relationship, typical steel strength results in a fracture strain with a range

of 20% to 35%. This model also has a negative relationship with the steel yield strength,

which coincides with the idea that high-strength steel tends to be brittle.

The compression side of the steel considers buckling behavior, where the model

proposed by Zong et al. (2014) is adopted. Except for the yield point defined by

(−εy,−fy), the other two points for buckling (εb, fb) and residual (εr, fr) are described

here to define the backbone shape.
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Figure 3.8: Stress-strain model for steel in compression.

The buckling point is defined in Equation 3.12:

εb = −CsL1εy, (3.12a)

fb = −Cs
[ α

100
(L1 + 1)− 1

]
fy ≤ −0.1fy. (3.12b)

where L1 = 800M−2.5 + 2.5, α = 3.0 − 0.2M2, and material strength parameter M =

s/db
√
fy/61 ksi.

The stiffness reduction coefficient Cs that varies with relative stiffness k/k0 and

material strength parameter M is estimated by:

Cs =


[1− (1− k/k0)2]

1/(4.5−0.25M)
, for 0 < k/k0 < 1;

1.0, for k/k0 ≥ 1.

(3.13)

Critical stiffness k0 = 0.5π4EsIb/s
3 is a property parameter for the longitudinal

reinforcement with moment of inertia Ib and center-to-center transverse reinforcement

spacing s (un-support length). The equivalent stiffness of transverse reinforcement

confinement k is calculated by k = Fy/∆y. ∆y and Fy are the solution of the following
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equations, which result in a buckling distance with force equilibrium between buckling

force and confinement force:

∆y = R− R

cos θ
, (3.14a)

εy =
(tan(θ)− θ)R

πR
, (3.14b)

Fy = 2εyEsAh sin θ, . (3.14c)

whereR is the radius of column core, andAh is the area of transverse reinforcement section.

Lastly, the residual strength fr is simply defined as 80%fb, and the residual strain is

calculated by the following:

εr
εb

= min (L1 − 30, 1.5L1) + L1 (3.15)

The pinching parameters used in this research are px = 0.35 and py = 0.95, and the

damage parameters are approximated as d1 = 0.02− 0.008ρsvρsl ≥ 0.007 and d2 = 0.02.

Strain Penetration

Strain penetration occurs at the joint area of columns in the bridge. The connections of

the column bottom with foundations and the column top with the bridge deck are the two

locations to consider strain penetration effects. In these locations, bar-slip decreases the

stiffness of the component. As such, the Bond SP01 material is used in a zero-length

section at the end of the column. The most critical modeling parameter to determine is

the amplification factor SF , which simplifies the bar-slip deformation in the embedded

longitudinal reinforcements into a zero-length section.

As suggested by Lehman and Moehle (2000), the development length for the tensile
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embedded reinforcement to develop the yield strength is:

lsy =
fydb

48
√
f ′copsi

; (3.16)

and the bar-slip at the joint is:

usy = 0.5εylsy. (3.17)

Then the amplification factor is determined by the following:

SF =
usy
εy
. (3.18)

In the above equations Equation 3.16 to Equation 3.18, db and fy are the diameter and yield

strength of the longitudinal reinforcements. When amplifying the steel strain with a factor

of SF , the concrete material should also be amplified with the same multiplier in order to

keep the section integrity and numerical stability (Jeon et al., 2015).

Mesh-Dependent Strain Localization

Modeling of a structural member with a fiber-based model, with the consideration of axial

load-bending moment interaction, gives relatively higher accuracy than achieved with a

hinge-type model (Powell and Chen, 1986). However, in the presence of softening

constitutive model, two problems stand out in the fiber-based model simulation. First, the

global post-peak displacement-loading response is highly sensitive to the discretization of

structure members. In order words, changing either the length of the first member (hinge

region) in a displacement-based formulation (DBE), or the distance of the first two

integration points (IPs) in a force-based formulation (FBE), significantly impact the

strength-degradation branch in the simulation. Second, the local strain-stress response

concentrates at the first member (or between the first two integration points), which

generates unexpected high strain at the first element and, in turn, governs the global
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responses’ degradation.

Figure 3.9: Localization issue in force-based formulation (Coleman and Spacone, 2001).

In order to address the localization issue, this research adopts a modeling technique

similar to the plastic hinge integration method proposed by Scott and Fenves (2006). As

shown in Figure 3.2, the column is modeled using a fixed length of force-based element

at the hinge region with two Gauss-Lobatto integration points located at the element ends.

The length of the hinge element is estimated based on the formula proposed by Paulay and

Priestley (1992):

lp = 0.08L+ 0.15fydb (3.19)

In this manner, the local plastic deformation is fixed in a reasonable range.

Validation is conducted by comparing the modeling results against the laboratory tests

in Appendix C. It is noticed that most of the laboratory tests stop with 80% capacity

remaining and thus cannot be used to study the localization problem. Instead of

comparing the experiment results, the simulation result using this proposed method is

compared with a simulation using the non-local method. Non-local is an emerging

modeling technique that is objective to member discretization (Kenawy et al., 2018).

Although not easy to apply to large bridge models, results for a single column model are

compared herein using the column configuration in Appendix A. Figure 3.10 illustrates
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Figure 3.10: Comparison of the adopted modeling scheme with other modeling methods.

that the adopted modeling scheme generates results that are comparable with the non-local

method (Kenawy et al., 2020), whereas other traditional methods with FBE (or DBE)

produce results that are dependent on the number of integration points (or elements).

3.2.3 Reduced Sections

California bridges supported on multi-column bents often use a ”pinned” or reduced

section, connection to the foundation element. Figure 3.11(a) provides an example

connection illustrating that pin bases are constructed with smaller section sizes and fewer

longitudinal reinforcements. It can also be seen from the figure that a construction joint

disconnects the column and foundation, but a smaller ”column key” section with reduced

reinforcements extends into the foundation. In order to capture its behavior, this project

uses a zero-length strain-penetration section to model the pin section.

Figure 3.11(b) compares the adopted model to the typical simplified pin-base model

(ideal pin with zero moment capacity) and shows the adopted model shows almost twice of

base shear and initial stiffness for this reduced section detail.

Although the proposed model improves upon the model with an ideal pin in estimating
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(a)

(b)

Figure 3.11: (a) Reinforcement detailing of a typical pin base in California bridge; and (b)
pushover response comparing two modeling techniques for configuration in Appendix A.

the moment capacity, the expansion joint-filler is not considered here and thus leads to

underestimation of the moment capacity. Validation in Appendix C shows approximately

15% underestimation for the tests with free-top. However, because the column top for

box-girder bridges is almost always fixed to the bridge deck, such an underestimation is

expected to have a negligible effect on estimating bridge performance.

3.2.4 Lap-splice Columns

It is estimated (Roblee, 2017a) that nearly 80% of pre-ductile California bridge columns

have ’starter bar’ details or a lap-spliced connection of longitudinal reinforcement at the

column base. Previous studies Hwang et al. (2001); Zhang et al. (2004); Kim and

Shinozuka (2004); Barkhordary et al. (2009) showed that lap-splice columns quickly lose

their capacity once reinforcement in the lap-splice region starts to dislocate. Therefore,
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lap-splice columns often behave very brittlely and substantially impact bridge seismic

performance.

(a) (b)

Figure 3.12: (a) Lap-splice reinforcement behavior in tension (Priestley et al., 1996) and
compression; and (b) material model in tension side.

The mechanism of lap-splice reinforcement is represented in Figure 3.12. As suggested

by Priestley et al. (1996) and Barkhordary et al. (2009), lap-splice stress on the compression

side is assumed to behave the same as regular reinforcement since lap-splice reinforcement

is supported by concrete. However, dislocation of lap-splice reinforcement in the tension

side results in the lap-splice failure stress flsmax. It is the forces to overcome the tension of

concrete blocks surrounding the reinforcement:

Tb = Abflsmax = ftplp ≤ Abfy (3.20)

in which Ab is the area of lapped reinforcements, ft is the tensile strength of concrete that

can be estimated with 7.5
√
f ′copsi (Chang and Mander, 1994), lp is lap-splice length, and

fy is yield strength of reinforcement. It can be seen from this equation that lengthening the

lap-splice length is an effective way to prevent lap-splice failure. If the developed strength
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in the lapped reinforcement can attain the steel yield strength, the member will not fail at

the lap-splice and the steel follows the original constitutive model in Figure 3.5.

Figure 3.13: Perimeter of concrete block during lap-splice failure (Priestley et al., 1996):
white and black circles represent the two lapped reinforcements.

The perimeter of concrete blocks surrounding the reinforcement p is illustrated in

Figure 3.13. For cases with small spacing between longitudinal reinforcements (sa), the

surrounding concrete block considered to dislocate is calculated by adding up half of the

average spacing between the reinforcements (sa/2), twice the clear cover c and

reinforcement diameter db (2(c + db)). If the spacing between longitudinal reinforcement

(sa) is large enough, the cross-section of the dislocating concrete block becomes a

45-degree triangle. Therefore, the perimeter of the concrete block surrounding

reinforcement is given by Priestley et al. (1996):

p =
sa
2

+ 2(c+ db) ≤ 2
√

2(c+ db) (3.21)

After the complete spalling of cover concrete, the lap-splice strength degrades to the

residual stress flsr. Residual stress describes the friction forces between reinforcement and

core concrete with compression in their surface provided by transverse reinforcement in

the lap-splice region.

Abflsr = µAhfyh
lp
s
≤ Abflsmax (3.22)
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where µ takes 1.4 as suggested by Barkhordary et al. (2009). When the calculated residual

strength is larger than flsmax, the softening branch in Figure 3.12(b) becomes flat. From this

point of view, decreasing the spacing of transverse reinforcement in the lap-splice region is

another strategy to prevent brittle behavior in lap-splice columns.

Lap-splice strain is determined by adding up elastic deformation and lap-splice

deformation (Barkhordary et al., 2009).

ε = εe + εls (3.23a)

εe = flsmax/Es (3.23b)

εls = u/lss. (3.23c)

Lap-splice displacement u corresponding to maximum stress flsmax is suggested as 0.04

inches, while a typical lug-spacing of about 0.4 inches is used to compute the residual

stress flsr. Fictitious length lss is used to measure the length of lap-splice deformation,

which is estimated to be equal to the section depth as suggested by Barkhordary et al.

(2009).

3.2.5 Shear/Flexural-Shear Columns

As outlined in subsection 2.2.1, multiple modeling techniques can be used to model a

shear or flexural-shear column. In this research, a zero-length shear spring is used, and the

capacity model proposed by Sezen (2002) is adapted herein.

Examination of three experimental tests reveals the limitations of the Sezen (2002)

model. Load-deflection responses for three tests by Ang (1985) are shown in Figure 3.14

with their corresponding design parameters summarized in Table 3.2. The table notes that

Unit-6 and Unit-1 are generally identical except for the shear span ratio, and Unit-15 and

Unit-1 have identical designs except for their longitudinal reinforcement ratio.
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Table 3.2: Parameters for three specimen in tests by Ang (1985)

D M/V D αP fy fh f ′co db s Ah ρsl ρsv VnSpecimen §

parameter in − % ksi ksi ksi in in in2 % % kips
Unit-6 15.75 1.5 0.0 63.24 47.57 4.37 0.63 2.36 0.044 3.20 0.509 87.67
Unit-1 15.75 2.0 0.0 63.24 47.57 5.44 0.63 2.36 0.044 3.20 0.509 71.94

Unit-15 15.75 2.0 0.0 63.24 47.28 5.05 0.63 2.36 0.044 1.92 0.509 51.70
§ D = diameter of specimen; M/VD = shear span ratio; αP = axial load ratio; fy = longitudinal reinforcement

yield strength; fh = transverse reinforcement yield strength; f ′co = concrete strength; db = diameter of longitudinal
reinforcement; s = spacing of transverse reinforcement; Ah = area of transverse reinforcement; ρsl = longitudinal
reinforcement ratio; ρsv = transverse reinforcement ratio; and Vn = experimental shear strength.

(a) (b) (c)

Figure 3.14: Experimental results (Ang, 1985): (a) Unit-6; (b) Unit-1; and (c) Unit-15.

Modification-1: Degradation Factor

Compared to Unit-1, Unit-6 has a smaller shear span ratio equaling 1.5, and the response

is more brittle after the peak shear capacity. Similar behaviors are observed in other cases

like Figure 3.15.

Consequently, the proposed model modifies the amplification factor k considering the

geometry and reinforcement configuration effects on the column ductility. With calibration

to the experiment test result, the column is classified as a ’normal’ case if the shear span

ratio M/VD is larger than 2.0 and the transverse reinforcement ratio ρsv is larger than

0.20%. In the figure, ’Highly brittle’ cases are columns either with shear span ratios smaller

than 1.75 or transverse reinforcement ratios smaller than 0.15%. The test result for Unit-20

in Figure 3.15(a) leads to the selection of 1.75 as the lower bound for shear span ratio.

Lastly, linear interpolation is assumed for columns located between the two bounds.
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(a) (b)

Figure 3.15: Experimental results with highly brittle performance: (a) Unit-20 (Ang, 1985)
with M/VD = 1.75 and ρsv = 0.38%; and (b) 2CUS (Umehara, 1983) with M/VD =
1.13 and ρsv = 0.36%.

Figure 3.16: Modified amplification factor k in the proposed shear capacity model.

Broadly, this model implies that the shear capacity degrades as displacement ductility

increases. This model relates the rate of degradation to a function of the geometry (M/VD)

and confinement condition (ρsv).
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Modification-2: Longitudinal Reinforcement Term

Comparison of Unit-1 and Unit-15 also suggest that the shear capacity may be affected by

the longitudinal reinforcement ratio. Unit-1 has a larger longitudinal reinforcement ratio

and a higher shear capacity than Unit-15. A similar observation occurs in specimen R-5 in

tests conducted by Sun et al. (1993). This column has a 5% longitudinal reinforcement

ratio and results in a flexural failure with longitudinal reinforcement buckling with minor

diagonal cracking, even with a relatively small transverse reinforcement ratio (0.18%).

This phenomenon can be explained by considering the additional confinement provided

by longitudinal reinforcements. Therefore, an additional term is added to the shear

capacity to account for the possible additional confinement effect from longitudinal

reinforcement per Equation 3.24d, in which ksl is the participation coefficient of

longitudinal reinforcement and the corresponding bending depth, which is suggested to

use 0.075. However, if the transverse reinforcement ratio is too small, the flexural capacity

provided by longitudinal reinforcement may not develop before the shear failure happens.

Therefore, a threshold of 0.175% transverse reinforcement ratio is adopted to apply this

term. The threshold is taken as the mean value of column transverse reinforcement ratio in

pre-ductile (era-1) column designs (era-1).

Modification-3: Transverse Reinforcement Term

In the model proposed by Priestley et al. (1994), the transverse reinforcement term

considers a cracking angle. This term depicts the number of transverse reinforcements

across the shear cracks. The model takes the cracking angle as 30 degrees. In another

shear capacity model (Kato and Ohnishi, 2002), the cracking angle was taken as 45

degrees. Therefore, a mean value of these two (37 degrees) is used in the proposed model.
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Modification-4: Shear Span Ratio

In the model proposed by Sezen (2002), the shear span ratio was limited to the range of 2.0

to 4.0. After modeling and comparing with the experimental results, the shear span ratio

for a valid model is extended to 1.5. When the shear span ratio is smaller than 1.5, it is

taken as 1.5 for the following calculation.

The final model is summarized as below.

V = k(Vc + Vsv + Vsl) (3.24a)

Vc = λ

(
6
√
f ′copsi
M
VD

√
1 +

P

6
√
f ′copsiAg

)
· 0.8Ag (3.24b)

Vsv = ksv
AhfyhDc

s
cot 37◦ (3.24c)

Vsl =


0 , ρsv < 0.175%

ksl
fyρslAg

M
V D

, otherwise.
(3.24d)

Modeling of Degradation of Monotonic to Collapse State

After establishing the nominal shear capacity of the column, the shear spring response

must control degradation to the residual capacity following a specified degradation

stiffness. The residual capacity is often specified as 20% of the nominal shear capacity.

However, from the limited yet informative monotonic pushover results, the degradation

may be better characterized using a bi-linear relationship. The highly brittle cases

(M/VD < 1.75 or ρsv < 0.175% ) has a steeper first degradation branch and a flatter

second branch (Figure 3.17(a)), while the normal cases exhibit the opposite sequence

(Figure 3.17(b)). Based on these experiment results, a new degradation model is

developed to construct a shear spring for modeling shear failure.

Before shear failure occurs, the specimen follows typical flexural behavior, and the

shear spring deforms elastically with stiffness calculated by Equation 3.25 where Gc is the

48



(a) (b)

Figure 3.17: Approximated bi-linear degradation of shear columns: (a) Unit-20 in highly
brittle case (Ang, 1985) with M/VD = 1.75; and (b) specimen-4 in normal case (Sezen,
2002).

concrete shear modulus.

Kelastic =
GcAg
M

V

(3.25)

After triggering the shear failure, the shear capacity degrades following the degradation

stiffness given by the shear capacity model, i.e.:


Kd1 = −0.6

Vn
dy
, for highly brittle case

Kd2 = −0.1
Vn
dy
, for normal case

(3.26)

in which dy = yield displacement of the column specimen, and linear interpolation is

applied to those cases between the above two situations.

The second leg of the degradation line is assumed to apply from about 65% capacity

remaining through zero capacity (or entirely collapsed). Equation 3.27 is adopted to

calculate the ultimate displacement at collapse, illustrated by the red dashed extension in

the shear-spring model shown in Figure 3.18. The ultimate displacement assumes half of
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the capacity degrades following Kd1 and the other half degrades following Kd2.

∆C = e1 +
0.5Vn
Kd1

+
0.5Vn
Kd2

(3.27)

Figure 3.18: Illustration of shear spring definition.

Appendix C provides comparisons of responses using the proposed analytical

methodology with experimental test results for an extensive and diverse set of column

designs having a range of failure modes. Overall, these results show that the new modified

methodology captures critical response characteristics for a broader range of column

designs and at a higher degree of fidelity than could be achieved using the unmodified

method.

3.2.6 Column Foundation

As illustrated in Figure 3.19, column foundations are modeled as a combination of lateral

translational springs and rotational springs in each of two directions. The lateral springs

include ones to capture the foundation-base response, associated with pile lateral resistance

or spread-footing frictional resistance, and soil springs capturing soil load on the side faces
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Figure 3.19: Response models for column foundations.

of either the pile cap or spread footing. The response model for foundation-base springs

is the same as those used in the abutment foundation and will be discussed next. The soil

springs capture the resistance applied by the soil to the side faces of a pile cap or footing

and are therefore symmetric. More detail is provided in the next section.

The rotational spring assigned to the column foundation considers the lesser of two

potential rotational failure mechanisms: 1) ’geotechnical’ failure associated with

excessive axial displacement of piles at the foundation perimeter, and 2) ’structural’

failure associated with excessive rotation of poor column-foundation connection details.

The TzSimple1 material in OpenSees is used to model the column foundation rotation.

Compared to past studies which used elastic rotational springs, this enhanced strategy

allows for characterization of alternative foundation failure mechanisms for

poorly-designed foundations where column hinge capacity exceeds either the structural or

geotechnical capacity of the foundation.

3.3 Abutment

As previously noted in Table 2.1 and Figure 2.6, abutment choice in California has evolved

from primarily diaphragm-type abutments used in earlier design eras to seat-type abutments
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used in over 98% of bridges designed since the 1990’s. Modern bridge designs use either a

stem wall or cantilever wall with a straight backwall and no haunch on the deck. Therefore,

under considerable seismic loading, the superstructure end diaphragm pushes against the

straight backwall, resulting in shear fracture near the base of the backwall. Moreover, the

use of haunches on the backwall and/or deck is generally limited to early bridge designs

from before the early 1970’s. This section will focus primarily on modeling the type A

abutment without a haunch as it is widely used in modern bridge designs. Other types of

abutment types will also be discussed based on this study.

3.3.1 General Scheme

A new abutment modeling scheme shown in Figure 3.20(a) has been developed to address

the aforementioned modeling issues with the conventional modeling scheme in Figure 2.7.

A more rigorous and robust spring system is considered in the longitudinal direction by

separating the abutment wall into two segments – the backwall and the stem wall. The

lateral behavior of the backwall is simulated using a backwall connection spring that

connects the backwall node and the stem wall node (i.e., the seat node). In this way, the

backfill can be consequently separated into two portions, namely backfill-A and

backfill-B, if the backwall connection fractures. Specifically, the backfill-A spring

represents the backfill behind the backwall and connects the backwall node to the

free-field node. The backfill-B spring connects the abutment stem wall/seat node to the

free field node, capturing the passive resistance of the remaining backfill (i.e., the backfill

behind the stem wall). Therefore, impact forces between the deck and backwall will

transfer into backfill-B and the abutment foundation before the failure of the backwall

connection. However, after complete fractures of the backwall, only a limited amount of

lateral force from the deck can be transferred to the abutment foundations through the

bearings, and most of the force is taken by backfill-A. In the transverse direction, a soil

spring is added to the model to approximate soil resistance acting on the side of the stem
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wall and wing wall.

The geometric interactions of various abutment and soil components are well

represented using the new spring system, where each spring captures the appropriate

response of each distinct component. In this manner, the temporal change in the dynamic

interplay among these components can be reliably quantified, particularly before and after

the backwall fracture when subjected to strong earthquakes. The shape of the backbone

curves for each constitutive nonlinear spring is provided in Figure 3.20(b) and will be

discussed in the following sections.

(a)

(b)

Figure 3.20: (a) Adopted abutment model incorporating the backwall fracture mechanism
(Zheng et al., 2021), and (b) backbone responses of bridge component nonlinear springs
within the abutment modeling scheme.

3.3.2 Shear Key

Megally et al. (2001) summarized the behavior of three types of shear keys named external

isolated shear key, external non-isolated shear key, and internal shear key. As illustrated in

Figure 3.21, the component response of external keys (both non-isolated and isolated) can
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(a) (b)

Figure 3.21: Generic response models for abutment shear keys: (a) external; and (b)
internal.

be generically represented with three segments, whereas only two segments are needed to

capture the response of internal keys. In this research, the OpenSees modeling of all shear

keys uses Hysteretic material in series with a gap spring.

As an emerging type of shear key, the external isolated key fuses at a lower capacity

level than the non-isolated key as a means to protect the lower portion of the abutment, i.e.,

abutment foundations. Although it is not considered in the probabilistic simulations due to

its limited usage in existing bridges, the isolated shear key is used in the bride shown in

Appendix A and therefore is used in the deterministic simulation of the following section.

(a) (b)

Figure 3.22: (a) Example of shear key diagonal crackings during tests (Megally et al.,
2001), and (b) simplified response models for three types of shear keys.
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The most prevalent abutment shear key in California box-girder bridges is the external

non-isolated shear key. The response of a typical non-isolated shear key is modeled as

three phases until failure following the simplification by Goel and Chopra (2008). Initial

observed damage is the onset of concrete cracking, indicating the yielding of the shear key.

As the extending cracks cut across more and more reinforcements in the abutment wall, the

shear key capacity climbs to the peak. Strength softening initiates when the reinforcement

cannot resist the widening of concrete cracks. In this stage, concrete spalling is seen at the

toe of the wall. An external non-isolated key fails through a combination of mechanisms,

including fracture of reinforcements, concrete crushing at the toe, and large opening of the

inclined cracks.

(a) (b)

Figure 3.23: Illustration of the failure mechanisms: (a) the non-isolated shear key (out-of-
plane breadth noted as b); and (b) backwall passive fracture (out-of-plane width noted as
w).

The capacity Vkey for the external non-isolated shear key consists of a concrete term Vc

and a steel term Vs. The associated variables in Equation 3.28 are schematically illustrated

in Figure 3.23(a). Through experimental verification (Megally et al., 2001, 2003), the

concrete term was directly adopted from the ACI 318-14 (ACI, 2014), in which b denotes
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the out-of-plane breadth. The steel term can be derived by considering the moment

equilibrium of the left portion of the cracked shear key relative to the base of the diagonal

shear cracks in the stem wall (i.e., point R in Figure 3.23(a)). Specifically, the term of

FpHp denotes the moment induced by the pretension force Fp multiplied by the lever arm

of Hp. Similarly, T1H and T2D denote the moments contributed by the major horizontal

reinforcement and the first row of steel bars crossing the shear key interface, respectively.

The last two terms denote the moments contributed by the distributed reinforcement,

where nh and nv are the numbers of side faces for horizontal and vertical side

reinforcement, respectively.

Vkey = Vc + Vs (3.28a)

Vc = 2.4bH
√
f ′copsi (3.28b)

Vs =
1

H + a

(
FpHp + T1H + T2D +

nhTihH
2

2s
+
nvTivD

2

2s

)
(3.28c)

It was then proposed in Megally et al. (2001) that the force and deformation for the

shear key response model in Figure 3.21(a) can be calculated as the following, in which

b in Equation 3.29g is the out-of-plane breadth. Note that ∆1, ∆2 and ∆3 here does not
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include the initial shear key gap.

∆1 =
√

2εy(Ld + La)
h+ d√
h2 + d2

(3.29a)

∆2 =
√

2εy(Ld + La)
h+ d

s
(3.29b)

∆3 =
√

2 · 0.007 · (Ld + La)
h+ d

s
(3.29c)

Fsk1 = Vs +
∆1

∆2

Vc (3.29d)

Fsk2 = Vkey (3.29e)

Ld =
dbfy

25
√
f ′copsi

(3.29f)

La ≈ b (3.29g)

Although internal shear keys are uncommon in modern ductile (era-3) abutment

designs, they appear in about 30% of early-ductile (era-2) bridges and are often used in

combination with external non-isolated shear keys. Such a combination increases the

transverse resistance and hence might cause damage to the abutment foundation. It was

suggested by Megally et al. (2001) that the softening brunch of the internal shear key

typically extends approximately 3.5 in after the peak and the strength approximately takes

the minimal of three terms as shown in Equation 3.30, where f ′co is concrete strength and

Ac is the area of the shear key-abutment interface.

VN = min
(

11.3
√
f ′co, 800psi, 0.2f ′co

)
Ac (3.30)

Validation of the finite element simulation versus experimental tests (Megally et al.,

2001) is demonstrated in Figure 3.24.

Based on the inventory results, it is assumed that no shear key elements exist in pre-

ductile designed (era-1) bridges. Instead, the constrained transverse response of rocker

bearings provides lateral restraint for era-1 bridges.
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Figure 3.24: Validation of the OpenSees model (red lines) against experimental tests by
Megally et al. (2001).

3.3.3 Backwall Fracture

Figure 3.25: (a) Active bending, (b) passive fracture, and (c) a typical seat abutment design

This section describes the development of the backwall connection model that

considers two different failure modes in the two longitudinal loading directions. In the
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active direction (Figure 3.25(a)), the backwall undergoes flexural bending when there is an

active displacement of the stem wall (seat node) relative to the free-field, and backwall

nodes: (1) the seat node moves toward the free-field and backfill-A causes bending of the

backwall; or (2) the backwall node itself moves along the active direction under

earthquakes because of its lumped inertia mass. This backwall response in the active

direction is referred to as active bending. In the passive direction (Figure 3.25(b)), the

backwall response is dominated by shear failure when the deck impacts the base of the

backwall. Such shear failure in the passive direction is termed the passive fracture.

Figure 3.26(a) shows the complete parameterized backwall-connection response

model for straight backwall systems that exhibits both passive fracture and active bending,

while Figure 3.26(b) shows the bending response is used in both loading directions for

haunched backwalls where the deck load in the passive direction is applied near the top of

the backwall. Note that for straight-backwall systems, the passive fracture failure

mechanism is considered essential for capturing designed sacrificial backwall behavior. In

contrast, the active bending mechanism is not expected to cause backwall connection

failure but is included in model development to have a numerically complete response

model for loading in both longitudinal directions.

(a) (b)

Figure 3.26: Generic abutment-backwall connection response models: (a) straight type
exhibiting passive fracture and active bending; and (b) haunched type showing bending
response in both loading directions.

Figure 3.25(c) shows a typical straight-backwall abutment design, where its geometry

and reinforcement details are summarized in Table 3.3. These dimensional models were
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created from a sample of 75 straight backwall of abutment designs for California box-

girder bridges (Roblee, 2018g). The bridges in the sample were randomly selected by

bridge number and broadly reflected geometric variability representative of modern (post-

1970’s) abutment designs used throughout the state. Based on a statistical analysis of the

sample plans, the backwall depth is assumed to be constant, and the remaining parameters

are considered lognormally distributed. In particular, distributions for three parameters

characterizing steel reinforcement are obtained, including the horizontal reinforcement on

the top of the stem wall (RHW), the vertical reinforcement close to the backfill (RCB), and

the vertical reinforcement close to the deck (RCD). The statistical distributions of these

parameters listed in Table 3.3 form the basis to develop the probabilistic response model

for the backwall connection spring.

Table 3.3: Distributions of geometric parameters and reinforcing details for
abutment backwall

Parameter Unit Distribution
Type§ µ† σ† LB

⊕
UB

⊕
Backwall depth d in C 12 - - -
Backwall height h ft LN 6 0.24 4.5 7

Bearing thickness a in LN 3 0.3 1.5 5.5
RCB area per wall width, ARCB in2/ft LN 0.35 0.6 0.15 1.6
RCD area per wall width, ARCD in2/ft LN 0.2 0.4 0.15 0.6

RHW area per wall width, ARHW in2/ft LN 0.4 0.6 0.15 1.6
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution,

respectively; σ denotes standard deviation and dispersion (logarithmic standard deviation) for
normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

Active Bending

Static pushover analyses were conducted in OpenSees on 320 backwall samples with a

unit width (1 foot) to generate probabilistic backbone curves in active bending. Latin

Hypercube Sampling (LHS) is used to generate the 320 numerical backwall samples from

the statistical distributions shown in Table 3.3. Note that the 320 number is considered

60



sufficiently large to obtain accurate results from LHS sampling and capture a

representative range of responses. The pushover force is applied at the mass center for

each analysis, namely mid-height on the backwall.

Figure 3.25(a) represents the simplification procedure used to characterize each

active-direction pushover response as a trilinear backbone model. Each backbone

response exhibits three phases: the initial linear elastic phase, the post-yielding plateau

phase, and the strength degradation phase. The simplification process involved first

identifying the fracture point with two controlling parameters: the displacement where the

reinforcement fractures e2p (unit: in) and the corresponding capacity sp (unit: kips per ft).

A horizontal line was then drawn back from the fracture point to the initial response to

define the yield displacement e1p (unit: in), which determines the initial stiffness. Finally,

a residual strength was assumed to be a conservatively low value of 5% of sp.

(a) (b) (c)

Figure 3.27: Backwall active bending model: (a) backbone curve modified from each
pushover response, comparison of distributions between analytical results and samples
from the generic model for (b) sp , and (c) e2p.

For application in the probabilistic analyses, it is convenient to express the backbone

shape with two controlling parameters, accounting for variable backwall heights. A

generic model was proposed in Equation 3.31. From basic mechanics for a cantilever

beam, Equation 3.31a relates the lateral resistance of a cantilever beam sp to be the base

moment capacity, M , divided by the backwall height h. Equation 3.31b provides the

distribution parameters for M determined from 320 backwall realizations. The other

controlling parameter e2p is approximately proportional to h2, as given by Equation 3.31c,
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because the contribution of the yield displacement to the total displacement is implicit and

the plastic hinge length is a proportion of the backwall height h. The value for the

proportion parameter k in Equation 3.31c is estimated as 0.1 in/ft2. The yield

displacement is assumed to be 0.1e2p for simplicity.

Fixed ratio models in terms of e2p were found to reasonably characterize the backbone

displacement values e1p and e3p. Figure 3.25(b) and (c) compare the distributions between

the analytical results (from pushover responses) and the sampled results (from the proposed

generic model) for the remaining two controlling parameters. A two-sample Kolmogorov-

Smirnov test (Kolmogorov, 1933; Smirnov et al., 1948) is applied to the data to test whether

the two datasets come from the same distribution. The p-values for testing sp and e2p

are 0.546 and 0.997, respectively, much higher than the typical significance level of 0.05.

Therefore, the test does not reject the null hypothesis and concludes that the data are drawn

from the same distribution.

sp =
M

h
(3.31a)

M ∼ LN(37.0 kips · ft/ft, 0.40) (3.31b)

e2p = kh2 (3.31c)

Passive Fracture

Due to the lack of experiments of straight backwall with a shear fracture in the literature,

a mechanical model for a non-isolated shear key (Figure 3.19(a)) is adapted to create the

backwall passive fracture model (Figure 3.21(b)). The similarity between these elements

is illustrated in Figure 3.23. Although a backwall is a longitudinal component and a shear

key is a transverse component, this adaption is reasonable because: (1) both the backwall

and the non-isolated shear key are subjected to impact forces from the deck; (2) the impact

forces act at the locations where the shear key and backwall collide with the decks, i.e., the
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bearing height a in Figure 3.20; and (3) the connection details between the shear key and

stem wall are similar to the ones between the backwall and stem wall.

Equation 3.32 are modified from Equation 3.28 and adopted for the calculation of

passive fracture capacity sn of the backwall. It is more reasonable to assume that the

orientation of the cracks in the backwall is 45◦ rather than cutting through to the base of

the stem wall because the backwall depth d in Figure 3.23(b) is much smaller than the

stem wall height H . Such a 45◦ cracking has been validated by previous experimental

results Megally et al. (2001). Equation 3.32c can be derived from Equation 3.28c because

the corresponding reinforcement is not transected by the proposed shear crack. ARHW and

ARCD are defined in Table 3.3.

sn = Vc + Vs (3.32a)

Vc = 2.4wd
√
f ′copsi (3.32b)

Vs =
1

d+ a
(ARHWfyd+ ARCDfyd) =

fyd

d+ a
(ARHW + ARCD) (3.32c)

The complete mechanical model (Zheng et al., 2021) for the backwall passive fracture is

shown in Figure 3.28(a). Displacement parameters are determined by applying the essential

formulas of the non-isolated shear key model Megally et al. (2001, 2003). Equation 3.33

expresses the relationship between the horizontal crack width (δ0) at the RHW level and the

strain of the horizontal reinforcement (ε), in which Ld is the reinforcement development

length, as given by Equation 3.29f and La is the horizontal distance of the crack region

(see Figure 3.23(a)). Experimental results indicate that such a crack region approximately

equals the bending wall width (Megally et al., 2001).

δ0 = ε(Ld + La) (3.33)

When the backwall fractures and rotates as a rigid body, displacement compatibility is

obtained and given by Equation 3.34a. The left-hand side describes the rotation angle at the
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impact level relative to the bottom-left end of the crack, namely the backwall displacement

en divided by the impact level height of (a + d). The right-hand side calculates the crack

width at the RHW level divided by the corresponding height of (d − c), in which c is

the concrete cover for the RHW. Substituting Equation 3.33 into Equation 3.34a yields

Equation 3.34b, which represents the passive fracture displacement en. The backwall starts

to yield when ε reaches the yield strain εy and loses strength when ε reaches εu = 0.7%

(Megally et al., 2001, 2003).

en
a+ d

=
δ0

d− c
(3.34a)

en = ε
(La + Ld)(a+ d)

d− c
(3.34b)

A procedure similar to that used to develop the generic backwall active bending model

is also employed to develop a model for passive fracture response. Here, application of LHS

to Equation 3.32 and Equation 3.34 is used to generate 320 probabilistic backbone curves.

Figure 3.28(a) shows a sample backbone curve, in which sn is calculated by Equation 3.32,

and e1n and e2n are calculated by substituting εy and εu into Equation 3.34b, respectively.

The generic model is then summarized in Equation 3.35 for the two controlling parameters

sn and e1n. The displacement e2n, where the strength starts to decrease, is assumed to be

3.5 times of e1n for simplicity as εu/εy ≈ 3.5.

sn ∼ LN(52.0 kips · ft, 0.20) (3.35a)

e1n =
sn

6.35sn + 130
(3.35b)

The same procedure is also applied to early-ductile (era-2) straight backwall designs,

which differ slightly from the modern (era-3) designs by the inclusion of additional

reinforcement stirrups at the base of the wall as shown in Figure 3.29. This increases the

fracture capacity of the backwall connection. The applicable model for era-2 designs is
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(a) (b) (c)

Figure 3.28: Backwall passive fracture model (Zheng et al., 2021): (a) backbone curve,
comparison of distribution between analytical results and samples from the generic model
for pre-ductile bridges: (b) sn , and (c) e1n

summarized in Equation 3.36.

sn ∼ LN(89.0 kips · ft, 0.20) (3.36a)

e1n =
sn

1.25sn + 520
(3.36b)

Figure 3.29: Straight backwall designed in early-ductile (era-2) bridges.
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Haunched Backwall

As detailed in Table 2.1 and Figure 2.6, many pre-ductile bridges (era-1) backwalls

incorporate a haunch detail, commonly on the backwall, but sometimes alternatively or

also on the deck. For these haunched cases, the failure mode in both loading directions is

flexural bending. The difference with the straight backwall in the passive direction is that

the point of loading application is now at the backwall top. For simplicity of application,

the response model for haunched backwall is taken as symmetric in both active and

passive directions, following the model described in Equation 3.31.

3.3.4 Pounding

Figure 3.30: Response model for pounding

The study by Muthukumar and DesRoches (2006) indicated that pounding between

bridge components causes energy dissipation and therefore can have a significant impact

on the overall bridge response.

The adopted pounding model is established by determining two stiffness K1 and K2

as the initial stiffness and post-yield stiffness, respectively (Muthukumar, 2003; Nielson,

2005). Derived from a two-degree-of-freedom system, the contact force due to pounding is

based on the Hertz contact model with nonlinear hysteresis damper. The adjacent pounding

components are assumed to be two spheres with the density of concrete material. With this

assumption, calculating the volume of two pounding objects leads to the radii of the two

spheres noted as R1 and R2. Then the stiffness parameter Kh of the Hertz model can be
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derived using the following equation:

Kh =
4

3π(h1 + h2)

√
R1R2

R1 +R2

(3.37)

where h1 and h2 are material parameters also representative of the same concrete material:

h1 = h2 = h =
1− ν2

πEc
(3.38)

where ν and Ec are the poisson ratio and elastic modulus of concrete, respectively. The

energy dissipated during the pounding procedure ∆E is calculated as:

∆E =
Khδ

n+1
m (1− e2)

n+ 1
(3.39)

Incorporating several constant parameter values (maximum penetration displacement

δm =1.0 inch, n = 1.5, e = 0.6), Equation 3.39 is further simplified into ∆E = 0.256Kh.

Effective stiffness then determined as Keff = ∆E
√
δm and used to compute the two

desired stiffness’s with Equation 3.40 with a = 0.1:

K1 = Keff +
∆E

aδ2
m

(3.40a)

K2 = Keff −
∆E

aδ2
m

(3.40b)

OpenSees modeling of the hysteresis properties of this material is accomplished by

incorporating two ElasticPPGap elements in parallel. Note that this model considers the

mass of two pounding structures, and thus, the force and stiffness scale of the material used

in the abutment system will be different from the one used in the pounding of adjacent

decks in an in-span hinge. Figure 3.31 compares the responses for pounding between

decks versus deck-to-abutment pounding for the bridge in Appendix A. Both responses

take the gap size as 0.5 inches. The figure indicates that the pounding force between decks
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is significantly higher than that between deck and abutment.

Figure 3.31: Pounding models hysteretic loops for different adjacent objects

3.3.5 Bearing

Elastomeric pads are used in all ductile (era-3) and early-ductile (era-2) designed bridges.

Steel rocker bearings are very common for non-ductile (era-1) designed bridges, although

a few late-era bridges adopted elastomeric pads.

This research models elastomeric pads as having a simple bilinear response as

illustrated in Figure 3.32(a). This is done within OpenSees using the Steel01 material with

zero strain hardening. Two parameters Ke and µ are used to construct a pad’s constitutive

model, in which Ke is the initial stiffness, and µ is the friction coefficient that generates

the yield strength Fy by multiplying by axial load N on the pad.

While elastomeric pads have the same constitutive model in both directions, steel

rocker bearings have very different responses in the longitudinal and transverse directions.

Figure 3.33(a) shows the rocker bearing most commonly used in early California bridge

designs. The bearing has a curved surface at the top and bottom in the longitudinal

direction, which accommodates translational movement. However, in the transverse
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(a)

(b) (c)

Figure 3.32: Response models for bearings: (a) elastomeric pads; and rocker bearings in (b)
longitudinal direction; and (c) transverse direction. The transverse rocker bearing model
includes both a frictional and a fuse component.

direction, the bearing must first fail a pair of retainer bracket bolts before responding as a

frictional connection. In these designs, the transverse restraint provided by the bearing

retainer assembly serves to limit transverse deck movement similar to a shear key.

This research adapts a model by Nielson (2005), developed for high expansion steel

bearings as shown in Figure 3.33(c), to the modeling of the typical California bridge

bearing assembly shown in Figure 3.33(a). The failure modes are comparable with the

exception that the transverse restraint is provided by a pair of pintles rather than

retainer-bracket bolts. However, once the pintles are sheared, all transverse restraint is

lost, whereas the shearing of any pair of the retainer-bracket bolts only allows movement

in one direction. Responses are considered comparable in the longitudinal direction.

In the longitudinal direction, Nielson (2005) validated the model against an

experimental test by using Steel01 material with parameters KeL = 80.0 kips/in,

KpL = 0.018KeL, and FyL = µN , in which µ = 0.04 is the friction coefficient and N is
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(a) (b) (c)

Figure 3.33: (a) Typical rocker bearings used in era-1 California bridges (6.0 inch height
with 2 nuts on each side in the transverse direction); (b) simplified diagram for force
calculation; and (c) high expansion steel bearings (Mander et al., 1996).

the axial load acting on the bearing. The dimension used by Nielson (2005) for validation

is 16.7 inch, which is different from the 6.0 inch bearing height used in California concrete

box-girder bridges. In order to adapt this validated model, it is assumed that the

overturning moment provided by the pintle (or the flat surface in Figure 3.33(b)) is the

yield base moment My. A bearing rocks to the yield base moment My when it reaches the

same tilted angle θ. Under this assumption, Equation 3.41 derives the relationship of

variables with bearing height H:

Fy =
My

H
(3.41a)

µ =
Fy
N

=
My

HN
(3.41b)

Ke =
Fy
dy

=
My

θH2
(3.41c)

Consequently, the model for typical rocker bearings used in California concrete box-girder

bridges is defined used the parameters: KeL = 620.0 kips/in, KpL = 0.018KeL, and
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FyL = µN , in which µ = 0.11 is the friction coefficient and N is the axial load acting on

the bearing.

In the transverse direction, two springs are used parallel to capture the complete

response, namely the fuse and friction springs. The fuse spring models the failure of

retainer pintles (or retainer bracket bolts), whereas the fiction spring models the kinetic

frictional movement between the rocker and the base plate after the failure of pintle (or

retainer bracket bolts). The friction spring is modeled using KeT1 = 1440 kips/in

(Nielson, 2005) , and FyT1 = 0.30N , where N is the axial load acting on the bearing. The

yield deformation of fuse spring is assumed to be 10 mm or 0.39 inch. The model

proposed by Steelman et al. (2014) is used to estimate the capacity of retainer pintles (or

bolts):

FyT2 = nb(0.6fu)Agb (3.42)

where nb is the number of retainer pintles or bolts; the 0.6 coefficient reflects the assumption

that pure shear controls capacity; fu is ultimate tensile strength of steel; and Agb is the

effective cross-section area of a pintles or bolts, and it’s recommended to be taken as 80%

of the nominal cross-section area for threaded nuts. Validation of the high expansion steel

bearing with pintles design against the experimental tests by Steelman et al. (2014) is shown

below. To adapt this model to rocker bearings used in California concrete bridges, the bolt

number nb in Equation 3.42 is changed to 2, accounting for the pair of bolts are sheared in

the transverse direction.

3.3.6 Foundations

Two general classes of foundations, piles and spread footings, are commonly used to

support both abutments and bents of California bridges. Figure 3.35 illustrates

parameterized models for the translational response of these two foundation types. Note

that large-diameter drilled shafts of various designs are also used at bent locations, but

these are treated as special cases of column-bent modeling.

71



Figure 3.34: Validation of the OpenSees model (red lines) against experimental tests by
Steelman et al. (2014).

(a) (b)

Figure 3.35: Response models for foundation translational springs: (a) piles; and (b) spread
footings.

Pile Foundation

A multi-linear model, defined by Hysteretic material in OpenSees, is used to capture the

seismic response of various pile foundation types using a set of models developed by Xie

et al. (2021, 2020). These transverse-response models all require five parameters as

illustrated in Figure 3.35(a): the ultimate strength s2 and corresponding deformation e2,

the ratio ρe12 between yield deformation and e2, ratio ρs32 between degraded strength and

s2, and the ratio ρe32 between the deformation at onset of degraded strength and e2.

The modeled s2 value represents the ultimate lateral resistance of a single pile. Most

pile foundations involve an array of multiple rows and/or columns of piles, and their

interactions typically reduce pile-group capacity below that of the simple summation of

individual pile capacities. This is commonly handled with ’group factors’ or
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capacity-reduction ratios. These factors, herein denoted fm, are applied to individual piles

based on pile spacing and pile position within the group and relative to the direction of

motion.

(Xie et al., 2021) suggested the following procedure, based on Rollins et al. (2006), for

computing a group amplification factor gf to scale up the backbone response of a single pile

to that for a group of piles. This process is performed separately for each loading direction.

Note that the amplification factor gf incorporates the impact of multiple group factor fm

applied to individual rows of piles. Figure 3.36 shows a 4 × 6 pile group representative

of a typical pile cap which might underlie a single column bent of a modern bridge. For

procedure illustration purposes, the amplification factor is only considered for the longer

axis undergoing a leftward direction of motion. In the direction of motion, there are nr = 6

rows and np = 4 piles at each row. S in the figure represents the center-to-center spacing of

piles, and D is the pile dimension. The group factors are largest for the leading row of piles

in the direction of motion, which engage the largest volume of soil, and become smaller for

trailing rows that are in the shadow of the leading row. The Rollins et al. (2006) procedure

assigns the larges group-factor value fm1 to the first row, a reduced value fm2 to the second

row, and the smallest value fm3 to the third and all subsequent rows as follows:

Figure 3.36: Illustration for calculating pile group effect.
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0.0 ≤ fm1 = 0.26 ln
S

D
+ 0.50 ≤ 1.0 (3.43a)

0.0 ≤ fm2 = 0.52 ln
S

D
+ 0.00 ≤ 1.0 (3.43b)

0.0 ≤ fm3 = 0.60 ln
S

D
− 0.25 ≤ 1.0 (3.43c)

The final amplification factor gf for this direction of motion sums up the individual pile

contributions by row and can be written as follows, where I(·) is the indicator function that

equals 1 if the condition is true and 0 otherwise.

gf = fm1np + fm2npI(nr > 1) + fm3np(nr − 2)I(nr > 2) (3.44)

Spread Footing Foundation

In this research OpenSees modeling of footing sliding behavior uses the TzSimple2

material (Raychowdhury and Hutchinson, 2008). This model requires two controlling

parameters: ultimate capacity tu and a deformation value z50 corresponding to 50% of tu.

The distributions adopted for this research are summarized in the Chapter 5.

3.3.7 Soil Loads on Structural Elements

Figure 3.37: Response model for passive soil loads.

The passive resistance of soil on a structural element, such as the backfill load on an

abutment, is typically modeled using nonlinear springs with a hyperbolic shape
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(Shamsabadi et al., 2007; Shamsabadi and Yan, 2008; Xie et al., 2019), where the soil

resistance is a function of the contact dimensions and embedment depth of the structural

element. Active soil resistance is not modeled. The probabilistic hyperbolic backfill-soil

model with depth effects developed by Xie et al. (2019) is adopted herein and modeled in

OpenSees using HyperbolicGap material. This same hyperbolic model formulation used

for backfill loads is also used to characterize passive loads acting on the front and side of

the abutment as well as on the sides of pile caps and footings. Depending on location,

these soil loads may be referred to as backfill, frontfil, or sidefill loads.

An important feature of abutment modeling adopted in this research per Figure 3.20

is isolating the different soil loads acting on the backwall and stem wall after backwall

fracture. To implement this, the Xie et al. (2019) model is extended used to allow separation

of backwall reactions into the backfill-A and backfill-B components. Equation 3.45 are

the general formulae for the backbone model where P is the unit reaction force for wall

displacement y, H is the wall height, H0 = 5.5 feet, and the parameters Pult,0, Kmax,0, α1,

and α2 are model coefficients which depend on backfill soil type. Rf is back-calculated for

the sampled values of Pult and Kmax.

P =
y

1

Kmax

+Rf
y

Pult

(3.45a)

Pult = Pult,0

(
H

H0

)α1

(3.45b)

Kmax = Kmax,0

(
H

H0

)α2

(3.45c)

Equation 3.46 show the implementation for backfill-A response where the parameters

Pult,A and Kmax,A are scaled from the total-height (i.e., backfill-A and backfill-B) response
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parameters which are initially specified.

Pult,A = Pult,T

(
HA

HT

)α1

(3.46a)

Kmax,A = Kmax,T

(
HA

HT

)α2

(3.46b)

Rf,A = 1− Pult,A
0.05Kmax,AHT

(3.46c)

As a first approximation considering the two backfill loads as parallel springs,

Equation 3.47 show that backfill-B response parameters Pult,B and Kmax,B are taken as

the difference between values for the total height and backwall height. For both the

backfill-A and backfill-B calculations, the Rf term is back-calculated assuming the

ultimate resistance is attained at the same mobilized deformation, which is taken as 5% of

the total wall height (HT ).

Pult,B = Pult,T − Pult,A (3.47a)

Kmax,B = Kmax,T −Kmax,A (3.47b)

Rf,B = 1− Pult,B
0.05Kmax,BHT

(3.47c)

An alternative strategy is adopted to address two minor deficiencies in parallel spring

simplification to separate the backfill-A and backfill-B. First, the Rf,A calculation in

Equation 3.46c is a function of the total height HT . The assumption means the response

model for the backfill-A soil depends on the height of the backfill-B soil, which is not

rigorously defined. Second, in the simplified approach, the resistance calculated by

subtracting backfill-A from total (PT − PA) is about 10% less than the backfill-B model

calculated by Equation 3.47 (Figure 3.38(a)); or in other words, the total resistance from

the two parallel springs (backfill-A and backfill-B) is not the same as modeling the

combined backfill directly.

To better address this problem, Equation 3.46c is first modified to use 0.05HA as the
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(a) (b)

Figure 3.38: (a) Difference between calculation of backfill-B model by subtracting backfill-
A from total and by Equation 3.47; (b) same comparison using Appendix D.

deformation attaining ultimate capacity in Equation 3.48. The remainder of the

modification uses polynomial equality to calculate the backfill-B parameters as detailed

Appendix D. Figure 3.38(b) shows this modified strategy addresses the deficiency in the

parallel spring approximation and produces compatible response values for backfills T, A,

and B.

Rf,A = 1− Pult,A
0.05Kmax,AHA

(3.48)

3.3.8 Skew Effects on Backfill Soil Response

Bridge skew has long been recognized to have an impact on bridge response and is routinely

incorporated into fragility assignments (FEMA, 2003). Accurate prediction of overall skew

effects must include consideration of the impact which skew has on backfill soil response.

This research adopts two modifications to backfill response models resulting from skew:

1) an overall reduction factor, and 2) a non-uniform distribution factor as illustrated in

Figure 3.39.

The overall reduction factor, identified by Shamsabadi and Rollins (2014), reduces the

total backfill response acting on a skewed abutment relative to an unskewed (or straight)

abutment per Figure 3.39(a). The reduction factor R(θ) is applied to the strength/stiffness
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of the response model of a straight bridge. An exponential decay relationship was proposed

by Shamsabadi and Rollins (2014) and then updated by Shamsabadi et al. (2020). This

project adopts the median reduction-factor model proposed in Shamsabadi et al. (2020)

where θ in Equation 3.49 is the bridge skew angle. Note that dispersion in this reduction

factor model is not considered since the Xie et al. (2019) backfill response model already

incorporates probabilistic effects.

R(θ) = e−0.021θ (3.49)

(a) (b)

Figure 3.39: Skew effects on soil behaviors: (a) overall reduction factor; and (b) non-
uniform distribution of soil resistance.

The second factor pertains to the local distribution of the soil capacity in a skew

bridge. As illustrated in Figure 3.39(b), the skewed abutment develops an asymmetric

passive soil wedge when the abutment is rotated. Moreover, the backfill soil volume,

mobilized per unit length of abutment wall, increases from the deck-obtuse corner toward

the deck-acute corner, as more soil is engaged at the deck-acute corner than at the

deck-obtuse corner. Equation 3.50 is the model proposed by Kaviani et al. (2012) which is

adopted for this research. The β(θ) value represents the maximum difference in response

over the full width of the abutment. Thus, the combination of the two skew factors on

backfill response becomes R(θ)(1 + β(θ)/2) at the deck-acute corner, and

R(θ)(1 − β(θ)/2) at the deck-obtuse corner. These response modifiers are applied

individually to both strength and stiffness values of each soil response in the
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finite-element model and are assumed to vary linearly with position along the abutment.

β(θ) = 0.3
tan θ

tan 60◦
(3.50)

3.4 Ground Motion Set and Structural Damping Model

3.4.1 Ground Motions

To develop fidelity in the PSDM, it is important to have a wide range of ground motions

with a large variation of Sa1 (spectral acceleration at 1.0 second) values or PGA (peak

ground accelerations) to ensure the evaluation of a sufficient range of bridge responses.

The current study utilizes the T1780 ground motions specified by Roblee (2015c,b),

selected from the NGA-2 database (Bozorgnia et al., 2014) and assembled by Mangalathu

(2017) and Soleimani (2017). These motions were developed specifically to be broadly

representative of a wide range of California bridge sites, and consist of the 320 scaled

recorded ground motions listed in Appendix B. As illustrated in Figure 3.40(a), the

distribution of the Sa1 values for the T1780 ground motions (from 0.01 g to 2.72 g) is

wider than that of Baker et al. (2011) used in early feasibility phase of this project.

Further, a greater proportion of the T1780 records have high Sa1 values to better assess

bridge responses in the nonlinear regime. These T1780 ground motions were specified as

20 sets with 16 ground motions in each set having an ensemble average Sa1 which closely

approximates a target Sa1 value for the set. As shown in Figure 3.40(b), the median Sa1

increases from set-20 to set-1 with a progressively higher concentration of motions from

the elastic to the highly-nonlinear structural response regimes. All 320 downloaded

excitations have two orthogonal components and are randomly oriented and applied to the

longitudinal and transverse directions of bridge models.

Although the original T1780 set shown here included several motions in the high

nonlinear response region, project experience showed that these alone were insufficient to

accurately constrain the high-demand response of modern ductile bridges having
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(a) (b)

Figure 3.40: Features of the T1780 (Roblee, 2015c,b, 2016d) ground motion sets: (a)
comparison of Sa1 distributions used in earlier feasibility studies (from Baker et al. (2011))
with T1780 set used in this study; and (b) distribution of Sa1 values for each of the 20
T1780 sets relative to the target spectrum for each set.

high-capacity components. Therefore, an additional set of even high-level motions was

created by uniformly scaling set-1 and set-2 of the T1780 motions to 3.00 g to improve the

prediction accuracy of the demand models of modern bridges.

Finally, note that the selection of Sa1 as the intensity measurement (IM) in the PSDM

model is based on the work of Ramanathan (2012), which indicated that Sa1 is the optimal

intensity measure for the class of California concrete box-girder bridges.

3.4.2 Damping Model

Rayleigh damping (Rayleigh, 1896) is one of the most commonly used damping models

that is adopted in this research. The frequency characterizes Rayleigh damping within two

bounding structural frequencies ωi and ωj , where the damping ratio within this range is

smaller than ξ. For a mode shape involving oscillation of only a small part of the structure

(a local mode), the corresponding frequency is usually substantial, which results in a

substantial damping ratio. Those high-frequency modes are overdamped and thus limit the

considered modes to lower frequencies.
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Figure 3.41: Rayleigh damping model.

Two parameters are needed to specify a Rayleigh damping model. These two

parameters correspond to the structure mass matrix (M ) and tangent stiffness matrix

(KT ), respectively, and the damping matrix for an element (D) is specified as a

combination of M and KT by the following equation:

D = αM + βKT (3.51)

where α =
2ξωiωj
ωi + ωj

and β =
2ξ

ωi + ωj
. ωi and ωj are the structure frequencies

corresponding to the ith and jth mode shapes. Based on the established rules for use of of

Rayleigh damping, in order to damp out higher modes, the modes considered in this

research are specified as the 1st and the 5th modes. This assumption is based on

simulation results which show that most analyzed concrete bridges have a local mode

shape after the 5th mode. An example verification of dynamic modeling using this strategy

for Rayleigh dampling specification can be found in section C.5.

3.5 Deterministic Example Illustration (OSB-1 Bridge)

Simulated deterministic responses for the two-span box-girder multi-column bent bridge

with seat-type abutment shown in Appendix A are used in this section to demonstrate the
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effects of several of the adopted modeling strategies described earlier in this chapter.

3.5.1 Abutment Models

This first section explores the impact of adopting the abutment model illustrated in

Figure 3.20 by contrasting its responses for primary bridge components with those

produced by two conventional models. The identical bridge model is analyzed using the

adopted abutment model (Figure 3.20), referred to as Model-A hereafter, and two

conventional abutment modeling schemes (Figure 2.7) called Model-C1 and Model-C2

used in prior research. Model-C1 and Model-C2 differ only in the value assigned to the

backfill spring. Model-C1 assumes the backfill height to be limited to the backwall height

(i.e., considers only backfill-A) throughout loading. Model-C2 assumes the backfill height

to extend the total wall height (i.e., considers both backfill-A and backfill-B) throughout

loading. Model-A also considers response contributions of both backfill-A and backfill-B

but allows for decoupling during loading upon backwall fracture. Note that the C2 model

assumption of using total abutment-wall height for estimating backfill reaction force is not

commonly used for design. Its inclusion in this paper is primarily to illustrate

end-member modeling options which produce results that bracket and provide context to

the responses produced by the adopted model. All models use the same transverse

configuration as Model-A to isolate the difference in longitudinal response caused solely

by backwall fracture.

Pushover Analysis in Longitudinal Direction

Longitudinal pushover responses of the primary components of the bridge system are

compared in Figure 3.42 for the three alternative abutment models (Model-A, Model-C1,

and Model-C2). Figure 3.42(a) compares the total abutment reaction, which consists of

the forces in springs backfill-A, backfill-B, and foundations in Figure 3.20.

Figure 3.42(b)-(d) compare the passive responses of the backfill, bearings, and
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longitudinal foundations in the abutment, respectively. Before the closure of the joint gap

between the backwall and deck (at 2.0 inches), the deck response is controlled only by the

bearings. In this stage, all three models exhibit the same behavior. After the gap is closed,

the three models start to behave differently. Each model is separately discussed below.

For Model-C1, the abutment is laterally supported by backfill-A and the foundation.

Figure 3.42(a) shows that the abutment reaction reaches the 2350 kips peak at about

3.0 inches and then starts to decrease due to failure of the abutment foundation. The

backfill provides an ultimate resistance of about 1550 kips (Figure 3.42(b)), but provides

only about 1250 kips when the piles reach peak capacity at about 1.7 inch deformation.

The bearings deform by only 2.0 inches (Figure 3.42(c)) before “locking” due to closure

of the 2.0 inches joint gap and minor deformation of the impact element. Since this model

does not consider the backwall fracture, the deck continues pushing the backwall, stem

wall, and abutment foundation. Thus, the abutment foundation experiences a large

post-peak deformation (Figure 3.42(d)), whereas the bearings experience only a small

deformation controlled by the joint gap.

For Model-C2, the abutment has an additional resistance from backfill-B compared to

Model-C1. Due to the large and increasing capacity of backfill-B, the abutment reaction

continues increasing (Figure 3.42(a)) even as the foundation fails. At a displacement of

10.0 inches, the Model-C2 reaction is larger than those of the other two models by about

4000 kips (Figure 3.42(b)). Again, since Model-C2 does not consider backwall fracture,

bearing deformation remains in the elastic range reaching only 2.4 inches (Figure 3.42(c)),

and large foundation deformation is also observed in this model (Figure 3.42(d)).

Unlike Model-C1 and Model-C2, the backwall fracture mechanism is considered in

Model-A to decouple the responses of backfill-A and backfill-B accurately. As shown in

Figure 3.42(a), the Model-A reaction includes both backfills and the foundations before

the backwall fracture at approximately 3.1 inches. Once the backwall fractures, the

Model-A reaction loses the support of both backfill-B and the foundations and is suddenly
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(a) (b) (c)

(d) (e) (f)

Figure 3.42: Bridge responses in both the longitudinal direction: (a) east abutment, (b)
backfill, (c) bearing, and (d) abutment foundation; and the transverse direction: (e) entire
bridge and (f) shear key.

reduced to nearly the capacity of backfill-A alone. Note that after the backwall completely

fractures, only limited force from the deck can be transferred to backfill-B and the

foundations through the bearings and the 5% residual strength of the backwall connection,

which is the reason why the total backfill force in Model-A is slightly higher than that in

Model-C1 seen in Figure 3.42(b). Figure 3.42(d) highlights the difference in

abutment-foundation response where Model-A, because of the backwall-fracture

mechanism, protects the foundation and limits its deformation to roughly 0.8 inch.

Further, the foundation response in Model-A is primarily within the elastic range and well

below its ultimate capacity. In contrast, the other two models show that the foundations

exceed peak-strength capacity and undergo substantial residual displacements. However,

Figure 3.42(c) shows that Model-A places the highest demand on the bearings, which

experience considerable displacement and failure as the bridge deck moves relative to the
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abutment stem wall. The combination of allowing backwall and bearing failure is

consistent with modern design strategies focused on protecting expensive foundation

elements in favor of replacing inexpensive and accessible backwall and bearings.

Pushover Analysis in Transverse Direction

In the transverse direction, shear keys can play a similar sacrificial role as the breakaway

backwalls did in the longitudinal direction – shear keys are allowed to fracture to protect

the abutment foundations. In order to illustrate this behavior, the Model-A bridge deck is

uniformly pushed in the transverse direction. Responses for the conventional abutment

models are identical since all use the same transverse spring-element configuration.

Figure 3.42(e) highlights the main stages of overall bridge response associated with the

isolated external shear key response shown in Figure 3.42(f). Point-1 corresponds to

key-gap closure. Before that point, lateral resistance to deck movement arises only from

the abutment bearings and bent columns, both responding elastically. The lateral response

increases rapidly from Point-1, where the key and abutment foundation is engaged, are

Point-2, where the key yields. The response from Point-2 to Point-5 corresponds with the

ascending inelastic segment of the shear key response. The abutment foundation remains

engaged but to a limited, softer degree. Point-3 corresponds to bearing yield along that

portion of the response, and Point-4 corresponds to the initial yielding of the foundation.

As the shear-key fails at Point-5, the abutment foundation reaction is released, and the

deck is entirely supported by the bent columns and minimal abutment resistance

transferred through the bearings to the abutment foundation.

3.5.2 Deck Models

Per Figure 3.1, two alternative strategies – spine and grillage – were considered for

modeling the elastic deck component. Figure 3.43 illustrates differences arising from

these alternatives. To illustrate the effects on the column behavior, the two-column bridge
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in Appendix A is modified to be a three-column bent bridge with each column section

being 48 inches diameter having 24#11 longitudinal reinforcements. Upon application of

axial loading (bridge self-weight), the column axial-load and transverse movements are

recorded per Figure 3.43 where the ’analysis factor’ is the proportion of full gravity load.

(a) (b)

(c) (d)

Figure 3.43: Comparison of axial load behavior of three-column bent for (a) spine model
and (b) grillage model; and initial transverse deformation for (c) spine model and (d)
grillage model.

Figure 3.43(a) shows that the use of the spine model causes a significant difference

between the axial load of the center column (1300 kips) and side columns (600 kips). In

contrast, the use of the grillage model results in a uniform 830 kips axial load across all

three columns as shown in Figure 3.43(b). Figure 3.43(c) and (d) show a tenfold difference

in the transverse deformation at the column base between the two models. The spline

model generates an initial displacement of about 0.01 inches upon application of the axial

loading protocol, while the grillage model shows negligible deformation. The phantom

added deformations of using the spine model impact the PSDM in a low Sa1 region, which

in turn alters the trend of the regression models.
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3.5.3 Column Failure Mode

This case study compares pushover performance of the ductile column design for the bridge

in Appendix A with two pre-ductile designed (era-1) columns. The two era-1 columns

have the same longitudinal reinforcement ratio but are modeled using a fixed base and

#4@12” transverse reinforcements to facilitate the lap-splice and shear failures. The lap-

splice case has a 2.0 feet lap length. Figure 3.44 presents monotonic pushover results for

the three design cases. The response is expressed in terms of normalized shear force versus

displacement ductility.

Figure 3.44: Comparison of column failure with pushover analysis

The ductile flexural column outperforms the two pre-ductile columns in terms of

column ductility. Adopting a typical design definition for failure as 80% remaining force

capacity, the flexural column reaches ductility of 11, while the other two quickly lose

capacity after attaining the peak strength and reach the failure state at ductility of about

3.5. Comparing the two pre-ductile column designs, the lap-splice column shows

relatively higher ductility than the shear column.
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3.5.4 Transverse Constraints: Shear Keys and Rocker Bearings

Finally, a dynamic simulation is used in this section to illustrate the impact of alternative

transverse constraints on bridge motion. The S07 R03 ground motion listed in Appendix B

is used as the free-field input motion for this simulation.

Results comparing the two types of external keys are shown in Figure 3.45(a). For the

modern ductile design era, non-isolated external shear keys are commonly used. The

non-isolated shear key has a higher capacity, and while its response exceeds peak strength

(Figure 3.45(b)), it does not entirely fail during this loading and thus limits deck-center

displacements to approximately 7.0 inches. In contrast, the emerging isolated shear key

(the per-plan design in Appendix A), has a lower capacity and releases completely,

allowing deck-center displacement to reach approximately 17.0 inches. The higher

non-isolated shear key capacity also produces larger abutment foundation loads

(Figure 3.45(c)), but in this instance, the foundation remains in the elastic range.

Combining internal shear keys with external non-isolated shear keys is often used in

early-ductile designed (era-2) bridges. Figure 3.3(d) to (f) compare the performance of

this design to that discussed above using the external non-isolated key only. Here, the

deck center displacement slightly decreases due to the additional internal shear key. The

internal shear keys also share the resistance with the external shear keys and thus reduce

deformation. The internal shear key hysteresis loop is illustrated in Figure 3.45(f) and

shows the key to be near complete failure in one direction while the external key has

remaining capacity.

Lastly, substantial shear keys are not found in pre-ductile designed (era-1) California

bridges. Instead, the retainer brackets of the rocker bearings serve to provide a transverse

constraint. However, as illustrated in Figure 3.45(g) to (h), the capacity of this bracket is

typically lower than an external non-isolated shear key capacity; hence the deformation is

more significant than the era-3 bridges. Bearing damage in Figure 3.45(h) shows that the

elastomeric bearing in era-3 bridges remains in the elastic range, while the rocker bearing
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has failed and slides about 12 inches.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.45: Comparison of transverse constraints. External isolated shear key v.s. non-isolated shear key: (a) deck center displacement
time-history; (b) shear key hysteresis; and (c) abutment foundation deformation. External isolated shear key v.s. with internal shear key:
(d) deck center displacement time-history; (e) shear key hysteresis; and (f) internal shear key hysteresis. External non-isolated shear key
v.s. rocker bearings: (g) deck center displacement time-history; and (h) bearing hysteresis.
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3.6 Closure

This chapter described the techniques used in this research for establishing

three-dimensional nonlinear dynamic models for concrete box-girder bridges. Modeling

strategies adopted for various bridge components are covered, including superstructure,

columns, and abutment. A grillage model is adopted to simulate the superstructure. As for

the column, modeling procedures for flexural, flexural-shear, shear, and lap-splice

columns are discussed. Modeling of flexure critical column uses emerging concrete and

steel models and considers strain-penetration effects, reduced sections, and approximately

address the numerical localization issue. To model flexural-shear/shear critical columns, a

new shear capacity is developed, and the shear spring is extended to the collapsed stage

with a bilinear model. All column models are validated against an extensive set of

experimental tests. The flexural column model is also used in dynamic analysis and found

to compare favorably with experimental results.

Another innovative model is adopted herein to incorporate a backwall fracture

mechanism in the abutment models. An advanced spring system was described, and the

full backwall fracture model was developed for application within a probabilistic

framework. Strategies for modeling techniques for other abutment components such as

bearings, and shear keys, and soil responses were also presented. Specifically, the

backfill-B model is optimized based on the framework of Xie et al. (2019).

This chapter concludes with case studies based on variations of the OSB1 bridge.

First, the newly adopted abutment modeling scheme was compared with two conventional

models and shown to provide more complete and realistic responses and component

interactions. Pushover responses comparing column failure modes showed the ductile

column to have higher ductility than the lap-splice or shear column. Finally, a comparison

of transverse constraints showed that the isolated external shear key conveys smaller

lateral forces to the abutment foundation than the non-isolated external shear key; the
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internal shear key combination has minimal impact on the overall bridge performance;

and that rocker bearings have much lower strength than external shear keys and result in

significantly larger deck displacement.
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CHAPTER 4

EMERGING COMPONENT CAPACITY LIMIT STATE MODELS

A ’limit state model’ establishes a direct relationship between a qualitative named

condition, or ’state’, and quantitative metrics expected to predict that state. Limit state

models can be implemented at both the ’component level’ and at higher ’subsystem’ or

’system’ levels.

At the component level, a state definition is expressed in terms of specific expected

damage to a single component type, and this is coupled with a ’Component Capacity

Limit State (CCLS) model’, or the statistical distribution of a specific ’Engineering

Demand Parameter (EDP)’, which is expected to predict that state. In this research, all

CCLS models are expressed as lognormal distributions having median and dispersion

terms.

At the higher subsystem/system levels, the state definition is expressed in broader

terms indicative of the more generalized performance of the combination of included

components. These higher-level models must consider the CCLS models of each included

component and ’roll up’, or logically combine, the likelihood that the damage state of any

single component corresponds with the generalized subsystem/system performance

definition. This roll-up procedure requires an ’alignment’ of the individual component

damage states to have common performance implications that are described in the

generalized subsystem/system state definition.

Whether deployed at the component or subsystem/system level, a complete set of limit

state models typically considers multiple states which specify a progression of damage or

performance from least to most impactful. The preponderance of existing fragility literature

is organized around a framework of four damage states (plus a no-damage state). This

corresponds with the widely adopted loss-estimation framework of HAZUS (FEMA, 2003)

93



which defines a progression of generalized system-level damage states listed as none (ds1),

slight/minor (ds2), moderate (ds3), extensive (ds4), and complete (ds5).

For the development of the ’2nd-Generation Fragility (g2F)’ models considered

herein, Caltrans (Roblee, 2017d) outlined a refined limit-state framework consisting of

seven damage states (plus a no-damage state) intended for consistent application from the

component to the system levels. This 7-state framework was better aligned with Caltrans’

emerging probabilistic bridge-design methodologies (Saini and Saiidi, 2014;

Bromenschenkle et al., 2015), and met recognized needs for added granularity at both

ends of the damage spectrum to better define secondary-component damage at the low end

and to better characterize operational implications of failure at the high end. Taken

together, this enhanced limit state framework facilitates improved post-earthquake

situational awareness and response operations, supports better damage and loss estimates,

and provides planners and bridge designers with information needed to advance seismic

mitigation and transportation-network reliability initiatives.

It is critical to note, as this dissertation is written, the g2F project is actively underway

and important details of the CCLS models, and their alignment within the 7-state

framework, have not been finalized nor vetted through Caltrans review processes.

Nevertheless, this chapter presents several emerging CCLS models and alignments which

represent current concepts. These, in turn, are used in the remaining chapters to illustrate

the complete methodology for development of g2F fragility models at the component,

subsystem and system levels. Although the CCLS models and fragility results presented

herein cannot be viewed as final and authoritative, they are considered reasonably

representative of general trends in expected seismic performance for the modern bridge

classes considered. However, these results are subject to change as the details and

alignment of the CCLS models are finalized. Caltrans serves as the sole source for final

authoritative models and information regarding the g2F project.

The remainder of this chapter describes the emerging CCLS models used herein to
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compute fragility models in the remaining chapters. Discussion begins with an overview

of the g2F state framework which aligns component damage CCLS models to

whole-bridge system level states. Next is an extended overview of the research completed

to define CCLS models for the most critical component in a bridge system - columns. This

includes compilation of experimental column test data from the research literature into a

data set called ’Resource Package 1 (RP1)’ (Zheng et al., 2020) and supplemental

analyses conducted to extend the experimentally-based models to higher states and for

consideration of bent-frame or redundancy effects. Finally, this chapter covers the

development of CCLS models for several other bridge components, including several

expressed in terms of ranges of performance-backbone response.

4.1 g2F State Framework

The g2F project establishes an overarching framework for alignment of top-level ’Bridge

System States (BSS)’ through to underlying ’Component Damage States (CDS)’ for

multiple bridge components and their groupings. The BSS are expressed in terms of

post-earthquake operational considerations including traffic state and potential emergency

repairs per Table 4.1.

This framework is structured around seven aligned earthquake-impacted states, BSS 1

through BSS 7 at the system level, and CDT 1 through CDT 7 at the component level,

plus an assessed no-observable damage state (BSS 0 and CDT 0). Table 4.1 also shows

an approximate mapping of the g2F system-level states to those of HAZUS (FEMA, 2003)

which attempts to balance differences in g2F-HAZUS state mapping relationships which

vary by bridge component (Roblee, 2020d).

Comparison of the two state frameworks (i.e. g2F vs. HAZUS) in Table 4.1 reveals

similar concepts expressed and grouped somewhat differently. The first two g2F states

separate the ’slight/minor (ds2)’ state of HAZUS into ’observable damage (BSS 1)’ (such

as observable concrete hairline cracking not likely to require emergency repair) and the
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lower portion of ’repairable minor damage (BSS 2)’ (such as minor open cracking that

can be simply repaired using epoxy injection). The exact positioning of the g2F separation

relative to the HAZUS state varies by g2F component and is approximate. The ’moderate

(ds3)’ HAZUS state overlaps with all or portions of several g2F states (BSS 2 through

BSS 4) which involve repairable damage having varied impact on bridge-system function,

but where the bridge remains open to at least some level of traffic. The ’extensive (ds4)’

HAZUS state overlaps with all or portions of the g2F states (BSS 4 through BSS 6)

mainly associated with a severely damaged bridge likely to be closed to public traffic for

an extended period. The g2F state BSS 5 is intended to encompass ’design failure’

corresponding to the ultimate state in most design procedures where the bridge system has

failed from a design point of view, but is considered stable with roughly 80% of ultimate

lateral force capacity remaining. The ’complete (ds5)’ state in the HAZUS model

encompasses the remainder of the g2F states (BSS 6 and BSS 7). The g2F framework

seeks to differentiate degrees of “failure” having different operational implications. While

states BSS 5 through BSS 7 all denote failure and bridge closure of some kind, BSS 5 is

considered stable requiring little immediate attention (beyond closure), while BSS 6

denotes an unstable bridge requiring site security and rapid demolition, and BSS 7

denotes bridge collapse which may involve search and recovery operations.

Table 4.2 extends the bridge-system state descriptions in Table 4.1 downward to

lower-level groupings of components identified as primary and secondary components.

Primary components are those components that have a significant impact on bridge

stability and life safety. Among all components considered in this research, only the

internal supports (i.e. column hinge and overturning damage and single-column-bent

foundation-rotation damage) and deck unseating are considered primary components; and

all other components (e.g. the abutment backwall and shear keys, abutment and bent

foundations, joint components such as seals and bearings, etc.) are taken as secondary

components as their failure will not cause bridge collapse. In the capacity model, primary
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components are defined through the final state (CDS 7), while CDS 5 is the highest

defined state for secondary components. Note that secondary components are aligned to

the g2F framework based on system-level operational consequences, so complete failure

of any specific component may align with any one of multiple states (i.e. CDS 1 through

CDS 5).
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Table 4.1: g2F bridge-system level state definitions in terms of post-earthquake operational impacts (Roblee, 2021c) and approximate
alignment with HAZUS bridge-system level damage states (Roblee, 2020d).

BSS 0 BSS 1 BSS 2 BSS 3 BSS 4 BSS 5 BSS 6 BSS 7
T 01 T 12 T 23 T 34 T 45 T 56 T 67

Proposed
Bridge-System

State:

Assessed-
No Damage

Observable Damage
Intact System Function

Repairable
Minor Damage

To System Function

Repairable
Moderate Damage

To System Function

Repairable
Major Damage

To System Function

Failed, But Stable System
”Design Failure”
(∼80% RemCap)

Unstable
System

(∼50% RemCap)

Collapsed
System

(∼20% RemCap)
Impact
Level: None

Very Low
Potential Impact

Low
Potential Impact

Low-Medium
Potential Impact

Medium
Potential Impact

Medium-High
Potential Impact

High
Potential Impact

Extreme
Potential Impact

Likely
Traffic
State:

Public w/ Near-
Normal Ride Quality

Public w/
Reduced Ride Quality

Public w/
Speed Restrictions

Public w/ Lane or
Weight Restrictions

Emergency Vehicles Only
w/ Restrictions

Closed (At Least)
Temporarily

Closed Long-Term
(Demo Equip Access)

Closed Long-Term
Emergency Response

Potential
Emergency

Repair:
None

Inspection &
Debris Clean-Up

Traffic Controls,
Minor Grade Leveling

Major Grade Leveling,
Lane Barriers

Precautionary
Shoring/Bracing

Shoring/Bracing
Required to Re-Open

Secure Site for
Demolition/Safety

Controls/Services for
Search/Recovery/Safety

ds1 (None) ds2 (Slight/Minor) ds3 (Moderate) ds4 (Extensive) ds5 (Complete)
HAZUS state
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Table 4.2: g2F generic damage state definitions in terms of primary and secondary component functionality (Roblee, 2021c)

CDS 0 CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
T 01 T 12 T 23 T 34 T 45 T 56 T 67

Primary
Component

Damage:
Undamaged

Incidental
Component Damage
Full Function Intact

Minor
Component Damage
Core Function Intact

Moderate
Component Damage
Core Function Intact

Major
Component Damage
Restorable Function

Irreparable
Component Damage
(But System Stable)

Irreparable
Component Damage

(w System Instability)

Catastrophic
Component

Damage
Primary

Component
Repairs:

na
Routine

Maintenance
Minor Repairs of

Existing Component
Substantial Repairs of
Existing Component

Enhancements
of Existing
Component

Replacement
of Components

Replacement
of Bridge

Replacement
of Bridge

Secondary
Component

Damage:
Undamaged

Minor
Component Damage
Core Function OK

Substantial
Component Damage
Diminished Function

Component
Failure

Low System
Impacts

Component Failure
Medium

System Impacts

Component Failure
High System Impacts

Secondary
Component

Repairs:
na

Minor Comp. Repair,
Largely Aesthetic

Major Comp. Repair
To Restore Function

Replace Component
To Restore Function

Replace Component
and Minor

System Repairs

Replace Comp. &
Major System Repairs
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4.2 Column Capacity Limit States

Columns are one of the primary components and have a significant, and often governing

impact on the seismic reliability of a bridge system. Therefore, carefully defined column

capacity limit states are essential for developing an accurate fragility model. This section

reviews the development of a seven-damage-state column capacity model. An extensive

experimental column data set is first compiled and analyzed to establish an initial CCLS

framework based on physical tests. However, very few of these experimental tests were

carried to the unstable and collapse states due to laboratory limitations and safety

protocols. To supplement the limited experimental information, a series of finite element

analyses were conducted to consider both high-state column damage and load-path

redundancy effects of multi-column bents.

4.2.1 Column Types in California Bridges

Researchers have shown that the seismic detailing of bridges in California significantly

changed in different periods, and therefore, the responses of different components varied

(Ramanathan, 2012). Sensitivity analysis also showed that the design era is a key variable

in bridge fragility analysis (Mangalathu, 2017).

Identification of systematic differences in column detailing between design eras was

the first step in developing a rational framework for both grouping experimental tests and

identification of response trends. Toward that end, Roblee (2017e) compiled typical

column-design details for three eras of California bridges having both regular and wide

sections and having both fixed-base and pinned-base connections to the foundation.

Figure 4.1 provides compares typical detailing for three eras of fixed-base regular-section

single-column bents.

Era-1 is considered the pre-ductile era of California bridge design before practices

incorporated the lessons of the 1971 San Fernando earthquake. Lap spliced longitudinal
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Figure 4.1: Illustration of detailing differences for typical California single-column-bent
bridges from design era-1 to era-3 (from left to right) (Roblee, 2017e).

reinforcement is typical at the base of columns. The typical transverse reinforcement

configuration is #4@12′′ hoops with cross-ties for wide sections, and the transverse

reinforcement ratio ranged from roughly 0.1% to 0.25%. Rectangular wide sections were

frequently employed, often having aspect ratios exceeding 2.0. Transverse reinforcement

was typically terminated with 18-inch lap splices or 90-degree hooks.

Era-2 is considered the early-ductile era of California bridge design existing between

roughly the 1971 San Fernando and the 1989 Loma Prieta and 1994 Northridge events.

This design era saw removal of longitudinal lap-splice connections from the plastic hinges

regions and ductile detailing of most columns and some foundation connections.

Continuous spiral reinforcement around circular cores became common, and volumetric

reinforcement ratio ranged from about 0.3% to 1.0% with spacing from about 3 to 6

inches. Wide sections transitioned from rectangular to oblong sections, typically having

an aspect ratio of 1.5 to 2.0. Flared columns were common, but flare detailing is now

recognized as poor as it could reduce effective shear-span ratio and lead to mixed

flexure-shear failure.

Era-3 is considered the modern ductile era of California bridge design existing since

incorporation of lessons from the 1994 Northridge event. Specifications now limit

transverse spacing to be less than 6 times the diameter of longitudinal reinforcement and
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volumetric reinforcement ratio ranges from about 0.55% to 1.35%. Foundation connection

details were significantly enhanced with the addition of top mats and by extending column

confinement fully into thicker footings/caps. The use of architectural flares diminished,

and those that exist typically adopt a flare-isolation detail having a 2 to 4 inches gap

between the flared top and the superstructure.

Although columns within a specific design era have similar design details, their

responses may differ substantially due to distinctive failure modes arising from different

column geometries, fixity conditions, axial loads, and reinforcement detailing. Nearly all

era-3 and most era-2 designs fail in flexure mode, with some predicted to fail in mixed

shear-flexure mode. In era-1, all column failure modes (flexure, mixed flexure-shear, and

brittle shear) can occur. Additionally, the longitudinal lap splice (starter bar) detail can

induce a relatively brittle lap-splice failure mode. Also, the existence of lapped-hoop

details introduces significant uncertainty into the integrity of lateral confinement.

4.2.2 Column Experiment-Based Performance Dataset, RP1

In an effort to establish a firm physical basis for column CCLS models, experimental results

from 198 test specimens were compiled from the research literature and summarized in a

column-performance dataset called ’Resource Packet 1 (RP1)’ (Zheng et al., 2020).

The dataset adopts column displacement ductility as the recorded engineering demand

parameter EDP. Previous methodologies of developing column damage states used

curvature ductility as the EDP . However, most experimental tests did not include

curvature ductility values in the experimental reports. Some previous researchers

converted displacement ductility into curvature ductility using an estimated plastic hinge

length. This processing procedure caused an objective bias in the curvature ductility

values. Furthermore, in numerical modeling, curvature estimation may not be accurate

enough when there is a localization issue, as mentioned in Chapter 3. Moreover, curvature

ductility only reflects a column’s local flexural damage, compared to displacement

102



ductility that represents the overall global column damage including shear mechanisms.

For some tall slender columns, local damage cannot account for overturning hazard due to

the P-∆ effect, while this hazard can be expressed in terms of metrics related to

displacement ductility. Consequently, in this research, the displacement ductility is used

as the primary metric for column damage.

The RP1 column-performance dataset is based on a collection of column tests from the

United States and New Zealand which includes column dimensions, materials strength,

design codes, reinforcement details, experimental column boundary conditions,

experimental lateral strengths, computed shear capacities, damage descriptions, and limit

state values in terms of displacement ductility. In addition, the transverse reinforcement

spacings are categorized for inside and outside plastic hinge regions, respectively. The

spacing inside the plastic hinge regions, and other parameters such as transverse

reinforcement ratio, are used to distinguish column design eras.

Classification of column failure modes is based on a combination of the calculated

shear capacity, recorded descriptions, and reported specimen damage. Ultimately, the 198

columns are classified into “Era-3 Flexural Columns” (58 columns), “Era-2 Flexural

Columns” (48 columns), “Era-1 Flexural Columns” (15 columns), “Era-3 and Era-2

Flexural-Shear Columns” (32 columns), ”Era-1 Flexural-Shear Columns” (18 columns),

“Shear Columns” (14 columns), and “Era-1 Lap Spliced Columns” (13 columns).

Adoption of displacement ductility as the primary metric for column CCLS models

required identification of a reference displacement for normalization of the test data.

Generally, the yield displacement of the column is used as the reference displacement.

However, the actual yield point corresponding to the first reinforcement yielding is not

always accessible. In order to apply the same rule for all the selected experimental test

columns, the idealized yield displacement as defined by Park (1989) was selected for this

project. The idealized yield displacement is determined by first identifying the maximum

lateral strength Vmax as the envelope of the lateral strength versus displacement response,
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as demonstrated by the upper horizontal dashed line in Figure 4.2. Then, the elastic linear

stiffness branch is defined by passing through the point of 75% Vmax on the column

response and extending to the Vmax level on the envelop. The idealized yield

displacement is determined as the displacement corresponding to the intersection between

the Vmax level and the elastic linear branch.

Figure 4.2: Definition of idealized yield displacement (Park, 1989)

4.2.3 High State and Redundancy (HS-R) Study

Although the RP1 dataset established a firm physical basis for the column limit state

system, 75% and 95% of these experiments did not extend testing into the last two limit

states desired for the g2F project. In order to supplement the experimental dataset, a

complementary program of column analyses, herein called ’High State and Redundancy

(High State - Redundancy (HS-R))’ studies were conducted to analytically extend

understanding of column performance through the last three (failure) states and to

investigate other effects of both column fixity and bent-frame effects (load-path

redundancy). Note that bent-frame effects were only considered for transverse loading of

multi-column bents, but both 2-column and 3-column bents were investigated. For

single-column bents, the effects of column-top fixity (free or fixed) was investigated. All

HS-R analyses were conducted on column designs representative of California bridge

columns.
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The first step of the HS-R studies was sampling of bridge column designs for each

failure type. The sampling procedure and considered uncertainties will be covered in

Chapter 5. Next, using the procedure introduced in Chapter 3, finite element models of

column bents are constructed in OpenSees. Cyclic pushover analyses were carried out

until the column reached 20% remaining lateral force capacity (i.e., 80% degradation of

the capacity). Displacement ductilities corresponding to different specified levels of

capacity remaining (80%, 50%, and 20%) were then identified from the recorded ∆-F

hysteretic curves. These three remaining capacity values (80%, 50%, and 20%) were

selected as performance-based states and later merged with the laboratory data for the last

three experimentally-observed damage states, respectively, in the capacity model.

The HS-R analyses showed some added displacement-ductility capacity of

multi-column bents loaded in the transverse direction relative to single-column bents. This

effect is called the ’redundancy effect’ herein. Figure 4.3 illustrates the physical basis for

the redundancy effect using the example case of era-3 flexural columns subjected to

monotonic pushover. The three models represent a single-column, two-column, and three

column bent. All columns are 20 feet tall with 2% longitudinal reinforcement ratio, 0.8%

transverse reinforcement ratio, and 10% axial load ratio. Due to different column

numbers, the regular designed section sizes are different in these three models. The three

models have 84, 60, and 48 inches diameter circular sections for the single-column,

two-column, and three-column bent, respectively. The results in Figure 4.3 demonstrate

that individual column responses are affected by the changes in axial load caused by

bent-frame effects, and these varied responses impact the shape of the bent-total response.

The total-response displacement ductility values corresponding to the three high states

defined in this section show that displacement ductility increases modestly (∼15%) at

extreme demand for multi-column versus single-column bents.
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Figure 4.3: Illustration of redundancy effects (Zheng and Roblee, 2021)

4.2.4 Column Capacity Limit State Models

This section outlines emerging column damage state definitions and CCLS model values

primarily for the modern (era-3) flexural-mode columns used in the fragility models

presented in the remainder of this dissertation. These capacity models are expressed in

terms of displacement ductility and the damage described by the state may be observed at

various locations in the whole column. Later, localized column-hinge damage models will

also be presented.

Table 4.3 provides observation-based damage state definitions used for analysis of

RP1 experimental data for the three primary column failure modes, flexure, mixed

flexure-shear, and brittle shear. The CDS 1 state for all three failure modes start with an

earthquake-related tight cracking of concrete cover. At this level, the typical repair

procedure would be to seal or paint the column, perhaps as part of a routine maintenance

schedule. The following two states (CDS 2 and CDS 3) are the same for flexural and
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flexural-shear columns as both column types will develop the full flexural strength during

the initial stage. Shear columns behave differently, starting from developing diagonal

cracks, then transferring to the formation of a shear plane. The following CDS 4 state

defines exposure of core concrete for all of the failure modes. However, this exposure may

involve either of two different mechanisms. For both flexural and mixed flexural-shear

columns which haven’t triggered shear response, core exposure is primarily due to

spalling of the cover concrete, which is a type of flexural damage. For shear columns or

mixed flexural-shear columns which have triggered shear response, core exposure is

associated with widening of diagonal shear cracks. The final three states (CDS 5 to

CDS 7) are the same for the flexural-shear and shear failure modes following the intensity

of permanent offset, from minor offset to major offset, and ultimately collapse with loss of

axial capacity. Flexural column failure is more related to reinforcement performance. In

CDS 5, longitudinal reinforcement buckling develops to a visible level, which is a sign of

imminent buckling or rupture of multiple reinforcements and is thus taken as an

approximation of design failure. If multiple longitudinal bars visibly buckle or rupture, or

the core concrete begins to crush, the column is considered to be at the unstable state

(CDS 6). The final collapse state (CDS 7) is assigned to cases where axial column

capacity, provided by either or both of the core concrete and longitudinal reinforcement, is

effectively lost due to either flexural or shear mechanisms.

Table 4.4 and Table 4.5 present the emerging g2F CCLS models for modern (era-3)

flexural columns that are used in the remainder of this dissertation. These models are

based on a combination of experimental observations at low states from the RP1 data set,

and analytical findings for high states from the HS-R studies as described by Roblee

(2021d). This scheme replaces the RP1 experimentally observed damage states for CDS 5

through CDS 7 appearing in Table 4.3 with the HS-R analytically-based performance

definitions, 80%, 50%, 20% remaining lateral force capacity, respectively. This combined

experimental-analytical strategy has several benefits including: 1) less reliance on small
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Table 4.3: Experimentally observed damage state definitions for columns with different
failure modes

CDS 1 Earthquake-related tight cracking of cover
CDS 2 Moderate cracking & minor spalling/flaking
CDS 3 Open cracking or major spalling which reveal the confinement
CDS 4 Exposed core (reveal the longitudinal reinforcement)
CDS 5 Visible bar buckling; confinement loss or core shedding
CDS 6 Multi-bar buckling/rupture; large drift; or core crushing
CDS 7 Column collapse (near-total loss of axial capacity)

a) Flexural Columns

CDS 1 Earthquake-related tight cracking of cover
CDS 2 Moderate cracking & minor spalling/flaking
CDS 3 Open cracking or major spalling which reveal the confinement
CDS 4 Exposed core or initial formation of diagonal shear zones, but no permanent offset
CDS 5 Diagonal shear zone penetrating core with minor offsets and intact confinement
CDS 6 Offset shear plane with core crushing, confinement loss or long-bar buckling
CDS 7 Column collapse (near-total loss of axial capacity)

b) Mixed Flexural-Shear Columns

CDS 1 Earthquake-related tight cracking of cover
CDS 2 Discontinuous web of short diagonal cracks, mostly in cover
CDS 3 Pronounced diagonal cracks forming, partial shear plane with no core offset
CDS 4 Continuous diagonal shear zone with core exposure, but no permanent offset
CDS 5 Diagonal shear plane penetrating core with minor offsets and intact confinement
CDS 6 Offset shear plane with core crushing, confinement loss or long-bar buckling
CDS 7 Column collapse (near-total loss of axial capacity)

c) Shear Columns

RP1 data sets at high states, 2) less ambiguous definitions for high-state column

performance, 3) the analytical HS-R studies are based completely on modeling of

California bridge columns rather than the assortment of bridge and building columns

compiled in RP1, and 4) the analytical HS-R studies could isolate impacts of boundary

fixity and bent redundancy that are cannot be considered in the RP1 experimental data set.

Table 4.4 presents a summary of the combined experimental-analytical state definitions

for era-3 flexural columns including typical column repair strategies expected for each

state. Column retrofit with steel casings is likely for columns in the CDS 4 state, column
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replacement in the CDS 5 state, and bridge replacement is likely for the CDS 6 and CDS 7

states.

Table 4.4: Emerging g2F CCLS state definitions for era-3 flexural columns (Roblee,
2021d).

Table 4.5 provides CCLS model distribution values for single-column and

multi-column bents loaded in the longitudinal and transverse directions. In the transverse

direction, single-column bents behave differently in different bridge zones where a bridge

zone is defined in terms of a bents proximity to the abutment which provides torsional

support to the deck. Zone-1 bents, or those bents adjacent to abutments, have strong

constraints that prevent deck rotation in the translational direction, thus resulting in a

fixed-top column boundary condition. The other zones are closer to the deck center and

less affected by abutment torsional constraints. For example, in a four-span bridge with

three internal support bents, the first and third bents next to the abutment are called zone-1

bents in this research and hence use the double-curvature (i.e. fixed top) model in

Table 4.5(a). The center bent is called a zone-2 bent which is assigned the single-curvature

(i.e. free-top) model. Note, although not considered herein, zone-3 represents bent

locations within an isolated frame of a multi-frame bridge having no adjacent abutment.

Multi-column bents in era-3 nearly all have a pinned-base detail, and therefore, only

a single-curvature model is needed for multi-column bents loaded in both transverse and

longitudinal directions. However, the model for longitudinal direction (Table 4.5(c)) is

smaller than that for transverse direction (Table 4.5(a)) due to bent redundancy effects.
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Table 4.5: Emerging g2F CCLS lognormal distribution parameters for era-3 flexural
column bents in terms of displacement ductility (µ∆) (Roblee, 2021d): median (σ) and
dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Matric

Single-Curvature (zones 2&3)
Median (σ) 1.25 2.43 4.05 5.4 6.0 6.8 8.5

LN Dispersion (β) 0.35 0.32 0.26 0.22 0.20 0.20 0.20

Double-Curvature (zone 1)
Median (σ) 1.25 2.43 4.05 5.5 6.2 7.5 11.0

LN Dispersion (β) 0.35 0.32 0.26 0.22 0.20 0.20 0.22

a) Single-Column Bents Loaded in the Transverse Direction

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Matric

Single-Curvature
Median (σ) 1.25 2.43 4.05 6.0 7.5 9.2 13.5

LN Dispersion (β) 0.35 0.32 0.26 0.21 0.18 0.18 0.25

Double-Curvature
Median (σ) NA NA NA NA NA NA NA

LN Dispersion (β) NA NA NA NA NA NA NA

b) Multi-Column Bents Loaded in the Transverse Direction

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Matric

Single-Curvature (Multi-Column Bents)
Median (σ) 1.25 2.43 4.05 5.4 6.0 6.8 8.5

LN Dispersion (β) 0.35 0.32 0.26 0.22 0.20 0.20 0.20

Double-Curvature (Single-Column Bents)
Median (σ) 1.25 2.43 4.05 5.5 6.2 7.5 11.0

LN Dispersion (β) 0.35 0.32 0.26 0.22 0.20 0.20 0.22

c) Single/Multi-Column Bents Loaded in the Longitudinal Direction

There is no redundancy effect for loading of multi-column bents in the longitudinal

direction. Nevertheless, higher capacities are assigned to single-column bents than

multi-column bents due to boundary fixity considerations. Deck stiffness functionally

fixes column-tops in the longitudinal direction. Single-column bents also have a fixed base

which results in a double-curvature condition which simulation results have shown to have

higher capacity. Multi-column bents, with a pinned base, have a single-curvature shape

associated with somewhat lower capacity at high states. The higher double-curvature

110



capacity may be related to engagement of two hinges to sustain possible damage versus

the single hinge engaged in the single-curvature.

4.2.5 Local Column Damage - Fixed Hinge

The models described above define displacement-ductility ranges over which damage is

predicted to occur anywhere (globally) within a column bent. There are benefits to also

separately characterize damage occurring locally in both fixed and pinned hinge regions of

a column. While the global metric for a multi-column bent includes the redundancy (bent

framing) effect, a local metric can better capture damage to each individual column.

Further, the global metric provides no means to capture hidden damage which occurs in

pinned (i.e. reduced section) hinges or from separate mechanisms such as slippage of

lapped-splice connections. Therefore, the g2F project has adopted a

multiple-complementary-metrics approach to the characterization of bridge columns

which, together, capture different damage mechanisms which may occur at various

locations on the column, and express these within a common performance framework.

This strategy provides additional insight into column and bridge-system behavior, and the

additional information regarding damage mechanism and location is beneficial to g2F

end-users interested in field-inspection efficiency, repair-strategy selection, and

cost/impact estimation.

This section outlines methods developed to characterize localized flexural damage to

fixed column hinges. The most applicable EDP for this type of localized damage is

curvature ductility. Despite the limitations noted in subsection 4.2.2 for RP1 experimental

data-analysis applications, the conceptual advantages of using curvature ductility in

analytical studies are fully recognized, and models developed herein serve as a convenient

basis for comparison with extensive prior research expressed in these terms.

Here, as a means to maintain full compatibility with the global column-bent capacity

models described above, a conversion equation between curvature-ductility (µφ), and
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displacement-ductility (µ∆) is developed and then applied to the applicable global column

capacity model. The single-column bent, single-curvature, global model was selected as

most applicable as it directly represents a cantilever beam where performance is primarily

controlled by local section damage.

The conversion equation used herein is derived from the following relationship

provided by FHWA (Buckle and Friedland, 1995), where l and lp denotes for the height

and plastic hinge length of the column respectively.

µφ = 1 +
µ∆ − 1

3
l

lp

(
1− 0.5

l

lp

) (4.1)

For application to the displacement ductility capacity model, l and lp are unknown.

To approximate these values, three column models were simulated in OpenSees. These

models correspond to era-1 through era-3 designs having median height and reinforcement

ratios. Cyclic pushover loading to median global-model displacement-ductility values for

each era produced the data point pairs in terms of (µ∆, µφ) shown in Figure 4.4, which

were then used to regress the conversion model in Equation 4.2. These results estimate the

plastic hinge length as approximately 0.1 times of the column height.

µφ = 1 + 3.35(µ∆ − 1) (4.2)

The top set of curvature ductility (µφ) values shown in Table 4.6 are from direct

application of the conversion in Equation 4.2 to the single-curvature models in

Table 4.5(c)). These models are applicable to prediction of localized damage at fixed

hinges of single-column bents and for (simultaneous) bent-average response of

multi-column bents. However, additional considerations apply to the case of individual

columns within a multi-column bent loaded transversely. Here, the global models (see

Table 4.5(b)) account for bent redundancy effects at high (failure) states and allow any

112



Figure 4.4: Conversion relationship between µ∆ and µφ

individual column in the bent to experience higher damage levels than the bent as a whole.

To maintain compatibility of the local and global models for this case, a revised state –

CCLS model proposed by Roblee (2021e) was adopted which shifts the highest possible

state for local hinge damage to an individual column to be CDS 6, or that associated with

bridge instability. Bridge collapse risk (CDS 7) is only assessed using bent-average

metrics for either the global or local criteria. The bottom set of capacity model values in

Table 4.6 are applicable to the localized fixed-hinge damage state of individual columns in

a multi-column bent loaded transversely.

Table 4.6: Emerging curvature ductility lognormal distribution parameters for fixed-hinge
damage in era-3 flexural columns in terms of curvature ductility (µφ): median (σ) and
dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Matric

Bent-Average
Median (σ) 1.85 5.8 11.2 15.8 17.8 20.4 26.1

LN Dispersion (β) 0.35 0.32 0.26 0.22 0.20 0.20 0.20

Bent-Maximum¶

Median (σ) 1.85 5.8 11.2 15.8 20.8 24.8
LN Dispersion (β) 0.35 0.32 0.26 0.22 0.20 0.20

¶ Only used for multi-column bents loaded in the transverse direction.
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4.2.6 Local Column Damage – Pinned Hinge (Reduced Section)

Unlike the case of fixed hinge damage, no displacement capacity model can be directly

adopted to depict localized damage to reduced sections used in pinned column hinges.

Therefore, the development of the state - CCLS capacity model for pinned hinges is based

on fiber-mechanical responses for the reduced section. Specifically, Table 4.7 summarizes

four damage states along with fiber-mechanical criteria used to define those states. For

example, the first damage state, CDS 1, is identified as “crushing of cover concrete (outside

of confinement) with no/minor reinforcement yield. The threshold for entering that state,

CDST 01, is the reduced-section curvature induces compressive strain in the inner-cover

concrete of the reduced section that exceeds that corresponding to the compressive strength

for cover concrete. Using these thresholds, cyclic pushover analyses were conducted on 50

column realizations and sampled to acquire the curvature-ductility distributions for each

threshold. The center-state curvature ductility values were defined as the geometric mean

of those for the two adjacent thresholds. Figure 4.5 illustrates a single simulation case, and

the state values are denoted with circles. Table 4.8 provides the curvature-ductility models

developed from all 50 cases.

Table 4.7: Definition of damage states and associated reduced-section fiber-mechanical
thresholds used for pinned-hinge local-damage capacity model.

Damage
State State Damage and Threshold Condition Description

CDS 0 None
CDST 01 First fiber of inner-cover concrete: compression demand exceeds compressive strength.

CDS 1 Crushing of Cover Concrete (Outside Confinement) with No/Minor Rebar Yield
1st fiber of inner-cover concrete: compression demand exceeds spalling strain; andCDST 12
1st fiber of outer-core concrete: compression demand exceeds compressive strain.

CDS 2 Initial Core-Concrete Crushing (Inside Confinement) with Moderate Rebar Yield
1st fiber of inner-core concrete: compression demand exceeds mean of compressive strain and crushing strain; or
1st rebar: tension demand exceeds the end of yield plateau; orCDST 23
1st rebar: compression demand exceeds visible bar buckling strain εb.

CDS 3 Major Core-Concrete Crushing (Inside Confinement) with Major Rebar Yield or Buckling
1st fiber of inner-core concrete: compression demand exceeds core-crushing strain; or
1st rebar: tension demand exceeds the mean of peak strength and fracture; orCDST 34
1st rebar: compression demand exceeds bar buckling strain εr.

CDS 4 Complete Core Crushing and/or Multi-Bar Rupture or Severed Pin Connection
50% fibers of inner-core concrete: compression demand exceeds crushing strain; or
50% Rebars: tension demand exceeds fracture strain; orCDST 45
50% Rebars: compression demand exceeds bar buckling strain εr
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For example, the threshold to define a CDS 1, named CDST 01, is the curvature that

the inner cover concrete has compressive strain exceeding the strain corresponding to

compressive strength. After carefully defining the thresholds, 50 column realizations are

sampled and analyzed to acquire the curvatures for each threshold. The state values are

defined by the geometry mean of two adjacent thresholds. Ultimately, the resulting

curvature values are converted to curvature ductilities. Figure 4.5 illustrates a single

simulation case, and the state values are labeled with circles. Summarizing all 50

simulated cases produces a capacity model in Table 4.8 in terms of curvature ductility.

Figure 4.5: Illustration of pin section performance with limit states.

Table 4.8: Emerging curvature ductility lognormal distribution parameters for pinned-hinge
(reduced section) damage in era-3 flexural columns in terms of curvature ductility (µφ):
median (σ) and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Matric

Median (σ) 3.6 7.0 12.0 20.0
LN Dispersion (β) 0.60 0.40 0.25 0.25
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4.3 Other Components — Simple CCLS

The fragility models developed in this research consider several California era-3 bridge

components other than bent columns. This section describes emerging capacity models that

are based on simple CCLS models expressed in terms of direct linear relationships to deck

displacement at the abutment joint. These include the mechanism of deck unseating and

both the bearing and joint seal components. Section 4.4 will consider additional abutment-

joint components where the CCLS models are based on response backbones.

4.3.1 Deck Unseating

Besides column failure, deck unseating is the other primary mechanism which can result

in bridge collapse. Here, the mechanism of deck unseating is treated as a ’component’

where capacity is defined in terms of net seat width, and demand expressed in terms of

deck displacement relative to the abutment seat node in the active direction. Net seat width

is defined as the nominal total seat with minus the width of the joint gap. California bridge

designs employ a range of seat widths depending on the length, height, and skew of the

bridge. Roblee (2021a) compiled a sample of abutment seat widths for California era-3

box-girder bridge designs and proposed a capacity model in terms of four standard widths:

30-inch, 36-inch, 48-inch, and 60-inch representing 50%, 20%, 25%, and 5% of the era-3

inventory, respectively, as shown in Figure 4.6.

Table 4.9 summarizes emerging g2F capacity models for deck unseating in terms of

two complementary metrics which account for different deck responses having

comparable bridge-system operational consequences (Roblee, 2021e). The ’2-corner

average displacement’ model assigns capacity in terms of standard values for remaining

average seat width. The ’peak-1-corner displacement’ model provides a complementary

check on deck-corner remaining seat width for cases where deck rotation occurs.

Differences between these models become more pronounced at lower states where
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Figure 4.6: Era-3 bridge seat width proportion model (Roblee, 2021a)

additional latitude is allowed for deck rotations provided the average displacement

remains within the state range. Figure 4.7 is useful for visualizing the concept behind the

two metrics. For the scenario presented in Figure 4.7(a), the deck might be considered

marginally stable, while the scenario in Figure 4.7(b) is treated as clearly unseated.

However, note that the models presented in Table 4.9 limit even peak-corner net remaining

seat width to 0-inch at the CDST 67 boundary to account for the limited bearing capacity

of cover concrete at abutment lip; thus, even the scenario presented of Figure 4.7(a) would

be assigned to CDS 7 using those models.

(a) (b)

Figure 4.7: Illustration of two cases of unseating: (a) peak corner is slightly unseated
but the deck-average remains (marginally) on the seat; (b) both the peak corner and deck
average are considered unseated.
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Table 4.9: Emerging active-displacement lognormal distribution parameters for deck
unseating damage (Roblee, 2021e): median (σ) and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

2-Corner Average Displacement
Median (σ) 7 13 19 25 30

LN Dispersion (β) 0.25 0.15 0.10 0.08 0.06

Peak 1-Corner Displacement
Median (σ) 14 18 22 26 30

LN Dispersion (β) 0.08 0.06 0.05 0.04 0.04

a) Design-1: 30-in Seat Width

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

2-Corner Average Displacement
Median (σ) 13 19 25 31 36

LN Dispersion (β) 0.15 0.12 0.08 0.06 0.04

Peak 1-Corner Displacement
Median (σ) 20 24 28 32 36

LN Dispersion (β) 0.06 0.05 0.04 0.03 0.03

b) Design-2: 36-in Seat Width

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

2-Corner Average Displacement
Median (σ) 25 31 37 43 48

LN Dispersion (β) 0.08 0.07 0.06 0.05 0.04

Peak 1-Corner Displacement
Median (σ) 32 36 40 44 48

LN Dispersion (β) 0.04 0.03 0.03 0.03 0.02

c) Design-3: 48-in Seat Width

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

2-Corner Average Displacement
Median (σ) 37 43 49 55 60

LN Dispersion (β) 0.07 0.06 0.05 0.04 0.03

Peak 1-Corner Displacement
Median (σ) 44 48 52 56 60

LN Dispersion (β) 0.03 0.03 0.02 0.02 0.02

d) Design-4: 60-in Seat Width
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4.3.2 Elastomeric Bearings

Era-3 bridges in California primarily use elastomeric bearings to support the bridge deck

at the abutment joint. The capacity model for this bearing type is characterized in terms of

shear strain (i.e. translational displacement normalized by bearing height) so that a

consistent metric can be used for bridge realizations having different bearing thicknesses.

Table 4.10 describes the two component damage states considered, and Table 4.11

provides the emerging CCLS model values. Note that both states are aligned with having

low bridge-system level consequences per Table 4.1. CDS 1, aligned with observable

damage, involves initial inelastic performance which may result in bearing degradation

and/or minor permanent distortions. Repair of this level of damage would likely be

deferred until a routine bridge-maintenance cycle. CDS 2 involves bearing displacements

well beyond design limits which may result in elastomer tearing, bearing rollup or

distortion, or sliding dislocation. This level of damage typically calls for bearing reset or

replacement.

Table 4.10: Emerging CCLS state definitions for damage to elastomeric bearings with
illustration of associated absolute shear-strain ranges (Roblee, 2021e)
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Table 4.11: Emerging lognormal distribution parameters for damage to elastomeric
bearings (Roblee, 2021e) : median (σ) and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Absolute Bearing Shear Strain []
Median (σ) 150% 300%

LN Dispersion (β) 0.20 0.20
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4.3.3 Joint Seals

Three of the most common types of joint seals used in California bridges are shown in

Figure 4.8. Seal type selection is typically based on the design ’Movement Rating (MR)’

for the joint which considers thermal-expansion movements and governs the joint gap size.

Poured seals can be used in bridges with MR ranging from 0.5 to 1.0 inches; compression

seals are commonly used with MR from 1.0 to 2.0 inches; and strip seals are used with MR

from 2.0 to 4.0 inches. A variety of assembly seals used for even larger MR are not shown.

Table 4.12 summarizes damage states for the three different seal types, and Table 4.13

provides the emerging CCLS model values applicable to each. Here, the EDP used for

damage prediction is gap-size increase (i.e. deck movement in the active direction relative

to the abutment seat) normalized by the MR for the joint. Although the state damage

descriptions change for each seal type, the same normalized CCLS values are used. Note

that the poured seal only involves one damage state, while the others involve two.

(a) (b)

(c)

Figure 4.8: Illustration of common joint seal types: (a) poured; (b) compression; and (c)
strip
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Table 4.12: Emerging CCLS state definitions for damage to three types of joint seals with
illustration of associated MR-normalized active joint displacement ranges (Roblee, 2021e)

a) Poured Seal

b) Compression Seal

c) Strip Seal
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Table 4.13: Emerging lognormal distribution parameters for damage to three types of joint
seals (Roblee, 2021e) : median (σ) and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Active MR-Normalized ¶ Joint Displacement []
Median (σ) 150% 300%

LN Dispersion (β) 0.20 0.20
¶ Normalized to design movement rating (MR) of joint.

4.4 Other Components -– Response Based CCLS

The capacity models for the remaining components of the bridge systems considered

herein are characterized in terms of expected performance over ranges on an analytical

response backbone model. These response-based models address abutment-joint damage

associated with shear key and backwall fracture, pounding damage at the abutment-deck

interface, and both pile and spread-footing damage occurring at abutment-wall and

column-bent foundations. Before describing these specific component models, common

aspects of the general response-based CCLS model methodology are first reviewed.

4.4.1 Stochastic Backbone Responses, Performance Points, and Double Normalization

A central feature of analytical fragility models is their ability to capture overall response

uncertainty arising from multiple simultaneous component interactions within the

bridge-system. Development of a PSDM requires FEM analysis of a large set of bridge

configurations representing a bridge class. For each configuration, one realization of the

backbone response for each bridge component is stochastically assigned. The PSDM then

captures peak responses for the collection of configurations which includes interactions

between these varied component combinations.

Stochastic assignment of bridge-component response involves random sampling of

correlated parameters of a probabilistic component-response model. Figure 4.9 provides

an illustration of 20 such stochastic realizations of the translational response for CIDH

piles (bottom) based on the median backbone model (top) and associated tables of
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dispersion and correlation values for each of five parameters used in that model (Xie et al.,

2021). This particular model was explicitly developed for probabilistic application

through analysis of an extensive set of simulations which considered variations in soil

profiles and pile properties. Response models for other components (e.g. shear keys,

backwall connections, backfills, etc.) were developed in a similar fashion and typically

validated against available experimental data. It is important to note that while only a

single realization of each component backbone is assigned to an analyzed bridge model,

the ensemble average of all assigned backbones would closely approximate the median

model. It is equally important to note that, due to bridge-system interactions, the median

component response of using the stochastic backbone models is not necessarily the same

as that of using the median backbone model directly.

Figure 4.9: Example of stochastic backbone responses for CIDH piles (Xie et al., 2021)

Use of unique component response backbone realizations in each FEM bridge analysis

poses a challenge for development of an associated capacity model for that component.

This project adopts a novel methodology, herein called ’double normalization’ aimed at

assuring consistent use of a stochastic backbone-model realization for both demand and

capacity assessment of the component within the analysis. This is implemented by
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characterizing a backbone as a series of integer-numbered ’performance points’ to

represent the boundaries between linear segments in the backbone. Response values along

the segment are expressed as segment-normalized distances along the horizontal (typically

displacement) axis added to the segment’s lower endpoint label. Within the FEM demand

analysis of each bridge realization, the peak component response is captured and then

normalized by the backbone assigned to that realization to yield a result expressed in

terms of the performance-point scale. This ’apples to apples’ strategy assures that a strong

component used in demand analysis is also assessed against the same strong component

for purposes of damage assessment. Conversely, it prevents ’apples to oranges’ cases

where the performance of the same strong component could be assessed using a model for

a much weaker component.

The resulting output of a complete set of FEM analyses for multiple bridge

realizations then becomes a distribution of performance point values. This distribution

incorporates two components of dispersion: 1) that associated with stochastic variation in

the backbone shape, and 2) that associated with all other demand-analysis factors such as

bridge geometry, ground motion features, and interactions with other stochastically

defined component responses. Since the uncertainty in backbone shape is already

accounted for within the set of demand-analysis output, there is no need to also include it

in the capacity model. Instead, the remaining dispersion on the capacity side primarily

relates to the ‘state’ uncertainty in defining the relationship between backbone response

ranges and the damage described in the state definition.

The second normalization is required for proper display and analysis of the

distribution cloud of peak component responses on lognormal EDP -IM axes. Recall that

each performance-point interval (say 1 to 2, or 2 to 3) represents one linear segment of the

backbone response, and in physical-dimension space (say displacement), the segment

lengths can vary substantially. Using the example in Figure 4.9, the second segment of the

median response curve is roughly six times longer than the first segment. To restore at
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least a first-order approximation of the fundamental component backbone shape for

purposes of display and analysis, the performance-point output is scaled by the relative

lengths of the median response backbone. This can be done using either of two

approaches. For optimal insight into component performance, it is most beneficial to

express models in terms of physical units which can be readily visualized. However, for

standardized displays and analysis, it is often more convenient to normalize these rescaled

results by a reference value, typically taken as the value of the first performance point (i.e.

end of idealized linear-elastic performance). In the remainder of this chapter, component

capacity CCLS models are expressed using both approaches.

4.4.2 External Non-Isolated Shear Key

The non-isolated external shear key (see Figure 3.23(a)) is the predominant design used in

modern (era-3) California box-girder bridge abutments, and is the sole design considered

herein. The backbone response shape adopted for this key’s capacity model is illustrated

with performance-point labels in Figure 4.10 where the fundamental backbone shape is

based on experimental tests by Megally et al. (2001). A stochastic version of this

backbone model was developed by varying the geometric and material parameters of

Megally’s mechanistic model per details found in the California bridge inventory.

Table 4.14 provides state descriptions for four damage levels along with an illustration

of the associated ranges in backbone performance. These damage states are based on an

interpretation of Megally’s experimental damage observations (levels I to V in

Figure 4.10) put into the broader context of the bridge-system framework outlined in

Table 4.1 and Table 4.2. Table 4.15 provides emerging CCLS model values in terms of

center-state performance point values and both absolute and normalized key displacement

values.
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Figure 4.10: Illustration of shear key performance levels (Megally et al., 2001).

Table 4.14: Illustration of capacity limit state definition for external non-isolated shear key.

Table 4.15: Emerging lognormal distribution parameters for damage to external non-
isolated shear keys (Roblee, 2021e): median (σ) and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 1.3 2.0 2.5 3.1

LN Dispersion (β) NA NA NA NA

Absolute Key Displacement [Inch]
Median (σ) 1.25 3.3 7.6 12.9

LN Dispersion (β) 0.45 0.25 0.2 0.15

Normalized¶ Key Displacement []
Median (σ) 3.20 8.3 19.6 33.0

LN Dispersion (β) 0.45 0.25 0.2 0.15
¶ Normalized to median e1n value of 0.39-inch corresponding to backbone performance point 1.
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4.4.3 Straight Abutment-Backwall Connection

Straight backwalls are solely used in modern (era-3) California box-girder bridge

abutments, and its connection to the stem wall (see Figure 3.23(b)) is the sole design

considered herein. The backbone response shape for shear fracture of the backwall

connection is developed in subsection 3.3.3 and illustrated with performance-point labels

in Figure 4.11.

Figure 4.11: Illustration of backbone response shape and performance points for abutment
backwall connection relative to sample of analytical data (Zheng et al., 2021)

Table 4.16 provides state descriptions for three damage levels along with an

illustration of the associated ranges in backbone performance. Table 4.17 provides

emerging CCLS model values in terms of center-state performance point values and both

absolute and normalized backwall displacement values. Backwall damage only occurs for

deck motion in the passive direction.
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Table 4.16: Emerging CCLS state definitions for passive damage to abutment backwall
connection with illustration of associated backbone response ranges (Roblee, 2021e).

Table 4.17: Lognormal distribution parameters for backwall passive damage states: median
(σ) and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 1.3 2.5 3.7

LN Dispersion (β) NA NA NA

Absolute Backwall Displacement [Inch]
Median (σ) 0.51 1.04 2.35

LN Dispersion (β) 0.30 0.25 0.20

Normalized¶ Backwall Displacement []
Median (σ) 1.75 3.6 8.1

LN Dispersion (β) 0.30 0.25 0.20
¶ Normalized to median e1n value of 0.29-inch corresponding to backbone performance point 1.
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4.4.4 Pounding

subsection 3.3.4 outlined the analytical basis and development of a pair of pounding

models. For the single-frame bridge systems considered herein, only the

’deck-to-abutment’ model is considered. Figure 4.12 provides field examples of various

types of bridge pounding damage. Figure 4.13 illustrates the backbone response shape for

the pounding model along with definitions of performance points. Note that the EDP used

in this model is normalized to an assumed maximum penetration value of 0.1-inch per

Muthukumar (2003).

Table 4.18 provides state descriptions for three pounding damage levels along with an

illustration of the associated ranges in backbone performance. Table 4.19 provides

emerging CCLS model values in terms of center-state performance point values and both

absolute and normalized pounding displacement values.

(a) (b) (c)

Figure 4.12: Illustration of pounding damage: (a) a pounding mark in the bridge backwall
(Yen et al., 2011); (b) abutment damage in 1994 Northridge earthquake; and (c) barrier rail
pounding damage (Moehle and Eberhard, 2003).
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Figure 4.13: Illustration of backbone response shape (red) and performance points (blue)
for abutment joint pounding relative to analytical data (Muthukumar, 2003).

Table 4.18: Emerging CCLS state definitions for abutment joint pounding damage with
illustration of associated backbone response ranges (Roblee, 2021e).

Table 4.19: Emerging lognormal distribution parameters for abutment joint pounding
damage: median (σ) and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 2.0 3.2 4.0

LN Dispersion (β) NA NA NA

Absolute Post-Contact Displacement§ [Inch]
Median (σ) 0.13 0.23 0.39

LN Dispersion (β) 0.15 0.15 0.15

Normalized¶ Post-Contact Displacement []
Median (σ) 1.36 2.3 3.9

LN Dispersion (β) 0.15 0.15 0.15
§ Displacement after closure of joint gap;
¶ Normalized to median e1n value of 0.10-inch corresponding to backbone performance point 1.
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4.4.5 Foundations

Two general types of foundations, pile/cap systems and spread footings, are used to

support both abutment walls and column bents. This research considers damage

associated with translational movement of both types of foundations at both locations as

well as rotational damage at column-bent locations. Damage is assessed separately for

transverse and longitudinal loading.

Pile Foundations

Caltrans employs a variety of ’standard plan pile’ designs within foundation systems used

at bridge bents and abutments (Caltrans, 2014, 2015a,b,c). Figure 4.14 shows some of

the designs used in the modern (era-3) bridges considered herein. These vary in material,

section shape and reinforcement, and cap-connection details, and are classified by nominal

axial load capacity as Class 90, Class 140, and Class 200 where a larger class number

correspond to a higher capacity. Similar and additional standard pile designs were used

in earlier (eras 1 and 2) bridges, but these have different section properties and details,

particularly as related to the cap-connection.

Xie et al. (2021) completed an extensive program of analytical research into the

development of stochastic backbone response models for translational pile-head

displacement of California standard plan piles. Figure 4.15 illustrates the generic

backbone shape adopted for all models, along with enumerated performance-points used

herein for capacity model development. Xie’s work developed separate models to specify

load and displacement distributions for performance points identified as 1-3 in Figure 4.15

for each pile type, era, and class for five ranges of pile-cap embedment depth.
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(a) (b)

(c)

Figure 4.14: Standard plan pile types used in modern California bridges (Caltrans, 2015a,b,c): (a) CIDH group; (b) Precast group; and
(c) Steel group.
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Figure 4.15: Illustration of generalized backbone response shape and performance points
for pile-head translational response (Xie et al., 2021)

For purposes of capacity model development herein, three groups of pile designs were

identified based on having similar backbone shape: 1) Cast-In-Drilled-Hole (CIDH)

concrete piles, 2) precast, prestressed concrete piles (PC), and 3) steel piles including both

H-section and open pipe piles (Steel). A fourth group, concrete-filled steel pipes known as

Cast-In-Steel-Shell (CISS) piles is also being considered for future development.

A variation of the double normalization strategy outlined in subsection 4.4.1 was used

for modeling pile translational response. For FEM demand analysis, each bridge

realization was assigned a standard-plan pile design (i.e. type and class), and embedment

depth per distributions representative of era-3 bridge designs found in the California

inventory. Procedures for this assignment are detailed in Chapter 5. As usual, peak

demand output from the FEM analysis was expressed in terms of performance point

values to assure the same backbone shape was used for demand and capacity assessment.

The variations in the double normalization procedure occur in the handling of the

performance point distributions. Here, separate distributions are reported for each of the

three pile groups (CIDH, PC, Steel) and separate scaling is used for each to reintroduce

physical dimensions back into the backbone shapes. Scaling values for the median

backbone shape of each group were defined using the weighted average of the median Xie

et al. (2021) backbone model values for the pile types and embedment depths assigned in

the demand modeling (Roblee, 2021b).
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Table 4.20 shows that the backbone shapes for the three pile groups differ substantially.

The CIDH group reaches its idealized elastic limit (e1p) at 0.25 inch, while displacements

for the other two groups are over four times greater. Differences are even more pronounced

for displacements required to achieve peak capacity (e2p). This occurs for the CIDH pile at

under 2-inches, while it requires nearly 14-inch and 22-inch for the precast and steel groups,

respectively. Broadly, the CIDH system is considered much more brittle in translation

response than the remaining systems, and each group undergoes a unique damage sequence.

Table 4.20: Comparison of median era-3 column-bent pile-head displacement values for
three pile groups at three response-backbone performance points (Roblee, 2021b)

Median Displacement [inch] CIDH Group Precast Group Steel Group
Performance Point 1 (e1p) 0.25 1.10 1.16
Performance Point 2 (e2p) 1.68 13.8 21.9
Performance Point 3 (e3p) 4.14 22.4 30.2

Table 4.21 provides 3 sets of state descriptions, each having five damage levels, for the

three pile-type groups (CIDH, PC, Steel) along with illustrations of the associated ranges

in backbone performance. Table 4.22 and Table 4.23 provide emerging CCLS model

values for column-bent and abutment foundations, respectively, in terms of center-state

performance point values and both absolute and normalized pile-head displacement

values. The minor difference between the column-bent and abutment model values arises

from the different distributions of pile design (type and class) and embedment depth used

in these two applications.

Note that different state descriptions and response-backbone performance-point ranges

are used in the capacity models for the three pile groups. This arises from the very different

displacement responses for the three groups noted in Table 4.20 which can induce damage

to the pile-cap and its connection which is not explicitly considered by Xie et al. (2021)

Broadly, these three independent capacity models were aligned to have comparable system-

level impacts per Table 4.1 and Table 4.2.
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Table 4.21: Emerging CCLS state definitions for pile-foundation translational response
damage with illustration of associated backbone response ranges for three era-3 pile-type
groups (Roblee, 2021e)

a) Cast-In-Drill-Hole (CIDH) Pile Group

b) Precast, Prestressed Concrete Pile Group

c) Steel Pile Group (H-Section and Open Pipe)
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Table 4.22: Emerging lognormal distribution parameters for abutment pile-foundation
translational response damage for three era-3 pile-type groups (Roblee, 2021e):median (σ)
and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 1.2 1.8 2.4 3.0 3.6

LN Dispersion (β) NA NA NA NA NA

Absolute Pile-Head Displacement§ [Inch]
Median (σ) 0.6 1.4 2.7 4.1 6.6

LN Dispersion (β) 0.40 0.25 0.15 0.15 0.15

Normalized¶ Pile-Head Displacement []
Median (σ) 2.1 5.5 10.3 15.8 25.3

LN Dispersion (β) 0.40 0.25 0.15 0.15 0.15
§ Displacement values based on inventory-averaged pile section and embedment depth for the CIDH group.
¶ Normalized to inventory median e1n value of 0.26-inch corresponding to backbone performance point 1.

a) Cast-In-Drill-Hole (CIDH) Pile Group

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 1.0 1.4 2.1 3.0 3.6

LN Dispersion (β) NA NA NA NA NA

Absolute Pile-Head Displacement§ [Inch]
Median (σ) 1.2 6.4 15.1 21.6 34.6

LN Dispersion (β) 0.40 0.30 0.15 0.15 0.15

Normalized¶ Pile-Head Displacement []
Median (σ) 1.0 5.6 13.1 18.8 30.1

LN Dispersion (β) 0.40 0.30 0.15 0.15 0.15
§ Displacement values based on inventory-averaged pile section and embedment depth for the Precast group.
¶ Normalized to inventory median e1n value of 1.15-inch corresponding to backbone performance point 1.

b) Precast, Prestressed Concrete Pile Group

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 0.8 1.1 1.5 2.3 3.1

LN Dispersion (β) NA NA NA NA NA

Absolute Pile-Head Displacement§ [Inch]
Median (σ) 1.3 3.8 12.6 26.4 36.3

LN Dispersion (β) 0.25 0.35 0.30 0.15 0.15

Normalized¶ Pile-Head Displacement []
Median (σ) 0.8 2.4 7.8 16.3 22.3

LN Dispersion (β) 0.25 0.35 0.30 0.15 0.15
§ Displacement values based on inventory-averaged pile section and embedment depth for the Steel group.
¶ Normalized to inventory median e1n value of 1.63-inch corresponding to backbone performance point 1.

c) Steel Pile Group (H-Section and Open Pipe)
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Table 4.23: Emerging lognormal distribution parameters for column-bent pile-foundation
translational response damage for three era-3 pile-type groups (Roblee, 2021e):median (σ)
and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 1.2 1.8 2.4 3.0 3.6

LN Dispersion (β) NA NA NA NA NA

Absolute Pile-Head Displacement§ [Inch]
Median (σ) 0.5 1.4 2.7 4.1 6.6

LN Dispersion (β) 0.40 0.25 0.15 0.15 0.15

Normalized¶ Pile-Head Displacement []
Median (σ) 2.1 5.5 10.6 16.4 26.3

LN Dispersion (β) 0.40 0.25 0.15 0.15 0.15
§ Displacement values based on inventory-averaged pile section and embedment depth for the CIDH group.
¶ Normalized to inventory median e1n value of 0.25-inch corresponding to backbone performance point 1.

a) Cast-In-Drill-Hole (CIDH) Pile Group

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 1.0 1.4 2.1 3.0 3.6

LN Dispersion (β) NA NA NA NA NA

Absolute Pile-Head Displacement§ [Inch]
Median (σ) 1.1 6.2 14.7 22.4 35.8

LN Dispersion (β) 0.40 0.30 0.15 0.15 0.15

Normalized¶ Pile-Head Displacement []
Median (σ) 1.0 5.6 13.3 20.3 32.4

LN Dispersion (β) 0.40 0.30 0.15 0.15 0.15
§ Displacement values based on inventory-averaged pile section and embedment depth for the Precast group.
¶ Normalized to inventory median e1n value of 1.10-inch corresponding to backbone performance point 1.

b) Precast, Prestressed Concrete Pile Group

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 0.8 1.1 1.5 2.3 3.1

LN Dispersion (β) NA NA NA NA NA

Absolute Pile-Head Displacement§ [Inch]
Median (σ) 0.9 3.2 11.5 24.4 33.2

LN Dispersion (β) 0.25 0.35 0.30 0.15 0.15

Normalized¶ Pile-Head Displacement []
Median (σ) 0.8 2.8 10.0 21.0 28.7

LN Dispersion (β) 0.25 0.35 0.30 0.15 0.15
§ Displacement values based on inventory-averaged pile section and embedment depth for the Steel group.
¶ Normalized to inventory median e1n value of 1.16-inch corresponding to backbone performance point 1.

c) Steel Pile Group (H-Section and Open Pipe)
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Spread Footing Foundation

Spread footing foundations are used for bridge foundations where axial loads are

relatively low and/or the native soils have relatively high bearing capacity. A hyperbolic

response backbone is used to model their elastoplastic behavior under translational

loading. Figure 4.16 illustrates such a backbone along with the set of performance points

used herein for capacity model definition. In the multi-segmented backbones considered

in previous models, the performance points were defined at segment boundaries and used

in the double-normalization procedure. Here, the performance points are simply labels to

represent a progression of displacement values. Point 1 represents the z50 value in the

hyperbolic model where total displacement is comprised of approximately 60%-40%

elastic-plastic components, respectively. Points 2 and higher simply represent a specific

geometric progression of plastic displacements, 1-inch, 2-inch, 4-inch, 8-inch, etc.

obtained through analysis of the OSB-1 column-foundation design. Subsequent analyses

for other footing configurations yield similar backbones.

Figure 4.16: Illustration of backbone response shape and performance points for spread-
footing translational response

Table 4.24 provides state descriptions for three damage levels along with an

illustration of the associated ranges in backbone performance. Table 4.25 provides

emerging CCLS model values in terms of center-state performance point values and both

absolute and normalized footing translational displacement values. Direct damage to the

footing element itself was not modeled and it was assumed that the structural connection
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was sufficiently robust to mobilize footing slippage relative to the underlying native soil.

Instead, damage states were broadly defined in terms of wide ranges in residual plastic

displacement values and considered the impacts which such displacements might have on

adjacent facilities.

Table 4.24: Emerging CCLS state definitions for spread-footing translational response
damage with illustration of associated backbone response ranges (Roblee, 2021e)

Table 4.25: Emerging lognormal distribution parameters for spread-footing translational
response damage (Roblee, 2021e): median (σ) and dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Backbone Performance Point []
Median (σ) 3.0 5.0 7.0

LN Dispersion (β) 0.35 0.35 0.35

Residual∗ Footing Displacement [Inch]
Median (σ) 2.0 8.0 32.0

LN Dispersion (β) 0.35 0.35 0.35

Absolute Total§ Footing Displacement [Inch]
Median (σ) 2.5 8.6 32.6

LN Dispersion (β) 0.35 0.35 0.35

Normalized¶ Total Footing Displacement []
Median (σ) 5.1 17.6 66.5

LN Dispersion (β) 0.35 0.35 0.35
∗ Residual plastic component of total displacement;
§ Sum of elastic and residual plastic displacement components;
¶ Normalized to the z50 value for OSB-1 bridge of 0.49-inch corresponding to backbone performance point 1.
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Foundation Rotation

As noted in subsection 3.2.6, foundation rotation is also modeled as a hyperbolic

response. A single rotational spring is assigned to represent the weaker of two potential

failure mechanisms: 1) ’geotechnical failure’ associated with excessive axial displacement

of piles at the foundation perimeter, and 2) ’structural’ failure associated with excessive

rotation of poor column-foundation connection details. Era-3 California foundation

designs are quite robust both structurally and geotechnically as they are explicitly

designed to have rotational capacities which exceed column-bottom hinge capacity by a

specified margin (typically 1.2). Foundation designs for earlier eras were not as robust

and either failure mechanism was possible before column fusing. Although

foundation-rotation damage risk is low for the era-3 bridge designs considered herein, the

following discussion outlines concepts used to develop such models, primarily for

application to other eras. This model development is done in the context of geotechnical

failure of a pile foundation which is assumed to be also applicable to spread-footing

rotation. Similar compatible CCLS models are anticipated for structural failure with

different descriptions of damage state.

Table 4.26 summarizes emerging sets of state descriptions developed in conjunction

with the emerging CCLS model values listed in Table 4.27. Separate CCLS models were

developed for fixed-base and pinned-base column connections as foundations beneath

these two systems differ substantially. Further, the fixed-base-column model allows for

additional damage states through possible overturning (CDS 7) of single-column bents. In

contrast, even severe damage to a pinned-base-column foundation is not associated with a

bridge collapse risk, but rather to ’repairable major damage to system function’ per

Table 4.1.
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Table 4.26: Emerging CCLS state definitions for column-foundation rotational response
damage for 2 column base-fixity types (Roblee, 2021f)

CDS 1 >90% Design Geotech Capacity, ∼Elastic (Non-Linear) Pile Response
CDS 2 Initial Minor Residual Pile Displacements
CDS 3 Exceed Geotech Capacity, Observable Residual Pile Displ.
CDS 4 Substantial Residual Pile Displacement & Observable Cap Rotation
CDS 5 Foundation Rotational Failure, Bent Marginally Stable
CDS 6 Excessive Cap Rotation, Column Instability Risk
CDS 7 Extreme Cap Rotation, Column Collapse Risk

a) Fixed-Base Column Connection

CDS 1 >90% Design Geotech Capacity, ∼Elastic (Non-Linear) Pile Response
CDS 2 Exceed Geotech Capacity, Observable Residual Pile Displ. & Cap Rotation
CDS 3 Substantial Residual Pile Displacement & Cap Rotation
CDS 4 Foundation Rotational Failure & Excessive Cap Rotation
CDS 5
CDS 6
CDS 7

b) Pinned-Base Column Connection

4.5 Capacity Model Dispersion

Each of the CCLS models presented in this chapter include a lognormal dispersion term

to capture uncertainty in the capacity definition. Determination of dispersion values was

straightforward for the column-bent damage states where both the RP1 experimental test

results and the HS-R analytical programs provided clear and easily modeled distributions

of the displacement-ductility EDP used for capacity definition.

However, the definition of the dispersion terms for most other components was less

clear, particularly when simple numerical thresholds were used to differentiate states (e.g.

deck unseating, bearing strain, foundation rotation, etc.) or for components analyzed

within the framework of response-based CCLS and double normalization (e.g. shear keys,

backwall connections, translational pile response, etc.). This remains a vexing issue for

the project team and the values presented here are subject to change as the issues are more

fully addressed. In the interim, a standard approximation was adopted herein whereby the

EDP range between adjacent state thresholds was typically assumed to represent four
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Table 4.27: Emerging lognormal distribution parameters for column-foundation rotational
response damage for 2 column base-fixity types (Roblee, 2021e): median (σ) and
dispersion (β)

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Inv-Ave Cap-Edge-Pile∗ Axial Displ. [Inch]
Median (σ) 0.6 1.2 2.4 4.8 10 19 38

LN Dispersion (β) 0.27 0.17 0.17 0.17 0.17 0.17 0.17

Inv-Ave Pile-Cap§ Rotation [Degrees]
Median (σ) 0.3 0.6 1.2 2.4 5 10 19

LN Dispersion (β) 0.27 0.17 0.17 0.17 0.17 0.17 0.17

Normalized¶ Pile-Cap Rotation []
Median (σ) 2 4 8 16 32 64 128

LN Dispersion (β) 0.27 0.17 0.17 0.17 0.17 0.17 0.17
∗ Approx. axial deflection of outer row of piles based on inventory-average era-3 fixed-column-base foundation design;
§ Approx. pile-cap rotation based on inventory-average era-3 fixed-column-base foundation design;
¶ Normalized by θy of 0.15-degrees. (Inventory-ave cap rotation of ∼0.07-deg for 50% moment capacity.)

a) Fixed-Base Column-Foundation Connection

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
Model Basis

Inv-Ave Cap-Edge-Pile∗ Axial Displ. [Inch]
Median (σ) 0.7 2.3 5 9

LN Dispersion (β) 0.35 0.27 0.17 0.17

Inv-Ave Pile-Cap§ Rotation [Degrees]
Median (σ) 0.6 2.0 4 8

LN Dispersion (β) 0.35 0.27 0.17 0.17

Normalized¶ Pile-Cap Rotation []
Median (σ) 2.5 8 16 32

LN Dispersion (β) 0.35 0.27 0.17 0.17
∗ Approx. axial deflection of outer row of piles based on inventory-average era-3 pinned-column-base foundation design;
§ Approx. pile-cap rotation based on inventory-average era-3 pinned-column-base foundation design;
¶ Normalized by θy of 0.25-degrees. (Inventory-ave cap rotation of ∼0.124-deg for 50% moment capacity.)

b) Pinned-Base Column-Foundation Connection

standard deviations (±2σ from the mean value in the natural logarithm space) under the

assumption that component capacity was nearly always within the EDP range defined by

half the distance to the adjacent state.

4.6 Closure

A complete set of emerging component capacity models used in this dissertation are

presented in this chapter. These models are aligned within an overarching 7-state
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bridge-system framework where component performance is expected to have comparable

operational consequences for bridge traffic capacity and earthquake-emergency repair

needs. The 7-state framework provides additional granularity for the definition and

progression of component damage, and is intended to provide improved post-earthquake

situational awareness and inspection guidance for emergency responders as well as

produce more refined bridge damage and cost estimates needed to support mitigation

planning.

Special attention was given to development of capacity models for bent columns due to

the critical importance of these components to the seismic performance of modern bridges.

The extensive RP1 dataset consisting of 198 experimental test columns was compiled and

analyzed to identify performance trends based on physical tests. An equally extensive

HS-R analysis program was conducted on California-based column designs which allowed

extension of the RP1 experimental trends to higher damage states and consideration of both

bent framing and column fixity effects. The combination of these two initiatives provides

a sound basis for assignment of column capacity models.

Capacity models of various degrees of sophistication were also developed for the other

bridge components considered in this research. Each was aligned to the same set of

bridge-system states. Some were based on simply specified CCLS criteria such as joint

displacement or strain, while others required a more advanced treatment involving

development and application of stochastic response backbone models to represent

component performance. A double normalization procedure involving backbone response

performance points was introduced that allows for consistent use of each component

realization for both demand and capacity assessment.

All capacity models presented herein remain under review by Caltrans and are subject

to revision. Caltrans serves as the sole source for final authoritative models and information

regarding the g2F project.
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CHAPTER 5

CALIFORNIA BRIDGE INVENTORY AND SAMPLING TECHNIQUES

Understanding and characterizing the variability in California bridge designs is necessary

to establish reasonable and reliable fragility models. This chapter presents an in-depth

characterization of modern (era 3) box-girder bridges in the California inventory.

Geometric, materials, and design-detail data were developed with Caltrans assistance

directly from the National Bridge Inventory (NBI), through queries and interpretations of

information held in Caltrans’ bridge maintenance database ‘SMART’, and through

manual review of scanned bridge plans available through Caltrans ‘BIRIS’

records-archive system.

From these, statistical models were developed and sampled to characterize the design

parameters and details needed to specify realistic and representative sets of virtual bridge

realizations for FEM demand modeling.

It was recognized that completely random pairing of multiple distributed variables

could generate bridge realizations that would not reflect realistic bridge designs.

Therefore, this study also develops rational procedures to address three inherent

correlations between components embedded in the design process: namely the

relationships between column section size and contributing deck area, between column

moment capacity and foundation design, and for reasonable pairing of design and applied

ground motions. Extensive effort was focused on developing the sampling procedures to

capture these design constraints.

5.1 Initial System of Representative Bridge Systems (RBS)

Through taxonomic characterization and analysis of California’s 2013 inventory of 7839

concrete box-girder bridges, representing roughly 30% of California’s total bridge
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inventory, Roblee (2016f)developed an initial set of 129 ‘Representative Bridge Systems

(RBS)’ needing separate PSDM model development. Identification of these RBS was

based on: 1) an initial set of taxonomic assumptions regarding populations of bridge types

expected to have similar performance (i.e. single-column vs. multi-column bent, or seat

vs. diaphragm abutment type), 2) the number of bridges found in the California inventory

for each taxonomic combination, 3) findings from a program of sensitivity analyses

(Mangalathu, 2017; Soleimani, 2017) using ANOVA analysis to investigate potential

taxonomic combinations expected to perform similarly (e.g. 2-column bents are combined

with other multi-column bents rather than being treated separately), and 4) judgement

regarding the optimal balance between RBS granularity, modeling workload, and fragility

model application needs. As the project advanced, it became apparent that additional RBS

would be needed to better represent unique performance expectations of originally

combined bridge systems (i.e. separating era 2 from era 3; shaft bents from pile/footing

supported bents, cantilever from seat-type abutments). Recent versions of the RBS work

plan (Roblee, 2020a) have 176 base models.

This chapter considers design features of a subset of the taxonomically-based RBS

classes noted above, and the following chapter will propose an optimization method to

combine these models based on similarity of their fragility models. Table 5.1 summarizes

the RBS subset characterized herein which consists of modern (e33) single-frame concrete

box girder bridges having no (is0B), single-column (isSB), or multi-column (isMB) bents

and seat type abutments (aUS). These are the most common configurations found in the

California inventory. Less common multi-frame structures and those having either pier

wall or shaft bent interior supports are not considered. Further, diaphragm abutments are

extremely uncommon in era-3 designs, and therefore not considered. The multi-column

RBS are modeled as having 2 columns to 4 columns, and the span ranges considered are

single-span (s11), two-span (s22), three or four-span (s34), and five or six-span (s56).
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Table 5.1: Initial bridge categories considered in the analysis.

Design era Span number Column number Abutment Type
e33 s11 is0B aUS

>1991

1 NA

Seat

e33 s22 isSB aUS 2 single-column
e33 s22 isMB aUS 2 multi-column
e33 s34 isSB aUS 3 or 4 single-column
e33 s34 isMB aUS 3 or 4 multi-column
e33 s56 isSB aUS 5 or 6 single-column
e33 s56 isMB aUS 5 or 6 multi-column

5.2 Superstructure

Superstructures (or decks) of concrete box-girder bridges in California can have two types

of girders, namely reinforced concrete (RC) and prestressed concrete (PC). Inventory data

compiled by Roblee (2017c) shows overall usage of PC in era-3 bridges is relatively high

(70% to 80%). Table 5.2 summarizes the percentage breakout for each span range ID of

girder type by span number. These proportions are used for sampling of the deck structure

parameters in era-3 bridges.

Table 5.2: Proportion of deck girder types

Span Range ID Number of Spans Span Mix (%) RC Percentage (%) PC Percentage (%)
s11 1 100 30 70
s22 2 100 20 80

s34
3 70 14 56
4 30 6 24

s56
5 65 13 52
6 35 7 28

5.2.1 Span Length

Prestressed concrete beams have higher stiffness than reinforced concrete beams, and

therefore can have a longer span length. Table 5.3 summarizes span length models

developed by Roblee (2017c) from a sample of 390 single-span and 550 single-frame

multi-span era-3 box-girder bridges in the California inventory. The span length for

single-span RC ranges from 35-feet to 200-feet, whereas single-span PC bridges range

from 50-feet to 220-feet. Multi-span minimum lengths are somewhat higher. Broadly,
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median span length for PC bridges is about 30-feet longer than for RC bridges.

Span ratio is defined as the ratio between the end-span length and the interior-span

lengths, and is only defined for bridges with more than two spans. For modeling purposes,

all interior spans are assumed to have equivalent length. The span ratio distribution

parameters are given in Table 5.3 which show that RC and PC median end-span lengths

are 60% and 75% of interior span lengths, respectively.

Table 5.3: Distributions of span length and span ratio (end-span length/interior-span length)

Span
Type

Girder
Type

Span Length Model Distribution Span Ratio Distribution
Unit Type§ µ† σ† LB

⊕
UB

⊕
Unit Type§ µ† σ† LB

⊕
UB

⊕
s11

RC feet N 105 40 35 200 - N - - - -
PC feet N 130 35 50 220 - N - - - -

s22
RC feet N 135 35 85 200 - N - - - -
PC feet N 135 35 75 230 - N - - - -

s34
RC feet N 110 35 55 190 ft/ft N 0.6 0.2 0.35 1
PC feet N 155 45 75 250 ft/ft N 0.75 0.2 0.4 1

s56
RC feet N 125 35 75 165 ft/ft N 0.6 0.2 0.35 1
PC feet N 155 35 95 240 ft/ft N 0.75 0.2 0.4 1

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard

deviation and dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

5.2.2 Deck Width

Typically, there is an increased number of both bent columns and box-girder cells with

increased deck width. Modeling distributions capturing the relationships between these

transverse bent-profile parameters were developed by Roblee (2016e) from a sample of

the combined era-2 and era-3 California box-girder bridge inventory comprised of 363

single span and 663 multi-span bridges, 194 having single-column bents and 469 having

multi-column bents. Table 5.4 summarizes these models. Note that only odd numbers

of cells are considered to accommodate modeling practicalities. For single-span (is0B)

bridges, modeled deck width ranges from 22-feet to 110-feet, and can include 3-cell to

11-cell designs in the proportions given in Table 5.4. Two categories of multi-span bridges

are considered, those with single-column bents (isSB) and those with multi-column bents

(isMB). Bridges with single-column bents are modeled as having deck widths ranging from
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22-feet to 60-feet with a maximum of 7-cells. Bridges with multi-column bents consisting

of 2 to 4 columns per bent are modeled as having widths that range from 36-feet to 128-feet

and have from 3 to 13 cells. Both width range and cell numbers increase with the number

of columns, but some overlap occurs per the distributions shown.

Table 5.4: Model distributions for deck widths and cell count as a function of number of
bent columns for era-3 box girder bridges.

Internal
Support

Column
Number

Mix
(%)

Span Width Model Distribution Cell Number Mix (%)
Unit Type§ µ† σ† LB

⊕
UB

⊕
3-cell 5-cell 7-cell 9-cell 11-cell 13-cell

is0B 0

5 feet N 29 6 22 34 100 0 0 0 0 0
30 feet N 41 5 34 48 60 40 0 0 0 0
25 feet N 56 8 48 64 0 70 30 0 0 0
30 feet N 71 9 64 82 0 25 60 15 0 0
10 feet N 88 12 82 110 0 0 50 35 15 0

isSB 1

15 feet N 28 1.2 22 30 100 0 0 0 0 0
20 feet N 34 4 30 38 85 15 0 0 0 0
55 feet N 42 2 38 46 75 25 0 0 0 0
10 feet N 50 14 46 60 30 50 20 0 0 0

isMB

2
20 feet N 43 7 36 50 40 60 0 0 0 0
15 feet N 57 8 50 66 0 80 20 0 0 0
10 feet N 73 22 66 88 0 25 50 25 0 0

3
10 feet N 59 18 50 68 0 50 50 0 0 0
15 feet N 79 20 68 88 0 0 50 50 0 0
10 feet N 98 20 88 108 0 0 20 40 40 0

4
5 feet N 75 32 58 90 0 25 40 35 0 0

15 feet N 107 38 90 128 0 0 0 40 35 25
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

5.2.3 Deck-Section Depth

Deck-section structural depth is very closely correlated to the maximum span length but

differ between the RC and PC girder types. Table 5.5 summarizes model values for the

ratio of structural section depth to maximum span length developed from a sample of 197

cast-in-place box-girder bridges of all eras in California (Roblee, 2016b). The means of

these inventory-based models closely match standard design values of 0.055 and 0.040 for

cast-in-place RC and PC bridge superstructures, respectively. PC decks, due to relatively

higher stiffness, have a smaller ratio compared to RC decks. However, considering PC

decks are also relatively longer than RC decks, PC decks are only a bit shallower (about

6.0-feet) than the RC decks (about 6.5-feet).
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Table 5.5: Models for deck depth to maximum span ratio.

Girder
Type

Span Depth Ratio Model Distribution
Unit Type§ µ† σ† LB

⊕
UB

⊕
RC ft/ft N 0.054 0.003 0.048 0.061
PC ft/ft N 0.041 0.003 0.036 0.046
§ C = constant, LN = lognormal, N = normal, B = binomial, and U

= uniform.
† µ denotes the mean and median for normal distribution

and lognormal distribution, respectively; σ denotes standard
deviation and dispersion (logarithmic standard deviation) for
normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

5.2.4 Other Transverse Cross Section Dimensions

To completely define the shape of a deck, several additional dimensional parameters are

needed. In this research, these parameters are the same as defined in Mangalathu (2017):

top-flange thickness is related to the spacing of cells following the design policy (Caltrans,

2017), bottom-flange thickness is assumed to be 7.0-inches, and inner-wall flange thickness

is taken as 1.0-foot.

5.3 Interior Supports – Column Bents

Column bents are the most common interior support type found in California box-girder

bridges, although pier walls and shaft bents are also used. This research considers only

column bents.

Column designs in California have evolved from pre-ductile designs in era-1, to

early-ductile designs in era-2 due to the 1971 San Fernando earthquake’s impact, and

more recently to modern-ductile designs in era-3 arising from additional design

modifications which emerged from the 1989 Loma Prieta and 1994 Northridge

earthquakes. These three eras have distinct designs reflecting changes in design

philosophies. Although only era-3 fragility models are developed in this research, some of

the column design parameters presented below are for all eras to provide insight into

evolving practices.
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5.3.1 Average Column Height – Base Models

Bridge column height is a critical parameter in seismic demand modeling of bridges that

affects structural periods and can influence the column failure mode. Here, column height

is defined as the average clear distance from the top of the bent foundation (footing or pile

cap) to the bottom of the bridge deck soffit. When heights vary within or between bents,

the average height for the entire bridge frame is used.

Table 5.6 presents base column-height models for the three design eras based on

analysis of the California single-frame box-girder bridge inventory (Roblee, 2017b).

These models were developed from manual plans review of a random sample of 427

bridges including 152 single-column bents and 285 multi-column bents. The ‘base’

models were developed from the subset of bridges having column height less than 32-feet,

representing about 85% of the random sample. Separate models were developed for taller

bridges which are considered separately as discussed below. Systematic differences with

bent type were not observed, so the base models are applicable to both single- and

multi-column bent bridges. However, systematic height differences with era were

observed with slight increases in median height occurring in later design eras. While the

reasons for this height increase are unclear, one outcome for seismic purposes is that the

taller modern bridges have slightly higher ductility capacity.

Table 5.6: Base model distributions for average column height.

Design
Era

Span Width Model Distribution
Unit Type§ µ† σ† LB

⊕
UB

⊕
era-1 feet N 21.7 0.122 17.0 29.0
era-2 feet N 22.4 0.122 17.5 30.0
era-3 feet N 23.6 0.122 18.5 31.0
§ C = constant, LN = lognormal, N = normal, B = binomial, and

U = uniform.
† µ denotes the mean and median for normal distribution

and lognormal distribution, respectively; σ denotes standard
deviation and dispersion (logarithmic standard deviation) for
normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

In addition to the ‘base’ models listed in Table 5.6, a separate set of ‘tall’ column-height
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models were developed from a combination of the base box-girder data set and a targeted

sample of all bridge types thought to have reasonably high likelihood of having either tall

or unbalanced (TU) longitudinal profiles. The plans-selection criteria for this targeted set

included bridges identified as ‘stream crossings’ and bridges where names included the

words ‘ramp’, ‘connector’ or ‘viaduct’. Related studies by Soleimani (2017) used this TU

data set to explore development of adjustment factors for tall and unbalance effects which

are not considered herein. Rather, this research only considers bridges of uniform height

as specified by the era-3 model in Table 5.6.

5.3.2 Column-Section Types

A large variety of column-section shapes and sizes are used in California bridges. These

include various sized ‘regular’ sections having circular, square, hexagonal, and octagonal

shapes with equivalent nominal size in both directions, and various sized ‘wide’ sections

including transversely elongated versions of the same basic shapes. Roblee (2018a)

characterized a representative range in column-section types through manual plans review

of 438 California single-frame box-girder bridges designed over all three design eras. For

modern (era-3) multi-column bridges, 16 unique regular-section types and an additional

12 unique wide section types were observed in the sample of 75 bridges. For era-3

single-column bridges, 10 unique regular-section types and 10 unique wide section types

were observed the sample of 30 bridges. Similar levels of section-type variability were

observed in era-2, and even greater variability occurs in era-1.

For purposes of fragility analysis, it was deemed impractical to set up FEM models for

all of these unique section types. Therefore, a smaller representative set was selected to

broadly reflect the variability in section size, shape, and aspect ratio found in the

inventory. Table 5.7 summarizes the section types and inventory-mix proportions selected

to represent modern (era-3) bridges modeled herein. Note that single-column designs use

larger sections and a larger proportion of wide type than multi-column designs.
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Table 5.7: Proportion of modern (era 3) section types used in analyses

Section Shape Section Size [Inch] CDA Group isSB Mix (%) isMB Mix (%)

Regular/Circular

48 2 0 25
60 3 0 10
66 3 20 30
84 4 10 5

108 5 10 0

Wide/Oblong

48×72 3 10 15
48×96 3 10 0
66×99 4 25 10

72×108 4 15 0
84×126 5 0 5

All era-3 regular shapes are modeled as circular columns with spiral or welded hoop

reinforcement surrounding a circular core. All era-3 wide shapes are modeled as oblong

shapes containing overlapping sets of circular reinforcement. All single-column bents are

modeled as having fixed-base connections to the foundation, while all multi-column bents

have nominally pinned-base connections to the foundation through use of a reduced section

size (i.e., column key).

Table 5.7 also lists a value for the ‘CDA Group’ of each column section. The CDA

classification was developed as part of the inventory plans review (Roblee, 2018a) as a

means to loosely associate larger column sizes with bridge designs having larger

‘contributing deck area (CDA)’ to support. The CDA group value ranges from 1 to 5

where larger numbers correspond to larger sections and higher CDA. This topic is further

developed in section 5.7.1 where the CDA designation is used as one sampling constraint

to assure more realistic bridge designs.

5.3.3 Material Properties

Table 5.8 and Table 5.9 summarize materials strength models for concrete and

reinforcement steel that are adopted herein for structural demand modeling. These values

were obtained by scaling nominal values by factors to account for overstrength. A factor

of 1.25 was applied to concrete materials, and 1.15 to steel materials. The nominal values

were assigned by (Roblee, 2016a) based on data compiled from manual review of 201
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bridge plans of all three eras. Separate values of concrete strength are assigned to the

superstructure and column concrete for both RC and PC designs. Similarly, separate steel

strength values are assigned to the longitudinal and transverse reinforcing elements.

Materials strengths increase modestly with design era.

Table 5.8: Distributions of column and superstructure concrete strength model.

Design
Era

Girder
Type

Column Concrete Model Superstructure Concrete Model
Unit Type§ µ† σ† LB

⊕
UB

⊕
Unit Type§ µ† σ† LB

⊕
UB

⊕
era-1

RC ksi N 3.750 0.375 3.000 4.500 ksi N 3.750 0.375 3.000 4.500
PC ksi N 4.000 0.400 3.200 4.800 ksi N 4.500 0.450 3.600 5.400

era-2
RC ksi N 4.000 0.400 3.200 4.800 ksi N 4.000 0.400 3.200 4.800
PC ksi N 4.000 0.400 3.200 4.800 ksi N 4.500 0.450 3.600 5.400

era-3
RC ksi N 4.000 0.400 3.200 4.800 ksi N 4.000 0.400 3.200 4.800
PC ksi N 4.500 0.450 3.600 5.400 ksi N 5.000 0.500 4.000 6.000

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and

dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

Table 5.9: Distributions of longitudinal and transverse reinforcement strength model.

Design
Era

Column Longitudinal Reinforcement Model Column Transverse Reinforcement Model
Unit Type§ µ† σ† LB

⊕
UB

⊕
Unit Type§ µ† σ† LB

⊕
UB

⊕
era-1 ksi N 57.500 3.750 50.000 65.000 ksi N 57.500 3.750 50.000 65.000
era-2 ksi N 69.000 4.500 60.000 78.000 ksi N 63.250 4.125 55.000 71.500
era-3 ksi N 69.000 4.500 60.000 78.000 ksi N 69.000 4.500 60.000 78.000
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and

dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

5.3.4 Column Reinforcement Ratios

Simple uniform distribution models were developed for characterization of both

longitudinal and transverse column reinforcement ratios for each design era based on a

review of 431 column designs in the California bridge inventory (Roblee and Zheng,

2017). These models are depicted as red lines in Figure 5.1 and Figure 5.2, respectively,

and model bounds are summarized in Table 5.10. While longitudinal reinforcement ratios

are comparable through all eras, the transverse reinforcement ratio increased significantly

from era-1 to era-3. Note that the high-reinforcement tails in the data distributions are
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typically associated with unusual column designs and are ignored as outliers for purposes

of demand modeling.

(a) (b) (c)

Figure 5.1: Longitudinal reinforcement ratio for (a) era-1; (b) era-2; and (c) era-3.

(a) (b) (c)

Figure 5.2: Transverse reinforcement ratio for (a) era-1; (b) era-2; and (c) era-3.

Table 5.10: Uniform distribution bounds for longitudinal (ρsl) and transverse (ρsv)
reinforcement ratios for bridge columns of three eras .

Model
Reinforcement Ratio Model

Unit Type§ µ† σ† LB
⊕

UB
⊕

era-1 ρsv % U - - 0.10 0.25
era-2 ρsv % U - - 0.30 1.00
era-3 ρsv % U - - 0.55 1.35

All eras ρsl % U - - 1.00 3.00
§ C = constant, LN = lognormal, N = normal, B = binomial, and

U = uniform.
† µ denotes the mean and median for normal distribution

and lognormal distribution, respectively; σ denotes standard
deviation and dispersion (logarithmic standard deviation) for
normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.
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5.3.5 Reduced Sections for Pinned Column Connections

Reduced sections (or column keys) are used for pinned-base connections at the base of

multi-column bents. While multi-column bents of era 1 used both pinned-base and

fixed-base connections in similar numbers, the fixed-base detail became less common in

era-2 and was virtually eliminated from era-3 bridges not supported on shaft foundations.

This section reviews development of a model for specifying reduced section design details

needed for creating virtual bridges for demand modeling.

Figure 3.11 shows an example detail for a modern reduced section (or pin or column

key) connection at the base of a column. There are three variables needed to specify such

a design: the concrete bearing size of the reduced section, the diameter of the pin’s

reinforced core, and the longitudinal reinforcement ratio (or bar diameters and count) for

the pin. Figure 5.3 presents data distributions for related variables obtained through

manual plans review of pin details of 63 column designs in the era-3 California box-girder

bridge inventory (Zheng, 2020b). The three distributions include breakouts into seven

groups, categorized by section types (regular/wide) and CDA groups.

(a) (b) (c)

Figure 5.3: Reduced section parameters (Zheng, 2020b): (a) area ratio; (b) dimension ratio;
and (c) longitudinal reinforcement ratio.

The first variable, called the area ratio, determines the concrete bearing size. It

describes the ratio between the concrete bearing area in the reduced section and that in the

main section (column main body section). These data reveal three distinct subgroups

corresponding to, from bottom to top: regular sections with CDA ≤ 2; wide sections; and
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regular sections with CDA ≥ 3. Lognormal models fit to these subgroups are summarized

in Table 5.11. For modeling purposes, it is assumed that the concrete bearing area is a

circular section for regular columns and a rectangular section for wide columns where the

rectangle has the same aspect ratio as the main section. The additional assumption

coupled with the area defines the dimension of a reduced section.

The inventory cases show that the reinforcement used in a reduced section are

arranged circularly regardless of the section types. Thus, the second variable named

‘dimension ratio’ defines the ratio between the pin-core diameter and the ‘critical

dimension’ of concrete bearing. This critical dimension equals either the diameter of a

regular-column section or the shorter dimension of a wide-column section. Based on the

data in Figure 5.3(b), the two section-types and different CDA groups all have comparable

distributions. Therefore, the specification model for the ‘dimension ratio’ is assumed to be

the same for all types of sections considered in this research.

Table 5.11: Distributions of multiple reduced section parameters.

Variables
Distribution Models

Unit Type§ µ† σ† LB
⊕

UB
⊕

Area Ratio for Regular Sections (CDA ≤ 2) in2/in2 LN 0.450 0.300 0.250 0.800
Area Ratio for Regular Sections (CDA ≥ 2) in2/in2 LN 0.350 0.200 0.250 0.500

Area Ratio for Wide Sections in2/in2 LN 0.400 0.250 0.250 0.700
Dimension Ratio in/in LN 0.500 0.300 0.250 0.850

Reinforcement Ratio for Regular Sections % LN 1.000 0.400 0.500 2.250
Reinforcement Ratio for Wide Sections % LN 0.950 0.250 0.500 1.500
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes

standard deviation and dispersion (logarithmic standard deviation) for normal distribution and lognormal
distribution, respectively.⊕
LB = lower bound, UB = upper bound.

The last variable is the longitudinal reinforcement ratio for the reduced section, defined

as reinforcement area per unit concrete bearing area. Based on the inventory cases, the

reinforcement sizes used in the reduced section tend to be somewhat smaller than those

used in the main section. This study assumes the longitudinal reinforcement used in main

sections to be evenly split between #11 and #14 bars, and uses 20%, 20%, 20%, and 40%

for #8, #9, #10, and #11 bars, respectively, for the reduced sections.
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5.3.6 Column Axial Load Ratio

Column axial load ratio is an influential design parameter, and its evaluation here serves

as an independent check on the reasonableness of the set of virtual bridges specified using

combinations the deck, column and material variables noted in previous sections. Axial

load ratio values easily computed after specifying all the geometric variables considered in

a box-girder bridge. The column axial load ratio is estimated using a uniformly-distributed

deck gravity load and assuming a fixed-pin boundary condition for a two-span bridge. The

resistance or axial load acting on the column is 3/8 of the total deck load. Considering other

variables such as deck dimensions, column section size and concrete strength, the axial load

ratio distribution for a simulated set of era-3, 2-span concrete box-girder bridges is shown

in Figure 5.1. Note that very similar distributions for single-column and multi-column

bent are achieved regardless of the substantive differences in specified deck geometries and

column-section sizes. Overall, the resulting axial load ratio distributes with a median of

about 10% and ranges from 5% to 30% with 0.40 dispersion. This is reasonably consistent

with design experience.

Figure 5.4: Column axial load ratio distribution for simulated set of era-3 bridges
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5.4 Abutment

Virtually all era-3 concrete box-girder bridges have seat-type abutments which

accommodate thermal movement better than older diaphragm systems. Seat-type

abutments provide bearing support to the superstructure and constrain deck movement

longitudinally by the abutment backwall and transversely by the shear key. This section

reviews the parameter distributions used for the specification of seat-type abutments,

except for the more complicated foundation elements which are addressed in section 5.5.

5.4.1 Backfill, Side-fill, and Front-fill

subsection 3.3.7 described the hyperbolic backbone response model proposed by Xie et al.

(2019) which is used in this research to characterize soil loads acting on the back, side

and front surfaces of the abutment. Table 5.12 provides distribution parameters for the two

base model parameters (Pult,0, Kmax,0)) which apply specifically to a 5.5-foot soil height.

Scaling factors described in subsection 3.3.7 are used to compute parameter values (Pult,

Kmax) for other soil heights. Only the ‘sand’ model is considered for the era-3 bridges

modeled herein. This is based on revised Caltrans backfill specifications for the era which

largely eliminated fine-grained and clayey materials. The ‘all’ model, which incorporates

both soil types is used for analyses of earlier eras.

Table 5.12: Distributions for Xie et al. (2019) hyperbolic backfill response model
parameters (Pult,0 and Kmax,0) for the 5.5-foot soil height base case (per foot width).

Soil
Type

Pult,0 Kmax,0 Other parameters
Unit Type§ µ† σ† LB

⊕
UB

⊕
Unit Type§ µ† σ† LB

⊕
UB

⊕
ρ† α1 α2

Sand kips/ft LN 35.0 0.25 22.0 55.0 kips/ft/in LN 85.0 0.20 60.0 120.0 0.45 1.60 0.70
Clay kips/ft LN 29.0 0.25 18.0 47.0 kips/ft/in LN 45.0 0.20 30.0 70.0 0.95 1.40 0.60
All kips/ft LN 32.0 0.25 20.0 51.0 kips/ft/in LN 65.0 0.35 30.0 120.0 0.65 1.50 0.65
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. ρ is correlation between the two parameters.⊕
LB = lower bound, UB = upper bound.

Table 5.13 provides model distributions for two abutment dimensions, the backwall and

stem wall , for each of the three design eras. All eras have comparable backwall heights
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which are largely tied to deck structural depth. However, median stem wall height increases

over the three design eras. In era-1, the backwall is higher than the stem wall, while in era-

3 backwall is shorter than the stem wall. The changes in stem wall height increase the

probability of backwall-connection fracture in era-3 bridges because the shorter stem walls

of earlier eras might provide insufficient backfill-B resistance to fail the backwall.

Table 5.13: Distributions of abutment dimensions.

Design
Era

Backwall Height (Backfill-A) Model Stem Wall Height (Backfill-B) Model
Unit Type§ µ† σ† LB

⊕
UB

⊕
Unit Type§ µ† σ† LB

⊕
UB

⊕
era-1 feet LN 6.10 0.221 3.90 9.50 feet LN 4.10 0.400 1.80 9.70
era-2 feet LN 6.20 0.217 4.00 9.60 feet LN 7.40 0.300 4.00 13.60
era-3 feet LN 6.10 0.262 3.60 10.30 feet LN 10.20 0.200 6.40 16.20
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard

deviation and dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

The ‘frontfill’ is the soil resistance acting on the front of the stem wall in the

longitudinal direction, whereas backfill-B was acting on the back of the stem wall). The

frontfill soil depth is estimated as HFF = HA + HB − Hdeck − 3.0 feet − 1.0 feet where

HA and HB are the heights of the backwall and stem wall, respectively. This equation

assumes the frontfill contact at the abutment is 3.0-feet below the bottom of the deck, and

has a slope that reduces the soil capacity assumed to be approximately equivalent to

1.0-foot of front-fill height. This approximation is based on the design shown in the

’Section A-A’ detail in Figure A.3.

The ‘sidefill’ is the soil resistance acting in the transverse direction on the side of the

stem wall. For rough estimation purposes, the height of the sidefill is assumed to be the

mean of backfill and frontfill given that there is typically a uniform soil slope from the back

to the front. While the frontfill resistance applies to the same abutment width as the backfill,

sidefills have a different width model which roughly approximates the stem wall width plus

some portion of connected wingwalls. The crude relationship adopted for sidefill width is

a lognormal distribution with median = 3.7-feet and dispersion = 0.20 which again is based

on the design in Figure A.3.
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5.4.2 Elastomeric Bearing

California seat-type abutment design underwent substantial change late in era 1, and the

design evolution included a change in bearing type from rocker bearings to elastomeric

bearings. Virtually all of era-2 and era-3 designs, and a small proportion of era-1 designs

use elastomeric bearings. Roblee (2018h) compiled bearing dimensional data from

manual review of bridge plans for 19 era-1, 52 era-2 and 66 era-3 bridges which was used

to develop the era-based height and unit stiffness models shown in Table 5.14. Unit

elastomeric bearing stiffness is a function of bearing thickness, area, average spacing and

temperature-dependent modulus of the elastomeric material (Roblee, 2015a) and

represents linear-elastic stiffness per unit width of abutment. In the development of these

models, elastomeric modulus was computed for a randomized temperature range from -20

to +120 degrees Fahrenheit to represent the wide range of environmental conditions in

California. Note that the unit stiffness value for era-3 is lowest as it is associated with

thicker pads. A uniform range for friction coefficient was assumed for all eras.

Table 5.14: Distributions of modeling parameters for elastomeric bearings. Stiffness value
is normalized by abutment length.

Parameters
Design

Era
Parameter Model

Unit Type§ µ† σ† UB
⊕

LB
⊕

Height
era-1

inch LN
1.50 0.200 1.00 2.00

era-2 1.70 0.300 1.00 3.00
era-3 3.00 0.300 1.50 5.50

Unit
Stiffness

era-1
(kips/in)/ft LN

1.50 0.350 0.30 7.00
era-2 2.00 0.550 0.70 6.00
era-3 1.00 0.450 0.40 2.50

Friction
Coefficient all eras kips/kips N 0.30 0.100 0.10 0.50

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution,

respectively; σ denotes standard deviation and dispersion (logarithmic standard
deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.
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5.4.3 Backwall

Seat-type abutments with straight backwalls, as illustrated in Figure 3.25 , are virtually the

only design used in era-3 California bridge inventory and considered in the analyses herein.

Figure 3.25 provides an illustration of this design and subsection 3.3.3 discusses design

parameters. Backwall height models are provided in subsection 3.3.3, and subsection 3.3.3

discusses reinforcement details affecting the shear-failure fusing mechanism.

5.4.4 External Non-Isolated Shear Key

California box-girder bridges in era-3 are typically designed with external non-isolated

shear keys. Subsection 3.3.2 illustrated the response backbone shape using methods

proposed by Megally et al. (2001). Figure 5.5 summarizes results of applying these

methods to key designs for 22 inventory bridges . To generalize a key-response

specification procedure, a four-variable model (Zheng, 2019) is used to specify the first

two points in the shear key model shown in Figure 3.21 namely Fsk2, ∆2, Fsk1/Fsk2, and

∆1/∆2. Lognormal distribution parameters for this model are provided in Table 5.15.

There is an internal correlation between these variables as shear keys with higher strength

(Fsk2) tend to have larger corresponding deformation at peak strength (∆2). The

correlation models between these four variables is also provided in Table 5.15. The last

parameter needed for the shear key response model is ∆3, which is assumed to be 3.35

times of ∆2 as a result of the relationship between Equation 3.29b and Equation 3.29c.

5.4.5 Abutment Joint Gaps

Abutment joint gaps, longitudinally between the deck and abutment backwall, and

transversely between the deck and the shear key, play an important role in whole-bridge

response as they govern how much deck deflection needs to occur before abutment

responses are engaged. Large gaps tend to transfer more load to the internal supports,

while small gaps quickly engage abutment responses.
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Figure 5.5: Shear key model samples.

Table 5.15: Distributions of modeling parameters for specifying external non-isolated shear
keys (Zheng, 2019).

Variable
Shear Key Model Correlation

Unit Type§ µ† σ† LB
⊕

UB
⊕

Fsk2 ∆2 Fsk1/Fsk2 ∆1/∆2

Fsk2 kips LN 1550.0 0.350 1000.0 3200.0 1.00 0.85 0.45 -0.85
∆2 inch LN 2.75 0.500 1.50 8.50 0.85 1.00 0.45 -0.85

Fsk1/Fsk2 kips/kips LN 0.65 0.150 0.45 0.85 0.45 0.45 1.00 -0.30
∆1/∆2 inch/inch LN 0.15 0.350 0.05 0.25 -0.85 -0.85 -0.30 1.00
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation

and dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

Table 5.16 summarizes the lognormal distribution parameters for joint gaps adopted

herein. The longitudinal values are based on inventory analysis of movement rating data

for 145 era-1, 132 era-2, and 338-era bridges (Roblee, 2018c). Generally, median values for

longitudinal joint gap size increase from era-1 to era-3. Era-2 has the largest dispersion in

values as this represents a transitional period in design practices. The model for transverse

joint size is assumed and applies only to eras 2 and 3 when external keys were used. For

these eras, median longitudinal gap size is larger than transverse gap size. Constraints on

lateral movement of era-1 designs is provided by rocker bearing assemblies which are not

considered herein.
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Table 5.16: Distributions of longitudinal joint gap sizes for three eras (Roblee, 2018c) and
assumed transverse joint model for eras 2 and 3.

Direction
Design

Era
Joint Gap Size Model

Unit Type§ µ† σ† UB
⊕

LB
⊕

Longitudinal
era-1

inch LN
0.85 0.5 0.31 2.31

era-2 1.55 0.6 0.47 5.14
era-3 2.1 0.45 0.85 5.17

Transverse eras 2 & 3 inch LN 1 0.08 0.85 1.15
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution,

respectively; σ denotes standard deviation and dispersion (logarithmic standard
deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

5.5 Foundations

In era-3 bridges, responses of both column-bent and abutment foundations are modeled

with lateral springs in the longitudinal and transverse direction. Column-bent foundations

also consider rotational springs in each direction.

5.5.1 Pile-Cap and Spread-Footing Dimensions

The first step in the process of specifying a foundation system for a virtual bridge realization

is to sample models of pile-cap or footing dimensions. Pile cap dimensions affect the

geotechnical group-effects factor of pile foundations and also the lateral soil resistance

acting on the sides of the cap/footing of both types of column foundations. Spread footing

response models also highly depend on the footing dimension.

Column Bents

The dimensions of both pile caps and spread footings beneath column bents are primarily

defined by four parameters: length (L), breadth (B), thickness (T ), and embedment depth

(D), as illustrated in Figure 5.6. Additionally, two dimensional constraints, total area and

aspect ratio, are adopted to assure realistic cap/footing sizes and shapes. For multiple

column bents, footing dimensions are also somewhat constrained by the column spacing

(see Chapter 3).
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Figure 5.6: Primary Pile-Cap/Footing Dimensions..

The cap/footing dimensional models presented in Table 5.17 through Table 5.18 were

developed from analysis of a sample of 77 era-3 box-girder bridges in the California

inventory (Roblee, 2020b). Separate models were developed for single-column and

multi-column bents and further broken out by column-section shape (i.e. regular/wide)

and column-section size category (i.e. CDA Group). Note that spread footings are not

typically used with single-column bent designs due to low rotational capacity, and usage is

limited to multi-column bents having smaller column-section sizes and pinned-base

connections.

Table 5.17: Distributions of column pile-cap/footing dimensions (length and breadth) by
bent type and both column-section size and shape (Roblee, 2018d, 2020b).

Support
Type

CDA Type
Cap/Footing Length (L) Model Cap/Footing Breadth (B) Model

Unit Type§ µ† σ† LB
⊕

UB
⊕

Unit Type§ µ† σ† LB
⊕

UB
⊕

isSB
Regular

3 Pile-Cap inch N 261.0 38.0 216.0 328.0 inch N 260.0 39.0 216.0 328.0
4 Pile-Cap inch N 312.0 36.0 276.0 348.0 inch N 319.0 27.0 204.0 360.0
5 Pile-Cap inch N 378.0 30.0 348.0 408.0 inch N 378.0 30.0 348.0 408.0

isSB
Wide

3 Pile-Cap inch N 293.0 21.0 264.0 315.0 inch N 222.0 26.0 197.0 258.0
4 Pile-Cap inch N 299.0 67.0 204.0 407.0 inch N 237.0 48.0 180.0 335.0

isMB
Regular

2
Pile-Cap inch N 152.0 49.0 106.0 288.0 inch N 134.0 30.0 106.0 216.0
Footing inch N 182.0 20.0 153.0 216.0 inch N 174.0 26.0 134.0 216.0

3
Pile-Cap inch N 158.0 33.0 108.0 228.0 inch N 152.0 27.0 138.0 228.0
Footing inch N 188.0 11.0 177.0 207.0 inch N 188.0 11.0 177.0 207.0

4
Pile-Cap inch N 216.0 10.0 204.0 228.0 inch N 204.0 20.0 180.0 228.0
Footing inch N - - - - inch N - - - -

isMB
Wide

3
Pile-Cap inch N 170.0 25.0 144.0 216.0 inch N 154.0 18.0 134.0 180.0
Footing inch N 213.0 25.0 181.0 242.0 inch N 197.0 14.0 181.0 216.0

4
Pile-Cap inch N 228.0 44.0 192.0 288.0 inch N 187.0 27.0 144.0 228.0
Footing inch N - - - - inch N - - - -

5
Pile-Cap inch N 294.0 42.0 252.0 336.0 inch N 243.0 21.0 222.0 264.0
Footing inch N - - - - inch N - - - -

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

As shown in Table 5.17, both the length and breadth of pile-caps and footings are larger
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for single-column bents (isSB) than for multi-column bents (isMB), and increase with the

column-section size range (i.e. represented by CDA value). For regular sections, these two

dimensions are distributed in a comparable range, while wide-section columns generally

have a larger breadth dimension in the bent-transverse direction. Note that spread footing

usage in the era-3 inventory sample was limited to use in multi-column bents with CDA-2

or CDA-3 columns.

Table 5.18 provides inventory values used to constrain dimensional sampling of the

values in Table 5.17. Oversampling of plan dimensions was used as needed when a pair of

randomized values did not meet both constraint criteria.

Table 5.18: Column pile-cap/footing size constraints by bent type and both column-section
size and shape (Roblee, 2018d, 2020b).

Support
Type

CDA Type
Area Constraints Aspect Ratio Constraints

Unit LB
⊕

UB
⊕

Unit LB
⊕

UB
⊕

isSB
Regular

3 Pile-Cap in2 47000.0 108000.0 in/in 1.00 1.00
4 Pile-Cap in2 56000.0 133000.0 in/in 1.00 1.35
5 Pile-Cap in2 121000.0 166000.0 in/in 1.00 1.00

isSB
Wide

3 Pile-Cap in2 55000.0 77000.0 in/in 1.16 1.60
4 Pile-Cap in2 41000.0 136000.0 in/in 1.00 2.00

isMB
Regular

2
Pile-Cap in2 11000.0 62000.0 in/in 1.00 1.56
Footing in2 23000.0 47000.0 in/in 1.00 1.35

3
Pile-Cap in2 16000.0 52000.0 in/in 0.75 1.36
Footing in2 31000.0 43000.0 in/in 1.00 1.00

4
Pile-Cap in2 39000.0 52000.0 in/in 1.00 1.20
Footing in2 - - in/in - -

isMB
Wide

3
Pile-Cap in2 21000.0 39000.0 in/in 1.00 1.25
Footing in2 33000.0 47000.0 in/in 1.00 1.24

4
Pile-Cap in2 28000.0 66000.0 in/in 1.00 1.53
Footing in2 - - in/in - -

5
Pile-Cap in2 56000.0 89000.0 in/in 1.14 1.27
Footing in2 - - in/in - -⊕

LB = lower bound, UB = upper bound.

Table 5.19 provides models for footing thickness and embedment depth. As illustrated

in Figure 5.6, embedment depth is measured from ground surface to the base of the

cap/footing. Generally, both thickness and embedment depth values increase with larger

column-section size (i.e. CDA value).
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Table 5.19: Distributions of column pile-cap/footing dimensions (thickness and
embedment depth) by bent type and both column-section size and shape (Roblee, 2018d,
2020b).

Support
Type

CDA Type
Cap/Footing Thickness (T ) Model Cap/Footing Embedment Depth (D) Model

Unit Type§ µ† σ† LB
⊕

UB
⊕

Unit Type§ µ† σ† LB
⊕

UB
⊕

isSB
Regular

3 Pile-Cap inch N 59.0 8.0 47.0 69.0 inch N 88.0 8.0 71.0 96.0
4 Pile-Cap inch N 69.0 9.0 60.0 78.0 inch N 119.0 9.0 84.0 128.0
5 Pile-Cap inch N 83.0 5.0 78.0 87.0 inch N 150.0 10.0 140.0 160.0

isSB
Wide

3 Pile-Cap inch N 69.0 7.0 60.0 78.0 inch N 96.0 13.0 84.0 115.0
4 Pile-Cap inch N 58.0 10.0 42.0 72.0 inch N 94.0 12.0 80.0 120.0

isMB
Regular

2
Pile-Cap inch N 44.0 7.0 36.0 60.0 inch N 81.0 18.0 60.0 120.0
Footing inch N 42.0 4.0 36.0 48.0 inch N 80.0 14.0 55.0 96.0

3
Pile-Cap inch N 47.0 4.0 39.0 55.0 inch N 82.0 14.0 60.0 100.0
Footing inch N 47.0 4.0 42.0 51.0 inch N 88.0 16.0 65.0 115.0

4
Pile-Cap inch N 62.0 1.0 60.0 63.0 inch N 103.0 5.0 100.0 110.0
Footing inch N - - - - inch N - - - -

isMB
Wide

3
Pile-Cap inch N 48.0 5.0 42.0 57.0 inch N 89.0 15.0 70.0 115.0
Footing inch N 50.0 2.0 48.0 52.0 inch N 87.0 19.0 60.0 100.0

4
Pile-Cap inch N 57.0 5.0 48.0 60.0 inch N 103.0 11.0 90.0 120.0
Footing inch N - - - - inch N - - - -

5
Pile-Cap inch N 60.0 1.0 59.0 61.0 inch N 110.0 10.0 100.0 120.0
Footing inch N - - - - inch N - - - -

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

Abutment Walls

Unlike for columns, dimensional models for pile-cap/footing foundations supporting

abutment walls require only two parameters. Values used for era-3 abutment wall

foundations are provided in Table 5.12. Here, it is assumed that the sampled bridge width

defines the abutment length model, and the embedment depth is taken to be equal to the

frontfill depth.

5.5.2 Spread Footings – Inventory Proportions and Response Modeling Parameters

Inventory analyses of era-3 bridge foundation design suggest usage of spread footings is

less common than pile foundations. Roblee (2018d) shows spread footing usage for

column foundations is extremely rare for single-column bents and for multi-column bents

having very large column-section size (CDA 4 or 5). For multi-column bents having

smaller column sections (CDA ≤ 3), only about 40% are supported on spread footings
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Table 5.20: Distributions of pile-cap/footing dimensions used for era-3 abutment-wall
foundations (Roblee, 2018b).

Parameters
Abutment Dimension Model

Unit Type§ µ† σ† LB
⊕

UB
⊕

Length (L) Deck Width
Breadth (B) feet LN 9.3 0.2 6.8 12.5

Thickness (T ) feet LN 2.0 0.2 1.5 2.7
Embedment Depth (D) Front-fill Depth
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal

distribution, respectively; σ denotes standard deviation and dispersion
(logarithmic standard deviation) for normal distribution and lognormal
distribution, respectively.⊕
LB = lower bound, UB = upper bound.

based on a sample size of 45 bridges.

Roblee (2018e) shows approximately 30% of abutment walls are founded on spread

footings in an inventory sample of 89 bridges. There may also be a positive correlation

between spread footing usage at both the column and abutment locations for bridge sites

underlain by firmer soil/rock materials. For example, spread footing usage for abutment

foundations is very rare for single-column bents and for multi-column bents having very

large column-section size (CDA 4 or 5). In multi-column bents bridges, there are 60%

of abutments seating on spread footing for those having CDA-2 column sections, and the

proportion decreases to 40% for bridges having CDA-3 column sections.

Spread-footing response is modeled as a hyperbolic backbone shape as noted in

subsection 3.3.7. Table 5.21 provides model-parameter distributions developed by Xie

(2021) for separate application to column and abutment locations based on analysis of

typical era-3 bridge-foundation designs. Differences in these models is due to differences

in the foundation shape and embedment at the two locations.

5.5.3 Pile Layout

subsection 5.5.1 described models and constraints for the dimensioning of pile caps. This

and the next sections describe considerations for the specification of both the layout and

type of piles. subsection 5.7.2 will describe the iterative process used for pile-foundation
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Table 5.21: Distributions of response-backbone parameters for spread-footing foundations
at column bents and abutment walls (Xie, 2021).

Location
Spread Footing Unit Strength (tu/BL) Model Spread Footing Unit Yield Deformation (z50/B) Model
Unit Type§ µ† σ† LB

⊕
UB

⊕
Unit Type§ µ† σ† LB

⊕
UB

⊕
Column ksi LN 3.05 0.40 1.40 6.80 in/in LN 0.0040 0.5000 0.0015 0.0110

Abutment ksi LN 1.95 0.33 1.00 3.75 in/in LN 0.0050 0.5000 0.0015 0.0135
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

specification at column-bent locations to assure the foundation capacity is commensurate

with the column moment capacity.

Column Bents

Table 5.22 presents the models for the layout of a pile foundation beneath a column-bent

based on the inventory analysis noted earlier in subsection 5.5.1. These models define the

number of pile rows in both the longitudinal and transverse directions as a function of bent

type and column shape and size. The total-pile count model provides a constraint to assure

the separately sampled pile-row models yield a realistic total.

Table 5.22: Distributions of pile layout parameters for era-3 column-bent pile foundations
by bent type and both column-section size and shape (Roblee, 2018d, 2020b).

Support
Type

CDA
Longitudinal Pile Number Model Transverse Pile Number Model Total Number Constraints
Type§ µ† σ† LB

⊕
UB

⊕
Type§ µ† σ† LB

⊕
UB

⊕
LB

⊕
UB

⊕
isSB

Regular

3 N 5.0 0.8 4 6 N 5.0 0.8 4 6 16 32
4 N 7.0 0.5 3 8 N 7.0 1.0 4 8 12 46
5 N 7.5 1.5 6 9 N 7.5 1.5 6 9 36 68

isSB
Wide

3 N 5.0 0.8 4 6 N 6.7 1.2 5 8 20 36
4 N 5.0 0.7 4 6 N 6.3 1.0 5 8 20 42

isMB
Regular

2 N 3.2 0.6 2 4 N 3.5 0.7 3 5 6 16
3 N 3.9 0.6 3 5 N 4.0 0.5 3 5 12 16
4 N 5.0 0.0 5 5 N 5.3 0.5 5 6 25 30

isMB
Wide

3 N 3.8 0.7 3 5 N 4.2 0.7 3 5 8 25
4 N 3.8 0.7 3 5 N 4.4 0.8 3 5 8 25
5 N 4.5 0.5 4 5 N 5.5 0.5 5 6 20 30

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and

dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.
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Abutment Walls

Piles within foundations beneath seat-type abutments are typically arranged as two rows

along the length of abutment, where pile spacing within the row is variable. Figure 5.7

presents inventory data and a model for relationship between total piles and abutment

length. The lognormal model has median µ = exp (lnL− 1.2). and dispersion β = 0.35

where L is the abutment length in feet. This model is directly sampled to specify the total

number of piles in a virtual bridge realization.

Figure 5.7: Relationship between the total pile number and abutment length in natural
logarithm space.

5.5.4 Pile Types and Inventory Proportions

Caltrans defines a ‘Class’ of piles to include a variety of standard pile designs that meet

the same nominal design requirement for axial load capacity. Figure 4.14(a-c) show the

variety of era-3 designs used in California bridges, though only Class-140 and Class-200

designs are commonly found in era-3 box-girder designs. By definition, the Class-200 piles

have a higher axial capacity than Class-140 piles, but there is some overlap in the lateral

performance of various piles within these two classes.

Inventory analysis of era-3 box-girder bridges shows that the usage proportions of

Class-140 and Class-200 piles varies between the column-bent and abutment-wall
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locations, and also by the bent type and column size at the bent location. At abutment

walls, approximately 65% of pile-supported foundations are on Class-140 designs. At

single-column bent locations, Class-140 pile usage decreases from approximately 40% for

CDA-3, to 30% for CDA-4, and lastly, to 0% for CDA-5 column sections. Similarly, at

multi-column bent locations, Class-140 pile usage decreases from approximately 75% for

CDA-2, to 60% for CDA-3, to 25% for CDA-4, and again, 0% for CDA-5 column

sections.

Next, one must identify the usage proportions of specific pile designs within each class.

Roblee (2018f) summarized design distinctions of Caltrans standard piles used in each

of the three design eras, and also developed the approximate inventory-usage proportions

shown in Table 5.23 for the most commonly used era-3 design variations within the two

classes. Separate proportions are provided for foundations supporting column-bents and

abutment walls.

The translational backbone response of each individual pile selection is specified using

stochastic models developed by Xie et al. (2021, 2020) for each Caltrans standard pile

design of all three eras. The median value for peak strength from these models was used to

rank order the 11 types of standard piles of both classes as noted at the left of Table 5.23.

This rank order is used in the iterative column-foundation specification procedure discussed

in subsection 5.7.2. A lower rank in the list indicates a relatively lower peak strength for

the pile type.

5.5.5 Column-Foundation Rotation

As discussed in subsection 3.2.6 and subsection 4.4.5, damage associated with

column-foundation rotation is being considered as a separate column component model in

the g2F framework. The controlling case of two possible rotational failure mechanisms,

‘geotechnical’ (i.e. edge-pile axial failure) or ‘structural’ (i.e. connection bending failure),

is being modeled using the same hyperbolic parametric form. Table 5.24 presents model
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Table 5.23: Approximate inventory proportions of pile types for column and abutment
foundations for era-3 bridges (Roblee, 2018f, 2020c)

Pile Type Class Pile Size [inch]
Column Piles Abutment Piles

Ranking
% of Cl-140 % of Cl-200 % of Cl-140 % of Cl-200

CIDH, 16”, Era 33 140 16 30% 30% 1
CIDH, 24”, Era 33 200 24 30% 25% 6

CISS 14x0.438 140 PP14 x 0.438 10% 5% 11
Steel Pipe, 14x0.438 140 PP14 x 0.438 10% 5% 7
Steel Pipe, 16x0.500 200 PP16 x 0.500 15% 10% 10
Prestr Conc, Alt-X 140 12 (+- 3/8) 15% 20% 2
Prestr Conc, Alt-X 200 14 (+- 3/8) 25% 25% 5
Prestr Conc, Alt-Y 140 15 15% 20% 4
Prestr Conc, Alt-Y 200 15 20% 25% 8
Steel HP, HP 10x57 140 HP10x57 20% 20% 3
Steel HP, HP 14x89 200 HP14x89 10% 15% 9

parameters developed by Yang (2020a,b) which involves three parameters, the initial

stiffness K, and two strength-ratio models corresponding to the two damage modes:

geotechnical (RG) and structural (RS). RG and RS are the strength ratio between the

rotational strength (tu) and the column section moment capacity. These models were

developed through analysis of 24 fixed-base single-column bent, and 36 pinned-base

multi-column bent bridges from the era-3 California box-girder bridge inventory. As seen

by the median strength ratio values in Table 5.24, both the geotechnical and structural

designs of typical era-3 foundations provide ample rotational capacity which exceeds

column-hinge capacity. However, the lower bound values indicate there is some minor

risk of foundation-rotation damage exceeding column-fusing damage, particularly for the

fixed-base case. It is unclear if this result is an artifact of the analysis strategy, but because

of the large median ratios, it is not expected to have significant impact on which

component controls fragility near the base of era-3 columns. Implementation of the

2-mechanism rotation model involves randomly sampling both strength-ratio models for

each bridge realization, then selecting the controlling value for use in demand analysis.

The proportion of total realizations controlled by each mechanism is tracked and used to

assign the proper capacity model.
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Table 5.24: Distributions of model parameters used for column foundation rotational
springs (Yang, 2020a,b).

Variable
Foundation Rotation Model Correlation

Unit Type§ µ† σ† LB
⊕

UB
⊕

RG RS K
Pin-Based Columns

RG kip-in/kip-in LN 4.50 0.40 2.10 16.50 1.00 0.35 0.50
RS kip-in/kip-in LN 5.50 1.00 1.30 100.00 0.35 1.00 0.55
K 106 kip-ft/rad LN 2.50 0.95 0.50 20.00 0.50 0.55 1.00

Fix-Based Columns
RG kip-in/kip-in LN 2.30 0.40 0.80 6.50 1.00 0.65 0.15
RS kip-in/kip-in LN 16.00 1.35 0.75 180.00 0.65 1.00 0.25
K 106 kip-ft/rad LN 17.00 0.75 5.00 80.00 0.15 0.25 1.00

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform.
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ

denotes standard deviation and dispersion (logarithmic standard deviation) for normal distribution and
lognormal distribution, respectively.⊕
LB = lower bound, UB = upper bound.

5.6 Miscellaneous

Several other miscellaneous parameters are required to specify a FEM bridge-model

realization. Model values such as damping ratio and mass factor are taken to be the same

as used in prior work by Mangalathu (2017); Soleimani (2017); Ramanathan (2012).

Ground motion components are assigned randomly as these models are intended for

generic application where orientation to the fault is unknown. The effects of vertical

acceleration are not considered in this study.

5.7 Design Constraints

The stochastic analysis strategy generally involves simultaneous consideration of multiple

variables which are randomly sampled. This research adopts the Latin-Hypercube

Sampling (LHS) technique (McKay et al., 2000). LHS is found to be an efficient way of

capturing the uncertainties in fragility analysis (Nielson, 2005). Nevertheless, a

completely random sampling approach ignores inherent correlations in parameter

specification that naturally arise from bridge design practices. Some correlations are

directly embedded within the component models, such as in the case of pile models.

However, some exist between multiple components that are normally considered
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separately and are difficult to identify.

This section describes three important constraints incorporated into the sampling

process herein which address several recognized bridge-component parameter correlations

arising from standard design practices. Taken together, these assure more realistic and

proportional virtual bridge designs.

5.7.1 Contributing Deck Area (CDA) Group Constraint

The CDA-group constraint aims to broadly align the deck area supported by a column

with an appropriate column-section size so as to generate a realistic axial load ratio.

Bridge design practices do not allow overloading (extremely high axial load) of columns.

However, completely random sampling of span-length, deck width, and column section

size could result in unrealistic outlier combinations where a large deck area is supported

by a small column section or vice versa. The CDA-group constraint on column sampling

addresses this issue.

Figure 5.8 illustrates the CDA-group constraints adopted herein. These are based on

analysis of inventory data from 434 California single-frame box-girder bridges of all

design eras (Roblee, 2016c). Each data point relates a bridges’ column-section gross area

to its contributing deck area (CDA) value, where CDA is approximated as the product of

the average deck width per bent column and the average span length. Breakouts of these

data by design era and bent configuration were also explored. While the data for

multi-column bents of each era, and era-1 bridges of either bent configuration, all had

smaller columns (i.e. section area) and lower CDA values, clear trends in their ratios could

not be differentiated from the overall trends in the combined data shown here.

The data in Figure 5.8 show that the same column section size can be used to support

a wide range of deck areas; a single value for deck area might be supported on a range of

column sizes; and there is a broad but clear trend for larger columns being used to support

larger deck areas as one would expect from proportional bridge designs. The red boxes
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Figure 5.8: California bridge inventory data and illustration of CDA-group constraints used
in virtual bridge sampling processes (Roblee, 2016c).

in Fig. 5.8 define the set of loose CDA-group constraints adopted herein with boundary

values listed in Table 5.25. These are defined in terms of overlapping ranges of deck area

for distinct ranges of column section size.

Table 5.25: CDA-Group constraints used for virtual bridge proportioning and assignment
of column-related components (Roblee, 2016c).

CDA
Column Area [inch2] Contributed Deck Area [feet2]
Low High Low High

1 1000 1600 500 2500
2 1600 2600 1000 4500
3 2600 5400 1500 7000
4 5400 7600 3000 9000
5 7600 12000 4500 10000
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The CDA-group values identify the five column-section ranges as CDA-1 to CDA-5

with larger numbers representing larger column sizes. These ranges are used directly to

constrain overall bridge geometry using an acceptance/rejection procedure with

oversampling as needed. The CDA-groups are also used as breakout categories for other

component-parameter specification models for items related to column design. These

include the size of the pinned-base reduced section (see Table 5.11) and various

foundation parameters including cap/footing dimensions (see Table 5.17 thru Table 5.19),

pile-array layout parameters (see Table 5.22), the proportions of column foundations

having footings (see subsection 5.5.2), and assignment of specific pile classes and types

(see subsection 5.5.4). They are also used to differentiate ranges of design moment

capacity in the ground-motion pairing procedure described in Section 5.7.3.

5.7.2 Pile-Foundation Design Constraints

The second adopted constraint on virtual bridge specification assures that pile-foundation

systems used at bent columns are well matched to the specified column. As outlined in

earlier sections, specification of a pile foundation system includes multiple parameters

including overall cap size and embedment as well as the quantity, layout, and type of

piles. Random specification of all these parameters can result in an inadequate foundation

capacity. Specifically, modern bridge design practices in California take steps to assure

that column-foundation is stronger than the column so the preferred damage mechanism

of column fusing occurs before foundation damage during an earthquake.

Based on discussions with Caltrans designers, this study assumes that the total

capacity of a modern (era-3) pile-foundation system (i.e. pile-group lateral resistance plus

sidesoil resistance on the cap) has 20% higher capacity (φ = 1.2) than the column.

However, completely random sampling of the various parameters of the pile foundation

models described herein yields column-foundation combinations that do not meet this

criterion. In the worst case, as many as 30% of randomly sampled single-column bridge
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realizations violated this criterion by varying amounts.

Therefore, a more sophisticated iterative re-sampling process, as outlined in the

flowchart shown in Figure 5.9, was adopted for specification of pile-foundation systems at

column bents. The process first compares foundation and column capacities of each

bridge to identify the Nf cases which fail to meet the (φ = 1.2) criteria. For those cases

which fail, the embedment depth is resampled first as it retains the specified proportions of

pile types. Increases in embedment depth typically increases pile capacity. Therefore, the

procedure updates pile capacities correspondingly.

Figure 5.9: Flowchart for sampling pile foundations.

For the set of remaining failure cases not addressed by embedment-depth re-sampling,

the second step is to increase the number of pile rows in the failure direction within model

constraint limits. Similarly, the pile capacities are re-sampled and the failure cases are
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updated. A decreasing the number of failure cases Nf indicates the current pile type has

sufficient capacity. When that strategy is exhausted, the third step in the re-sampling

procedure is applied to the remaining cases. Here, an increased pile-type rank is assigned

per Table 5.23 which results in selection of a new pile type with increased peak pile

capacity. Overall, the three stages of re-sampling and iteration outlined in the flowchart

are followed until Nf stops decreasing. Any remaining failure cases are accepted as

substandard, but within the parameter bounds set by inventory analysis. In actual design

practice, those cases would likely consider using other foundation types such as shaft or

mat foundations. Note that for the single-column-bent case noted earlier as having a 30%

failure rate, application of iterative resampling procedure reduced the failure rate to 0.6%.

5.7.3 Ground Motion Pairing Constraints

Perhaps the most fundamental principle of earthquake engineering is to design higher

capacity into bridges expected to undergo higher levels of ground shaking. However, most

prior analytically based fragility methodologies randomly pair any one of a wide range of

ground motions to a random virtual-bridge selection for purposes of capturing peak

responses used in the PSDM. However, this random pairing process violates the noted

fundamental seismic design principle by allowing the lowest-capacity bridges to be

subjected to the highest level of motions, thereby incorporating unrealistically high peak

responses into the PSDM model. This issue is addressed herein with the introduction of a

combination of two new methodological steps together referred to as ‘ground motion

pairing constraints’.

The ground motion pairing procedure seeks to avoid an inappropriate pairing of strong

earthquake shaking with a weak bridge design. Here, the term ‘applied ground motion

(AGM)’ is that specified for use in the demand analysis. Seismic bridge design practice

involves the selection, proportioning and detailing of components to withstand a ‘design

ground motion (DGM)’ typically specified in terms of a site-specific response spectrum.

178



For purposes herein, both the AGM and DGM are taken as 1-second spectral acceleration

(Sa1). Bridges designed for a high DGM have higher capacities (i.e. are “stronger”) than

bridges designed for low DGM (i.e. “weaker”). In the field, strong bridges can be subjected

to either high or low AGM whereas weak bridges are unlikely to be subjected to high AGM.

The ground motion pairing procedures introduced here serve to implement this fundamental

seismic design principle into the otherwise random pairing process.

Pairing Step 1: Moment Capacity (or DGM) with Column Section Size

This first pairing step establishes and enforces realistic ranges of seismic capacity for

different sized bridge-column sections. Here, seismic capacity is defined in terms of

column moment capacity which mirrors seismic design practices where column sections

are initially sized and detailed to resist moments arising from a specified shaking hazard.

The determination of realistic capacity ranges for each column size is based on analysis of

a sample of 420 column designs from the California box-girder bridge inventory. For each

design, an approximate design moment was computed as the product of the superstructure

mass, the column height, and a design ground motion. The design motion for each case

was approximated using current probabilistic shaking hazard values for Sa1 at each bridge

location. Superstructure mass was approximated using column-section properties and

applying a median axial-load ratio value of 10%.

Figure 5.10 presents results of this inventory-column analysis in terms of the total

longitudinal reinforcement area, approximate design moment, and the CDA group (which

conveniently represents groups of column sections having similar size). The total

longitudinal reinforcement area parameter captures the combined effects of column

section size and reinforcement ratio. These results show a clear positive proportional

relationship between approximate design moment and longitudinal reinforcement. It also

shows how ranges in both parameters increase with column section size (as represented by

the CDA-group value). Ranges in approximate design moment for each CDA-group are
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summarized in Table 5.26.

Figure 5.10: Relationship between total longitudinal reinforcement and approximate design
moment by CDA group for 420 CA bridge column designs (Zheng, 2020a): solid-line
boundaries are generated by removing outliers in dashed-line boundaries

Table 5.26: Approximate design moment ranges for CDA groups (Zheng, 2020a).

CDA
Approximate Designed

Moment Range [103 kip-ft]
1 <25
2 <50
3 5 to 100
4 10 to 150
5 25 to 200

Recall that the overall goal of the ground-motion pairing procedure is to associate

strong bridge designs (i.e. configured to withstand high design moment) with high applied

ground motions. Toward that end, the information in Table 5.26 allows for the creation of

proportional virtual bridge designs to withstand the full range of seismic demands. For

average column height and superstructure mass, the largest column sections are required

to handle the largest demands while smaller demands can be accommodated by a range of

smaller section sizes.
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Implementation of this first paring step in the virtual-bridge specification process occurs

within the bridge-model sampling sequence. First, separate candidate pools for design

moment and column section are specified. Each candidate design moment is computed as

the product of randomly sampled values for column height, superstructure mass and DGM.

Column sections are classified by CDA group. The superstructure mass value requires

separate sampling of the deck width, span length, section depth distributions.

The DGM is sampled from the distribution of ground motions used in the California

inventory analysis of Figure 5.10. Note that a minimum DGM value of 0.5g is assigned

because smaller values have been found to have little impact on bridge designs which then

become governed by other load combinations and design requirements. Next, the two pools

are paired by assigning the pool of design moments in reverse rank order (i.e. highest to

lowest) to a random selection from the largest available CDA pool of column sections.

For example, the highest design moments are first assigned to CDA-5 sections until that

pool is exhausted, then to the CDA-4 and so forth. Once this process is complete, the

moment-section pairs are checked against the ranges shown in Table 5.26. Experience to

date has shown the entire virtual bridge set is within the inventory-based boundaries using

this process.

Pairing Step 2: DGM and AGM

The second pairing step assures realistic assignment of a virtual bridge design, having a

design capacity represented by a DGM, with an AGM value in the demand analysis. Note,

the DGM for each virtual bridge design was specified as part of the moment-section pairing

procedure discussed above.

The core of the AGM-DGM pairing procedure used herein is tied to an assumed

probability distribution for r, defined as the ratio of a Target AGM (TAGM) to the DGM.

The distribution assigns any TAGM below the DGM (i.e. 0 ≤ r ≤ 1) to have equal

probability. TAGM values above the DGM (i.e. r > 1.0) have decreasing probability per
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the form of an assumed lognormal distribution until a hard truncation limit of that

distribution is imposed where the TAGM reaches 1.5 times the DGM (i.e. r = 1.5).

Appendix E outlines the development of the r distribution.

The AGM-DGM pairing process is implemented by first assigning a TAGM value to

each virtual bridge realization by multiplying its DGM by a randomly sampled value of r

and then sorting the bridge designs by their TAGM value. The AGM’s for the set of ground

motions used in the demand analysis (e.g. the T1780 set defined in Appendix B) are then

sorted by Sa1 value. Pairing of a virtual bridge design to a ground motion is then finalized

by using the same rank from the ordered lists of TAGM and AGM. Note that while the

ratio of TAGM to DGM in the r distribution was truncated at 1.5, the ratio of AGM (in

the demand analysis) to DGM depends on the ground motion set adopted for the demand

analysis. The T1780 set yields maximum AGM/DGM ratios of approximately 2.

Figure 5.11 illustrates the impact of the ground-motion pairing process. The figure on

the left shows AGM-DGM pairing combinations of the T1780 set resulting from a random

pairing process as adopted by most other research. The data points on the upper left

represent highly unrealistic combinations where applied motions are as much as five times

design values. In contrast, the figure on the right shows the same set of motions paired

using the procedures outlined above. Here, the unrealistic combinations are eliminated,

and applied motions are systematically limited to roughly two times the design values,

while lower motions can be applied to all designs.

Another way to consider the results in Figure 5.11 is to look at bands of applied

motion. At low AGM, both methods consider similar DGM ranges, or similar bridge

designs. However, at high AGM, the ground motion pairing method described herein

assigns stronger bridges compared to the randomly sampled case where both strong and

weak bridges are assigned. Thus, it is anticipated that the ground motion pairing will

reduce the probability of higher damage states since more of the bridges subjected to high

motions were designed with higher capacities per fundamental seismic design principles.
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(a) (b)

Figure 5.11: Illustration of ground motion sampling results: (a) without ground motion
pairing; and (b) with ground motion pairing.

Figure 5.12 illustrates the overall impact of this ground motion pairing procedure by

contrasting two sets of fragility curves for column damage from a case study simulation.

Both sets of curves show similar median Sa1 for damage states CDS 1 to CDS 3, but the

sets using ground motion pairing show lower failure probability for the remaining states.

For the CDS 7 collapse state, the increase of median Sa1 is nearly 20%, from roughly 2.25g

to 2.70g.

(a) (b)

Figure 5.12: Illustration of the effect of ground motion sampling: (a) without ground
motion pairing; and (b) with ground motion pairing.
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5.8 Closure

This chapter outlined details of a wide range of distributed variables that are sampled for

the specification of virtual bridges used in the demand analyses herein. Variability in

superstructure, column-bent, and abutment component designs are identified and

quantified. The distributions adopted are well grounded through the extensive use of

California bridge inventory data.

Equally important, three types of design constraints are introduced and discussed in

detail. CDA grouping constrains column section sizes to have realistic axial load ratios

when combined with sampled superstructures; the pile-foundation design procedure

constrains the foundation to be stronger than the column (for era-3 bridges); and the

ground motion pairing procedures both assure proportional bridge designs and align the

overall strength of the bridge design with the amplitude of the applied ground motion.

This is demonstrated to have significant impact on high-state fragility models.
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CHAPTER 6

ADVANCED PROBABILISTIC SEISMIC DEMAND MODELS AND FRAGILITY

CURVES

The generation of fragility models involves the convolution of demand models and

capacity models. Using the component models and methods described in Chapter 3,

dynamic nonlinear finite-element models are constructed in the analytical platform

OpenSees (McKenna et al., 2000). Specific EDP’s described in Chapter 4 were recorded

during the dynamic analysis. Probabilistic Seismic Demand Models (PSDM’s) are then

used to establish a relationship between the EDPs and the ground motion IM. A linear

relationship is commonly used to represent the EDP-IM relationship in the PSDM and this

method is both mature and well used for the development of fragility models through

these years (Cornell et al., 2002; Nielson, 2005; Padgett, 2007; Ramanathan, 2012;

Mangalathu, 2017; Soleimani, 2017). However, as both more nonlinear component

behavior and higher IM levels are considered, the conventional assumptions are not

always valid and higher order regression models are needed to address the increased

nonlinearity. Additional methodological refinements are warranted to support the more

demanding g2F framework involving more components, states, and EDPs for refined

assessment of both high and low-damage conditions.

As component fragility models offer valuable detailed information about component

damage, higher-stage fragility models are also needed to identify generalized damage for

a specific bridge region (e.g. column bent or abutment), zone (e.g. interior bents, base of

column) or the operational condition of the whole system. While elements of the

procedures needed to handle multi-level fragility models have been widely used since

Nielson (2005), these strategies are extended herein for generation of fragility model for

various meaningful combinations of component groups. Additionally, formal
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consideration is given herein to the construction of a correlation matrix between different

components, which to the best of the author’s knowledge, has not been previously

addressed.

This chapter starts with the discussion of conventional methods for constructing the

PSDM and component fragility models. After outlining limitations of these, this chapter

proposes strategies to address them. Next, a detailed comparison of different

methodologies is presented. The remainder of this chapter introduces the methodology

used to construct fragility models for multiple component groups and the whole bridge

system.

6.1 Conventional PSDM Model - Linear Regression Model

It is suggested by Cornell et al. (2002) that the estimate of the median of seismic demand

SD has a power relationship with IM as shown in Equation 6.1.

SD = a · (IM)b (6.1)

This relationship indicates that the seismic demand D, discussed in Chapter 3 has a linear

relationship with the IM. Transformation of the relationship into natural logarithm

simplifies the parameters estimation into simple linear regression model concerning data

pair of (x = ln IM, y = lnD) following Equation 6.2.

lnD = ln a+ b · ln IM + ε (6.2)

where ε iid∼ N (0, σ2).

As illustrated in Figure 6.1, the linear regression model estimates the seismic demandD

as a conditional lognormal (LN) distribution with median SD and dispersion, or lognormal

standard deviation, βD|IM . Given an IM, for example when ln IM = x0, while the median

estimation ŜD is trivial, and the calculation of variance for dispersion estimation is per
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Figure 6.1: PSDM illustration in natural logarithm space.

Equation 6.3.

βD|IM=x0 =

√
σ̂2
[
1 +

1

N
+

(x0 − x̄)2∑N
i=1(xi − x̄)2

]
(6.3)

Here, N is the total number of the regression data points, x̄ is the mean of x, and σ̂ is

the unbiased estimation of σ, or the root mean square error (RMSE) measurement of the

regression model, which is calculated by Equation 6.4.

σ̂ =

√∑N
i=1(yi − ŷi)2

N − 2
(6.4)

where yi is the ith seismic demand lnDi, and ŷi is the estimation of the lnDi, or ln ŜD.

With the knowledge that both of the seismic demand and capacity models are lognormal

distributions conditioned on a specific IM (Chapter 4), fragility curves for the component

can be developed. As indicated before, fragility curves depict the probability of seismic
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demands larger than capacities given an IM, which is represented in Equation 6.5.

P (D ≥ C|IM) = P (lnD ≥ lnC|IM)

= P (lnC − lnD ≤ 0|IM).

(6.5)

Notate (Z|IM) = lnC − ln (D|IM), then (Z|IM) is a normal distribution

N
(

ln (SC/SD|IM),
√
β2
C + β2

D|IM

)
. This indicates the fragility can be evaluated by

Equation 6.6, in which Φ(·) is the cumulative probability function (CDF) of the standard

normal distribution.

P (D ≥ C|IM) = P [(Z|IM) ≤ 0]

= Φ

0− ln (SC/SD|IM)√
β2
C + β2

D|IM


= Φ

 ln (SD|IM/SC)√
β2
C + β2

D|IM


(6.6)

To this end, a fragility model using the conventional linear regression model is

established. However, this study identifies that some components do not follow a linear

relationship between seismic demand and intensity measurement. By using linear

regression, the resulting residuals also violate the normal assumption. This is illustrated in

Figure 6.2 which comes from a simulation for the era-3 two-span multi-column bent

bridges. The first figure is the PSDM for the column hinge curvature ductility in the

transverse direction. After column yielding, there is a significant change in the data

distribution slope. The linear model underestimates the response in the low Sa1 region

(say lnSa1 < −1.5) and then first overestimates (to say lnSa1 ≈ 0), then again

underestimates (say lnSa1 > 0) response in the high Sa1 region. It can be seen in the

residual plot that the normal assumption for linear regression is violated. The case on the

right is for longitudinal displacement of the abutment foundation. As previous described,

abutment foundations provide only a small force after backwall fracture, and their
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deformations are limited to a low level by design to prevent damage. The linear model, as

illustrated here, cannot model this phenomenon. Similar to the first case, the residual of

this regression model is not uniformly distributed. Therefore, linear regression is not a

good choice to describe these two components, and it indicates the need for a better

statistical strategy to represent the PSDM.

(a) (b)

(c) (d)

Figure 6.2: Illustration of linear regression. (a) and (c): PSDM and residual plots for
hinge curvature ductility in transverse direction; (b) and (d): PSDM and residual plots for
abutment footing foundation displacement in longitudinal direction.

6.2 Emerging Methods to Capture High Non-linearity in PSDM

As mentioned before, the research community has recognized the nonlinearity of PSDM’s

constructed in lognormal space. Additionally, heteroscedasticity (i.e. non-uniform
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standard deviation) of the data violates the basic assumption of linear regression. This

section reviews three methods that seek to address these issues.

6.2.1 Quadratic Model

Work by Pan et al. (2007) attempted to represent the high non-linearity of the seismic

demand data with quadratic models. It was assumed that the seismic demand and IM

follows quadratic relationship in the following form. Dispersion can be calculated based

on Equation 6.3.

lnD = ln a+ b1 · ln IM + b2 · (ln IM)2 + ε (6.7)

6.2.2 Bi-linear Model

A similar technique was proposed by Jeon (2013) for handling high PSDM nonlinearity. It

was assumed that the seismic demand is represented by two linear segments as shown in

Equation 6.8, where the breaking point (IM0) between segments is determined by

minimizing the errors between actual and fitted values. The original work by Jeon (2013)

indicates the dispersions were calculated with Equation 6.4 for each segment. However, as

stated before, predicted dispersion using Equation 6.3 is preferable and will be used for

comparison.

lnD =


ln a+ b1 · ln IM + ε1, IM ≤ IM0

ln a+ b1 · ln IM0 + b2 · (ln IM − ln IM0) + ε2, IM > IM0

(6.8)

The study by Jeon et al. (2015a) also identified that dispersion is not constant across the

IM range for linear regression. Comparison of the linear and bi-linear models showed that

the bi-linear regression model addressed the heteroscedasticity issue.
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6.2.3 Multi-Phase Model (M-PARS)

Unlike the two aforementioned studies where nonlinearity was handled with regression

techniques, Zareian et al. (2015) proposed a model combining regression with explicit

consideration of the causes for the multi-phases of seismic demand. The fundamental idea

of this method, named Multiphase Performance Assessment of structural Response to

Seismic Excitations (M-PARS), is total probability is represented as a combination of

separate mechanism-dependent models per Equation 6.9, where BS represents ”Bridge

Survival”, BC represents ”Bridge Collapse”, SKS represents ”Shear Key Survival”, and

SKF represents ”Shear Key Failure”. The four terms (BS, BC, SKS, and SKF )

represent different phases of the bridge behavior.

Figure 6.3: Illustration of M-PARS method.
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P (D ≥ C|IM) = P (D ≥ C|IM ∧BS ∧ SKS)P (BS ∧ SKS|IM)

+ P (D ≥ C|IM ∧BS ∧ SKF )P (BS ∧ SKF |IM)

+ P (D ≥ C|IM ∧BC)P (BC|IM)

(6.9)

To calculate the failure probability by Equation 6.9, the three equations below are

evaluated which considers that the two pairs of phases (BS and BC, SKS and SKF ) are

collectively exhaustive, and the fragility is always equated to 1.0 given bridges collapse,

i.e., P (D ≥ C|IM ∧BC) ≡ 1.

P (BS ∧ SKS|IM) = [1− P (SKF |IM ∧BS)][1− P (BC|IM)] (6.9a)

P (BS ∧ SKF |IM) = P (SKF |IM ∧BS)[1− P (BC|IM)] (6.9b)

P (D ≥ C|IM ∧BC)P (BC|IM) = P (BC|IM) (6.9c)

As illustrated in Figure 6.3, the two terms P (D ≥ C|IM ∧ BS ∧ SKS) and P (D ≥

C|IM ∧BS ∧SKF ) in Equation 6.9 are determined using linear regression (Equation 6.2

to Equation 6.6). The other two critical terms P (SKF |IM ∧ BS) and P (BC|IM) are

determined using logistic regression as suggested by Zareian et al. (2015).

In practice, this study did not consider possible application of this method to multi-

phase response in the longitudinal direction. An additional limitation is that the linear

regressions for the two phases, SKS ∧BS, and SKF ∧BS, sometimes cannot accurately

capture the trend if the data leverage is too short; or in other words, this method cannot

consider data continuity between different phases.

6.3 Modified Multivariate Adaptive Regression Spline (M-MARS) for PSDM

Multivariate Adaptive Regression Spline (MARS) is a non-parametric regression method

(Friedman, 1991). Employing multiple segments, MARS is frequently used to model a

nonlinear data set. In this research, the standard MARS model is modified to meet specific

192



engineering requirements of this project. Specifically, the segments in this method are

fixed so that each segment represents one recognized phase in the seismic demand data.

The procedure is presented in four steps.

First, seismic demand data points are separated into the five bridge-system response

phases listed in Table 6.1. These phases focus on three mechanistic causes for PSDM

data non-linearity: abutment-joint gap closure, the yielding of the internal supports (e.g.

column bents, pier walls), and the fusing of the end constraint (e.g. abutment backwall

in longitudinal direction and shear key in transverse direction). The phases in Table 6.1

represent pre-gap-closure (PGC) and four post-closure phases: the internal supports have

not yielded and end constraint has not failed (IS ∧EC); the internal supports have yielded

but the end constraint has not failed (IS ∧ EC); the internal supports have not yielded but

the end constraint have fused (IS ∧EC); and both the internal support has yielded and the

end constraint has fused (IS ∧ EC). For bridges with multiple internal supports, internal

support yielding is taken to represent yielding (i.e., displacement ductility larger than 1.0-

in/in) occurring at all of the internal supports across all the bents. End constraint failure is

taken as failure of either one of the end constraint components. As indicated in Chapter 4,

abutment components are modeled by multiple spring elements. Failure of either one of

the elements indicates end constraint failed (EC) in this context. For backwall or shear

keys, failure of the component represents the seismic demand exceeds e3n in the material

backbone stated in Chapter 4. Figure 6.4(a) uses unique color and symbol designations to

illustrate the five phases of column-response data for a 2-span bridge case.

Table 6.1: Definition for five phases used in M-MARS

Notation Gap Closure Internal Support(s) Yielded End Constraint(s) Failed
PGC No No No
IS ∧ EC Yes No No
IS ∧ EC Yes Yes No
IS ∧ EC Yes No Yes
IS ∧ EC Yes Yes Yes

Second, the boundaries between each pair of adjacent phases are located, which are
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called ”knots” by the MARS method. These knots are illustrated by the large colored dots

in Figure 6.4(b). In this example, the IS ∧ EC and IS ∧ EC data are combined together

as a single transitional phase. Therefore, four phases remain to be considered to determine

three internal knots and one end knot. The end knot could be taken at either the lower bound

or upper bound of the data set. To avoid overfitting (i.e. use of too many small segments),

especially at the edge of the data set, spacings between the edge knots are checked. If the

length of the edge phase (i.e., PGC and IS ∧ EC) is smaller than a threshold IM value,

the corresponding internal knot would be removed. In this study, the threshold is set as

0.5 ln g.

Next, similar basis functions Bi(x) are applied to these pre-determined knots to enable

segmentation per the MARS method. As shown in Equation 6.10, a linear function is used

for the edge knot, and a hinge function is used for internal knots. At this stage in the

process, seismic demand is ready for regression (in lognormal space) with respect to no

more than four basis functions Bi(x) of IM.

Bi(x) =


x− ci, if ci is an edge knot;

max(0, x− ci), if ci is an internal knot.
(6.10)

Finally, the problem becomes a multivariate linear regression with variable selection,

during which one would regress the data and consider a fair number of base functions to

avoid overestimation. Stepwise regression or best-subset selection could be used here. In

this study, forward and backward stepwise regression is adopted (Figure 6.4(c)).

To address possible heteroscedasticity, dispersion is represented by a separate

regression model as a function of IM. In this research, a linear relationship (Figure 6.4(d))

is established for the residual. Under such an assumption, the residual still follows a

conditional normal distribution.
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(a) (b)

(c) (d)

Figure 6.4: Procedure of constructing M-MARS model: (a) Definition of phases; (b) Locate
knots; (c) Stepwise regression to fit the mean response; and (d) Linear model of dispersion.

6.4 Filtered Adaptive Regression with Logistic Incorporation of Omitted Data

(FAR+) for PSDM

In the previous section, the Modified Multivariate Adaptive Regression Spline (Modified

Multivariate Adaptive Regression Spline (M-MARS)) was introduced, and it is used to

handle nonlinearity in the PSDM data for most components herein. However, as the

bridge-system model has become more comprehensive with the engagement and fusing of
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components at different IM levels, the resulting PSDM seismic demand data may not be

ideal enough to use M-MARS directly for all components. Therefore for application, it is

recommended to first review the data and determine the most appropriate approach for

constructing the PSDM. This section presents an alternative method for handling two

types of exceptions to the use of the M-MARS method.

6.4.1 Two Types of Exceptions

The first “low-end exception” refers to components that have extremely low responses

under small ground motions. Components directly engaged by gap closure or those

connected to them are good examples of this exceptional group.

For example, the impact element model (Chapter 4) includes the gap-closure process.

Under small ground motions that do not cause gap closure, there is no pounding between

adjacent components, and thus no damage to the component 1. Other components,

including shear key and residual joint deformation, sometimes contain non-positive values

in the low-IM portions of the PSDM that should not be considered with regular regression

in logarithm space. However, these data points do contain important information that

component response is negligible for the applied IM, and therefore should be considered

for evaluation of the failure probability; otherwise, the generated fragility model would

overestimate failure probability based only on cases having high responses.

Another example for the low-end exception is the backwall-connection element which

connects to the impact element. Under small ground motion and before gap closure, the

backwall generates very small, randomly fluctuating seismic demand data associated with

small inertial loads of the backwall or numerical noise (Figure 6.5(a)). These data points

represent seismic demand on the order of 10−4 which is far below that associated with any

damage. So, while the EDP values in such cases should not be considered in the assessment

1In this research, impact damage describes possible pounding-caused damage in the contacting surface of
adjacent structures. Although the strip-seal element in this research use the same recorded data as the impact
element, ”damage” in this context does not refer to the possible strip-seal damage.
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of fragility, the IM values from these cases contain important information regarding the

level of excitation required engage these components in a way that may induce damage.

The second “high-end exception” is similar to the low-end exception but refers to

seismic demand data under high ground motion where the EDP value no longer has

significant meaning. For example, after column demand exceeds a realistic range of its

capacity (say 99th percentile of CCLS model), the important information is to simply

know the column has failed, but not by how much. Demand data in this range can be

treated as a “separate set” representing cases of complete component failure.

6.4.2 FAR+ Methodology for Handling Data Exceptions

This research introduces a new methodology called ”Filtered Adaptive Regression -

Logistic Incorporation of Omitted Data (FAR+)” to handle the two types of exceptions

mentioned before. The basic concept of FAR+ involves total probability in a way that is

similar to M-PARS. Construction of a FAR+ model involves four steps as outlined below.

First, the exceptional low-end/high-end data points are filtered out from the set to be

considered using regular regression methods. For the low-end exception, a low-pass filter

is applied for separation of the low-end data set (SL) from the regular regression data set

(SR). Similarly, a high-pass filter is used to separate the high-end data (SH) from (SR). In

order to classify the two sets of data, the K-Means clustering (Lloyd, 1982) for data pairs

(ln IM, lnEDP )s is adopted. The start point can be set at the center of the pre-gap closure

(PGC) phase in the low-end exceptions, or the center of the all fused (IS ∧ EC) phase in

high-end exceptions, and the center of the remaining points for SR. Figure 6.5(a) illustrates

this first step in the FAR+ method using response data for the backwall connection which

contains a large amount of ‘low exception’ data mostly related to pre-gap closure. Here,

the large colored dots identify the start points for the K-Means clustering algorithm which

were taken as the center of phase PGC and the rest of the data. After clustering, data points

are split into the SL and SR sets shown in Figure 6.5(b).

197



Second, apply the M-MARS regression to the data points in the SR set as illustrated in

Figure 6.5(c).

Third, apply Logistic Regression to the SL or SH sets to establish the probability of data

points located in low-end/high-end. With this model, the probability that the remaining

demand data points are located in SR can be derived from the theory of complementary

events. The dashed line (”Low-Pass Filter”) shown in Figure 6.5(d) is the logistic regression

result, representing the probability that the data point is located in SR given IM.

Finally, incorporation of omitted data is accomplished using the total probability

equation below, where PL(IM) = P ((IM,D) ∈ SL|IM) and

PH(IM) = P ((IM,D) ∈ SH |IM) are the two logistic regression models derived before.

Figure 6.5(d) presents the three-state fragility models for backwall connection failure

incorporating the omitted data.

P (D ≥ C|IM) = P (D ≥ C|IM ∧(IM,D) ∈ SR) ·(1−PL(IM)−PH(IM))+PH(IM)

(6.11)

6.5 Comparison of Different Regression Models for Establishing Component

Fragility

This section compares fragility models generated using the adopted M-MARS model

relative to those from the regular linear regression model, the quadratic model, and the

bilinear model, all introduced in section 6.2. The PSDM and fragility results are for the

case of displacement ductility response in the longitudinal direction for regular-section

columns in era-3 two-span multi-column bent bridges.

Figure 6.6 shows that the adopted M-MARS model captures three segments of

response. From left to right, the first segment represents the initial pre-gap closure stage,

where columns must absorb virtually all seismic demand, the second segment represents
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(a) (b)

(c) (d)

Figure 6.5: Procedure of constructing FAR+ model: (a) Define initial K-means center
points; (b) K-means clustering result; (c) M-MARS regression; and (d) Fragility model.

the transition stage where the backwall is engaged and fuses, and the last segment having

the largest slope (or highest nonlinearity) represents progressive column failure due to

high ground motions. Thus, the segment boundaries in the PSDM using the M-MARS
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method occur at physically meaningful points in the response. Median fragility values for

the seven states are listed in Table 6.2 with the highest CDS 7 value of 2.07 g.

Comparable results using the other regression strategies are presented in Figure 6.7

through Figure 6.9 with fragility model values also summarized in Table 6.2.

The linear model is illustrated in Figure 6.7. This single-slope model provides a

reasonable match to the data, but the fragility results show that dispersion has increased

significantly. Table 6.2 shows the linear produces the smallest median Sa1 at CDS 1 and

the largest at CDS 7 with median values crossing in the mid-state region between states

CDS 3 and CDS 4. The difference in the median CDS 7 is roughly 12%, and differences

in failure probability at the very-high IM of 3.0 g are about 15% to 20%, both in the

non-conservative direction.

The quadratic model, illustrated in Figure 6.8, performs somewhat better than the linear

model as it can capture more nonlinearity at high Sa1 region. As such, its median Sa1 for

CDS 7 is smaller than the linear model, indicating the quadratic model is modestly more

conservative relative to the linear model.

The bilinear model, illustrated in Figure 6.9, produces results closest to the adopted

M-MARS model. In this case, the difference in median fragility model median values is

negligible suggesting two segments are sufficient in this instance. However, as seen in the

response data chart on the left of Figure 6.9, the slope-change point ln (IM0) is determined

by the data alone and therefore lacks a physical explanation for why it is located at 1.0 g.

Table 6.2: Comparison of the fragility median Sa1 for the four regression models: the red
(green) color highlights overestimation (underestimation) of failure probability.

CDS M-MARS Linear Quadratic Bi-linear
1 0.52 0.46 0.48 0.50
2 0.91 0.8 0.83 0.89
3 1.28 1.24 1.24 1.29
4 1.55 1.58 1.55 1.56
5 1.65 1.73 1.67 1.66
6 1.79 1.92 1.84 1.80
7 2.07 2.32 2.18 2.07
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Figure 6.6: Comparison of different regression models: M-MARS model.

Figure 6.7: Comparison of different regression models: Linear model.

Table 6.4 provides a comparison of mean-squared error (MSE) values from the

alternative regression models for several additional components. It shows that the linear

model always has the highest error (i.e. ‘worst’ accuracy). The proposed M-MARS model

does not always produce the ’best’ model in terms of the MSE. The components where
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Figure 6.8: Comparison of different regression models: Quadratic model.

Figure 6.9: Comparison of different regression models: Bilinear model.

higher MSE is observed for M-MARS compared with bilinear or quadratic models are all

cases where the PSDM data are readily represented as bilinear. For components requiring

higher-order estimation (tri-linear or quad-linear), M-MARS outperforms other models in

these terms. The additional benefit of M-MARS is that the segment boundaries, at least
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initially, correspond with physically significant events in the overall bridge response.

Table 6.3: Comparison of MSE for various methods for PSDM generation.

MSE COL RL § COL RT maxCTH WL CFF L maxUNS 30 SEAL T3 AFP HPL AFP HPT
Linear 0.636 0.728 0.838 0.558 0.435 0.495 0.930 0.831
Quadratic 0.631 0.712 0.683 0.546 0.424 0.492 0.912 0.817
Bilinear 0.622 0.686 0.657 0.537 0.435 0.483 0.851 0.807
M-MARS 0.615 0.688 0.661 0.529 0.397 0.482 0.833 0.811
M-MARS
Segments

3 2 2 3 3 3 3 2

§ See Appendix F for abbreviation of components.

6.6 Component-Groups/System Fragility Models and Roll-Up Procedure

Using the methodologies discussed above, one can establish fragility models for different

individual components and responses. Some use cases for fragility model application such

as inspection guidance, cost estimation, and assessment of bridge-subsystem performance

require simultaneous consideration of multiple components. This section details so called

‘roll up’ processes used to assemble higher-stage fragility models representing various

groupings of components.

6.6.1 Multi-Stage Framework for Roll-Up of Fragility Models

The base fragility models developed using methods outlined in prior sections are called

”Stage-0” models in this research. These apply to a single bridge component assessed with

a single EDP acting in a single direction, and can only be developed based on a PSDM.

Table 6.4 outlines a larger multi-stage framework for the roll-up of the Stage-0 models

to represent ever larger groupings of components categorized as Stage-A through Stage-E

roll-ups, each of which is described below.

The “Stage-A” roll-up is referred to as “omni-directional”, and represents the overall

multi-directional damage state probability developed from separate Stage-0 PSDM

models for the two orthogonal directions. As described in Chapter 4, some component

responses, such as the backwall-connection and shear key elements are specified in only
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Table 6.4: Multi-stage framework for roll-up of base (Stage 0) fragility models

Roll-up Stage Roll-up objects Roll-up type Example
0 NA NA backfill-A
A orthogonal directions Type-II regular section column displacement ductility

B.1 multiple sub-types Type-I pile-foundations
B.2 multiple EDP’s Type-II columns
C multiple components within zone Type-II abutment, bent
D all components in one system Type-II e33 s22 isMB aUS bridges
E multiple RBS’s Type-II all e33 bridges

one direction. An elastomeric bearing is an example of an omni-directional component

where the maximum recorded EDP (shear strain) could happen in any direction. In this

case, the demand model itself could be simply expressed in terms of the omnidirectional

peak value and a Stage-0 fragility model developed directly since the capacity model is

identical in all directions. However, other components, such as columns, may have

separate capacity models for each orthogonal direction (i.e. for a multi-column bent where

transverse capacity includes bent-frame effects). The State-0 fragility models for each

loading direction thereby reflects only part of the failure probability. Hence, a roll-up

procedure is needed for combining the pair of one-directional models into a “Stage-A”

fragility model to represent omni-directional damage to a component. Figure 6.10

provides an illustration of a Stage-A roll-up for the case of regular-section column

response in the longitudinal and transverse directions. These results show that damage in

both directions contribute to the combined fragility model for column performance. In this

case, the transverse direction, represented with the dotted line, is seen to control the

response (has a smaller median) for the first few states, while the longitudinal direction,

represented by the dashed line, has increasing influence at higher states.

The two “Stage-B” roll-ups involves more complicated component assessments where

either multiple component subtypes/subgroups are considered, or multiple EDP’s are

involved in the performance assessment. A “Stage-B.1” roll-up captures overall damage

probability to multiple types of the same basic component. Pile foundations provide a

good example of multiple component types where separate CCLS models were defined for
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each of three subgroups (CIDH, PC, Steel) which themselves are combinations of a larger

set of individual standard pile types. The capacity models for each subgroup have

different values and correspond to distinct failure mechanisms. It is therefore

unreasonable to put these subgroups together in a single PSDM. The illustration in

Figure 6.11 provides another example, where in this case, the Stage-B.1 rollup combines

damage for the two column section-types (regular and wide).

Note that the relationship between individual component fragilities and the combined

fragility results in the Stage-B.1 case in Figure 6.11 differs from the pattern observed for

Stage-A rollups in Figure 6.10. In the Stage-A case, both Stage-0 curves contribute to

combined hazard and the combination always exceeds either part. However, in the

Stage-B.1 case, the two Stage-0 curves represent mutually-exclusive component types, so

the combined curve represents some mixture of the two hazards and the fragility curve is

always in the middle of those for the two subgroups. The precise position of the combined

curve is dependent on the mix of subtypes considered in the analysis. In this research,

subtype proportions are selected to be consistent with the California bridge inventory.

“Stage-B.2” roll-up captures overall damage probability to one physical component

implied by multiple EDPs and capacity models used to assess performance of that

component. The g2F framework allows for multi-metric assessment of components,

particularly for vital components having multiple failure mechanisms having life-safety

implications. For example, column failure could be identified by either global-column

damage from excessive displacement ductility demand or local hinge-section damage

from excessive curvature ductility demand (or by other mechanisms such as column

overturning due to P-∆ effects or lap-splice reinforcement failures in earlier era designs).

Under these situations, the Stage-B.2 roll-up procedure is used to establish a combined

model considering different failure modes. Figure 6.12 illustrates this using the example

of global and local column damage. Both the global and local metrics contribute to the

assessment of overall column damage state, thus the combined fragility model is always
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larger than those for the two individual metrics. Broadly, this multi-metric strategy allows

different recognized mechanisms of component failure to be recognized and become the

controlling parameter as conditions warrant. In the case shown in Figure 6.12, the global

damage controls all of the states and the local damage contributes very little additional

hazard.

One of the ShakeCast use cases envisioned for g2F model application is to provide

field inspectors with additional guidance for where to look for damage starting with

specific bridge regions or zones. A “Stage-C” roll-up is designed to support this use case.

This stage of fragility model combines multiple components within a bridge zone.

Typically, a bridge can be segmented into three regions: 1) the abutment wall region

considering damage to abutment stem walls, wing walls, and foundations; 2) the abutment

joint region including the unseating mechanism, the backwall and shear-key fusing

mechanisms, and miscellaneous joint component such as bearings and joint seals; and 3)

the interior support (e.g. column bent) region considering damage to bent columns and

their foundation systems. The interior support region can be further subdivided into zones.

In the g2F framework, zone-1 bents refers to those adjacent to the abutment, zone-2 bents

are the remaining bents in a single- or dual-frame bridge, and zone-3 bents are those on a

freestanding frame having no adjacent abutment. For these regions and zones, Stage-C

fragility models reflect damage to all components within the zone. Armed with Stage-C

roll-up information, field inspectors could quickly locate likely damage regions or zones

and thus improve the inspection efficiency. Figure 6.13 provides an example of a State-C

roll-up for zone-1 bent damage including damage contributed by column, foundation

rotation connection, and foundation translation. The two foundation damage mechanisms

are secondary components with damage models extending only to CDS 5. Thus, for

higher states, column damage is the sole contributor to bent damage. In this era-3 bridge

case having well-designed foundation systems, column damage controls combined

damage for all the states.
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A “Stage-D” roll-up generates the overall bridge-system fragility model used to depict

the operational state of the bridge. Figure 6.14 shows the State-D roll-up for the case of an

era-3 two-span multi-column box-girder bridge. It includes damage to the bent (per

Figure 6.13) as well as to the abutment joint and abutment wall regions. The abutment

joint damage is further detailed in Appendix F which presents separate and combined

fragility models for unseating, backwall, shear key, bearing, and pounding. In this case,

the backwall and shear key control abutment joint damage for the respective loading

directions as might be expected for these sacrificial elements designed to protect the

foundation. These abutment-region damage types control the first three states of the

bridge-system fragility model. Beyond that, column-bent damage governs the higher

system states. In this study of era-3 abutment design, the abutment wall considers only

abutment foundation damage – a component that is not vulnerable due to the fusing action

of the backwall and shear key – and thus has only a minor contribution to the overall

bridge-system damage state.

Appendix F presents the complete set of 92 fragility models created at all stages for

this case study. Note that Table 6.4 includes a “Stage-E” roll-up which is a placeholder

for envisioned potential future development of more generic fragility models (e.g. era-3

box girder) which combine multiple RBS for applications where bridge-type information

is limited.
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Figure 6.10: Stage-A roll-up: column regular section global displacement ductility response
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Figure 6.11: Stage-B.1 roll-up: column global displacement ductility response
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Figure 6.12: Stage-B.2 roll-up: column response
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Figure 6.13: Stage-C roll-up: bent response
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Figure 6.14: Stage-D roll-up: system response
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6.6.2 Roll-Up Types and General Methods

As detailed in the last section, there are multiple stages in the overall roll-up process, each

serving its own objectives. To implement these roll-ups, two different roll-up procedures

are used herein called Type-I and Type-II. As noted in Table 6.4, most roll-ups uses the

Type-II procedure, the exception here being for ”Stage-B.1” roll-ups. These two procedures

are detailed below.

Type-I roll-up

The “Type-I” roll-up in this research refers to those cases involving the combination of

multiple sub-types of the same component. For instance, two subtypes of column sections,

regular and wide, each have their own PSDM. Similarly, pile-foundations have three

separate PSDM’s corresponding to CIDH concrete, precast concrete, and steel piles.

These three types of piles have distinct damage mechanisms and capacity models. While

detailed insight on performance can only be provided by considering these subtypes

separately, a roll-up of all three types can provide useful a general sense of the

approximate component damage if the sub-type is unknown. Using the total probability

concept, a simple procedure for implementing the Type-I roll-up is shown in

Equation 6.12, where the proportion of each type is written as P (Typei) and there are T

subtypes in total. The failure probability P (Di ≥ Ci|IM ∧ Typei) is the fragility model

developed in ”Level-0”.

P (D ≥ C|IM) =
T∑
i=1

P (Di ≥ Ci|IM ∧ Typei) · P (Typei). (6.12)

Figure 6.11 was an example of the Type-I roll-up. It can be seen that the two mutually

exclusive subgroups generate a combined fragility curve located in the middle. Therefore,

the boundary for a Type-I roll-up is the minimum and maximum probability of all the

considered subgroups.
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Type-II roll-up

The “Type II” roll-up in this research refers to a mature procedure to generate system

fragility curves using Monte-Carlo simulations as per the work by Nielson (2005) which is

adopted herein. Type-II roll-ups provide a means to combine fragility for different loading

directions, EDP’s, components regions.

To generate a fragility model using Type-II roll-up, first step is to determine a sample

space consisting of multiple steps for the IM of interest, and then also set the number of

samples N at each step. A small number of samples N may cause instability of fragility

curves, especially when it includes multiple components, while a large number slows down

the computation time. In this research, 60 sample steps are set from Sa1 = 0 g to 3.0 g with

5000 samples at each step.

Next, sample N number of seismic demands and capacities for all components at each

step of IM. Estimation of the mean and dispersion vectors for seismic demands is calculated

by the regression model (PSDM). It is easy to see that both seismic demand and capacity

are multivariate normal distributions in logarithm space. Correlation is a crucial part of

this sampling procedure and will be discussed separately below. Note that the demand

samples included components with sub-types should keep the same proportion of missing

data. After generating the N samples at each sample step, the fragility is calculated by

averaging the sample number that any of the demands are greater than the corresponding

capacities. To represent it mathematically, note that for each component j, there are N

sample points, and their corresponding demands and capacities are denoted as Dij and Cij ,

where 1 ≤ i ≤ N and 1 ≤ j ≤ M given there are total M components in this roll-up

procedure. Then the roll-up procedure is written as:

P (D ≥ C|IM) =
N∑
i=1

max
1≤j≤M

[I(Dij ≥ Cij|IM)]

N
, (6.13)

where I(·) is the indicator function, which equals to 1 if the condition is true and 0
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otherwise.

Similar to the Type-I roll-up, there is a boundary for the Type-II roll-up in terms of the

underlying fragility curves used to create the combined curve. The lower bound is the

maximum probability (or envelope) of all underlying components. This represents the

idealized case when responses of all underlying components are fully correlated. In

contrast, the upper bound is the calculated probability for the opposite idealized case

when all roll-up components are fully independent and uncorrelated. For these purposes,

the expression ‘fully correlated’ components indicate that both their demand and capacity

models are fully correlated. Similarly, ‘independent’ applies to both the demand and

capacity models. In real-world applications, most components are neither fully correlated

nor fully independent. The next section discusses how to determine correlation for such

cases.

6.6.3 Demand Correlation: Pearson Correlation and Partial Correlation

In order to properly sample seismic demands for multiple components at each IM step, it is

critical to determine the correlation matrix for components and/or EDPs considered in the

roll-up procedure.

However, to the knowledge of the author, prior studies have directly calculated the

correlation based on the original data, which is the Pearson correlation (Freedman et al.,

2020). Pearson correlation does not remove the effect of a set of controlling random

variables, i.e., the intensity measurement, which would result in significant

over-estimation of the correlation coefficient. Statistically, the sampling procedure of

seismic demand data indicates that these data are conditioned on a given IM, or in other

words, that the correlation is a measurement with the controlling variable removed. For a

sampling procedure that is going to use the correlation matrix, the calculation of the

correlation matrix should also be conditioned on a given IM.

To illustrate this problem from an engineering point of view, consider the seismic
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demands of a component in two orthogonal directions. Given a ground motion intensity,

any knowledge of the seismic response in the longitudinal direction cannot improve the

prediction accuracy of the response in the transverse direction. On the other hand, if one

has no idea of the ground motion, the situation is different because a large seismic

response in the longitudinal direction would indicate a relatively large ground motion,

which will consequently cause a large response in the transverse direction with relatively

high probability. This example illustrates that the seismic responses in two orthogonal

directions are indeed conditionally independent given the ground motion intensity.

To address this problem, it is proposed to calculate the correlation matrix using partial

correlation (Baba et al., 2004). Partial correlation is calculated based on the residual of the

regression model, reflecting the conditional correlation of seismic demands. Using partial

correlation is an approximation of the intrinsic value by averaging the correlation through

the whole range of IM.

The second issue arises due to the existence of components with sub-types, non-positive

responses, and different seismic demand data between abutment components and other

components. It is not an easy practice to calculate the correlation matrix directly using

the residual data. For example, in a roll-up procedure with K bridge realization, abutment

components (e.g., elastomeric bearing pad elements) include 2K (two sides of abutment)

data points while internal bent components (e.g., column displacement ductility) have only

K data points. It is therefore suggested to calculate the correlation matrix pair-wisely.

However, it would fail to construct a positive semi-definite matrix. In order to resolve this

issue, one would like to compute the nearest positive semi-definite matrix (Higham, 1988)

for the covariance matrix.

A comparison of the correlation matrices using the Pearson correlation and Partial

correlation is shown in Table 6.5. The matrices shown here includes multiple components

including column displacement ductility in longitudinal (COL L) and transverse (COL T)

directions, column spread footing foundation response in longitudinal (CFF L) and
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transverse (CFF T) directions, and abutment spread footing foundation response in

longitudinal (AFF L) and transverse (AFF T) directions.

Table 6.5: Demand correlations for damage states

Pearson Correlation
COL L COL T CFF L CFF T AFF L AFF T

COL L 1.00 0.94 0.86 0.85 0.85 0.82
COL T 0.94 1.00 0.79 0.84 0.81 0.80
CFF L 0.86 0.79 1.00 0.96 0.81 0.78
CFF T 0.85 0.84 0.96 1.00 0.82 0.83
AFF L 0.85 0.81 0.81 0.82 1.00 0.91
AFF T 0.82 0.80 0.78 0.83 0.91 1.00

Partial Correlation
COL L COL T CFF L CFF T AFF L AFF T

COL L 1.00 0.60 0.47 0.30 0.29 0.29
COL T 0.60 1.00 0.15 0.36 0.21 0.33
CFF L 0.47 0.15 1.00 0.79 -0.02 -0.02
CFF T 0.30 0.36 0.79 1.00 0.10 0.23
AFF L 0.29 0.21 -0.02 0.10 1.00 0.63
AFF T 0.29 0.33 -0.02 0.23 0.63 1.00

As indicated above, the Pearson correlation generates correlation coefficients that are

mostly larger than 0.75, while the partial correlation coefficients have large variance

ranging from -0.02 to 0.79. Based on the partial correlation coefficient result, the same

component in different directions has a correlation value of approximately 0.60 to 0.70;

and for different components in the same zone, the correlation value is about 0.10 to 0.50.

Responses of the column foundation are only loosely correlated to the responses of

abutment foundation, but column response has about 0.30 correlation to the abutment

foundation.

6.6.4 Capacity Correlation

Capacity correlations are defined in two parts, namely the correlation between

components and the correlation between states. Prior research typically applied a 0%

correlation between components and 100% correlation between states.

In this research, the state correlation is formally established using the dataset developed
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in Chapter 4 and shown below. Although the state correlation is developed based on the

column dataset, this correlation is also assumed to be applicable for other components.

It can be seen from Table 6.6 that the correlation between states is large when states are

adjacent and then degrades as their separation increases.

Table 6.6: Capacity correlations for damage states

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7
CDS 1 1.00 0.85 0.60 0.50 0.45 0.40 0.40
CDS 2 0.85 1.00 0.85 0.60 0.50 0.50 0.50
CDS 3 0.60 0.85 1.00 0.85 0.60 0.60 0.60
CDS 4 0.50 0.60 0.85 1.00 0.85 0.80 0.80
CDS 5 0.45 0.50 0.60 0.85 1.00 0.95 0.95
CDS 6 0.40 0.50 0.60 0.80 0.95 1.00 1.00
CDS 7 0.40 0.50 0.60 0.80 0.95 1.00 1.00

To avoid the violation of rank order between states, the demand samples need to be

sampled separately for each damage state. The resulting fragility models are the same as

long as the sample number is sufficient.

Determine the correlation between components is more complex. Table 6.7 lists some

values used in this research, which separates the components and/or EDP ’s into multiple

categories. When sampling the capacity data points for an abutment component on the

east and west sides, their capacities are assumed to be the same. The same EDP’s in two

orthogonal directions, such as column responses in longitudinal and transverse directions,

are highly correlated. Capacity correlation between different components is then all

assumed to be 15%.

Table 6.7: Capacity correlations for different components

Category Value Example
same components in a different zones 1.00 BKW in east and west abutment
same EDP but in orthogonal direction 0.90 zone 1 COL RL & zone 1 COL RT
different components in a same zone and same direction 0.15 zone 1 COL RL & zone 1 CFF L
different components in a same zone but different direction 0.15 BKW & SKY
different components in different zones 0.15 zone 1 COL RL & BKW
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6.7 Smoothing of Fragility Curves: Re-Sampling for Two-Parameter Model

The primary application now envisioned for the g2F models is implementation within the

ShakeCast platform, where two-parameter lognormal fragility model values are required.

Therefore, all generated fragility models are further simplified into two-parameter

lognormal models. This provides a clear and consistent basis for comparing median

fragility model values, or the IM corresponding to 50% failure probability.

6.7.1 Generic Form of Two-Parameter Component Fragility Models

This section outlines the process to compute two-parameter models for component fragility

curves. Equation 6.6 depicts the generic form of a fragility model that the SD|IM and

βD|IM are only constrained by normal assumption of the conditional demand response:

D|IM ∼ N (SD|IM , βD|IM). Assume lnSD|IM = f(ln IM) is any function of ln IM that

satisfies the conditional normal assumption. Then Equation 6.6 can be rewritten as below.

P (D ≥ C|IM) = Φ

(
ln IM − lnSF

βF |IM

)
. (6.14)

where SF is the estimation of median for the fragility model that satisfies the relation in

Equation 6.14a. The SF value defines the intersection point of the regression and capacity

lines as the fragility median. The fragility model dispersion changes with IM but can

approximated as Equation 6.14b using RMSE.

f(lnSF ) = lnSC (6.14a)

βF |IM =
√
β2
C + β2

D|IM ≈
√
β2
C + σ̂2 (6.14b)

6.7.2 Optimization Method

The model discussed above does not include M-PARS or FAR+ because they violate the

conditional normal assumption at some IM. For example, in any PSDM that needs to use
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the FAR+ method, the demand data is a mixture distribution given an IM. In addition, there

is no closed form solution for roll-up fragility models. In order to represent the model as

two parameters in the form of Equation 6.14, one can use linear regression to approximate

the fragility model by rewritting Equation 6.14 into the following form, where Φ−1(·) is

the inverse normal function.

ln IM = βF · Φ−1
(
P (D ≥ C|IM)

)
+ lnSF (6.15)

However, this equation will produce a fragility model that is dominated by the most

extended segment. Since the longest segment predicts about 100% failure probability, the

regression model gives a poor estimation on the more important transient portion (i.e., from

0% to 100%) of the curve.

Therefore, this research adopts an optimization procedure to minimize the error

between the original (multi-segmented) curve and the approximated (2-parameter) curve

where the median of the fragility model is the primary emphasis. If available, the median

is first determined by Equation 6.14a or interpolation using data around the median. The

problem then becomes a one-parameter optimization problem. The other situation is

where the median is not available or the failure probability does not reach 50% at the high

end of the IM range considered (e.g., 3.0g Sa1 in this research). In this case,

two-parameter optimization is applied to approximate the fragility model.

6.8 Fragility Based Bridge Grouping

The overarching goal of bridge-type grouping is to find the minimum number of unique

fragility models needed to reasonably represent truly unique performance characteristics

at all base and roll-up fragility levels. Based on review of initial fragility results, this

project has begun investigating grouping methods based directly on the fragility models.

Unlike the previous studies that are based on performance (PSDM), grouping based on
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fragility models considers both demand and capacity models. In addition, while some

components may reveal unique fragility from a component-damage perspective, they may

not significantly impact the system fragility model. In such situations, bridge types are

combined using the proposed grouping method.

Given multiple fragility models representative of different subgroups (e.g., regular

section columns or wide section columns; four designs of seat width) with multiple states

(7 states in this study), these can be rolled up to generate an inventory average model

(Type-I roll-up). The proposed method first tests whether the inventory average model can

represent all the subgroup fragility models for all states. If the answer is yes, then bridges

with these subgroup designs can be grouped. Otherwise, the second step of the proposed

method is to investigate whether those subgroups can be grouped again. For example, if

the inventory average of seat width models can not represent the four designs (seat width

is 30 inches, 36 inches, 48 inches, and 60 inches), it is proposed to continue testing

whether the four subgroups can be combined into fewer groups (e.g., one group with seat

width = 30 inches and one group with seat width > 30 inches).

The testing method follows the two-sample KS-test (Kolmogorov, 1933; Smirnov et al.,

1948). Fragility models are cumulative distribution functions. The maximum difference

between two fragility models in the desired range are denoted as the Dn = sup |Fi − Fj|.

As a continuous functions, it is discretized with n data points (e.g., n = 1000 used in the

following studies). Then the null hypothesis is rejected at level α if:

Dn >
√
− ln (0.5α)/n (6.16)

The first step in the proposed grouping method results in multiple indicator vector for

each subgroup when comparing them to the inventory average. Denote the indicator vector

as Ai = {aij}, where i is the index for various subgroups (1 ≤ i ≤ I), j is for different
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states (1 ≤ j ≤ J), and

aij =


1, the null hypothesis is rejected at state j for the ith subgroup;

0, otherwise.
(6.17)

The null hypothesis in this step is subgroup fragility model is the same as the inventory

average model. One can conclude that the inventory average model cannot represent

different subgroup models if max (A) = 1 where A = [A1, · · · , AI ]T .

The second step uses graph theory to determine whether the subgroups can be grouped

again. Define an adjacency matrix G = {gik} by calculating max (Ai) for each possible

combination pair of subgroups (i,k). In other word, when picking the kth subgroup (1 ≤

k ≤ I) as a test model, gik is defined as the following:

gik = max (Ai). (6.18)

The adjacency matrix G is then used to find the connected graph components, representing

these subgroups’ possible grouping.

A representative era-3 bridge in California with two-span and multi-column bents is

used to illustrate the procedure. After calculating the system fragility models as stated

above, the grouping procedure is applied to various subgroups, including seat width

designs (four types of designs), section types (regular or wide), joint seal types

(compression or strip seal), bent foundation types (pile or footing, and pile material

types), abutment foundation types (pile or footing, and pile material types), and bent

foundation rotational control types (structural damage or geotechnical damage). Fragility

results for these cases are presented in Appendix G. At the bridge-system level, this

method indicates there are only two distinct bridge groups out of all the design variations

considered: bridges with regular-section columns and bridges with wide-section columns
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6.9 Closure

This chapter described the various statistical methods used in establishing PSDM’s, both

base component fragility models and various types of roll-up fragility models, and a

procedure for grouping bridge subtypes having comparable risk.

For constructing a PSDM, the M-MARS and FAR+ methods are adopted. The

M-MARS is well suited to handle the highly nonlinear seismic demand data for the varied

components. Compared with other methods, it allows for up to 4 segments which provides

the flexibility to aligns well with physically-based stages of bridge response. The

development and adoption of the FAR+ method provides an effective strategy for handling

PSDM’s that contain either extremely low or extremely high responses.

Methods to establish a two-parameter lognormal distribution from the higher-order

initial models were presented. This is critical for deployment of the g2F models in

ShakeCast which is the overall intent. The optimization procedure presented in that

section is implemented using the fconmin function in the Matlab platform.

A four-stage framework for the roll-up of base component fragility models is

developed which allows grouping of loading directions, varied component subtypes,

multiple damage metrics for the same component, regional/zonal based groupings of

component, and finally to bridge-system level performance. A pair of procedures need to

implement the various roll-ups are presented. An important contribution here is

enumeration of various correlation models needed for appropriate sampling of the demand

and capacity models. Also, methods are identified to make the correlation between

demand data conditioned on intensity measurement.

A grouping procedure is proposed splitting the system-level fragility curves into

subgroups having unique performance traits. This will be useful for assignment of refined

bridge categories expected to perform differently. Compared with prior grouping methods

based solely on use of the demand data, the proposed bridge-grouping method also
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accounts for the capacity model.
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Figure 6.15: Bridge grouping results: regular section model
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Figure 6.16: Bridge grouping results: wide section model
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary and Conclusions

This dissertation provides a comprehensive summary of an emerging methodology for the

development of a new generation of seismic fragility curves for highway bridges, and

details several important new research contributions to this overall methodology. These

fragility models are being designed primarily for deployment in the ShakeCast platform,

and will be used in the planning of mitigation strategies for, and supporting emergency

response immediately after, a damaging earthquake. The methodology and models

developed herein are systematically illustrated in the context of a modern California

concrete box-girder bridge.

This study makes several significant advances toward increasing the accuracy and utility

of seismic risk estimation including the following:

• Improvements in modeling fidelity:

Multiple new modeling strategies are proposed in this study. Specifically, the

adopted column model is shown to overcome the localization issue and refinements

in column-response models provides more accurate simulation of various failure

mechanisms such as buckling, shear, and lap-splice damage. Validation of a variety

of the column models is also included in this study. Additionally, a new abutment

response model is developed to account for the backwall fracture mechanism within

a larger context of deck-abutment interactions. A case study illustration for the

OSB1 bridge shows the proposed abutment modeling scheme produces more

realistic results compared to prior models. Through an in-depth review of

component modeling strategies, improved three-dimensional nonlinear finite
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element models are established for dynamic seismic analysis.

• Refinement of capacity models:

An emerging seven-state framework for consistent sets of component and

bridge-system level fragility models is established. Within this framework,

component capacity models are proposed for various primary and secondary bridge

components. In particular, this study significantly advanced the development of

column capacity models by harmonizing an extensive set of experimental tests (i.e.

the RP1 dataset) with results from a systematic program of finite element

simulations focused on high state performance and the effects of alternate

bent-configurations (i.e. the HS-R study). The resulting capacity models provide a

refined and well-grounded vision for bridge damage assessment.

• Identification of uncertainties and design constraints in creating virtual bridge

realizations:

The study develops probabilistic models for specifying all major components of

modern single-frame concrete box-girder bridges where the component models are

based on a comprehensive review of the California bridge inventory. Moreover,

three types of design constraints are developed and implemented within the

sampling procedure to reflect inherent bridge design correlations. The combination

of inventory-based stochastic component models and design-based sampling

constraints support the creation of realistic virtual bridge realizations used for

production simulations.

• Methodology improvements for integrating demand and capacity to generate fragility

models:

The maximum/average responses (demand data) are obtained through conduct of

nonlinear dynamic numerical simulations on the virtual bridges created using the

adopted modeling strategies. This study examined multiple methods of integrating
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demand data and capacity models and concluded that the adopted M-MARS and

FAR+ methods are capable of not only representing highly nonlinear data but also

allows consideration of the PSDM data in terms of physical phenomena controlling

highly non-linear bridge response. Furthermore, this study develops four stages of

fragility models to facilitate various engineering applications. To generate more

accurate component-group fragility models, this study carefully examined the

correlation between demand components and concludes that the use of partial

correlation is more appropriate than Pearson correlation. Ultimately, the study seeks

to develop an innovative method to group bridges by distinguishing different system

fragility models.

As part of these endeavors to establish more useful and reliable seismic bridge fragility

models, several important findings emerged including:

1. Accurate modeling of the straight backwall fracture mechanism has a significant

impact on bridge performance. The comparison of static pushover results in Chapter

3 indicates that the newly-developed model accurately simulates the protective

effect of backwall fusing on the abutment foundation. In contrast to the

conventional model — in which abutment foundations completely fail -– the new

model shows that the abutment foundation is protected by the backwall-fracture

mechanism, resulting in only minor damage to the lower portion of the abutment.

The new model also shows that columns must resist larger loads and bearings

undergo fully elasto-plastic behavior which is all consistent with modern bridge

design principles.

2. The newly developed column capacity models introduce a redundancy effect to

account for framing behavior of flexural columns in multi-column bents loaded

transversely. Inclusion of this effect results in about 15% improvement in the

displacement ductility capacity of multi-column bents relative to single-column
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bents for the safety-related states (CDS 5 to CDS 7).

3. In Chapter 5, the incorporation of three design constraints on the bridge-component

sampling procedure, most notably the ground motion pairing strategy, is shown to

have significant influence on the resulting column and bridge fragility models for the

last three safety-related states. Compared with the fragility model without ground

motion pairing, the median Sa1 of the proposed model (with ground motion pairing)

increases nearly 20% (2.25g to 2.70g) for the collapse state (CDS 7) and causes the

failure probability at 2.00g to decrease from about 39% to 25%.

4. Comparison of multiple PSDM development methodologies is shown in Chapter 6.

The regular linear regression model fails to accurately predict the median. In

contrast, the proposed M-MARS and FAR+ provide better estimation to the data

median, generate a smaller MSE, and allow a clear physical interpretation of the

PSDM model.

5. A complete set of base and roll-up fragility models for the case study of a modern

ductile designed bridge are provided in Appendix F. The stage-3 roll-up indicates

that the vulnerability sequence of components in a column bent is: column,

foundation rotation connection, and lastly the foundation transition. In the abutment

joint region, the backwall and shear key control the fragility models of the first four

damage states. It also demonstrates that unseating is not as likely as damage to other

components for CDS 1 to CDS 4 (CDS 5 to CDS 7 have only the unseating

component). In the system fragility model, the abutment joint region is found to

control vulnerability for the first three states, while the column bent region controls

the last four states as fewer components are included in the abutment joint. For this

modern bridge design, the abutment foundation is always the least vulnerable

component as a result of the designed protective effect from the abutment backwall

fracture.
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6. Appendix G shows the bridge grouping results for this studied case (era-3 two-span

multi-column-bent bridge). Except for the column section shapes, the maximum

difference of the failure probability between various subgroups and inventory average

models is only about 5%, concluding that the studied case could be subdivided into

two unique bridge models, ones with either regular or wide column sections.

7.2 Research Impact

Contributions of this study include:

• Development of a new abutment modeling scheme to capture the abutment straight

backwall fracture mechanism and thereby more fully characterize the resulting

interactions between deck, column, abutment components and backfill;

• Advanced component modeling techniques in several ways including: better

modeling of columns with different failure modes (flexural, flexural-shear, shear,

and lap-splice failures); usage of deck grillage model (instead of spine model) for

more accurate bent responses, and development of component backbone models for

abutment straight backwall connections; and three types of shear keys (isolation,

external, and internal);

• Validated modeling of columns and other components’ against experimental tests;

• Compiled, characterized and documented specimen, test, and experimental

performance data for 198 columns in a column performance dataset;

• Supported development of component damage definitions compatible with the

emerging seven-damage-state framework;

• Defined initial emerging capacity model values for various components within the

scope of the damage-state framework;
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• Developed a double normalization strategy for internally consistent processing of

demand data and capacity models for components such as foundation piles,

backwalls, and shear keys which are modeled using response backbones;

• Developed a comprehensive procedure for the sampling and constraining of

component models for specification of virtual bridges used in seismic demand

simulations;

• Developed the M-MARS and FAR+ methods for more accurate regression of

PSDM’s and improved fragility curves;

• Compared multiple multiple classical and contemporary methodologies for

generating component fragility curves;

• Outlined a comprehensive framework for four-stage roll-up of base component

fragility models to facilitate various engineering applications

• Summarized extensive studies into the correlation of demands among various bridge

components;

• Proposed a bridge grouping method for isolating unique-performance subgroups of

bridge system fragility models.

7.3 Recommendations for Future Work

The following is a list of potential topics where this work can be extended through

additional research:

• Immediate research needs now underway include: refinement and finalization of

component capacity models; refinement and streamlining of the number of fragility

models; development and consistent application of adjustment factors on base

system response; and extension of this emerging methodology to a wide variety of
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concrete bridge designs, particularly for earlier design eras and other design types

(i.e. I-girder, T-girder, slab, etc.).

• Near-future research needs include: exploration and iterative refinement of

processes to effectively assign fragility models (system through component levels)

to bridges in the California inventory (and beyond) within the ShakeCast platform;

and validation of the performance of these fragility models against field

observations from real earthquakes.

• In the longer term, similar compatible fragility models need to be developed for steel

bridge types. This includes characterization of damage mechanisms unique to these

bridges and development and/or adaptation of component response models needed

to develop demand, capacity and fragility models.

• At the more fundamental research level, work should continue on compiling

experimental test data for columns and other bridge components, and using these

data to guide development of refinements in the response models used for both

demand and capacity assessment.

• As a separate focus, efficient means of developing bridge-specific fragility models

from basic design-floor information should be explored.
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APPENDIX A

BRIDGE PLAN FOR OSB1

The following is a generic bridge plan representative of modern Caltrans design practices

called Ordinary Standard Bridge 1 (OSB1). OSB1 is a two-span bridge with a two-column

bent. The bridge superstructure has a span length of 150.0 ft, deck width of 47.5 ft, and

section depth of 6.0 ft. The columns are 20.0 ft height. The circular column section has

66 inch diameter with #8@6-inch transverse reinforcement, which corresponds to

approximately 0.85% transverse reinforcement ratio. Note that the column reinforcing

detail (Section H-H) was modified slightly to be 44 rather than 36#11 reinforcements such

that the longitudinal reinforcement ratio is approximately 2.0%.
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Figure A.1: OSB1 bridge plan drawing page-01
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Figure A.2: OSB1 bridge plan drawing page-02
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Figure A.3: OSB1 bridge plan drawing page-03
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Figure A.4: OSB1 bridge plan drawing page-04
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Figure A.5: OSB1 bridge plan drawing page-05
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Figure A.6: OSB1 bridge plan drawing page-06
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Figure A.7: OSB1 bridge plan drawing page-07
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Figure A.8: OSB1 bridge plan drawing page-08
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Figure A.9: OSB1 bridge plan drawing page-09
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Figure A.10: OSB1 bridge plan drawing page-10
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Figure A.11: OSB1 bridge plan drawing page-11
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Figure A.12: OSB1 bridge plan drawing page-12
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APPENDIX B

LIST OF GROUND MOTIONS FOR FRAGILITY ANALYSIS

The T1780 ground motion sets provided by Caltrans (Roblee, 2015c,b) are listed in this

appendix. There are 20 sets of recorded time histories with 16 ground motions per set,

resulting in a total of 320 ground motions. Records were selected such that the ensemble

average spectra of each set approximated a specified target spectrum. The target-spectrum

Sa1 value decreases from set-1 to set-20, ranging from approximately 1.870 g to 0.018 g.

The Sa1 values for individual records in all sets range from 0.010 g to 2.716 g. However,

only 14 ground motions in the list have a Sa1 larger than 2.000 g, with two larger than

2.500 g. The lack of high Sa1 ground motions limits the accuracy of regression in PSDM at

high Sa1, and this, in turn, limits the accuracy of fragility models for modern bridges having

high component capacities. Therefore, for the simulation of modern ductile bridges, the

first two ground motion sets are also scaled to 3.000 g to achieve higher prediction accuracy

in the high Sa1 region.
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GM ID

PEER

Record

Sequence

Number

Scale

Factor

RotD50

Sa1

[g]

Vs30

[m/sec]

Earthquake

Name
Year

Station

Name
Magnitude Mechanism

S01 R01 0825 2.2944 1.3880 567.78 Cape Mendocino 1992 Cape Mendocino 7.01 Reverse

S01 R02 0983 1.9298 1.9254 525.79 Northridge-01 1994 Jensen Filter Plant Generator Building 6.69 Reverse

S01 R03 1063 1.8567 2.7159 282.25 Northridge-01 1994 Rinaldi Receiving Sta 6.69 Reverse

S01 R04 1119 2.2672 1.8626 312 Kobe Japan 1995 Takarazuka 6.9 strike slip

S01 R05 1120 1.6166 2.0883 256 Kobe Japan 1995 Takatori 6.9 strike slip

S01 R06 1492 2.2163 2.2741 579.1 Chi-Chi Taiwan 1999 TCU052 7.62 Reverse Oblique

S01 R07 1503 1.8964 2.2239 305.85 Chi-Chi Taiwan 1999 TCU065 7.62 Reverse Oblique

S01 R08 1605 2.3620 1.5102 281.86 Duzce Turkey 1999 Duzce 7.14 strike slip

S01 R09 3968 1.8432 2.5842 310.21 Tottori Japan 2000 TTRH02 6.61 strike slip

S01 R10 4040 2.2834 1.7395 487.4 Bam Iran 2003 Bam 6.6 strike slip

S01 R11 4219 2.2457 1.7233 480.4 Niigata Japan 2004 NIGH01 6.63 Reverse

S01 R12 4856 2.1655 1.7974 294.38 Chuetsu-oki Japan 2007 Kashiwazaki City Center 6.8 Reverse

S01 R13 4894 1.3610 2.1513 329 Chuetsu-oki Japan 2007 Kashiwazaki NPP Unit 1: ground surface 6.8 Reverse

S01 R14 5657 1.8484 1.3997 506.44 Iwate Japan 2008 IWTH25 6.9 Reverse

S01 R15 5992 2.4994 1.5150 196.25 El Mayor-Cucapah Mexico 2010 El Centro Array #11 7.2 strike slip

S01 R16 6906 1.7853 1.8152 344.02 Darfield New Zealand 2010 GDLC 7 strike slip

S02 R01 0126 2.1058 1.3320 259.59 Gazli USSR 1976 Karakyr 6.8 Reverse

S02 R02 0180 2.2452 1.3260 205.63 Imperial Valley-06 1979 El Centro Array #5 6.53 strike slip

S02 R03 0181 2.3701 1.1521 203.22 Imperial Valley-06 1979 El Centro Array #6 6.53 strike slip

S02 R04 0723 2.2238 1.5962 348.69 Superstition Hills-02 1987 Parachute Test Site 6.54 strike slip

S02 R05 0821 2.4202 1.8739 352.05 Erzican Turkey 1992 Erzincan 6.69 strike slip

S02 R06 0828 2.3571 1.9311 422.17 Cape Mendocino 1992 Petrolia 7.01 Reverse
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S02 R07 1084 1.6212 2.2358 251.24 Northridge-01 1994 Sylmar - Converter Sta 6.69 Reverse

S02 R08 1086 1.7538 1.1434 440.54 Northridge-01 1994 Sylmar - Olive View Med FF 6.69 Reverse

S02 R09 1244 2.3459 1.7328 258.89 Chi-Chi Taiwan 1999 CHY101 7.62 Reverse Oblique

S02 R10 1549 2.4168 1.3715 511.18 Chi-Chi Taiwan 1999 TCU129 7.62 Reverse Oblique

S02 R11 1602 2.2344 2.1573 293.57 Duzce Turkey 1999 Bolu 7.14 strike slip

S02 R12 4876 2.1144 1.9752 655.45 Chuetsu-oki Japan 2007 Kashiwazaki Nishiyamacho Ikeura 6.8 Reverse

S02 R13 5264 1.7743 1.6631 198.26 Chuetsu-oki Japan 2007 NIG018 6.8 Reverse

S02 R14 5658 2.3663 1.0599 371.06 Iwate Japan 2008 IWTH26 6.9 Reverse

S02 R15 5818 2.3537 1.2385 512.26 Iwate Japan 2008 Kurihara City 6.9 Reverse

S02 R16 6911 2.0410 1.4244 326.01 Darfield New Zealand 2010 HORC 7 strike slip

S03 R01 0160 2.2724 1.0064 223.03 Imperial Valley-06 1979 Bonds Corner 6.53 strike slip

S03 R02 0182 2.2703 1.5345 210.51 Imperial Valley-06 1979 El Centro Array #7 6.53 strike slip

S03 R03 0779 1.5782 1.1880 594.83 Loma Prieta 1989 LGPC 6.93 Reverse Oblique

S03 R04 0982 1.7438 2.4752 373.07 Northridge-01 1994 Jensen Filter Plant Administrative Building 6.69 Reverse

S03 R05 1044 1.7056 1.7100 269.14 Northridge-01 1994 Newhall - Fire Sta 6.69 Reverse

S03 R06 1106 1.6933 2.3427 312 Kobe Japan 1995 KJMA 6.9 strike slip

S03 R07 1505 1.5083 1.0614 487.34 Chi-Chi Taiwan 1999 TCU068 7.62 Reverse Oblique

S03 R08 1507 2.0460 1.4320 624.85 Chi-Chi Taiwan 1999 TCU071 7.62 Reverse Oblique

S03 R09 2114 2.3968 1.7911 329.4 Denali Alaska 2002 TAPS Pump Station #10 7.9 strike slip

S03 R10 4874 2.4248 1.2791 561.59 Chuetsu-oki Japan 2007 Oguni Nagaoka 6.8 Reverse

S03 R11 4895 1.3258 1.5058 265.5 Chuetsu-oki Japan 2007 Kashiwazaki NPP Unit 5: ground surface 6.8 Reverse

S03 R12 5663 2.3817 0.9608 479.37 Iwate Japan 2008 MYG004 6.9 Reverse

S03 R13 5664 2.3788 1.0683 361.24 Iwate Japan 2008 MYG005 6.9 Reverse

S03 R14 5827 2.3508 1.3769 242.05 El Mayor-Cucapah Mexico 2010 MICHOACAN DE OCAMPO 7.2 strike slip

S03 R15 6927 2.2644 1.2785 263.2 Darfield New Zealand 2010 LINC 7 strike slip

S03 R16 8161 2.4903 1.6684 196.88 El Mayor-Cucapah Mexico 2010 El Centro Array #12 7.2 strike slip
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S04 R01 0179 2.1278 1.1400 208.91 Imperial Valley-06 1979 El Centro Array #4 6.53 strike slip

S04 R02 0183 2.2374 0.7756 206.08 Imperial Valley-06 1979 El Centro Array #8 6.53 strike slip

S04 R03 0753 2.4659 1.2448 462.24 Loma Prieta 1989 Corralitos 6.93 Reverse Oblique

S04 R04 1004 1.6596 1.4154 380.06 Northridge-01 1994 LA - Sepulveda VA Hospital 6.69 Reverse

S04 R05 1013 2.3259 1.4570 628.99 Northridge-01 1994 LA Dam 6.69 Reverse

S04 R06 1114 2.3096 2.1524 198 Kobe Japan 1995 Port Island (0 m) 6.9 strike slip

S04 R07 1176 2.3332 0.8957 297 Kocaeli Turkey 1999 Yarimca 7.51 strike slip

S04 R08 1197 1.4877 1.5145 542.61 Chi-Chi Taiwan 1999 CHY028 7.62 Reverse Oblique

S04 R09 1509 1.8506 2.1059 549.43 Chi-Chi Taiwan 1999 TCU074 7.62 Reverse Oblique

S04 R10 3748 2.4770 1.6312 387.95 Cape Mendocino 1992 Ferndale Fire Station 7.01 Reverse

S04 R11 4886 2.2196 1.1903 338.32 Chuetsu-oki Japan 2007 Tamati Yone Izumozaki 6.8 Reverse

S04 R12 4894 0.9684 1.5306 329 Chuetsu-oki Japan 2007 Kashiwazaki NPP Unit 1: ground surface 6.8 Reverse

S04 R13 5656 2.3398 0.7813 486.41 Iwate Japan 2008 IWTH24 6.9 Reverse

S04 R14 5825 2.3359 0.9142 242.05 El Mayor-Cucapah Mexico 2010 CERRO PRIETO GEOTHERMAL 7.2 strike slip

S04 R15 5837 2.2679 1.2229 229.25 El Mayor-Cucapah Mexico 2010 El Centro - Imperial & Ross 7.2 strike slip

S04 R16 6962 2.2290 0.8534 295.74 Darfield New Zealand 2010 ROLC 7 strike slip

S05 R01 0174 2.4477 0.5827 196.25 Imperial Valley-06 1979 El Centro Array #11 6.53 strike slip

S05 R02 0184 1.8524 0.7914 202.26 Imperial Valley-06 1979 El Centro Differential Array 6.53 strike slip

S05 R03 0741 2.2993 1.2275 476.54 Loma Prieta 1989 BRAN 6.93 Reverse Oblique

S05 R04 0803 2.2728 1.3710 347.9 Loma Prieta 1989 Saratoga - W Valley Coll. 6.93 Reverse Oblique

S05 R05 1054 2.1164 2.4748 325.67 Northridge-01 1994 Pardee - SCE 6.69 Reverse

S05 R06 1080 2.3163 1.6550 557.42 Northridge-01 1994 Simi Valley - Katherine Rd 6.69 Reverse

S05 R07 1111 2.3132 0.6613 609 Kobe Japan 1995 Nishi-Akashi 6.9 strike slip

S05 R08 1120 1.0150 1.3111 256 Kobe Japan 1995 Takatori 6.9 strike slip

S05 R09 1158 2.0056 0.9817 281.86 Kocaeli Turkey 1999 Duzce 7.51 strike slip

S05 R10 1231 1.1141 2.3362 496.21 Chi-Chi Taiwan 1999 CHY080 7.62 Reverse Oblique
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S05 R11 1517 1.0584 1.9886 665.2 Chi-Chi Taiwan 1999 TCU084 7.62 Reverse Oblique

S05 R12 3746 2.2317 0.9690 459.04 Cape Mendocino 1992 Centerville Beach Naval Fac 7.01 Reverse

S05 R13 4228 2.4179 0.9634 375 Niigata Japan 2004 NIGH11 6.63 Reverse

S05 R14 4895 1.0324 1.0504 265.5 Chuetsu-oki Japan 2007 Kashiwazaki NPP Unit 5: ground surface 6.8 Reverse

S05 R15 5985 2.1850 1.2177 202.26 El Mayor-Cucapah Mexico 2010 El Centro Differential Array 7.2 strike slip

S05 R16 6906 1.1209 1.1397 344.02 Darfield New Zealand 2010 GDLC 7 strike slip

S06 R01 0721 2.2656 0.6605 192.05 Superstition Hills-02 1987 El Centro Imp. Co. Cent 6.54 strike slip

S06 R02 0767 2.1105 0.6676 349.85 Loma Prieta 1989 Gilroy Array #3 6.93 Reverse Oblique

S06 R03 0779 1.0845 0.8163 594.83 Loma Prieta 1989 LGPC 6.93 Reverse Oblique

S06 R04 0983 1.0692 1.0668 525.79 Northridge-01 1994 Jensen Filter Plant Generator Building 6.69 Reverse

S06 R05 1084 1.0143 1.3988 251.24 Northridge-01 1994 Sylmar - Converter Sta 6.69 Reverse

S06 R06 1101 1.8653 1.5789 256 Kobe Japan 1995 Amagasaki 6.9 strike slip

S06 R07 1106 1.1635 1.6098 312 Kobe Japan 1995 KJMA 6.9 strike slip

S06 R08 1505 1.0364 0.7294 487.34 Chi-Chi Taiwan 1999 TCU068 7.62 Reverse Oblique

S06 R09 1510 1.9862 0.6925 573.02 Chi-Chi Taiwan 1999 TCU075 7.62 Reverse Oblique

S06 R10 3968 1.0212 1.4317 310.21 Tottori Japan 2000 TTRH02 6.61 strike slip

S06 R11 4031 2.2820 0.7604 410.66 San Simeon CA 2003 Templeton - 1-story Hospital 6.52 Reverse

S06 R12 4451 1.9679 1.7131 462.23 Montenegro Yugoslavia 1979 Bar-Skupstina Opstine 7.1 Reverse

S06 R13 5264 1.1101 1.0405 198.26 Chuetsu-oki Japan 2007 NIG018 6.8 Reverse

S06 R14 5657 1.0241 0.7755 506.44 Iwate Japan 2008 IWTH25 6.9 Reverse

S06 R15 5991 1.7633 1.0066 202.85 El Mayor-Cucapah Mexico 2010 El Centro Array #10 7.2 strike slip

S06 R16 6893 2.1415 0.8574 344.02 Darfield New Zealand 2010 DFHS 7 strike slip

S07 R01 0776 1.7656 1.2586 282.14 Loma Prieta 1989 Hollister - South & Pine 6.93 Reverse Oblique

S07 R02 0825 1.1218 0.6786 567.78 Cape Mendocino 1992 Cape Mendocino 7.01 Reverse

S07 R03 1063 0.9077 1.3278 282.25 Northridge-01 1994 Rinaldi Receiving Sta 6.69 Reverse

S07 R04 1086 0.9682 1.1211 440.54 Northridge-01 1994 Sylmar - Olive View Med FF 6.69 Reverse
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S07 R05 1119 1.1084 0.9106 312 Kobe Japan 1995 Takarazuka 6.9 strike slip

S07 R06 1197 1.0223 1.0407 542.61 Chi-Chi Taiwan 1999 CHY028 7.62 Reverse Oblique

S07 R07 1503 0.9272 1.0873 305.85 Chi-Chi Taiwan 1999 TCU065 7.62 Reverse Oblique

S07 R08 1605 1.1548 0.7383 281.86 Duzce Turkey 1999 Duzce 7.14 strike slip

S07 R09 3749 2.0583 0.6795 355.18 Cape Mendocino 1992 Fortuna Fire Station 7.01 Reverse

S07 R10 4219 1.0979 0.8425 480.4 Niigata Japan 2004 NIGH01 6.63 Reverse

S07 R11 4863 1.9954 1.3493 514.3 Chuetsu-oki Japan 2007 Nagaoka 6.8 Reverse

S07 R12 4875 1.0774 0.8864 282.57 Chuetsu-oki Japan 2007 Kariwa 6.8 Reverse

S07 R13 5780 1.9118 0.8099 345.55 Iwate Japan 2008 Iwadeyama 6.9 Reverse

S07 R14 5975 1.8672 0.5995 231.23 El Mayor-Cucapah Mexico 2010 Calexico Fire Station 7.2 strike slip

S07 R15 6911 1.1268 0.7864 326.01 Darfield New Zealand 2010 HORC 7 strike slip

S07 R16 6953 2.1580 0.6390 206 Darfield New Zealand 2010 Pages Road Pumping Station 7 strike slip

S08 R01 0126 1.0259 0.6489 259.59 Gazli USSR 1976 Karakyr 6.8 Reverse

S08 R02 0180 1.0938 0.6460 205.63 Imperial Valley-06 1979 El Centro Array #5 6.53 strike slip

S08 R03 0723 1.0834 0.7776 348.69 Superstition Hills-02 1987 Parachute Test Site 6.54 strike slip

S08 R04 0900 2.1828 0.9177 353.63 Landers 1992 Yermo Fire Station 7.28 strike slip

S08 R05 0982 0.9331 1.3244 373.07 Northridge-01 1994 Jensen Filter Plant Administrative Building 6.69 Reverse

S08 R06 1044 0.9126 0.9150 269.14 Northridge-01 1994 Newhall - Fire Sta 6.69 Reverse

S08 R07 1492 0.9562 0.9811 579.1 Chi-Chi Taiwan 1999 TCU052 7.62 Reverse Oblique

S08 R08 1513 1.3912 0.8789 363.99 Chi-Chi Taiwan 1999 TCU079 7.62 Reverse Oblique

S08 R09 1602 1.0885 1.0510 293.57 Duzce Turkey 1999 Bolu 7.14 strike slip

S08 R10 3750 2.0797 0.5091 515.65 Cape Mendocino 1992 Loleta Fire Station 7.01 Reverse

S08 R11 4040 0.9851 0.7504 487.4 Bam Iran 2003 Bam 6.6 strike slip

S08 R12 4458 1.9486 1.0610 318.74 Montenegro Yugoslavia 1979 Ulcinj - Hotel Olimpic 7.1 Reverse

S08 R13 4856 0.9342 0.7755 294.38 Chuetsu-oki Japan 2007 Kashiwazaki City Center 6.8 Reverse

S08 R14 4876 1.0301 0.9623 655.45 Chuetsu-oki Japan 2007 Kashiwazaki Nishiyamacho Ikeura 6.8 Reverse
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S08 R15 5658 1.1528 0.5164 371.06 Iwate Japan 2008 IWTH26 6.9 Reverse

S08 R16 5992 1.0783 0.6536 196.25 El Mayor-Cucapah Mexico 2010 El Centro Array #11 7.2 strike slip

S09 R01 0160 1.1090 0.4912 223.03 Imperial Valley-06 1979 Bonds Corner 6.53 strike slip

S09 R02 0181 1.0531 0.5119 203.22 Imperial Valley-06 1979 El Centro Array #6 6.53 strike slip

S09 R03 0821 1.0754 0.8327 352.05 Erzican Turkey 1992 Erzincan 6.69 strike slip

S09 R04 0828 1.0474 0.8581 422.17 Cape Mendocino 1992 Petrolia 7.01 Reverse

S09 R05 0953 1.1756 1.1547 355.81 Northridge-01 1994 Beverly Hills - 14145 Mulhol 6.69 Reverse

S09 R06 1004 0.9179 0.7828 380.06 Northridge-01 1994 LA - Sepulveda VA Hospital 6.69 Reverse

S09 R07 1244 1.0424 0.7700 258.89 Chi-Chi Taiwan 1999 CHY101 7.62 Reverse Oblique

S09 R08 1507 0.9985 0.6988 624.85 Chi-Chi Taiwan 1999 TCU071 7.62 Reverse Oblique

S09 R09 2114 1.1697 0.8741 329.4 Denali Alaska 2002 TAPS Pump Station #10 7.9 strike slip

S09 R10 4874 1.1834 0.6242 561.59 Chuetsu-oki Japan 2007 Oguni Nagaoka 6.8 Reverse

S09 R11 4896 0.9299 0.9119 201 Chuetsu-oki Japan 2007 Kashiwazaki NPP Service Hall Array 2.4 m depth 6.8 Reverse

S09 R12 5664 1.1609 0.5214 361.24 Iwate Japan 2008 MYG005 6.9 Reverse

S09 R13 5818 1.0459 0.5503 512.26 Iwate Japan 2008 Kurihara City 6.9 Reverse

S09 R14 5827 1.1472 0.6720 242.05 El Mayor-Cucapah Mexico 2010 MICHOACAN DE OCAMPO 7.2 strike slip

S09 R15 6927 1.1051 0.6239 263.2 Darfield New Zealand 2010 LINC 7 strike slip

S09 R16 8161 1.2153 0.8142 196.88 El Mayor-Cucapah Mexico 2010 El Centro Array #12 7.2 strike slip

S10 R01 0182 0.9770 0.6604 210.51 Imperial Valley-06 1979 El Centro Array #7 6.53 strike slip

S10 R02 0184 1.0238 0.4374 202.26 Imperial Valley-06 1979 El Centro Differential Array 6.53 strike slip

S10 R03 0753 1.2026 0.6071 462.24 Loma Prieta 1989 Corralitos 6.93 Reverse Oblique

S10 R04 1013 1.1343 0.7106 628.99 Northridge-01 1994 LA Dam 6.69 Reverse

S10 R05 1054 1.1697 1.3677 325.67 Northridge-01 1994 Pardee - SCE 6.69 Reverse

S10 R06 1114 1.1264 1.0497 198 Kobe Japan 1995 Port Island (0 m) 6.9 strike slip

S10 R07 1176 1.1379 0.4368 297 Kocaeli Turkey 1999 Yarimca 7.51 strike slip

S10 R08 1509 0.9025 1.0270 549.43 Chi-Chi Taiwan 1999 TCU074 7.62 Reverse Oblique
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S10 R09 1549 0.9470 0.5374 511.18 Chi-Chi Taiwan 1999 TCU129 7.62 Reverse Oblique

S10 R10 3748 1.2080 0.7955 387.95 Cape Mendocino 1992 Ferndale Fire Station 7.01 Reverse

S10 R11 4451 1.2325 1.0729 462.23 Montenegro Yugoslavia 1979 Bar-Skupstina Opstine 7.1 Reverse

S10 R12 4886 1.0825 0.5805 338.32 Chuetsu-oki Japan 2007 Tamati Yone Izumozaki 6.8 Reverse

S10 R13 5656 1.1411 0.3810 486.41 Iwate Japan 2008 IWTH24 6.9 Reverse

S10 R14 5663 1.0250 0.4135 479.37 Iwate Japan 2008 MYG004 6.9 Reverse

S10 R15 5991 1.1044 0.6304 202.85 El Mayor-Cucapah Mexico 2010 El Centro Array #10 7.2 strike slip

S10 R16 6962 1.0871 0.4162 295.74 Darfield New Zealand 2010 ROLC 7 strike slip

S11 R01 0179 0.8593 0.4604 208.91 Imperial Valley-06 1979 El Centro Array #4 6.53 strike slip

S11 R02 0183 0.9036 0.3132 206.08 Imperial Valley-06 1979 El Centro Array #8 6.53 strike slip

S11 R03 0767 1.0945 0.3462 349.85 Loma Prieta 1989 Gilroy Array #3 6.93 Reverse Oblique

S11 R04 0776 1.0377 0.7397 282.14 Loma Prieta 1989 Hollister - South & Pine 6.93 Reverse Oblique

S11 R05 1080 1.0600 0.7574 557.42 Northridge-01 1994 Simi Valley - Katherine Rd 6.69 Reverse

S11 R06 1101 0.9674 0.8188 256 Kobe Japan 1995 Amagasaki 6.9 strike slip

S11 R07 1111 1.0586 0.3027 609 Kobe Japan 1995 Nishi-Akashi 6.9 strike slip

S11 R08 1158 0.9179 0.4493 281.86 Kocaeli Turkey 1999 Duzce 7.51 strike slip

S11 R09 1510 1.0301 0.3591 573.02 Chi-Chi Taiwan 1999 TCU075 7.62 Reverse Oblique

S11 R10 1513 0.9265 0.5853 363.99 Chi-Chi Taiwan 1999 TCU079 7.62 Reverse Oblique

S11 R11 3746 1.0213 0.4434 459.04 Cape Mendocino 1992 Centerville Beach Naval Fac 7.01 Reverse

S11 R12 4228 1.1065 0.4409 375 Niigata Japan 2004 NIGH11 6.63 Reverse

S11 R13 4863 1.1727 0.7930 514.3 Chuetsu-oki Japan 2007 Nagaoka 6.8 Reverse

S11 R14 5825 0.9433 0.3692 242.05 El Mayor-Cucapah Mexico 2010 CERRO PRIETO GEOTHERMAL 7.2 strike slip

S11 R15 5837 0.9159 0.4939 229.25 El Mayor-Cucapah Mexico 2010 El Centro - Imperial & Ross 7.2 strike slip

S11 R16 6893 1.1106 0.4447 344.02 Darfield New Zealand 2010 DFHS 7 strike slip

S12 R01 0174 0.9097 0.2166 196.25 Imperial Valley-06 1979 El Centro Array #11 6.53 strike slip

S12 R02 0721 0.9542 0.2782 192.05 Superstition Hills-02 1987 El Centro Imp. Co. Cent 6.54 strike slip
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S12 R03 0741 0.8546 0.4562 476.54 Loma Prieta 1989 BRAN 6.93 Reverse Oblique

S12 R04 0803 0.8447 0.5095 347.9 Loma Prieta 1989 Saratoga - W Valley Coll. 6.93 Reverse Oblique

S12 R05 1052 0.9704 0.5005 508.08 Northridge-01 1994 Pacoima Kagel Canyon 6.69 Reverse

S12 R06 1551 1.0399 0.4487 652.85 Chi-Chi Taiwan 1999 TCU138 7.62 Reverse Oblique

S12 R07 3744 1.0644 0.3976 566.42 Cape Mendocino 1992 Bunker Hill FAA 7.01 Reverse

S12 R08 3749 0.9824 0.3243 355.18 Cape Mendocino 1992 Fortuna Fire Station 7.01 Reverse

S12 R09 4031 0.9611 0.3203 410.66 San Simeon CA 2003 Templeton - 1-story Hospital 6.52 Reverse

S12 R10 4207 0.9773 0.3281 274.17 Niigata Japan 2004 NIG017 6.63 Reverse

S12 R11 4218 0.9554 0.3243 430.71 Niigata Japan 2004 NIG028 6.63 Reverse

S12 R12 4458 1.0539 0.5739 318.74 Montenegro Yugoslavia 1979 Ulcinj - Hotel Olimpic 7.1 Reverse

S12 R13 5780 0.9125 0.3865 345.55 Iwate Japan 2008 Iwadeyama 6.9 Reverse

S12 R14 5975 0.8912 0.2861 231.23 El Mayor-Cucapah Mexico 2010 Calexico Fire Station 7.2 strike slip

S12 R15 5985 0.8121 0.4526 202.26 El Mayor-Cucapah Mexico 2010 El Centro Differential Array 7.2 strike slip

S12 R16 6953 1.0300 0.3050 206 Darfield New Zealand 2010 Pages Road Pumping Station 7 strike slip

S13 R01 0020 1.1000 0.3453 219.31 Northern Calif-03 1954 Ferndale City Hall 6.5 strike slip

S13 R02 0161 1.0097 0.2630 208.71 Imperial Valley-06 1979 Brawley Airport 6.53 strike slip

S13 R03 0587 0.9948 0.2070 551.3 New Zealand-02 1987 Matahina Dam 6.6 Normal

S13 R04 0764 1.0589 0.3927 308.55 Loma Prieta 1989 Gilroy - Historic Bldg. 6.93 Reverse Oblique

S13 R05 0900 0.8754 0.3680 353.63 Landers 1992 Yermo Fire Station 7.28 strike slip

S13 R06 0952 0.8821 0.2614 545.66 Northridge-01 1994 Beverly Hills - 12520 Mulhol 6.69 Reverse

S13 R07 1006 1.0908 0.2525 398.42 Northridge-01 1994 LA - UCLA Grounds 6.69 Reverse

S13 R08 1107 0.9747 0.3253 312 Kobe Japan 1995 Kakogawa 6.9 strike slip

S13 R09 1116 1.0195 0.2651 256 Kobe Japan 1995 Shin-Osaka 6.9 strike slip

S13 R10 3750 0.8340 0.2041 515.65 Cape Mendocino 1992 Loleta Fire Station 7.01 Reverse

S13 R11 4456 0.9250 0.4187 543.26 Montenegro Yugoslavia 1979 Petrovac - Hotel Olivia 7.1 Reverse

S13 R12 4849 0.9581 0.3632 342.74 Chuetsu-oki Japan 2007 Kubikiku Hyakken Joetsu City 6.8 Reverse
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S13 R13 4879 1.0947 0.5742 265.82 Chuetsu-oki Japan 2007 Yan Sakuramachi City watershed 6.8 Reverse

S13 R14 5774 0.9387 0.1902 276.3 Iwate Japan 2008 Nakashinden Town 6.9 Reverse

S13 R15 6886 1.0034 0.1588 280.26 Darfield New Zealand 2010 Canterbury Aero Club 7 strike slip

S13 R16 8166 1.0093 0.1931 425 Duzce Turkey 1999 IRIGM 498 7.14 strike slip

S14 R01 0068 0.9236 0.1638 316.46 San Fernando 1971 LA - Hollywood Stor FF 6.61 Reverse

S14 R02 0162 0.9207 0.1469 231.23 Imperial Valley-06 1979 Calexico Fire Station 6.53 strike slip

S14 R03 0285 0.9892 0.2717 649.67 Irpinia Italy-01 1980 Bagnoli Irpinio 6.9 Normal

S14 R04 0730 1.0729 0.3167 343.53 Spitak Armenia 1988 Gukasian 6.77 Reverse Oblique

S14 R05 0737 0.9465 0.1569 239.69 Loma Prieta 1989 Agnews State Hospital 6.93 Reverse Oblique

S14 R06 0739 0.9052 0.1625 488.77 Loma Prieta 1989 Anderson Dam (Downstream) 6.93 Reverse Oblique

S14 R07 0881 0.9416 0.2031 396.41 Landers 1992 Morongo Valley Fire Station 7.28 strike slip

S14 R08 0998 1.0039 0.1783 315.06 Northridge-01 1994 LA - N Westmoreland 6.69 Reverse

S14 R09 1115 1.0227 0.1782 256 Kobe Japan 1995 Sakai 6.9 strike slip

S14 R10 1121 0.9052 0.3691 256 Kobe Japan 1995 Yae 6.9 strike slip

S14 R11 1486 1.0989 0.1832 465.55 Chi-Chi Taiwan 1999 TCU046 7.62 Reverse Oblique

S14 R12 1628 0.9661 0.2695 306.37 St Elias Alaska 1979 Icy Bay 7.54 Reverse

S14 R13 4212 1.0955 0.1328 193.2 Niigata Japan 2004 NIG022 6.63 Reverse

S14 R14 4842 0.9588 0.1652 655.45 Chuetsu-oki Japan 2007 Joetsu Uragawaraku Kamabucchi 6.8 Reverse

S14 R15 4859 0.9525 0.3665 274.23 Chuetsu-oki Japan 2007 Mitsuke Kazuiti Arita Town 6.8 Reverse

S14 R16 6928 0.9831 0.1708 649.67 Darfield New Zealand 2010 LPCC 7 strike slip

S15 R01 0175 0.9092 0.1598 196.88 Imperial Valley-06 1979 El Centro Array #12 6.53 strike slip

S15 R02 0724 1.0564 0.1586 316.64 Superstition Hills-02 1987 Plaster City 6.54 strike slip

S15 R03 0827 0.9490 0.1730 457.06 Cape Mendocino 1992 Fortuna - Fortuna Blvd 7.01 Reverse

S15 R04 0990 0.9805 0.1519 365.22 Northridge-01 1994 LA - City Terrace 6.69 Reverse

S15 R05 1001 0.9757 0.1911 285.28 Northridge-01 1994 LA - S Grand Ave 6.69 Reverse

S15 R06 1166 0.9426 0.2069 476.62 Kocaeli Turkey 1999 Iznik 7.51 strike slip
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S15 R07 1234 0.9202 0.2141 665.2 Chi-Chi Taiwan 1999 CHY086 7.62 Reverse Oblique

S15 R08 1636 1.0818 0.1256 302.64 Manjil Iran 1990 Qazvin 7.37 strike slip

S15 R09 1794 0.9168 0.2755 379.32 Hector Mine 1999 Joshua Tree 7.13 strike slip

S15 R10 3758 1.0099 0.2050 333.89 Landers 1992 Thousand Palms Post Office 7.28 strike slip

S15 R11 3908 1.0743 0.1345 293.37 Tottori Japan 2000 OKY005 6.61 strike slip

S15 R12 4208 0.9050 0.1361 198.26 Niigata Japan 2004 NIG018 6.63 Reverse

S15 R13 4872 1.0422 0.2661 640.14 Chuetsu-oki Japan 2007 Sawa Mizuguti Tokamachi 6.8 Reverse

S15 R14 5799 1.0360 0.0830 552.38 Iwate Japan 2008 Misato Akita City - Tsuchizaki 6.9 Reverse

S15 R15 5972 0.9103 0.1120 208.71 El Mayor-Cucapah Mexico 2010 Brawley Airport 7.2 strike slip

S15 R16 6965 0.9471 0.1183 263.2 Darfield New Zealand 2010 SBRC 7 strike slip

S16 R01 0070 1.1181 0.3653 425.34 San Fernando 1971 Lake Hughes #1 6.61 Reverse

S16 R02 0078 1.0429 0.1410 452.86 San Fernando 1971 Palmdale Fire Station 6.61 Reverse

S16 R03 0172 1.0360 0.0848 237.33 Imperial Valley-06 1979 El Centro Array #1 6.53 strike slip

S16 R04 0288 1.0039 0.1023 561.04 Irpinia Italy-01 1980 Brienza 6.9 Normal

S16 R05 0726 1.0807 0.1937 191.14 Superstition Hills-02 1987 Salton Sea Wildlife Refuge 6.54 strike slip

S16 R06 0748 0.9886 0.1386 627.59 Loma Prieta 1989 Belmont - Envirotech 6.93 Reverse Oblique

S16 R07 0800 1.0002 0.1006 279.56 Loma Prieta 1989 Salinas - John & Work 6.93 Reverse Oblique

S16 R08 0880 1.0088 0.0920 355.42 Landers 1992 Mission Creek Fault 7.28 strike slip

S16 R09 0968 0.9681 0.1460 271.9 Northridge-01 1994 Downey - Co Maint Bldg 6.69 Reverse

S16 R10 0984 1.0544 0.1383 301 Northridge-01 1994 LA - 116th St School 6.69 Reverse

S16 R11 1162 1.0555 0.1407 347.62 Kocaeli Turkey 1999 Goynuk 7.51 strike slip

S16 R12 1289 1.0727 0.2598 484.97 Chi-Chi Taiwan 1999 HWA041 7.62 Reverse Oblique

S16 R13 3937 1.0936 0.1129 182.3 Tottori Japan 2000 SMN005 6.61 strike slip

S16 R14 3994 1.0456 0.1011 365.15 San Simeon CA 2003 San Luis Obispo - Lopez Lake Grounds 6.52 Reverse

S16 R15 4844 0.9338 0.1812 640.14 Chuetsu-oki Japan 2007 Tokamachi Matsunoyama 6.8 Reverse

S16 R16 5471 1.0835 0.0894 158.16 Iwate Japan 2008 AKT016 6.9 Reverse
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S17 R01 0009 1.1686 0.0616 213.44 Borrego 1942 El Centro Array #9 6.5 strike slip

S17 R02 0065 1.2013 0.0745 308.35 San Fernando 1971 Gormon - Oso Pump Plant 6.61 Reverse

S17 R03 0122 0.8143 0.1056 249.28 Friuli Italy-01 1976 Codroipo 6.5 Reverse

S17 R04 0191 0.8770 0.0581 242.05 Imperial Valley-06 1979 Victoria 6.53 strike slip

S17 R05 0745 0.9046 0.0513 422.79 Loma Prieta 1989 Bear Valley #14 Upper Butts Rn 6.93 Reverse Oblique

S17 R06 0860 1.1552 0.1067 328.09 Landers 1992 Hemet Fire Station 7.28 strike slip

S17 R07 0966 0.9956 0.0784 324.79 Northridge-01 1994 Covina - W Badillo 6.69 Reverse

S17 R08 1154 0.9983 0.1211 612.78 Kocaeli Turkey 1999 Bursa Sivil 7.51 strike slip

S17 R09 1626 1.0697 0.0513 649.67 Sitka Alaska 1972 Sitka Observatory 7.68 strike slip

S17 R10 1782 1.0329 0.0833 436.14 Hector Mine 1999 Forest Falls Post Office 7.13 strike slip

S17 R11 2111 0.8824 0.0915 341.56 Denali Alaska 2002 R109 (temp) 7.9 strike slip

S17 R12 3915 1.2281 0.0756 296.96 Tottori Japan 2000 OKY012 6.61 strike slip

S17 R13 4054 0.8284 0.0447 574.88 Bam Iran 2003 Mohammad Abad-e-Madkoon 6.6 strike slip

S17 R14 4222 1.0456 0.0428 244.84 Niigata Japan 2004 NIGH05 6.63 Reverse

S17 R15 5258 1.0028 0.0691 229.95 Chuetsu-oki Japan 2007 NIG012 6.8 Reverse

S17 R16 6933 1.0852 0.0531 342.7 Darfield New Zealand 2010 MAYC 7 strike slip

S18 R01 0007 1.1801 0.0388 219.31 Northwest Calif-02 1941 Ferndale City Hall 6.6 strike slip

S18 R02 0051 1.0168 0.0469 280.56 San Fernando 1971 2516 Via Tejon PV 6.61 Reverse

S18 R03 0056 0.9012 0.0273 235 San Fernando 1971 Carbon Canyon Dam 6.61 Reverse

S18 R04 0188 0.9553 0.0438 316.64 Imperial Valley-06 1979 Plaster City 6.53 strike slip

S18 R05 0294 0.8683 0.0534 496.46 Irpinia Italy-01 1980 Tricarico 6.9 Normal

S18 R06 0897 1.0421 0.0276 635.01 Landers 1992 Twentynine Palms 7.28 strike slip

S18 R07 0975 0.9117 0.0937 362.31 Northridge-01 1994 Glendora - N Oakbank 6.69 Reverse

S18 R08 1061 1.1377 0.0670 580.03 Northridge-01 1994 Rancho Palos Verdes - Hawth 6.69 Reverse

S18 R09 1109 0.9091 0.0349 609 Kobe Japan 1995 MZH 6.9 strike slip

S18 R10 1627 1.0671 0.0318 432.58 Caldiran Turkey 1976 Maku 7.21 strike slip

259



S18 R11 3583 1.2248 0.0656 309.41 Taiwan SMART1(25) 1983 SMART1 I08 6.5 Reverse

S18 R12 3946 0.9864 0.0480 271.29 Tottori Japan 2000 SMN018 6.61 strike slip

S18 R13 4997 0.9987 0.0875 305.54 Chuetsu-oki Japan 2007 FKS028 6.8 Reverse

S18 R14 5648 1.1235 0.0376 534.71 Iwate Japan 2008 IWTH16 6.9 Reverse

S18 R15 5768 0.9873 0.0274 291.48 Iwate Japan 2008 YMTH09 6.9 Reverse

S18 R16 5864 1.0143 0.0750 384.66 El Mayor-Cucapah Mexico 2010 Frink 7.2 strike slip

S19 R01 0287 0.8610 0.0393 356.39 Irpinia Italy-01 1980 Bovino 6.9 Normal

S19 R02 0432 1.0059 0.0476 267.67 Taiwan SMART1(25) 1983 SMART1 O01 6.5 Reverse

S19 R03 0436 1.0107 0.0178 279.97 Borah Peak ID-01 1983 CPP-601 6.88 Normal

S19 R04 0747 0.8080 0.0288 509.87 Loma Prieta 1989 Bear Valley #7 Pinnacles 6.93 Reverse Oblique

S19 R05 1037 0.9554 0.0301 422.73 Northridge-01 1994 Mojave - Oak Creek Canyon 6.69 Reverse

S19 R06 1097 0.9780 0.0303 506 Northridge-01 1994 Wrightwood - Nielson Ranch 6.69 Reverse

S19 R07 1620 1.1206 0.0221 411.91 Duzce Turkey 1999 Sakarya 7.14 strike slip

S19 R08 1767 0.9701 0.0228 667.42 Hector Mine 1999 Banning - Twin Pines Road 7.13 strike slip

S19 R09 3594 1.0378 0.0622 300.22 Taiwan SMART1(25) 1983 SMART1 M11 6.5 Reverse

S19 R10 3882 1.2227 0.0176 571.63 Tottori Japan 2000 HRS016 6.61 strike slip

S19 R11 3981 0.8611 0.0488 333.61 San Simeon CA 2003 Coalinga - Fire Station 39 6.52 Reverse

S19 R12 3987 0.8661 0.0311 280.64 San Simeon CA 2003 Greenfield - Police Station 6.52 Reverse

S19 R13 4198 0.9814 0.0246 220.65 Niigata Japan 2004 NIG008 6.63 Reverse

S19 R14 5254 0.9642 0.0235 220.65 Chuetsu-oki Japan 2007 NIG008 6.8 Reverse

S19 R15 5467 0.9766 0.0204 449.45 Iwate Japan 2008 AKT012 6.9 Reverse

S19 R16 8163 1.0183 0.0248 483.02 El Mayor-Cucapah Mexico 2010 SANTA ISABEL VIEJO 7.2 strike slip

S20 R01 0058 0.8749 0.0188 477.22 San Fernando 1971 Cedar Springs Pumphouse 6.61 Reverse

S20 R02 0092 0.8077 0.0136 347.67 San Fernando 1971 Wheeler Ridge - Ground 6.61 Reverse

S20 R03 0427 1.0281 0.0216 671.52 Taiwan SMART1(25) 1983 SMART1 E02 6.5 Reverse

S20 R04 0440 0.9071 0.0114 324.2 Borah Peak ID-01 1983 TRA-642 ETR Reactor Bldg(Bsmt) 6.88 Normal
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S20 R05 0441 1.0743 0.0153 324.2 Borah Peak ID-01 1983 TRA-670 ATR Reactor Bldg(Bsmt) 6.88 Normal

S20 R06 2093 1.0784 0.0199 382.5 Nenana Mountain Alaska 2002 TAPS Pump Station #09 6.7 strike slip

S20 R07 3899 1.0028 0.0122 617.44 Tottori Japan 2000 HYGH02 6.61 strike slip

S20 R08 3945 0.8604 0.0181 262.19 Tottori Japan 2000 SMN017 6.61 strike slip

S20 R09 5003 0.8012 0.0125 245.88 Chuetsu-oki Japan 2007 FKSH04 6.8 Reverse

S20 R10 5064 1.0319 0.0266 342.36 Chuetsu-oki Japan 2007 GNM005 6.8 Reverse

S20 R11 5461 0.8859 0.0190 279.36 Iwate Japan 2008 AKT006 6.9 Reverse

S20 R12 5490 1.1355 0.0132 232.58 Iwate Japan 2008 AKTH14 6.9 Reverse

S20 R13 5839 1.0089 0.0161 388.01 El Mayor-Cucapah Mexico 2010 El Cajon - Marshall 7.2 strike slip

S20 R14 5970 0.8201 0.0100 619 El Mayor-Cucapah Mexico 2010 Borrego Springs 7.2 strike slip

S20 R15 6515 0.9517 0.0205 279.58 Niigata Japan 2004 FKS016 6.63 Reverse

S20 R16 6783 1.0118 0.0175 265.6 Niigata Japan 2004 TCG008 6.63 Reverse

Table B.1: Earthquake records
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APPENDIX C

VALIDATION OF COLUMN MODELS AGAINST LABORATORY TESTS

A subset of the columns summarized in RP1 (Zheng et al., 2020) are validated against

the laboratory tests, and results are presented here. The selected subset comprises those

experiments where the failure-mode determination was not obvious (e.g., modern flexural

column) and represents a wide range of specimen and testing conditions where flexure,

mixed flexure-shear, and shear failure could occur. Results are generally organized by

section, each representing a unique failure mode. Where applicable, subsection breakouts

are provided for results representing different design eras for column detailing. Additional

sections are included for special cases of reduced-section (pinned) columns (section C.2),

lapped-splice connections (section C.3), and dynamic loading (section C.5).

In all cases, the OpenSees simulation results are presented as red lines in the figures

atop the black responses reproduced from the original literature.

C.1 Flexural Columns

C.1.1 Pre-Ductile Design (Era-1)
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Figure C.1: e1F-1 (Chai et al., 1991)
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C.1.2 Early-Ductile Design (Era-2)

(a) (b)

Figure C.2: (a) e2F-18 (Calderone et al., 2000); (b) e2F-37 (Tanaka, 1990).

C.1.3 Ductile Design (Era-3)

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

(i) (j)

Figure C.3: Tests by Calderone et al. (2000): (a) e3F-1; (b) e3F-2; (c) e3F-3; tests by
Lehman and Moehle (2000): (d) e3F-6; (e) e3F-7; (f) e3F-8; (g) e3F-9; (h) e3F-10; and
tests by Prakash (2009): (i) e3F-20; (j) e3F-21.
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C.2 Reduced Sections (i.e., Used in Pinned-Base Column Connections)

(a) (b)

Figure C.4: Tests by Lim and Mclean (1991): (a) CA1; (b) CA2

C.3 Lap-splice Columns

(a) (b)

Figure C.5: (a) e1L-1 (Chai et al., 1991); (b) e1L-6 (Sun et al., 1993).
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C.4 Shear/Flexural-Shear Failure Columns

C.4.1 Flexural-Shear Columns in Era-2 and Era-3

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i)

Figure C.6: Tests by Ang (1985): (a) e23M-1; (b) e23M-3; (c) e23M-13; (d) e23M-14; (e)
e23M-15; (f) e23M-16; (g) e23M-17; (h) e23M-18; and (i) e23M-19.

.
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C.4.2 Flexural-Shear Columns in Era-1

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure C.7: (a) e1M-1 (Ang, 1985); (b) e1M-2 (Priestley and Benzoni, 1996); tests by
(Sezen, 2002): (c) e1M-3; and (d) e1M-4; (e) e1M-5 (Umehara, 1983); tests by Ang (1985):
(f) e1M-6; (g) e1M-7; and (h) e1M-8; tests by Lynn et al. (1996): (i) e1M-9; and (j) e1M-
12.

.

270



C.4.3 Shear Columns

(a) (b)

(c) (d)

(e) (f)

.
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(g) (h)

(i)

Figure C.8: Tests by Ang (1985): (a) eXS-1; (b) eXS-2; and (c) eXS-3; tests by Umehara
(1983): (d) eXS-8; and (e) eXS-9; Tests by Ang (1985): (f) eXS-10; and (g) eXS-11; (h)
eXS-12 (Hose et al., 1997); and (i) eXS-14 (Umehara, 1983).
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C.5 Dynamic Analysis

Table C.1: Ground motion parameters in UCSD shake-table tests (Schoettler et al., 2012).

Test Earthquake Date Moment
Magnitude Station Scale

Factor

Table
PGA
[g]

Table
PGV

[in./sec]

Feedback
Sa1
[g]

EQ1 Loma Prieta 1989 6.9 Agnew State Hospital 1.0 -0.199 6.0 0.25
EQ2 Loma Prieta 1989 6.9 Corralitos 1.0 0.409 15.0 1.00
EQ3 Loma Prieta 1989 6.9 LGPC 1.0 0.526 35.0 1.00
EQ4 Loma Prieta 1989 6.9 Corralitos 1.0 0.454 15.0 1.00
EQ5 Kobe 1995 6.9 Takatori -0.8 -0.533 38.0 0.80
EQ6 Loma Prieta 1989 6.9 LGPC 1.0 -0.512 34.0 1.00
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(a) (b)

(c)

(d)
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(e)

(f)
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(g)

(h)
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(i)

(j)

Figure C.9: Comparison of the UCSD column (Schoettler et al., 2012) and OpenSees
modeling results: (a) peak displacement ; (b) peak base shear; (c) time history result; (d)
histeretic loops; and (e) to (j) individual ground motion EQ1 to EQ6 simulation results with
initial displacement shifted to zero.
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APPENDIX D

MODIFIED CALCULATION FOR BACKFILL-B MODEL

This appendix documents the calculation procedure for separating backfill-B introduced

near the end of subsection 3.3.7. Before proceeding to the modified calculation procedure,

known relationships are first reviewed below, where the variables are described in

Chapter 3.

The overall relationship to construct a hyperbolic curve can be written as:

P =
y

1

Kmax

+Rf
y

Pult

(D.1)

Substituting HT or HA into the following equations provides a model for either the

total-backfill (backfill-T) response Pult,T or backfill-A response Pult,A. In this manner,

these two use a common formula.

Pult = Pult,0

(
H

H0

)α1

(D.2a)

Kmax = Kmax,0

(
H

H0

)α2

(D.2b)

Rf = 1− Pult
0.05KmaxH

(D.2c)

Next, denote a =
1

Kmax

and b =
Rf

Pult
. The response of backfill-T and backfill-A is

simplified to Equation D.3.

PT =
y

aT + bTy
(D.3a)

PA =
y

aA + bAy
(D.3b)
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Subtracting Equation D.3b from Equation D.3a results in backfill-B’s response:

PB = PT − PA

=
[(aA + bAy)− (aT + bTy)] y

(aT + bTy)(aA + bAy)

=
y

aB + bBy
(D.4)

Rearranging Equation D.4 generates the following relationship:

bB(bA − bT )y2+ [bB(aA − aT ) + aB(bA − bT )]y+aB(aA − aT )

= bAbT y2+ (aAbT + aT bA) y+ aAaT (D.5)

Use polynomial equating to equate the coefficients for the two terms with y2 and y,

leaving out the constant term, to yield a function of aB and bB with respect to

(aA, bA, aT , bT ). This approximation captures the primary effects and does not change

with y:

bB ≈
bAbT
bA − bT

(D.6a)

aB ≈
aAbT + aT bA − bB(aA − aT )

bA − bT
(D.6b)

Finally, these equations can be used to compute Pult,B, Kmax,B and Rf,B as follows:

Kmax,B =
1

aB
(D.7a)

Pult,B = Pult,T − Pult,A (D.7b)

Rf,B = Pult,BbB (D.7c)
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APPENDIX E

RATIO DISTRIBUTION FOR GROUND MOTION PAIRING

This appendix is documenting the development of distribution for ratio of target applied

ground motions (TAGM) to design ground motions (DGM), as well as the sampling

procedure.

Denote the ratio of intensity measurement (e.g., Sa,1.0) as r. It was assumed to distribute

with constant probability at the range of 0 to 1, and then with decreasing probability from

1 to 1.5, as demonstrated below in Figure E.1(b).

(a) (b)

(c) (d)

Figure E.1: Illustration of lognormal distribution and desired r distribution.

A lognormal distribution (FX(x) and fX(x)) is assumed firstly with median = 1.0 and

dispersion = d (Figure E.1(a) and (c)). The assumed median is for convenient calculation
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in the following, which can be changed to any number correspondingly. The assumed

lognormal distribution is applied for the decreasing portion in the distribution of r.

Correspondingly, non-scaled area in Figure E.1(b) can be calculated as:

A1 = fX(1.0) (E.1a)

A2 = 0.5− (1− FX(1.5)) (E.1b)

And therefore, the scaled factor F is derived:

F =
A1

A1 + A2

. (E.2)

In Figure E.1(d), the blue line is the scaled from the original lognormal CDF (red line).

Thus, for a number r0 < 1.5, the CDF value is calculated the following:

FR(r0) =


r0F, 0 ≤ r0 ≤ 1;

[A1 + A2(1.0 < r ≤ r0)]/(A1 + A2), 1 < r0 < 1.5.

(E.3)

where A2(1.0 < r ≤ r0) is demonstrated in Figure E.1(b) as the non-scaled area between

1.0 to r0.

Considering 1.0 is the median of original lognormal distribution, the corresponding

CDF value at r0 > 1.0 is:

FX(r0) = 0.5 + A2(1.0 < r ≤ r0). (E.4)

Combining Equation E.3 and Equation E.4, when 1 < r0 < 1.5:

FR(r0) = (A1 + FX(r0)− 0.5)/(A1 + A2) (E.5a)

FX(r0) = (A1 + A2)FR(r0)− A1 + 0.5 (E.5b)
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To this end, a probability p can be transformed to a corresponding r value:

r0 =


p/F, 0 ≤ p ≤ F

F−1
X ((A1 + A2)p− A1 + 0.5), F < p < 1.0.

(E.6)
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APPENDIX F

FRAGILITY MODELS FOR ERA-3 TWO-SPAN MULTI-COLUMN BENT

BOX-GIRDER BRIDGES

This appendix presents the complete set of the fragility models for all three regions and

then rolls up these three models into a system model.

Figure F.1 and Figure F.2 outline the roll-up stages for a column bent where Figure F.1

considers Stage-0 models contributing to the Stage-B.2 column model, and Figure F.2

considers the other components leading to a Stage-C bent model.

Figure F.3 through Figure F.33 present all of the underlying fragility models used to

create the combined Stage-B.2 column model, while Figure F.34 through Figure F.55

present the additional underlying fragility models used to create the Stage-C bent model in

Figure F.56, which is the sole element of the interior support region.

Figure F.57 depicts the roll-up stages for the abutment joint region. Similarly,

Figure F.58 through Figure F.80 presents all the underlying fragility models.

Figure F.81 depicts the roll-up stages for the abutment wall region, which in this case,

only involves the abutment foundations. Figure F.82 through Figure F.95 present fragility

models for the abutment foundation components.

Figure F.96 provides the overall Stage-D roll-up for the entire bridge systems

considering hazard contributions from all three regions.
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Figure F.1: Roll-up steps to create a Stage-B.2 fragility model for column response.
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Figure F.2: Additional roll-up steps for a Stage-C bent fragility model.
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Figure F.3: Stage-0: Regular section column displacement ductility in longitudinal direction
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Figure F.4: Stage-0: Regular section column displacement ductility in transverse direction
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Figure F.5: Stage-A: Regular section column displacement ductility.
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Figure F.6: Stage-0: Wide section column displacement ductility in longitudinal direction

289



Figure F.7: Stage-0: Wide section column displacement ductility in transverse direction
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Figure F.8: Stage-A: Wide section column displacement ductility.
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Figure F.9: Stage-B.1: Column displacement ductility (global response).
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Figure F.10: Stage-0: Regular section column top fixed-section maximum curvature ductility in longitudinal direction
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Figure F.11: Stage-0: Regular section column top fixed-section maximum curvature ductility in transverse direction
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Figure F.12: Stage-A: Regular section column top fixed-section maximum curvature ductility.
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Figure F.13: Stage-0: Wide section column top fixed-section maximum curvature ductility in longitudinal direction
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Figure F.14: Stage-0: Wide section column top fixed-section maximum curvature ductility in transverse direction

297



Figure F.15: Stage-A: Wide section column top fixed-section maximum curvature ductility.
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Figure F.16: Stage-B.1: Column top fixed-section maximum curvature ductility.
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Figure F.17: Stage-0: Regular section column top fixed-section average curvature ductility in longitudinal direction
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Figure F.18: Stage-0: Regular section column top fixed-section average curvature ductility in transverse direction
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Figure F.19: Stage-A: Regular section column top fixed-section average curvature ductility.
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Figure F.20: Stage-0: Wide section column top fixed-section average curvature ductility in longitudinal direction
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Figure F.21: Stage-0: Wide section column top fixed-section average curvature ductility in transverse direction
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Figure F.22: Stage-A: Wide section column top fixed-section average curvature ductility.
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Figure F.23: Stage-B.1: Column top fixed-section average curvature ductility.
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Figure F.24: Stage-B.2: Column top fixed-section curvature ductility.
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Figure F.25: Stage-0: Regular section column base pinned-section curvature ductility in longitudinal direction
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Figure F.26: Stage-0: Regular section column base pinned-section curvature ductility in transverse direction

309



Figure F.27: Stage-A: Regular section column base pinned-section curvature ductility.
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Figure F.28: Stage-0: Wide section column base pinned-section curvature ductility in longitudinal direction
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Figure F.29: Stage-0: Wide section column base pinned-section curvature ductility in transverse direction
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Figure F.30: Stage-A: Wide section column base pinned-section curvature ductility.
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Figure F.31: Stage-B.1: Column base pinned-section curvature ductility.
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Figure F.32: Stage-B.2: Column curvature ductility (local response).
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Figure F.33: Stage-B.2: Column response.
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Figure F.34: Stage-0: CIDH column pile foundation damage in longitudinal direction
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Figure F.35: Stage-0: CIDH column pile foundation damage in transverse direction
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Figure F.36: Stage-A: CIDH column pile foundation damage
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Figure F.37: Stage-0: Precast column pile foundation damage in longitudinal direction
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Figure F.38: Stage-0: Precast column pile foundation damage in transverse direction
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Figure F.39: Stage-A: Precast column pile foundation damage
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Figure F.40: Stage-0: Steel column pile foundation damage in longitudinal direction
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Figure F.41: Stage-0: Steel column pile foundation damage in transverse direction
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Figure F.42: Stage-A: Steel column pile foundation damage
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Figure F.43: Stage-B.1: Column pile foundation damage.
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Figure F.44: Stage-0: Column spread footing foundation damage in longitudinal direction
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Figure F.45: Stage-0: Column spread footing foundation damage in transverse direction
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Figure F.46: Stage-A: Column spread footing foundation damage
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Figure F.47: Stage-B.1: Column foundation translational damage.
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Figure F.48: Stage-0: Column foundation rotational geotechnical damage in longitudinal direction
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Figure F.49: Stage-0: Column foundation rotational geotechnical damage in transverse direction
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Figure F.50: Stage-A: Column foundation rotational geotechnical damage
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Figure F.51: Stage-0: Column foundation rotational structural damage in longitudinal direction
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Figure F.52: Stage-0: Column foundation rotational structural damage in transverse direction
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Figure F.53: Stage-A: Column foundation rotational structural damage
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Figure F.54: Stage-B.1: Column foundation rotational damage
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Figure F.55: Stage-B.2: Column foundation rotation connection damage.
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Figure F.56: Stage-C: Column bent damage.
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Figure F.57: Roll-up steps to create a Stage-C fragility model for abutment joint response.
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Figure F.58: Stage-0: Abutment maximum unseating damage with 30-in seat width
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Figure F.59: Stage-0: Abutment maximum unseating damage with 36-in seat width
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Figure F.60: Stage-0: Abutment maximum unseating damage with 48-in seat width
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Figure F.61: Stage-0: Abutment maximum unseating damage with 60-in seat width

344



Figure F.62: Stage-B.1: Abutment maximum unseating damage.
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Figure F.63: Stage-0: Abutment average unseating damage with 30-in seat width
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Figure F.64: Stage-0: Abutment average unseating damage with 36-in seat width
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Figure F.65: Stage-0: Abutment average unseating damage with 48-in seat width
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Figure F.66: Stage-0: Abutment average unseating damage with 60-in seat width
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Figure F.67: Stage-B.1: Abutment average unseating damage.
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Figure F.68: Stage-B.2: Abutment unseating damage.
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Figure F.69: Stage-0: Abutment backwall damage with compression seal
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Figure F.70: Stage-0: Abutment backwall damage with strip seal
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Figure F.71: Stage-B.1: Abutment backwall damage
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Figure F.72: Stage-0: Abutment joint seal damage with compression seal
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Figure F.73: Stage-0: Abutment joint seal damage with strip seal
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Figure F.74: Stage-B.1: Abutment joint seal damage
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Figure F.75: Stage-0: Abutment joint pounding damage with compression seal
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Figure F.76: Stage-0: Abutment joint pounding damage with strip seal

359



Figure F.77: Stage-B.1: Abutment joint pounding damage
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Figure F.78: Stage-0: Abutment external non-isolated shear key damage
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Figure F.79: Stage-0: Abutment elastomeric bearing pads damage
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Figure F.80: Stage-C roll-up: Abutment joint damage.
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Figure F.81: Roll-up steps to create a Stage-C fragility model for abutment wall response.
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Figure F.82: Stage-0: CIDH abutment pile foundation damage in longitudinal direction
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Figure F.83: Stage-0: CIDH abutment pile foundation damage in transverse direction
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Figure F.84: Stage-A: CIDH abutment pile foundation damage
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Figure F.85: Stage-0: Precast abutment pile foundation damage in longitudinal direction
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Figure F.86: Stage-0: Precast abutment pile foundation damage in transverse direction
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Figure F.87: Stage-A: Precast abutment pile foundation damage
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Figure F.88: Stage-0: Steel abutment pile foundation damage in longitudinal direction
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Figure F.89: Stage-0: Steel abutment pile foundation damage in transverse direction
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Figure F.90: Stage-A: Steel abutment pile foundation damage
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Figure F.91: Stage-B.1: Abutment pile foundation damage.
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Figure F.92: Stage-0: Abutment spread footing foundation damage in longitudinal direction
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Figure F.93: Stage-0: Abutment spread footing foundation damage in transverse direction
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Figure F.94: Stage-A: Abutment spread footing foundation damage
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Figure F.95: Stage-B.1: Abutment foundation translational damage (Same as Stage-C roll-up for abutment wall damage).
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Figure F.96: Stage-D roll-up: System fragility.
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APPENDIX G

BRIDGE GROUPING RESULTS FOR ERA-3 TWO-SPAN MULTI-COLUMN

BENT BRIDGES

Following a hierarchical structure, the model is first tested in the seat width model,

compared to the overall inventory average model. It is shown that the system fragility

models with four different seat width designs can be represented by the inventory average

model Figure G.1. Then, the grouping procedure is carried down to the next step to test

whether the section types affect the system fragility model. The comparison indicates that

they are different Table G.2. As a result, the following test is determining bent foundation

types having any further influence on the performance of regular section bridges or wide

section bridges Table G.3. It is carried down from the system fragility model in

Figure F.95 to the base of each subgroup combination. The sequence used here

approximately follows the importance of each component: 1) unseating design groups, 2)

section types, 3) joint seal types, 4) column foundation types, 5) abutment foundation

types, and 6) column foundation rotation damage types. Ultimately, the grouping of this

RBS generates two identical models corresponding to regular and wide column sections.
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Table G.1: Model comparison for seat width design subgroups.

CDS 1 CDS 2 CDS 3 CDS 4
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 § 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01
IA vs G3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.02
IA vs G4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.02

CDS 5 CDS 6 CDS 7 All states
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
IA vs G2 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
IA vs G3 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02
IA vs G4 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02
§ IA = inventory average model; G1 = seat width group design-1 with 30 inch seat width; G2 = seat width group

design-2 with 36 inch seat width; G3 = seat width group design-3 with 48 inch seat width; and G4 = seat width
group design-4 with 60 inch seat width.

† ∆µ = absolute difference of fragility median; ∆β = absolute difference of fragility dispersion; and ∆F (IM) =
maximum absolute difference of fragility probability in Sa1 = 0 g to 3.0 g.

Table G.2: Model comparison for column section subgroups.

CDS 1 CDS 2 CDS 3 CDS 4
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 § 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
IA vs G2 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.02

CDS 5 CDS 6 CDS 7 All states
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.01 0.02 0.02 0.00 0.02 0.01 0.02 0.03 0.02 0.02 0.03 0.02
IA vs G2 0.01 0.05 0.04 0.01 0.07 0.05 0.05 0.07 0.08 0.05 0.07 0.08
§ IA = inventory average model; G1 = regular column sections; and G2 = wide column sections.
† ∆µ = absolute difference of fragility median; ∆β = absolute difference of fragility dispersion; and ∆F (IM) =

maximum absolute difference of fragility probability in Sa1 = 0 g to 3.0 g.
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Table G.3: Model comparison for joint seal gap subgroups given different section types.

CDS 1 CDS 2 CDS 3 CDS 4Regular sections
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 § 0.01 0.02 0.03 0.01 0.04 0.04 0.02 0.00 0.04 0.00 0.00 0.00
IA vs G2 0.01 0.02 0.03 0.01 0.03 0.04 0.02 0.01 0.04 0.00 0.00 0.00

CDS 5 CDS 6 CDS 7 All statesRegular sections
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.04
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.04

CDS 1 CDS 2 CDS 3 CDS 4Wide sections
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.01 0.02 0.04 0.01 0.05 0.05 0.02 0.00 0.03 0.00 0.00 0.00
IA vs G2 0.01 0.02 0.04 0.01 0.03 0.03 0.02 0.01 0.03 0.00 0.00 0.00

CDS 5 CDS 6 CDS 7 All statesWide sections
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.05
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.04

§ IA = inventory average model; G1 = compression seal; and G2 = strip seal.
† ∆µ = absolute difference of fragility median; ∆β = absolute difference of fragility dispersion; and ∆F (IM) = maximum

absolute difference of fragility probability in Sa1 = 0 g to 3.0 g.
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Table G.4: Model comparison for column-foundation subgroups given different section
types.

CDS 1 CDS 2 CDS 3 CDS 4Regular sections
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 § 0.01 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IA vs G2 0.01 0.02 0.04 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

CDS 5 CDS 6 CDS 7 All statesRegular sections
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04

CDS 1 CDS 2 CDS 3 CDS 4Wide sections
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.01 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IA vs G2 0.01 0.02 0.05 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00

CDS 5 CDS 6 CDS 7 All statesWide sections
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.04
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05

§ IA = inventory average model; G1 = pile column foundation; and G2 = footing column foundation.
† ∆µ = absolute difference of fragility median; ∆β = absolute difference of fragility dispersion; and ∆F (IM) = maximum

absolute difference of fragility probability in Sa1 = 0 g to 3.0 g.
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Table G.5: Model comparison for abutment-foundation subgroups given different section
types.

CDS 1 CDS 2 CDS 3 CDS 4Regular sections
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 § 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CDS 5 CDS 6 CDS 7 All statesRegular sections
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CDS 1 CDS 2 CDS 3 CDS 4Wide sections
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IA vs G2 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00

CDS 5 CDS 6 CDS 7 All statesWide sections
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01

§ IA = inventory average model; G1 = pile abutment foundation; and G2 = footing abutment foundation.
† ∆µ = absolute difference of fragility median; ∆β = absolute difference of fragility dispersion; and ∆F (IM) = maximum

absolute difference of fragility probability in Sa1 = 0 g to 3.0 g.
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Table G.6: Model comparison for column-foundation-rotation damage subgroups given
different section types.

CDS 1 CDS 2 CDS 3 CDS 4Regular sections
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 § 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
IA vs G2 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

CDS 5 CDS 6 CDS 7 All statesRegular sections
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02

CDS 1 CDS 2 CDS 3 CDS 4Wide sections
∆µ† ∆β† ∆F † ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
IA vs G2 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

CDS 5 CDS 6 CDS 7 All statesWide sections
∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F ∆µ ∆β ∆F

IA vs G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
IA vs G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

§ IA = inventory average model; G1 = geotechnical damage; and G2 = structural damage.
† ∆µ = absolute difference of fragility median; ∆β = absolute difference of fragility dispersion; and ∆F (IM) = maximum

absolute difference of fragility probability in Sa1 = 0 g to 3.0 g.
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Figure G.1: Stage-D roll-up: system fragility curves with 30 inch seat width.
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Figure G.2: Stage-D roll-up: system fragility curves with 36 inch seat width.
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Figure G.3: Stage-D roll-up: system fragility curves with 48 inch seat width.
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Figure G.4: Stage-D roll-up: system fragility curves with 60 inch seat width.
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Figure G.5: Stage-D roll-up: system fragility curves with regular column sections.
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Figure G.6: Stage-D roll-up: system fragility curves with wide column sections.

391



Figure G.7: Stage-D roll-up: system fragility curves with regular column sections and compression joint seal.
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Figure G.8: Stage-D roll-up: system fragility curves with regular column sections and strip joint seal.
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Figure G.9: Stage-D roll-up: system fragility curves with wide column sections and compression joint seal.
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Figure G.10: Stage-D roll-up: system fragility curves with wide column sections and strip joint seal.
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Figure G.11: Stage-D roll-up: system fragility curves with regular column sections and pile column foundations.
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Figure G.12: Stage-D roll-up: system fragility curves with regular column sections and footing column foundations.
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Figure G.13: Stage-D roll-up: system fragility curves with wide column sections and pile column foundations.
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Figure G.14: Stage-D roll-up: system fragility curves with wide column sections and footing column foundations.
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Figure G.15: Stage-D roll-up: system fragility curves with regular column sections and pile abutment foundations.
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Figure G.16: Stage-D roll-up: system fragility curves with regular column sections and footing abutment foundations.
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Figure G.17: Stage-D roll-up: system fragility curves with wide column sections and pile abutment foundations.
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Figure G.18: Stage-D roll-up: system fragility curves with wide column sections and footing abutment foundations.
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Figure G.19: Stage-D roll-up: system fragility curves with regular column sections and geotechnical foundation rotation damage.
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Figure G.20: Stage-D roll-up: system fragility curves with regular column sections and structural foundation rotation damage.
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Figure G.21: Stage-D roll-up: system fragility curves with wide column sections and geotechnical foundation rotation damage.
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Figure G.22: Stage-D roll-up: system fragility curves with wide column sections and structural foundation rotation damage.
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