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SUMMARY

The thesis consists of two parts. the first one is dealing with isosspectral trans-

formations and the second one with the phenomenon of local immunodeficiency.

Isospectral transformations (IT) of matrices and networks allow for compres-

sion of either object while keeping all the information about their eigenvalues and

eigenvectors. Chapter 1 [1] analyzes what happens to generalized eigenvectors

under isospectral transformations and to what extent the initial network can be

reconstructed from its compressed image under IT. We also generalize and essen-

tially simplify the proof that eigenvectors are invariant under isospectral transfor-

mations and generalize and clarify the notion of spectral equivalence of networks.

In the recently developed theory of isospectral transformations of networks

isospectral compressions are performed with respect to some chosen character-

istics (attributes) of the network’s nodes (edges). Each isospectral compression

(when a certain characteristic is fixed) defines a dynamical system on the space of

all networks. Chapter 2 [2] shows that any orbit of this dynamical system which

starts at any finite network (as the initial point of this orbit) converges to an at-

tractor. This attractor is a smaller network where the chosen characteristic has the

same value for all nodes (or edges). We demonstrate that isospectral compres-

sions of one and the same network defined by different characteristics of nodes

(or edges) may converge to the same as well as to different attractors. It is also

shown that a collection of networks may be spectrally equivalent with respect to

some network characteristic but nonequivalent with respect to another. These re-

sults suggest a new constructive approach which allows to analyze and compare

the topologies of different networks.

Some basic aspects of the recently discovered phenomenon of local immunod-

eficiency [3] generated by antigenic cooperation in cross-immunoreactivity (CR)

x



networks are investigated in chapter 3 [4]. We prove that stable with respect to

perturbations local immunodeficiency (LI) already occurs in very small networks

and under general conditions on their parameters. Therefore our results are ap-

plicable not only to Hepatitis C where CR networks are known to be large [3], but

also to other diseases with CR. A major necessary feature of such networks is the

non-homogeneity of their topology. It is also shown that one can construct larger

CR networks with stable LI by using small networks with stable LI as their build-

ing blocks. Our results imply that stable LI occurs in networks with quite general

topologies. In particular, the scale-free property of a CR network, assumed in [3],

is not required.
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CHAPTER 1

GENERALIZED EIGENVECTORS OF ISOSPECTRAL

TRANSFORMATIONS, SPECTRAL EQUIVALENCE AND

RECONSTRUCTION OF ORIGINAL NETWORKS

1.1 Introduction

The recently developed theory of Isospectral Transformations (IT) of matrices and

networks allowed for advances in various areas and led to several surprising re-

sults [5]. The effectiveness of these applications raises a natural question regarding

the possible limits of this approach. Although the theory of isospectral transforma-

tions was initially aimed at reduction (i.e. simplification) of networks while keep-

ing all the information about the spectrum of their weighted adjacency, Laplace,

or other matrices generated by a network, it turned out [6] that all the information

about the eigenvectors of these matrices also gets preserved under ITs.

Therefore it is natural to ask what network information may not be preserved

after isospectral compression. The main goal of the present paper is to answer

this question. It is shown that generalized eigenvectors typically are not preserved

under ITs. We also establish some sufficient conditions under which the informa-

tion about generalized eigenvectors is preserved under ITs. Some new properties

of ITs are found, regarding classes of spectrally equivalent matrices and networks.

Particularly it is demonstrated that there are essential differences between the stan-

dard notion of isospectral matrices and spectral equivalence of networks. A new

proof of the preservation of eigenvectors under ITs is given which is shorter and

applicable to a more general situation than the one in [6].
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1.2 Isospectral Graph Reductions

In this section we recall definitions of the isospectral transformations of graphs

and networks.

Let W be the set of rational functions of the form w(λ) = p(λ)/q(λ), where

p(λ), q(λ) ∈ C[λ] are polynomials having no common linear factors, i.e., no com-

mon roots, and where q(λ) is not identically zero. W is a field under addition and

multiplication [5].

LetG be the class of all weighted directed graphs with edge weights inW. More

precisely, a graph G ∈ G is an ordered triple G = (V, E,w) where V = {1, 2, . . . , n} is

the vertex set, E ⊂ V × V is the set of directed edges, and w : E → W is the weight

function. Denote by MG = (w(i, j))i, j∈V the weighted adjacency matrix of G, with the

convention that w(i, j) = 0 whenever (i, j) < E. We will alternatively refer to graphs

as networks because weighted adjacency matrices define all static (i.e. non evolv-

ing) real world networks.

Observe that the entries of MG are rational functions. Let’s write MG(λ) instead

of MG here to emphasize the role of λ as a variable. For MG(λ) ∈ Wn×n, we define

the spectrum, or multiset of eigenvalues to be

σ(MG(λ)) = {λ ∈ C : det(MG(λ) − λI) = 0}.

Notice that σ(MG(λ)) can have more than n elements, some of which can be the

same.

Throughout the rest of the paper, the spectrum is understood to be a set that

includes multiplicities. The element α of the multiset A has multiplicity m if there

are m elements of A equal to α. If α ∈ A with multiplicity m and α ∈ B with

multiplicity n, then

(i) the union A ∪ B is a multiset in which α has multiplicity m + n; and

2



(ii) the difference A−B is a multiset in which α has multiplicity m−n if m−n > 0

and where α < A − B otherwise.

Similarly, the multiset A ⊂ B means for any α ∈ A, we have α ∈ B, and the

multiplicity of α in A, is less than or equal to the mutliplicity of α in B.

An eigenvector for eigenvalue λ0 ∈ σ(MG(λ)) is defined to be u ∈ Cn, u , 0 such

that

MG(λ0)u = λ0u.

One can see the eigenvectors of MG(λ) ∈Wn×n for λ0 are the same as the eigenvectors

of MG(λ0) ∈ Cn×n for λ0. Similarly the generalized eigenvectors of MG(λ) for λ0 are

the generalized eigenvectors of MG(λ0) for λ0.

A path γ = (i0, . . . , ip) in the graph G = (V, E,w) is an ordered sequence of distinct

vertices i0, . . . , ip ∈ V such that (il, il+1) ∈ E for 0 ≤ l ≤ p− 1. The vertices i1, . . . , ip−1 ∈

V of γ are called interior vertices. If i0 = ip then γ is a cycle. A cycle is called a loop

if p = 1 and i0 = i1. The length of a path γ = (i0, . . . , ip) is the integer p. Note that

there are no paths of length 0 and that every edge (i, j) ∈ E is a path of length 1.

If S ⊂ V is a subset of all the vertices, we will write S = V \ S and denote by |S |

the cardinality of the set S .

Definition 1. (structural set). Let G = (V, E,w) ∈ G. A nonempty vertex set S ⊂ V is

a structural set of G if

• each cycle of G, that is not a loop, contains a vertex in S ;

• w(i, i) , λ for each i ∈ S .

S is called a λ0−structural set if a structural set S also satisfies w(i, i) , λ0,∀i ∈ S

for some λ0 ∈ C.

Definition 2. Given a structural set S , a branch of (G, S ) is a path β = (i0, i1, . . . , ip−1, ip)

such that i0, ip ∈ V and all i1, . . . , ip−1 ∈ S .

3



We denote by B = BG,S the set of all branches of (G, S ). Given vertices i, j ∈ V ,

we denote by Bi, j the set of all branches in B that start in i and end in j. For each

branch β = (i0, i1, . . . , ip−1, ip) we define the weight of β as follows:

w(β, λ) := w(i0, i1)
p−1∏
l=1

w(il, il+1)
λ − w(il, il)

. (1.1)

Given i, j ∈ V set

Ri, j(G, S , λ) :=
∑
β∈Bi, j

w(β, λ). (1.2)

Definition 3. (Isospectral reduction). Given G ∈ G and a structural set S , the reduced

adjacency matrix RS (G, λ) is the |S | × |S |−matrix with the entries Ri, j(G, S , λ), i, j ∈

S . This adjacency matrix RS (G, λ) on S defines the reduced graph which is the

isospectral reduction of the original graph G.

1.3 Generalized eigenvectors of isospectral graph reductions

Let λ0 be an eigenvalue of MG(λ) with multiplicity at least 2, and let u = (u1, u2, . . . , un) ∈

Cn be the corresponding eigenvector, i.e. MG(λ0)u = λ0u. Let v = (v1, v2, . . . , vn) ∈ Cn

be the corresponding rank 2 generalized eigenvector, i.e. MG(λ0)v − λ0v = u. With-

out any loss of generality we may assume that S = {m + 1, . . . , n} is a λ0−structural

set . It is known that λ0 is also an eigenvalue of RS (G, λ), i.e. RS (G, λ0)uS = λ0uS ,

where uS = (um+1, . . . , un) is the restriction of u to S . We will refer to this property

from now on as the preservation of eigenvectors. Our goal in this section is to see

what happens to generalized eigenvectors under isospectral transformations.

Theorem 1. Let S be a λ0−structural set of a graph G = (V, E,w). MG(λ) is the

adjacency matrix of G. u, v ∈ Cn are the eigenvector and generalized eigenvector

for MG(λ) such that MG(λ0)u = λ0u,MG(λ0)v − λ0v = u. Then if there is a c ∈ C such

4



that c , −1 and ∑
l∈S

Ril(λ0)
λ0 − ω(l, l)

ul = cui,∀i ∈ S , (1.3)

then RS (G, λ0)vS − λ0vS = (1 + c)uS .

We first introduce some useful notations before proceeding to the proof of the-

orem 1.

Given vertices i, j ∈ V , we denote by B(p)
i, j the set of all branches in B of length p

that start at i and end at j. For any i, j ∈ V set

R(p)
i, j (G, S , λ) :=

∑
β∈B

(p)
i, j

w(β, λ).

Therefore the reduced weights Ri, j(G, S , λ) for S = {m + 1, . . . , n} satisfy

Ri, j(G, S , λ) =
m+1∑
p=1

R(p)
i, j (G, S , λ),∀i, j ∈ S .

Ri, j(G, S , λ) =
m−1∑
p=1

R(p)
i, j (G, S , λ),∀i, j ∈ S , i , j.

Ri,i(G, S , λ) = w(i, i),∀i ∈ S .

Ri, j(G, S , λ) =
m∑

p=1

R(p)
i, j (G, S , λ),∀i ∈ S , j ∈ S or i ∈ S , j ∈ S .

To simplify notations we will write Ri, j and R(p)
i, j instead of Ri, j(G, S , λ0) and R(p)

i, j (G, S , λ0),

respectively.

Proof. Write v = (vS , vS ), where vS = (vl)l∈S and vS = (vi)i∈S . Since MG(λ0)v = λ0v + u,

we have for all l ∈ S , (for convenience, all w(i, j) mean w(i, j)(λ0) in the proof)

∑
k∈S

ω(l, k)vk + ω(l, l)vl +
∑

l1∈S ,l1,l

ω(l, l1)vl1 = λ0vl + ul.

5



Therefore,

vl =
∑
k∈S

ω(l, k)
λ0 − ω(l, l)

vk +
∑

l1∈S ,l1,l

ω(l, l1)
λ0 − ω(l, l)

vl1 −
ul

λ0 − ω(l, l)
. (1.4)

Analogously for all i ∈ S ,

vi =
∑

k∈S ,k,i

ω(i, k)
λ0 − ω(i, i)

vk +
∑
l∈S

ω(i, l)
λ0 − ω(i, i)

vl −
ui

λ0 − ω(i, i)
.

Substituting vl’s above by (1.4) gives,

vi =
∑

k∈S ,k,i

R(1)
ik

λ0 − ω(i, i)
vk +

∑
k∈S ,l∈S

ω(i, l)ω(l, k)
[λ0 − ω(i, i)][λ0 − ω(l, l)]

vk

+
∑

l1,l∈S ,l1,l

ω(i, l)ω(l, l1)
[λ0 − ω(i, i)][λ0 − ω(l, l)]

vl1 −
∑
l∈S

ω(i, l)
[λ0 − ω(i, i)][λ0 − ω(l, l)]

ul

−
ui

λ0 − ω(i, i)

=
∑

k∈S ,k,i

R(1)
ik

λ0 − ω(i, i)
vk +

∑
k∈S

R(2)
ik

λ0 − ω(i, i)
vk +

∑
l1,l∈S

ω(i, l)ω(l, l1)
[λ0 − ω(i, i)][λ0 − ω(l, l)]

vl1

−
∑
l∈S

ω(i, l)
[λ0 − ω(i, i)][λ0 − ω(l, l)]

ul −
ui

λ0 − ω(i, i)
.

Proceeding inductively, we get

vi =
∑

k∈S ,k,i

R(1)
ik

λ0 − ω(i, i)
vk +

∑
k∈S

R(2)
ik

λ0 − ω(i, i)
vk + · · · +

∑
k∈S

R(p)
ik

λ0 − ω(i, i)
vk

+
∑

l1,...,lp−1,l∈S ,lr,ls,ls,l

ω(i, l)ω(l, l1)ω(l1, l2) . . . ω(lp−2, lp−1)
[λ0 − ω(i, i)][λ0 − ω(l, l)][λ0 − ω(l1, l1)] . . . [λ0 − ω(lp−2, lp−2)]

vlp−1

−
∑

lp−2∈S

R(p−1)
ilp−2

[λ0 − ω(i, i)][λ0 − ω(lp−2, lp−2)]
ulp−2 −

∑
lp−3∈S

R(p−2)
ilp−3

[λ0 − ω(i, i)][λ0 − ω(lp−3, lp−3)]
ulp−3 − . . .

−
∑
l∈S

R(1)
il

[λ0 − ω(i, i)][λ0 − ω(l, l)]
ul −

ui

λ0 − ω(i, i)
.
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The indices in the sums above which are in S are all distinct; because there are

no non-loop cycles in S . Since S has m elements, after m + 1 steps we obtain the

relation

vi =
∑

k∈S ,k,i

R(1)
ik

λ0 − ω(i, i)
vk +

∑
k∈S

R(2)
ik

λ0 − ω(i, i)
vk + · · · +

∑
k∈S

R(m+1)
ik

λ0 − ω(i, i)
vk

−
∑

lm−1∈S

R(m)
ilm−1

[λ0 − ω(i, i)][λ0 − ω(lm−1, lm−1)]
ulm−1 −

∑
lm−2∈S

R(m−1)
ilm−2

[λ0 − ω(i, i)][λ0 − ω(lm−2, lm−2)]
ulm−2

− · · · −
∑
l∈S

R(1)
il

[λ0 − ω(i, i)][λ0 − ω(l, l)]
ul −

ui

λ0 − ω(i, i)
.

Therefore,

[λ0 − ω(i, i)]vi +
∑
l∈S

Ril

λ0 − ω(l, l)
ul + ui =

∑
k∈S ,k,i

Rikvk +

m+1∑
p=2

R(p)
ii vi,

λ0vi + ui +
∑
l∈S

Ril

λ0 − ω(l, l)
ul =

∑
k∈S

Rikvk.

And finally,

∑
k∈S

Rikvk − λ0vi = (1 + c)ui,∀i ∈ S ,

which implies

RS (G, λ0)vS = λ0vS + (1 + c)uS .

�

We say that the generalized eigenvector v is preserved if relation (1.3) holds.

Indeed it is easy to see in this case that the projection of the generalized eigenvector

to S is a generalized eigenvector for the reduced adjacency matrix.

Remark 1. Observe that we didn’t use anywhere in this proof the fact that u is an

7



eigenvector. Therefore the same proof is readily applicable to generalized eigen-

vectors of higher ranks. One just needs to use the rank k generalized eigenvector

in place of u and the rank k + 1 generalized eigenvector in place of v.

Remark 2. The proof is very similar to the one given in [6]. However, we allow

the weights of the original graph to take rational functions. One can check the

requirement in [6] for the weights to be complex numbers before reduction is not

necessary for the proof to work. Also the weights of the reduced graph are rational

functions instead of complex numbers only. The result in [6] would only apply to

the 1st reduction, even though the preservation of eigenvectors carries through a

sequence of reductions (this will be further discussed in the next section).

Clearly the complement to a single vertex is a structural set of a network (graph).

The following statement demonstrates that by isospectrally removing a single el-

ement (vertex) of a network (graph) one gets a much simpler condition than in

Theorem 1.

Theorem 2. Let G = (V, E,w) ∈ G be a graph with n nodes and with adjacency

matrix MG(λ). Let λ0 ∈ σ(MG(λ)) be a repeated eigenvalue and let S ⊂ V be a

λ0−structural set which has n − 1 nodes. Suppose S = V \ S = { j}. Then the

generalized eigenvector is preserved iff ω(i, j) = cui,∀i ∈ S for some c ∈ C where u

is an eigenvector of MG(λ) for eigenvalue λ0.

Proof. We have in this case

∑
l∈S

Ril

λ0 − ω(l, l)
ul =

Ri j

λ0 − ω( j, j)
u j = c1ui (1.5)

Since S = { j}, Ri j = ω(i, j), the relation (1.5) is equivalent to ω(i, j) = cui,∀i ∈ S . �

Corollary 1. Let S = {1, . . . ,m} be such that the weighted graph induced by G

on S is totally disconnected, i.e. there are no edges between vertexes in S . Then

8



Ril = ω(i, l),∀i ∈ S , l ∈ S and condition (1.3) becomes

∑
l∈S

ω(i, l)
λ0 − ω(l, l)

ul = cui,∀i ∈ S . (1.6)

Hence in this case the generalized eigenvector is preserved iff (1.6) is true.

1.4 Block Matrix Approach

The proof of Theorem 1 is an entry by entry computation based on the isospectral

graph reduction. Here we will use block matrices and look at the problem from

the perspective of the isospectral matrix reduction, which is more general than the

isospectral graph reduction because it has fewer requirements [5].

For any matrix M ∈ Wn×n, and any partition S ∪ S = {1, 2, . . . , n}, S ∩ S = ∅,

by permutation or renaming the nodes, we can always write the matrix as M =MS S MS S

MS S MS S

. The isospectral matrix reduction of M onto S is defined as

RS = MS S − MS S (MS S − λI)−1MS S .

The only requirement for S here is that the inverse matrix (MS S − λI)−1 exists. This

is a more general condition than that of the isospectral graph reduction. Indeed

for the isospectral graph reduction, there must be no non-loop cycles in S , which

means that under permutation MS S is a triangular matrix. Also, the weights of

loops in S are not equal to λ. This ensures MS S − λI is invertible, but it’s a stronger

condition.

However, when both of these conditions hold the isospectral matrix reduction

gives the same reduced matrix as the isospectral graph reduction (theorem 2.1 [5]).

We will show now that the preservation of eigenvectors directly follows from

the definition of isospectral matrix reduction.
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Suppose u is an eigenvector such that M(λ0)u = λ0u, λ0 ∈ σ(M(λ)). Write u =uS

uS

. Then we have

M(λ0)u =

MS S (λ0) MS S (λ0)

MS S (λ0) MS S (λ0)


uS

uS

 = λ0

uS

uS

 .
An easy computation shows that

(MS S (λ0) − λ0I)uS + MS S (λ0)uS = 0,

MS S (λ0)uS + (MS S (λ0) − λ0I)uS = 0.

Assume that the matrix (MS S (λ0) − λ0I) is invertible. Then the first row gives

uS = −(MS S (λ0) − λ0I)−1MS S (λ0)uS . (1.7)

By plugging this relation into the second row, we get

−MS S (λ0)(MS S (λ0) − λ0I)−1MS S (λ0)uS + MS S (λ0)uS = λ0uS .

Observe that the left side of this equation is RS (λ0)uS , where RS (λ0) is the isospec-

tral matrix reduction evaluated at λ0. Therefore R(λ0)uS = λ0uS , i.e. projections of

eigenvectors of the original (adjacency) matrix (of a network) are indeed eigen-

vectors with the same eigenvalues of the isospectrally reduced (adjacency) matrix.

Thus, the property of eigenvector preservation for isospectral reductions is proved.

This is a much shorter proof than the one in [6]. Moreover, it clarifies a general

structure of the isospectral reduction procedure .

Now let us turn to generalized eigenvectors. In addition to M(λ0)u = λ0u, we
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have (M(λ0) − λ0I)v = u, i.e.

MS S (λ0) − λ0I MS S (λ0)

MS S (λ0) MS S (λ0) − λ0I


vS

vS

 =
uS

uS

 .
A simple computation gives

(MS S (λ0) − λ0I)vS + MS S (λ0)vS = uS ,

MS S (λ0)vS + (MS S (λ0) − λ0I)vS = uS .

Assume that the matrix (MS S (λ0) − λ0I) is invertible. Then we get from the first

row

vS = (MS S (λ0) − λ0I)−1uS − (MS S (λ0) − λ0I)−1MS S (λ0)vS .

Plugging this into the second row gives

MS S (λ0){[MS S (λ0) − λ0I]−1uS − [MS S (λ0) − λ0I]−1MS S (λ0)vS } + (MS S (λ0) − λ0I)vS = uS ,

[RS (λ0) − λ0I]vS + MS S (λ0)[MS S (λ0) − λ0I]−1uS = uS .

It is easy to see that vS is a generalized eigenvector for RS (λ0) iff

MS S (λ0)(MS S (λ0) − λ0I)−1uS = cuS . (1.8)

One necessary condition is that uS is in the column space of MS S (λ0). In the case

when S has only one single node, equation (1.8) agrees with Theorem 2, and the

necessary condition that uS is in the column space of MS S (λ0) is also sufficient.

Observe that we have not used the relation between uS and uS . Therefore gen-

eralized eigenvectors of higher ranks are preserved iff they also satisfy (1.8), with

u being a generalized eigenvector instead of the eigenvector.
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On the other hand, by plugging in (1.7), the relation between uS and uS , we get

MS S (λ0)(MS S (λ0) − λ0I)−2MS S (λ0)uS = −cuS .

Therefore the generalized eigenvector v is preserved iff uS is an eigenvector of

MS S (λ0)(MS S (λ0) − λ0I)−2MS S (λ0).

Theorem 3. All eigenvectors of the reduced matrix RS (λ) are restrictions of the

eigenvectors of the original matrix M. The projection of eigenvectors of M onto the

eigenvectors of RS (λ) corresponding to the same eigenvalue is a bijection.

Proof. Suppose R(λ0)u = λ0u. Then

{MS S (λ0) − MS S (λ0)[MS S (λ0) − λ0I]−1MS S (λ0)}u = λ0u.

Let v = −[MS S (λ0) − λ0I]−1MS S (λ0)u. Then we have

M(λ0)

v

u

 =
MS S (λ0) MS S (λ0)

MS S (λ0) MS S (λ0)


v

u

 = λ0

v

u

 .
which proves that the projection is surjective.

Suppose now that (v, u)T and (uS , u)T are both eigenvectors of M for eigenvalue

λ0. Then by (1.7) we have v = uS = −(MS S − λ0I)−1MS S u. So the projection is also

injective. �

Proof of the following statement can be found in [5] (corollary 1.1).

Lemma 1. For a matrix M ∈ Cn×n, let R be the isospectral reduction of M with

respect to a structural set S ⊂ {1, . . . , n}. Then σ(R) = σ(M) − σ(MS S ).

Hence for a given eigenvalue λ0 ∈ σ(M), if λ0 < σ(MS S ), then the algebraic

multiplicity of λ0 as an eigenvalue won’t change after isospectral reduction of M
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to S. Therefore if we reduce over a λ0−structural set, then the algebraic multiplicity

of λ0 will be preserved.

Theorem 4. For a matrix M ∈ Cn×n, isospectral reductions preserve both the alge-

braic and the geometric multiplicities of any eigenvalue.

Proof. Let λ0 be an eigenvalue of the reduced matrix R(λ). Lemma 1 ensures that

if we pick a λ0−structural set the algebraic multiplicity of λ0 will be preserved. In

fact, lemma 1 is true as long as the reduction exists at λ0 [5], i.e. the matrix MS S −λ0I

is invertible.

Because of the bijection between the eigenvectors before and after isospectral

reduction, the geometric multiplicity of an engenvalue is also preserved. �

Note though that Theorem 4 gives no information about the generalized eigen-

vectors. Unlike the bijective projection we have for eigenvectors, there are situ-

ations when the reduced matrix doesn’t have a generalized eigenvector for the

eigenvalue λ0 although the original (nonreduced) matrix does.

The projection of the generalized eigenvector of the original matrix to its com-

ponents corresponding to vertices contained in the structural set S is a generalized

eigenvector for the reduced matrix if and only if (1.8) holds.

Remark 3. Observe that the proof of the existence of bijection between the eigen-

vectors, i.e. Theorem 3, doesn’t require M to have complex entries. In particular,

it means that M could be a matrix with entries which are rational functions of λ,

which are used in isospectral reductions of networks [5]. Consequently, the ge-

ometric multiplicity of a specific eigenvalue is preserved throughout the entire

sequence of isospectral reductions.

Moreover, if the original matrix has entries which are complex numbers, then

the algebraic multiplicity of a specific eigenvalue is also preserved throughout the
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entire sequence of isospectral reductions. By the uniqueness of sequential reduc-

tions [5] the isospectral reduction to a specific structural set is the same as the one

which results in reduction to the same set S via several consecutive isospectral re-

ductions. The algebraic multiplicity of eigenvalue λ0 at each step is equal to the

algebraic multiplicity of λ0 for the original matrix.

1.5 An Example of Isospectral Reductions over Different Structural sets

The results obtained in the previous sections demonstrate that a generalized eigen-

vector may or may not be preserved under isospectral reductions of matrices and

networks. In this section we consider isospectral reduction of the simple small net-

work depicted in figure 1.1. This will illustrates the different possibilities which

arise after picking different structural sets. The details of the corresponding com-

putations are presented in the Appendix.

1 2

34

1

1

1

−2
−1

Figure 1.1: Original network

The adjacency matrix of this network is A =



0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −2 0


. It has eigenvalues

{i, i,−i,−i}. The generalized eigenvector chain for the eigenvalue i is vi =



−3

−2i

1

0


→
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ui =



i

−1

−i

1


; for the eigenvalue −i the corresponding chain is v−i =



2i

1

0

1


→ u−i =



−1

i

1

−i


.

This network contains two cycles (1234) and (34). All the structural sets of size

two for this network are S = {1, 4}, {2, 4}, {3, 4}, {1, 3}, {2, 3}. The list of all size 3

structural sets is S = {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3}.

For the size 3 structural sets, since S has only a single node, Theorem 2 is ap-

plicable.

If S = {1, 2, 4}, S = {3}, then AS S =


0

1

−2

 , u
i
S =


i

−1

1

 , u
−i
S =


−1

i

−i

.Thus AS S ∦ ui
S , and

AS S ∦ u−i
S . vi

S , v
−i
S are not generalized eigenvectors for RS (λ).

To be more precise,

RS (λ) =


0 1 0

0 0 1/λ

−1 0 −2/λ

 , det(RS (λ) − λI) = −
(λ2 + 1)2

λ
, σ(RS (λ)) = {i, i,−i,−i}.

RS (i) =


0 1 0

0 0 −i

−1 0 2i

 , det(RS (i) − λI) = −(λ − i)(λ2 − iλ + 1), σ(RS (i)) = {i,
1 +
√

5
2

i,
1 −
√

5
2

i}.

The complex number i is an eigenvalue for both RS (λ) and RS (i); the algebraic mul-

tiplicity of i for RS (λ) is 2; for RS (i) it is 1. RS (i) doesn’t have a generalized eigen-

vector for i. It has just one eigenvector corresponding to this eigenvalue. Therefore

the generalized eigenvector is lost after isospectral reduction of the matrix.

One can check that isospectral reduction to any other size 3 structural set does

not preserve the generalized eigenvectors either.
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first reduction

1

4

2
1

1/λ
−1

−2/λ

1 4

1/λ2

−1

−2/λ

second reduction

Figure 1.2: Isospectral reductions of the original network

Now let us further reduce the network to S ′ = {1, 4} ⊂ S = {1, 2, 4}. We have

RS ′(λ) =

 0 1/λ2

−1 −2/λ

 , det(RS ′(λ) − λI) =
(λ2 + 1)2

λ2 , σ(RS ′(λ)) = {i, i,−i,−i};

RS ′(i) =

 0 −1

−1 2i

 , det(RS ′(i) − λI) = (λ − i)2, σ(RS ′(i)) = {i, i};

Here the algebraic multiplicity of i as an eigenvalue is the same for RS ′(λ) and

RS ′(i). We know that the eigenvectors are always preserved because of the bijective

projection. Therefore after the second reduction we gained the generalized eigen-

vector back. This is a quite unexpected result which raises a question about the

conditions on a structural set which allow for preservation of generalized eigen-

vectors.

Of course we can directly reduce the original network to S ′ = {1, 4} too. One

can check the reduction satisfies both the entry-wise formula (1.3) and the block-

wise formula (1.8). Furthermore, for all the size 2 structural sets, the reduction

preserves both generalized eigenvectors (vi, v−i) except for the structural set {3, 4}.

Observe that it is the only structural set of size two which contains a complete cycle

of our network.

Remark 4. Let a matrix M ∈ Wn×n, λ0 ∈ σ(M). Define a(λ0,M) and g(λ0,M) to be
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the algebraic and geometric multiplicities of λ0. Then for M ∈ Cn×n, the num-

ber of linearly independent generalized eigenvectors corresponding to λ0 for M

is d(λ0,M) = a(λ0,M) − g(λ0,M).

Consider now R(λ) ∈ Wn×n. By definition the eigenvectors satisfy R(λ0)u = λ0u;

and the generalized eigenvectors satisfy (R(λ0) − λ0I)kv = 0. Thus g(λ0,R(λ)) =

g(λ0,R(λ0)), d(λ0,R(λ)) = d(λ0,R(λ0)). Observe now that R(λ0) ∈ Cn×n. d(λ0,R(λ0)) =

a(λ0,R(λ0)) − g(λ0,R(λ0)). As seen in the previous example, a(λ0,R(λ0)) , a(λ0,R(λ)).

Hence

d(λ0,R(λ)) = a(λ0,R(λ0)) − g(λ0,R(λ0)) , a(λ0,R(λ)) − g(λ0,R(λ)).

Therefore the number of linearly independent generalized eigenvectors is not equal

to the difference between the algebraic and geometric multiplicities of the eigen-

value. In other words, the notion of generalized eigenvectors does not make much

sense for matrices with rational functions as entries.

Remark 5. Another fact worth noticing is that the reductions shown in this exam-

ple form a sequence of isospectral reductions, i.e. RS ′ is an isospectral reduction

of RS . With the uniqueness of sequential reductions [5], one is tempted to believe

that a property that’s true for the final step of a sequence of reductions should be

true in each and every step through the sequence of reductions. In our case, for the

preservation of generalized eigenvectors there is no sequential property. Indeed al-

though the generalized eigenvectors are lost in RS , they managed to ”come back”

in RS ′ . One might ask then under which conditions the generalized eigenvectors

can be recovered.

Consider the sequence of reductions that starts from RS , instead of A. After one

reduction to RS ′ , instead of ”recovering” generalized eigenvectors, the reduction

generated generalized eigenvectors that RS doesn’t have. This again, is caused by
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the fact that the concept of generalized eigenvectors does not actually apply to

matrices whose entries are rational functions. Through a sequence of reductions,

the generalized eigenvectors can be lost or ”recovered”, or even generated, at each

step. We can not say what is going to happen in the next step in a sequence of

isospectral reductions even with a knowledge of all the previous steps. Instead,

one must directly analyze each new step in the sequence of reductions.

1.6 Some Sufficient conditions for preservation of generalized eigenvectors

Theorem 5. The generalized eigenvectors are preserved if either of the following

conditions hold : (i) MS S (λ0) = 0; (ii) MS S (λ0) = 0.

Proof. If MS S (λ0) = 0, plugging in (1.8) we have MS S (λ0)(MS S (λ0) − λ0I)−1uS = 0 =

0uS .

If MS S (λ0) = 0, then by (1.7) we have uS = −(MS S (λ0) − λ0I)−1MS S (λ0)uS = 0. If

uS = 0, then (1.8) is true. �

For a network, the relation MS S (λ0) = 0 means that no edges go from S to S ;

while MS S (λ0) = 0 means there is no edge from S to S . In either case, we have

R(λ0) = MS S (λ0).

1.7 Reconstruction of the original network

In this section we address the problem of reconstructing the original network or

matrix from its isospectral reduction.

The eigenvectors for eigenvalue λ0 can be reconstructed, as shown in [6]. And

we can reconstruct the generalized eigenvectors for λ0 similarly.

Definition 4. (Depth of a vertex) The depth of a vertex i ∈ V is defined recursively

as follows.

(1) A vertex i ∈ S has depth 0.
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(2) A vertex i ∈ S has depth k iff i has no depth less than k, and (i, j) ∈ E implies

j has depth < k, for all j ∈ V .

We denote by S k the set of all vertices of depth ≤ k. Because S is a structural set,

every vertex i has a finite depth. We set the depth of (G, S ) to be the maximum

depth of a vertex.

Proposition 1. If uS = (uS
i )i∈S , vS = (vS

i ) are the eigenvector and rank 2 generalized

eigenvector of RS (G, λ0), and RS (G, λ0)vS −λ0vS = (1+c)uS , where c , −1 is a complex

number, then the recursive relations


vi = vS

i for i ∈ S 0 = S

vl +
ul

λ0 − ω(l, l)
=

1
λ0 − ω(l, l)

∑
j∈S k−1

ω(l, j)v j for all l ∈ S k \ S k−1

(1.9)

determine the rank 2 generalized eigenvector v for MG associated to λ0.

Remark 6. The relation (1.9) comes from equation (1.4). And this reconstruction

formula can reconstruct higher ranking generalized eigenvectors as well. We just

need to replace u with the rank k − 1 generalized eigenvector and v with the rank k

generalized eigenvector.

Remark 7. Proposition 1 is true for any MG ∈ W
n×n. For a matrix M ∈ Cn×n, if all its

eigenvalues, eigenvectors and chains of generalized eigenvectors are preserved in

an isospectral reduction, then the Jordan form of M is known, and its correspond-

ing eigenvectors and chains of generalized eigenvectors can be reconstructed. We

can reconstruct the original matrix M. This reconstruction is unique up to permu-

tation of the nodes by M = BJB−1, where J is the Jordan form and B = [u1, u2, v2, . . . ]

are the corresponding eigenvectors and generalized eigenvectors.
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1.8 Spectral equivalence of networks and of complex matrices

In this section we introduce a more general than in [5] notion of spectral equiva-

lence of networks and compare it with standard spectral equivalence of matrices

with complex entries.

Recall that the spectrum, σ, of a matrix is the union of all eigenvalues together

with their multiplicities.

LetWπ ⊂ W be the set of rational functions p(λ)/q(λ) such that deg(p) ≤ deg(q),

where deg(p) is the degree of the polynomial p(λ). And let Gπ ⊂ G be the set of

graphs G = (V, E,w) such that w : E → Wπ. Every graph in Gπ can be isospectrally

reduced [5].

Two weighted directed graphs G1 = (V1, E1,w1) and G2 = (V2, E2,w2) are isomor-

phic if there is a bijection b : V1 → V2 such that there is an edge ei j in G1 from vi to v j

if and only if there is an edge ẽi j between b(vi) and b(v2) in G2 with w2(ẽi j) = w1(ei j).

If the map b exists, it is called an isomorphism, and we write G1 ' G2.

An isomorphism is essentially a relabeling of the vertices of a graph. There-

fore, if two graphs are isomorphic, then their spectra are identical. The relation

of being isomorphic is reflexive, symmetric, and transitive; in other words, it’s an

equivalence relation.

Definition 5 (Generalized Spectral Equivalence of Graphs). Suppose that for each

graph G = (V, E,w) inGπ, τ is a rule that selects a unique nonempty subset τ(G) ⊂ V .

Let Rτ be the isospectral reduction of G onto τ(G). Then Rτ induces an equivalence

relation ∼ on the set Gπ, where G ∼ H if Rm
τ (G) ' Rk

τ(H) for some m, k ∈ N .

Remark 8. Observe that we do not require τ(G) to be a structural subset of G.

However there is a unique isospectral reduction [5] (possibly via a sequence of

isospectral reductions to structural sets if τ(G) is not a structural subset of G) of G

onto τ(G).
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Our definition of spectral equivalence of networks (graphs) is more general

than the one in [5], where it was required that m = k = 1. Therefore our classes of

spectrally equivalent networks are larger than the ones considered in [5]. Namely

each class of equivalence in our sense consists of a countable number of equiv-

alence classes in the sense of [5]. Our approach/definition could be of use for

analysis of real world networks many of which have a hierarchical structure [7],

[8].

Clearly any nonzero number is an eigenvector of any dimension 1 matrix. For

this reason we do not consider reductions to one node since at that point all the

geometric properties are lost.

Proof. It is easy to see that the relation defined is reflexive and symmetric.

Suppose that G ∼ H, with Rm
τ (G) ' Rs

τ(H); H ∼ K, with Rr
τ(H) ' Rt

τ(K). Without

any loss of generality, we assume r > s. Then

Rm+r−s
τ (G) ' Rr

τ(H) ' Rt
τ(K),G ∼ K.

�

We call matrices that can be isospectrally reduced to the same matrix (up to

permutation) spectrally equivalent. By lemma 1, we have σ(M) = σ(R) ∪ [σ(M) ∩

σ(MS S )] for M ∈ Cn×n. If

σ(M) ∩ σ(MS S ) = ∅, (1.10)

we have σ(M) = σ(R).

Proposition 2. Let M1,M2 ∈ C
n×n, both can be reduced to the same matrix R(λ) ∈

Wm×m. Let them both satisfy (1.10). Then M1 and M2 have the same eigenvalues,

with the same algebraic and geometric multiplicities for each eigenvalue. They

21



also have the same eigenvectors for each eigenvalue. However, they can still have

different Jordan forms, since the generalized eigenvectors are generally not pre-

served by isospectral reductions.

Proof. Since M1 and M2 both satisfy (1.10), we have σ(M1) = σ(R) = σ(M2), i.e. M1

and M2 have the same eigenvalues and the same algebraic multiplicity for each

eigenvalue.

Theorem 3 implies that the eigenvectors of R(λ) are bijective projections of

eigenvectors of M1, as well as M2. By the reconstruction of eigenvectors in [6], we

know M1 and M2 have the same eigenvectors for each eigenvalue, thus the same

geometric multiplicity for each eigenvalue.

However, two matrices with the same eigenvalues, with the same algebraic

and geometric multiplicities for each eigenvalue, and the same eigenvectors for

each eigenvalue can still have different Jordan form. For example,

A1 =



5 1 0 0

0 5 0 0

0 0 5 1

0 0 0 5


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





5 1 0 0

0 5 0 0

0 0 5 1

0 0 0 5





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

A2 =



5 0 0 0

0 5 0 1

0 1 5 0

0 0 0 5


=



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1





5 0 0 0

0 5 1 0

0 0 5 1

0 0 0 5





1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


,

A1 and A2 both have eigenvalue 5 with algebraic multiplicity 4 and geometric

multiplicity 2. They also have the same eigenvectors for eigenvalue 5, i.e. u1 =

(1, 0, 0, 0)T , u2 = (0, 0, 1, 0)T . But A1’s Jordan form consists of 2 size 2 Jordan blocks

and A2’s Jordan form consists of 1 simple eigenvalue and a size 3 Jordan block,
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they have different Jordan forms. �

If M1 satisfies (1.10) but M2 does not, it is known that M2 loses some eigenvalues

(those in the intersection in (1.10)) when reduced to R while M1 does not. Therefore,

σ(M2) ) σ(M1) and the matrix M2 has a higher dimension than M1.

Not all similar matrices are spectrally equivalent. For example, a matrix that is

already in Jordan form always has eigenvalues in S . It will lose eigenvalues in S

after reduction. For similar matrices that satisfy (1.10), their isospectral reductions

will have the same eigenvalues, with the same algebraic and geometric multiplici-

ties. However, reductions of these matrices may not be the same.

For example, matrices A and B down below have the same eigenvalues.

A =


1 5 2

3 6 8

4 7 9



−1 
1 0 0

0 2 0

0 0 3




1 5 2

3 6 8

4 7 9

 =
1
17


148 206 256

−13 −5 −28

−33 −48 −41

 ,

B =


2 1 0

7 3 5

8 9 4



−1 
1 0 0

0 2 0

0 0 3




2 1 0

7 3 5

8 9 4

 =
1

27


1 −39 −10

52 105 20

43 24 56

 .
The matrix A has 3 listed below dimension-2 isospectral reductions.

R12(A) =
1

17λ + 41

148λ − 140 206λ − 226

23 − 13λ 67 − 5λ

 ,

R13(A) =
1

17λ + 5

148λ − 114 256λ − 264

27 − 33λ 67 − 41λ

 ,

R23(A) =
1

17λ − 148

−5λ − 114 48 − 28λ

18 − 48λ −41λ − 140

 .
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The matrix B also has 3 dimension-2 isospectral reductions.

R12(B) =
1

27λ − 56

 λ − 18 72 − 39λ

52λ − 76 105λ − 200

 ,

R13(B) =
1

27λ − 105

 λ − 79 10 − 10λ

43λ − 121 56λ − 200

 ,

R23(B) =
1

27λ − 1

105λ − 79 20λ − 20

24λ − 63 56λ − 18

 .
It is easy to see that there is no pair of reductions, one for A and one for B, which

are the same, meaning that one is a permutation of the other. Even though A and

B are similar matrices that both satisfy (1.10), they are not spectrally equivalent.

When (1.10) does not hold, the eigenvalues which belong to both σ(M) and

σ(MS S ) will be lost after reduction or their multiplicities will decrease. Theorems

1, 2, 3, 4 and 5 require (MS S (λ0) − λ0I) to be invertible, which implies λ0 < σ(MS S ).

Therefore in this case λ0 doesn’t belong to the intersection in (1.10).
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CHAPTER 2

ON ATTRACTORS OF ISOSPECTRAL COMPRESSIONS OF NETWORKS

2.1 Introduction

Arguably the major scientific buzzword of our time is a ”Big Data”. When talking

about Big Data people usually refer to (huge) natural networks in communications,

bioinformatics, social sciences, etc, etc, etc. In all cases the first idea and hope is to

somehow reduce these enormously large networks to some smaller objects while

keeping, as much as possible, information about the original huge network.

In practice almost all the information about real-world networks is contained in

their adjacency matrices [9, 10]. An adjacency matrix of a network with N elements

is the N × N matrix with zero or one elements. The (i, j) element equals one if there

is direct interaction between the elements number i and number j of a network. In

the graph representation of a network this corresponds to the existence of an edge

(arrow) connecting node i to node j. Otherwise an (i, j) element of the adjacency

matrix of a network equals zero. It is very rare [9, 10] that the strength of interaction

of the element (node) i with the element (node) j is also known. In such cases

a network is represented by a weighted adjacency matrix where the (i, j) entry

corresponds to the strength of this interaction instead of to 1.

Therefore the problem of compressing a network is essentially a problem of

compressing its weighted adjacency matrix. It is a basic fact of linear algebra that

all the information about a matrix is contained in its spectrum (collection of all

eigenvalues of a matrix) and in its eigenvectors and generalized eigenvectors.

Recently a constructive rigorous mathematical theory was developed which al-

lows us to compress (reduce) matrices and networks while keeping ALL the infor-
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mation regarding their spectrum and eigenvalues. This approach was successfully

applied to various theoretical and applied problems [5]. The corresponding trans-

formations of networks were called Isospectral Transformations. This approach is

not only limited to the compression of networks. It also allows one to grow (en-

large) networks while keeping stability of their evolution (dynamics), etc (see [5,

11]).

In the present paper we further develop this approach by demonstrating that

isospectral compressions generate a dynamical system on the space of all net-

works. We prove that such a dynamical system converges to an attractor which

is a smaller network than the network which was an initial point (network) of this

orbit. To create this dynamical system we need to first select some characteristic

of the network’s nodes (or edges). Then we pick a subset of nodes (edges) based

on this characteristc. We then reduce the network onto the subset we just picked.

We repeat this procedure and get a dynamical system. It is important to men-

tion that the current graph theory is lacking classification of all graphs which have

the same characteristic of the all nodes even for such basic and simplest charac-

teristics as inner and outer degrees. Clearly any complete graph where any two

nodes are connected by an edge (in case of undirected graphs) or by two opposite

edges (in case of directed graphs) has the same value of any characteristic at any

node. Therefore all complete graphs are attractors of any isospectral contraction.

However, there are other attractors as well for any characteristic and there is no

general classification or description of these attractors. However one can find such

attractors when dealing with a concrete network. Therefore, this procedure is a

natural tool for analysis of real-world networks. We demonstrate that by choos-

ing different characteristics of either nodes or edges of a network one typically

gets different attractors. The structure of such networks gives us new important

information about a given network.
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We also discuss the notions of weak and strong spectral equivalences of net-

works and show that classes of equivalence with respect to a weak spectral equiv-

alence consists of a countable number of classes of strongly spectrally equivalent

networks. Our results could be readily applicable to analysis of any (directed or

undirected, weighted or unweighted) networks.

2.2 Isospectral Graph Reductions and Spectral Equivalence

In this section we recall definitions of the isospectral transformations of graphs

and networks.

Let W be the set of rational functions of the form w(λ) = p(λ)/q(λ), where

p(λ), q(λ) ∈ C[λ] are polynomials having no common linear factors, i.e., no com-

mon roots, and where q(λ) is not identically zero. W is a field under addition and

multiplication [5].

LetG be the class of all weighted directed graphs with edge weights inW. More

precisely, a graph G ∈ G is an ordered triple G = (V, E,w) where V = {1, 2, . . . , n} is

the vertex set, E ⊂ V ×V is the set of directed edges, and w : E →W is the weight func-

tion. Denote by MG = (w(i, j))i, j∈V the weighted adjacency matrix of G, with the con-

vention that w(i, j) = 0 whenever (i, j) < E. We will alternatively refer to graphs as

networks because weighted adjacency matrices define all static (i.e. non evolving)

real-world networks. Also we will be using ”vertex” and ”node” interchangeably.

Observe that the entries of MG are rational functions. Let’s write MG(λ) instead

of MG here to emphasize the role of λ as a variable. For MG(λ) ∈ Wn×n, we define

the spectrum, or multiset of eigenvalues to be

σ(MG(λ)) = {λ ∈ C : det(MG(λ) − λI) = 0}.

Notice that we count the multiplicities of the eigenvalues, i.e. the set σ(MG(λ))
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can have more than n elements, some of which can be equal to each other.

A path γ = (i0, . . . , ip) in the graph G = (V, E,w) is an ordered sequence of distinct

vertices i0, . . . , ip ∈ V such that (il, il+1) ∈ E for 0 ≤ l ≤ p− 1. The vertices i1, . . . , ip−1 ∈

V of γ are called interior vertices. If i0 = ip then γ is a cycle. A cycle is called a loop

if p = 1 and i0 = i1. The length of a path γ = (i0, . . . , ip) is the integer p. Note that

there are no paths of length 0 and that every edge (i, j) ∈ E is a path of length 1.

If S ⊂ V is a subset of all the vertices, we will write S = V \ S and denote by |S |

the cardinality of the set S .

Definition 6. (structural set). Let G = (V, E,w) ∈ G. A nonempty vertex set S ⊂ V is

a structural set of G if

• each cycle of G, that is not a loop, contains a vertex in S ;

• w(i, i) , λ for each i ∈ S .

In particular, if a structural set S also satisfies w(i, i) , λ0,∀i ∈ S for some λ0 ∈ C,

then S is called a λ0−structural set.

Definition 7. Given a structural set S , a branch of (G, S ) is a path β = (i0, i1, . . . , ip−1, ip)

such that i0, ip ∈ V and all i1, . . . , ip−1 ∈ S .

We denote by B = BG,S the set of all branches of (G, S ). Given vertices i, j ∈ V ,

we denote by Bi, j the set of all branches in B that start in i and end in j. For each

branch β = (i0, i1, . . . , ip−1, ip) we define the weight of β as follows:

w(β, λ) := w(i0, i1)
p−1∏
l=1

w(il, il+1)
λ − w(il, il)

. (2.1)

Given i, j ∈ V set

Ri, j(G, S , λ) :=
∑
β∈Bi, j

w(β, λ). (2.2)
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Definition 8. (Isospectral Reduction(Compression)). Given G ∈ G and a structural

set S , the reduced adjacency matrix RS (G, λ) is the |S | × |S |−matrix with the entries

Ri, j(G, S , λ), i, j ∈ S . This adjacency matrix RS (G, λ) on S defines the reduced graph

which is the isospectral reduction of the original graph G.

Remark 9. We will use the terms ”reduction” and ”compression” interchangeably.

One can check that for a graph with complex number weights, the complement of

any single node is a structural set. For any subset A of nodes of this network G,

it is always possible to isospectrally compress the network G to a network whose

nodes belong to A by removing the nodes in the complement of A one after another.

Now we recall the notion of spectral equivalence of networks (graphs).

LetWπ ⊂ W be the set of rational functions p(λ)/q(λ) such that deg(p) ≤ deg(q),

where deg(p) is the degree of the polynomial p(λ). And let Gπ ⊂ G be the set of

graphs G = (V, E,w) such that w : E → Wπ. Every graph in Gπ can be isospectrally

reduced over any nonempty subset of its vertex set[5].

Two weighted directed graphs G1 = (V1, E1,w1) and G2 = (V2, E2,w2) are isomor-

phic if there is a bijection b : V1 → V2 such that there is an edge ei j in G1 from vi to v j

if and only if there is an edge ẽi j between b(vi) and b(v j) in G2 with w2(ẽi j) = w1(ei j).

If the map b exists, it is called an isomorphism, and we write G1 ' G2.

An isomorphism is essentially a relabeling of the vertices of a graph. There-

fore, if two graphs are isomorphic, then their spectra are identical. The relation

of being isomorphic is reflexive, symmetric, and transitive; in other words, it’s an

equivalence relation.

The notion of spectral equivalence of graphs was introduced in [5]. This is

the idea that two networks G and H are spectrally equivalent if they reduce to

isomorphic graphs in one step, over subsets of vertices selected by a rule τ (e.g.

nodes whose inner degrees are less than 2). Then in [1] a less restrictive notion of

generalized spectral equivalence of graphs (networks) was introduced. Namely,
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two networks are weakly spectrally equivalent if they reduce to isomorphic graphs

in a finite number of steps (not necessarily the same number of steps) under the

same rule for subset selection.

A proof of the following theorem can be found in [1].

Theorem 6 (Generalized Spectral Equivalence of Graphs). Suppose that for each

graph G = (V, E,w) inGπ, τ is a rule that selects a unique nonempty subset τ(G) ⊂ V .

Let Rτ be the isospectral reduction of G onto τ(G). Then Rτ induces an equivalence

relation ∼ on the set Gπ, where G ∼ H if Rm
τ (G) ' Rk

τ(H) for some m, k ∈ N.

Remark 10. Observe that we do not require τ(G) to be a structural subset of G.

However there is a unique isospectral reduction [5] (possibly via a sequence of

isospectral reductions to structural sets if τ(G) is not a structural subset of G) of G

onto τ(G).

The notion of generalized spectral equivalence of networks (graphs) is weaker

than the one considered in [5], where it was required that m = k = 1. Therefore

the classes of weakly spectrally equivalent networks are larger than the classes of

spectrally equivalent networks considered in [5]. Namely each class of equivalence

in the weak sense consists of a countable number of equivalence classes in the

(strong) sense of [5]. In what follows we will refer to the spectral equivalence in

the form introduced in [5] as strong spectral equivalence, and the notion of spectral

equivalence introduced in [1] as weak spectral equivalence. Both of the strong and

weak notions of spectral equivalence could be of use for analysis of real-world

networks many of which have a hierarchical structure [7], [8].

2.3 Attractors of Isospectral Reductions

Isospectral reductions of networks (graphs) define a dynamical system on the space

of all networks. This dynamical system arises by picking any node (edge) of a net-

work and isospectrally reducing this network to a network where the set of nodes
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is a complement to a chosen node. The fact that such isospectral reductions form

a dynamical system follows from the Commutativity theorem proved in [5] which

states that a sequence of isospectral compressions over a set of nodes A and then

over the set of nodes B gives the same result as isospectral reduction over B fol-

lowed by the one over A. Therefore to one and the same network (graph) G cor-

respond different orbits depending on the order in which we pick nodes of G for

reductions.

By repeatedly compressing a graph in this manner it is possible to isospectrally

reduce any network to a trivial network which has just one node, which can be any

node of G. It is clearly a senseless operation. However we can choose a reasonable

rule which will help us to understand some intrinsic feature(s) of the structure

(topology) of the network G. Generally a network can have many different struc-

tural sets. To make the isospectral contraction focused on specific properties of

networks, we can add some specific rules to the selection of structural sets.

Before we do that, let us recall a few characteristics of nodes in a graph. (There

are about ten-fifteen such characteristics of nodes and edges of networks which are

all borrowed from the graph theory).

For a graph G = (V, E,w), the indegree for a node v ∈ V , d−(v), is the number

of edges that end in v. The outdegree d+(v) is the number of edges that start at v.

Let’s define d(v) = d−(v)+d+(v) to be the sum of the indegree and outdegree for any

node.

Let σst be the total number of shortest paths from node s to node t, and let σst(v)

be the number of those paths that pass through v. Note that σst(v) = 0 if v ∈ {s, t} or

if v does not lie on any shortest path from s to t. We call

g(v) =
∑
s,v

∑
t,v,s

σst(v)
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the centrality/betweenness of node v.

Theorem 7. For any network G and a subset selecting rule τ based on some charac-

teristic of its nodes (edges) (τ(G) , ∅), the orbit of the dynamical system generated

by isospectral reductions with respect to τ converges to an attractor which is a

network in which τ selects all the nodes (edges).

Proof. If the network is already an attractor, then the reduction doesn’t change this

network and the orbit is a fixed point.

Otherwise, each reduction removes at least one vertex (edge). Thus an orbit of a

network under consecutive isospectral reductions becomes an attractor in no more

than N steps, where N := |V | (or N := |E|). Therefore an orbit of a finite network

G approaches an attractor in a finite number of steps which does not exceed the

number of nodes (edges) in G. Such attractor always exists because any network

can be isospectrally reduced to a graph with just one node. A process of consec-

utive isospectral reductions (i.e. an orbit of the corresponding dynamical system)

will terminate at one node, if no one of the networks along this orbit was an attrac-

tor for τ. Clearly in case of a ”network” with only one node (edge) the values of

all characteristics of all nodes (edges) are the same because there is only one node

(edge). If G is an infinite network then the corresponding orbit could be finite or

infinite. �

Theorem 8. The attractors of isospectral reductions with respect to different char-

acteristics of one and the same network are generally different.

Proof. (i) In the example shown in the figure 2.1, all nodes have degree 4. This

graph cannot be further reduced based on the degree of its nodes. However, the

centrality of the nodes are different. If we count the number of shortest paths

through each node, we can see c(1) = c(2) = c(3) = c(8) = c(9) = c(10) = 1, c(4) =

c(6) = c(7) = c(11) = 27, c(5) = 66. This graph can be further reduced based on
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Figure 2.1: A network which is an attractor with respect to degree but not with
respect to centrality

centrality. Therefore for this network (graph) attractors with respect to degree and

to centrality are different.

(ii) The complete graph, where each and every node and edge have the same

properties, can not be further reduced based on degree or other characteristics of

a network. It is always an attractor. If we consider isospectral expansion (see

[11]) of a complete graph with respect to two different characteristics, then we get

two different graphs (networks) with the same attractor with respect to these two

characteristics. Clearly this attractor will be the initial complete graph. �

The result of theorem 3 is not surprising because different characteristics of

nodes (or edges) define different dynamical systems on the space of all networks,

and orbits of these different dynamical systems are also different.

The following statement establishes that weakly as well as strongly spectrally

equivalent networks have the same attractor if isospectral contractions are gen-

erated by the very same characteristic with respect to which these networks are

spectrally equivalent.

Theorem 9. Strongly as well as weakly spectrally equivalent graphs with respect to

some characteristic have the same attractor under the dynamical system generated

by isospectral compressions according to this characteristic.

Proof. Suppose the graph G is strongly spectrally equivalent to H with respect to

rule τ, i.e. Rτ(G) ' Rτ(H) = R, and G is weakly spectrally equivalent to K w.r.t τ, i.e.
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Rl
τ(G) ' Rm

τ (K) = S .

If R is an attractor under τ, then the attractor for G as well as for H is R. So G

and H have the same attractor R. Otherwise G and H have the same attractor, the

attractor for R. Similarly G and K have the same attractor. Therefore the attrac-

tors for all three graphs, G,H,K are the same under rule τ. So all three networks

(graphs) have the same attractor with respect to the rule τ. �

A very important fact is that networks can be spectrally equivalent with respect

to one characteristic of nodes (edges) but not spectrally equivalent with respect to

another characteristic. Therefore spectral equivalences built on different character-

istics of nodes and edges allow us to uncover various intrinsic (hidden) features of

networks’ topology.

We now present an example where networks are isomorphic for one character-

istic but not for another.

Consider the graphs G and H in figure 2.2.

Graph G

1 2

3

4 5

6

1

1 1
1

1 1

1

11

1/λ 1/λ

1/λ

Graph H

1 2

3

5

6

1

1 1

1

1

11

2/λ 1/λ

1/λ

Figure 2.2: Original networks: spectrally equivalent or not?
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Their adjacency matrices are

MG =



1/λ 1 1 1 0 0

0 1/λ 1 0 1 0

0 0 1/λ 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



, MH =



2/λ 1 1 0 0

0 1/λ 1 1 0

0 0 1/λ 0 1

0 1 0 0 0

0 0 1 0 0


.

We can always remove one node in an isospectral reduction. Let us remove

node 4 from graph G. The weights of the edges after reduction become

R(i, j) = w(i, j) + w(i, 4)
w(4, j)
λ

, i, j = 1, 2, 3, 5, 6.

But w(i, 4) = 0 for all i = 2, 3, 5, 6, and w(4, j) = 0 for j = 2, 3, 5, 6. The only weight

that actually changes after the reduction is R(1, 1) = w(1, 1) + w(1, 4)w(4, 1)/λ = 2/λ.

All the other weights satisfy R(i, j) = w(i, j), i , 1 or j , 1. The reduced graph after

removing node 4 is identical to graph H. Therefore H is an isospectral reduction

of G. The networks H and G will have the same reduction as long as we pick the

same subset of vertices to reduce on.

We introduce now a few useful notations. For any graph G = (V, E,w), denote

the maximum indegree by m− = max{d−(v) : v ∈ V}, the maximum outdegree by

m+ = max{d+(v) : v ∈ V}, and the maximum sum of indegree and outdegree as

m = max{d(v) : v ∈ V}. We define a few different rules for picking a subset of the

vertices of a graph.

τ1(G) = {v ∈ V : d(v) > m/2};

τ2(G) = {v ∈ V : d−(v) ≥ m−/2};
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τ3(G) = {v ∈ V : d−(v) > m−/4}.

The rule τ1 picks the nodes whose sum of indegree and outdegree is greater

than half of the maximum. The rule τ2 picks the nodes whose indegree is greater

than or equal to half of the maximum. And τ3 picks the nodes whose indegree is

greater than a quarter of the maximum.

Now we apply these rules to G and H and see what happens. Consider the

degrees of all the nodes in the two graphs. We list them in the following table 2.1.

Table 2.1: The degrees of each node in G and H
graph G H
node 1 2 3 4 5 6 1 2 3 5 6

indegree 2 3 4 1 1 1 1 3 4 1 1
outdegree 4 3 2 1 1 1 3 3 2 1 1

sum of indegree and outdegree 6 6 6 2 2 2 4 6 6 2 2

G

1 2

3

4 5

6

1

1 1
1

1 1

1

11

1/λ 1/λ

1/λ H

1 2

3

5

6

1

1 1

1

1

11

2/λ 1/λ

1/λ

τ1 τ1

1 2

3

1

1 1

2/λ 2/λ

2/λ

attractor A1

Figure 2.3: Isospectral reductions using the rule τ1

Let us consider τ1 first. Both G and H have a maximum sum of indegree and

outdegree of 6. τ1(G) = τ1(H) = {1, 2, 3}. G and H reduce to the same graph in one

step under rule τ1, as shown in figure 2.3. So G and H are spectrally equivalent
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under the rule τ1 with respect to both the 1-step definition in [5] and the multi-

step definition we have here. Also the reduced graph A1 is an attractor for the

rule τ1 since the 3 nodes have the same sum of indegree and outdegree, which is

4. To be more precise, if we write down the indegree, outdegree and the sum of

the two, (d−, d+, d) as an ordered triple for each node, all the triples for the nodes

in A1 are node 1 with (1, 3, 4), node 2 with (2, 2, 4) and node 3 with (3, 1, 4), so

d(1) = d(2) = d(3) = m(A1).

G H

1 2

3

1

1 1

2/λ 2/λ

2/λ
A1

2 3
1

2/λ 2/λ

attractor A2

τ2 τ2

τ2

Figure 2.4: Isospectral reductions under the rule τ2

Similarly, for the rule τ2, we have τ2(G) = {1, 2, 3} , τ2(H) = {2, 3}. Howeve,

τ2(τ2(G)) = {2, 3} = τ(H). Under the rule τ2, the graph G takes 2 reductions to reach

the attractor A2 while the graph H takes only one step (see figure 2.4). So G and

H are spectrally equivalent with our generalized definition but not with respect

to the strong definition of spectral equivalence found in [5]. In the graph A2, the

degree triplets for each node are node 2 with (1, 2, 3) and node 3 with (2, 1, 3). Here

d−(2) = 1 = 1/2m−(A2) = 1/2d−(3). One can see A1 is an attractor of the rule τ1 but

not of the rule τ2 since d−(1) = 1 < 1/2d−(3) = 3/2.

Lastly, for τ3, τ3(G) = {1, 2, 3} = τ3(τ3(G)), τ3(H) = {2, 3} = τ3(τ3(H)). Here G and

H both reach an attractor in one step. But the attractors they reach are different.

Under the rule τ3 the graphs G and H are not isospectrally equivalent by either

definition (see figure 2.5).
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G H

1 2

3

1

1 1

2/λ 2/λ

2/λ
A1

2 3
1

2/λ 2/λ

A2

τ3 τ3

Figure 2.5: Isospectral reductions under the rule τ3

Here A1 and A2 are both attractors for the rule τ3. For A1, d−(1) = 1, d−(2) =

2, d−(3) = 3. For A2 we have d−(2) = 1, d−(3) = 2. So A1 is an attractor under the

rules τ1 and τ3 but not under τ2. A2 is an attractor for all 3 rules we used in this

sequence of examples.

Theorem 10. Let G = (V, E,w) with w : E → C. If S is a structural and S ⊆ S ′ ⊆ V ,

then S is a structural set of the isospectral reduction RS ′(G).

Proof. Suppose S ( S ′ ( V . Now we will show that S is also a structural set for the

reduced graph RS ′(G).

(i) Any cycle (not a loop) in RS ′(G) comes from a cycle in G. It has to contain a

vertex in S .

(ii) For any i ∈ S ′ \ S , the new weight in RS ′(G) is given by

w̃(i, i) = w(i, i) +
∑

j∈V/S ′
w(i, j)

w( j, i)
λ − w( j, j)

+
∑

j,k, j,k∈V/S ′
w(i, j)

w( j, k)
λ − w( j, j)

w(k, i)
λ − w(k, k)

+ . . . .

Since w(i, i),w( j, j),w(k, k) ∈ C, the expression above shows that w̃(i, i) , λ. This

implies that S is a structural set of RS ′(G). �

Remark 11. If we allow the original graph to take weights in W, the above proof

still holds as long as w̃(i, i) , λ,∀i ∈ S ′ \ S . Since it’s a zero measure set among all
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the possible values w̃(i, i)’s can take, we can say generally, the theorem is true for

any graph with weights inW except for unusual cases.

By the uniqueness of sequential graph reductions, we can see isospectral reduc-

tion is a dynamical system.
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CHAPTER 3

LOCAL IMMUNODEFICIENCY: MINIMAL NETWORKS AND STABILITY

3.1 Introduction

Cross-immunoreactivity (CR) is a well known phenomenon which was observed

in the studies of AIDS, influenza, Hepatitis C, dengue and other diseases (see e.g.

[12, 13, 14, 15, 16, 17, 18, 19]). In a nutshell, CR means that the generation of anti-

bodies to some antigen (virus) can be stimulated by other antigens. Therefore CR

generates (indirectly, i.e. via the corresponding antibodies) interactions between

the antigens. For a long time CR was recognized as an important phenomenon in

the in-host dynamics of various diseases and was used in building their mathe-

matical models [17, 18, 16, 14].

However, in all these models CR was incorporated as a mean-field process

where all interactions between different antigens (viruses) are assumed to have

the same strength. Recent experiments with Hepatitis C viruses demonstrated that

this assumption is incorrect, and instead the CR network (CRN) has a very com-

plicated structure (topology) which resembles the topology of scale-free networks

[13, 12].

A new model for the dynamics of Hepatitis C (HC) [3] is conceptually simpler

than the previous ones (see e.g. [16]). In fact the new model involves only two

(necessary) types of variables, the population sizes of various types of viruses and

the population sizes of their corresponding antibodies, in immunological models.

For instance, the HC model in [16] contains three more types of variables, namely

the population sizes of infected and of non-infected hepatocytes as well as a total

(mean field) CR response.
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This fact naturally causes some doubts and suspicion. Indeed, how can a sim-

pler model have richer dynamics? The reason is that our model is just conceptually

simpler, it actually contains more parameters. Different pairs of viruses generally

have different strengths of interaction in the CRN, but in the old model they were

all equal to each other.

Traditionally, to describe new experimental findings which old models fail to

reproduce, one makes a more complicated mathematical model by adding more

variables or more equations. The model introduced in [3] is based on new spe-

cially conducted experiments [13, 12] which proved essential heterogeneity of the

CRN. Although the model in [3] was dealing with dynamics of HC, it provides a

model of evolution for any disease which has cross-immunoreactivity. The paper

[3] analyzed the dynamics of this new model numerically. Scale-free CRNs of sizes

500-1000 were generated and numerical simulations were performed on them.

The main result was the discovery of a new phenomenon [3], Local Immunod-

eficiency (LI), which showed up in all of the several hundred simulations. Namely,

in all these simulations, the pool of HC viruses got partitioned into three types. The

first type consists of persistent viruses that have large population sizes but virtually

zero immune response against them. In other words, persistent viruses remain un-

detected by the human immune system. Thus a clear immunodeficiency (with re-

spect to persistent viruses) is present. It is called [3] local immunodeficiency because

it is completely determined by the localized positions of the persistent viruses in

the CRN. Observe, however, that generally it may happen that only specific types

of antigens are ”qualified” to be persistent viruses. Only special biological experi-

ments may clarify this issue.

Persistent viruses enjoy such a relaxing life because the second type, altruistic

viruses, sacrifice themselves to protect the persistent viruses from the immune sys-

tem. Concentrations of altruistic viruses are very small but they carry almost the
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entire immune response against all of the in-host population of viruses. Again, we

need further experimental biological studies to determine which antigens can and

which can not play a role of altruistic viruses. The rest (third type) of viruses plays

a much smaller role in the HC evolution [3]. In what follows we call these viruses

neutral.

In the present paper we demonstrate rigorously that local immunodeficiency is

a much more general phenomenon than one may conclude from the results of [3].

First, we prove that stable LI already appears in a specific CRN with only three

nodes under general conditions. These conditions are expressed as realistic in-

equalities between parameters of the model. Therefore LI is likely to appear in

all diseases with cross-immunoreactivity. Indeed, because of a very high muta-

tion rate of HC viruses in host, the corresponding CRNs are very large [3]. Since

both small and large CRNs can generate LI, one is tempted to believe that this

phenomenon should be universal for all diseases with cross-immunoreactivity.

It is proved that LI is a stable state of evolution of the model in only one (out

of many possible topologies) of the networks with three types of viruses, while

in all two-node CRNs LI is unstable. This three-node network with stable LI is

characterized by the maximal asymmetry of its structure among all networks of

size three. Here by ”maximal asymmetry” we mean that all the nodes have differ-

ent indegrees. In this network there is one persistent node and one altruistic node

while the third node is neutral.

We also prove that there are no two-node CRNs with stable LI. It should be

mentioned that the two-node network with stable LI found in [3] assumes very re-

strictive relations between parameters of the model, which have the form of exact

equalities. Clearly such strict constraints cannot be maintained in real life situa-

tions. Indeed, only inequalities remain true under small changes of parameters,

which always occur because of fluctuations of real environments. In the present
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paper we demonstrate that the regions in the parameter space where stable LI ex-

ists have the same dimension as the the parameter space of the model. However,

it happens only in certain networks with at least three elements (types of viruses).

Once again, these networks must also be sufficiently non-homogeneous, which is

(qualitatively) consistent with numerical results in [3] for large CRNs.

We then demonstrate how one can build larger CRNs with stable LI by attach-

ing the three-node minimal network with stable LI. For instance, we proved that by

combining two such networks one gets a network with five nodes where two types

of viruses are persistent and two are altruistic. And the dynamics of HC with such

a CRN is stable and robust. Our results were mostly obtained by direct compu-

tations. For large networks one would need numerical simulations although our

rigorous results about smaller CRNs basically give a proof of concept that stable

and robust LI is present in all larger networks with sufficiently non-homogeneous

topology.

To justify it even more we also prove the presence of stable and robust LI in a

network with seemingly mild non-homogeneity of its topology. It is important to

mention that among CRNs with four nodes there are quite a few with more non-

homogeneous topology than the one we studied. Therefore our results essentially

prove that stable and robust LI must also be present in those CRNs. It is for this

purpose that we studied a less non-homogeneous network. The proof of stable

and robust LI (essentially by long direct computations) in this CRN is given in the

Appendix.

It is important to mention that in this paper we are dealing with strong LI, which

is a stronger property than the one found in [3]. Namely, we say that a certain type

of virus causes strong local immunodeficiency if the immune response against it

is identically zero, so completely absent. Analogously, we say that some kind of

virus is altruistic if it is not present at all (i.e. its concentration is zero) but immune
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response against this non-existing virus is present (strictly positive).

In [3], instead of these identical zeroes, some (sufficiently) small quantities were

considered. We call this case a weak LI. Clearly a weak LI is a more general phe-

nomenon than strong LI. Indeed, if the strong LI takes place then the weak LI is

automatically present. Thus our results imply that weak LI does exist and is stable,

under even weaker conditions than our conditions on the existence and stability of

strong LI. Therefore it is present in an even larger variety of CRNs.

These rigorously proven results demonstrate that stable LI does not require a

special scale-free structure of the CRN. In fact, it is enough that the CRN is suf-

ficiently non-homogeneous. It is natural to expect that this condition is satisfied

in real life situations because there is no reason for CRNs to be homogeneous.

Non-homogeneity of CRNs is a mild and very general condition, and thus the

phenomenon of local immunodeficiency should be ubiquitous for diseases with

cross-immunoreactivity.

We also show that LI is a robust phenomenon. Recall that a state of a system

is stable if small variations of initial conditions result in small variations of this

state, i.e. a new (perturbed) orbit stays close to the initial (unperturbed) state.

On the other hand, a state of a system is robust if small variations of the system

parameters (i.e. transitions to formally different systems) result in a stable state

which is close to the state of the initial (unperturbed) system.

Our results demonstrate once again that altruistic viruses, which have very

small concentration but occupy central positions in the CRNs with the largest in-

degrees [3], play a key role in LI. Namely the altruistic viruses were present in

all CRNs where we found stable and robust LI. All CRNs with fixed points with

LI but without altruistic viruses turned out to be non-robust, i.e. the LI could

be destroyed by arbitrarily small variations of parameters. This means that such

cases are non-typical, i.e. they have a positive codimension (or zero volume) in the
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space of all systems we study. Therefore they cannot be seen in real life situations.

(In other words, it is a zero probability event to encounter an LI without altru-

istic viruses.) This observation also explains why altruistic viruses were always

present in the several hundred numerical experiments conducted in [3]. Therefore

these altruistic local hubs of CRNs must be the primary targets of prevention and

elimination of the corresponding diseases. This is yet another question for the fu-

ture studies, both biological and computational. From a general biomedical point

of view a main challenge is to understand which types of viruses could play a role

of altruistic and which persistent ones.

The structure of the paper is as follows. Section 3.2 introduces the model. Sec-

tion 3.3 is devoted to a general analysis of the stability of dynamics of this model.

Section 3.4 analyzes two-node networks. Three-node networks are studied in sec-

tion 3.5. Section 3.6 proves the necessity of altruistic viruses. The building of larger

networks with stable LI is considered in section 3.7. Lastly section 3.8 contains

some concluding remarks. Some long technical computations are placed in the

Appendix. We also put some long computations with a four-node CRN in the

Appendix to demonstrate that LI appears in networks with a relatively mild non-

homogeneity of their topology.

3.2 Model of evolution of a disease with heterogeneous CRN

In this section we define the model of the HC evolution introduced in [3]. It is

important to stress again that this model is applicable to any disease with cross-

immunoreactivity.

Consider any immunological model, a population of n viral antigenic variants

xi inducing n immune responses ri in the form of antibodies (Abs). The viral vari-

ants exhibit CR which results in a CR network. The latter is a directed weighted

graph GCRN = (V, E), with vertices corresponding to viral variants and directed
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edges connecting CR variants. Because not all interactions with Ab lead to neutral-

ization, we consider two sets of weight functions for the CRN. These functions are

defined by immune neutralization and immune stimulation matrices U = (ui j)n
i, j=1

and V = (vi j)n
i, j=1, where 0 ≤ ui j, vi j ≤ 1; ui j represents the binding affinity of Ab to

j (r j) with the i-th variant; and vi j reflects the strength of stimulation of Ab to j (r j)

by the i-th variant. The immune response ri against variant xi is neutralizing; i.e.,

uii = vii = 1. The evolution of the antigen (virus) and antibody populations is given

by the following system of ordinary differential equations (ODEs):

ẋi = fixi − pxi

n∑
j=1

u jir j, i = 1, . . . , n,

ṙi = c
n∑

j=1

x j
v jiri∑n

k=1 v jkrk
− bri, i = 1, . . . , n.

(3.1)

The viral variant xi replicates at the rate fi and is eliminated by the immune

responses r j at the rates pu jir j. The immune responses ri are stimulated by the j-th

variant at the rates cg jix j, where g ji =
v jiri∑n

k=1 v jkrk
represents the probability of stimu-

lation of the immune response ri by the variant x j. This model (as in [3]) allows

us to incorporate the phenomenon of the original antigenic sin [20, 21, 22, 23, 24,

25], which states that xi preferentially stimulates preexisting immune responses ca-

pable of binding to xi. The immune response ri decays at rate b in the absence of

stimulation.

Here we consider the situation where the immune stimulation and neutraliza-

tion coefficients are equal to constants α and β, respectively. To be more specific,

both the immune neutralization and stimulation matrices are completely defined

by the structure of the CRN, i.e.,

U = Id + βAT ,V = Id + αA,
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where A is the adjacency matrix of GCRN . In the absence of CR among viral vari-

ants the system reduces to the model developed in [14] for heterogeneous viral

population. Because the neutralization of an antigen may require more than one

antibodies, we assume that 0 < β = αk < α < 1 [3]. It is important to mention that

we analyze a more general model here than the one studied in [3], where it was

assumed that all viruses replicate with the same rate.

3.3 Stationary states of the model

Fixed points of system (3.1) are determined by the relations

fixi = pxi

n∑
j=1

u jir j, i = 1, . . . , n,

cri

n∑
j=1

v jix j∑n
k=1 v jkrk

= bri, i = 1, . . . , n.

(3.2)

Clearly we are interested only in such fixed points where all variables assume

non-negative values, and the populations of all viruses and antibodies can not be

simultaneously equal to zero.

Consider the following sets

N = {i ∈ N, 1 ≤ i ≤ n}, I = {i ∈ N : xi > 0}, J = {i ∈ N : ri > 0}.

Definition 9. We say that strong local immunodeficiency occurs when there exists

i such that xi > 0, ri = 0, or when P := I \ J , ∅.

In what follows we will call neutral nodes with xi = ri = 0 the neutral idle

nodes since they don’t contribute to the dynamics of the network. We also will

call neutral nodes with xi > 0, ri > 0 the neutral active nodes. In the paper [3] a

weaker LI condition was considered. Namely a new phenomenon of antigenic co-

operation was discovered when some (altruistic) viral variants sacrifice themselves,
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being strongly exposed to an immune response, for the benefit of other (persis-

tent) viral variants which become practically hidden from the immune system. In

[3] LI was considered to be present when persistent viruses increase their popula-

tion but the immune response against them was relatively small. These conditions

are more practical for computer simulations, since it could take a very long time to

completely eliminate some virus, but they are not very precise. Here we consider

a stronger but well defined case, strong LI. Since a strong LI automatically im-

plies weak LI, showing that strong LI is ubiquitous for non-homogeneous CRNs

demonstrates that weak LI is even more common for such networks.

By making use of the notations introduced above we get a simpler formula for

the fixed points:

∑
j∈N

u jir j = ri + β
∑
i j∈E

r j = fi/p,∀i ∈ I,

∑
j∈N

v jix j∑
k∈J v jkrk

= δixi + α
∑
ji∈E

δ jx j = b/c,∀i ∈ J,

δi =
1

ri + α
∑

ik∈E rk
.

In our parameter space { f1, f2, . . . , fn > 0, p, c, b > 0, 1 > α, β > 0}, any relation

having a form of equality (e.g. f1 = β f2) defines a subset of co-dimension 1, (i.e.

a non-typical subset), in the phase space of all systems described by ODE (3.1).

Therefore with respect to a natural phase volume such subsets have volume (mea-

sure) zero. It is practically impossible that these very restrictive conditions will be

met in a real system evolving according to model (3.1). Because of this we are only

interested in stationary points which exist without extra conditions or under con-

ditions expressed as inequalities between the parameters of the model. This should

be contrasted with [3] where LI was shown to exist under much more restrictive

conditions with some exact equalities between the system’s parameters.
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Suppose that the matrices V = (Id+αA) and U = (Id+βAT ) are invertible. Denote

F = ( f1, . . . , fn)T . Then one stationary point is defined by the following relation

R∗ =
1
p

(UT )−1F, X∗ =
b
c

(VT )−1(VR∗) =: Xr(R∗).

Notice that U,V are constant matrices determined by the CRN and parameters,

and F is a constant vector of parameters. Because of that, R∗ here is a constant

vector, which represents the population of the antibodies. For this R∗, we also have

a corresponding constant vector for the population of the viruses X∗, given as a

function of R∗, which is denoted as Xr here for convenience.

More generally, we have a stationary space defined by the following relations

R = R∗ + ker(UT
I ), X = Xr(R) + ker(VT

J ),

where

ker(UT
I ) = {w ∈ Rn : (UT w)i = 0,∀i ∈ I}, ker(VT

J ) = {w ∈ Rn : (VT w) j = 0,∀ j ∈ J}.

To verify the stability of a stationary point, we need to consider the Jacobian

matrix of the right hand side of (3.1). It can be written in block form as

J =

AJ B

C D

 ,
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where

AJ = diag( fi − p
n∑

j=1

u jir j), Bi, j = −pxiu ji,

Ci, j = c
v jiri∑n

k=1 v jkrk
,Di,l = −cri

n∑
j=1

v jix jv jl

(
∑n

k=1 v jkrk)2 , l , i,

Di,i = c
n∑

j=1

v jix j∑n
k=1 v jkrk

− b − cri

n∑
j=1

v2
jix j

(
∑n

k=1 v jkrk)2 .

3.4 Analysis of size 2 CRN

We analyze the asymmetric network of size 2 (Fig. 3.1) in this section. We consider

the only asymmetric network in hope of finding LI, based on the understanding

that LI requires some level of non-homogeneity of the network.

1 2

Figure 3.1: size 2 CRN

The equations describing the evolution of these two types of viruses and anti-

bodies are 

ẋ1 = f1x1 − px1(r1 + βr2),

ẋ2 = f2x2 − px2r2,

ṙ1 = cx1
r1

r1+αr2
− br1,

ṙ2 = c(x1
αr2

r1+αr2
+ x2) − br2.

Here there is only one fixed point of interest, the one where the values of the

variables are non-negative and the strong LI is present without exact equality con-

ditions on the parameters. This fixed point is given by the relations

x1 =
b f1

cpβ
, x2 = 0, r1 = 0, r2 =

f1

pβ
.
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The Jacobian of the system is

J =



f1 − p(r1 + βr2) 0 −px1 −pβx1

0 f2 − pr2 0 −px2

cr1
r1+αr2

0 cx1αr2
(r1+αr2)2 − b −

cx1αr1
(r1+αr2)2

cαr2
r1+αr2

c −
cx1αr2

(r1+αr2)2
cx1αr1

(r1+αr2)2 − b


.

At the fixed point the Jacobian equals

J =



0 0 −
b f1
cβ −b

c f1

0 f2 −
f1
β

0 0

0 0 b
α
− b 0

c c − b
α

−b


.

It has the eigenvalue λ = b
α
− b > 0 , and therefore this fixed point is unstable.

It is important to mention that a stable LI for this two node network was found

in [3]. However, as we already mentioned before it has been done under unrealistic

conditions. One can also check that the symmetric network of size 2 doesn’t have

a stable LI. Detailed computations for it is listed in B.1. Our analysis proves that

no two-node network can have a stable and robust state of LI.

3.5 Analysis of size 3 CRNs

In this section we study the stability of dynamics of CRNs with three elements.

In some of these networks there is no stable LI because of their symmetry or not

enough non-homogeneity. Actually only one topology of a CRN with three ele-

ments demonstrates a stable strong LI. We present here the analysis of this size 3

CRN as well as of another one. Some other CRN is analyzed in B.2.
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Consider at first the chain-branch CRN (Fig. 3.2). Such a network was briefly

mentioned in [3] to demonstrate that long distance action in networks may lead to

LI. No studies of stability were conducted in that paper though. Also recall that

here we are after robust conditions of stable LI which would not be violated under

variations of parameters. The latter always occurs because of permanently chang-

ing environments. Besides, any mathematical model (including (3.1) of course) is

just an approximation to reality. Therefore robustness is a necessary condition for

any predictive model of a real system or phenomenon.

1 2 3

Figure 3.2: chain-branch CRN

Here system (3.1) becomes



ẋ1 = f1x(1 − px1(r1 + βr2),

ẋ2 = f2x2 − px2(r2 + βr3),

ẋ3 = f3x3 − px3r3,

ṙ1 = cx1
r1

r1+αr2
− br1,

ṙ2 = c(x1
αr2

r1+αr2
+ x2

r2
r2+αr3

) − br2,

ṙ3 = c(x2
αr3

r2+αr3
+ x3) − br3.

The fixed points with local immunodeficiency are:

x1 =
b f1

cpβ
, x2 = 0, x3 = 0, r1 = 0, r2 =

f1

pβ
, r3 = 0;

x1 =
b f1

cpβ
, x2 = 0, x3 =

b f3

cp
, r1 = 0, r2 =

f1

pβ
, r3 =

f3

p
;

x1 =
b f1

cp
, x2 =

b f2

cpβ
, x3 = 0, r1 =

f1

p
, r2 = 0, r3 =

f2

pβ
.
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The Jacobian of the system becomes

J =



f1 − p(r1 + βr2) 0 0 −px1 −pβx1 0

0 f2 − p(r2 + βr3) 0 0 −px2 −pβx2

0 0 f3 − pr3 0 0 −px3

cr1
r1+αr2

0 0 cαx1r2
(r1+αr2)2 − b −

cαx1r1
(r1+αr2)2 0

cαr2
r1+αr2

cr2
r2+αr3

0 −
cαx1r2

(r1+αr2)2
cαx1r1

(r1+αr2)2 +
cαx2r3

(r2+αr3)2 − b −
cαx2r2

(r2+αr3)2

0 cαr3
r2+αr3

c 0 −
cαx2r3

(r2+αr3)2
cαx2r2

(r2+αr3)2 − b



.

At the fixed point x1 =
b f1
cpβ , x2 = x3 = 0, r2 =

f1
pβ , r1 = r3 = 0, the Jacobian is

J =



0 0 0 −
b f1
cβ −b

c f1 0

0 f2 −
f1
β

0 0 0 0

0 0 f3 0 0 0

0 0 0 b
α
− b 0 0

c c 0 − b
α

−b 0

0 0 c 0 0 −b



.

There are eigenvalues λ = f3,
b
α
− b > 0. Therefore this fixed point is unstable.

At the second fixed point x1 =
b f1
cpβ , x3 =

b f3
cp , x2 = 0, r2 =

f1
pβ , r3 =

f3
p , r1 = 0, we have

J =



0 0 0 −
b f1
cβ −b

c f1 0

0 f2 −
f1
β
− β f3 0 0 0 0

0 0 0 0 0 −b
c f3

0 0 0 b
α
− b 0 0

c c f1
f1+αβ f3

0 − b
α

−b 0

0 cαβ f3
f1+αβ f3

c 0 0 −b



,

Here λ = b
α
− b > 0 is an eigenvalue, and this fixed point is also unstable.
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At the fixed point x1 =
b f1
cp , x2 =

b f2
cpβ , x3 = 0, r1 =

f1
p , r3 =

f2
pβ , r2 = 0, the Jacobian

takes the form

J =



0 0 0 −b
c f1 −b

cβ f1 0

0 0 0 0 − b
cβ f2 −b

c f2

0 0 f3 −
f2
β

0 0 0

c 0 0 −b −αb 0

0 0 0 0 b
α
+ αb − b 0

0 c c 0 − b
α

−b



,

One eigenvalue equals λ = b
α
+ αb − b > 0, and hence this critical point is unstable

as well.

Next we consider a CRN with three elements which has maximal asymme-

try among all thirteen topologically different networks of three elements. Indeed

only in this network indegrees of all three nodes are different and equal 0,2 and

1 respectively. In view of its essential asymmetry this network would most likely

maintain LI out of all thirteen. It happened to be the case. This network is depicted

in Fig. 3.3 and we call it a branch-cycle network.

1 2 3

Figure 3.3: branch-cycle CRN

Clearly one gets a network with similar properties by relabeling the vertex 3 as
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1 and vice versa. The equations for population evolution in this case are



ẋ1 = f1x1 − px1(r1 + βr2),

ẋ2 = f2x2 − px2(r2 + βr3),

ẋ3 = f3x3 − px3(βr2 + r3),

ṙ1 = cx1
r1

r1+αr2
− br1,

ṙ2 = c(x1
αr2

r1+αr2
+ x2

r2
r2+αr3

+ x3
αr2

αr2+r3
) − br2,

ṙ3 = c(x2
αr3

r2+αr3
+ x3

r3
αr2+r3

) − br3.

The fixed points of interest (i.e. all population sizes are non-negative, there is

a strong LI, and the relations between system parameters are inequalities rather

than equalities) in this case are

x1 = 0, x2 = 0, x3 =
b f3

cpβ
, r1 = 0, r2 =

f3

pβ
, r3 = 0;

x1 =
b f1

cpβ
, x2 = 0, x3 = 0, r1 = 0, r2 =

f1

pβ
, r3 = 0;

f3 > f1, x1 =
b f1

cpβ
(1 − α), x2 = 0, x3 =

b
cp

( f3 − f1 +
α

β
f1), r1 = 0, r2 =

f1

pβ
, r3 =

f3 − f1

p
;

f3 < f1, x1 =
b

cp
( f1 − f3 +

α

β
f3), x2 = 0, x3 =

b f3

cpβ
(1 − α), r1 =

f1 − f3

p
, r2 =

f3

pβ
, r3 = 0;

x1 =
b f1

cp
, x2 =

b f2

cpβ
, x3 = 0, r1 =

f1

p
, r2 = 0, r3 =

f2

pβ
.
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The Jacobian of the system is

J =



f1 − p(r1 + βr2) 0 0 −px1 −pβx1 0

0 f2 − p(r2 + βr3) 0 0 −px2 −pβx2

0 0 f3 − p(βr2 + r3) 0 −pβx3 −px3

cr1
r1+αr2

0 0 cx1αr2
(r1+αr2)2 − b −

cx1αr1
(r1+αr2)2 0

cαr2
r1+αr2

cr2
r2+αr3

cαr2
αr2+r3

−
cx1αr2

(r1+αr2)2 A − b −B

0 cαr3
r2+αr3

cr3
αr2+r3

0 −
cx2αr3

(r2+αr3)2 −
cx3αr3

(αr2+r3)2 B − b



,

where A =
cx1αr1

(r1 + αr2)2 +
cx2αr3

(r2 + αr3)2 +
cx3αr3

(αr2 + r3)2 , B =
cx2αr2

(r2 + αr3)2 +
cx3αr2

(αr2 + r3)2 .

At the fixed point x3 =
b f3
cpβ , x1 = x2 = 0, r2 =

f3
pβ , r1 = r3 = 0, we have

A = 0, B = b/α, J =



f1 − f3 0 0 0 0 0

0 f2 −
f3
β

0 0 0 0

0 0 0 0 −b
c f3 −

b
cβ f3

0 0 0 −b 0 0

c c c 0 −b − b
α

0 0 0 0 0 b
α
− b



.

Because λ = b
α
− b > 0 is an eigenvalue, this fixed point is unstable.

At the next fixed point x1 =
b f1
cpβ , x2 = x3 = 0, r2 =

f1
pβ , r1 = r3 = 0, we get

A = B = 0, J =



0 0 0 −
b f1
cβ −b

c f1 0

0 f2 −
f1
β

0 0 0 0

0 0 f3 − f1 0 0 0

0 0 0 b
α
− b 0 0

c c c − b
α

−b 0

0 0 0 0 0 −b



.
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Hence λ = b
α
− b > 0 is an eigenvalue, and this fixed point is unstable.

At the fixed point x1 =
b f1
cp , x2 =

b f2
cpβ , x3 = 0, r1 =

f1
p , r3 =

f2
pβ , r2 = 0, we obtain

A = αb +
b
α
, B = 0, J =



0 0 0 −b
c f1 −b

cβ f1 0

0 0 0 0 − b
cβ f2 −b

c f2

0 0 f3 −
f2
β

0 0 0

c 0 0 −b −αb 0

0 0 0 0 αb + b
α
− b 0

0 c c 0 − b
α

−b



.

Then λ = αb + b
α
− b > 0 is an eigenvalue. This fixed point is also unstable.

For the fixed point f3 > f1, x1 =
b f1
cpβ (1−α), x3 =

b
cp ( f3− f1+

α
β

f1), x2 = 0, r2 =
f1
pβ , r3 =

f3− f1
p , r1 = 0, we have

A = αb
f3 − f1

f3 − f1 + α/β f1
, B = b

α/β f1

f3 − f1 + α/β f1
,

J =



0 0 0 − b
cβ f1(1 − α) −b

c f1(1 − α) 0

0 f2 −
f1
β
− β( f3 − f1) 0 0 0 0

0 0 0 0 −
bβ
c ( f3 − f1 +

α
β

f1) −b
c ( f3 − f1 +

α
β

f1)

0 0 0 b
α
− 2b 0 0

c c f1
f1+αβ( f3− f1) c α/β f1

f3− f1+α/β f1
b − b

α
A − b −B

0 c αβ( f3− f1)
f1+αβ( f3− f1) c f3− f1

f3− f1+α/β f1
0 −A B − b



.
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Let D = f3 − f1 + α/β f1, λ1 = f2 − f1/β − β( f3 − f1), λ2 = b/α − 2b. Then

det(λI − J) = (λ − λ1)(λ − λ2)P(λ),

P(λ) = b f1(1 − α)[λ2 + (b − B)λ +
AD
α

]+

λ{bβD(λ + b − B) − AbD + (λ + b)[λ2 + (b − B − A)λ +
AD
α

(1 − β)]}

= λ4 + b(1 +
(1 − α)( f3 − f1)
f3 − f1 + α/β f1

)λ3 + (b f3 + b2 (1 − α)( f3 − f1)
f3 − f1 + α/β f1

)λ2

+b2(1 − α)( f3 − f1)(1 +
f1

f3 − f1 + α/β f1
)λ + b2(1 − α) f1( f3 − f1).

One can check that all coefficients of P(λ) are positive. It implies that P(λ) does

not have real positive roots. So in this case a stable LI is possible. We list below

a few exact values of the system parameters where stable LI is present. In each

such numerical example we pick the values of the parameters to satisfy the condi-

tions (inequalities) of existence and stability of the corresponding fixed point, and

close to the literature ranges (e.g. [14], [3] and references therein). This hand pick

approach seems to be reasonable for demonstration as well as for applications. In

fact in biomedical studies some parameters could be measured while the others

are picked from some reasonable (accepted) ranges.

1. f1 = 1, f2 = 3, f3 = 4, b = 1, α = 2/3, β = 4/9, we have λ1 = −7/12 < 0, λ2 =

−1/2 < 0, P(λ) has 2 pairs of conjugate complex roots, both with negative real

part.

2. f1 = 1/4, f2 = 1/2, f3 = 1/2, b = 2, α = 3/4, β = 9/16, we have λ1 = −49/576 <

0, λ2 = −4/3 < 0, P(λ) has 1 pair of conjugate complex roots with negative real

part and 2 distinct negative real roots.

It is easy to see that the roots of P(λ) depend continuously on the parameters.

Therefore the set of parameters for which the roots are real negative, or complex

with negative real parts have strictly positive volume in the parameter space of the
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system. Thus LI in this system remains a stable type of behavior under variations

of the system’s parameters.

At the fixed point f3 < f1, x1 =
b

cp ( f1− f3+
α
β

f3), x3 =
b f3
cpβ (1−α), x2 = 0, r1 =

f1− f3
p , r2 =

f3
pβ , r3 = 0, we have

A = αb
f1 − f3

f1 − f3 + α/β f3
, B =

b
α
− b,

J =



0 0 0 −b
c ( f1 − f3 +

α
β

f3) −bβ
c ( f1 − f3 +

α
β

f3) 0

0 f2 −
f3
β

0 0 0 0

0 0 0 0 −b
c f3(1 − α) − b

cβ f3(1 − α)

c( f1− f3)
f1− f3+α/β f3

0 0 bα/β f3
f1− f3+α/β f3

− b −
bα( f1− f3)

f1− f3+α/β f3
0

cα/β f3
f1− f3+α/β f3

c c −
bα/β f3

f1− f3+α/β f3
A − b −B

0 0 0 0 0 B − b



.

Let D = f1 − f3 + α/β f3, λ1 = f2 − f3/β, λ2 = b/α − 2b. Then

det(λI − J) = (λ − λ1)(λ − λ2)P(λ),

P(λ) = b f3(1 − α)(λ2 +
A
α
λ +

AD
α

)+

λ{bβD(λ +
A
α

) − bAD + (λ + b)[λ2 + (
A
α
− A)λ +

AD
α

(1 − β)]}

= λ4 + b(1 +
(1 − α)( f1 − f3)
f1 − f3 + α/β f3

)λ3 + (b f1 + b2 (1 − α)( f1 − f3)
f1 − f3 + α/β f3

)λ2

+b2(1 − α)( f1 − f3)(1 +
f3

f1 − f3 + α/β f3
)λ + b2(1 − α) f3( f1 − f3).

At this point we also have that all coefficients of the polynomial P(λ) are positive.

Again we list below several numerical values for parameters of the model

where stable local immunodeficiency occurs.

1. f1 = 4, f2 = 2, f3 = 1, b = 1, α = 2/3, β = 4/9, we get λ1 = −1/4 < 0, λ2 = −1/2 <

0. P(λ) here has 2 pairs of complex conjugate roots, both with negative real

part.
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2. f1 = 1/2, f2 = 1/4, f3 = 1/4, b = 2, α = 3/4, β = 9/16, then λ1 = −7/36 < 0, λ2 =

−4/3 < 0. P(λ) has 1 pair of complex conjugate roots with negative real part,

and 2 distinct negative real roots.

It follows by continuity that there are positive volume sets in the parameter space

of the model where there is a stable (i.e. practically observable) fixed point with

strong local immunodeficiency.

The last size 3 CRN we consider is a 3-cycle with no stable LI. The correspond-

ing computations are given in B.2.

3.6 Necessity of altruistic nodes

We will now address a problem, whether altruistic nodes must be present in all

cases of LI.

We considered all the fixed points for CRNs of sizes two and three (see B.3).

They can be separated into four groups.

• A: fixed points with LI and with no extra condition on the parameters.

• B: fixed points with LI with conditions on the parameters in the form of in-

equalities.

• C: fixed points with LI with conditions on the parameters that involve at least

one equality.

• D: fixed points with no LI.

One can check that fixed points in groups A and B all have altruistic nodes, while

fixed points with no altruistic nodes all belong to groups C and D. So altruistic

viruses are not necessary for the existence of fixed points with LI in the group C.

However conditions on parameters in the form of equalities single out a subset

of zero volume in the space of all systems we consider (when parameters in (3.1)
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assume any reasonable/permissible values). By reasonable/permissible we mean

such values of parameters that make sense. For instance, negative growth rates are

not permissible.

Next we consider the existence of altruistic viruses in CRNs of arbitrary (finite)

size n. We exclude neutral idle nodes with xi = ri = 0 since they don’t contribute to

the dynamics. For any fixed point, assume that there are no altruistic nodes. Then

xi > 0,∀i = 1, . . . , n. This results in the following relation

UT R = F/p (3.3)

where R = (r1, . . . , rn)T , F = ( f1, . . . , fn)T . It is easy to see that for (3.3) to have a

solution, F must be in the column space of UT = (I + βAT )T = I + βA.

Consider now two cases.

i. If UT is invertible, then the column space of UT is Rn. F is always in the

column space of UT ;

ii. If UT is not invertible, then its column space is a subspace of Rn with a posi-

tive codimension. In other words, the condition on the parameters fi’s in this

case is a zero volume subset of the parameter space.

For a fixed point to have LI, we need the vector R to have at least one zero compo-

nent. These vectors are on the axes and axes planes in Rn, or the complement of the

set where every component is nonzero. Hence, this is a zero volume set. Consider

again two cases.

i. If UT is invertible, then F = pUT R is also on a zero volume set.

ii. If UT is not invertible, then (3.3) has either none or infinitely many solutions.

Therefore if R has a solution, it has one solution where some component is
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zero. However in the previous step we already showed that if UT is not

invertible, F must belong to a zero measure subspace.

In conclusion, formally altruistic viruses are not necessary for the existence of

LI. But the conditions on the parameters for fixed points to have persistent nodes

without altruistic nodes are only satisfied on a zero measure subset of the parame-

ter space. Therefore, practically speaking, altruistic viruses form a necessary com-

ponent of local immunodeficiency.

3.7 Building larger networks with stable & robust LI

In this section we demonstrate how one can construct CRNs with multiple nodes

with LI. In other words, we construct a CRN with several persistent nodes which

remain hidden from the host’s immune system because they are protected by the

altruistic viruses. To do this we put together two identical size 3 CRNs with stable

LI found in section 3.5. We prove that the corresponding size 5 CRN has a fixed

point with two persistent nodes and two altruistic nodes. We also demonstrate

the stability of strong LI for this specific state. Consider the following network in

Fig. 3.4.

1 2 345

Figure 3.4: size 5 CRN

The model (3.1) equations for this network are
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

ẋ1 = f1x1 − px1(r1 + βr2 + βr4),

ẋ2 = f2x2 − px2(r2 + βr3),

ẋ3 = f3x3 − px3(βr2 + r3),

ẋ4 = f4x4 − px4(r4 + βr5),

ẋ5 = f5x5 − px5(βr4 + r5),

ṙ1 = cx1
r1

r1+αr2+αr4
− br1,

ṙ2 = c(x1
αr2

r1+αr2+αr4
+ x2

r2
r2+αr3

+ x3
αr2

αr2+r3
) − br2,

ṙ3 = c(x2
αr3

r2+αr3
+ x3

r3
αr2+r3

) − br3,

ṙ4 = c(x1
αr4

r1+αr2+αr4
+ x4

r4
r4+αr5

+ x5
αr4

αr4+r5
) − br4,

ṙ5 = c(x4
αr5

r4+αr5
+ x5

r5
αr4+r5

) − br5.

Here we mirrored the chain-branch network about node 1. We are not going

to try to compute all possible fixed points with LI this time. In general, based on

a vague rule (there is always an arrow going from the persistent node to the al-

truistic node, and the altruistic node typically has a high indegree), one can make

a guess and pick a node to be altruistic and another to be persistent. Then a spe-

cific fixed node with LI can be computed based on the guess through a relatively

straightforward process. However, finding all possible fixed points with LI is more

complicated. In the current 5-node CRN, we want LIs at both ends of this network,

in the form of x5 > 0, r5 = 0, x4 = 0, r4 > 0, x1 > 0, r1 > 0, x2 = 0, r2 > 0, x3 > 0, r3 = 0.

The corresponding fixed point is

f1 − f3 − f5 > 0, x1 =
b

cp
( f1 − f3 − f5 +

α

β
f3 +

α

β
f5), r1 =

f1 − f3 − f5

p
,

x2 = 0, r2 =
f3

pβ
, x3 =

b f3

cpβ
(1 − α), r3 = 0, x4 = 0, r4 =

f5

pβ
, x5 =

b f5

cpβ
(1 − α), r5 = 0.
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The Jacobian is

J =

A B

C D

 ,

A =



0 0 0 0 0

0 f2 − pr2 0 0 0

0 0 0 0 0

0 0 0 f4 − pr4 0

0 0 0 0 0


, B =



−px1 −pβx1 0 −pβx1 0

0 0 0 0 0

0 −pβx3 −px3 0 0

0 0 0 0 0

0 0 0 −pβx5 −px5


,

C =



cr1
r1+αr2+αr4

0 0 0 0

cαr2
r1+αr2+αr4

cr2
r2+αr3

cαr2
αr2+r3

0 0

0 cαr3
r2+αr3

cr3
αr2+r3

0 0

cαr4
r1+αr2+αr4

0 0 cr4
r4+αr5

cαr4
αr4+r5

0 0 0 cαr5
r4+αr5

cr5
αr4+r5


=



br1
x1

0 0 0 0

bαr2
x1

c c 0 0

0 0 0 0 0

bαr4
x1

0 0 c c

0 0 0 0 0


,

D =

D1

D2

 ,

D1 =


cx1α(r2+r4)

(r1+αr2+αr4)2 − b −
cx1r1α

(r1+αr2+αr4)2 0 −
cx1r1α

(r1+αr2+αr4)2 0

−
cx1αr2

(r1+αr2+αr4)2
cx1α(r1+αr4)

(r1+αr2+αr4)2 +
cx2αr3

(r2+αr3)2 +
cx3αr3

(αr2+r3)2 − b −
cx2r2α

(r2+αr3)2 −
cx3αr2

(αr2+r3)2 −
cx1α

2r2
(r1+αr2+αr4)2 0

0 −
cx2αr3

(r2+αr3)2 −
cx3r3α

(αr2+r3)2
cx2αr2

(r2+αr3)2 +
cx3αr2

(αr2+r3)2 − b 0 0



=


−

b2r1
cx1

−
b2αr1
cx1

0 −
b2αr1
cx1

0

−
b2αr2
cx1

b2α(r1+αr4)
cx1

− b b − b
α
−

b2α2r2
cx1

0

0 0 b
α
− 2b 0 0

 ,

D2 =

−
cαx1r4

(r1+αr2+αr4)2 −
cα2 x1r4

(r1+αr2+αr4)2 0 cx1α(r1+αr2)
(r1+αr2+αr4)2 +

cx4αr5
(r4+αr5)2 +

cx5αr5
(αr4+r5)2 − b −

cx4αr4
(r4+αr5)2 −

cx5αr4
(αr4+r5)2

0 0 0 −
cx4αr5

(r4+αr5)2 −
cx5αr5

(αr4+r5)2
cx4αr4

(r4+αr5)2 +
cx5αr4

(αr4+r5)2 − b


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=

−
b2αr4
cx1

−
b2α2r4

cx1
0 b2α(r1+αr2)

cx1
− b b − b

α

0 0 0 0 b
α
− 2b

 .
Let λ1 = f2 − pr2 = f2 − f3/β, λ2 = f4 − pr4 = f4 − f5/β, λ3 = b/α − 2b, then

det(J − λI) = (λ1 − λ)(λ2 − λ)(λ3 − λ)2T (λ),

where

T (λ) = (
b2r1

cx1
λ + pbr1)[λ2 + b(1 − α)λ + cpβx5][λ2 + b(1 − α)λ + cpβx3]

+λ3[λ + b(1 − α)][λ2 + b(1 − α)λ + (
bα
c
λ + pβx1)

bα(r2 + r4)
x1

]

+cpβx5λ
2[λ2 + b(1 − α)λ +

bαr2

x1
(
bα
c
λ + pβx1)]

+cpβx3λ
2[λ2 + b(1 − α)λ +

bαr4

x1
(
bα
c
λ + pβx1) + cpβx5]

= λ6 + [
b2r1

cx1
(1 − α) + b(2 − α)]λ5 + b{ f1 + (1 − α)[

b2r1

cx1
(2 − α) + b]}λ4

+b2(1 − α){2 f1 − f3 − f5 +
b

cx1
[r1(b(1 − α) + f3 + f5) + 2α2 f3r4]}λ3

+b2(1 − α){
b2r1

cx1
(1 − α)( f3 + f5) + pr1[ f3 + f5 + b(1 − α)] + f3 f5(1 + α)}λ2

+b3(1 − α)2[
br1

cx1
f3 f5 + pr1( f3 + f5)]λ + pb3r1 f3 f5(1 − α)2.

Detailed computation of T (λ) can be found in B.5. One can see that all the coef-

ficients are positve, thus T (λ) does not have real positive roots. Indeed we can

easily find various groups of parameters for which our two LIs stably coexist. For

instance, among them are the following two groups.

i. f1 = 3, f2 = 2, f3 = 1, f4 = 2, f5 = 1, b = 1, α = 2/3, β = 4/9; λ1 = −1/4 =
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λ2 < 0, λ3 = −1/2 < 0, T (λ) has 3 pairs of complex roots, all with negative real

parts.

ii. f1 = 4, f2 = 1, f3 = 2, f4 = 1, f5 = 1, b = 2, α = 3/4, β = 9/16; λ1 = −23/9 < 0, λ2 =

−7/9 < 0, λ3 = −4/3 < 0, T (λ) has 3 pairs of complex roots, all with negative

real parts.

By continuity there are positive measure sets in the parameter space where the LIs

coexist stably.

3.8 Discussion

In this paper we proved that local immunodeficiency discovered in [3] is a stable

and robust phenomenon which may appear already in CRNs with just three types

of viruses. Therefore LI should be likely present in all diseases which demonstrate

cross-immunodeficiency. It is not necessary to have large CRNs which are typical

for Hepatisis C [3]. We also rigorously demonstrated that it is easy to build larger

networks with several elements (persistent nodes) which remain invisible to the

host’s immune system because of their positions in the CRN.

We also demonstrate that LI is a much more general phenomenon than as-

sumed in [3]. Indeed a CRN doesn’t need to be scale-free [3] to produce LI; it just

needs a sufficiently non-homogeneous topology. Since our results are built on ex-

act computations for small networks, they leave a little doubt about the presence

of stable and robust LI in large CRNs with heterogeneous topology of a general

type.

Observe that the phenomenon of local immunodeficiency formally requires the

presence of only persistent antigens which manage to escape immune response.

However, in all cases with stable and robust LI, altruistic nodes were always present.

It is consistent with extensive numerical simulations with large CRNs in [3]. There-
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fore it seems that altruistic antigens are necessary for LI to be a stable and robust

phenomenon.

Overall local immunodeficiency seems to be an ubiquitous phenomenon which

likely will be present in all diseases demonstrating cross-immunoreactivity. It calls

for future numerical, analytic and, first of all, biological studies. The most impor-

tant and interesting question is which types of viruses can play a role of persistent

and/or altruistic ones.
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APPENDIX A

DETAILED COMPUTATIONS FOR THE NETWORK IN FIGURE 1.1

We provide here the exact analytic computations for the network depicted in Fig.1.1.

For each structural set of this network the entry-wise condition (1.3) for example 1

is verified.

• S = {1, 4}

For eigenvalue i,

R12

i − ω(2, 2)
u2 +

R13

i − ω(3, 3)
u3 = −i(R12(−1) − iR13) = iR12 − R13 = i + i = 2i = 2u1;

R42

i − ω(2, 2)
u2 +

R43

i − ω(3, 3)
u3 = iR42 − R43 = 0 − (−2) = 2 = 2u4.

For eigenvalue −i,

R12

−i − ω(2, 2)
u2 +

R13

−i − ω(3, 3)
u3 = i(R12i + R13) = −R12 + iR13 = −1 − 1 = −2 = 2u1;

R42

−i − ω(2, 2)
u2 +

R43

−i − ω(3, 3)
u3 = −R42 + iR43 = 0 − 2i = −2i = 2u4.

One can check that the reduction preserves the generalized eigenvectors in

this case.

• S = {2, 4}

For eigenvalue i,

R21

i − ω(1, 1)
u1 +

R23

i − ω(3, 3)
u3 = −i(iR21 − iR23) = R21 − R23 = −1 = u2;

R41

i − ω(1, 1)
u1 +

R43

i − ω(3, 3)
u3 = R41 − R43 = −1 − (−2) = 1 = u4.
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For eigenvalue −i,

R21

−i − ω(1, 1)
u1 +

R23

−i − ω(3, 3)
u3 = i(−R21 + R23) = −iR21 + iR23 = 0 + i = i = u2;

R41

−i − ω(1, 1)
u1 +

R43

−i − ω(3, 3)
u3 = −iR41 + iR43 = i − 2i = −i = u4.

One can check that the reduction preserves the generalized eigenvectors here.

• S = {3, 4}

For eigenvalue i,

R31

i − ω(1, 1)
u1 +

R32

i − ω(2, 2)
u2 = −i(iR31 − R32) = R31 + iR32 = 0;

R41

i − ω(1, 1)
u1 +

R42

i − ω(2, 2)
u2 = R41 + iR42 = −1 − 1 = −2 = −2u4.

For eigenvalue −i,

R31

−i − ω(1, 1)
u1 +

R32

−i − ω(2, 2)
u2 = i(−R31 + iR32) = −iR31 − R32 = 0;

R41

−i − ω(1, 1)
u1 +

R42

−i − ω(2, 2)
u2 = −iR41 − R42 = i + i = 2i = −2u4.

Here the generalized eigenvectors are not preserved. Observe that the struc-

tural set in this case contains a complete cycle.

• S = {1, 3}

For eigenvalue i,

R12

i − ω(2, 2)
u2 +

R14

i − ω(4, 4)
u4 = −i(−R12 + R14) = iR12 − iR14 = i = u1;

R32

i − ω(2, 2)
u2 +

R34

i − ω(4, 4)
u4 = iR32 − iR34 = −i = u3.
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For eigenvalue −i,

R12

−i − ω(2, 2)
u2 +

R14

−i − ω(4, 4)
u4 = i(iR12 − iR14) = −R12 + R14 = −1 = u1;

R32

−i − ω(2, 2)
u2 +

R34

−i − ω(4, 4)
u4 = −R32 + R34 = 1 = u3.

One can check that the reduction preserves the generalized eigenvectors here.

• S = {2, 3}

For eigenvalue i,

R21

i − ω(1, 1)
u1 +

R24

i − ω(4, 4)
u4 = −i(iR21 + R24) = R21 − iR24 = 0;

R31

i − ω(1, 1)
u1 +

R34

i − ω(4, 4)
u4 = R31 − iR34 = 0.

For eigenvalue −i,

R21

−i − ω(1, 1)
u1 +

R24

−i − ω(4, 4)
u4 = i(−R12 − iR14) = −iR21 + R24 = 0;

R31

−i − ω(1, 1)
u1 +

R34

−i − ω(4, 4)
u4 = −iR31 + R34 = −1 + 1 = 0.

One can check that the reduction preserves the generalized eigenvectors here.

• S = {1, 2, 4}

For eigenvalue i,

R13

i − ω(3, 3)
u3 = −R13 = 0;

R23

i − ω(3, 3)
u3 = −R23 = −1 = u2;

R43

i − ω(3, 3)
u3 = 2u4.

For eigenvalue −i,

R13

−i − ω(3, 3)
u3 = iR13 = 0;

R23

−i − ω(3, 3)
u3 = iR23 = i = u2;

R43

−i − ω(3, 3)
u3 = 2u4.
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This does not satisfy the condition. One can check that the reduction only

preserves the eigenvector here.

• S = {1, 3, 4}

For eigenvalue i,

R12

i − ω(2, 2)
u2 = iR12 = i = u1;

R32

i − ω(2, 2)
u2 = iR32 = 0;

R42

i − ω(2, 2)
u2 = 0.

For eigenvalue −i,

R12

−i − ω(2, 2)
u2 = −R12 = −1 = u1;

R32

−i − ω(2, 2)
u2 = −R32 = 0;

R42

−i − ω(2, 2)
u2 = 0.

This does not satisfy the condition. One can check that the reduction only

preserves the eigenvector here.

• S = {2, 3, 4}

For eigenvalue i,

R21

i − ω(1, 1)
u1 = R21 = 0;

R31

i − ω(1, 1)
u1 = R31 = 0;

R41

i − ω(1, 1)
u1 = −1 = −u4.

For eigenvalue −i,

R21

−i − ω(1, 1)
u1 = −iR21 = 0;

R31

−i − ω(1, 1)
u1 = 0;

R41

−i − ω(1, 1)
u1 = i = −u4.

This does not satisfy the condition. One can check that the reduction only

preserves the eigenvector here.

• S = {1, 2, 3}
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For eigenvalue i,

R14

i − ω(4, 4)
u4 = −iR14 = 0;

R24

i − ω(4, 4)
u4 = 0;

R34

i − ω(4, 4)
u4 = −i = u3.

For eigenvalue −i,

R14

−i − ω(4, 4)
u4 = R14 = 0;

R24

−i − ω(4, 4)
u4 = 0;

R34

−i − ω(4, 4)
u4 = 1 = u3.

This does not satisfy the condition. One can check that the reduction only

preserves the eigenvector here.
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APPENDIX B

FIXED POINTS AND STABILITY FOR DIFFERENT CRNS

B.1 Computation for symmetric size 2 CRN

Consider the symmetric size 2 CRN in Fig. B.1.

1 2

Figure B.1: size 2 CRN (symmetric)

The dynamics of this CRN is described by



ẋ1 = f1x1 − px1(r1 + βr2),

ẋ2 = f2x2 − px2(βr1 + r2),

ṙ1 = c(x1
r1

r1+αr2
+ x2

αr1
αr1+r2

) − br1,

ṙ2 = c(x1
αr2

r1+αr2
+ x2

r2
αr1+r2

) − br2.

Consider the fixed point with local immunodeficiency x1 > 0, r1 = 0, x2 = 0, r2 > 0.

One can solve it to be

x1 =
b f1

cβ
, r1 = 0, x2 = 0, r2 =

f1

β
.

The Jacobian of the system is

J =



f1 − p(r1 + βr2) 0 −px1 −pβx1

0 f2 − p(βr1 + r2) −pβx2 −px2

cr1
r1+αr2

cαr1
αr1+r2

cx1
αr2

(r1+αr2)2 + cx2
αr2

(αr1+r2)2 − b −
cx1αr1

(r1+αr2)2 −
cx2αr1

(αr1+r2)2

cαr2
r1+αr2

cr2
αr1+r2

−
cx1αr2

(r1+αr2)2 −
cx2αr2

(αr1+r2)2 cx1
αr1

(r1+αr2)2 + cx2
αr1

(αr1+r2)2 − b


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=



0 0 −px1 −pβx1

0 f2 − pr2 0 0

0 0 b
α
− b 0

c c − b
α

−b


.

λ = b
α
− b > 0 is an eigenvalue, so the fixed point is unstable.

B.2 Computation for 3-cycle CRN

The last size three CRN we consider here for illustration is the 3-cycle network in

Fig. B.2.

3

1 2

Figure B.2: 3-cycle CRN

The governing equations in this case are



ẋ1 = f1x1 − px1(r1 + βr2),

ẋ2 = f2x2 − px2(r2 + βr3),

ẋ3 = f3x3 − px3(r3 + βr1),

ṙ1 = c(x1
r1

r1+αr2
+ x3

αr1
αr1+r3

) − br1,

ṙ2 = c(x1
αr2

r1+αr2
+ x2

r2
r2+αr3

) − br2,

ṙ3 = c(x2
αr3

r2+αr3
+ x3

r3
αr1+r3

) − br3.

The fixed points of interest are

x1 = 0, x2 =
b f2

cp
, x3 =

b f3

cpβ
, r1 =

f3

pβ
, r2 =

f2

p
, r3 = 0;
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x1 =
b f1

cpβ
, x2 = 0, x3 =

b f3

cp
, r1 = 0, r2 =

f1

pβ
, r3 =

f3

p
;

x1 =
b f1

cp
, x2 =

b f2

cpβ
, x3 = 0, r1 =

f1

p
, r2 = 0, r3 =

f2

pβ
.

The Jacobian of the system equals

J =



f1 − p(r1 + βr2) 0 0 −px1 −pβx1 0

0 f2 − p(r2 + βr3) 0 0 −px2 −pβx2

0 0 f3 − p(r3 + βr1) −pβx3 0 −px3

cr1
r1+αr2

0 cαr1
αr1+r3

A − b −
cx1αr1

(r1+αr2)2 −
cx3αr1

(αr1+r3)2

cαr2
r1+αr2

cr2
r2+αr3

0 −
cx1αr2

(r1+αr2)2 B − b −
cx2αr2

(r2+αr3)2

0 cαr3
r2+αr3

cr3
αr1+r3

−
cx3αr3

(αr1+r3)2 −
cx2αr3

(r2+αr3)2 C − b



,

where A =
cx1αr2

(r1 + αr2)2 +
cx3αr3

(αr1 + r3)2 , B =
cx1αr1

(r1 + αr2)2 +
cx2αr3

(r2 + αr3)2 ,C =
cx2αr2

(r2 + αr3)2 +
cx3αr1

(αr1 + r3)2 .

At the fixed point x1 = 0, x2 =
b f2
cp , x3 =

b f3
cpβ , r1 =

f3
pβ , r2 =

f2
p , r3 = 0, we have

A = B = 0,C = αb +
b
α
,

J =



f1 − β f2 −
f3
β

0 0 0 0 0

0 0 0 0 −b
c f2 −

bβ
c f2

0 0 0 −b
c f3 0 − b

cβ f3

c f3
f3+αβ f2

0 c −b 0 − b
α

cαβ f2
f3+αβ f2

c 0 0 −b −αb

0 0 0 0 0 b
α
+ αb − b



.

Because λ = αb + b
α
− b > 0 is an eigenvalue this point is unstable.
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At the fixed point x1 =
b f1
cpβ , x2 = 0, x3 =

b f3
cp , r1 = 0, r2 =

f1
pβ , r3 =

f3
p we obtain

A =
b
α
+ αb, B = C = 0,

J =



0 0 0 −
b f1
cβ −b

c f1 0

0 f2 −
f1
β
− β f3 0 0 0 0

0 0 0 −
bβ
c f3 0 −b

c f3

0 0 0 b
α
+ αb − b 0 0

c c f1
f1+αβ f3

0 − b
α

−b 0

0 cαβ f3
f1+αβ f3

c −αb 0 −b



.

Again λ = b
α
+ αb − b > 0 is an eigenvalue, and this fixed point is unstable.

At the fixed point x1 =
b f1
cp , x2 =

b f2
cpβ , x3 = 0, r1 =

f1
p , r2 = 0, r3 =

f2
pβ we get analo-

gously

A = 0, B = αb +
b
α
,C = 0,

J =



0 0 0 −b
c f1 −

bβ
c f1 0

0 0 0 0 −
b f2
cβ −b

c f2

0 0 f3 − β f1 −
f2
β

0 0 0

c 0 cαβ f1
αβ f1+ f2

−b −αb 0

0 0 0 0 αb + b
α
− b 0

0 c c f2
αβ f1+ f2

0 − b
α

−b



.

This fixed point is also unstable because λ = αb + b
α
− b > 0 is an eigenvalue.

It is not surprising that for a cyclic network there is no stable local immunod-

eficiency because this network is invariant with respect to rotations. Therefore it

is a homogeneous network while the networks with local immunodeficiency are

characterized by a strong non-homogeneity [3].
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B.3 A complete list of fixed points for size 2 and 3 CRNs

• size 2 CRN

1 2

Fixed points:

i.

x1 = 0, x2 =
b f2

cp
, r1 = 0, r2 =

f2

p

ii.

x1 =
b f1

cpβ
, x2 = 0, r1 = 0, r2 =

f1

pβ

iii.

x1 =
b f1

cp
, x2 = 0, r1 =

f1

p
, r2 = 0

iv.

f1 = β f2, 0 < x1 <
b f2

cp
, x2 =

b f2

cp
− x1, r1 = 0, r2 =

f2

p

v.

f1 > β f2, x1 =
b

cp
( f1 + (α − β) f2), x2 =

b f2

cp
(1 − α), r1 =

f1 − β f2

p
, r2 =

f2

p

• size 3 CRN

1 2 3

Fixed points:

i.

x1 = 0, x2 =
b f2

cp
, x3 = 0, r1 = 0, r2 =

f2

p
, r3 = 0
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ii.

f2 > β f3, x1 = 0, x2 =
b

cp
( f2+(α−β) f3), x3 =

b f3

cp
(1−α), r1 = 0, r2 =

f2 − β f3

p
, r3 =

f3

p

iii.

x1 =
b f1

cpβ
, x2 = 0, x3 = 0, r1 = 0, r2 =

f1

pβ
, r3 = 0

iv.

x1 =
b f1

cp
, x2 = 0, x3 =

b f3

cp
, r1 =

f1

p
, r2 = 0, r3 =

f3

p

v.

x1 =
b f1

cpβ
, x2 = 0, x3 =

b f3

cp
, r1 = 0, r2 =

f1

pβ
, r3 =

f3

p

vi.

f1 = β f2, 0 < x1 <
b f1

cpβ
, x2 =

b f1

cpβ
− x1, x3 = 0, r1 = 0, r2 =

f1

pβ
, r3 = 0

vii.

x1 =
b f1

cp
, x2 =

b f2

cpβ
, x3 = 0, r1 =

f1

p
, r2 = 0, r3 =

f2

pβ

viii.

f1 > β f2, x1 =
b

cp
( f1+(α−β) f2), x2 =

b f2

cp
(1−α), x3 = 0, r1 =

f1 − β f2

p
, r2 =

f2

p
, r3 = 0

ix.

f1 = β( f2 − β f3) > 0, 0 < x1 <
b( f2 − β f3)

cp
, x2 = (1 +

α f3

f2 − β f3
)(

b( f2 − β f3)
cp

− x1),

x3 =
b f3

cp
(1 − α) + α

f3

f2 − β f3
x1, r1 = 0, r2 =

f2 − β f3

p
, r3 =

f3

p
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x.

f2 = β f3, x1 =
b f1

cp
, 0 < x2 <

b f3

cp
, x3 =

b f3

cp
− x2, r1 =

f1

p
, r2 = 0, r3 =

f3

p

xi.

f1 > β( f2 − β f3) > 0, x1 =
b

cp
( f1 + (α − β)( f2 − β f3)), x2 =

b
cp

(1 − α)( f2 + (α − β) f3),

x3 =
b f3

cp
(1 − α(1 − α)), r1 =

f1 − β f2 + β
2 f3

p
, r2 =

f2 − β f3

p
, r3 =

f3

p

1 2 3

Fixed points:

i.

x1 = 0, x2 = 0, x3 =
b f3

cpβ
, r1 = 0, r2 =

f3

pβ
, r3 = 0

ii.

x1 = 0, x2 =
b f2

cp
, x3 = 0, r1 = 0, r2 =

f2

p
, r3 = 0

iii.

f3 > β f2 > β
2 f3, x1 = 0, x2 =

b[(1 − αβ) f2 + (α − β) f3]
cp(1 + α)(1 − β2)

, x3 =
b[(1 − αβ) f3 + (α − β) f2]

cp(1 + α)(1 − β2)
,

r1 = 0, r2 =
f2 − β f3

p(1 − β2)
, r3 =

f3 − β f2

p(1 − β2)

iv.

f3 = β f2, x1 = 0, 0 < x2 <
b f2

cp
, x3 =

b f2

cp
− x2, r1 = 0, r2 =

f2

p
, r3 = 0

v.

x1 =
b f1

cpβ
, x2 = 0, x3 = 0, r1 = 0, r2 =

f1

pβ
, r3 = 0
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vi.

f3 = f1, 0 < x1 <
b f1

cpβ
, x2 = 0, x3 =

b f1

cpβ
− x1, r1 = 0, r2 =

f1

pβ
, r3 = 0

vii.

f3 > f1, x1 =
b f1

cpβ
(1−α), x2 = 0, x3 =

b
cp

( f3− f1+
α

β
f1), r1 = 0, r2 =

f1

pβ
, r3 =

f3 − f1

p

viii.

f3 < f1, x1 =
b

cp
( f1− f3+

α

β
f3), x2 = 0, x3 =

b f3

cpβ
(1−α), r1 =

f1 − f3

p
, r2 =

f3

pβ
, r3 = 0

ix.

x1 =
b f1

cp
, x2 = 0, x3 =

b f3

cp
, r1 =

f1

p
, r2 = 0, r3 =

f3

p

x.

f1 = β f2, 0 < x1 <
b f2

cp
, x2 =

b f2

cp
− x1, x3 = 0, r1 = 0, r2 =

f2

p
, r3 = 0

xi.

f1 > β f2, x1 =
b

cp
( f1+(α−β) f2), x2 =

b f2

cp
(1−α), x3 = 0, r1 =

f1 − β f2

p
, r2 =

f2

p
, r3 = 0

xii.

x1 =
b f1

cp
, x2 =

b f2

cpβ
, x3 = 0, r1 =

f1

p
, r2 = 0, r3 =

f2

pβ

xiii.

f1 = f3 = β f2, 0 < x1 <
b f2

cp
, 0 < x2 <

b f2

cp
−x1, x3 =

b f2

cp
−x1−x2, r1 = 0, r2 =

f2

p
, r3 = 0
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xiv.

(1 − β2) f1 = β( f2 − β f3) > 0, f3 > β f2, 0 < x1 < b min{1 − α,
f2 + f3

cp(1 + β)
},

x2 =
(1 − αβ) f2 + (α − β) f3

cp(1 + α)(1 − β2)
(b −

x1

1 − α
), x3 =

(1 − αβ) f3 + (α − β) f2

cp(1 + α)(1 − β2)
(b −

αx1

1 − α
),

r1 = 0, r2 =
f2 − β f3

p(1 − β2)
, r3 =

f3 − β f2

p(1 − β2)

xv.

f2 = β f3, x1 =
b f1

cp
, 0 < x2 <

b f3

cp
, x3 =

b f3

cp
− x2, r1 =

f1

p
, r2 = 0, r3 =

f3

p

xvi.

f1 > β f2 = f3, x1 =
b

cp
( f1+(α−β) f2), 0 < x2 <

b f2

cp
(1−α), x3 =

b f2

cp
−x2, r1 =

f1 − β f2

p
, r2 =

f2

p
, r3 = 0

xvii.

(1 − β2) f1 > β( f2 − β f3) > 0, f3 > β f2, x1 =
b f1

cp
+

b(α − β)
cp(1 − β2)

( f2 − β f3),

x2 =
b(1 − 2α)

cp(1 − α2)(1 − β2)
((1 − αβ) f2 + (α − β) f3),

x3 =
b(1 − α + α2)

cp(1 − α2)(1 − β2)
((1 − αβ) f3 + (α − β) f2), r1 =

f1

p
− β

f2 − β f3

p(1 − β2)
,

r2 =
f2 − β f3

p(1 − β2)
, r3 =

f3 − β f2

p(1 − β2)

3

1 2

Fixed points:
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i.

f2 > β f3, x1 = 0, x2 =
b

cp
( f2+(α−β) f3), x3 =

b f3

cp
(1−α), r1 = 0, r2 =

f2 − β f3

p
, r3 =

f3

p

ii.

x1 = 0, x2 =
b f2

cp
, x3 =

b f3

cpβ
, r1 =

f3

pβ
, r2 =

f2

p
, r3 = 0

iii.

x1 =
b f1

cpβ
, x2 = 0, x3 =

b f3

cp
, r1 = 0, r2 =

f1

pβ
, r3 =

f3

p

iv.

f3 > β f1, x1 =
b f1

cp
(1−α), x2 = 0, x3 =

b
cp

( f3+(α−β) f1), r1 =
f1

p
, r2 = 0, r3 =

f3 − β f1

p

v.

x1 =
b f1

cp
, x2 =

b f2

cpβ
, x3 = 0, r1 =

f1

p
, r2 = 0, r3 =

f2

pβ

vi.

f1 > β f2, x1 =
b

cp
( f1+(α−β) f2), x2 =

b f2

cp
(1−α), x3 = 0, r1 =

f1 − β f2

p
, r2 =

f2

p
, r3 = 0

vii.

f2 =
f1

β
+β f3, 0 < x1 <

b f1

cpβ
, x2 = (

b
c
−

x1 pβ
f1

)
f1 + αβ f3

pβ
, x3 = (

b
c

(1−α)+
αx1 pβ

f1
)

f3

p
, r1 = 0, r2 =

f1

pβ
, r3 =

f3

p

viii.

f3 = β f1+
f2

β
, (1−α)

b f1

cp
< x1 <

b f1

cp
, x2 =

f2

pαβ
(
x1 p
f1
−(1−α)

b
c

), x3 = (
f1

p
+

f2

pαβ
)(

b
c
−

x1 p
f1

), r1 =
f1

p
, r2 = 0, r3 =

f2

pβ
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ix.

f1 = β f2+
f3

β
, 0 < x1 <

b
c

(r1+αr2), x2 = (
b
c
−α

x1

r1 + αr2
)r2, x3 = r1(

b
c
−

x1

r1 + αr2
), r1 =

f3

pβ
, r2 =

f2

p
, r3 = 0

x.

f1 − β f2 + β
2 f3 > 0, f2 − β f3 + β

2 f1 > 0, f3 − β f1 + β
2 f2 > 0,

x1 =
b

c(1 + α)
(r1 + αr2), x2 =

b
c(1 + α)

(r2 + αr3), x3 =
b

c(1 + α)
(r3 + αr1),

r1 =
f1 − β f2 + β

2 f3

p(1 + β3)
, r2 =

f2 − β f3 + β
2 f1

p(1 + β3)
, r3 =

f3 − β f1 + β
2 f2

p(1 + β3)

B.4 Size 4 mildly asymmetric networks: existence & stability of LI

The CRN we consider here is the ”T-shaped” network with four nodes in Fig. B.3.

1 2

3

4

Figure B.3: size 4 CRN

For this specific size 4 CRN, we want node 1 to be altruistic, i.e. x1 = 0, r1 >

0. Observe that the nodes 2, 3 and 4 are situated symmetrically. Without loss of

generality we may assume that the node 2 is persistent while the nodes 3, 4 are

neutral active, i.e. x2 > 0, r2 = 0, x3 > 0, r3 > 0, x4 > 0, x4 > 0.
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The dynamical equations (3.1) assume the form



ẋ1 = f1x1 − px1r1,

ẋ2 = f2x2 − px2(βr1 + r2),

ẋ3 = f3x3 − px3(βr1 + r3),

ẋ4 = f4x4 − px4(βr1 + r4),

ṙ1 = c(x1 + x2
αr1

αr1+r2
+ x3

αr1
αr1+r3

+ x4
αr1

αr1+r4
) − br1,

ṙ2 = cx2
r2

αr1+r2
− br2,

ṙ3 = cx3
r3

αr1+r3
− br3,

ṙ4 = cx4
r4

αr1+r4
− br4.

Under assumptions f2 < f3, f2 < f4, α < 1/2 (so that the population values are

positive), we get the fixed point with local immunodeficiency:

x1 = 0, r1 =
f2

pβ
, x2 =

b f2(1 − 2α)
cpβ

, r2 = 0,

x3 =
b

cp
(
α

β
f2 + f3 − f2), r3 =

f3 − f2

p
, x4 =

b
cp

(
α

β
f2 + f4 − f2), r4 =

f4 − f2

p
.

The corresponding Jacobian is,

J =

A B

C D

 ,

A =



f1 − pr1 0 0 0

0 f2 − p(βr1 + r2) 0 0

0 0 f3 − p(βr1 + r3) 0

0 0 0 f4 − p(βr1 + r4)


=



f1 − pr1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,
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B =



−px1 0 0 0

−pβx2 −px2 0 0

−pβx3 0 −px3 0

−pβx4 0 0 −px4


=



0 0 0 0

−pβx2 −px2 0 0

−pβx3 0 −px3 0

−pβx4 0 0 −px4


,

C =



c cαr1
αr1+r2

cαr1
αr1+r3

cαr1
αr1+r4

0 cr2
αr1+r2

0 0

0 0 cr3
αr1+r3

0

0 0 0 cr4
αr1+r4


=



c c bαr1
x3

bαr1
x4

0 0 0 0

0 0 br3
x3

0

0 0 0 br4
x4


,

D =



cαx2r2
(αr1+r2)2 +

cαx3r3
(αr1+r3)2 +

cαx4r4
(αr1+r4)2 − b −

cαx2r1
(αr1+r2)2 −

cαx3r1
(αr1+r3)2 −

cαx4r1
(αr1+r4)2

−
cαx2r2

(αr1+r2)2
cαx2r1

(αr1+r2)2 − b 0 0

−
cαx3r3

(αr1+r3)2 0 cαx3r1
(αr1+r3)2 − b 0

−
cαx4r4

(αr1+r4)2 0 0 cαx4r1
(αr1+r4)2 − b



=



αb2r3
cx3
+ αb2r4

cx4
− b 2b − b

α
−
αb2r1
cx3

−
αb2r1
cx4

0 b
α
− 3b 0 0

−
αb2r3
cx3

0 αb2r1
cx3
− b 0

−
αb2r4
cx4

0 0 αb2r1
cx4
− b


.

As an exact numerical example with a stable local immunodeficiency consider

the system’s parameters assuming the following values b = c = p = 1, α = 2/5, β =

4/25, f1 = f2 = 1, f3 = f4 = 2. One can compute the Jacobian numerically and see

all the eigenvalues are either real negative or complex with negative real parts.

It follows by continuity that there exists a positive measure set in the parameter

space where this local immunodeficiency is stable.

86



B.5 Detailed computation of T (λ)

After column reduction, we get

T (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 −px1 −
b
cλ −pβx1 −

αb
c λ −pβx1 −

αb
c λ

0 −λ 0 0 −pβx3 0

0 0 −λ 0 0 −pβx5

br1
x1

0 0 −λ 0 0

bαr2
x1

c 0 0 αb − b − λ 0

bαx4
x1

0 c 0 0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

There are many zeros among these entries. Expanding along the rows or columns

with the most number of 0s is the simplest way to compute the determinant. The

following computation uses the expansion along the row that has the lowest index

number among all rows and columns with the most number of 0s.

T (λ) = −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 −px1 −
b
cλ −pβx1 −

αb
c λ −pβx1 −

αb
c λ

0 −λ 0 0 −pβx5

br1
x1

0 −λ 0 0

bαr2
x1

0 0 αb − b − λ 0

bαr4
x4

c 0 0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+pβx3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 −px1 −
b
cλ −pβx1 −

αb
c λ

0 0 −λ 0 −pβx5

br1
x1

0 0 −λ 0

bαr2
x1

c 0 0 0

bαr4
x1

0 c 0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= λ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ −px1 −
b
cλ −pβx1 −

αb
c λ −pβx1 −

bα
c λ

br1
x1

−λ 0 0

bαr2
x1

0 αb − b − λ 0

bαr4
x1

0 0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−pβx5λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 −px1 −
b
cλ pβ1 −

bα
c λ

br1
x1

0 −λ 0

bαr2
x1

0 0 αb − b − λ

bαr4
x1

c 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ cpβx3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 −px1 −
b
cλ −pβx1 −

bα
c λ

0 −λ 0 −pβx5

br1
x1

0 −λ 0

bαr4
x1

c 0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= λ2[−
br1

x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−px1 −

b
cλ −pβx1 −

bα
c λ −pβx1 −

bα
c λ

0 αb − b − λ 0

0 0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−λ −pβx1 −

bα
c λ −pβx1 −

bα
c λ

bαr2
x1

αb − b − λ 0

bαr4
x1

0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
]

−cpβx5λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−λ −px1 −

b
cλ −pβx1 −

bα
c λ

br1
x1

−λ 0

bαr2
x1

0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− cpβx3λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−λ −px1 −

b
cλ −pβx1 −

bα
c λ

br1
x1

−λ 0

bαr4
x1

0 αb − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−cp2β2x3x5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−λ 0 −px1 −

b
cλ

br1
x1

0 −λ

bαr4
x1

c 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= λ2{
br1

x1
(px1 +

b
c
λ)(λ + b − αb)2

+λ[
bαr2

x1
(pβx1 +

bα
c
λ)(λ + b − αb) + (λ + b − αb)(λ2 + (b − αb)λ + (pβx1 +

bα
c
λ)

bαr4

x1
)]}

+cpβx5λ{
br1

x1
(px1 +

b
c
λ)(λ + b − αb) + λ[λ2 + (b − αb)λ + (pβx1 +

bα
c
λ)

bαr2

x1
]}

+cpβx3λ{
br1

x1
(px1 +

b
c
λ)(λ + b − αb) + λ[λ2 + (b − αb)λ + (pβx1 +

bα
c
λ)

bαr4

x1
]}

+c2 p2β2x3x5(λ2 +
b2r1

cx1
λ + pbr1)

=
br1

x1
(px1 +

b
c
λ)(λ + b − αb)[λ2(λ + b − αb) + cpβx5λ + cpβx3λ]

+(pβx1 +
bα
c
λ)[

bαr2

x1
λ3(λ + b − αb) +

bαr4

x1
λ3(λ + b − αb) +

bαr2

x1
cpβx5λ

2 +
bαr4

x1
cpβx3λ

2]

+λ4(λ + b − αb)2 + cpβ(x5 + x3)λ3(λ + b − αb) + c2 p2β2x3x5[λ2 +
b2r1

cx1
λ + pbr1]

=
br1

x1
λ(

b
c
λ + px1)(λ + b − αb)[λ2 + (b − αb)λ + cpβ(x3 + x5)]

+λ2(
bα
c
λ + pβx1)[(

bαr2

x1
+

bαr4

x1
)λ(λ + b − αb) +

bα
x1

cpβ(r2x5 + r4x3)]

+λ3(λ + b − αb)[λ2 + (b − αb)λ + cpβ(x3 + x5)]

+c2 p2β2x3x5(λ2 +
b2r1

cx1
λ + pbr1)

= λ[λ + b(1 − α)][λ2 + b(1 − α)λ + b(1 − α)( f3 + f5)][λ2 +
b2r1

cx1
λ + pbr1]

+λ2(
bα
c
λ + pβx1)[(c −

br1

x1
)λ(λ + b − αb) + 2

b2α(1 − α)
x1

r4 f3]

+b2(1 − α)2 f3 f5(λ2 +
b2r1

cx1
λ + pbr1).
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